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1 Introduction

Finding the supergravity background corresponding to the η-deformation of AdS5 × S5

superstring sigma model [1–4] (“η-model”) has turned out to be a non-trivial problem.

The corresponding metric and B-field were read off the superstring action in [5]. It was

then found that for low-dimensional analogs [6] of the deformed metric, corresponding to

deformations of the AdS2 × S2 and AdS3 × S3 sigma models, it is possible [7] to find

special combinations of RR fluxes and the dilaton that complete the metrics to full type

IIB supergravity solutions. However, it was noticed that there may be many dilaton/flux

backgrounds supporting the same metric and it was not checked that the solutions that were

found (with particular non-factorized dilatons) correspond to the η-deformed AdS2×S2 and

AdS3×S3 superstring sigma models. Very recently, the RR background that follows directly

from quadratic fermionic term in the η-deformed AdS5×S5 sigma model was finally found

in [8] but surprisingly it was found that the resulting metric, B-field and RR fluxes cannot

be supported by a dilaton to promote them to a consistent type IIB supergravity solution.

In a parallel development, a one-parameter deformation of the non-abelian dual of the

AdS5×S5 superstring sigma model was constructed [9, 10] (generalizing the bosonic models

of [11]). This “λ-model” is closely connected (via an analytic continuation) to the η-model

at the classical phase space level (the associated Poisson bracket algebras are effectively

isomorphic [12]). Furthermore, it was found in [13] that the metric of the η-model can be

obtained from the metric of the λ-model by a certain singular limit (involving infinite shifts

of coordinates corresponding to Cartan directions of the original symmetry group) and an

analytic continuation relating the two deformation parameters (η = i1−λ
1+λ).
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More precisely, the metric that originated from this singular limit of the λ-model metric

was not the η-deformed AdS5×S5 metric itself but its T-dual with respect to all 6 isometric

directions associated to Cartan generators of SO(2, 4) × SO(6). The reason for this can

be traced to the fact that the λ-deformation was applied to the non-abelian T-dual of

the AdS5 × S5 coset model and performing the non-abelian duality implies dualizing with

respect to the whole symmetry group. Applying the singular limit gives preference to the

Cartan directions, such that it should produce a deformation of the abelian T-dual of the

AdS5×S5 model [13]. This observation [13] of the special role of the T-dual of the deformed

AdS5 × S5 model turns out to be crucial in what follows.

Guided by the existence of a supergravity solution that supports the metric of the

AdS5 × S5 λ-model by a particularly simple (factorized) dilaton and just the RR 5-form

flux [14, 15], in [13] we applied the above singular limit to its AdS2 × S2 counterpart and

found a new supergravity solution (different to the T-dual of the solution found in [7])

that supports the T-dual of the η-deformed AdS2 × S2 metric by a RR 2-form flux and

factorized dilaton. A peculiar feature of this solution was that the dilaton contained a term

linear in the two isometric coordinates of the metric. This precluded us from applying the

standard rules to reverse the T-duality and find the supergravity background supporting

the original η-deformation of AdS2 × S2 metric.

Motivated by the observations of [13], here we directly construct similar type IIB

supergravity solutions supporting the T-duals of the η-deformations of the AdS3 × S3 and

AdS5 × S5 metrics. Again, the resulting dilatons contain terms linear in (some of) the

isometric coordinates, which precludes us from undoing the T-duality and thus finding

similar solutions supporting the η-deformed AdS3×S3 and AdS5×S5 metrics themselves.

The solution we find for the T-dual of the η-deformed AdS5 ×S5 metric contains only

the dilaton Φ and the RR 5-form flux F5. Surprisingly, if we formally apply the standard

T-duality rules [16–21] to this background, we obtain the metric, B-field and precisely

the product of the mixed RR fluxes with the dilaton, eΦFn, as found directly from the

η-deformed AdS5 × S5 sigma model action in [5, 8]. Since this T-dualization can be done

explicitly at the level of the classical string action (ignoring the issue of the quantum

dilaton shift) this supports the idea that the solution we find is the one associated with

the η-model.

This also explains the conclusion of [8] that the background extracted from the η-

model action cannot be promoted to a supergravity solution for any choice of the dilaton.

Indeed, the usual expectation that T-duality should map from one supergravity solution to

another does not apply in cases in which the dilaton explicitly depends on the isometries

of the metric — the new T-dual dilaton will depend on the original isometric coordinates,

while the dual metric and other fields will describe their dual analogs. One might attempt

to interpret the resulting background as a solution of some “doubled” version of type

IIB string theory where both the original and dual coordinates are treated on an equal

footing [22, 23], or, possibly, of “doubled” type IIB supergravity [24–27] but with the

strong constraint relaxed.1 An alternative is to search for a T-dual solution where the

1The usual discussions of “doubled” field theory assume the weak ∂i∂̃
iX = 0 as well as the strong

constraint ∂iX∂̃iY = 0 for any two fields X,Y (cf., however, [28]). The former is satisfied in our case while

the latter is not as we have ∂̃iΦ 6= 0 for the dilaton or RR flux while ∂ig 6= 0 for the metric.
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dilaton depends linearly on the same dual coordinates that appear in the metric, i.e. to map

the “momentum” mode of the dilaton into the “winding” one. We leave an investigation

of this idea for the future.

To sum up, here we will show that, while it is presently still unclear how to directly

interpret the background found [5, 8] from the AdS5×S5 η-model as a type IIB supergravity

solution, the background formally related to it by T-duality in all 6 isometric directions

can indeed be promoted to an exact supergravity solution by properly adjusting the dilaton

(in particular, adding terms linear in some isometric coordinates). We shall also provide

another interpretation of these linear dilaton terms in the special η → i limit by showing

that they appear from the dilaton of the standard gauged WZW model upon taking a

special limit required to obtain the η-deformed metric as in [13].

We shall start in section 2.1 with a review of the solution of type IIB supergravity for

the T-dual of the η-deformed AdS2 × S2 metric supported by a factorized, non-isometric

dilaton and just a single imaginary RR 2-form flux (originating from the 5-form in 10d

supergravity upon compactification on T 6) [13]. Then in sections 2.2 and 2.3 we shall

construct the analogous backgrounds in the AdS3×S3 and AdS5×S5 cases. These solutions

will possess the same features, i.e. they will be supporting the T-dual of the η-deformed

metric with a factorized, non-isometric dilaton and just a single imaginary RR 3-form flux

for AdS3 × S3 and self-dual 5-form flux for AdS5 × S5 . In the AdS5 × S5 case we

shall explicitly check (in appendix A) that after formally T-dualizing along the isometric

directions of the metric we recover the background fields (metric, B-field and eΦF ) of the

supercoset η-model of [1, 2], which were found in [8].

Furthermore, these backgrounds should appear as limits of the λ-model backgrounds

constructed in [14] and [15]. In section 3.1 we provide evidence for this in the direct η → i

or, equivalently, κ ≡ 2η
1−η2

→ i limit, in which the RR fluxes vanish. In section 3.2 we shall

consider a refined κ → i limit in which one also rescales the “longitudinal” coordinates,

resulting in a pp-wave background [6, 13], which is related to the Pohlmeyer-reduced model.

Some concluding remarks will be made in section 4.

2 Supergravity backgrounds for T-duals to η-deformed AdSn×Sn mod-

els

We shall consider the deformed models for AdSn × Sn with n = 2, 3, 5 in parallel. The

undeformed AdS5 × S5 metric is a solution of type IIB supergravity with constant dilaton

and homogeneous F5 flux. Applying T-duality in all 3+3 isometric directions we formally

arrive at another supergravity solution with non-constant dilaton and (since T-duality is

applied in the time direction [29]) an imaginary 5-form flux. Similarly, starting with the

AdS2 × S2 (AdS3 × S3) solution of type II supergravity compactified on T 6 (T 4) we again

find a solution supported by a non-trivial dilaton and imaginary 2-form (3-form) flux in

the effective 4d (6d) supergravity.

One may then look for solutions which represent deformations of these T-dual AdSn×
Sn backgrounds, i.e. such that their metrics are the same as T-duals of the η-deformed

– 3 –
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AdSn × Sn metrics in [5, 6]. As in [5, 6, 13] we shall use

κ ≡ 2η

1− η2
(2.1)

as the deformation parameter in the supergravity fields. The minimal assumption is that

such solutions should be again supported just by a dilaton and a single (imaginary) RR

n-form. Indeed, we shall find such solutions but, as discussed in the Introduction, we will

be unable to dualize back to get real backgrounds due to linear terms in the dilaton present

for κ 6= 0, which break the isometries of the undeformed background.

2.1 AdS2 × S2

Let us start by reviewing the supergravity solutions for the η-model in the AdS2 × S2

case found in [13], which were constructed by taking limits of the λ-model backgrounds

presented in [14].

Here we compactify 10d type IIB supergravity on T 6 to four dimensions retaining

the metric, dilaton and a single RR 2-form flux. The field content of the corresponding

truncation of the 10d supergravity is given by the metric, dilaton and self-dual RR 5-

form, which is built from the 2-form flux F and the holomorphic 3-form on T 6, see, for

example, [7, 30]. The resulting bosonic 4d action is then given by

S2 =

∫
d4x

√−g

[
e−2Φ

[
R+ 4(∇Φ)2

]
− 1

4
FmnF

mn

]
. (2.2)

The corresponding equations of motion and Bianchi identities are (m,n, . . . = 0, 1, 2, 3)

R+ 4∇2Φ− 4(∇Φ)2 = 0 , Rmn + 2∇m∇nΦ =
e2Φ

2

(
FmpFn

p − 1

4
gmnF

2

)

∂n
(√−gFmn

)
= 0 , ∂[pFmn] = 0 . (2.3)

The first two equations imply that the dilaton should satisfy ∇2e−2Φ = 0.

The metric of the η-model in this case is given by [5, 6]

dŝ22 = − 1 + ρ2

1− κ2ρ2
dt̂2 +

dρ2

(1− κ2ρ2)(1 + ρ2)
+

1− r2

1 + κ2r2
dϕ̂2 +

dr2

(1 + κ2r2)(1− r2)
, (2.4)

which has a U(1)2 isometry,2 corresponding to the rank of PSU(1, 1|2), given by shifts in

t̂ and ϕ̂. We use hats to denote isometries that we will T-dualize; the corresponding dual

coordinates will have no hats.

In [13] two solutions of the equations (2.3) that support the metric (2.4), up to T-

dualities, were given. Here we will mainly consider the solution corresponding to the

metric (2.4) T-dualized in both isometries (the target-space indices m,n, . . . = 0, 1, 2, 3

2Here and below we shall formally refer to abelian isometries corresponding to translations in some

direction as “U(1) isometries”, i.e. we will not distinguish between compact and non-compact isometries.
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correspond to t, ρ, ϕ, r)3

ds22 = ηabe
aeb , e0 =

√
1− κ2ρ2√
1 + ρ2

dt , e1 =
dρ√

1− κ2ρ2
√
1 + ρ2

,

e2 =

√
1 + κ2r2√
1− r2

dϕ , e3 =
dr√

1 + κ2r2
√
1− r2

,

eΦ2F2 =

√
2i
√
1 + κ2

√
1− κ2ρ2

√
1 + κ2r2

[
(e0 ∧ e3 + e1 ∧ e2)− κ

2ρr(e0 ∧ e3 − e1 ∧ e2)

+ κρ(e0 ∧ e2 + e1 ∧ e3) + κr(e0 ∧ e2 − e1 ∧ e3)
]
,

eΦ2 = eΦ0−κ(t+ϕ)

√
1− κ2ρ2

√
1 + κ2r2√

1 + ρ2
√
1− r2

. (2.5)

The RR flux actually has a remarkably simple form that can be made explicit by introducing

the boosted/rotated zweibein bases

et ≡ 1√
1− κ2ρ2

(
e0 + κρ e1

)
=

1√
1 + ρ2

(
dt+

κρ

1− κ2ρ2
dρ

)
,

eρ ≡ 1√
1− κ2ρ2

(
e1 + κρ e0

)
=

1√
1 + ρ2

(
1

1− κ2ρ2
dρ+ κρ dt

)
,

eϕ ≡ 1√
1 + κ2r2

(
e2 − κr e3

)
=

1√
1− r2

(
dϕ− κr

1 + κ2r2
dr

)
,

er ≡ 1√
1 + κ2r2

(
e3 + κr e2

)
=

1√
1− r2

(
1

1 + κ2r2
dr + κr dϕ

)
, (2.6)

such that

ds22 = ηabe
′ae′b , eΦ2F2 =

√
2i
√
1 + κ2

(
e′0 ∧ e′3 + e′1 ∧ e′2

)
,

e′0 = et , e′1 = eρ , e′2 = eϕ , e′3 = er . (2.7)

Thus the κ-deformation is a “rotation” that preserves the structure of the undeformed

background; it only affects the definition of the tangent basis (and dilaton). In particular, in

this basis eΦ2F2 remains constant and is just rescaled by a factor of
√
1 + κ2.4 Furthermore,

the RR potential C1 for F2 = dC1 also takes a simple form in this basis5

eΦ2C1 =
√
2i
√
1 + κ−2

(
e′3√
1 + ρ2

− e′1√
1− r2

)
. (2.8)

Some other important features of this solution that are worth noting are:

3Let us emphasize that the solution of (2.3) supporting the T-dual to the metric (2.4) is not unique. For

example, the solution of the same dilaton equation ∇2e−2Φ = 0 corresponding to the T-dual of the solution

found in [7] is different: eΦ
′

2 = 1−κρ r√
1+ρ2

√
1−r2

, i.e. this dilaton is isometric but not factorizable.

4As in the undeformed limit, there is actually a one-parameter family of fluxes that solve the supergravity

equations (2.3) given by

eΦ2F2 =
√
2i
√

1 + κ2
(

c1 e
′0 ∧ e′3 + c2 e

′1 ∧ e′2
)

, c21 + c22 = 2 .

5Note that the singular term in C1 appearing in the limit κ → 0 is pure gauge, i.e. C1 →
√
2iκ−1(dr −

dρ) + . . .. One can of course choose an alternative gauge in which C1 is manifestly regular for κ → 0.

– 5 –
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• The background fields entering the classical Green-Schwarz action (the metric and

eΦF2) are invariant under the U(1)
2 isometry given by shifts in t and ϕ. This isometry

is broken to (a “null”) U(1) in the dilaton by the linear t+ ϕ term

• For κ ∈ R the metric and dilaton are real, while the RR flux is imaginary.

• For κ → 0 the U(1)2 isometry is restored in the full background, and we can T-

dualize back recovering the standard Bertotti-Robinson solution for AdS2 × S2 (i.e.

the κ → 0 limit of (2.4)) with constant dilaton and real homogeneous 2-form flux

which has a factorized “2+2” form.

• For κ → ∞, rescaling the fields and the string tension, we find a non-standard

background, i.e. the dilaton still has a linear dependence on the isometric coordinates.

• For κ → i the flux vanishes, while the t and ϕ directions become free. We will discuss

this limit in more detail in section 3.

The dependence of the dilaton on t + ϕ in (2.5) prohibits one directly T-dualizing

in these directions to recover the metric (2.4).6 Still, it is interesting to note that if we

formally T-dualize the metric using the standard rules we will get an additional shift of

the dilaton that will cancel the square root factors in eΦ2 in (2.5). One may thus attribute

the origin of these factors to T-dualizing from (2.4) to (2.5). Then we get simply

Φ̂2 = Φ0 − κ(t+ ϕ) (2.9)

as the dilaton associated to (2.4). Note, however, that this dilaton depends on the dual

counterparts t and ϕ of the original coordinates t̂ and ϕ̂ in (2.4), i.e. the resulting back-

ground will not have an immediate interpretation as a standard type IIB supergravity

solution.

The other background considered in [13] is for the metric (2.4), i.e. with no T-dualities.

This solution is related to (2.5) by the formal map7

t → it̂

κ
, ρ → i

κρ
, ϕ → iϕ̂

κ
, r → i

κr
. (2.10)

The corresponding dilaton and RR flux are then complex so the interpretation of this

solution is unclear. Indeed, the κ → 0 limit of the resulting background represents a non-

standard solution — the undeformed AdS2×S2 metric supported by a complex dilaton with

a linear dependence on the isometric directions and complex RR flux. It does, however,

have a natural κ → ∞ limit if we first use the rescaling

t̂ → κ
−1t̂ , ρ → κ

−1ρ , ϕ̂ → κ
−1ϕ̂ , r → κ

−1r ,

ds2 → κ
2ds2 , eΦ2F2 → κeΦ2F2 , eΦ2 → κ

−2eΦ2 .
(2.11)

6One could still perform T-duality in the orthogonal “null” direction t − ϕ, but that appears to give a

complicated background with an extra B-field, i.e. it does not bring us back to (2.4).
7For κ2 ∈ (0,−1], i.e. including the point κ = i, the map (2.10) is a real diffeomorphism.
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The resulting real background is the “mirror” model one constructed in [31, 32] and is

related to a dS2 × H2 solution by T-dualities in t̂ and ϕ̂, with a constant dilaton and

imaginary homogeneous RR flux. Thus the parameter region around κ = ∞ corresponds

to considering the η-model for dS2 ×H2 with deformation parameter κ̃ = κ
−1.

2.2 AdS3 × S3

Next, let us consider the background corresponding to the η-model for AdS3 × S3. The

solution we find can be embedded into 10d type IIB supergravity by compactifying on T 4

to six dimensions retaining only the metric, dilaton and a single RR 3-form flux. The field

content of the corresponding 10d supergravity solution will also be given by the metric,

dilaton and a RR 3-form flux. The resulting truncated bosonic 6d action is then given by

S6 =

∫
d6x

√−g

[
e−2Φ

[
R+ 4(∇Φ)2

]
− 1

12
FmnpF

mnp

]
. (2.12)

The corresponding equations of motion and Bianchi identities are (m,n, . . . = 0, 1, 2, 3, 4, 5)

R+ 4∇2Φ− 4(∇Φ)2 = 0 , Rmn + 2∇m∇nΦ =
e2Φ

4

(
FmpqFn

pq − 1

6
gmnF

2

)

∂p(
√−gFmnp) = 0 , ∂[qFmnp] = 0 . (2.13)

The first two equations imply again that the dilaton should satisfy ∇2e−2Φ = 0.

The metric of the η-model in this case is given by [5, 6]

dŝ23 = − 1 + ρ2

1−κ2ρ2
dt̂2+

dρ2

(1−κ2ρ2)(1+ρ2)
+ρ2dψ̂2

1+
1− r2

1+κ2r2
dϕ̂2+

dr2

(1+κ2r2)(1−r2)
+r2dφ̂2

1 .

(2.14)

It has a U(1)4 isometry represented by shifts in t̂, ψ̂1, ϕ̂ and φ̂1 (we again use hats to

denote isometric directions that we will T-dualize).

As in the AdS2 × S2 case, the solution of (2.13) we find is for the metric (2.14) T-

dualized in all four isometric directions. The resulting background is (the target-space

indices m,n, . . . = 0, 1, 2, 3, 4, 5 correspond to t, ψ1, ρ, ϕ, φ1, r)

ds23 = ηabe
aeb , e0 =

√
1− κ2ρ2√
1 + ρ2

dt , e1 =
dψ1

ρ
, e2 =

dρ√
1− κ2ρ2

√
1 + ρ2

,

e3 =

√
1 + κ2r2√
1− r2

dϕ , e4 =
dφ1

r
, e5 =

dr√
1 + κ2r2

√
1− r2

,

eΦ3F3 =
2i
√
1 + κ2

√
1−κ2ρ2

√
1+κ2r2

[
(e0∧ e1∧ e5+e2∧ e3∧ e4) + κ

2ρr(e0∧ e4∧ e5− e1∧ e2∧ e3)

+ κρ(e0 ∧ e3 ∧ e4 − e1 ∧ e2 ∧ e5) + κr(e0 ∧ e1 ∧ e3 + e2 ∧ e4 ∧ e5)
]
,

eΦ3 = eΦ0−2κ(t+ϕ) (1− κ
2ρ2)(1 + κ

2r2)

ρr
√
1 + ρ2

√
1− r2

. (2.15)
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As in the AdS2 × S2 case in (2.5), (2.7) the RR flux takes very simple form when written

in terms of the “deformed” basis introduced in (2.6)

ds23 = ηabe
′ae′b , eΦ3F3 = 2i

√
1 + κ2

(
e′0 ∧ e′1 ∧ e′5 + e′2 ∧ e′3 ∧ e′4

)
,

e′0 = et , e′1 = eψ1 ≡ e1 , e′2 = eρ , e′3 = eϕ , e′4 = eφ1 ≡ e4 , e′5 = er .

(2.16)

In this basis we again see that the κ-deformation preserves the structure of the unde-

formed background; eΦ3F3 remains constant and is just rescaled by a factor of
√
1 + κ2.8

Furthermore, the RR potential C2 for F3 = dC2 again takes a simple form in this basis

(cf. (2.8))

eΦ3C2 = i
√
1 + κ−2

(
e′1 ∧ e′5√
1 + ρ2

− e′2 ∧ e′4√
1− r2

)
. (2.17)

Some other important features of this solution are:

• The background fields entering the classical Green-Schwarz action (the metric and

eΦF ) are invariant under the U(1)4 isometry given by shifts in t, ψ1, ϕ and φ1. This

isometry is broken to U(1)3 in the dilaton by the linear t+ ϕ term.

• For κ ∈ R the metric and dilaton are real, while the RR flux is imaginary.

• For κ → 0 the U(1)4 isometry is restored in the full background, and T-dualizing in

all four isometries we recover the standard solution for undeformed AdS3 × S3 with

constant dilaton and real homogeneous RR flux.

• For κ → ∞, rescaling the fields and the string tension, we find a non-standard

background, i.e. the dilaton still has a linear dependence on the isometric coordinates.

• For κ → i the 3-form flux vanishes, while the t and ϕ directions become free in the

metric. We will discuss this limit in more detail in section 3.

As in the AdS2 ×S2 case we may formally T-dualize the background (2.15) in all four

isometries of the metric to recover the metric in (2.14). The resulting dilaton will then be

(cf. (2.9))

eΦ̂3 = eΦ0−2κ(t+ϕ)
√
1− κ2ρ2

√
1 + κ2r2 , (2.18)

i.e. linear in the dual coordinates and constant in the κ → 0 limit.

8As written, the 3-form flux satisfies the self-duality equation F3mnp = 1
3!

√−g ǫmnpqrsF
qrs
3 , ǫ012345 = −1.

As in the AdS2 × S2 case, there is actually a one-parameter family of fluxes that solve the supergravity

equations (2.13) given by

eΦ3F3 = 2i
√

1 + κ2
(

c1 e
′0 ∧ e′1 ∧ e′5 + c2 e

′2 ∧ e′3 ∧ e′4
)

, c21 + c22 = 2 .

Therefore, with an appropriate choice of c1,2, the sign of the self-duality equation can be reversed, for

example, taking c1 = −1, c2 = 1 (c1 = 1, c2 = −1). This can also be understood as reversing the sign

of the isometric coordinate ψ1 (φ1). Indeed, reversing the sign of an odd number of the isometries of the

metric will reverse the sign of the self-duality equation. However, reversing the sign of t or ϕ will modify

the dilaton as well as the 3-form flux.
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Again, there is a second solution we can find — directly for the metric (2.14) with no

T-dualities applied. This solution is related to (2.15) by the formal map9

t → it̂

κ
, ρ → i

κρ
, ψ1 →

iψ̂1

κ
, ϕ → iϕ̂

κ
, r → i

κr
, φ1 →

iφ̂1

κ
. (2.19)

However, the κ → 0 limit of the resulting background gives a non-standard solution — the

undeformed AdS3 × S3 metric supported by a complex dilaton (with a linear dependence

on the isometric directions) and complex RR flux. But it does have a natural κ → ∞ limit

if we first use the rescaling

t̂ → κ
−1t̂ , ρ → κ

−1ρ , ϕ̂ → κ
−1ϕ̂ , r → κ

−1r ,

ds2 → κ
2ds2 , eΦ3F3 → κ

2eΦ3F3 , eΦ3 → κ
−4eΦ3 ,

(2.20)

along with a shift of the constant part of the dilaton Φ0 by
iπ
2 . The resulting real background

is the “mirror” model one [31, 32] and is related to a dS3 ×H3 background by T-dualities

in t̂ and ϕ̂, with a constant dilaton and imaginary homogeneous RR flux (as could be

expected). In this sense expanding around κ = ∞ corresponds to considering the η-model

for dS3 ×H3 with deformation parameter κ̃ = κ
−1.

2.3 AdS5 × S5

Let us now turn to the case of the η-deformed AdS5 × S5. The background that we find

can be interpreted as a deformation of the T-dual of AdS5 × S5 and is a solution of 10d

type IIB supergravity with just the metric, dilaton and RR 5-form flux switched on.10

The relevant part of the type II 10d supergravity action is then given by

S10 =

∫
d10x

√−g
[
e−2Φ

[
R+ 4(∇Φ)2

]
− 1

4 · 5!FmnpqrF
mnpqr

]
. (2.21)

The corresponding equations of motion and Bianchi identities are (m,n, . . . = 0, 1, 2, 3, 4, 5,

6, 7, 8, 9)

R+ 4∇2Φ− 4(∇Φ)2 = 0 , Rmn + 2∇m∇nΦ =
e2Φ

4 · 4!FmpqrsFn
pqrs (2.22)

∂r(
√−gFmnpqr) = 0 , !∂[sFmnpqr] = 0 , Fmnpqr = − 1

5!

√−g ǫmnpqrstuvwF
stuvw ,

where we have also included the self-duality equation (ǫ0123456789 = −1) for the RR 5-form

flux, which needs to be imposed separately. Again, the first two equations imply that the

dilaton should satisfy ∇2e−2Φ = 0.

9If we also analytically continue κ to the region κ
2 ∈ (0,−1] including the point κ = i then the

map (2.19) is a real diffeomorphism.
10Applying T-duality in all 6 isometric directions of undeformed AdS5 × S5 metric one gets a formal

type IIB solution with T-dual metric supported by non-constant dilaton and (imaginary) 5-form flux. The

reason for finding only non-zero RR 5-form flux can be understood heuristically by observing that T-duality

is applied to the time and 2 longitudinal directions (angles of S3) of the D3-branes as well as 3 transverse

directions (3 angles of the transverse S5) with the longitudinal and transverse directions interchanging

their roles.
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The metric and B-field corresponding to the η-model in this case are [5] (as before, we

use hats to denote isometries that we will T-dualize)

dŝ25=− 1 + ρ2

1−κ2ρ2
dt̂2+

dρ2

(1−κ2ρ2)(1+ρ2)
+

ρ2 cos2 ζ

1+κ2ρ4 sin2 ζ
dψ̂2

1+
dζ2

1+κ2ρ4 sin2 ζ
+ρ2 sin2 ζdψ̂2

2

+
1− r2

1+κ2r2
dϕ̂2+

dr2

(1+κ2r2)(1−r2)
+

r2 cos2 ξ

1+κ2r4 sin2 ξ
dφ̂2

1+
dξ2

1+κ2r4 sin2 ξ
+r2 sin2 ξdφ̂2

2,

B̂ =
κρ4 sin ζ cos ζ

1 + κ2ρ4 sin2 ζ
dψ̂1 ∧ dζ − κr4 sin ξ cos ξ

1 + κ2r4 sin2 ξ
dφ̂1 ∧ dξ . (2.23)

Both have a U(1)6 isometry (corresponding to the Cartan directions of the bosonic subgroup

of the undeformed PSU(2, 2|4) symmetry) represented by shifts in t̂, ψ̂1, ψ̂2, ϕ̂, φ̂1 and φ̂2.

The type IIB solution supporting that metric is not known (cf. [8]) but as in the

lower-dimensional examples above we will find a consistent solution that supports the fully

T-dual metric and B-field, i.e. the background (2.23) T-dualized in all six isometries

ds25 = − 1− κ
2ρ2

1 + ρ2
dt2 +

dρ2

(1 + ρ2)(1− κ2ρ2)
(2.24)

+
1 + κ

2ρ4 sin2 ζ

ρ2 cos2 ζ

(
dψ1+

κρ4 sin ζ cos ζ

1 + κ2ρ4 sin2 ζ
dζ

)2
+

ρ2dζ2

1 + κ2ρ4 sin2 ζ
+

dψ2
2

ρ2 sin2 ζ

+
1 + κ

2r2

1− r2
dϕ2 +

dr2

(1− r2)(1 + κ2r2)

+
1 + κ

2r4 sin2 ξ

r2 cos2 ξ

(
dφ1−

κr4 sin ξ cos ξ

1 + κ2r4 sin2 ξ
dξ

)2
+

r2dξ2

1 + κ2r4 sin2 ξ
+

dφ2
2

r2 sin2 ξ

=− 1− κ
2ρ2

1 + ρ2
dt2 +

dρ2

(1+ρ2)(1−κ2ρ2)
+

dψ2
1

ρ2 cos2 ζ
+ (ρ dζ + κρ tan ζ dψ1)

2 +
dψ2

2

ρ2 sin2 ζ

+
1+κ

2r2

1− r2
dϕ2 +

dr2

(1−r2)(1+κ2r2)
+

dφ2
1

r2 cos2 ξ
+ (r dξ − κr tan ξ dφ1)

2 +
dφ2

2

r2 sin2 ξ
,

B =0 . (2.25)

Here the T-dualities in ψ̂1 and φ̂1 removed the B-field at the expense of introducing off-

diagonal terms in the metric as in [7]. The T-duality conventions we use are given in

appendix A.

In (2.24) we have presented two forms of the dualized metric; the first is the one that

arises naturally from the T-duality procedure [7], while the second has a particularly simple

form, which will be useful later.

Introducing the shorthand notation Eabcde ≡ ea∧eb∧ec∧ed∧ee, and taking the target-

space indices m,n, . . . = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to correspond to t, ψ2, ψ1, ζ, ρ, ϕ, φ2, φ1, ξ, r,

the solution of (2.22) we found is

ds25 = ηabe
aeb , e0 =

√
1− κ2ρ2√
1 + ρ2

dt , e1 =
dψ2

ρ sin ζ
,

e2 =

√
1 + κ2ρ4 sin2 ζ

ρ cos ζ
dψ1 +

κρ3 sin ζ√
1 + κ2ρ4 sin2 ζ

dζ ,

e3 =
ρ dζ√

1 + κ2ρ4 sin2 ζ
, e4 =

dρ√
1− κ2ρ2

√
1 + ρ2

,
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e5 =

√
1 + κ2r2√
1− r2

dϕ , e6 =
dφ2

r sin ξ
, e7 =

√
1 + κ2r4 sin2 ξ

r cos ξ
dφ1 −

κr3 sin ξ√
1 + κ2r4 sin2 ξ

dξ ,

e8 =
r dξ√

1 + κ2r4 sin2 ξ
, e9 =

dr√
1 + κ2r2

√
1− r2

,

eΦ5F5 =
4i
√
1 + κ2

√
1− κ2ρ2

√
1 + κ2ρ4 sin2 ζ

√
1 + κ2r2

√
1 + κ2ρ4 sin2 ξ

[[
E01289 + E34567 − κρ(E03567 − E12489)− κr(E01258 + E34679) + κ

2ρr(E03679 − E12458)
]

−κρ2 sin ζ
[
E01389−E24567 + κρ(E02567+E13489)− κr(E01358−E24679)− κ

2ρr(E02679+E13458)
]

−κr2 sin ξ
[
E01279−E34568 + κρ(E03568+E12479)− κr(E01257−E34689)− κ

2ρr(E03689+E12457)
]

+κ
2ρ2r2 sin ζ sin ξ

[
E01379+E24568−κρ(E02568−E13479)−κr(E01357+E24689)

+ κ
2ρr(E02689−E13457)

]]

eΦ5 = eΦ0−4κ(t+ϕ)−2κ(ψ1−φ1)
(1− κ

2ρ2)2(1 + κ
2r2)2

ρ2r2
√
1 + ρ2

√
1− r2 sin 2ζ sin 2ξ

. (2.26)

Remarkably, as in the lower-dimensional cases in (2.7), (2.16), this complicated-looking RR

flux once again takes a very simple form when written in terms of the “deformed” basis

in (2.6) and the angular part of the vielbein associated with the second form of the metric

in (2.24)

ds25 = ηabe
′ae′b , eΦ5F5 = 4i

√
1+κ2

(
e′0 ∧ e′1 ∧ e′2 ∧ e′8 ∧ e′9 + e′3 ∧ e′4 ∧ e′5 ∧ e′6 ∧ e′7

)
,

(2.27)

where

e′0 = et , e′1 = eψ2 ≡ e1 , e′2 = eψ1 , e′3 = eζ , e′4 = eρ , (2.28)

e′5 = eϕ , e′6 = eφ2 ≡ e6 , e′7 = eφ1 , e′8 = eξ , e′9 = er ,

eψ1 ≡ e2 − κρ2 sin ζ e3√
1 + κ2ρ4 sin2 ζ

=
dψ1

ρ cos ζ
, eζ ≡ e3 + κρ2 sin ζ e2√

1 + κ2ρ4 sin2 ζ
= ρdζ + κρ tan ζ dψ1 ,

eφ1 ≡ e7 + κr2 sin ξ e8√
1 + κ2r4 sin2 ξ

=
dφ1

r cos ξ
, eξ ≡ e8 − κr2 sin ξ e7√

1 + κ2r4 sin2 ξ
= rdξ − κr tan ξ dφ1 .

In this basis we again see that the κ-deformation preserves the structure of the undeformed

background; eΦ5F5 remains constant and is just rescaled by a factor of
√
1 + κ2.11 Further-

11By construction, the 5-form flux satisfies the self-duality equation given in (2.22). If we drop the

requirement of self-duality, there are a discrete set of four fluxes that solve the supergravity equations (2.22)

given by

eΦ5F5 = 4i
√

1 + κ2
(

c1 e
′0 ∧ e′1 ∧ e′2 ∧ e′8 ∧ e′9 + c2 e

′3 ∧ e′4 ∧ e′5 ∧ e′6 ∧ e′7
)

, c21 = c22 = 1 .

This is in contrast to the lower-dimensional cases for which there was a one-parameter family of fluxes.

However, as in those cases, with an appropriate choice of c1,2 the sign of the self-duality equation can still

be reversed, for example, taking c1 = −1, c2 = 1 (c1 = 1, c2 = −1). This can also be understood as

reversing the sign of the isometric coordinate ψ2 (φ2). Indeed, reversing the sign of an odd number of the

isometries of the metric will reverse the sign of the self-duality equation. However, reversing the sign of t,

ψ1, ϕ or φ1 will modify the metric and dilaton as well as the 5-form flux.
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more, as in the lower-dimensional cases (2.8) and (2.17), the RR potential C4 for F5 = dC4

takes a simple form in this basis

eΦ5C4 = i
√
1 + κ−2

(e′1 ∧ e′2 ∧ e′8 ∧ e′9√
1 + ρ2

+
e′3 ∧ e′4 ∧ e′6 ∧ e′7√

1− r2

)
. (2.29)

The singular part of C4 in the κ → 0 limit is again pure gauge.

Some important features of this solution are:

• The background fields entering the classical Green-Schwarz action (the metric and

eΦF5) are invariant under the U(1)6 isometry given by shifts in t, ψ1, ψ2, ϕ, φ1 and

φ2. This isometry is broken to U(1)5 by the presence of one linear combination of

four of these directions in the dilaton Φ5, and hence the isometry is also broken in F5.

• For κ ∈ R the metric and dilaton are real, while the RR flux is imaginary (which

may be attributed to T-duality in time direction being secretly involved).

• For κ → 0 the U(1)6 isometry is restored in the full background, and we can T-dualize

back to the frame of (2.23). T-dualizing in all six isometries we recover the standard

solution for AdS5 ×S5 (i.e. the κ → 0 limit of (2.23)) with constant dilaton and real

homogeneous RR flux.

• For κ → ∞, rescaling the fields and the string tension, we find a non-standard

background, i.e. the dilaton still has a linear dependence on the isometric coordinates.

• For κ → i the RR flux vanishes, while the t and ϕ directions become free. We will

discuss this limit in more detail in section 3.

If we were allowed to T-dualize the background (2.26) in all six isometries of the

metric using the standard rules and ignoring the linear terms in the dilaton, we would end

up with the metric and B-field in (2.23) and a RR background eΦ̂5F̂n, which is precisely

the one extracted from the quadratic fermionic term of the deformed supercoset action

in [8] (see appendix A). The dilaton formally corrected by the standard factor originating

from T-duality will then be (cf. (2.9))

eΦ̂5 = eΦ0−4κ(t+ϕ)−2κ(ψ1−φ1)
[ (1− κ

2ρ2)3(1 + κ
2r2)3

(1 + κ2ρ4 sin2 ζ)(1 + κ2r4 sin2 ξ)

]1/2
, (2.30)

i.e. will be constant in the κ → 0 limit. Once again, the resulting background will not have

an interpretation as a standard type IIB solution as the dilaton (and thus the RR flux)

will depend on the original isometric coordinates while the metric will describe their dual

counterparts.

As in the lower-dimensional cases there is formally a second solution we can find, which

is for the metric and B-field in (2.23) T-dualized only in ψ̂1 and φ̂1 (i.e. obtained by doing

only the T-dualities that remove the B-field at the expense of introducing off-diagonal

terms in the metric). This T-duality turns out to be necessary — in contrast to the lower-

dimensional AdS2×S2 and AdS3×S3 cases, here we still are unable to find (even a formal,
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complex) type IIB solution supporting directly the original metric and B-field in (2.23).

This solution is related to (2.26) by the map

t → it̂

κ
, ρ → i

κρ
, ψ1 → ψ1+

1

κ
log sin ζ , ζ → i log tan

ζ

2
+

π

2
, ψ2 →

iψ̂2

κ
,

ϕ → iϕ̂

κ
, r → i

κr
, φ1 → φ1−

1

κ
log sin ξ , ξ → i log tan

ξ

2
+

π

2
, φ2 →

iφ̂2

κ
. (2.31)

The κ → 0 limit of the resulting background is an unfamiliar solution representing the

undeformed AdS5 × S5 metric supported by a complex dilaton with a linear dependence

on the isometric directions and complex RR flux. It does, however, have a natural κ → ∞
limit if we first do the rescaling

t̂ → κ
−1t̂ , ρ → κ

−1ρ , ψ1 → κ
−2ψ1 ,

ϕ̂ → κ
−1ϕ̂ , r → κ

−1r , φ1 → κ
−2φ1 , (2.32)

ds2 → κ
2ds2 , eΦ5F5 → κ

4eΦ5F5 , eΦ5 → κ
−8eΦ5 ,

along with a shift of the constant part of the dilaton Φ0 by iπ
2 . T-dualizing the resulting

real background in ψ1 and φ1 we find the “mirror” model solution constructed in [31, 32],

which is furthermore related to a dS5 × H5 background (by T-dualities in t̂ and ϕ̂) with

constant dilaton and imaginary homogeneous RR 5-form flux. Thus considering κ in the

region around κ = ∞ corresponds to the η-model for dS5 × H5 with the deformation

parameter κ̃ = κ
−1.

3 κ → i limit

In this section we will consider the η → i, or, equivalently, κ → i (cf. (2.1)) limit of the

above backgrounds.12

This limit can be taken in two different ways. Setting κ = i directly (with all coordi-

nates fixed) one finds that the RR flux vanishes, the two “longitudinal” coordinates t and

ϕ decouple, and the resulting “transverse” metric-dilaton background can be interpreted

as corresponding to a special limit of a gauged WZW model.

Alternatively, the limit can be taken by combining κ → i with a special rescaling of

the coordinates x± = t ∓ ϕ which leads to a pp-wave type background [6]. As was found

in [6], for the AdSn×Sn cases with n = 2, 3, fixing the light-cone gauge in the string action

for the pp-wave background one arrives at the Pohlmeyer-reduced (PR) model [33, 34]

for the corresponding undeformed AdSn × Sn model.13 In the n = 5 case we shall show

that a similar procedure leads to a special limit [13] of the PR model for the AdS5 × S5

superstring.

12This limit will be considered formally, i.e. the resulting background may be complex and one may need

further analytic continuation to get a real solution.
13In [6] the corresponding pp-wave RR background for the cases n = 2, 3 was reconstructed directly in

the pp-wave limit, while here we will derive it from the full deformed solution.
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3.1 Direct κ → i limit and connection with the gauged WZW model

Setting κ = i in the backgrounds (2.5), (2.15) and (2.26) we find the following common

structure of the corresponding metric, dilaton and RR fluxes (n = 2, 3, 5)

ds2n = −dt2 + dϕ2 + ds2n⊥ , Φn = Φn‖ +Φn⊥ , Φn‖ = −i(n− 1)(t+ ϕ) , Fn = 0 . (3.1)

First, as the RR fluxes in (2.5), (2.15), (2.26) all have an overall factor of
√
1 + κ2 they

vanish for κ = i. As a result, we get a purely NS-NS metric-dilaton background that must

be a solution of the supergravity equations. Second, the “longitudinal” t and ϕ directions

effectively decouple from the remaining transverse directions (they form an R
1,1 subspace in

the metric). The “null” linear dilaton term Φn‖ then does not affect the value of the central

charge, i.e. one also gets a solution when taking this term with an arbitrary coefficient.14

Thus the transverse metric and dilaton should represent a conformal sigma model on

their own. Since there is no RR flux and the metric and dilaton have a direct-product

Mn−1
A × Mn−1

S structure, we should end up with the direct sum of the two transverse

conformal models corresponding to the AdSn and Sn parts of the deformed background,

i.e. having (n− 1)-dimensional target spaces (n = 2, 3, 5).15

Explicitly, setting κ = i in (2.5) and (2.15) and redefining the “radial” coordinates as

ρ ≡ tanα , r ≡ tanhβ , (3.2)

we find that for n = 2 and n = 3

ds22⊥ = dα2 + dβ2 , Φ2⊥ = Φ0 , (3.3)

ds23⊥ = dα2 + cot2 αdψ2
1 + dβ2 + coth2 β dφ2

1 , eΦ3⊥ =
eΦ0

sinα sinhβ
. (3.4)

Thus in the AdS2×S2 case we find a free transverse theory, while in the AdS3×S3 case it

is represented by direct sum of the (vector) gauged WZW models for G/H = SO(3)/SO(2)

and SO(1, 2)/SO(2) [35, 36]. In the n = 5 case we get from (2.26)

ds25⊥ = ds25A⊥ + ds25S⊥ , Φ5⊥ = Φ0 +Φ5A⊥ +Φ5S⊥ , (3.5)

ds25A⊥ = dα2 + cot2 α

(
dψ2

1

cos2 ζ
+

dψ2
2

sin2 ζ

)
+ tan2 α (dζ + i tan ζ dψ1)

2 ,

eΦ5A⊥ =
e−2iψ1

cosα sin2 α sin 2ζ
, (3.6)

ds25S⊥ = dβ2 + coth2 β

(
dφ2

1

cos2 ξ
+

dφ2
2

sin2 ξ

)
+ tanh2 β (dξ− i tan ξ dφ1)

2 ,

eΦ5S⊥ =
e2iφ1

coshβ sinh2 β sin 2ξ
. (3.7)

14This dilaton can be made real by an analytic continuation interchanging the roles of t and ϕ, i.e.

t = iϕ′, ϕ = it′.
15One can also formally consider the 3d model corresponding to the n = 4 case (i.e. AdS4 × S4), which

can be viewed as a truncation of the n = 5 case.
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As for the [SO(3)/SO(2)] × [SO(1, 2)/SO(2)] gauged WZW model in the n = 3 case (3.4)

above, one can check directly that each of these two 4d metric-dilaton backgrounds satisfies

the corresponding equations in (2.22) with the constant shifts of the central charge from

the free-theory value, 4, cancelling between the two factors. Note that the metrics and

dilatons here can be made real by the analytic continuation ψ1 → iψ1, φ1 → iφ1.

The gauged WZW interpretation of the two 4d backgrounds in (3.6), (3.7) may seem

doubtful at first as here each factor has 2 isometries, while the metrics corresponding to

G/H gauged WZW models with non-abelian H should have no isometries. However, the

isometries can be effectively generated by taking special singular limits as pointed out

in [13]. Indeed, as we shall now explain, these two 4d backgrounds may be viewed as

(an analytic continuation of) a singular limit of those associated to the SO(5)/SO(4) and

SO(1, 4)/SO(4) gauged WZW models.

Let us start with the metric-dilaton background corresponding to the SO(5)/SO(4)

gauged WZW model as given in [37–39]16

ds2gwzw = dα2 + cot2 α

(
dψ̃2

1

cos2 ζ
+

dψ2
2

sin2 ζ

)

+ tan2 α

(
dζ − tan ζ sin 2ψ̃1 dψ̃1 − cot ζ sin 2ψ2 dψ2

cos 2ψ̃1 + cos 2ψ2

)2

, (3.8)

eΦgwzw =
1

cosα sin2 α sin 2ζ (cos 2ψ̃1 + cos 2ψ2)
. (3.9)

We now consider the following singular limit (a special case of the limit in [13]). We first

analytically continue ψ̃1 → iϑ and shift ϑ by an infinite constant L, i.e. set

ψ̃1 = i(ϑ+ L) , L → ∞ . (3.10)

As a result, ϑ becomes an isometry of the metric (3.8) while the dilaton (with Φ0 =

Φ′
0 + 2L− log 2) now has a linear dependence on ϑ

ds′2gwzw = dα2 + cot2 α

(
− dϑ2

cos2 ζ
+

dψ2
2

sin2 ζ

)
+ tan2 α

(
dζ + tan ζ dϑ

)2
, (3.11)

eΦ
′
gwzw =

e−2ϑ

cosα sin2 α sin 2ζ
. (3.12)

After taking the limit the coordinate ψ2 also becomes an isometry of the full background

(this is a special feature of the limits discussed in [13]). Comparing (3.11), (3.12) to the

metric and dilaton in (3.6) we see that analytically continuing back, ϑ = iψ1, we recover

the AdS5 part of the background (3.5) found from the κ → i limit of (2.26).

Furthermore, we can start from the SO(1, 4)/SO(4) gauged WZW model, the metric

and dilaton of which can be found by analytically continuing (3.8), (3.9) as

α → iβ , ψ̃1 → φ̃1 , ψ2 → φ2 , ζ → ξ , ds2 → −ds2 . (3.13)

16This solution can be found by analytically continuing the result of [37, 38] in the ǫ = ǫ′ = 1 coordinate

patch, which is different to the patch used to obtain the metric given in [39]. The notation we use for the

four angular coordinates is chosen for comparison with (3.6).

– 15 –



J
H
E
P
1
0
(
2
0
1
5
)
0
6
0

Then taking a similar limit we recover the S5 part of the background (3.7) found from the

κ → i limit of (2.26) (up to a constant shift of the dilaton).

Let us note that these metrics can be put into simple diagonal forms where the shift

isometry becomes a rescaling symmetry. For example, introducing w = − cos 2ψ2, v =

cos 2ψ̃1, u = sin2 ζ cos 2ψ̃1 − cos2 ζ cos 2ψ2, one may write (3.8) as [37, 38]

ds2gwzw = dα2 + cot2 α
[ (v − w) dw2

4(u− w)(1− w2)
+

(v − w) dv2

4(v − u)(1− v2)

]
+ tan2 α

du2

4(u− w)(v − u)
.

(3.14)

The special limit described above then translates into an infinite rescaling of the two

coordinates v = e2Lv′, u = e2Lu′. This produces the diagonal form of the back-

ground (3.11), (3.12)

ds′2gwzw = dα2 +
cot2 α dx2 − tan2 α dy2

y2 − x2
+ cot2 α

x2

y2
dψ2

2 , (3.15)

eΦ
′
gwzw =

1

2 cosα sin2 α y
√

x2 − y2
, x =

√
v′ = eϑ , y =

√
u′ = sin ζ eϑ . (3.16)

The two isometries of the metric (3.15) are (i) the simultaneous rescaling of x and y and

(ii) the shift of ψ2.
17

We have thus demonstrated that the κ → i limit of the κ-deformed solution we have

found has an interpretation as a limiting background for the standard bosonic gauged

WZW model. This connection “explains” the origin of the terms linear in ψ1 and φ1 in

the dilaton in (2.26), relating them to particular terms in the dilaton of the gauged WZW

model before the limit. Note that to establish this connection we needed to start with

the deformation of the T-dual AdSn × Sn background. For n = 5 the “reversal” of the

T-duality is still not possible even for κ = i because of the linear terms in ψ1 and φ1 in

the dilaton.

3.2 pp-wave κ → i limit and connection with Pohlmeyer reduction

It was shown in [6] that the κ → i limit can be made more non-trivial by combining it

with a particular rescaling of the directions x± = t∓ ϕ as follows

t = ǫx− +
x+

ǫ
, ϕ = ǫx− − x+

ǫ
, κ = i

√
1 + ǫ2 , ǫ → 0 . (3.17)

Then taking the ǫ → 0 limit in the solutions (2.5), (2.15), (2.26) one finds the following

pp-wave backgrounds (n = 2, 3, 5)18

ds2n = −4dx−dx+ + 1
2(cos 2α− cosh 2β)(dx+)2 + ds2n⊥ , (3.18)

Fn = dCn−1 = dCn−2 ∧ dx+ , Φn = Φn⊥ . (3.19)

17Note that this metric is a direct generalization of the metric that appears upon taking a scaling limit

(p → eLp, q → eLq, L → ∞) in the SO(4)/SO(3) gauged WZW metric [40] ds2 = dα2+ cot2 α dp2+tan2 α dq2

1−p2−q2

with p = x, q = iy.
18If we send ǫ → iǫ and x± → ±ix± we end up with the same solution with the opposite sign for the

coefficient of (dx+)2 and an imaginary flux. As we will discuss, the light-cone gauge-fixing of (3.18) is related

to the Pohlmeyer-reduced theories for AdSn×Sn. In an analogous way, the light-cone gauge-fixing of these

backgrounds after the analytic continuation, is related to the Pohlmeyer-reduced theories for dSn ×Hn.
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Here the transverse metric ds2n⊥ and the dilaton Φn⊥ are the same as in (3.1) (i.e. given

by (3.3)–(3.7)). Note that since in the limit (3.17) one has t+ϕ = 2ǫx− → 0 the longitudinal

part of the dilaton in (3.1) is absent, i.e. the dilaton here depends only on the transverse

coordinates. The RR potential Cn−1 also depends only on the transverse coordinates

x⊥ = (α, β, . . .), where again we use (3.2).

Let us present the explicit form of the “null” RR backgrounds Fn in (3.19). In the

AdS2 × S2 case, which was discussed in [13], from (2.5) one finds19

C1 =
√
2e−Φ0(cosα sinhβ + sinα coshβ)dx+ . (3.20)

In this case it was shown in [6] that the light-cone gauge-fixing (x+ = µτ) of the string in

the background (3.18), (3.3), (3.19), (3.20) yields the corresponding PR model, which is

equivalent [33, 34] to the N = 2 supersymmetric sine-Gordon model.

In theAdS3×S3 case, the transverse metric and dilaton were given in (3.4). From (2.15)

we find

C2 = e−Φ0(cos2 α sinh2 β dψ1 − sin2 α cosh2 β dφ1) ∧ dx+ . (3.21)

T-dualizing in ψ1 and φ1, or, alternatively, considering the analytic continuation x± →
±ix±, α → α + π

2 , β → β + iπ
2 , Φ0 → Φ0 +

iπ
2 , we recover the “null” 3-form background

supporting the corresponding pp-wave metric (3.18), (3.4) that was found directly in [6]

(see also [41] for a similar 10d solution supported by F5). The light-cone gauge-fixed form

of the resulting string sigma model is equivalent [6] to the axial-gauged version of the PR

model for AdS3 × S3 [33, 34]. Therefore, the light-cone gauge-fixing of this model before

T-dualizing or analytically continuing is equivalent to the vector-gauged version of the

PR model.

As was explained above, in the AdS5 × S5 case the transverse metric and dilaton

in (3.18), (3.19) are the same as the special limit of the metric-dilaton background for

the [SO(5)/SO(4)]× [SO(1, 4)/SO(4)] gauged WZW model. The latter defines the bosonic

kinetic part of the PR model associated to the AdS5 × S5 superstring [33, 34, 42].20 Thus

(in contrast to the n = 2 and 3 cases) in the n = 5 case the light-cone gauge-fixed action

of the superstring model corresponding to the background (3.18), (3.19) should be only a

limit of the full AdS5 × S5 PR model, in agreement with the picture suggested in [13].

In the n = 5 case we find from (2.26) that F5 = dC4 with21

C4 =− ie−Φ0

[
cos4 α sinh4 β dψ2 ∧ d(e2iψ1) ∧ d(sin2 ξ e−2iφ1)

+ sin4 α cosh4 β d(sin2 ζ e2iψ1) ∧ dφ2 ∧ d(e−2iφ1)
]
∧ dx+ .

(3.22)

19This matches the expression in [13] with a symmetric choice of the free constants there.
20Note that, as for the n = 2, 3 cases [6, 13], the κ → i limit of the deformed AdS part of the background

is associated to the PR model for the sphere and vice versa.
21Note that C4 takes a simple form when written in terms of the diagonal-metric coordinates used

in (3.15), i.e. y2 = sin2 ζ e2iψ1 , x2 = e2iψ1 and y2 = sin2 ξ e−2iφ1 , x2 = e−2iφ1 .
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As for the transverse metric and dilaton (3.18), (3.19) the corresponding 5-form can be

made real by analytically continuing ψ1 → iψ1, φ1 → iφ1, along with shifting Φ0 by iπ
2 .

To conclude, we have seen that in each of the AdS2×S2 and AdS3×S3 cases there is a

background for which the corresponding superstring theory taken in light-cone gauge gives

precisely the PR model for the original AdSn × Sn superstring. The PR model was found

by solving the conformal-gauge constraints of the AdSn × Sn superstring at the classical

level using a non-local change of variables and then reconstructing a new local action.22

At the same time, in the n = 5 case the situation is different; we first need to take

a certain limit of the AdS5 × S5 PR model (generating 2+2 isometries in the kinetic

terms, cf. (3.6), (3.7)) in order to relate it to the light-cone gauge-fixed superstring on

the pp-wave background (3.18), (3.19), (3.22). Originating directly from light-cone gauge-

fixed pp-wave superstring, this “limiting” PR model should have some special features and

deserves further investigation.

4 Summary and concluding remarks

In this paper we have found a type IIB supergravity solution (with only the metric, dila-

ton and 5-form being non-trivial) that can be interpreted as one-parameter (κ or η (2.1))

deformation of the background obtained from the maximally symmetric AdS5 × S5 back-

ground by applying T-duality in all 6 isometric directions. The latter (κ = 0) solution has

imaginary RR flux, which is a consequence of the formal T-duality being applied in time

and this feature persists for κ 6= 0. Another unusual property of the solution (2.26) is that

for κ 6= 0 the dilaton has a linear term Φ5 lin = −4κ(t+ ϕ)− 2κ(ψ1 − φ1) depending on a

linear combination of 4 out of 6 isometric directions of the metric.

Still, the metric and eΦ5F5, which enter the corresponding classical Green-Schwarz su-

perstring action, are invariant under shifts in the isometric directions (i.e. these coordinates

enter the Green-Schwarz action only through their derivatives) and so one can formally T-

dualize in them, as, e.g., in [17–19] — assuming one can first ignore the non-invariant linear

piece in the “quantum” dilaton term of the action. Remarkably, the resulting T-dual sigma

model is equivalent (at least to quadratic order in fermions) to the η-deformation [1, 2]

of the AdS5 × S5 superstring, i.e. the T-dual background has exactly the same metric,

B-field and combination of RR fluxes with the dilaton eΦ̂5F̂n (n = 1, 3, 5) as found in [5, 8]

directly from the action of the η-model of [1, 2]. However, the presence of Φ5 lin in the

dilaton, which depends on the what are now “dual” coordinates means that, in contrast

to the solution (2.26) found here, the T-dual background of [5, 8] cannot be directly in-

terpreted as (the non-dilaton part of) a standard type IIB supergravity solution — the

full quantum T-dual sigma model including the dilaton term appears to be defined on a

22This connection gives a new perspective on the properties of the PR model like its UV finiteness and the

possibility of world-sheet supersymmetry. pp-waves with curved transverse space in general do not preserve

space-time supersymmetry and thus a priori one should not expect explicit world-sheet supersymmetry for

the n > 2 cases, although there may be a hidden one (see [6, 41] for related discussions).
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“doubled” space.23 The precise meaning of the relation between our solution (2.26), the

background of [5, 8] and the η-model of [1, 2] thus remains to be clarified.24

The RR flux vanishes at the special value of the deformation parameter κ = i, at

which point our background factorizes into the product of the three factors: a flat 2d

“longitudinal” space (t, ϕ) with linear imaginary dilaton −4i(t + ϕ) in (3.1) and two 4d

“transverse” metric-dilaton backgrounds (3.6) and (3.7). Each of these factors represents

a conformal bosonic sigma model and they also solve the 10d supergravity equations, with

central charge shifts cancelling between the two 4d models. We have shown that the two

4d factors can be interpreted as special limits [13] of the backgrounds corresponding to

the SO(5)/SO(4) and SO(1, 4)/SO(4) gauged WZW models respectively. This relates the

linear terms in the two dilatons to “blowing up” certain angular factors in the standard

gauged WZW dilatons.

We have also observed that these “transverse” backgrounds may be viewed as defining

the kinetic term of a limit [13] of the Pohlmeyer-reduced model associated with the AdS5×
S5 superstring. We still cannot (due to the linear dilaton term) T-dualize back to relate

this to the κ = i limit of the η-model directly, however, we can formally do so at the level of

the Green-Schwarz action. As shown in [5] the η-model is associated to the vertex (particle-

like) q-deformed S-matrix of [43, 44], in particular in the κ → i limit it should be associated

to the limit of that S-matrix investigated in [45, 46]. The full PR model should, however,

be associated with the soliton S-matrix. Therefore, this limit may be implementing the

“soliton-like picture to particle-like picture” transformation [47]. It would be interesting

to clarify if this is indeed the case.

Finally, let us note that according to the discussion in [13] we should expect a relation

between the solution found here and the one constructed in [15] that supports the metric

of the λ-model, i.e. a one-parameter deformation of the non-abelian dual of AdS5 × S5

superstring. Such a relation is known to hold in the AdS2 × S2 case [13]. The background

of [15] also contains only the metric, dilaton and 5-form flux and therefore, may indeed

23The usual T-duality transformation at the level of type II supergravity maps solutions to solutions but

it applies only in the presence of an (abelian) isometry; upon compactifying on an isometric direction the

T-duality becomes equivalent to a field redefinition. This logic does not apply in the case when the dilaton

depends on isometric directions of the metric, suggesting one should start with a “doubled” string theory

extension of type IIB supergravity, cf. [22–27]. Another possible idea for bypassing the complication of the

linear non-isometric dilaton is to replace it in the action with the term e−2Φ5 lin∂+u∂−v, where u and v are

two extra coordinates; integrating out u and v produces the dilaton shift equal to Φ5 lin. Redefining u and

v by e−Φ5 lin the total action will depend only on derivatives of the isometric coordinates so one will be able

to T-dualize in them. However, one will not be able to easily integrate out u, v after doing the T-duality,

i.e. the resulting background will be a 12-dimensional one (with signature −,−,+, . . . ,+) and hence its

interpretation is unclear.
24This (partial) T-duality relation between our solution and the background of [5, 8] appears to imply

that the η-model of [1, 2] should be one-loop UV finite at least in the bosonic sector. Indeed, the Green-

Schwarz superstring action corresponding to a type II supergravity background should be Weyl invariant,

and, in particular, UV finite. This should be true for the Green-Schwarz model built on our solution. Since

the formal T-dual of the latter corresponds to the metric, B-field and eΦFk background of [5, 8], i.e. leads

to the bosonic part and quadratic fermionic terms of the η-model action, the conditions of scale invariance

of the η-model in the metric part, i.e. the generalized Einstein equations modulo reparametrizations (Rµν +
∑

(eΦFk)
2
µν + . . . = ∇µξν +∇νξµ), should be satisfied regardless of the dilaton issue.
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reduce to (2.26) after taking a limit and doing an analytic continuation. The two metrics

are related by such a procedure [13] but the precise correspondence between the dilatons

and 5-forms remains to be checked.
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A 6-fold T-dual of the AdS5 × S5 η-model background

In this appendix we give the details of the formal T-duality transformations of the η-

model metric, B-field and RR fluxes of [8] that can be used to establish a relation to our

supergravity solution (2.26). The “background” fields found in [8] by assuming that the

η-model action of [1, 2] can be interpreted as a classical Green-Schwarz sigma model in a

particular type IIB supergravity background are given by25

dŝ25 = − 1 + ρ2

1−κ2ρ2
dt̂2 +

dρ2

(1−κ2ρ2)(1+ρ2)
+

ρ2 cos2 ζ

1+κ2ρ4 sin2 ζ
dψ̂2

1+
dζ2

1 + κ2ρ4 sin2 ζ
+ ρ2 sin2 ζdψ̂2

2

+
1− r2

1+κ2r2
dϕ̂2 +

dr2

(1+κ2r2)(1− r2)
+

r2 cos2 ξ

1+κ2r4 sin2 ξ
dφ̂2

1 +
dξ2

1+κ2r4 sin2 ξ
+ r2 sin2 ξdφ̂2

2 ,

B̂ =
κρ4 sin ζ cos ζ

1 + κ2ρ4 sin2 ζ
dψ̂1 ∧ dζ − κr4 sin ξ cos ξ

1 + κ2r4 sin2 ξ
dφ̂1 ∧ dξ ,

eΦ̂F̂ (1) = κ
2F

[
ρ4 sin2 ζ dψ̂2 − r4 sin2 ξ dφ̂2

]
,

eΦ̂F̂ (3) = κ F

[
ρ3 sin2 ζ

1− κ2ρ2
dt̂ ∧ dψ̂2 ∧ dρ+

r3 sin2 ξ

1 + κ2r2
dϕ̂ ∧ dφ̂2 ∧ dr

+
ρ4 sin ζ cos ζ

1 + κ2ρ4 sin2 ζ
dψ̂2 ∧ dψ̂1 ∧ dζ +

r4 sin ξ cos ξ

1 + κ2r4 sin2 ξ
dφ̂2 ∧ dφ̂1 ∧ dξ

+
κ

2ρr4 sin2 ξ

1− κ2ρ2
dt̂ ∧ dρ ∧ dφ̂2 −

κ
2ρ4r sin2 ζ

1 + κ2r2
dψ̂2 ∧ dϕ̂ ∧ dr

+
κ

2ρ4r4 sin ζ cos ζ sin2 ξ

1 + κ2ρ4 sin2 ζ
dψ̂1 ∧ dζ ∧ dφ̂2 +

κ
2ρ4r4 sin2 ζ sin ξ cos ξ

1 + κ2r4 sin2 ξ
dψ̂2 ∧ dφ̂1 ∧ dξ

]
,

25It is interesting to note that reversing the signs of ψ̂2 and φ̂2 reverses the sign of all the RR k-form

strengths, while reversing the signs of all the isometric directions reverses the signs of the B-field along

with the RR 1- and 5-forms. Combining the two transformations reverses the signs of the B-field and the

RR 3-form. These all correspond to well-known Z2 symmetries of Type IIB theory.
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eΦ̂F̂ (5) = F

[
ρ3 sin ζ cos ζ

(1− κ2ρ2)(1 + κ2ρ4 sin2 ζ)
dt̂ ∧ dψ̂2 ∧ dψ̂1 ∧ dζ ∧ dρ

− r3 sin ξ cos ξ

(1 + κ2r2)(1 + κ2r4 sin2 ξ)
dϕ̂ ∧ dφ̂2 ∧ dφ̂1 ∧ dξ ∧ dr

− κ
2ρr

(1−κ2ρ2)(1+κ2r2)
(ρ2 sin2 ζ dt̂ ∧ dψ̂2∧ dρ∧ dϕ̂ ∧ dr+r2 sin2 ξ dt̂∧ dρ∧ dϕ̂∧ dφ̂2∧ dr)

+
κ

2ρ4r4 sin ζ cos ζ sin ξ cos ξ

(1+κ2ρ4 sin2 ζ)(1+κ2r4 sin2 ξ)
(dψ̂2∧ dψ̂1∧ dζ∧ dφ̂1∧ dξ − dψ̂1∧ dζ∧ dφ̂2∧ dφ̂1∧ dξ)

+
κ

2ρr4 sin ξ cos ξ

(1−κ2ρ2)(1+κ2r4 sin2 ξ)
(ρ2 sin2 ζ dt̂∧ dψ̂2∧ dρ∧ dφ̂1∧ dξ − dt̂∧ dρ∧ dφ̂2∧ dφ̂1∧ dξ)

− κ
2ρ4r sin ζ cos ζ

(1+κ2r2)(1+κ2ρ4 sin2 ζ)
(r2 sin2 ξ dψ̂1∧ dζ∧ dϕ̂∧ dφ̂2∧ dr + dψ̂2∧ dψ̂1∧ dζ∧ dϕ̂∧ dr)

− κ
4ρ5r4 sin ζ cos ζ sin2 ξ

(1− κ2ρ2)(1 + κ2ρ4 sin2 ζ)
dt̂ ∧ dψ̂1 ∧ dζ ∧ dρ ∧ dφ̂2

− κ
4ρ4r5 sin2 ζ sin ξ cos ξ

(1 + κ2r2)(1 + κ2r4 sin2 ξ)
dψ̂2 ∧ dϕ̂ ∧ dφ̂1 ∧ dξ ∧ dr

]
,

F ≡ 4
√
1 + κ2

√
1− κ2ρ2

√
1 + κ2ρ4 sin2 ζ

√
1 + κ2r2

√
1 + κ2r4 sin2 ξ

. (A.1)

Here Φ̂ is some a priori unknown dilaton and F̂ (k) are RR k-form strengths of type IIB

theory. The self-duality equation for the RR 5-form used in [8] has the opposite sign to

that used in (2.22) in section 2.3, that is26

F̂ (5)
mnpqr =

1

5!

√
−ĝ ǫmnpqrstuvwF̂

(5)stuvw . (A.2)

We also introduce the usual 7- and 9-forms (defined in terms of the dual RR 3- and 1-forms)

F̂
(7)
mnpqrst = − 1

3!

√
−ĝ ǫmnpqrstuvwF̂

(3)uvw , F̂
(9)
mnpqrstuv =

√
−ĝ ǫmnpqrstuvwF̂

(1)w . (A.3)

For the conventions of type IIB theory used in [8], the T-duality transformation rules

can be presented as follows [16, 20, 21] (here ŷ stands for an isometric direction along which

we dualize, while y is the dual coordinate)

gyy = ĝ−1
ŷŷ , gym = ĝ−1

ŷŷ B̂ŷm , Bym = ĝ−1
ŷŷ ĝŷm , eΦ = ĝ

−1/2
ŷŷ eΦ̂ ,

gmn = ĝmn − ĝ−1
ŷŷ (ĝŷmĝŷn − B̂ŷmB̂ŷn) , Bmn = B̂mn − ĝ−1

yy (ĝŷmB̂ŷn − B̂ŷmĝŷn) ,

F (k)
ym2...mk

= −F̂ (k−1)
m2...mk

+ (k − 1)ĝ−1
ŷŷ ĝŷ[m2

F̂
(k−1)
ŷm3...mk]

,

F (k)
m1m2...mk

= −F̂
(k+1)
ŷm1...mk

+ kB̂ŷ[m1
F

(k)
ym2...mk]

, (A.4)

while the transformation rules for the RR potentials are similar to those of the RR fluxes.

Note that these relations imply that the vielbein components of eΦF get mapped into viel-

bein components of eΦ̂F̂ , in agreement with how T-duality acts on the quadratic fermionic

term in the Green-Schwarz action [17].

26Recall that ǫ0123456789 = −1 and that m,n, . . . = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 correspond to

t, ψ2, ψ1, ζ, ρ, ϕ, φ2, φ1, ξ, r.
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We can formally apply these rules to the background fields in (A.1) with the trans-

formation of the combination of RR flux and dilaton, eΦ̂F̂ (n), found by combining the

transformations of the individual factors/components. To compensate for the different

choice of self-duality equation we first reverse the sign of ψ̂2 in (A.1), after which, applying

the T-duality rules (A.4), we recover our solution (2.26). To summarize, even though the

background fields in (A.1) cannot be extended to a solution of type IIB supergravity and

the fluxes are inconsistent with the Bianchi identities [8], those found after applying the

T-duality rules (A.4) can be and are. This is not in contradiction with the standard logic

that T-duality maps from one background solving the supergravity equations of motion

and Bianchi identities to another, as this assumes that the directions in which one dualizes

are isometries of the full background, and not just the combinations of fields appearing in

the classical Green-Schwarz action.
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