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 27 

Introduction 28 

Human labour is an inflammatory event, physiologically driven by an interaction between 29 

hormonal and mechanical factors and pathologically associated with infection, bleeding and 30 

excessive uterine stretch (Golightly, Jabbour, and Norman, 2011). However, the processes 31 

involved are not fully understood, especially the triggers/activators of labour. Local pro-32 

inflammatory cytokine and chemokines have been implicated in the pathophysiology of 33 

human labour since the 1980s; with more recent data strongly linking increased intrauterine 34 

cytokine and chemokine production with both term and preterm labour (Keelan et al., 35 

2003).  36 

Various inflammatory mediators have been studied in reproductive tissues obtained at the 37 

time of term labour (TL) and preterm labour (PTL) showing the involvement of a range of 38 

cytokines and chemokines in the choridodecidua (Hamilton, Tower, and Jones, 2013), 39 

amnion (Gomez-Lopez et al., 2010), and placenta (Haugueldemouzon and Guerremillo, 40 

2006). This review will be focused on recent work and current understanding of the nature 41 

and role of cytokines, chemokines and hormones and their involvement in signalling within 42 

the myometrium particularly during labour.  43 

 44 

Myometrial inflammation 45 

Inflammation typically involves white cell infiltration and the production of cytokines that 46 

induce changes in cell function through the modulation of gene expression. It is a highly 47 

coordinated process designed to protect the organism from infection (Meeusen, Bischof, 48 

and Lee, 2001, Martinon, Mayor, and Tschopp, 2009), but can be induced by other stimuli 49 

including chemicals and damaged cells. Generally, the inflammatory response is beneficial 50 

to the host, but when it is directed against components of the body as in joints in 51 

rheumatoid arthritis for example, or when it is excessive, such as in septic shock, 52 

inflammation can be harmful. In the myometrium, with the onset of labour at term, 53 

inflammation is thought to play a physiological role transforming the myometrium from a 54 

quiescent to a contractile state. In contrast, in preterm labour, inflammation takes on a 55 

pathological role, precipitating early delivery in response to a variety of triggers including 56 

infection, overdistension and haemorrhage.   57 

The first reports of myometrial inflammation in association with labour appeared in the 58 

later 1980’s. Azziz et al reported the presence of inflammation in biopsies taken at the time 59 

of emergency Caesarean section and suggested that there was an underlying infective cause 60 

(Azziz, Cumming, and Naeye, 1988). Lopez-Bernal and colleagues first raised the key 61 

question of how much of the inflammatory change in the myometrium was a consequence 62 

of the labour process (Bernal et al., 1993). This question was partially addressed in a series 63 

of papers by Norman et al, in which the nature of the cellular infiltration, the changes in 64 

cytokine levels and the cells producing the cytokines were defined (Bollopragada et al., 65 

2009). These papers established that term labour is an inflammatory event showing that the 66 
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myometrium is infiltrated by neutrophils, macrophages and T lymphocytes (Figure 1) and 67 

that these cells are the predominant source of the inflammatory cytokines (Young, 2002). 68 

Later studies have shown that the myometrial expression of chemokines and endothelial 69 

adhesion molecules are increased with the onset of labour, suggesting a potential 70 

underlying mechanism for the cellular infiltration of the myometrium (Young, 2002). The 71 

drives of the chemokine expression have also been studied and may include mechanical 72 

stretch and cytokines (see below). However, it remains unclear whether the inflammatory 73 

infiltration of the myometrium is a cause or consequence of labour. Human studies show 74 

that levels of IL-8 (Table 1) rise with established labour only (Osmers, 1995, Elliott et al., 75 

2001, Kemp et al., 2002) In rodent pregnancies, it seems apparent that the inflammatory 76 

infiltration precedes the onset of labour (Mackler, 1999, Shynlova et al., 2012), but various 77 

groups have depleted pregnant animals of neutrophils (Timmons, 2006) or studied animals 78 

with no mast cells (Menzies et al., 2011), without delaying labour onset. Others have used 79 

chemokine knockouts, which deliver at the same time as their wild-type controls (Menzies 80 

et al., 2012). A number of animal studies have attempted to address this question using LPS, 81 

a bacterial wall polysaccharide (Fang, Wong, and Mitchell, 2000). Lye et al found that pre-82 

treatment with a non-specific chemokine antagonist delayed labour onset in association 83 

with a reduced inflammatory infiltration (Shynlova et al., 2014), suggesting that the 84 

inflammatory infiltration is important in inflammation-induced labour onset. Indeed, 85 

macrophage depletion prevents LPS induced PTL in pregnant mice (Gonzalez et al., 2011), 86 

but neutrophil depletion had no effect (Rinaldi et al., 2014). These data suggest that 87 

macrophages but not neutrophils are important for this process.  88 

 89 

Inflammation in reproductive tissues/compartments 90 

The inflammatory changes may be a consequence of inflammation in other areas. 91 

Maternal circulation: 92 

The changes in the innate immune system during pregnancy are characterised by increased 93 

numbers of circulating monocytes and granulocytes, resulting in a higher number of total 94 

leukocytes (Tang et al., 2015). Peripheral monocyte numbers are higher; mainly due to an 95 

increase in the intermediate monocyte subset (Melgert et al., 2012). These monocytes are 96 

pro-inflammatory, producing IL-1β, IL-6 and TNF-α (Tang et al., 2015) (Table 1) and are 97 

recruited into gestational tissues, especially the decidua, during labour (Tang et al., 2015). 98 

Peripheral circulating leukocytes have also been noted to display early chemotactic 99 

responsiveness during late gestation which would aid their infiltration into uterine tissues 100 

(Gomez-Lopez et al., 2013).  Recently Srikhajon et al reported that monocytes are recruited 101 

first to the myometrium by various cytokines and chemokines. Following this 102 

transmigration, activated monocytes in turn limit further chemotaxis by disrupting locally 103 

established CCL2 gradients (Table 1) (Srikhajon et al., 2014). This may serve as a negative 104 

feedback loop to control the local inflammation. On the other hand, this group also 105 

suggested that generic inhibition of chemokines limited inflammation and reduced PTB 106 

(Shynlova et al., 2014). These seeming contradictions may reflect species differences or be 107 
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determined by the stimulant.  Circulating neutrophil numbers are higher in women in 108 

preterm and term labour (Yuan et al., 2009). These neutrophils are likely to be drawn into 109 

the myometrium by chemokines in particular IL-8 which is significantly higher in 110 

myometrium at term during labour than in women not in labour (Gomez-Lopez et al., 2010) 111 

and may contribute to the changes in whole blood gene expression noted in women with 112 

threatened preterm labour (Heng et al, 2014).  113 

Amniotic fluid (AF): 114 

Inflammatory cytokines are known to increase in AF towards term in human pregnancy and 115 

may play a role in labour by stimulating local production of prostaglandins and collagenases 116 

(Bowen et al., 2002).   With the onset of TL, there are increased concentrations of IL-1β and 117 

TNF-α in AF (Romero et al., 1990, Laham et al., 1994).  IL-6 has been noted to be raised in AF 118 

in women with spontaneous labour (Andrews et al., 1995) and particularly raised in PTL 119 

associated with intra-amniotic infection; and even considered a predictor for PTL before 34 120 

weeks gestation (Chaemsaithong et al., 2015). IL-8 concentrations in AF increase 121 

progressively from early pregnancy to term and more markedly with the onset of 122 

spontaneous term labour (Romero et al., 1991, Saito et al., 1993, Laham et al., 1994).  The 123 

rise in AF IL-6 precedes that of IL-8, suggesting that IL-6 has a role in the initiation of the 124 

inflammatory cascade required for the onset of labour (Kemp et al., 2002). Recent work by 125 

Romero et al have shown varying cytokine networks noted in the AF associated with PTL 126 

with intact membranes and intraamniotic inflammation (both microbial and sterile) 127 

(Romero et al., 2015). Interestingly, the chemokine CCL-20, which targets immature 128 

dendritic cells, effector/memory T-cells and B-lymphocytes increases in AF with advancing 129 

gestational age. It is further increased in the absence of infection in spontaneous TL and PTL, 130 

which suggests it has a role in the common parturition pathway (Hamill et al., 2008).     131 

 132 

Amnion/Chorion 133 

Inflammation has been seen in amnion and chorion with IL-1β and IL-8 increasing in 134 

concentration in the third trimester (Keelan et al., 1999, Elliott et al., 2001,). This is a key 135 

observation as it implies that the inflammatory process begins before the onset of labour. 136 

The expression of both cytokines was increased after labour with chorion producing more of 137 

each cytokine than the amnion (Elliott et al., 2001). In addition fetal membranes have 138 

exhibited selective chemotaxic activity in human labour, consequently increasing 139 

monocytes, T cells and NK cells (Gomez-Lopez et al., 2009).  IL-6 and TNF-α are also 140 

increased (Young, 2002); contributing to the chemotaxis of monocytes and other immune 141 

cells into the gestational tissues, including into the myometrium and cervical stroma (Elliott 142 

et al., 2001, Golightly, Jabbour, and Norman, 2011,).   143 

 144 

Decidua (CD) 145 

The decidua is a highly immunologically active region of a pregnant uterus. Hamilton et al 146 

used a rat model to investigate the pre-labour changes and found a significant increase in 147 
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the numbers of macrophage infiltration of the decidua in the days prior to labour, which 148 

preceded inflammatory changes in the myometrium (Hamilton et al., 2011). This suggests 149 

that decidual inflammatory events are important in the initiation of labour (Sindram-Trujillo 150 

et al., 2004, Castillo-Castrejon et al., 2013,), supporting the hypothesis first proposed in the 151 

1980s that decidual activation is an early event in the labour cascade (Casey and 152 

MacDonald, 1988). IL-8 is raised in CD at labour, with almost a 30 fold change in TL 153 

compared to term no labour (Hamilton, Tower, and Jones, 2013), resulting in neutrophil 154 

recruitment. These cells can release several inflammatory mediators and MMPs, which 155 

could degrade the extracellular matrix of the fetal membranes during both TL and PTL, 156 

contributing to ROM during term and preterm labour (Gomez-Lopez et al., 2010). 157 

Choriodecidual changes are of particular interest in PTL, where it has been shown that 158 

CD56+ NK cells and T cells are increased (Hamilton, Tower, and Jones, 2013) along with an 159 

elevated expression of CCL8 which is a chemoattractant for NK and T cells (Proost, Wuyts, 160 

and Damme, 1996). These inflammatory changes implicate both the innate and adaptive 161 

immune system in the pathological process of PTL and interestingly the imbalance between 162 

these two immune systems in PTL have been demonstrated via a mouse model (Arenas-163 

Hernandez et al., 2015).  164 

 165 

Placenta 166 

In contrast to the fetal membranes and decidua, the evidence of placental inflammation is 167 

poor (Keelan et al., 1999). The placenta is a site of peripheral monocytic activation, where 168 

monocytes encounter the villous trophoblast (Tang et al., 2015). Studies of placental cells 169 

and tissue in vitro have demonstrated their ability to respond to inflammatory stimuli such 170 

as pathogenic bacteria, LPS or IL-1 with increased production of cytokines (IL-1, IL-6, IL-10), 171 

chemokines (macrophage chemotactic protein-1[MCP-1], IL-8) and prostanoids (Denison et 172 

al., 1998, Goodwin et al., 1998, Gniesinger et al., 2001). This highlights the capacity of the 173 

placenta to play a key role in the inflammatory process associated with PTL triggered by 174 

abruption or infection.  175 

Overall, inflammation does play a critical role in the onset and progression of labour, but 176 

where this is initiated and then propagated to is still a point of much discussion and 177 

research. It seems likely that the decidua being the maternal fetal interface is 178 

immunologically crucial, and our data (unpublished) suggests that it is the most 179 

inflammatory in PTL. Further work looking at inflammation in all compartments with 180 

comparison to peripheral blood is necessary to improve our understanding. The exact 181 

triggers for the onset of this inflammatory process is yet another uncertainty; some have 182 

suggested that the fetus releases surfactant proteins as a signal of maturity (Reinl and 183 

England, 2015), others that there is a change in maternal tolerance and still others that 184 

uterine stretch is responsible.  185 

 186 

Physiology (Figure 2):  187 
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Stretch Effect 188 

Throughout pregnancy, the uterus is dramatically remodelled to accommodate the growing 189 

pregnancy. Despite the progressive increase in size, uterine quiescence is maintained, until 190 

the onset of labour, be it at term or preterm, when the uterus transforms into an actively 191 

contractile organ, to efficiently expel the pregnancy. The growing conceptus increases intra-192 

uterine pressure, but for the majority of pregnancy, the uterus is able to adapt and remodel 193 

to avoid any increase in wall tension. It is possible that once this adaptive mechanism is lost 194 

or overcome, the tension in the wall of the uterus rises, initiating the process, which 195 

culminates in the onset of labour. Progesterone has been suggested to play a key role in this 196 

adaptive process, particularly in animal models, where the loss of progesterone repression 197 

is associated with an increase in stretch-related pro-contraction proteins (Shynlova, Lee, et 198 

al., 2012) (connexin-43 and oxytocin receptor). In vitro stretch models of human myometrial 199 

cells (Terzidou et al., 2005) and strips (Moraitis et al., 2015) showed increased OTR 200 

expression and responsiveness respectively, while in vivo, acute uterine stretch increases 201 

prostaglandin synthesis (Manbe, Manabe, and Takahashi, 1982). Interestingly, no difference 202 

in prolabour expression was seen when comparing twin and singleton pregnancies (Lyall, 203 

2002). Equally, excessive uterine stretch, seen in polyhydramnios, multiple pregnancy or a 204 

singleton pregnancy in a unicornuate uterus are all associated with increased rates of 205 

preterm labour (Rodriguez, 1992, Reichman, Laufer, and Robinson, 2009, Conde-Agudelo 206 

and Romero, 2014,). 207 

In vivo animal models of stretch in pregnancy has been pioneered by Lye et al, who uses a 208 

unilateral pregnant rat model and compares the effect of mechanical strain imposed by the 209 

growing fetus in the gravid horn to the changes observed in empty horn. Lye et al showed 210 

that CCL-2 levels increased in the gravid uterine horn and reproduced this effect by in vitro 211 

stretch of myometrial cells (Shynlova et al., 2008). More recently Adams-Waldorf, using a 212 

non-human primate model, demonstrated the effect of stretch on the inflammatory 213 

response of the uterus by recreating uterine distension through balloon inflation. There was 214 

significant elevation of pro-inflammatory cytokines, including IL-1β, IL-6, IL-8, CCL-2 and 215 

TNF-α, which was compared to with the inflammatory response observed in human twin 216 

preterm labour (Adams Waldorf et al., 2015).   217 

Some studies have stretched human myometrial strips and shown an increase in IL-8 levels 218 

(El Maradny et al., 1996). More recent studies revealed that prolonged stretch of human 219 

myometrial strips under high tension resulted in increased myometrial contractility 220 

(Tattersall et al., 2012). The pathway by which the myometrial contractility is enhanced has 221 

not been defined; however there is evidence the stretch stimulates the expression of a 222 

known smooth muscle stimulatory agonist, gastrin-releasing peptide. Another theory that 223 

has been postulated is that stretch of myometrium under high tension induces constitutive 224 

activation of the oxytocin receptor (Moraitis et al., 2015). This was supported by the 225 

observation that retosiban, an oxytocin receptor blocker, reduced the pro-contractile 226 

effects of stretch (Moraitis et al., 2015).  227 

In vitro studies of human and rat myometrial cells show that mechanical stretch up-228 

regulates pro-inflammatory factors (Shynlova et al., 2012). Our studies showed that stretch 229 
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up-regulated IL-8 and COX-2 in a MAPK-dependent manner (Loudon, 2004, Sooranna, 2004, 230 

Sooranna et al., 2005). Later studies confirmed that stretch of myometrial cells increased 231 

the expression and release of IL-8, while showing that other chemokines and inflammatory 232 

cytokines are also increased in a predominantly NFkB-dependent manner (Hua et al., 2012). 233 

More recently, Lye et al showed that conditioned media from stretched myometrial cells 234 

induced endothelial activation and the expression of adhesion molecules, promoting the 235 

extravasation of inflammatory cells (Lee, Shynlova, and Lye, 2014).  236 

Lee et al tested the hypothesis that the stretch enhances peripheral leukocyte extravasation 237 

into the term myometrium through the release of various soluble mediators, including 238 

cytokines and chemokines, by human uterine myocytes. Nine cytokines/chemokines were 239 

significantly increased by stretch: IL-6, IL-12p70, IL-8, CXCL1, MIF (macrophage migration 240 

inhibitory factor), G-CSF, bFGF (basic fibroblast growth factor), VEGF, and PDGF-bb (platelet-241 

derived growth factor subunit B). The greatest effect of stretch was seen on CXCL1 and IL-8 242 

(Lee, Shynlova, and Lye, 2014). In human myometrial cells, the stretch-induced increase in 243 

CXCL1 and IL-8 was greatest at 6 hours (Hua et al., 2012). CXCL1 and IL-8 have been widely 244 

reported to be associated with TL, when both are likely to interact with neutrophils 245 

expressing CXCR1 and CXCR2, promoting myometrial infiltration of neutrophils in the 246 

gestational tissues (Elliott et al., 2000, Bollopragada et al., 2009).  247 

Chemokines are essential for inflammatory cell migration and also modulate immune cell 248 

activation (Griffith, Sokol, and Luster, 2014). The main chemokines implicated in the 249 

inflammatory process of labour are IL-8 and CCL-2, which act via CXCR2 and CCR-2 250 

respectively. IL-8 is a potent chemokine for neutrophils; and its mRNA expression is 251 

increased in myometrium of women in preterm and term labour (Keelan et al., 2003). 252 

Indeed, a recent myometrial transcriptome study reported that IL-6, CXCL1 and IL-8 253 

exhibited the greatest increase in labouring samples (Mittal et al., 2010). A more detailed 254 

study revealed that IL-8 levels increased in parallel with cervical dilation (Hebisch et al., 255 

2001). In preterm labour, IL-8 concentrations are markedly elevated in chorioamnionitis 256 

(Yoneda et al., 2015). Interestingly, myometrial expression of CXCR2 declined with the onset 257 

of TL (Hua et al., 2012) perhaps as a result of higher IL-8 levels or the effects of increased 258 

levels of OT and PGF2a, which can also repress CXCR2 expression via phospholipase C (Hua et 259 

al., 2012). Alternatively, IL-1β and TNF-α also reduce CXCR2 expression and may also be 260 

responsible for the labour-associated decline (Hua et al., 2012).  261 

CCL-2 is a member of the CC chemokine family and is also called MCP-1 (Esplin et al., 2005, 262 

Griffith, Sokol, and Luster, 2014). It is expressed by decidual cells (Critchley et al., 1996), 263 

endometrial and myometrial cells (Arici, MacDonald, and Casey, 1995, Jones, Kelly, and 264 

Critchley, 1997,) therefore it is ideally positioned to recruit macrophages to cervix, 265 

myometrium and fetal membranes with the onset of labour.  Indeed, CCL-2 is markedly 266 

upregulated in both term and preterm myometrium (Esplin et al., 2005). CCL-2 is increased 267 

in amniotic fluid from women in preterm labour particularly in the presence of infection 268 

(confirmed by histological chorioamnionitis) (Esplin et al., 2003).  269 

Stretch clearly has an impact on not only pro-inflammatory mediators such as CCL-2, IL-8 270 

and IL-6 to name a few but also on activity of oxytocin receptors and smooth muscle 271 
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agonists such as gastrin-releasing peptides. Much of the in vivo model findings have been 272 

confirmed in our in vitro work, however further work looking into the interactions between 273 

electro-mechanical signalling, hormonal interference and inflammation is necessary to 274 

understand when adaptive mechanisms that maintain uterine quiescence falter.   275 

Maternal tolerance 276 

Pregnancy has often been compared to a transplanted organ as both fetus and placenta 277 

express maternal and paternal antigens hence are like semi-allografts (Erlebacher, 2012). 278 

Breakdown in immune tolerance has been linked to rejection, which in pregnancy can have 279 

variable consequences depending on the gestation: recurrent miscarriages (Kuon et al., 280 

2015), preterm labour (Romero, Dey, and Fisher, 2014), pre-eclampsia (Dietl, 2000) to name 281 

a few. Tolerance is maintained via factors produced at the implantation site, one such 282 

promoter of tolerance is IL-10, an anti-inflammatory cytokine (Thaxton and Sharma, 2010). 283 

IL-10 was demonstrated to be a modulator of uterine NK cell cytotoxicity; in an IL-10 284 

depleted mice model, very low doses of LPS led to uterine NK (uNK) cell activation and fetal 285 

demise (Murphy et al., 2008). In a non-human primate model, IL-10 has been shown to 286 

inhibit IL-1β induced uterine activity (Sadowsky et al., 2003) and it seems to also have an  287 

inhibitory effect on LPS induction of matrix metalloproteinase 2 and 9 in fetal membranes 288 

(Fortunato et al., 2001).  289 

Interferons, known for their anti-viral potential, also have an immunomodulatory role 290 

(Racicot et al., 2014). Hertelendey et al showed via human myometrial cell line cultures that 291 

cell cultures primed with IFN-ƴ produced significantly less prostaglandins and reduced COX-292 

2 expression (Hertelendy and Zakár, 2004). Trophoblasts have been suggested in enabling 293 

appropriate tolerance by “educating” macrophages and adapting the cytokine profile of the 294 

local macrophages. Fest et al showed that monocytes cultured with trophoblasts (Fest et al., 295 

2007), increased production of RANTES (which recruits T regulatory cells) and MIP-1β which 296 

both have immunosuppressive functions (Wang et al., 1999, Ramhorst et al., 2004). 297 

Dendritic cells (DC) promote cell tolerance particularly at the maternal-fetal interface, by 298 

priming T regulatory (Treg) cells (Blois et al., 2007). Treg cells, part of the adaptive immune 299 

system play a pivotal role in promoting fetal survival by avoiding the recognition of semi-300 

allogenic tissues by the maternal immune system (Somerset et al., 2004, Tilburgs et al., 301 

2009, La Rocca et al., 2014). This was seen in a mice model where depletion of CD25
+
 Treg 302 

cells led to gestation failure (Aluvihare, Kallikourdis, and Betz, 2004) and a certain systemic 303 

composition of Treg cells with distinct subsets have been associated with PTL (Steinborn et 304 

al., 2011).  305 

Maternal tolerance is no doubt vital to support a pregnancy to term, and to avoid pregnancy 306 

complications such as fetal loss and pre-eclampsia. PTL without an obvious cause, 307 

commonly referred to as idiopathic PTL is presumed by many as an immunological 308 

phenomenon with various immune cells considered culprits including high uNK cells or low 309 

Treg cells.  Many of these conclusions have arisen from in vivo models which although highly 310 

informative, cannot take into consideration the movement, interaction and adaptability of 311 

immune cells between gestational tissue layers, between the periphery and the uterus and 312 

the mother and fetus.   313 
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Feto-placental signalling 314 

Corticotropin-releasing hormone (CRH) is synthesised in the placenta and the levels of 315 

placental CRH increases as the pregnancy advances, peaking at delivery with a rapid decline 316 

postnatally (Sasak et al., 1987).  CRH can induce the breakdown of mast cells, releasing 317 

histamine (Lytinas et al., 2003) and has been widely associated with cytokines especially the 318 

pro-inflammatory cytokine IL-6 (Venihaki et al., 2001). Raised maternal levels of CRH have 319 

been associated with PTL (Figure 3), suggesting a possible causative link (Vitoratos et al., 320 

2007). Indeed, CRH can stimulate the myometrium to produce pro-inflammatory cytokines 321 

and chemokines, in particular IL-6, IL-1β, TNF-α, IL-8 and CCL2. However, this effect appears 322 

to be dependent on cAMP-PKA signalling pathway and possibly NF-κB (You et al., 2014). 323 

These cytokines can induce the chemotaxis of monocytes to the myometrium and promote 324 

inflammation, which is thought to be key for the onset of labour. For example, IL-1β and IL-6 325 

stimulate uterine activation by increasing CX43, PGFR and OTR. In addition, CRH has been 326 

reported to have a stimulatory effect on prostaglandins (PGE2, PGF2α) (You et al., 2014). 327 

IL-6 is a pro-inflammatory cytokine that is also recognised as a myokine. IL-6 and CRH are 328 

secreted in a pulsatile manner during active labour, with the increases in IL-6 preceding 329 

those of CRH (Papatheodorou et al., 2013). This suggests the hypothesis that IL-6 promotes 330 

the release of placental CRH and in a direct or indirect manner is associated with uterine 331 

contractility (Papatheodorou et al., 2013). IL-6 has been identified in cervico-vaginal fluid as 332 

a predictive marker of PTL in the subsequent 7 days (Jung et al., 2015). Some studies have 333 

suggested this to be secondary to sub-clinical chorioamnionitis as a majority of PTL is 334 

associated with infection (Jung et al., 2015). IL-6 concentrations, along with other cytokines 335 

do not correlate with cervical shortening (Chandiramani et al., 2012).  336 

Aside from CRH, surfactant protein-A (SP-A) from the fetal lung can induce parturition. 337 

Surfactant is a glycerophospholipid-rich lipoprotein, produced by alveolar type II 338 

pneumocytes and is secreted into amniotic fluid with fetal breathing movements 339 

(Mendelson, 2009). In murine models, injection of SP-A into the amnion resulted in preterm 340 

delivery (Reinl and England, 2015), interestingly this was by shuttling amniotic fluid 341 

macrophages to the myometrium and increasing uterine IL-1β levels (Condon et al., 2004). 342 

SP-A deficient mice demonstrated a delay in parturition associated with suppressed 343 

myometrial inflammation and increased maternal progesterone (Reinl and England, 2015). 344 

In human models, SP-A stimulated prostaglandin synthesis (Bernal et al., 1988) and Johnston 345 

and colleagues have proposed that platelet-activating factor, a phospholipid component of 346 

fetal lung surfactant that is secreted into amniotic fluid near term, may play an important 347 

role in the activation of myometrial contractility (Toyoshima et al., 1995). 348 

CRH and SP-A are known proteins that can increase the production of cytokines and 349 

prostaglandins, consequently triggering myometrial activity. In addition, there are likely to 350 

be other molecules released from not only the fetus and the placenta, but also from the 351 

membranes that increase myometrial inflammation. Further work to identify such 352 

molecules and its role and interactions is required.    353 

 354 
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Progesterone and Progesterone Receptor 355 

The withdrawal of progesterone (P4) has long been hypothesised to be the trigger of labour, 356 

with supportive evidence from animal models, in particular sheep and goat where a fall in 357 

P4 and a concurrent increase in oestradiol precedes the onset of labour (Ravanos et al., 358 

2015). This does not apply to humans, as there is no decline in circulating maternal P4 levels 359 

before labour. Interestingly guinea pigs are similar to humans in that they labour in 360 

presence of high maternal progesterone levels. Such model has recently shown that 361 

decreasing P4 receptors leads to a physiological mechanism of functional P4 withdrawal 362 

which is enhanced by enodogenous/exogenous prostaglandin administration (Welsh et al., 363 

2014).      364 

P4 maintains uterine quiescence through suppression of contraction associated proteins 365 

such as connexin 43 (Challis et al., 2000). It also exerts an anti-inflammatory action via 366 

inhibition of cytokine production and immune cell migration into the uterus and suppresses 367 

the transcription of genes that promote contractility. Interestingly in human labour, a 368 

functional impairment in P4 receptor levels have been reported near term which may 369 

reverse P4’s suppressive actions therefore promoting myometrium’s sensitivity to contract 370 

(Ravanos et al., 2015).  371 

P4 has been suggested to maintain pregnancy primarily by inhibiting inflammation through 372 

repression of the archetypical inflammatory transcription factor NFκB (Wissink, 1996). This 373 

is mediated both via a direct interaction between the P4 receptor, PR-B, and the principle 374 

NFκB subunit, p65 and by increasing IκB levels, which binds to p65 maintaining it in an 375 

inactive state (Hardy et al., 2006). The onset of human labour is suggested to occur after P4 376 

influence is lost by a combination of increased expression of PR-A (Mesiano et al., 2002), 377 

which inhibits PR-B, a reduction in the level of the PR co-activator, SRC1 (Condon et al., 378 

2006) and by increased activity of NFκB, which represses PR activity via a direct interaction 379 

(Condon et al., 2003). Much of these data are based on over-expression of PR and p65, and 380 

have often been carried out in cell lines of various types. Our data suggest that P4 represses 381 

IL-1β driven COX-2 expression via the glucocorticoid receptor (GR) and not PR, despite the 382 

presence of sufficient PR to modulate the expression of the P4-responsive genes (Lei et al., 383 

2012). Further, we show that P4 reduced IL-1β-driven COX-2 expression via the inhibition of 384 

AP-1 action rather than NFκB (Lei et al., 2015). Most work has focused on the effect of IL-1β-385 

driven activation of NFκB on PR function, but other cytokines may also modulate PR 386 

function. Confirmation of these potential interactions awaits further study. 387 

 388 

Pathology (Figure 4) 389 

Infection 390 

Infection is the leading known cause of preterm labour and unfortunately one in three 391 

preterm infants are born to mothers with an intra-amniotic infection that is largely 392 

subclinical (Romero et al., 2001). Ascending infection is seen as the main source; however 393 
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there has been an association with periodontal disease and PTL (Manegold-Brauer et al., 394 

2014), which suggests a possible systemic dissemination and transplacental passage.  395 

Ascending infection is usually caused by common vaginal pathogens such as Group B 396 

Streptococcus, Mycoplasma and Ureaplasma whereas periodontal disease is commonly 397 

caused by gram negative anaerobic bacteria such as 398 

Aggregatibacter actinomycetemcomitans, Fusobacterium nucleate and Campylobacter 399 

rectus. These microorganisms and their products are typically identified by pattern 400 

recognition receptors such as toll-like receptors, which induce the production of 401 

chemokines (IL-8, IL-1, CCL-2) and cytokines (IL-1β, TNF-α) (Romero, Dey, and Fisher, 2014).  402 

With regards to periodontitis pathogens it is likely their effect is triggered by translocation 403 

of bacterial products, such as LPS, which can trigger common parturition pathway via 404 

inflammatory mediators such as IL-6, and TNF-α (Parthiban, 2015).   405 

PTL like TL require prostaglandins (PG). The rate limiting enzyme in prostaglandin synthesis, 406 

PGSH-2, is required to increase PG just prior to parturition (Hirst et al., 1995) and, 407 

interestingly, this is stimulated by cytokines including IL-1β and TNF-α. The key role played 408 

by these specific cytokines is shown in mice lacking receptors for both IL-1β and TNF-α, 409 

which have significantly lower levels of PGHS-2 mRNA in the myometrium following E.coli 410 

administration (Hirsch, Filipovich, and Mahendroo, 2006).   411 

Aside from the above mentioned infections, bacterial vaginosis (BV) and STIs are recognised 412 

as a risk factor for PTL although treatment of asymptomatic women with BV does not 413 

reduce the rate of preterm births (Romero et al., 2001). One possible explanation for this 414 

association may be that BV induces the release of cytokines that trigger the onset of labour. 415 

Masson et al identified that IL-1β (in cervico-vaginal fluid) as one of most useful 416 

immunologic biomarkers that could be used to diagnose treatable discharge-causing STIs 417 

and BV (Masson et al., 2015). 418 

Chorioamnionitis (CA) is a robust inflammatory response to intra-amniotic infection, and 419 

commonly associated with an infiltration of neutrophils in response to IL-8 and CXCL-6, 420 

amongst other chemokines (Kim, Romero, et al., 2015). Damage-associated molecular 421 

pattern molecules (see below) are also able to induce such neutrophil attracting chemokine, 422 

which led to the possibility of a mutual parturition pathway. Recent work on immune cells 423 

involved in acute and chronic CA resulting in PTL has shown the importance of 424 

macrophages. It has highlighted differences in the anatomical distribution of macrophages 425 

within the fetal membranes, as well as the differing functions - both proinflammatory and 426 

immunomodulatory (Bae et al., 2016). The plasticity and flexibility of macrophages (Brown 427 

et al., 2014), enables macrophages to acquire altered phenotypes in response to different 428 

situations. This is further complicated by the uncertainty of where these macrophages 429 

originate (fetal v maternal) and the continuing conundrum of understanding the role of 430 

inflammatory signals in both TL and PTL. Indeed, variations in the onset of PTL and TL 431 

suggest that they may involve distinct inflammatory pathways, but as yet there are no 432 

definitive data on this subject.          433 
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It is important to note that sterile inflammation (defined as an inflammatory process 434 

without the presence of microorganisms) has also been associated to PTL and is more 435 

common in preterm labour with intact membranes than microbial-associated inflammation 436 

(Romero et al., 2014). The aetiology of sterile intra-amniotic inflammation is unknown; 437 

however the inflammation is understood to result from activation of the innate immune 438 

system by endogenous danger signals, derived from necrosis or cellular stress, termed 439 

damage-associated molecular pattern molecules (DAMPs), or alarmins (Gomez-Lopez et al., 440 

2016). One such alarmin is HMGB1, which has been shown to induce PTL in a mouse model 441 

(Gomez-Lopez et al., 2016). For further detail on proposed theories on sterile inflammation 442 

please refer to Faranak Behnia’s review (Behnia, Sheller, and Menon, 2016). 443 

 444 

Haemorrhage 445 

Decidual haemorrhage is associated with PTL (Romero, Dey, and Fisher, 2014) and it 446 

complicates 0.5 -2% of all pregnancies (Buhimschi et al., 2010). Decidual haemorrhages 447 

were generally accepted as an acute event; however histological evaluation of the 448 

vasculopathy accompanying decidual haemorrhage provides compelling evidence that the 449 

damage is frequently chronic (Salafia et al., 1995, Elsasser et al., 2010). Placental abruption 450 

has been shown to be associated with inflammatory lesions of the placenta, in particular at 451 

preterm gestations (Nath et al., 2007) and interestingly a strong association has been noted 452 

between severe chorioamnionitis and abruption at term (Nath et al., 2007). This suggests 453 

that inflammatory pathways are common to both infection and decidual haemorrhage.  454 

Local decidual injury leads to production of cytokines, some of which lead to drive the 455 

inflammatory labour pathway. Additionally, thrombin, which is generated from decidual-456 

cell-expressed tissue factor (Buhimschi et al., 2010), can itself enhance the activity of 457 

cytokines such as IL-8 (Lockwood et al., 2005) and CCL-2 (Matta et al., 2007), which enhance 458 

neutrophil and macrophage infiltration, promoting inflammation. Thrombin, acting via 459 

decidual cell membrane-bound protease-activated receptors, can also induce MMPs, which 460 

enable extracellular matrix breakdown, leading to the rupture of membranes (Han, Schatz, 461 

and Lockwood, 2011). This process has been associated with preterm premature rupture of 462 

membranes (PPROM) in the absence of infection (Han, Schatz, and Lockwood, 2011) and 463 

probably explains the linkage of PPROM and placental abruption in the absence of infection 464 

(Harger et al., 1990). 465 

Thrombin has also been shown to be a direct potent uterotonic agent in both in vitro and in 466 

vivo models (Elovitz et al., 2000). In vitro fresh whole blood stimulated myometrial 467 

contractions in a dose-dependent manner and this effect was supressed with thrombin 468 

inhibitors (Elovitz et al., 2000). In vivo thrombin increased the frequency, intensity, and tone 469 

of myometrial contractions in a dose-related fashion (Elovitz et al., 2000). Thrombin’s 470 

potential to be an enzymatic, immunological and contractile inducer defines how decidual 471 

haemorrhage can expedite labour at term and unfortunately cause PTL when occurring at 472 

an early gestation.  473 

 474 
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Premature Senescence 475 

Senescence refers to the physiologic and biomolecular mechanisms that are normal and 476 

naturally associated with aging of a living organism (Muñoz-Espín and Serrano, 2014); 477 

however premature senescence is associated with pathology such as diabetes (Barzilai et al., 478 

2012) and chronic inflammatory conditions (Gubbels Bupp, 2015). Senescence is also 479 

associated with a set of biomarkers that are referred to as senescence-associated secretory 480 

phenotype (SASP). SASP is recognised by production of natural compounds such as 481 

cytokines, chemokines, matrix degrading enzymes and many more (Behnia et al., 2015). 482 

Behnia et al. showed that term labour is associated with senescence of chorioamniotic 483 

membrane cells and increased pro-inflammatory SASP factors (IL-6, IL-8, GM-CSF) could 484 

function as triggers of labour (Behnia et al., 2015). Evidence of decidual senescence has 485 

been demonstrated in the basal plate of the placenta in cases with preterm labour, but not 486 

in women who delivered at term (Cha et al., 2013). Some regard senescence as an initiator 487 

of sterile inflammation, while Menon and colleagues suggest that inflammation at term, and 488 

maybe even preterm is secondary to fetal cell senescence (Behnia et al., 2015). 489 

Pathological triggers of labour include infection (systemic and localised i.e. CA), 490 

haemorrhage, and physiological deficits such as premature senescence. They all trigger pro-491 

inflammatory markers and in general results in labour. However, it is unclear why some 492 

infections potentiate PTL and others only cause ruptured membranes and allow the 493 

pregnancy to continue to term. These variations may be due to the inflammatory marker 494 

response being stimulant (type of bacteria/antigenicity) and exposure (localised v systemic) 495 

specific and may suggest triggering distinct inflammatory pathways.      496 

 497 

Myometrial Contractility 498 

The myometrium has the ability to contract both in a non-pregnant uterus in varying phases 499 

of the menstrual cycle and also importantly, in a pregnant uterus (Pehlivanoglu, Bayrak, and 500 

Dogan, 2013). This is evidently necessary as the process of parturition can only be 501 

completed with the establishment of regular and effective contractions. The switch from 502 

uterine quiescence to the active stage of contractility is considered to be dependent on a 503 

group of proteins referred to as contraction associated proteins (CAP) (Hutchings et al., 504 

2009) whilst the excitation-contraction coupling required for contractility is understood to 505 

occur via elevated intracellular calcium levels (Wray, 2003). For more detail please see 506 

Roger Smith’s review (Butler et al., 2013).  507 

The Direct Effects of Inflammation on Contractility 508 

The up-regulation of proinflammatory cytokines within labouring myometrium stimulates 509 

and potentiates uterine contractions (Voltolini et al., 2015). IL-1β enhance myometrial 510 

contractility via different pathways, promoting basal and store-operated calcium entry 511 

(Tribe, 2002), upregulating TrpC expression (calcium entry channels; Dalrymple et al., 2004) 512 

and increasing the expression of selected phosphodiesterases, enzymes involved in the 513 

control of intracellular levels of cyclic nucleotides (Oger et al., 2002). TNF alpha reduces the 514 
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expression of Galphas, the component of the G-protein receptor complex that links to 515 

adenylyl cyclase and which increases intracellular cAMP levels promoting myometrial 516 

relaxation (Chapman et al., 2005). Interestingly, LPS increased the contraction of an isolated 517 

mouse uterine horn preparation (Mackler, 2003) and uterine myocytes in vitro through the 518 

Rho/ROCK signaling pathways (Hutchinson et al., 2013) and co-culture of uterine myocytes 519 

and monocytes enhances cytokine production and contraction (Rajagopal et al., 2015). 520 

Myometrial cells are able to produce cytokines such as IL-1β, IL-6, IL-8, TNF-α, which is 521 

enhanced by infiltrating immune cells (Young, 2002) such as macrophages, promoting a 522 

positive feedback loop to sustain the myometrial contractility. It is important to recognise 523 

that the effect of both cytokines and pro-inflammatory agents such as LPS are dose-524 

dependent based on in vitro data; this is unlikely to reflect the reality of an in vivo system as 525 

other confounders may modify the effect.  Such confounders may be innate control agents, 526 

which limit the severity of inflammation such as the production of IL-10 in response to IL-1β 527 

(Sadowsky et al., 2003). The production/release of such immunomodulatory cytokines may 528 

be derived from other tissues e.g. decidua; this is difficult to factor into in vitro models and 529 

does limit interpretation of such data. However some models have attempted to address 530 

this crosstalk by co-culturing with agents such as progesterone and IL-10 (Rajagopal et al., 531 

2015).  532 

 533 

The Indirect Effects of Inflammation  534 

Inflammation drives the expression of CAPs include the oxytocin receptor, prostaglandin 535 

receptors (Figure 3) and the gap junction protein connexin 43 (Hutchings et al., 2009).   536 

 537 

Myometrial oxytocin system  538 

The oxytocin receptor (OTR) mediates the effects of oxytocin (OT) on the myometrium. It is 539 

a key regulator of myometrial function. Its expression increases with advancing gestation 540 

(Fuchs et al., 1991), peaking in early labour (Rivera et al., 1990), corresponding to the clinical 541 

observation of increased uterine sensitivity to OT (Kimura et al., 1996). OT increases 542 

myometrial contractility via increases in intracellular calcium, mediated through its G-543 

protein coupled receptor, OTR. How inflammatory cytokines affect OTR expression is 544 

debated. Some authors show that IL-1β down-regulates myometrial OTR expression (Rauk 545 

and Frieve-Hoffmann 2000, Schmid, Wong, and Mitchell, 2001, Helmer, 2002), while others 546 

have shown that it increases OTR expression (Terzidou et al., 2006). The effect is certainly 547 

time dependent and may explain some of the conflicting data (Terzidou et al., 2006). 548 

Myometrial and decidual synthesis and release of OT was increased by IL-6 and IL-1β 549 

(Friebe-Hoffmann et al., 2007), suggesting that the acute effects of inflammation would be 550 

to increase the activity of the myometrial OT system, consistent with the observation that 551 

acute exposure to IL-1β increases OT-induced contractility, but chronic exposure reduces it 552 

(Molnár, Romero, and Hertelendy, 1993, Rauk, 2000). Intriguingly, OT has been shown to 553 

activate the NF-κB pathway, increasing the expression of several key inflammatory labour-554 

associated genes in both myocytes and amnion cells including IL-8, IL-6, CCL-5 and COX-2 555 
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(Kim et al., 2015). The level to which OT initiates the NF-κB pathway is comparable to IL-1β 556 

in the amnion, however in the myometrium IL-1β is still the stronger inducer of the pathway 557 

(Kim et al., 2015)   558 

 559 

Prostaglandin/Prostaglandin receptors and Cytokines 560 

Prostaglandins (PG) are known to initiate labour and enable contractions via cervical 561 

ripening, membrane rupture and uterine contractility. Phospholipase A2 releases 562 

arachidonic acid, which is converted into PGH2 by cycloxgenase 1 and 2 (Simmons, 2004). 563 

PGH2 can be converted into the four main PGs: PGE2, PGF2α, PGD2 and prostacyclin (PGI2) 564 

(Sykes et al., 2014), of which PGE2 and PGF2α are known be potent inducers of uterine 565 

contractility in spontaneous labour (Crankshaw and Dyal, 1994). Inflammatory cytokines 566 

have long been recognised to drive PG synthesis in human myometrial cells (HertelendyM et 567 

al., 1993, Molnár, Romero, and Hertelendy, 1993, Pollard and Mitchell, 1996) via the 568 

activation of NFkB and MAPK, p38 (Belt et al., 1999, Bartlett, Sawdy, and Mann, 1999).  PGs 569 

are recognised to be pro-inflammatory and contribute to inflammatory conditions 570 

throughout the body such as in asthma (Claar, Hartert, and Peebles, 2014) and cancer (Rose, 571 

Gracheck, and Vona-Davis, 2015). PGs can act as cytokine amplifiers and in particular 572 

increases activity of IL-1β (Aoki and Narumiya, 2012), which as mentioned plays a 573 

substantial role in initiating labour and contractility. PGs contribute to the physiological 574 

inflammatory reaction seen in labour; for example PGE2 enhances migration of leukocytes 575 

towards the cervix, which in turn leads to an increased production of IL-8 (Hertelendy and 576 

Zakár, 2004). PGF2α indirectly can activate IL-1β in the decidua and consequently increase 577 

production of MMP-9 (Christiaens et al., 2008) which is known to participate in breakdown 578 

of the extracellular matrix leading to ruptured fetal membranes (Vadillo-Ortega and Estrada-579 

Gutiérrez, 2005). Additionally, PGE2 interacts with LPS to induce IL-6, COX-2 and IL-1β via EP4 580 

on macrophages (Aoki and Narumiya, 2012) indicating PGs’ role in infection associated 581 

preterm labour.  582 

Connexin 43 and Cytokines  583 

Connexins are a family of homologous proteins (21 in humans), each of which is the product 584 

of a distinct gene (Söhl and Willecke, 2003). Connexins differ greatly in size, providing a 585 

convenient method of distinguishing them: connexin 43 (Cx43) is 43kD. Their best known 586 

function is to form the intercellular membrane channels of gap junctions, which allow direct 587 

sharing of small molecules between cells in a process known as gap junctional intercellular 588 

communication (Winterhager and Kidder, 2015). Cx43 is a recognised as one of the 589 

contraction associated proteins (Hutchings et al., 2009).  590 

Cx43 gap junctions are scarce in the myometrium of the non-pregnant uterus but increase in 591 

size and abundance with parturition in both humans and animals (Chow and Lye, 1994, 592 

Orsino, 1996). Doring et al has shown in a mouse model that ablation of Cx43 delays 593 

parturition. This was shown both in vitro and in vivo (Doring, 2006). Cx43 is impacted by 594 

inflammation. In an in vitro model, monocytes in presence of TNF-α and IFN-ƴ increased 595 

protein and mRNA levels of Cx43 (Eugenin et al., 2003). This would increase the contractility 596 
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potential of the myometrium. It is also raised in response to LPS (Chang et al., 2012) and is 597 

raised in association with preterm labour (Balducci et al., 1993).  598 

PGF2α has also been shown to increase Cx43 and PTGS2 expression in myocytes, the effect 599 

of which is enhanced by IL1β (Xu et al., 2013). 600 

In summary, the three CAPs have been shown to be stimulated by cytokines, in particular IL-601 

1β, but as noted with OT, exposure duration may have variable effect on the CAPs (this has 602 

not been studied with regards to PG and Cx43). Interactions between CAPS and 603 

cytokine/chemokines draw a variety of immune cells, however the particular role of these 604 

cells are unclear, as they may be acting in an immunomodulatory capacity as opposed to the 605 

presumed inflammatory role.     606 

Future research 607 

Labour at term is clearly associated with inflammation. Inappropriate initiators of this 608 

inflammation seem to trigger PTL as described above. It is evident from this review that 609 

there is a multitude of factors that enable and promote the myometrium to contract (Figure 610 

2 and 4). In fact there is a growing body of evidence to suggest that the beginning of labour 611 

may be initiated in other gestational tissues before the myometrium is involved.  612 

Cytokines play a significant role in establishing the inflammatory environment that is 613 

associated with labour, however there is much more to understand. Certain cytokines are 614 

repeatedly implicated in the various steps of labour; however the exact role of each 615 

cytokine is unclear. It is understood that they are chemotactic to leukocytes, but there is 616 

little understanding of the leukocytes’ exact function. Further work to identify leukocyte 617 

phenotype and function needs to be considered 618 

Future work needs to focus on the trigger of labour as this seems to be the one question 619 

that we are unable to truly answer. By unravelling this mystery it could be possible to 620 

identify effective therapeutic targets for those at risk of PTL. Longitudinal studies will be 621 

necessary to understand the molecular and immunological changes in normal pregnancy as 622 

this may enable identification of biomarkers and improve risk assessment. Newer high-623 

throughput techniques such as metabolomics and proteomics could complement our 624 

current methods, and enhance our understanding of labour, which is the ultimate key in 625 

tackling PTL.  626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 
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Table 1 Summary of nature and role of key soluble mediators in myometrium 

 

Figure 1 – Leukocytes infiltrating the myometrium during parturition. From Thomson A et 

al.,   Leukocytes infiltrate the myometrium during human parturition: further evidence that 

labour is an inflammatory process, Human Reproduction, 1999, volume 14, issue 1, pages 

229–236, by permission of Oxford University Press. 

Figure 2 - The effect of physiology (including stretch, surfactant protein-A and 

Corticotropin-releasing hormone) on cytokines and myometrial contractility 

 

Figure 3 - Pathology and hormones that promote myometrial contractility (adapted from 

Romero R et al, Preterm Labour, one syndrome, many causes. Science, Aug 2014) 

 

Figure 4 - The effect of pathology (including haemorrhage, infection and premature 

senescence) on cytokines and myometrial contractility 
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Table 1 Summary of nature and role of soluble mediators in myometrium 

Cytokine/Chemokine Role in myometrium Evidence 

IL-1β  

 

• Pro-inflammatory IL-1 cytokine superfamily 

• Source – monocytes, macrophages mainly  

• Stimulates arachidonic acid release, activate 

phospholipid metabolism and increase the 

production of prostaglandins by the myometrium 

• IL-1β activates a signal transduction system 

involving NF-κB to increase the expression of COX-2 

which is increased in the myometrium during labour 

and stimulatesthe production of PGE2 by 

myometrial cells 

Peltier, 

2003, 

Krishnan 

et al., 

2014 

IL-6 

 

• Pro-inflammatory cytokine and anti-inflammatory 

myokine 

• Source – monocytes, macrophages, endothelial cells 

• IL-6 has no effect on prostaglandin production by 

myometrial cells and is unable to stimulate 

myometrial contractions 

• This cytokine may play a role in labour by increasing 

the expression of oxytocin receptors on myometrial 

cells to increase their responsiveness to oxytocin 

• IL-6 can also increase oxytocin secretion by 

myometrial cells 

Peltier, 

2003  

IL-8 

 

• Chemotactic and pro-inflammatory cytokine 

• Source – macrophages, endothelial cells 

• IL-8 is chemotactic to neutrophils 

• Increased in myometrium in term labour compared 

to preterm labour; may work by increasing PGE2  

• Progesterone and dexamethasone have been 

shown in vitro to inhibit IL-8  

Baggiolini

, 

Loetscher

, and 

Moser, 

1995, 

Keelan et 

al., 2003, 

Terzidou 

et al., 

2006. 

TNF-α 

 

• Pro-inflammatory cytokine 

• Source – macrophages, monocytes 

• Stimulates arachidonic acid release, activate 

phospholipid metabolism and increase the 

production of prostaglandins by the myometrium 

Peltier, 

2003, 

Idriss and 

Naismith, 

2000. 

CCL2 

 

• Pro-inflammatory soluble chemoattractant cytokine 

• Source – monocytes, lymphocytes, endothelial cells, 

fibroblasts 

• Chemotactic to monocytes, NK cells, CD4
+
 T cells 

• Uterine smooth muscle cells can secrete CCL2 

which can lead to inflammation by promoting 

Shynlova 

et al., 

2008. 
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recruitment of monocytes to myometrium 

• Mechanical stretch of the myometrium increases 

expression of CCL2 
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(A) Granulocytes are sparse in 
myometrium collected from women 
not in labour (arrow) and (B) 
abundant in myometrium obtained 
from women during labour 

Identification of macrophages in lower 
segment myometrium obtained (A) 
before and (B) during labour 

Identification of neutrophils in 
lower segment myometrium 
obtained (A) before and (B) during 
labour 

Figure 1 – Leukocytes infiltrating the myometrium during parturition. (Thomson A et al, Human 

Reproduction, 1999) 
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