
September 6, 2016 International Journal of Control paper

To appear in the International Journal of Control
Vol. 00, No. 00, Month 20XX, 1–21

REGULAR PAPER

Noise Covariance Identification for Time-varying and Nonlinear Systems

Ming Gea∗ and Eric C. Kerriganb∗

aDepartment of Electrical & Electronic Engineering,

Imperial College London, London SW7 2AZ, UK; bDepartment of Electrical & Electronic Engineering and

Department of Aeronautics, Imperial College London, London SW7 2AZ, UK

(Received 00 Month 20XX; accepted 00 Month 20XX)

Kalman-based state estimators assume a priori knowledge of the covariance matrices of the process and
observation noise. However, in most practical situations, noise statistics and initial conditions are often
unknown and need to be estimated from measurement data. This paper presents an auto-covariance
least squares based algorithm for noise and initial state error covariance estimation of large scale linear
time-varying and nonlinear systems. Compared to existing auto-covariance least squares (ALS) based
algorithms, our method does not involve any approximations for LTV systems, has fewer parameters to
determine and is more memory/computationally efficient for large scale systems. For nonlinear systems,
our algorithm uses full information estimation (FIE)/moving horizon estimation (MHE) instead of the
extended Kalman filter (EKF), so that the stability and accuracy of noise covariance estimation for
nonlinear systems can be guaranteed or improved, respectively.
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1. Introduction

The performance of a Kalman filter relies on properly defined noise statistics. Failure to do so in
the design of a Kalman filter could result in large estimation errors or even a divergence of state
estimates.

In the past four decades, many approaches have been taken for improving the accuracy of noise
covariance estimation. The pioneering work of noise covariance estimation in Mehra (1972) intro-

∗Corresponding author. Email: ming.ge08@imperial.ac.uk
∗Email: e.kerrigan@imperial.ac.uk



September 6, 2016 International Journal of Control paper

duced two correlation least-squares based algorithms, namely output and innovation correlation
methods, for obtaining the noise covariance matrices of linear time-invariant (LTI) systems.

In Odelson, Rajamani, and Rawlings (2006), an algorithm for noise covariance estimation of LTI
systems is presented, which is a constrained auto-covariance least-squares (ALS) method inspired
by the innovation correlation method of Mehra (1972). The method estimates noise covariance ma-
trices using least-squares semi-definite programming (SDP), rather than solving an unconstrained
optimization problem, and greatly reduces the variance of the estimation compared to the innova-
tion correlation method. A “one-column” version, which is a simplified version of the ALS method,
is given in Rajamani and Rawlings (2009). The computational complexity of constructing the ALS
problem for high dimensional systems can be significantly reduced; instead of using the identity
matrix as the weight in the least-squares cost function, a method was proposed in Rajamani and
Rawlings (2009) to calculate the optimal weighting for further minimizing the variance of the
estimation error.

The papers cited above are for LTI models only. The standard ALS method was extended to
linear time-varying (LTV) and nonlinear systems in Rajamani and Rawlings (2007). However, due
to the structure and approximations, if the historical data is not sufficiently long, the existing
algorithm may not be able to provide accurate estimates. We therefore provide a new algorithm
for noise covariance estimation by removing all approximations in the existing formulation, so the
structure of our algorithm becomes simpler, has less parameters to determine and is able to provide
more accurate results.

Our algorithm also provides an estimate of the initial state error covariance P1 that is required in
most state estimation algorithms. For high dimensional systems, we provide a less memory demand-
ing formulation by splitting high dimensional Kronecker product in the sum of smaller dimensional
Kronecker products, so that our ALS algorithm can be quickly applied to more realistically sized
applications.

For nonlinear systems, we replace the extended Kalman filter (EKF) with full information esti-
mation (FIE) (Rawlings and Bakshi, 2006) to reduce the possibility of instability and divergence
of estimated states, thus the accuracy of noise covariance estimation for nonlinear systems can be
improved.

2. Nomenclature and Preliminaries

E[·] and cov(·) denote the expected value and covariance of a random variable, respectively. ‖.‖F
is the Frobenius norm of a matrix. P � 0 denotes that P is a positive-definite symmetric matrix.
1nr,nc

and 0nr,nc
represent nr × nc matrices with all entries equal to one or zero, respectively. In

denotes the n×n identity matrix. A ◦B denotes the Schur or Hadamard product of two same size
matrices A and B. ⊗ denotes the standard Kronecker product. ⊕ is the matrix direct sum:

N⊕
k=1

Gk := diag (G1, · · · , GN ) .

< denotes the set of real number. (·)s denotes the column-wise vectorization of a matrix; recall also
that (ABC)s = (C> ⊗ A)(B)s. IN,q ∈ <(qN)2×q2

denotes a permutation matrix containing only
zeros and ones so that

(
IN ⊗ R

)
s

= IN,q(R)s (Odelson et al., 2006). (·)ss represents the column-
wise stacked lower triangular elements of a symmetric matrix, hence it is possible to establish a

relationship between (·)s and (·)ss as (Q̂)s = Dr(Q̂)ss, where Dr ∈ <r
2× r(r+1)

2 is a full column rank
duplication matrix, which contains only zeros and ones (Magnus and Neudecker, 1999, p. 57).

For a sequence of squared matrices (Ak)
M
k=1, the notation

∏m1

k=m0

(b)Ak with m0 ≤M and m1 ≤M

2



September 6, 2016 International Journal of Control paper

represents backwards matrix multiplication of (Ak)
m1

k=m0
, i.e.

m1∏
k=m0

(b)

Ak :=

 Am1
×Am1−1 × · · · ×Am0

if m1 > m0

Am1
if m1 = m0

I if m1 < m0

M r,c
l ∈ <r×c is an auxiliary matrix containing only zeros and ones M r,c

l :=[
0r×(l−1) Ir 0r×(c−r−l+1)

]
. x ∼ N (µ, P ) denotes a random vector variable x with a normal

distribution with mean µ and covariance matrix P . x ∼ U(a, b) denotes a uniformly distributed
scalar random variable x within the interval [a, b]. R(A) denotes the range or column space of a
matrix A ∈ <n×m, i.e. R(A) := {Ax : x ∈ <m}.

3. Linear Time-varying Systems

Consider the following discrete-time LTV model:

xk+1 := Akxk +Gkwk,

yk := Ckxk +Hkvk,
(1)

where Ak ∈ <n×n and Ck ∈ <p×n are the dynamics and sensor matrices; Gk ∈ <n×r and Hk ∈ <p×q
are time-varying full column rank matrices; (xk)

M
k=1 are unknown state sequences; (yk)

M
k=1 are given

outputs; (wk)
M
k=1 and (vk)

M
k=1 are two unknown noise sequences, which affect the state and output,

respectively.

Assumption 1: The noise sequences (wk)
M
k=1 and (vk)

M
k=1 are two uncorrelated random variables

having Gaussian (or normal) distributions N (0, Q) and N (0, R), respectively, with zero mean and
unknown positive-definite covariance matrices Q and R.

Assumption 2: The pair
[
Ak Ck

]
in the LTV system (1) is uniformly detectable (Anderson and

Moore, 1981) for 1 ≤ k ≤M .

Theorem 1: (Anderson and Moore, 1981) If Assumption 2 holds and the se-

quences (Ak)
M
k=1, (Ck)

M
k=1 are bounded, then there exists a bounded filter gain sequence (Lk)

M
k=1

such that all trajectories of the closed-loop LTV system

xk+1 := Ākxk := (Ak −AkLkCk)xk

are exponentially stable over a finite horizon k = 1, . . . ,M .

Since the true noise covariance matrices Q and R are unknown, it is not possible to design a best
linear unbiased estimator (BLUE) with a sequence of optimal filter gains (Lk)

M
k=1. Instead, we use

a given sequence of stabilizing sub-optimal filter gains (Lsk)
M
k=1 and any appropriate given initial

state guess x̂1|0 to obtain the estimated state sequence

x̂k := x̂k|k := x̂k|k−1 + Lsk
(
yk − ŷk|k−1

)
, (2a)

where x̂k+1|k and ŷk|k−1 are the one-step ahead predicted state and output, respectively, given by

x̂k+1|k := Akx̂k, ŷk|k−1 := Ckx̂k|k−1. (2b)

3



September 6, 2016 International Journal of Control paper

The state error terms are defined as εk := xk − x̂k|k−1, for k = 1, . . . ,M , hence

x̂k+1|k = Ak(x̂k|k−1 + Lsk(yk − ŷk|k−1)) = Akx̂k|k−1 +AkL
s
k(Ckxk +Hkvk − Ckx̂k|k−1).

Let Ḡk :=
[
Gk −AkLskHk

]
and w̄k :=

[
w>k v>k

]>
, then

εk+1 = Ākεk + Ḡkw̄k. (3a)

Therefore, if Assumption 2 holds, Theorem 1 will ensure that E[εk]→ 0 as k →∞.
We define the state space model of innovations as

zk := Ckεk +Hkvk. (3b)

A necessary and sufficient condition for the optimality of a Kalman filter is that the innovation
sequence (zk)

M
k=1 be white Gaussian noise (Mehra, 1970), (Kailath, 1968). However, for a sub-

optimal filter, z1, z2, . . . , zM are correlated with each other, thus we could produce an auto-
covariance matrix of (zk)

M
k=1 that represents the similarity between the original signal and some

time-lagged versions of itself. For any k ∈ {1, . . . ,M}, the auto-covariance of vector zk with j
time-lags is defined as:

Cj(zk) := E[(zk+j − µk+j)(zk − µk)>] = E[zk+jz
>
k ]− µk+jµ

>
k

for j = 0, 1, . . . , N − 1, where N is the maximum number of time lags and µk+j := E[zk+j ].

Assumption 3: Given output measurements (yk)
k̄
k=1, 1 ≤ k̄ ≤ M , there exists a smoothed initial

state x̂1|k̄, where

x̂1|k̄ := E
[
x1|(yk)k̄k=1

]
,

such that if let x̂1|0 = x̂1|k̄, then the expectation of the initial state error term ε1 will be zero.

Because for any k, the state error term εk+1 is a function of ε1 and (w̄k)
M
k=1, Assumption 3

and (3b) ensure that

∀ k, j : µk+j = 0 =⇒ Cj(zk) = E[zk+jz
>
k ].

Let us pick a fragment of innovations (zk+1)Nz

k=1, where Nz = Me −N + 1. The auto-covariance
with j time-lags is then given by

Cj
(

(zk+1)Nz

k=1

)
:=
[
Cj(z2) · · · Cj(zMe−N+2)

]
= E

[
z2+jz

>
2 · · · zMe−N+2+jz

>
Me−N+2

]
,

where Me is the estimation data length with N �Me ≤M .
The auto-covariance matrix (ACM) of (zk+1)Nz

k=1 can now be defined as

R :=
[
C>0

(
(z>k+1)Nz

k=1

)
· · · C>N−1

(
(z>k+1)Nz

k=1

)]
.

For i = 0, . . . ,Me −N , we also define the matrix Ri as

Ri := E
[
z>2+iz2+i · · · z2+iz

>
N+1+i

]>
,

4
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so that

R =
[
R0 R1 · · · RMe−N

]
.

Note that the auto-covariance matrix R is a function of Q, R and P1; see (8) below.
Since the innovation sequence obtained from LTV systems is generally non-stationary, we are

unable to calculate the sample estimate of R using the same method as in Rajamani and Rawlings
(2009). Instead, we define the sample estimate of R as

R̄ :=


z̄2z̄
>
2 . . . z̄Me−N+2z̄

>
Me−N+2

z̄3z̄
>
2 . . . z̄Me−N+3z̄

>
Me−N+2

...
. . .

...
z̄N+1z̄

>
2 . . . z̄Me+1z̄

>
Me−N+2


where z̄k represents the actual innovation terms calculated by

z̄k := yk − ŷk|k−1. (4)

We can now define an unconstrained least squares optimization problem to estimate the true
covariance:

(P ∗1 , Q
∗, R∗) := arg min

P̂1,Q̂,R̂

∥∥∥R(P̂1, Q̂, R̂)− R̄
∥∥∥2

F
. (5)

Compared to time-invariant models, the estimated error covariance Pk := E[(xk − x̂k|k−1)(xk −
x̂k|k−1)>] for an LTV model is the solution to a time-varying Riccati equation and does not reach
a steady state value. Therefore, the state and measurement noise covariance Q and R cannot be
estimated from a Lyapunov equation as in Odelson et al. (2006).

4. Solving The Optimization Problem (5)

In order to apply the Kalman filter, a guess of the initial state error covariance P1 := Pg � 0 and
guessed noise covariances Qg and Rg have to be provided, hence the sub-optimal filter gains Lsk can
be recursively obtained from the Kalman filter equations (Humpherys, Redd, and West, 2012):

Pk|k−1 := AkPk−1A
>
k +GkQgG

>
k , (6a)

Pk := (I − LskCk)Pk|k−1, (6b)

Lsk :=
(
Pk|k−1C

>
k

)(
CkPk|k−1C

>
k +HkRgH

>
k

)−1
. (6c)

Let us start from ε1 and consider the evolution of (3a) and (3b). The innovation sequence (zk)
Me

k=1
can be shown to be given by

z = Ṽ
(
Ẽε1 + G̃w̃

)
+ H̃ṽ, (7)

where

z :=
[
z>2 z>3 · · · z>Me

z>Me+1

]>
, w̃ :=

[
w̄>1 w̄>2 · · · w̄>Me−1 w̄>Me

]>
,

5
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ṽ :=
[
v>2 v>3 · · · v>Me

v>Me+1

]>
, Ã := InMe

−
[

0 0⊕Me

k=2 Āk 0

]
,

C̃ :=
⊕Me+1

k=2 Ck, Ṽ := C̃Ã−1, G̃ :=
⊕Me

k=1 Ḡk, H̃ :=
⊕Me

k=1Hk, Ẽ :=

[
Ā1

0

]
.

It is possible to use the above expressions to show that (more details are given in Appendix A)
R(P1, Q,R) = Γ

(
INz
⊗ P1|0

)
Γ̄> + Ω

(
INd
⊗Q

)
Ω̄> + Φ

(
INd
⊗R

)
Φ̄> + Ψ

(
INz
⊗R

)
Ψ̄>, (8)

where Nd := (Nz+1)Nz

2 and

Γ := S̃F̃ , Γ̄ := S̃dF̃ , Ω := S̃J̃ , Ω̄ := S̃dJ̃ , F̃s := ṼẼ , F̃ := INz
⊗ F̃s,

Ψ̄ :=
⊕Me−N+2

k=2 Hk Φ := S̃Ũ , Φ̄ := S̃dŨ , Ψ :=

[
(11×Nz

⊗ Ip)Ψ̄
P̃Õ

]
,

P̃i := M
p(N−1),pMe

p(i+1)+1 , M̃ := M p,pN
1 , B̃ := Ṽ

⊕Me

k=1Gk, S̃i := M pN,pMe

pi+1 ,

J̃i :=
(
M

r(i+1),rMe

1

)>
, J̃ :=

⊕Me−N
i=0 B̃J̃i, Ũi :=

(
M

q(i+1),qMe

1

)>
,

P̃ :=
[
P̃0 P̃1 · · · P̃Me−N

]
, S̃ :=

[
S̃0 S̃1 · · · S̃Me−N

]
, Õi :=

(
M q,qMe

q(i+1)+1

)>
,

D̃ := −Ṽ
Me⊕
k=1

AkL
s
kHk, Ũ :=

Me−N⊕
i=0

D̃Ũi, Õ :=

Me−N⊕
i=0

D̃Õi, S̃d :=

Me−N⊕
i=0

M̃S̃i

In order to fit problem (5) into a standard linear least-squares formulation, matrix R must be
vectorized, which is the column-wise stacking of a matrix into a vector. Hence, the vectorized
matrix (R)s can be expressed as

(R)s = (Γ̄⊗ Γ)INz,n(P1|0)s + (Ω̄⊗ Ω)INd,r(Q)s +
[
(Φ̄⊗ Φ)INd,q + (Ψ̄⊗Ψ)INz,q

]
(R)s.

Considering the dimension and structure of matrices Γ̄, Γ, Ω̄, Ω, Φ̄, Φ, Ψ̄ and Ψ, calculating the
Kronecker product of these matrices directly will be extremely slow and require significant amounts
of computer memory. Alternatively, one could parallelize the computation of each vector (Ri)s and
combine them together to form the vector (R)s. The vectorized matrix (Ri)s is given by Rajamani
and Rawlings (2007)

(Ri)s = (Γ̄i ⊗ Γi)I1,n(P1|0)s + (Ω̄i ⊗ Ωi)Ii+1,r(Q)s + [(Φ̄i ⊗ Φi)Ii+1,q +Hi+2 ⊗Ψi](R)s, (9)

where Γi := S̃iF̃s, Γ̄i := M̃Γi, Ωi := S̃iB̃J̃i,

Ω̄i := M̃Ωi, Φi := S̃iD̃Ũi, Φ̄i := M̃Φi, Ψi :=

[
H>i+2

(
P̃iD̃Õi

)>]>
.

6
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Let b̄ := (R̄)s. The original optimization problem (5) can now be rearranged into an unconstrained
least-squares problem with decision variables (P1|0)ss, (Q)ss and (R)ss:

min
ϑ

∥∥∥∥∥∥∥∥∥∥∥∥

 A0
...

AMe−N


︸ ︷︷ ︸

A

(P1|0)ss
(Q)ss
(R)ss


︸ ︷︷ ︸

ϑ

−

 b̄0
...

b̄Me−N


︸ ︷︷ ︸

b̄

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(10a)

where, for i = 0, . . . ,Me −N , b̄i := (R̄i)s and

Ai :=
[
(Γ̄i ⊗ Γi)I1,nDn (Ω̄i ⊗ Ωi)Ii+1,rDr

(
(Φ̄i ⊗ Φi)Ii+1,q + Iq ⊗Ψi

)
Dq

]
. (10b)

5. Memory Allocation for the ALS Estimation

Although we have split (R)s into several smaller portions (Ri)s in (9), calculating each Ai in (10b)
will exhaust large amounts of computer memory as i goes to Me − N , because of the Kronecker
products in (9) and (10b). Thus, in order to apply our ALS algorithm for high order systems, one
has to carefully modify (9) so that the memory can be used efficiently.

5.1 Full Matrix or Sparse Matrix?

By default, MATLAB represents a number using floating-point in double-precision. Thus for any
full matrix B ∈ <r×c, each entry will use 8 bytes of memory, so the matrix B requires r × c × 8
bytes of memory. For a sparse matrix with n0 non-zero entries, MATLAB represents matrices using
compressed sparse column (CSC) format, so the total memory requirement Mr is calculated by

Mr = (1 + c)× 8︸ ︷︷ ︸
IA

+n0 × 8︸ ︷︷ ︸
JA

+n0 × 8︸ ︷︷ ︸
A

,

where the first index term IA represents the accumulative number of non-zero entries on each
column, from left to right; the index always starts with an extra 0. The second index term JA rep-
resents the location of non-zero entries on each row. The last term A represents the corresponding
non-zero entries.

Proposition 1: When using a CSC format, for a matrix with non-zero entries greater than 50%,
representing it as a sparse matrix will cost more memory than representing it as a full matrix.

Proof. For a matrix B ∈ <r×c, define pn as the percentage of non-zero entires, then

Mr = (1 + c)× 8 + (pn × r × c)× 16,

hence, we have

(r × c)× 8 = (1 + c)× 8 + (pn × r × c)× 16

pn = 50%− (1 + c)

(r × c)× 2
,

7
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thus, if non-zero entries greater than 50%, save a sparse matrix will require more memory than a
full matrix.

Due to the structures of matrices Γi, Ωi, Φi and Ψi in (10b), the non-zero entries of these matrices
will be much greater than 50%, thus, it is sensible to save them as full matrices rather than sparse
matrices.

5.2 Modified Method 1

The computational complexity and memory allocation can be improved by rewriting (9) as Bern-
stein (2009, Prop. 7.1.6)

(Ri)s =

 i+1∑
j=1

(
Γ̄iζ

Γ̄
j

)
⊗
(
Γiζ

Γ
j

)Dn(P1|0)ss +

 i+1∑
j=1

(
Ω̄iζ

Ω̄
j

)
⊗
(
Ωiζ

Ω
j

)Dr(Q)ss

+

 i+1∑
j=1

(
Φ̄iζ

Φ̄
j

)
⊗
(
Φiζ

Φ
j

)
+Hi+2 ⊗Ψi

Dq(R)ss,

(11)

where Ii+1,n, Ii+1,r and Ii+1,q have been decomposed as

Ii+1,n =
i+1∑
j=1

ζ Γ̄
j ⊗ ζΓ

j , Ii+1,r =
i+1∑
j=1

ζΩ̄
j ⊗ ζΩ

j , Ii+1,q =
i+1∑
j=1

ζΦ̄
j ⊗ ζΦ

j ,

ζ Γ̄
j , ζ

Γ
j ∈ <n(i+1)×n, ζΩ̄

j , ζ
Ω
j ∈ <r(i+1)×r, ζΦ̄

j , ζ
Φ
j ∈ <q(i+1)×q.

Because P1|0,Q and R are all symmetric matrices, from a memory efficiency point of view, we should
involve Dn, Dr and Dq in the decomposition as well. However, we are unable to decompose any of
Ii+1,nDn, Ii+1,rDr or Ii+1,qDq into a sum of i+ 1 Kronecker product terms, thus involving Dn, Dr

and Dq in the decomposition using Bernstein (2009, Prop. 7.1.6) will be computationally inefficient.

5.3 Modified Method 2

Instead of using Bernstein (2009, Prop. 7.1.6), a sum Schur/Hadamard products could be used to
improve the memory efficiency of our ALS algorithm, such as

(Ri)s =

{ i+1∑
j=1

[(
Γ̄iξ

Γ̄
j

)
⊗ 1pN,1

]
◦
[
1p,1 ⊗

(
Γiξ

Γ
j

)]
+
[(

Γ̄iξ̃
Γ̄
j

)
⊗ 1pN,1

]
◦
[
1p,1 ⊗

(
Γiξ̃

Γ
j

)]}
(P1|0)ss+

{ i+1∑
j=1

[(
Ω̄iξ

Ω̄
j

)
⊗ 1pN,1

]
◦
[
1p,1 ⊗

(
Ωiξ

Ω
j

)]
+
[(

Ω̄iξ̃
Ω̄
j

)
⊗ 1pN,1

]
◦
[
1p,1 ⊗

(
Ωiξ̃

Ω
j

)]}
(Q)ss+

{ i+1∑
j=1

[(
Φ̄iξ

Φ̄
j

)
⊗ 1pN,1

]
◦
[
1p,1 ⊗

(
Φiξ

Φ
j

)]
+
[(

Φ̄iξ̃
Φ̄
j

)
⊗ 1pN,1

]
◦
[
1p,1 ⊗

(
Φiξ̃

Φ
j

)]
+

[(
Hi+2ξ

H
)
⊗ 1pN,1

]
◦
[
1p,1 ⊗

(
Ψiξ

Ψ
)]

+
[(
Hi+2ξ̃

H
)
⊗ 1pN,1

]
◦
[
1p,1 ⊗

(
Ψiξ̃

Ψ
)]}

(R)ss,

(12)

8
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where

ξΓ̄
j , ξ

Γ
j , ξ̃

Γ̄
j , ξ̃

Γ
j ∈ <n(i+1)×n(n+1)

2 , ξΩ̄
j , ξ

Ω
j , ξ̃

Ω̄
j , ξ̃

Ω
j ∈ <r(i+1)× r(r+1)

2 ,

ξΦ̄
j , ξ

Φ
j , ξ̃

Φ̄
j , ξ̃

Φ
j ∈ <q(i+1)× q(q+1)

2 , ξH , ξΨ, ξ̃H , ξ̃Ψ ∈ <q×
q(q+1)

2 ,

are matrices that only contain zeros and ones. Note that, if one assumes that P1|0 Q and R are

diagonal matrices, then all ξ̃ matrices are equal to zero.

5.4 Numerical Tests

According to Appendix A, we have for i = 0, · · · ,Me −N

Ωi ∈ <pN×r(i+1), Φi ∈ <pN×p(i+1), Γi ∈ <pN×n, Ψi ∈ <pN×q,
Ω̄i ∈ <p×r(i+1), Φ̄i ∈ <p×p(i+1), Γ̄i ∈ <p×n.

Since only the size of Ωi, Ω̄i, Φi and Φ̄i will grow with i and, in practice p � r, we only focus on
monitoring how the size of Ωi and Ω̄i vary with i and r.

Figures 1 and 2 are the plots of memory requirements and computational time for calculating
the part

ΩQ := (Ω̄i ⊗ Ωi)Ii+1,rDr (13)

in (10b), respectively, using (13), the memory efficient forms (11) and (12) with N = 50. All
results are based on an Intel Xeon E5-2699v3 18-core CPU at 3.0 GHz and 128 GB DDR4 memory.
Figure 1 illustrates that, by using the memory efficient form (11) and (12), the maximum memory
requirement reduces from 84.94 GB to just 372.5 and 118.1 MB, respectively. Figure 2 shows that
for a larger Q, using memory efficient methods 1 and 2 will be faster than using (13).

6. Properties of the ALS Estimate and Discussion

The correlation between z̄k and z̄k+j will keep decreasing and eventually become uncorrelated as
the time lag j increases. Hence, the number of time lags N can be determined by looking at the
plot of the autocorrelation function of the innovation sequence (z̄k)

M
k=1 against the time-lagged

variable, where for all j > N the correlations between z̄k and z̄k+j are negligible. As discussed
in Section 3, the matrix A in (10a) cannot be constructed using steady state solutions from the
Riccati equation; therefore, the accuracy of the estimate and computational complexity is a function
of Me. In theory, we should use all given information by letting Me = M , however, if M is too
large, the whole estimation process will require a lot of time and computer memory. More results
and discussion about the effect of varying Me will be given in Section 8.1.

For LTV systems, the Kalman smoother (Rauch, Tung, and Striebel, 1965) can be rearranged
as a convex QP with linear constraints (1). Thus, by using the method of Lagrange multipliers, it
is straightforward to prove that for a sufficiently large Pg, Assumption 3 will be fulfilled regardless
the choice of covariances Qg and Rg.

Recall the matrix A in the auto-covariance least squares (ALS) problem (10a):

A = [Ã1 Ã2 Ã3] ∈ <p2NNz×(n2+r2+q2)

9
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Figure 1. Memory requirement for calculating ΩQ

Figure 2. Computational time for calculating ΩQ

10
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where Ã3 := Ã4 + Ã5,

Ã1 := (Γ̄⊗ Γ)INz,n, Ã2 := (Ω̄⊗ Ω)INd,r,

Ã5 := (Ψ̄⊗Ψ)INz,q, Ã4 := (Φ̄⊗ Φ)INd,q.

Assumption 4: The number of rows of matrix A is greater than the number of columns (i.e.

NNz ≥ n2), R(Ã1) ∩R(Ã2) ∩R(Ã3) = {0} and R(Ã4) ∩R(Ã5) = {0}.

Assumption 5: Pg, Qg and Rg are positive definite, Ak is nonsingular, Ck is a full row rank
matrix, Gk and Hk are full column rank matrices for all k.

Theorem 2: For the discrete-time LTV system (1), if Assumptions 4 and 5 hold, then matrix A
is full rank and (5) has a unique solution.

Proof. See Appendix A.

Note that, if Assumptions 4 and/or 5 are not satisfied, one has to manually check the rank of
matrix A and make sure matrix A is of full column rank.

When dealing with a small sample of measurements, inappropriate choices of Me or significant
model error, the ALS estimate of the covariances may not be positive-definite and such estimates
are physically meaningless (Odelson et al., 2006). This problem can be solved by adding positive-
definite constraints to the linear least squares problem (10a) to get

min
θ

∥∥∥∥∥∥∥∥∥∥∥∥

 A0
...

AMe−N


︸ ︷︷ ︸

A

(P̂1)ss
(Q̂)ss
(R̂)ss


︸ ︷︷ ︸

θ

−

 b̄0
...

b̄Me−N


︸ ︷︷ ︸

b̄

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

s.t.
(
P̂1, Q̂, R̂

)
� 0.

(14)

Note that, in practice, Gk and Hk are usually constant (Gk = G and Hk = H) and rarely known,

hence GQG> and HQH> are usually estimated, thus Q̂ and R̂ matrices may have off-diagonal
entries.

A different approach for estimating the noise covariances for time-varying and nonlinear systems
is provided in Rajamani and Rawlings (2007), which assumes that there exists a k0 with 1 < k0 < M
such that

E{εk0
} = 0 and limNk→∞

(∏k0+Nk

k=k0

(b)
Āk

)
εk0

= 0. (15)

Once k0 and Nk are determined, Rajamani and Rawlings (2007) constructs the ALS problem only

based on {Ak, Gk, Ck, Hk, yk}Mk=k0+Nk
. The advantage of the algorithm in Rajamani and Rawlings

(2007) is that the number of decision variables in the objective function is reduced from three
to just two vectorized matrices: (Q)ss and (R)ss. Hence, the computational effort of solving the
auto-covariance least squares is reduced.

In fact, both statements in (15) will hold as long as (1) is uniformly detectable; however, if the

available output measurements (yk)
M
k=1 is limited, the statements (15) may not hold until k0 +Nk

is close to M , which could significantly affect the performance of covariance identification. Even
if M is long enough, in order to ignore the term P̂k0

from the decision variables, the computational

11
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complexity to ensure (∏k0+Nk

k=k0

(b)
Āk

)
P̂k0

(∏k0+Nk

k=k0

(b)
Āk

)>
≈ 0 (16)

mainly depends on the value of Nk, dimension and sparsity of matrices Āk.
Our method sets k0 = 1 by letting x̂1|0 = x̂1|M and treats the term (P̂1)ss as a decision variable

in the ALS estimation problem (14), hence our formulation does not involve any approximations,
has less parameters to determine (only N , Me, no need for Nk and k0) and is able to estimate
noise covariances Q, R as well as the initial state error covariance P1 of a uniformly detectable
LTV system. Given an appropriate choice of Nk that satisfies (16) and Nk ≤Me−N , if let k0 = 1,
then the existing ALS algorithm provided in Rajamani and Rawlings (2007) is given by

min
(Q̂)ss, (R̂)ss

∥∥∥∥∥∥∥
 ÂNk

...

ÂMe−N

[(Q̂)ss
(R̂)ss

]
−

 b̄Nk

...
b̄Me−N


∥∥∥∥∥∥∥

2

2

s.t.
(
Q̂, R̂

)
� 0,

(17)

where for i = Nk, . . . ,Me −N ,

Âi :=
[
(Ω̄i ⊗ Ωi)Ii+1,rDr

(
(Φ̄i ⊗ Φi)Ii+1,q + Iq ⊗Ψi

)
Dq

]
.

7. Nonlinear Systems

Consider the following discrete-time nonlinear state space model:

xk+1 := f(xk) +Gkwk

yk := h(xk) +Hkvk
(18)

where xk ∈ Xk ⊆ <n is the state, yk ∈ <p is the measurement, wk and vk satisfy Assumption 1.

Assumption 6: The discrete-time nonlinear model (18) is uniformly observable (Moraal and Griz-
zle, 1995). The nonlinear functions f(·) and h(·) are twice differentiable and there exists a stable
state observer for (18) with nonempty feasible region.

If we linearize the nonlinear functions f(·) and h(·) around the current estimate x̂k (Simon, 2006,
p. 408), i.e.

Ak := ∂f(·)
∂xk

∣∣∣
xk=x̂k

, Ck := ∂h(·)
∂xk

∣∣∣
xk=x̂k

, (19a)

then, Ak and Ck are linearized matrices, hence we have

εk+1 ≈ Ākεk + Ḡkw̄k

zk ≈ Ckεk +Hkvk.
(20)

Given the estimated state x̂k, the time-varying matrices Ak, Gk, Ck and Hk, the suboptimal
Kalman filter gains Lsk and innovation z̄k can all be determined using (19), (6) and (4), respectively.
If Assumption 3 is fulfilled, then the noise covariances for nonlinear systems can be estimated by

12



September 6, 2016 International Journal of Control paper

establishing and solving the ALS problem (14) using all the information derived in Section 4. In
the following sections, we discuss the properties of using the EKF and FIE (MHE) to estimate the

true system state sequence (xk)
M
k=1.

7.1 Estimating States Using an Extended Kalman Filter

Assumption 3 requires the estimation errors (εk)
M
k=1 to be bounded and the expectation of εk

equals to zero for all k. Unfortunately, for nonlinear state estimation using the EKF, Assumption 3
generally does not hold, even with true noise covariances Q and R.

Because the guessed noise covariance matrices Qg and Rg are both inaccurate (due to model
mismatch), if the guessed initial state x̂1|0 is not close to the true initial state, estimation errors

(εk)
M
k=1 may not be bounded for the EKF. Thus, additional conditions are needed to improve

the stability and convergence of the EKF (Reif, Günther, Yaz, and Unbehauen, 1999), including
observability, small initial estimation error, small noise terms and no model mismatch.

7.2 Estimating States Using Moving Horizon Estimation

In order to improve the state estimation for nonlinear systems, one may have to use FIE, rather
than EKF to estimate the unknown system states. Because the EKF equations can be derived by
minimizing the same objective function as FIE by a single Newton step (Humpherys et al., 2012),
due to optimality, the FIE will provide smaller error norms ‖εk‖Mk=1 than the EKF.

The states (x̂k|k̄)
k̄
k=1 for (18) can be determined by recursively solving the FIE, for k̄ = 2, . . . ,M :

X∗1,k̄ := arg min
X1,k̄

‖ε1‖2P−1
g

+
k̄−1∑
k=1

‖wk‖2Q−1
g

+
k̄∑
k=1

‖vk‖2R−1
g

(21a)

s.t. xk+1 = f(xk) +Gkwk, k = 1, . . . , k̄ − 1 (21b)

yk = h(xk) +Hkvk, k = 1, . . . , k̄ (21c)

xk ∈ Xk, k = 1, . . . , k̄ (21d)

where X1,k̄ :=
[
x>1 v>1 w>1 x>2 · · · w>

k̄−1
x>
k̄

v>
k̄

]>
and the optimal of Xk̄ is given by

X∗1,k̄ =:
[
x̂>

1|k̄ v̂>
1|k̄ ŵ>

1|k̄ · · · ŵ>
k̄−1|k̄ x̂>

k̄
v̂>
k̄

]>
;

(x̂k|k̄)
k̄
k=1, (ŵk|k̄)

k̄−1
k=1 and (v̂k|k̄)

k̄
k=1 are the estimates of the state and system noise sequence (xk)

k̄
k=1,

(wk)
k̄−1
k=1 and (vk)

k̄
k=1, respectively, given outputs.

For FIE, the problem size grows with time as the estimator processes more data; as a result,
the problem complexity scales at least linearly with M . In order to make the estimation problem
tractable, we need to limit the problem size by using MHE (Rawlings and Mayne, 2009), such that

Θ∗k̄ = min
Xks,k̄

‖εks‖2P−1
ks

+
k̄−1∑
k=ks

‖wk‖2Q−1
g

+

k̄∑
k=ks+1

‖vk‖2R−1
g

(22a)

s.t. xk+1 = f(xk) +Gkwk, k = ks, . . . , k̄ − 1 (22b)

yk = h(xk) +Hkvk, k = ks, . . . , k̄ (22c)

xk ∈ Xk, k = ks, . . . , k̄ (22d)

13
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Algorithm 1 Noise Covariance Estimation Algorithm using ALS combined with MHE

1: Given k̄, k̄ ≤M , (yk)
k̄
k, x1|0, Pg, Qg, Rg, determine the smoothed initial state x̂1|k̄ by recursively

calculating (22), for k = 1, · · · , k̄.

2: Set x1|0 = x̂1|k̄, then recursively determine the filtered states (x̂k)
M
k using the MHE (22) and

the algorithm provided in Rao et al. (2003).

3: Calculate (Ak, Gk, Hk, Ck)
M
k=1 using (19) and (x̂k)

M
k .

4: Calculate the innovation sequence (zk)
M
k=1 using (x̂k)

M
k .

5: Estimate P1|0, Q and R using the ALS algorithm (14).

where ks := max{k̄ − Nl, 0} + 1; Nl is a positive integer called the horizon length and Nl ≤ M .
The MHE is equivalent to FIE if k̄ = Nl; for k̄ ≤ Nl, x̂1 := x̃1 and Pks := Pg. ε

>
ks
P−1
ks
εks is called

arrival cost.
A stability analysis-based algorithm for determining the arrival cost without any linearization or

approximation is given in Rao, Rawlings, and Mayne (2003, p. 252), which establishes an accom-
panying MHE problem (Rao et al., 2003, p. 252):

Θ0∗
k̄ = min

X0
ks,k̄

+

k̄−1∑
k=ks

‖wk‖2Q−1
g

+

k̄∑
k=ks+1

‖vk‖2R−1
g

s.t. (22b), (22c), (22d)

where X0
ks,k̄

:= Xks,k̄ and the optimal of X0
k̄

is given by

X0∗
1,k̄ =:

[
x̂0>

1|k̄ v̂0>
1|k̄ ŵ0>

1|k̄ · · · ŵ0>
k̄−1|k̄ x̂0>

k̄
v̂0>
k̄

]>
.

The weight Pks in the arrival cost is defined by Pks := γksPg, where γks ∈ [0, 1] and is determined
by finding the maximum possible γks that satisfies the following stability condition:

γ−1
ks
‖εks‖2P−1

g
+ Θ∗k̄−Nl

≤
m∑
k=0

Θ0∗
ks−kNl

+ ‖ε1‖2P−1
g
,

where m is the quotient of ks divided by Nl.
Note that, for the MHE algorithm stated above, if Assumption 6 holds, X1 is a compact set and

the disturbances wk and vk are all bounded, then the state estimation errors ‖xk − x̂k‖Mk=1 are
guaranteed to be bounded for all k greater than the horizon length Nl (Rao et al., 2003, Prop.
3.8). Therefore, given all necessary information, the FIE will provide a stable and more accurate
state estimate compared to using an EKF. Algorithm 1 shows the procedure of estimating noise
covariances using the ALS combined with the MHE.

8. Numerical Examples

We present one LTV and one nonlinear example to investigate the performance of our new ALS
method. The first LTV example contains 50 states, which is used to examine the performance of
our ALS formulation for a large scale system; the nonlinear example analyses the difference in
performance between MHE and EKF. All results in this paper are based on the MOSEK 7.0 SDP
solver.

14
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Table 1. Noise Covariance Estimation Results using Different Me

Me 100 200 300 400 500
p̄Q (%) 44.12 28.07 21.75 19.63 18.16
p̄R (%) 72.52 28.91 52.54 57.84 59.94
T (s) 7.51 8.97 11.23 13.84 18.21

8.1 Linear Time-Varying System

As a renewable and sustainable energy resource, ocean wave energy farms use the Wave Energy
Converters (WECs) to extract energy from oscillations of the ocean waves, thus the optimal control
of WECs must require knowledge of future wave elevation. An auto-regressive (AR) based model
is often used to predict ocean wave heights (Fusco, 2009). Let us consider the evolution of an AR
parameter vector (the state) that follows a random walk and the output matrix Ck varies with
time (Fusco, 2009):

xk+1 := Axk + wk,

yk := Ckxk + vk,
(23)

where A = I50, wk and vk satisfy Assumption 1 and the time-varying output matrix Ck ∈ <1×50

consists of historical ocean wave measurements1 (ηk)
3022
k=1 , for which

Ck :=
[
ηk+50 ηk+49 · · · ηk

]
.

We randomly pick an initial states x1 ∼ N (0, 0.2 × I50), then generate output measurements
(yk)

3022
k=1 based on noise covariances Q = 1 × 10−6 × I50 and R = 1 × 10−6. By guessing an initial

state error covariance P1 = 1000 × I50 and the guessed initial state x1 ∼ N (0, 2 × I50), the sub-
optimal filter gains (Lsk)

3022
k=1 and the state error covariance (Pk)

3022
k=1 can be obtained from (6) with

the guessed noise covariance matrices Qg = 0.001× I50 and Rg = 0.001.
We re-generate output measurements using different initial state and noise sequences and repeat

the simulation 200 times with N = 20 and Me = 500. Figure 3 is a scatter plot of 200 estimates of
the noise covariances ‖Q∗‖F and R∗, as well as the average of all 200 estimates. Table 1 shows the
mean error percentage of 200 estimations of Q and R such that

p̄Q := ēQ
‖Q‖

F

, p̄R := ēR
‖R‖

F

,

where

ēQ :=
∥∥∥Q− 1

200

∑200
i=1Q

∗
i

∥∥∥
F
, ēR :=

∥∥∥R− 1
200

∑200
i=1R

∗
i

∥∥∥
F

and the average time taken T for determining the noise covariances with different choices of Me.
Note that, as Me increases, the dimensions of matrix A are increasing, hence the times taken for
determining the noise covariances are getting larger. The best estimate of Q∗ and R∗ is gained
at Me = 200.

1Recorded at Galway at 5:20 on the 10th of February 2005 with sampling frequency 2.56Hz.
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Figure 3. Estimation of Noise Covariances Q∗ and R∗

8.2 Nonlinear System

Let us now consider tracking a sinusoidal wave whose amplitude, phase and frequency follow a
random walk: ak+1

bk+1

ck+1


︸ ︷︷ ︸
xk+1

:=

 +ak cos(ckTs) + bk sin(ckTs)
−ak sin(ckTs) + bk cos(ckTs)
+ck︸ ︷︷ ︸

f(xk)

+

wakwbk
wck


︸ ︷︷ ︸
wk

yk :=
[
1 0 0

]
xk︸ ︷︷ ︸

h(xk)

+vk

where Ts = 0.1 s is the sampling time and wk and vk satisfy Assumption 1. The time-varying
frequency ck is now part of the unknown state xk, which transfers our first LTV example into a
nonlinear example. We now randomly pick an initial state from a uniform distribution, such that

x1 :=
[
x1

1 ∼ U(2, 4) x2
1 ∼ U(−4,−2) x3

1 ∼ U(0.3, 0.7)
]>
,

then generate output measurements (yk)
1000
k=1 based on noise covariance matrices

Q =

3 0 1
0 3 0
1 0 2

× 10−4, R = 1× 10−4.
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Figure 4. Estimation of noise covariances Q∗ using algorithm 1

Table 2. Noise covariance estimation results using different Me

Me 200 400 600 800 1000
p̄Q (%) 282.8 57.28 36.68 30.80 26.93
p̄R (%) 11.32 7.51 4.91 2.70 3.99
T (s) 0.487 4.747 26.04 81.65 115.9

Table 3. Noise Covariance Estimation Error Analysis

p̄Q(%) p̄R(%) T (s)
ALS-MHE (Section 7.2) 26.93 3.99 185.9
ALS-EKF (Section 7.1) 389× 105 172.9 6.411

The guessed initial state error covariance is P1|0 = Pg = 0.1 × I3 and the guessed initial state

is x̂1|0 =
[
15 − 15 15

]>
, the guessed noise covariance matrices are set to Qg = I3 and Rg = 1.

Similar to the LTV example in Section 8.1, we repeat the simulation 200 times using both the
MHE and EKF methods mentioned in Sections 7.1 and 7.2 with N = 150, Me = 1000 and horizon
length Hl = 300 for MHE.

Figures 4 to 6 are scatter plots of 200 estimates of the noise covariances Q∗ and R∗, as well
as the average of all 200 estimates, using ALS based Algorithm 1. Table 2 presents the mean
error percentage p̄Q, p̄R using different Me and the average time taken T for determining the
noise covariances. Table 2 clearly shows that as Me goes to M , the error percentage p̄Q and the
variance of eQ are getting smaller, but the time taken T dramatically increases. Table 3 compares
the performance between the ALS-MHE and ALS-EKF method introduced in Section 7.
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Figure 5. Estimation of noise covariances Q∗ and R∗ using algorithm 1
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9. Conclusions

We have developed a noise covariance estimation algorithm for large scale time-varying and non-
linear systems based on a constrained (positive-definite) auto-covariance least-squares method. We
used one LTV and one nonlinear example to investigate the performance of the algorithm. All
numerical examples indicated that better noise covariance estimates rely on appropriate choices
of algorithm parameters, such as Me and N . The value of N can be determined by checking the
autocorrelation plot; however, how to choose Me still remains an open question. Compared with Ra-
jamani and Rawlings (2007), our method added a useful decision variable P1 in the optimization
problem, so that our algorithm does not involve any approximations in LTV system; our new ALS
algorithm has fewer parameters to determine and can provide more accurate noise covariance es-
timation even when the historical output measurement window is not sufficiently long for (15) to
be satisfied. By rearranging the original ALS formulation, Figures 1 and 2 have shown that the
new ALS algorithm is 60 times faster than the original ALS formulation (10a), using only 0.001%
of the original memory. We also proposed to combine the auto-covariance least squares method
with moving horizon estimation for noise covariance identification in nonlinear systems. The over-
all computation time of constructing and solving the optimization problem can be significantly
reduced by using parallel implementations and efficient SDP solvers.

For future work, it should be possible to develop an iterative ALS method (similar to the expec-
tation maximization algorithm), so noise covariances can be recursively identified and hopefully
the results can become more accurate after several iterations. The efficiency of nonlinear noise
covariance estimation can be improved by speeding up the MHE based state estimation. A pos-
sible approach is given in Rawlings and Mayne (2009, p. 350), which combines the MHE with a
particle filter (Moral, 1996). The MHE has good estimation accuracy but is quite slow, whereas
the particle filter can provide fast estimation but poor robustness for unmodeled disturbances and
poor accuracy for higher-order systems. One of the possible ways to combine advantages of both
MHE and particle filtering is given in Rawlings and Mayne (2009, p. 350), which uses particle filter
to perform fast online state estimation while a computationally expensive MHE is underway. As
soon as the MHE has finished optimization, particle filter samples will be located/relocated based
on the MHE results, so that particle filter estimates can be recovered from any divergence.

Appendix A. Proof of Theorem 2

Assumption 5 ensures that GkQG
>
k � 0 in (6a), so that, by the definition of positive definite

matrices, if Pk−1 � 0, then Pk|k−1 � 0.

Pk+1 = (In − Lk+1Ck+1)Pk+1|k (In − Lk+1Ck+1)> + Lk+1Hk+1RH
>
k+1Lk+1

>,

ensures that if Pk|k−1 � 0, then Pk � 0. Hence, by Assumption 5 and Bernstein (2009, Corollary
8.3.6)

Āk := Ak (I − LskCk) = AkPkP
−1
k|k−1,

is a full rank square matrix ∀k.
Assumptions 5 and Bernstein (2009, Fact 2.10.3) ensure that the suboptimal Kalman filter

gain Lsk ∈ <n×p in (6c) is full rank ∀k. According to the definition of the permutation matrix, I
has full column rank.
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From the definition of M r,c
l , the following matrices are all full rank:

P̃i ∈ <p(N−1)×pMe , ∀i; S̃i ∈ <pN×pMe , ∀i; Õi ∈ <qMe×p, ∀i;
Ũi ∈ <qMe×p(i+1), ∀i; J̃i ∈ <rMe×r(i+1), ∀i; P̃ ∈ <p(N−1)×pMeNz ;

S̃ ∈ <pN×pMeNz ; S̃d ∈ <pNz×pMeNz .

rank(Āk) = n ensures rank(Ẽ) = n. Assumption 5 and Bernstein (2009, Fact 2.11.13) will ensure
the following matrices are full rank:

C̃ ∈ <pMe×nMe , Ψ̄ ∈ <pNz×qNz , Ã ∈ <nMe×nMe(⊕Me+1
k=2 Gk

)
∈ <nMe×rMe ,

(⊕Me+1
k=2 AkL

s
kHk

)
∈ <nMe×qMe .

Hence, by using Bernstein (2009, Fact 2.10.3) and Bernstein (2009, Fact 7.4.23), we have the
following full rank matrices:

Ṽ ∈ <pMe×nMe , B̃ ∈ <pMe×rMe , J̃ ∈ <pMeNz×rNd ,

F̃ ∈ <pMeNz×nNz , D̃ ∈ <pMe×qMe , Ũ ∈ <pMeNz×qNd .

Therefore, by using Bernstein (2009, Fact 2.10.3) again, the following matrices are full rank:

Γ ∈ <pN×nNz , Γ̄ ∈ <pNz×nNz , Ω ∈ <pN×rNd , Õ ∈ <pMeNz×qNz

Ω̄ ∈ <pNz×rNd , Φ ∈ <pN×qNd , Φ̄ ∈ <pNz×qNd , Ψ ∈ <pN×qNz .

Finally, according to Bernstein (2009, Fact 2.10.3) and Bernstein (2009, Fact 7.4.23) we have

Ã1 ∈ <p
2NNz×n2

, Ã2 ∈ <p
2NNz×r2

, Ã4 ∈ <p
2NNz×q2

, Ã5 ∈ <p
2NNz×q2

,

rank(Ã1) = n2, rank(Ã2) = r2, rank(Ã4) = q2, rank(Ã5) = q2.

Assumption 4 and Bernstein (2009, Fact 2.11.11) will ensure that

Ã3 := (Ã4 + Ã5) ∈ <p2NNz×q2

, rank(Ã3) = q2.

Assumption 4 and Bernstein (2009, Fact 2.11.9) will ensure the rank of Ã equals to n2 + r2 + q2,
which is a full rank matrix.
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