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Abstract—In the future, robots will support humans in their
every day activities. One particular challenge that robots will
face is understanding and reasoning about the actions of other
agents in order to cooperate effectively with humans. We propose
to tackle this using a developmental framework, where the robot
incrementally acquires knowledge, and in particular 1) self-learns
a mapping between motor commands and sensory consequences,
2) rapidly acquires primitives and complex actions by verbal
descriptions and instructions from a human partner, 3) discovers
correspondences between the robots body and other articulated
objects and agents, and 4) employs these correspondences to
transfer the knowledge acquired from the robots point of view
to the viewpoint of the other agent. We show that our approach
requires very little a-priori knowledge to achieve imitation learn-
ing, to find correspondent body parts of humans, and allows
taking the perspective of another agent. This represents a step
towards the emergence of a mirror neuron like system based on
self-learned representations.

I. INTRODUCTION

Daily-life home environments are typical examples where
robots are expected to provide a tremendous amount of support
in our day-to-day duties. However, in spite of the recent
advances in robotics [1, 2], the currently closest form of such
an assistant is only capable to achieve a limited number of
pre-programmed tasks, such as dusting the floor, or preparing
meals. Before seeing robots able to assist humans in their daily
chores, many scientific challenges need to be addressed. For
example, robots need to be able to learn how to deal with new
situations on their own (e.g. performing new tasks or using new
objects) [3] without requiring the intervention of an engineer,
as every tool and every house is different. Moreover, they need
to understand the point of views and the different abilities
of other people for better interaction and collaboration. Such
perspective taking abilities, for instance, reduce the ambiguity
in the interactions [4] and allow robots to adjust their actions
according to the abilities of its users [5].

In this paper, we present a robotics architecture for anchoring
representations that are autonomously learned by the robot into
the perspective of other agents (see Fig. 1). This architecture
is composed of five components:

1) Multimodal Sensorimotor Representation component [6],
2) Symbolic Representation component [7],
3) Kinematic Structure Correspondence component [8],
4) Perspective Taking component [9], and
5) Autobiographical Memory component [10].
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Fig. 1. Overview of the proposed architecture. The robot learns multi-modal
sensorimotor representations, and employs this knowledge to anchor self-
knowledge to that of other agents on the linguistic and sensorimotor levels. This
can then be used by the perspective taking component to reason about the other
agents’ perspective. The common interface is provided by an autobiographical
memory (ABM).

The first four components are tied together with a long-
term Autobiographical Memory [10], which is used as a
common interface to exchange a) streaming data originating
from the robots’ sensors, b) their internal representations, and c)
augmented versions of the data. In other words, it is designed to
store annotated multi-modal data, and allows the augmentation
of these data when new knowledge concepts emerge from
reasoning modules.

The Multimodal Sensorimotor Representation compo-
nent [6] allows the robot to self-learn sensorimotor represen-
tations from visual, proprioceptive and tactile stimuli. This
knowledge can be employed by two other components which
anchor the learned self-representations to the representations of
others. The Symbolic Representation component [7] performs
anchoring on the linguistic level (e.g. joint number to body part
name); whereas the Kinematic Structure Correspondences
component [8] anchors the representations on the sensorimotor
level (e.g. body part correspondences between two agents).

The combination of these components allows our robot to
not only rapidly perform imitation learning , but also to reason
about the observed actions based on representations acquired
from self-exploration. This follows the developmental principle
shown by Baraglia et al. [11], where action production alters
action perception. Moreover, using the Perspective Taking
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component [9], we are able to use spatial reasoning algorithms
which were learned from the robot’s perspective, to also reason
from the human’s perspective.

By taking advantage of the synergies between its different
components, our architecture is a step towards an implementa-
tion of the “others like me” paradigm [12, 13]. This paradigm
is based on self-exploration and self-others mapping. It allows
the robot to expand its understanding of the actions performed
by others, and their underlying intentions. The paradigm is
of particular interest for developmental robotics, due to the
potential reuse of learned models in bootstrapping the learning
of further knowledge from other agents.

The remainder of the paper is organised as follows. We
first briefly review some related works in Section II, and
then introduce each of the individual components and their
contributions to the overall architecture in Section III. In
Section IV, we discuss the advantages and limitations of
our architecture. We propose experiments to evaluate our
architecture in Section V along with a conclusion.

II. RELATED WORK

To the best of our knowledge, our proposed architecture is
the first architecture that is able to simultaneously discover sen-
sorimotor contingencies, to extract higher level representation,
to detect kinematic correspondences with other agents, and to
project these self-learned representations into the point of view
of these agents. However, several works can be compared to
sub-parts or functionalities of our architecture.

For instance, Tani et al. [14] created a connectionist model
that allows robots to both generate and recognise behaviour
patterns based on recurrent neural networks. It has been used for
imitative interactions, action learning, and linguistic behaviour
bindings. While these applications represent important abilities
for a robot, this work is targeted towards self-learning and
generalisation, and thus does not provide insight into the
behaviour or capabilities of others.

Conversely, several works consider the generation of a mirror
neuron system [15] used to distinguish and recognise actions
performed by others from those executed by the robot itself.
Among those, Nagai et al. [16] investigated the emergence
of such a mirror neuron system from an immature visual
system. However, several open questions remain: firstly, the
integration of other sensory modalities (e.g. tactile and auditory
perceptions), and secondly the scalability of the system toward
more complex actions and representations. Similarly, Rebrova
et al. [17] proposed a mirror system for a simulated iCub
robotics platform that links the observed actions with the
respective motor commands. Such a mapping facilitates the
perspective taking mechanisms when observing an agent. In
a first phase, the robot learns to associate its own actions
with an egocentric observation, and in a second phase, it uses
bidirectional associations to estimate the observation of the self-
movement from another perspective. However, the perspective
taking does not take the specific view of a human into account,
but rather consists of a geometric change in the frame using

the full knowledge of a simulated world, making its application
in real world conditions challenging.

An overview of experimental data which supports the
mechanisms of a mirror-neuron system can be found in the work
of Demiris et al. [18]. The authors also highlight that there
are only very few neural models of the mirror system, whereas
most models which are implemented on a robot are based on
internal action models (and so is our model). Interestingly, they
have shown that decomposing models of the mirror system
into brain operating principles can be used to compare these
models, and link them to neuroimaging data in order to find
common predictions among other things.

The architecture presented in this paper attempts to overcome
these different challenges by combining the abilities of its
different modules. This results in a physical robotic platform
with a large set of abilities ranging from low-level sensorimotor
contingencies learning to high-level perspective taking.

III. MATERIAL AND METHODS

In this section we introduce the different components of
the architecture. In order to provide a general overview of the
architecture, we limit the description of technical details in
this paper. More information can be found in the publications
associated with each component.

A. Long-term Autobiographical Memory

In a real-life condition, the training-data acquired and
used by the robot presents specific particularities. First, the
data represents a multi-modal stream, in our case containing
proprioception, visual and tactile information. Second, the data
is scattered in time, as the robot has to infer relationships
between events that happened at different moments. For
example, the robot may need to associate actions performed
previously with labels provided by the user at any moment.
To fulfil these requirements, the framework is based on the
implementation of a long term autobiographical memory that
is able to store raw data along with augmented memories from
different reasoning modules [10].

For instance, the sensorimotor contingency exploration
creates memories that are later augmented by the kinematic
structure estimator. Then, the estimated kinematic structures
of self and others, which are anchored in the autobiographical
memory, can be compared and correspondences found. As
the robot can also acquire self-knowledge in a symbolic form
(e.g. naming of its body parts), this self-knowledge can later
be transferred to other agents using the previously found
correspondences.

B. Multimodal Sensorimotor Representations for Imitation
Learning

Humans perceive and interact with their environment using
a large variety of senses, even when they accomplish simple
tasks, like drawing a circle. For example, when finger-painting,
they engage proprioception to perform smooth movements,
vision to check and adjust their motion, and touch to know
when their fingers are in contact with the surface. However, in
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Fig. 2. (Left) iCub faces a surface and performs movements in order to touch
it, with the palm touch sensor being activated during touch events (centre top)
and the view from the robot’s left eye camera (centre bottom). (Right) iCub
learns to imitate a circular trajectory demonstrated by a human.

spite of the wide sensing abilities of modern robots, which are
provided with a variety of different sensors, the vast majority of
approaches using imitation learning relies only on data coming
from a single modality (i.e. vision) [19, 20].

The architecture presented in this paper relies on a new com-
ponent that learns the multimodal sensorimotor contingencies
that the robot encounters from visual, proprioceptive and tactile
stimuli [6]. This component builds data matrices from the multi-
modal perceptions in order to encode the contingencies. Thanks
to these matrices, a variation in the proprioception is associated
to variations in the other “senses” of the robot. Based on this
representation, the robot can determine the motor commands
that are likely to produce the desired changes in its perception
in order to achieve multi-modal imitation tasks.

The construction of these matrices of data is achieved through
a motor babbling sequence in which the robot performs random
motion and observes the consequences of its movements.
The main advantage of this approach is that it does not
require explicit model formulation or the inversion of complex
kinematic problems. Conversely, it only relies on observed
data, which makes the application of this method possible on
a large variety of systems.

This approach has been evaluated in two situations where a
humanoid iCub robot 1) has to learn how to draw a circle on
a board, and 2) learns how to press two keys on a piano. In
these two tasks, the robot aims to reproduce a visual trajectory
demonstrated by the user, while fulfilling requirements on the
other sensory spaces, e.g. touching a surface or the keyboard
(see Fig. 2). Successful imitation behaviours have been obtained
even with a limited number of samples (respectively 70 and 135
samples were recorded during the motor babbling sequences).

These experimental results demonstrate that this approach
allows robots to achieve multi-modal imitation tasks with no a-
priori knowledge about themselves or about the task. Moreover,
this approach puts almost no constraint on the type of sensory
information used, making it particularly scalable in terms of
modalities that can be combined. For example, the experiments
presented previously will be extended by incorporating audio
perceptions.

C. Symbolic Knowledge Acquisition from Human-Robot Inter-
actions

In this section, we focus on the anchoring of self-
representations at the linguistic level, in order to create concepts

about body parts or actions. The human partner acts as a tutor,
who provides a common ground for future communication.
Specifically, we made progress toward sequence learning
of body movements when the robot cannot rely on prior
knowledge of body parts or motor skills. Rather, the robot
engages in a social interaction with a nearby human to
acquire this information, in line with the works of Heinrich
et al. for object learning [21] and Petit et al. for shared plan
learning [22].

The framework [7] is composed of three hierarchically
organised components to 1) learn body part names from human
labelling after a robot motor babbling activity, 2) discover proto-
actions (i.e. a single position command of a single joint) with
on-the-fly descriptions by the human of these motor babbling
activities, and 3) learning by instructions with the human as
a teacher to scaffold the newly acquired skills into motor
primitives or more complex actions.

The framework relies on the direct grounding and transfer
grounding mechanisms defined by Cangelosi and Riga [23],
which are used to ground language into autonomous cognitive
systems. Direct grounding is the capacity to link internal
and perceptual representations to symbols with a supervised
feedback, and is used to learn body part names or proto-
actions concepts. Transfer grounding creates new symbols by
combining already known symbols, and is used to acquire
new motor primitives or complex actions using learning by
instructions.

An important aspect of our framework is that the learning by
instruction does not require a-priori knowledge about available
actions because the proto-actions are learned from interactions
with the human.

Another advantage of the framework is that only a small
amount of data is required to learn new concepts. For instance,
we used only 3 motor babbling sequences of 18 seconds each
(with a velocity change every 3 seconds) to create the fold and
unfold proto-actions with the thumb, index, and ring fingers.
The use of a linear model to estimate the desired angle that a
joint should have in order to produce a specific proto-action is
providing 1) the effect of the proto-action per se, and 2) the
potential correction for the body part used. A generalisation of
the proto-action is thus feasible. For example, to generate proto-
actions of body parts that have never been used, the body part
correction effect is set to 0. This knowledge allows a human to
subsequently teach new primitive capabilities by scaffolding the
available proto-actions using a learning by instructions method.
Similarly, more complex actions can be taught using not only
the proto-actions but also the primitives, which reduces the
number of instructions needed.

D. Anchoring Kinematic Structure Representation to Others

We find correspondences within the sensorimotor level based
on the estimated kinematic structures of agents. A kinematic
structure represents articulated objects in a topological manner,
and describes how rigid body parts are connected by kinematic
joints. We tackled the problem of complex kinematic structure
estimation, demonstrating that combining motion information
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Fig. 3. Various kinematic structure correspondence matching results using
the proposed method. The iCub humanoid robot (bottom right) can find
correspondences to human partners, either sensed through the iCub eyes
(bottom left) or a RGB-D camera (top right). Also, correspondences to other
humanoid robots like the NAO robot (top left) can be found. Figure from [8].

(a) Correspondence iCub self-body to self

(b) Correspondence iCub self-body to others

Fig. 4. The proposed method can be used (a) for an iCub robot to find
correspondences between iCub’s partial arm structure captured using the
iCub’s RGB camera to its own other body part, and even (b) to full body
human structure captured using RGB-D camera.

and skeletal topology can be used reliably to estimate the
kinematic structure of the self (i.e. the robot after self-
observation) and that of bodies of other agents [24].

Based on this work, we developed a method that allows
a robot to anchor two objects’ kinematic structure joints by
observing object movements [8]. We formulated the problem
of finding kinematic joint matches between two articulated
kinematic structures via hypergraph matching. The method was
shown to be accurate under appearance and motion variations.

As shown in Fig. 3, our method is able to anchor similar
kinematic structure joints even between visually very different
appearances, and in the presence of strong motion variations.
Furthermore, we consider the kinematic structure as a mid-

level representation, so the proposed method can be applied
to any kind of input device as long as the kinematic structure
can be produced. For example, the kinematic structure of a
human extracted by a RGB-D camera can be matched to the
observation of the same human by the robot’s eye cameras,
and similarly the observation can also be matched to a self-
observation of e.g. the robots arms (see Fig. 4).

E. Perspective Taking and the Mirror Neuron System

The Perspective Taking component of our architecture takes
inspiration from the simulation theory of mind, which proposes
that humans use their own mental processes applied to the
perspectives of other agents to understand their internal states.
However, the actions resulting from these mental processes are
only simulated rather than executed [13]. Various works have
shown the importance of perspective taking abilities in the
context of human-robot interactions (see [9] for an overview).
For example, it was shown that, when using perspective taking,
a robot can learn from ambiguous demonstrations [4].

In the previous sections, we have demonstrated that our
robot can find correspondences to other agents in both, the
linguistic as well as the sensorimotor levels. Here, we present
how these correspondences can be used to understand others
through a table top scenario as shown in Fig. 5 and by using
our Perspective Taking component [9].

This component is based on three aspects to perceive
the environment. Firstly, as no prior knowledge about the
environment is assumed, we map the environment using random
exploration. Secondly, while interacting with the human, the
head pose of the human is continuously estimated. Thirdly,
objects in front of the robot are recognised and tracked in real
time.

Based on these three sources of information, it is possible to
perform mental rotations of the robot’s perception such that the
coordinates origin coincides with the head frame of the human
rather than the robot. This new, self-learned representation
allows the robot to reason from the user’s perspective without
any changes to the underlying algorithms. For example, our
experimental results have demonstrated that the spatial error is
sufficiently small when observing where humans are looking
so that it allows the robot to estimate whether an object is to
the left or to the right of the human and if this objective is
visible to the human.

Interestingly, it was suggested that not all perspective taking
tasks might rely on mental rotation [25]. Rather, simple tasks
such as finding whether another object is visible from the
others perspective (level 1 perspective taking) might be solved
using a line of sight tracing. Only more complex tasks such
as the earlier mentioned left/right judgements or imagining
how the world visually looks from another perspective (level
2 perspective taking) might rely on a mental rotation. Thus
our Perspective Taking component differentiates these two
pathways and implements both of them separately, as shown
in Fig. 6.
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Fig. 5. Typical set-up in a perspective taking scenario. The world perceived
by the human and that of the robot differ in various aspects. For example,
in this figure, one object is occluded to the human but visible by the robot.
Furthermore, the blue cup is to the left of the robot, but to the right of the
human. Figure best viewed in colour.
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Fig. 6. Overall flow of the Perspective Taking method, with images acquired
by RGB-D camera or iCub eyes as input. In the first step, the robot recognizes
objects, estimates the head pose of surrounding humans, and maps the
environment. Two separate processes are employed for level 1 and level
2 perspective taking. Figure from [9].

IV. DISCUSSION

In this paper, we presented a robotic architecture for
anchoring representations autonomously learned by the robot
into the perspective of other agents. The robot progressively
builds these high-level representations by discovering the
sensorimotor contingencies and by interacting with the users.

While the current architecture increases the interaction
abilities of the robot by augmenting its understanding of
the user’s actions, we forecast that the need of scalability

will be the next challenge that the architecture will have to
face. For example, the complexity of human-robot interactions,
particularly in home environments, requires the robot to rely
on its entire range of motion and reasoning capabilities. The
robot does not only need to identify the users’ abilities, but
also how they change over time or with the use of tools,
and to adapt accordingly to the humans’ behaviour. Each of
these points represent open scientific questions. However, the
hierarchical structure of the proposed architecture offers a
singular perspective to decompose these scientific questions
into smaller problems and to make progresses in this direction.

Our ambition with this architecture is to design and imple-
ment a developmental approach to generate a mirror neuron-like
system by bootstrapping the understanding of the actions of
others based on the learned model of the self. This development
is thought to take place by progressively augmenting each
layer of the architecture. For example, a progressive increase
in either the number of modalities or in the number of degrees
of freedoms used in the Multimodal Sensorimotor Contingency
component will result in an augmentation of the scope of
possibilities for the emergence of symbolic representations (e.g.
auditory sensations and dual-handed actions). The augmentation
of the motion abilities of the robot is also expected to have an
impact on the range of actions performed by other agents that
the robot can understand or reproduce, via the dual kinematic
structures correspondences. Finally, we also anticipate that
this enlarged set of skills will allow the robots to extend its
perspective taking abilities through a better understanding of
the complex actions and interactions carried out by other agents.
In other words, we will experiment with this architecture if
the scalability of the entire framework can be improved by
augmenting the scalability of each of its components.

V. CONCLUSION AND FUTURE WORK

Our framework is a step towards the emergence of a mirror
neuron like system. With this framework, the robot is currently
able to predict the consequences of movements performed by
other agents, based on the learned consequences of its own
movements, and assist humans effectively in cooperative tasks.
The key property of this system is that does not use any prior
knowledge about the body schema of the human. Therefore, the
robot is able to indifferently adapt to the physical limitations
of the users, which is of great importance for various robotics
applications, such as assistive robots for health-care.

We want to investigate applications of our architecture with
in-situ experiments. For example, we are going to demonstrate
the capabilities of our architecture in a home scenario, where a
robot is helping a human in daily life tasks such as cleaning a
table or assisting in cooking. Our robot will be able to rapidly
learn fulfilling new tasks, as they can be acquired through
a combination of learning by imitation and instructions. The
acquired representations can then be applied to a human in a
personalised manner (i.e. depending on the humans capabilities
and the current situation), which allows anticipating human
behaviour.
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Specifically, we consider the following scenario: at the
beginning, the robot does random exploration to acquire a
self-representation, e.g. its own kinematic structure and its
body part names. Then, a human teacher is instructing the
robot with an action sequence. The robot starts acquiring
knowledge about others while being taught. For example, the
robot extracts the kinematic structure of the human. In another
step, the knowledge about the human is augmented by finding
correspondences to its own body. Thus, without any further
guidance the robot knows the body part names of the human
based on its self-representation and the found correspondences.

The correspondences can also be used to refine the learnt
action sequences, and the perspective taking abilities can be
used to detect potential flaws during the action execution.
For example, the robot can inform the human about objects
which are hidden from the humans perspective. Similarly, the
robot will be able to predict potential problems in the task
execution for users with limited mobility; without explicitly
being informed about the limitation but rather by observing
the movements of the user.

In the longer term, we also want to explore the social aspects
of the mirror system. We are going to use the perspective taking
capabilities to estimate the intentions and goals of humans,
and are going to model the underlying desires that drive their
behaviours. This will allow the robot to improve its capacity
to coordinate with the human by not only detecting the current
action among a sequence that the human is executing, but also
by predicting the goal of such a plan. Then, the robot can
provide appropriate support in real-time, or it can follow a
contingency plan when upcoming problems are detected.
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