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Abstract

The influence of spanwise wall oscillation on transition in boundary layers exposed to free-stream turbulence is examined. Results

from direct numerical simulations show that for moderate amplitudes of the wall motion, transition to turbulence can be consider-

ably delayed. On the other hand, high-amplitude forcing leads to breakdown to turbulence upstream of the unforced reference flow

configuration. Flow visualizations and statistical results show that the stabilization of the flow at the optimal forcing parameters is

the result of a substantial weakening of the low-frequency boundary layer streaks. On the other hand, the early breakdown at high

forcing amplitudes is associated with the amplification of new high-frequency instabilities in the pre-transitional flow.
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1. Introduction

Exposure of a laminar boundary layer to moderate levels of free-stream disturbances leads to a rapid breakdown to

turbulence — a process known as bypass transition. Earlier studies have focused on explaining the underlying mech-

anism of bypass transition, and more recently on its control. The present study examines the influence of spanwise

harmonic wall motion on the transition process.

Classical stability theory attributes the earlier stages of transition to turbulence in boundary layers to the expo-

nential growth of infinitesimal disturbances, known as Tollmien-Schlichting (TS) waves, once a critical Reynolds

number is exceeded1. This natural transition process is bypassed in the presence of moderate levels of free-stream

disturbances, and a more rapid breakdown mechanism takes effect. Experimental studies established that the bypass

process becomes dominant for initial disturbance amplitudes in excess of approximately 1%2. Reviews of bypass

transition are provided for example by Durbin and Wu 3 and Zaki 4 .

Linear analyses5,6,7 showed that the mean shear acts as a low-pass filter which prevents the high-frequency com-

ponent of the free-stream spectrum from entering the boundary layer. Low-frequency disturbances are unaffected by

this filtering effect of the shear and retain their amplitude inside the boundary layer where they cause the formation
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of streaks8. The generation of these streamwise elongated perturbations can be explained in terms of the vertical

displacement of the mean momentum of the boundary layer, commonly referred to as “lift-up”9,10. The highly ener-

getic streaks promote the growth of high-frequency secondary instabilities11,12,13. In zero-pressure-gradient boundary

layers, breakdown to turbulence is predominantly initiated via so-called outer modes, which are situated on top of

low-speed streaks that are lifted to the boundary-layer edge. Inner instabilities are also possible12. Although less

aggressive in zero pressure gradient, inner instability can become dominant in adverse pressure gradients14,13. The

streak instabilities induce the local formation of turbulent spots, which eventually merge to form a contiguous region

of turbulent flow.

The significant increase in skin friction in the fully-turbulent flow regime motivates two approaches to drag re-

duction: the first attempts to alter the turbulent state and the second aims to avoid it altogether by stabilizing the

pre-transitional flow. A wealth of studies have pursued the first option, and established that spanwise wall oscillation

can substantially reduce skin friction in fully-turbulent flows. That body of research was motivated by investigations

of swept-wing boundary layers, which showed that the rapid change of the flow direction induced by the transverse

pressure gradient leads to a noticeable reduction of the local skin friction15. Building on these results, Driver and

Hebbar 16 and Spalart 17 demonstrated that turbulent streaks are absent in flows with continuously changing mean

direction. Jung et al. 18 conducted parameter studies of spanwise wall forcing in turbulent channel flow using DNS. A

reduction of the mean wall-shear-stress was observed for oscillation periods 25 < T+ < 200, where T+ = Tu2
τ/ν and

uτ is the friction velocity. Energetic considerations showed that when the power input into the wall motion is taken

into account, forcing with optimal parameters can yield net energetic savings of about 7%19.

In the present study, attention is focused on the transition regime. Direct numerical simulations are performed in

order to examine the influence of spanwise wall oscillation on bypass transition in boundary layers.

2. Simulation setup

The incompressible Navier-Stokes equations are solved using a fractional step approach20 and a finite-volume dis-

cretization21. The convective terms are advanced in time using an Adams-Bashforth scheme, and the diffusion terms

are treated implicitly with a Crank-Nicolson scheme. The Poisson equation for the pressure is solved by applying

Fourier and cosine transforms along the spanwise and streamwise directions, and direct inversion is employed in the

wall-normal coordinate.

Computational Domain

x0

U∞

W=W0cos 2π
T t~

xx~

Fig. 1. Schematic of the problem setup and the computational domain.

A graphical representation of the simulation setup is provided in Fig. 1. The computational domain starts at distance

x̃0 to the leading edge of the flat plate, at the origin of the coordinate x ≡ x̃ − x̃0. Spanwise wall oscillation is applied

over the full extent of the computational domain by imposing the wall boundary condition,

W (y = 0, t) = W0 cos

(
2π

T
t

)
. (1)

All length scales are normalized by the inlet 99% boundary-layer thickness, δ0, and velocities are normalized by the

free-stream value, U∞. The inlet Reynolds number based on δ0 is Reδ0 = 800. The length, width and height of the
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computational domain are 1200, 30 and 40, respectively, and the number of grid points in these dimensions are 4096,

192 and 192.

In order to account for the periodic flow component introduced by the wall forcing, a triple decomposition is

applied to the flow variables,

a =

〈a〉ϕ︷︸︸︷
ā + ãϕ + a′︸�︷︷�︸

a′′

, (2)

where ā denotes the spanwise and time-average, ãϕ is the periodic component and a′ is the stochastic fluctuation. The

quantity 〈a〉ϕ is the average at a particular phase, and comprises the time-averaged mean and the periodic component.

The total fluctuation a′′ is the sum of the periodic component and the stochastic fluctuation.

Bypass transition is induced by superimposing a moderate level of isotropic free-stream turbulence (TuFS = 3%)

onto the Blasius profile at the inlet of the computational domain. The perturbation field is synthesized in terms of a

weighted superposition of continuous Orr-Sommerfeld and Squire modes22. This approach faithfully reproduced the

experimental data of bypass transition of Roach and Brierley 23 , and was later adopted in a number of studies of transi-

tional flows24,25,14. The downstream evolution of the root-mean-square (rms) of the cartesian velocity components in

the free stream is presented in Fig. 2. An isotropic decay of the external perturbation field is observed, which follows

the power law TuFS ∼ x̃−0.69.
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Fig. 2. Free-stream decay of turbulence: (a) Rms of the velocity fluctuations u′ (dashed), v′ (dash-dotted), w′ (dash-dot-dotted) as a function of the

Reynolds number Rex̃.

3. Results

Direct simulations were performed for a wide range of wall-oscillation parameters. Here, the focus is placed on

the influence of the amplitude of the wall motion when the period of the forcing is kept constant at T = 200. The skin

friction coefficient,

C f =
μ∂U
∂y
|y=0

1
2
ρU2
∞

, (3)

is shown in Fig. 3a as a function of the Reynolds number. Forcing with W0 = 0.10 leads to a moderate delay of

the transition process. A more pronounced stabilization of the laminar regime is observed at W0 = 0.25. However,

when the forcing amplitude is increased to W0 = 0.40, transition to turbulence occurs significantly earlier than in the

unforced reference simulation.

In order to establish whether transition delay at moderate forcing amplitudes translates into a net energetic advan-

tage, the power input into the wall motion, Pforcing, has to be taken into account. The reduction in propulsion power
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Fig. 3. Skin friction coefficient and net energetic savings as a function of the Reynolds number. Reference case (solid), forcing with W0 = 0.10

(dash-dotted), forcing with W0 = 0.25 (dashed) and forcing with W0 = 0.40 (dotted).

compared to an unforced reference flow is ΔPprop ≡ Pprop,ref − Pprop,forced, and the net energetic savings are hence

defined as Pnet ≡ ΔPprop − Pforcing. Results for the net savings are presented in Fig. 3b. Forcing with amplitudes

W0 = 0.10 and 0.25 indeed translates into a net energetic advantage. In the optimal case, W0 = 0.25, the reduc-

tion in propulsion power exceeds the input into the wall motion by a factor of more than four. The net savings thus

significantly exceed the energetic advantage reported in the literature on fully-turbulent flows19,26.

3.1. Transition delay

A key feature of the influence of wall forcing on the transitional boundary layer is captured in the visualizations in

Fig. 4. The first frame shows a top view of the reference case in the absence of any wall motion. Isosurfaces of the

streamwise velocity fluctuation indicate highly energetic boundary layer streaks, some of which show the streamwise

undulation characteristic of the amplification of high-frequency secondary instabilities. A turbulent spot is observed

around x = 240, and the flow is fully turbulent downstream of x ≈ 400. The second frame depicts the case with wall

oscillation, W0 = 0.25. Compared to the reference case, streak amplitudes are markedly reduced, and there are no

visible indications of secondary instabilities. The flow remains laminar over the entire extent of the depicted region.

Studies of time series show that this stabilization of the boundary layer streaks is a persistent phenomenon that is not

limited to particular phases of the wall oscillation.

The weakening of streaks which is observed in the instantaneous realization (Fig. 4) can be quantified using statis-

tics of the streamwise velocity fluctuations. Fig. 5 provides the maximum level of the rms of u′ inside the bound-

ary layer as a function of the Reynolds number. In the reference case (solid line), the streaks begin to saturate at

Rex̃ ≈ 2× 105, and a maximum intensity of approximately 17% is reached at Rex̃ ≈ 3.3× 105. This location correlates

with the local maximum of the skin friction curve (Fig. 3a), which is commonly associated with the completion of
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Fig. 4. Top views with isosurfaces of high-speed (white, u′ = 0.085) and low-speed (black, u′ = −0.085) streaks. Unforced reference case and wall

oscillation with T = 200, W0 = 0.25.
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Fig. 5. Maximum rms of the streamwise velocity fluctuation over all wall distances as a function of the Reynolds number. Reference simulation

(solid) and forcing with W0 = 0.25 (dashed).

transition to turbulence. In the presence of the wall oscillation, the growth of streaks is noticeably weakened, and the

streamwise fluctuations initially plateau at 6%. The peak value of 17% matches the references case, although it is

reached significantly farther downstream.

3.2. Promoting transition

At high wall-oscillation amplitude, W0 = 0.40, transition takes place early upstream. A time series of top views of

the flow field for this case is provided in Fig. 6. It is initiated by short-scale instability, significantly shorter than the

streaks in the unforced reference simulation, cf. Fig. 4. The frames capture the evolution of the instability and show

the formation of a turbulent spot. While the intensity of the perturbations in the laminar portion of the boundary layer

clearly increases between ϕ = 0.125 and ϕ = 0.250, it has decayed again at ϕ = 0.500. This observation indicates a

strong phase dependence of the underlying instability amplification mechanism.

Spectral analysis confirms the qualitative change of the fluctuation field in the pre-transitional boundary layer in

response to the high-amplitude forcing. The Fourier coefficients of the wall-normal fluctuations were evaluated in the
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Fig. 6. Top views with isosurfaces of positive (white, u′ = 0.085) and negative (black, u′ = −0.085) velocity perturbations as well as the Q criterion

(green/gray) for identifying vortical structures at four different phases. High-amplitude wall forcing with T = 200, W0 = 0.40.

region 75 < x < 130,

v̂ (α, β) =
1

N

N∑
n=1

∫ ∞

−∞

∫ ∞

−∞

v′ exp (−2πi (αx + βz)) dx dz, (4)

where N = 4, 000 is the number of samples. A Hann window is used for the streamwise dimension. The magnitudes

of the Fourier coefficients are presented in Fig. 7a for the unforced reference case as a function of the streamwise

and spanwise wave numbers. In the absence of the wall forcing, the maximum intensity is recorded at α ≈ 0.1,

β ≈ 2.5, which reflects the very low frequency of the fluctuation field inside the boundary layer. The presence of

the high-amplitude wall oscillation fundamentally changes the spectral composition of the perturbations inside the

boundary layer (see Fig. 7b). The fluctuation field becomes dominated by short-scale disturbances with streamwise

wave numbers in excess of 0.5, consistent with the prevalence of high-frequency perturbations in Fig. 6.

The early breakdown at high forcing amplitudes proceeds without the mediation of Klebanoff streaks, and is there-

fore entirely different from conventional bypass transition. A potential cause of the observed behavior is the occur-

rence of a powerful modal growth mechanism in the three-dimensional boundary layer that becomes active beyond a

certain amplitude of the wall oscillation, akin to cross-flow instability.
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Fig. 7. Contours of the magnitude of the Fourier coefficients of the wall-normal fluctuation component, |v̂|, as a function of the streamwise and

spanwise wavenumber fluctuation wavenumber. (a) Reference case. (b) Wall oscillation with W0 = 0.40.

4. Conclusions

The effect of spanwise wall oscillation on bypass transition in boundary layers beneath free-stream turbulence was

investigated by means of direct numerical simulations. At constant frequency of the wall motion, changes in the

oscillation amplitude can dramatically influence the transition mechanism and the location of breakdown to turbu-

lence. Wall oscillation with moderate amplitudes considerably weakens the boundary layer streaks and, as a result,

the subsequent stages of the bypass process. The outcome is a significant downstream shift of transition to turbulence.

Energetic considerations showed that the associated reduction of viscous friction drag clearly exceeds the power input

into the wall motion, and a considerable net energetic advantage is achieved.

Forcing with high amplitudes initiated an early breakdown upstream of the unforced reference simulation. Spectral

analyses confirmed empirical observations from instantaneous flow fields: A new transition mechanism becomes

active. The high-amplitude forcing promotes the growth of short-scale disturbances that induce early breakdown to

turbulence. The amplification of these perturbations is related to the phase of the base state. The potential connection

to a modal growth mechanism will be examined in future work.
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