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Abstract

We consider strongly correlated regimes which emerge at low temperature in coupled

quantum dot (or magnetic impurity) systems. In strongly correlated systems a single

particle description fails to explain the observed behaviour, so we resort to many-

body methods. We describe our system using a 2-impurity Anderson model and de-

velop a numerical renormalisation group procedure which provides non-perturbative

insight into the low energy behaviour, through calculation of dynamic quantities.

We combine this approach with renormalised perturbation theory, thus acquiring a

picture of how the Hamiltonian and interactions change at low energies.

These approaches are first used to study the emergence of a Kondo effect with an

SU(4) symmetry in capacitively-coupled double quantum dot systems. We classify

the ‘types’ of SU(4) symmetry which can emerge and show how an experimentalist

might achieve such emergence through tuning their system. We provide a way of

distinguishing between the SU(2) and SU(4) Kondo regimes by considering the con-

ductance.

We also study a quantum critical point which occurs in the Heisenberg coupled

quantum dot/impurity model. There is an anomalous entropy contributed by the

impurities in this regime which is indicative of an uncoupled Majorana Fermion.

We calculate dynamic quantities in regimes with different symmetries and establish

correspondence with the 2-channel Kondo model. We formulate possible pictures of

the underlying mechanisms of the critical point and construct a Majorana fermion

model for the case with particle-hole symmetry, which explains the non-Fermi liquid

energy levels and degeneracies obtained. We conjecture that a Majorana zero mode

is present, and that this is responsible for the anomalous entropy.
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Introduction and Brief History

Quantum impurity physics has been at the forefront of condensed matter physics

since its inception. Originally restricted to describe static local spins, quantum

impurity models have been adapted to include a variety of interactions, such as

hybridisation with a conduction bath, Coulombic interactions and Heisenberg ex-

change, with many artificially included symmetries. In essence, all of these models

simply embody the interaction of a small number of degrees of freedom with a con-

tinuum and as a result of the small number of coupling constants, many of these sys-

tems may be studied experimentally. The freedom we have over the interactions and

symmetries in quantum impurity models signifies that they may be applied to many

different physical scenarios. These include heavy Fermion systems [1, 2], quantum

dots [3], carbon nanotubes [4] and systems with free half-degrees of freedom (Ma-

jorana bound states) [5]. Majorana bound states are 2-dimensional particles with

non-Abelian statistics (known as non-Abelian anyons), which are a prime candidate

for the realisation of topological quantum computers [6]. Almost all of these systems

can be represented by the Anderson model, which is used extensively throughout

our work.

The field of quantum impurities illustrates the importance of strong electronic in-

teractions in describing some observed quantum phenomena. An important such

phenomenon is the resistivity minima with respect to temperature T occurring in

metals with magnetic impurities [7, 8, 9, 10, 11, 12]. This puzzled theorists and

experimentalists for decades, and led to the proposal of one of the earliest quantum

impurity models, the s-d model [13, 14]. This model accounts for magnetic inter-

actions between a spinful (usually S = 1/2) impurity and a bath of non-interacting

electrons, and has the Hamiltonian

Hsd =
∑
k

εkc
†
kσckσ + 2JS(0) · S
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where the operators c†kσ create non-interacting Dirac electrons of wavevector k, spin

σ and energy εk. We implicitly sum over the SU(2) index σ. The operator S de-

scribes the total static spin, which is chosen to exist at the origin such that S(0)

denotes the total local spin of the non-interacting bath at the same position as the

fixed static spin, which shall henceforth be referred to as the impurity or dot. The

Heisenberg coupling J sets the strength of the magnetic interaction between the

impurity and the conduction bath. This model correctly encapsulates the relevant

physics to describe the resistivity minima, but how to make the effect manifest posed

a problem.

A number of approaches were developed with this aim in mind. Originally, Kondo

[15] took the magnetic interaction between the impurity and the bath as a pertur-

bation. The bath, of non-interacting electrons, is quadratic and hence solvable. By

application of perturbation theory (to third order) Kondo showed that the resistivity

due to spin scattering ρspin exhibits a logarithmic divergence, ρspin ∼ J ln(T ) such

that the total resistivity is given by

ρ(T ) = a0 + a1T
2 + a2T

5 + a3J ln(T )

where the ai are constants satisfying a1, a2 > 0 and a3 < 0. The T 2 term repre-

sents the contribution from the Fermi liquid properties of the non-interacting elec-

tron bath, whilst the T 5 term accounts for the contribution to the resistivity from

phonons. We thus see that the s-d model provides a solution to the Kondo effect,

since ρ(T ) has a minimum provided J > 0 (antiferromagnetic coupling). However,

the problem with Kondo’s perturbative approach was that the experimental results

did not suggest a divergence as T → 0. Further studies [16] of this model concluded

that below the Kondo temperature TK, the perturbative approach was unreliable.

A non-perturbative method, which did not assume the electrons could be modelled

as being free, hence had to be developed. The quest to understand the behaviour of

the system at temperatures below TK became known as the Kondo problem.

One milestone in solving the Kondo problem was Anderson’s Poor Man’s Scaling

approach [17]; this was a precursor to the application of Renormalisation Group

(RG) transformations in quantum impurity problems. Anderson’s idea was that if

one were to integrate out the high-energy states of the system lying above some

cut-off Γ, such that the Hamiltonian is valid for energies ε satisfying ε < Γ, then the
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Heisenberg coupling J acquires dependence on the energy scale associated with Γ.

In the language of the RG, J becomes a running coupling constant J(Γ) as the cut-

off Γ is brought arbitrarily close to the Fermi surface, εF. By using this approach,

Anderson showed that limΓ→εF J(Γ) = ∞. The impurity therefore forms a tightly

bound singlet with the surrounding electrons as T is decreased. Conversely, as the

temperature increases T →∞, J(Γ)→ 0, implying that the local magnetic moment

becomes free in this limit. This is exactly analogous to the behaviour of quarks

in QCD [18, 19], where at high energy scales the interaction between quarks and

gluons is much weaker than at lower energy scales, and illustrates that the magnetic

moments exhibit asymptotic freedom (T →∞) and confinement (T → 0) [20].

Anderson’s approach does not provide a full solution to the Kondo problem. He

perturbs the system by eliminating the high-energy states in the conduction band

and expands in powers of J . The result of his approach is a scaling equation. How-

ever, in the antiferromagnetic case, where J → ∞ as the energy scale decreases,

expressions obtained in terms of J become unreliable. That said, this approach

does provide important insight into the applicability of scaling arguments to the

Kondo problem. These were adopted by Wilson [21], who developed a numerical

non-perturbative RG method capable of reliably solving for the low-energy eigenval-

ues of the s-d Hamiltonian. This method, which has become known as Wilson’s Nu-

merical Renormalisation Group (NRG) is credited with solving the Kondo problem;

despite making a few approximations regarding the conduction band, it produced

results which were remarkably consistent with experiment.

Wilson’s NRG [22, 21] is a numerical procedure to iteratively probe the lowest en-

ergy states of certain types of Hamiltonians. We give a detailed description of our

NRG calculations in chapter 2, but provide a very brief summary here. Wilson’s

key idea was the logarithmic discretisation of the conduction band; he assumes a

flat band and splits it into very fine intervals close to the Fermi level, but for en-

ergies away from the Fermi level the sampling is more coarse. Each interval of the

conduction band is expanded into a Fourier series, and Wilson notes that the first

term of each series is the most significant. He approximates by retaining only these

terms, and the resultant Hamiltonian is mapped exactly to a linear chain of 2-body

states (a Wilson Chain). His NRG is simply iterative addition of a 2-body state by

means of an RG transformation which emerges from his analysis. After a number of
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iterations, which depends on the logarithmic discretisation, the energy eigenvalues

become invariant under the RG transformation and the system is described by an

RG Fixed Point (FP). The length of the Wilson chain N denotes the number of

RG transformations that the algorithm must perform and is synonymous with the

energy scale reached by the approach. N can therefore be mapped directly to a

temperature1 T ∼ e−N/2. There are many quantities, such as entropy, spin suscep-

tibility and specific heat, which can be calculated at each N from the energy levels

obtained with the NRG, and thus one may calculate these quantities as a function

of T .

By applying his method, Wilson showed that the s-d model has two FPs; one where

J → ∞ which corresponds to the low temperature behaviour of the model and

demonstrates that the ground state is a singlet. The other FP has J → 0 where the

static spins are decoupled from the bath and become asymptotically free, in agree-

ment with Anderson’s picture. In addition to calculating the lowest energy levels,

Wilson was able to compute the spin susceptibility and specific heat as a function

of T which were consistent with other calculations and provided further support to

the NRG.

Although originally applied to solve the Kondo problem, the NRG has been ex-

tended to many other scenarios [23]. The first extension was to the Anderson im-

purity model [24, 25], which is the focus of our present work, where the impurity

subsystem is hybridised to the conduction bath through a hopping term. This model

is significant because on low-energy scales it becomes equal to the s-d model, ex-

plaining why one obtains an antiferromagnetic coupling in the first place. In much

the same way as the Kondo model, the low-energy eigenvalues of the Anderson

model can be obtained. The NRG has now been extensively used in multi-impurity

[26, 27] and multi-channel [28, 29, 30] systems to calculate a variety of physical prop-

erties, including dynamic [31, 32, 33, 34, 35, 36, 37] and thermodynamic quantities

[24, 25, 38, 39], as well as the RG flow of coupling constants [40]. It shines light on

the bare-scale physics and the low-energy quasiparticle picture.

Since the advent of the NRG and the establishment of the RG as a requirement

1Note that we use the units ~ = kB = 1, so that temperature and frequency are interpreted as

energies.
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for the study of quantum impurities, there has been much attention directed to-

wards the Kondo effect and similar/more exotic low-temperature effects. These are

classed as ‘emergent’ phenomena; those which can only be observed on certain scales,

and whose mathematical treatment requires a non-perturbative RG approach. Many

methods have been developed to uncover and explain emergent phenomena, such as

Bethe ansatz, Boundary Conformal Field Theory (BCFT) and Renormalised Per-

turbation Theory (RPT).

In this thesis we are concerned with emergent phenomena, and we employ the NRG

and RPT approaches. We first consider two capacitively coupled impurities, and

seek to understand whether an exotic SU(4) Kondo effect can arise. We use the

NRG, combined with the RPT, to understand how the interactions and symmetries

change between scales and whether symmetry can be restored on the low-energy

scale. We are also concerned with ‘strange-metals’ whose mathematical description

cannot be based upon a bath of non-interacting electrons. These metals may pave

the way towards superconductivity [41] and quantum computing [42]. We identify a

quantum critical point with such strange properties and combine the NRG, BCFT

and RPT approaches to understand the symmetry and anomalous thermodynamic

quantities which arise. Throughout our work we use the 2-Impurity Anderson Model

(2IAM) to represent the coupled quantum dots/impurities.

Structure of this Thesis

The thesis is structured as follows.

• In chapter 1, we introduce and formalise the RG, before discussing the Ander-

son impurity model. We provide some key properties of the model and explain

how it can be realised in experiment.

• In chapter 2, we introduce the NRG and explain how it is applied to the 2IAM.

We then discuss in detail how it can be used to calculate static quantities,

such as entropy, and dynamic quantities such as the 1- and 2-particle spectral

densities.

• In chapter 3, we apply RPT to the 2IAM. We show how we can obtain renor-

malised parameters from the NRG, and go on to apply diagrammatic pertur-

bation theory to derive various dynamic quantities and relations (such as our
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definition of strong correlation and Wilson ratios).

• Chapter 4 is devoted to the study of emergent SU(4) symmetry in double

quantum dot systems. We first establish correspondence between a double

quantum dot model and the 2IAM, then go on to derive the conditions for

this symmetry to emerge on the low energy scale. We investigate whether

such emergence is possible in experimental setups and suggest a distinguishing

feature of an SU(4) Kondo regime.

• In chapter 5, we study a quantum critical point that appears in the 2IAM,

due to the Heisenberg coupling. We contrast the cases of particle-hole sym-

metry and asymmetry, and build a physical picture of the competing regimes,

providing dynamic quantities as evidence. We move on to establish a cor-

respondence to the two-channel Kondo model, which we exploit to build a

Majorana Fermion description of the quantum critical point.
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Chapter 1

Impurity Physics and the

Anderson Model

We begin by introducing the RG, which is arguably the most important concept re-

garding emergent phenomena, and proceed to the definition of the Anderson model.

We list some important properties of the model, such as the Friedel sum rule, and

go on to describe how experiments are performed on these systems.

1.1 The Renormalisation Group

The RG provides a framework to investigate the behaviour of models on many energy

scales. It is a set of transformations to be applied to the system Hamiltonian (or

Lagrangian/Partition Function), which irreversibly map the ‘bare’ Hamiltonian to

a new ‘renormalised’ Hamiltonian with modified coupling constants [43, 44, 45, 46].

Denoting the Hamiltonian H(K), where K is an array containing all the coupling

constants, and R as the RG transformation, we have

R : H(K) 7→ H(K ′). (1.1.1)

Under the RG, new coupling constants can emerge such that |K| 6= |K ′|, reflecting

the fact that at different energy scales one can obtain new types of interactions.

Throughout this work, we will adopt the picture that K contains all possible cou-

pling constants, and in the bare Hamiltonian most elements of K are zero. We

hence formulate our discussions by assuming that the Hamiltonian contains an infi-

nite number of different types of interactions, and all those not shown simply have
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zero coupling; we will see in chapter 2 that this picture motivates accurate calcula-

tion of dynamic quantities.

The transformations R involve two key steps [47]. Firstly, we introduce a cut-off as

in Poor Man’s scaling and integrate out the higher energy states of the system [48];

these tend to be short-range degrees of freedom with relatively fast dynamics, such

that the new system contains longer-ranged and typically slower dynamics. The

second stage of an RG transformation is to ensure that the density of degrees of

freedom is preserved. This is accomplished by rescaling the system such that the

original energy scale is restored.

If the transformation RΓ belonging to the RG depends on a continuous parame-

ter Γ which is not explicitly present in the Hamiltonian, such as energy cut-off, then

we may investigate changes in the renormalised systems with respect to Γ; since the

coupling constants K acquire Γ-dependence. We specialise to the case where Γ is

the cut-off as this is most relevant to the work presented. The trajectories generated

in this way are examples of RG flow, and yield insight into how a system approaches

different regimes as some scale changes. In our work we obtain the RG flow by

sequential application of RΓ on a bare Hamiltonian H(K). This produces a set of

Hamiltonians S =
{
HN (KN ) ∀ N ∈ N

}
, where

HN (KN ) = R N
Γ [H(K)] , (1.1.2)

and each R N
Γ imposes a cut-off of ΓN . We thus see that S contains Hamiltonians

whose energy scale decreases as a power law, and we can plot this scale against the

renormalised couplings KN to obtain the RG flow. Generally, below some energy

scale ΓM , the Hamiltonian H∗(K∗) := HM (KM ) will become invariant under RΓ

and is said to describe a RG FP. Since the RΓ integrates out short-range and higher

energy degrees of freedom, the RG FP is invariant under scale transformations and

describes the system on all energy scales below ΓM , including T = 0. The second

order quantum critical points of the system also exhibit scale invariance at T = 0

[49], as well as the divergence of some susceptibility [50]. In this work we identify

quantum critical points as RG FPs with a susceptibility which diverges on succes-

sively lower energy scales.

The RG provides a very powerful mathematical apparatus which is used exten-
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sively in studies of quantum impurities, allowing us to ‘discern the transmundane’

by understanding how our models behave far below the bare scale. Additionally, it

provides quantitative insight into the new types of interaction vertices which emerge

at different scales. The RG is central to our methods of understanding coupled

Anderson impurities, and allows us to build a picture of the interactions and Hamil-

tonian structure at the low-energy FPs we encounter.

1.2 The Anderson Impurity Model

Although very successful in describing the Kondo effect, the s-d model assumes the

presence of static spins which magnetically interact with a bath; this implies that

the model does not permit the possibility of 2 electrons forming a local spinless

state, and hence that the electron-electron repulsion is large. Furthermore, the s-d

model does not permit the static spin (which is due to an electron) to be exchanged

with the bath. In a real metal, both of these mechanisms should be permitted. The

Anderson model [51] aims to incorporate these by tunnel-coupling electrons on an

impurity site to the conduction bath, and also includes a Coulomb interaction local

to the impurity. Unlike the s-d model, the Single Impurity Anderson Model (1IAM)

is expressed entirely in terms of Dirac electron operators, and has the Hamiltonian1

H1IAM =
∑
k

εkc
†
kσckσ +

∑
k

Vk

[
c†kσdσ + d†σckσ

]
+
∑
σ

εσd
†
σdσ + Un↑n↓ (1.2.1)

where d†σ creates an electron of spin σ on the impurity site and nσ = d†σdσ is the

local number operator. The impurity levels εσ denote the amount of energy required

to populate the impurity with a single electron of spin σ whilst the onsite Coulomb

interaction U denotes the amount of energy which must be supplied in addition to

εσ to create a second electron on the impurity site. The hybridisation Vk denotes

the strength of the tunnel coupling between the impurity and the conduction band,

whilst the hybridisation function

∆(ω) = π
∑
k

|Vk|2 δ(ω − εk) (1.2.2)

entirely governs how the impurity system and bath interact. The 1IAM successfully

reproduces the s-d model as in the low energy limit (for certain parameter regimes)

1We express all Hamiltonians throughout this work in units of the bandwidth D so that a given

Hamiltonian H should be read as H/D. For convenience we set D = 1.
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a local spin is formed, which is responsible for a Kondo effect. The relationship be-

tween these models is formalised by the Schrieffer–Wolff transformation [52], which

shows that in the regime of small hybridisation and large on-site Coulomb repul-

sion, a localised magnetic moment is formed. This magnetic moment is Heisenberg-

coupled to the bulk with strength J = 4V 2/U , and hence gives rise to the Kondo

effect described by the s-d model.

We shall assume throughout this thesis that the model is isotropic, so that εk and

Vk depend only on k = |k|, and also that the conduction band spanned by k ranges

from −D to D, where D is termed the (half)bandwidth. This is motivated from Wil-

son’s NRG approach and ensures that the impurity system only couples to spherical

s-waves. We further assume that all bulk electrons are equally likely to hop onto

the impurity, so that Vk = V . Under these assumptions, the dispersion and hy-

bridisation functions are constrained [53]. We take the hybridisation function to be

constant,

∆(ω) = ∆ =
1

2
πV 2, (1.2.3)

which implies linear dispersion [23, 53]. We will frequently refer to ∆ throughout

our work, as this sets the energy scale at which transitions between the RG FPs

occur.

The behaviour of the 1IAM is well understood and easily accessible through many

different formalisms [24, 25, 54, 55, 56]. The basic model behind our work in this

thesis is the Two-Impurity Anderson Model (2IAM). We take two 1IAMs, labelled

by α ∈ {1, 2}, to have Hamiltonians

Hα =
∑
k

εαkc
†
αkσcαkσ +

∑
k

Vα

[
c†αkσdασ + d†ασcαkσ

]
+
∑
σ

εασd
†
ασdασ + Uαnα↑nα↓,

(1.2.4)

where we have promoted the coupling constants to depend explicitly on α, and in-

troduce local inter-impurity interactions. The Coulomb interaction between each

impurity is governed by the coupling constant U12 and the corresponding Hamilto-

nian is given by

HC = U12

∑
σσ′

n1σ n2σ′ . (1.2.5)
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Additionally, we define a local Heisenberg magnetic coupling J between the impu-

rities by

HM = 2JS1 · S2, (1.2.6)

where Sα denotes the total local spin of each impurity. We use the convention that

J > 0 implies an antiferromagnetic coupling. Our Hamiltonian is thus given by

H = H1 +H2 +HC +HM. (1.2.7)

The two interactions preserve the number of electrons in each conduction bath, and

as a result we have symmetry under two distinct U(1) transformations;{
c1kσ → eiθ1c1kσ

d1σ → e−iθ1d1σ

(1.2.8)

and {
c2kσ → eiθ2c2kσ

d2σ → e−iθ2d2σ

, (1.2.9)

resulting in a charge symmetry of U(1)×U(1). Throughout our work, we will make

the assumption (unless specified otherwise) that there is no local magnetic field

present on either impurity, so that the impurity levels εασ = εα are independent of

spin. Therefore we also have symmetry under the spin group SU(2), so that we have

a total symmetry of U(1)×U(1)×SU(2).

1.3 Local Density of States and the Friedel Sum Rule

We will often calculate the local density of states of the Anderson models, and relate

its value at the Fermi level to the impurity occupation. This relationship follows

from the Friedel sum rule [57, 58], and the Green functions corresponding to the

model. The Friedel sum rule is derived by considering the impurity system as a

perturbation to the non-interacting system, and proceeds by defining a phase shift

ηα(ω) at energy ω, associated to impurity α, which is due to the switching on of

interactions. The definition of the phase relies on the scattering T -matrix, which

maps the non-interacting Green function G
(0)
α (z) to the interacting Green function

Gα(z) via

Gα(z) = G(0)
α (z)

[
I + Tα(z)G(0)

α (z)
]
, (1.3.1)

where Tα(z) is the T -matrix. The phase is subsequently defined as

ηα(ω) = arg
[
detTα(ω + iδ+)

]
, (1.3.2)
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for δ+ → 0+. Using this definition of the phase, the Friedel sum rule derived in

detail in [59], states that ηα(ω) is related to the local density of states ρα(ω) by

ρα(ω) =
1

π
∂ωηα(ω). (1.3.3)

Integrating up to the Fermi level, we obtain a relationship between the impurity

occupation nα and phase;

nα =

∫ εF

−∞
dω ρα(ω) =

ηα(εF)

π
. (1.3.4)

We provide formal definitions of the density of states in chapter 2, but from (1.3.4)

we see the importance of phase; a phase shift has a neat physical interpretation as

the change in local occupation. The Friedel sum rule is highly general; it simply

assumes that one has a conduction bath which interacts with some impurity system.

We are able to obtain a more specialised case of the Friedel sum rule, which is of

direct relevance to our work, by calculating the phase shift corresponding to an

Anderson impurity [60]. To pre-empt our discussion on RPT in chapter 3, we set

the coupling constants of the quartic terms to zero. In this model the phase is given

by

ηα(ω) =
π

2
− arctan

(
εα − ω

∆α

)
(1.3.5)

per spin, and the local density of states at T = 0 is then

ρα(ω) =
1

π

∆α

(εα − ω)2 + ∆2
α

. (1.3.6)

These results are derived in [59]. The Friedel sum rule then implies

nα =
1

2
− 1

π
arctan

(
εα
∆α

)
(1.3.7)

per spin, or equivalently

ρα(0) =
1

π∆α
sin2

(π
2
nα

)
. (1.3.8)

This relation allows prediction of the value of the spectral density at the Fermi level

given local occupation, which can be calculated from the renormalised parameters.

It therefore provides a useful check for our results. Note that (1.3.8) is only valid if

U = J = U12 = 0, but we shall see in chapter 3 that when interactions are present,

and the low energy FP is a Fermi Liquid (FL), these relations generalise.
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1.4 Particle-Hole Symmetry in the 2IAM

We adopt the conventional notation that particle states have an energy above the

Fermi level (hole states vice versa) and seek to develop a model where particle and

hole states are degenerate. Apart from the numerical gain due to the extra symmetry,

the model in this regime is interesting because it permits a description in terms of

only spin groups which map to a Majorana Fermion model. If H, given in (1.2.7),

is particle-hole (p-h) symmetric, then it is invariant under the transformation2{
cαkσ → c†α−kσ

dασ → −d†ασ
. (1.4.1)

We see that the quantity nασ is not invariant under this transformation. However,

one can show that the term (nα − 1)2 is invariant, where we denote nα = nα↑+nα↓.

This term can be made explicit in the Hamiltonian by ‘completing-the-square’ in

terms of the nα operators. Noting our assumption of isotropy, we see that when

U12 = 0, H is p-h symmetric if εα = −Uα/2. When U12 6= 0, we propose and easily

check that the quantity (n1 − 1) (n2 − 1) is invariant under (1.4.1). We rewrite HC

as

HC = U12 (n1 − 1) (n2 − 1) + U12 (n1 + n2)− U12. (1.4.2)

The atomic Hamiltonian (which doesn’t include the trivially p-h symmetric bath

electrons) now takes the form

Himp =
∑
α

[(
εα +

Uα
2

+ U12

)
nα +

Uα
2

(nα − 1)2 − Uα
2

]
+ U12 (n1 − 1) (n2 − 1)− U12.

(1.4.3)

We have suppressed HM, since it interacts only in the spin channel, so does not play

a role here. We see immediately that a new condition for p-h symmetry is obtained;

εα = −Uα
2
− U12. (1.4.4)

The p-h symmetric Hamiltonian maps to the same low energy FP for all Uα and

∆α, in which there is a single (quasi)particle localised at each impurity site [59],

such that π∆αρα(0) = 1. The symmetry of the charge degrees of freedom in the

2Note that we take εα−k = −εαk, ensuring that energy remains positive when k, which we

will take as 1-dimensional, goes negative. Such assumptions are common in systems which can be

reduced to 1 spatial dimension [61], and this is required by the conformal field theory approach to

impurity problems, which requires linear dispersion [62].
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p-h symmetric 2IAM is enhanced from U(1) to SU(2) in each channel, so that the

uncoupled model is invariant under SO(4)⊗SO(4), where SO(4) ∼= SU(2)⊗SU(2).

This suggests that the model can be considered entirely in terms of spin and isospin;

and provides a neat connection to a Majorana Fermion model which we discuss in

chapter 5. Away from p-h symmetry, the low-energy behaviour is governed by a

line of FPs (which are mapped back to the bare parameters). The spectral densities

then develop a quasiparticle peak away from the Fermi level.

In our detailed discussion on SU(4) symmetry in chapter 4 we will make use of

p-h symmetry, particularly for the half filled n = n1 + n2 = 2 model. The fact that

the spectral density close to the Fermi level is fixed by p-h symmetry will be exploited

by comparison to the p-h assymetric SU(4) case which occurs in the quarter-filled

model n = 1. Our comparison shines light on recent experimental and theoretical

investigations of emergent SU(4) behaviour in the 2IAM. Meanwhile, in chapter 5,

p-h symmetry is responsible for the emergence of 2-impurity Kondo physics from the

2IAM, which we compare to Majorana Fermion models and a BCFT approach. The

notion that p-h symmetry restricts our low-energy FPs is used extensively through-

out our work.

1.5 Anderson Systems in Experiment: Magnetic Impu-

rities and Quantum Nanostructures

Over the last 6 decades, there have been many experiments on magnetic impurities

embedded in metallic hosts. These experiments have yielded great insight into the

single-spin Kondo effect, and also the multi-channel Kondo effect [63]. However,

it has been experimentally difficult to study systems involving coupled impurities

and impurities on a lattice. In the 1990s, with the advent of precise quantum dot

engineering and quantum metamaterials, it became possible to exploit the Coulomb

blockade and contain a controllable number of electrons in a quantum dot, whilst

tunnel coupling them to an electron bath [64, 65, 66, 67, 68]. Such a system is

a tunable implementation of the 1IAM. The subsequent experiments observed the

Kondo effect [69, 3] and renewed interest in the field, particularly with regard to

‘exotic’ Kondo states and critical behaviour.

Conventional Quantum Dots (QDs) are crystalline semiconductor heterostructures
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Figure 1.1: Gated QD Schema. The QD system is coupled, via tunnelling mecha-

nisms to two baths of electrons, a source and a drain, with coefficients ∆S and ∆D.

The source and drain respectively have chemical potentials µS and µD. The gate

voltage is responsible for the application of a local electric field to the QD, and can

continuously vary the local electrostatic energy, allowing one to vary ε with respect

to µS and µD.

where the dot material, with a lower bandedge than the bulk material, is constrained

in all dimensions and permits the presence of a few isolated electrons [70]. Due to

the quasi-zero-dimensional structure, electrons in the dot are localised (there is no

dispersion). The use of QDs to design devices with precisely engineered properties

is now widespread, and has been applied to laser [71, 72, 73], solar cell [74, 75],

spintronic [76] and transistor [77] devices. The QD systems relevant to us are gated.

Such structures are designed by creating a quasi-two-dimensional electron gas in a

heterostructure consisting of semiconductor and metal layers, where confinement is

achieved by means of electrodes.

To demonstrate the Kondo effect, a QD system where the localised dot states are

tunnel-coupled to a bath is necessary [78, 79]. An experimentally accessible model

is illustrated in figure 1.1, where the QD is tunnel-coupled to a source and drain

bath of electrons, with respective chemical potentials of µS and µD. The hybridisa-

tion widths are respectively denoted by ∆S and ∆D. The current through the dot

system (or its conductance) may be measured, and used to determine the properties

of the many-body states present in the system [80]. At this point it is important

to note that despite the presence of an electric field, and a current flowing through

the dot, the local occupation can be very finely controlled thanks to the Coulomb

blockade and applied gate voltage Vg. The potential for the system, shown in figure

1.2, illustrates that bulk electrons close to the QD are unlikely (at low tempera-

tures) to be able to tunnel through unless they do so one at a time. This is the

Coulomb blockade, due to the local Coulomb repulsion U and the Pauli exclusion
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Figure 1.2: A QD representation of the 1IAM. The black solid line represents the

chemical potential, whilst the red and blue sections respectively illustrate the source

and drain bulk. The dot is sufficiently small that it permits only 2 states, whose en-

ergies are represented by the dotted lines. The lowest allowed energy in the quantum

dot is ε, and the next highest (localised) state has energy 2ε+ U .

principle. However, bulk electrons with higher energies could occupy the higher

energy localised states in the QD, which is problematic if one wants to use a large

source-drain voltage - this is where Vg becomes important. Let us suppose that

the voltage gate has a capacitance Cg. By varying Vg one can induce a ‘continuous

charge’ q = CgVg, which the QD seeks to cancel. Hence one can tune, very precisely,

the number of electrons which are energetically favourable to remain in the QD [81].

In this way, unintentional processes involving undesired local occupancy in the QD

can be eliminated.

Although this setup can restrict the number of electrons localised in the QD, it

does not place any conditions on the spin. As a result, if there is a single electron

local to the QD, the usual twofold spin degeneracy arises. The local spin is therefore

able to undergo spin-flip processes, via virtual states such as that shown in figure

1.3, with no energy cost. These spin-flip processes are responsible for the develop-

ment of a strongly correlated many-body state which leads to a narrow resonance

in the local density of states at the Fermi level (the Kondo or Abrikosov-Suhl res-

onance) and gives rise to the Kondo effect [59]. To realise the Kondo effect in a

QD system, we require equilibrium, such that µS = µD, and that there is a single,
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Figure 1.3: Example of a spin-flip process, by means of a virtual state, for the

S = 1/2 Kondo effect occurring in a QD. Repeated spin-flip processes are responsible

for screening the local moment, giving rise to the formation of a Kondo many-body

singlet state.

well defined Fermi level around which the resonance forms. Away from equilibrium,

the resonance splits into two, with a peak at the Fermi level of each bath [3]. The

usual S = 1/2 single-channel3 Kondo effect has been unambiguously observed in such

QD systems [3, 69]. Furthermore, we see that the equilibrium QD system provides

a simple realisation of the 1IAM; one has local dot electrons which are exchanged

with a bath by means of tunnelling, and there is a local Coulomb interaction. It is

therefore not surprising that on low energy scales, one observes the Kondo effect.

Double QD (DQD) systems can also be grown [82, 83], and these can be used to

construct realisations of two-impurity Anderson systems, as depicted in figure 1.4.

In this setup, each impurity is represented by a 2-level dot system as in figure 1.2

and tunnel-coupled to a source and drain lead. The material system must be engi-

neered so that the desired interdot interactions are present. For example, to prevent

interdot hopping, the material separating the dots should have a very high chemical

potential, so that electron tunnelling is prohibited; the dot systems can be brought

spatially close together to permit a Coulomb. We note that there are limitations

on the extent to which one may choose the interdot interactions. The presence of a

Heisenberg exchange is often accompanied by a hopping, as in [84]. If each source

and drain is in equilibrium, so that µSα = µDα, then the system is well represented

by the usual 2IAM (we prove this in section 4.2). For our discussions we restrict

3The condition of equilibrium introduces a degeneracy between the source and drain leads, and

this can be exploited to obtain the 1IAM.
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Figure 1.4: Schema of a DQD. Two QDs are grown close to each other, and coupled

to their own source and drain baths. The material between the local QDs, and the

distance between them, determines any interdot interactions which might take place.

the system to be in equilibrium, since there are numerical difficulties in extending

this approach to the non-equilibrium case (4 channels are required). Similar setups

have been used to investigate quantum phase transitions [85] and emergent exotic

Kondo states, such as the SU(4) Kondo effect [85, 86]. In chapter 4 we discuss recent

developments in the experimental observation of the SU(4) Kondo effect which have

taken place for this kind of DQD system.
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Chapter 2

Numerical Renormalisation

Group Calculations

The NRG provides non-perturbative insight into the behaviour of quantum impurity

systems over all energy scales below the bare. The use of the NRG to solve the Kondo

problem marked a milestone in condensed matter physics; Wilson had introduced the

RG to the field, and his numerical method could, at least in principle, be applied to

any interacting system hybridised to a non-interacting electron bath. Initially it was

used just to calculate static thermodynamic quantities, but it has been generalised to

calculate dynamic quantities and renormalised parameters. We formulate the NRG

for the 2IAM and explain in detail our calculations of static and dynamic quantities.

2.1 Construction of the NRG for the 2IAM

Our model of interest is the 2IAM where there is a capacitive coupling U12 and

magnetic Heisenberg coupled J between the impurities,

H =
∑
αk

εαkc
†
αkσcαkσ +

∑
αk

Vα

[
c†αkσdασ + d†ασcαkσ

]
+
∑
α

εαd
†
ασdασ

+
∑
α

Uαnα↑nα↓ + U12

∑
σσ′

n1σ n2σ′ + 2JS1 · S2

(2.1.1)

where Uα, εα and Vα are respectively the local Coulomb, level and hybridisation

coupling constants for the impurity/channel labelled by α ∈ {1, 2}. Each impurity

system in the 2IAM may be mapped to an interacting 2-body site coupled to a semi-

infinite chain of non-interacting 2-body sites. The interacting site contains a local

Coulomb interaction, but electrons on the chain may only hop between adjacent
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sites. We provide an outline of this prolonged mapping, with a pictorial representa-

tion in figure 2.1, but the details are widely available (for example, see [23] or [24]).

The crucial starting point of the NRG is to perform a logarithmic discretisation of

k-space, which spans [−1, 1]. The wavevector k is defined by k = ε/D. We take

a parameter Λ > 1, and let the nth interval of k-space span
[
Λ−(n+1),Λ−n

]
as in

figure 2.1a. In each region of k-space we build, by means of a Fourier expansion,

a complete set of orthonormal functions ψ±np(k) where p ≥ 0 and n = 0, 1, 2 . . . p.

We then expand the original electron operators cαkσ in the basis spanned by these

functions (as a Bogoliubov transformation) to obtain two new species of independent

electron operators; aαnpσ and bαnpσ. The impurity α is manifestly coupled only to

aαn0σ and bαn0σ, but these themselves are coupled to higher p operators. However,

for Λ ≈ 1 this coupling is weak, and we neglect higher p contributions to our Hamil-

tonian. Under this approximation, only interactions between the impurity and bulk

s-waves are considered, as in figure 2.1b. Finally, using a unitary transformation, we

construct new Fermionic operators cαnσ from aαnpσ and bαnpσ such that our discrete

approximation to (2.1.1) is

H =
∑
α

∞∑
n=0

ξnΛ−n/2
[
c†αnσcα(n+1)σ + c†α(n+1)σcαnσ

]
+
∑
α

Vα

[
c†α0σdασ + d†ασcα0σ

]
+
∑
α

εαd
†
ασdασ +

∑
α

Uαnα↑nα↓ + U12

∑
σσ′

n1σ n2σ′ + 2JS1 · S2

(2.1.2)

where the Wilson coefficients ξn are defined by

ξn =

(
1 + Λ−1

) (
1− Λ−n−1

)
2
√

(1− Λ−2n−1) (1− Λ−2n−3)
, (2.1.3)

and the index n ≥ 0 label sites on a tight-binding chain of non-interacting electrons.

This representation is illustrated in figure 2.2. n = 0 corresponds to the non-

interacting conduction site adjacent to the impurity. Although seemingly abstract,

there is a physical interpretation of this non-exact mapping. The many-body states

represented by c†αnσ can be thought of as being somewhat localised to the impurity.

In this picture, the state c†α0σ is formed of conduction electrons which are the most

localised to the impurity, and the ‘degree of localisation’ decreases (as a power law)

down the chain. This chain representation allows us to simply build a basis in which

to solve the Hamiltonian. It is also important to note that the hopping amplitude

between sequential sites on the linear chain falls off as a power law for large n.

Consequently, a good approximation for the Hamiltonian is to solve the system for
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Figure 2.1: Representation of the mapping from the continuous Anderson model to

the discrete linear chain. For simplicity, we illustrate the mapping for the 1IAM, but

the same arguments apply to the 2IAM. In a) we discretise the conduction band into

logarithmic intervals centered on the Fermi level. These intervals are each expanded

into Fermionic S, P , D etc. Fourier modes and in b) we claim that only the S waves

interact with the impurity. In c) we represent this picture as a linear chain.
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Figure 2.2: Linear chain representation of the 2IAM.

a finite number of sites on the chain [24]. To formulate an RG treatment of this

model, we define

H0 = Λ−
1/2
∑
α

[
εαd
†
ασdασ + Vα

[
c†α0σdασ + d†ασcα0σ

]
+ Uαnα↑nα↓

]
+ Λ−

1/2U12

∑
σσ′

n1σ n2σ′ + 2Λ−
1/2JS1 · S2

(2.1.4)

and set up the iteration scheme

HN+1 = Λ
1/2HN +

∑
α

ξN

[
c†αNσcα(N+1)σ + c†α(N+1)σcαNσ

]
. (2.1.5)

With the imposition of an energy cutoff, the mapping R : HN 7→ HN+1 defined by

(2.1.5) belongs to the RG. We see that

H = lim
N→∞

Λ
−(N−1)/2HN , (2.1.6)

implying that if our bare energy scale is D, then after N iterations the remaining

energy levels exist on a scale Λ−(N−1)/2D. The setup of the iteration scheme and the

scaling of the energy levels is depicted in figure 2.3. The NRG therefore consists of

iterating transformation (2.1.5) until a stable FP, describing the T = 0 behaviour

of the model, is reached (when HN+2 = HN )1. The transformation is implemented

by supposing we have two N site Wilson chains forming a system denoted by HN ;

we then couple the ends of the chain to two new sites and calculate the resulting

Hilbert space.

1An important point is that R adds a single site to each chain. When the chain length is odd,

the vacuum (half-filled chain) will consist of an odd number of electrons and is thus degenerate due

to spin. The even N vacuum is usually not degenerate. This leads to even-odd oscillations in the

RG flow. The useful transformation is in fact R2 : HN 7→ HN+2, and we generally calculate our

quantities using only even N . There are a number of approaches to averaging over the oscillations,

and for a more detailed discussion see [23].
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Figure 2.3: Schema of the NRG as applied to the 2IAM. The bare Hamiltonian is ap-

proximated by Λ−(N−1)/2HN as N is increased. The transformation R : HN 7→ HN+1

generates new levels in the Hilbert space, the successive truncation of which leads

to a power law reduction in the NRG levels as N increases. The initial Hamiltonian

H0 describes the local impurity system and the hybridisation to the conduction sites,

whilst the Hamiltonians H1, H2 etc successively add a single site to each chain.
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2.2 Iterative Diagonalisation

The process of building the new eigenspace HN+1 from an old eigenspace HN is

termed iterative diagonalisation. The first stage is to define a new basis which spans

HN+1. It is most convenient to use the eigenstates of HN in these definitions so that

iteration is permitted. For computational efficiency, the states must be labelled by

as many quantum numbers as possible. Our Hamiltonian (2.1.2) does not permit

the transfer of charge between the impurities or channels, and therefore is invariant

under U(1)⊗U(1). Additionally, the absence of a magnetic field implies an SU(2)

spin degeneracy. We thus denote the eigenstates of HN by |Q1, Q2, S, Sz, r;N〉,
where Qα labels the charge in channel α (with respect to the half-filled chain), S

is the total spin, Sz is the spin projection onto the z-axis, and r labels the states

contained in the {Q1, Q2, S, Sz} sector. Each new site, labelled by N , on the chain

α permits four states: |0;N〉α , |↑;N〉α , |↓;N〉α and |↑↓;N〉α. HN+1 is thus spanned

by{
|Q1, Q2, S, Sz, r;N〉

}⊗
α

{
|0;N + 1〉α , |↑;N + 1〉α , |↓;N + 1〉α , |↑↓;N + 1〉α

}
.

(2.2.1)

The states for the sites being added and those of HN are spinful, so we must combine

the angular momenta according to the usual rules. For combining three angular

momentum vectors, we are free to first combine any two, and then combine the

result with the third angular momentum [87, 88]. We choose to first combine the

previous eigenstates to the channel 2 new site basis states. We define the basis
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states, labelled as |Q1, Q2, S, Sz, r, i;N〉, for the intermediate system as

|Q1, Q2, S, Sz, r, 0;N〉 = |0;N + 1〉2 |Q1, Q2 + 1, S, Sz, r;N〉

|Q1, Q2, S, Sz, r, 1;N〉

= |↑;N + 1〉2 |Q1, Q2, S − 1/2, Sz − 1/2, r;N〉 〈S − 1/2, Sz − 1/2; 1/2, 1/2|S, Sz〉

+ |↓;N + 1〉2 |Q1, Q2, S − 1/2, Sz + 1/2, r;N〉 〈S − 1/2, Sz + 1/2; 1/2,−1/2|S, Sz〉

|Q1, Q2, S, Sz, r, 2;N〉

= |↑;N + 1〉2 |Q1, Q2, S + 1/2, Sz − 1/2, r;N〉 〈S + 1/2, Sz − 1/2; 1/2, 1/2|S, Sz〉

+ |↓;N + 1〉2 |Q1, Q2, S + 1/2, Sz + 1/2, r;N〉 〈S + 1/2, Sz + 1/2; 1/2,−1/2|S, Sz〉

|Q1, Q2, S, Sz, r, 3;N〉 = |↑↓;N + 1〉2 |Q1, Q2 − 1, S, Sz, r;N〉
(2.2.2)

where we introduce an index i ∈ {0, 1, 2, 3} which labels the basis states. We go

on to couple the intermediate system basis state-space with the channel 1 single

site states to obtain a full basis space for HN+1. The basis states are labelled by

|Q1, Q2, S, Sz, r, i, j;N〉 and are calculated as

|Q1, Q2, S, Sz, r, i, 0;N〉 = |0;N + 1〉1 |Q1 + 1, Q2, S, Sz, r, i;N〉

|Q1, Q2, S, Sz, r, i, 1;N〉

= |↑;N + 1〉1 |Q1, Q2, S − 1/2, Sz − 1/2, r, i;N〉 〈S − 1/2, Sz − 1/2; 1/2, 1/2|S, Sz〉

+ |↓;N + 1〉1 |Q1, Q2, S − 1/2, Sz + 1/2, r, i;N〉 〈S − 1/2, Sz + 1/2; 1/2,−1/2|S, Sz〉

|Q1, Q2, S, Sz, r, i, 2;N〉

= |↑;N + 1〉1 |Q1, Q2, S + 1/2, Sz − 1/2, r, i;N〉 〈S + 1/2, Sz − 1/2; 1/2, 1/2|S, Sz〉

+ |↓;N + 1〉1 |Q1, Q2, S + 1/2, Sz + 1/2, r, i;N〉 〈S + 1/2, Sz + 1/2; 1/2,−1/2|S, Sz〉

|Q1, Q2, S, Sz, r, i, 3;N〉 = |↑↓;N + 1〉1 |Q1 − 1, Q2, S, Sz, r, i;N〉
(2.2.3)

with j ∈ {0, 1, 2, 3}. These basis states are abbreviated as |i, j〉 below, unless the sup-

pressed quantum numbers are required. It is important to note that the basis state

44



|2, 1〉 does not exist if S = 0, since the Clebsch-Gordan coefficients disallow it. To

compute the eigenspace of HN+1, we require the matrix elements 〈i′, j′|HN+1 |i, j〉.
We note that

HN |Q1, Q2, S, Sz, r, i, j;N〉 = EQ1,Q2,S,Sz ,r(N) |Q1, Q2, S, Sz, r, i, j;N〉 (2.2.4)

where the scaled energies EQ1,Q2,S,Sz ,r(N) are defined by2

HN |Q1, Q2, S, Sz, r;N〉 = EQ1,Q2,S,Sz ,r(N) |Q1, Q2, S, Sz, r;N〉 . (2.2.5)

It follows that, in our defined basis, the diagonal elements of HN+1 are simply given

by

〈Q1, Q2, S, Sz, r, i, j;N |HN+1 |Q1, Q2, S, Sz, r, i, j;N〉 = Λ
1/2EQ1,Q2,S,Sz ,r(N).

(2.2.6)

The off-diagonal matrix elements are more complicated; they are given by 〈i′, j′|H ′ |i, j〉
where

H ′ = ξN
∑
α

c†αNσcα(N+1)σ (2.2.7)

and we compute only half the elements of the Hamiltonian, and then symmetrise it,

for the sake of efficiency. It thus follows that the off-diagonal components depend

on the matrix elements

〈Q′1, Q′2, S′, S′z, r′;N | c
†
αNσ |Q1, Q2, S , Sz, r ;N〉 . (2.2.8)

At this point, we make use of the Sz degeneracy (due to the SU(2) symmetry) to

write the matrix elements as ‘reduced’ matrix elements, which carry only an S label.

This substantially reduces the number of matrices which require diagonalisation and

is achieved through application of the Wigner-Eckart theorem;

〈Q′1, Q′2, S′, S′z, r′;N | c
†
αNσ |Q1, Q2, S, Sz, r;N〉

= 〈S, Sz; 1/2, σ|S′, S′z〉 〈Q′1, Q′2, S′, r′;N ||c
†
αN ||Q1, Q2, S, r;N〉 .

(2.2.9)

The reduced eigenstates are simply a sum over a reduced basis,

|Q1, Q2, S, r;N〉 =
∑
p,i,j

UQ1Q2S (r; p, i, j;N) |Q1, Q2, S, p, i, j;N − 1〉 (2.2.10)

2Although notationally clunky, we write the scaled energies as a function of N to make explicit

that these energies form an RG flow.
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where the label p is summed over all states in the HN−1 system. The entries in

the eigenvectors, given by UQ1Q2S (r; p, i, j;N) are used to compute the off-diagonal

matrix elements. Each matrix element 〈i′, j′|H ′ |i, j〉 can be written as a Clebsch-

Gordon coefficient multiplied by a reduced matrix element. The allowed reduced

matrix elements, which are

〈Q1 + 1, Q2 + 1, S, r′;N ||c†1N ||Q1, Q2 + 1, S − 1/2, r;N〉 ,

〈Q1 + 1, Q2 + 1, S, r′;N ||c†1N ||Q1, Q2 + 1, S + 1/2, r;N〉 ,

〈Q1 + 1, Q2 + 1, S, r′;N ||c†2N ||Q1 + 1, Q2, S − 1/2, r;N〉 ,

〈Q1 + 1, Q2 + 1, S, r′;N ||c†2N ||Q1 + 1, Q2, S + 1/2, r;N〉 ,

may be calculated using the values of UQ1Q2S (r; p, i, j;N). We discuss the details

of our approach to iterative diagonalisation in appendix B. We efficiently construct

the Hamiltonians in a method that scales as O(N3). When the reduced matrix

elements are expanded in terms of UQ1Q2S (r; p, i, j;N), the resultant expression is

representable as the sum of matrix products.

It is important to exploit this fact, as there are multiple available algorithms which

use cache locality to multiply matrices; this results in very significantly improved

calculation speeds. The basic premise is that when the CPU loads its cache from

the RAM, the loaded data will all be used in the following series of calculations.

This means that the total number of times the CPU cache needs to be refreshed

is reduced. By arranging the matrix data in the RAM in a particular order corre-

sponding to the multiplication algorithm, so that the algorithm requires data from

the RAM which is adjacent to each other (spatial locality), we can ensure that the

cache loads only useful data for the calculations the CPU is being instructed to

complete. This dramatically increases the rate of execution.

The Hamiltonians are diagonalised using an open-source library (Eigen) and for effi-

ciency we exploit the fact that they are self-adjoint. The eigenvectors for a Hamilto-

nian block labelled by Q1, Q2 and S replace the values of UQ1Q2S (r; p, i, j;N), which

are stored from the previous iteration.

The truncation routine then sorts all of the energies and determines the cut-off

(if the algorithm retains NS states at each iteration, then the cut-off is the N th
S

highest energy). The states below the cut-off are used to compute the basis in the
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next iteration, but the states above are used to compute the matrix elements in that

iteration; hence they are not completely discarded until then.

This procedure forms our NRG program for the 2IAM. It has been found empirically

that in order to obtain a good approximation to the FP, one must use a larger value

of Λ (typically Λ ∼ 6) and retain many more states at each iteration compared to

the single channel model [28, 89, 23]. It is surprising that the NRG approach works

for these large values of Λ, but it does appear to, and good agreement with lower Λ

NRG and BCFT results has been found. We take Λ = 6 and retain NS = 4000 for

all our 2IAM NRG calculations, unless otherwise specified.

Our NRG is validated by setting U12 = J = 0 and enforcing channel symmetry.

In this case the RG flow should converge on a stable FP whose levels are described

by the single impurity Anderson model3, and this is shown in figure 2.4.

2.3 Calculation of Static Thermodynamic Quantities

The NRG as presented offers only the low-lying energy levels of the system. The

levels themselves show the FL (or more unusual) nature of the FPs of the 2IAM,

but offer little insight into how physical quantities such as the spin susceptibility

and entropy vary with respect to T . As we increase N , we explore energies of H

on a decreasing energy scale (see figure 2.3). We can therefore think of an increase

in N as a decrease in T . We explain this as follows. The Hamiltonian HN defined

by (2.1.5) typically has eigenvalues of the order limN→∞ ξN = (1 + Λ−1)/2, and

contributes unscaled eigenvalues of the order Λ−(N−1)/2 to the spectrum of H (one

can see this from (2.1.6)). For an iteration N , we thus rewrite the Boltzmann factor

exp (−βH), where β = 1/T , as exp
(
−β̄HN

)
in which β̄ encapsulates a temperature

scaled by the aforementioned factors. When we compute the trace of exp
(
−β̄HN

)
,

the only significant terms are those for which β̄EQ1,Q2,S,r(N) is of order 1 (or below).

This is the case for a characteristic temperature TN , defined by

TN =
1

2

(
1 +

1

Λ

)
Λ−

(N−1)/2β̄−1 (2.3.1)

3If the single impurity Anderson model has a Hilbert space H1 then the 2IAM with these

properties will have the Hilbert space H2 = H1 ⊗H1.
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Figure 2.4: The RG flow of the lowest distinct energy eigenvalues of the 1IAM

and 2IAM, whose Hilbert spaces are respectively denoted H1 and H2. The coupling

constants in both models are equal, and all inter-impurity interactions in the 2IAM

are switched off. We expect H2 = H1 ⊗ H1, which holds at the stable FL RG FP

(for N > 32). The RG flow for the models pass by the same 3 FPs, but the levels are

different. This does not imply the models are different, just that the RG flows take

different trajectories. The NRG parameters are ε = −0.0005, U = 0.001, V = 0.004,

Λ = 6.0 and NS = 4000.
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where β̄ ∼ 1 (we take β̄ = 1.04). By exploiting this, we can calculate the thermo-

dynamic properties of the impurity over all temperature scales reached in the NRG

iteration. A more detailed discussion of these arguments is presented in [23]. The

entropy and uniform spin susceptibility of the entire system, Stot(T ) and χtot(T )

respectively, are defined by

Stot(T ) = β 〈〈H〉〉+ ln (Z) , (2.3.2)

χtot(T ) = β
[
〈〈S 2

z 〉〉 − 〈〈Sz〉〉
2
]
, (2.3.3)

whilst the thermal trace 〈〈O〉〉 is

〈〈O〉〉 =
1

Z
Tr
(

e−βHO
)
. (2.3.4)

The partition function is given by Z := Tr
(
e−βH

)
. The impurity contribution to

these quantities is

S(T ) = Stot(T )− S0(T ) (2.3.5)

and

χ(T ) = χtot(T )− χ0(T ), (2.3.6)

respectively, where the superscript ‘0’ denotes that the quantity corresponds to

the free tight-binding chain without the impurity present. This definition of the

thermodynamic quantities was introduced in [21]. For a given NRG iteration N , we

approximate the thermal trace as

〈〈O〉〉N '
1

ZN

∑
Q1,Q2,S

∑
r

(2S + 1) e−β̄EQ1,Q2,S,r
(N) 〈Q1, Q2, S, r;N | O |Q1, Q2, S, r;N〉

(2.3.7)

where we sum over reduced eigenstates and account for the spin degeneracy. ZN is

the partition function at temperature TN , and given by

ZN =
∑

Q1,Q2,S

∑
r

(2S + 1) e−β̄EQ1,Q2,S,r
(N). (2.3.8)

It follows that the thermodynamic quantities corresponding to the entire system H

can be calculated for all temperatures below the bare energy scale. The impurity

contribution to S(T ) and χ(T ) is determined by calculating these quantities for the

‘no-impurity’ Hamiltonian

H0
N =

∑
α

N−1∑
n=0

ξnΛ(N−n−1)/2
[
c†αnσcα(n+1)σ + c†α(n+1)σcαnσ

]
(2.3.9)
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and subtracting them from the total quantities. The thermodynamic quantities of

this quadratic Hamiltonian are calculated in appendix C, where we specialise to the

case N even and transform H0
N to have the form

H0
N =

∑
α

ηE
0 p
†
α0σpα0σ +

∑
α

N/2∑
n=1

ηE
n

[
p†αnσpαnσ + h†αnσhαnσ

]
. (2.3.10)

The single particle energies are denoted ηE
n , n ≥ 0 and are equal for particle and

hole excitations in channel α created respectively by p†αnσ and h†αnσ. This is due to

the p-h symmetry of the bulk. We derive the partition function of the conduction

system as

ln(Z0
N ) = 4 ln

(
1 + e−β̄η

E
0

)
+ 8

N/2∑
n=1

ln
(

1 + e−β̄η
E
n

)
, (2.3.11)

while we obtain the traces

〈〈H〉〉0N = 4
ηE

0 e−β̄η
E
0(

1 + e−β̄η
E
0

) + 8

N/2∑
n=1

ηE
n e−β̄η

E
n(

1 + e−β̄ηE
n

) (2.3.12)

and

〈〈S 2
z 〉〉

0
N =

e−β̄η
E
0(

1 + e−β̄η
E
0

)2 + 2

N/2∑
n=1

e−β̄η
E
n(

1 + e−β̄ηE
n

)2 . (2.3.13)

The trace over Sz vanishes when there is no magnetic field. We are thus able

to compute S0(TN ) and χ0(TN ) for any even N , and it follows that we are able

to compute the impurity contributions S(T ) and χ(T ) over all the energy scales

reached by the NRG. As with the iterative diagonalisation routines, we validate

our approach by studying the 2IAM with no inter-impurity coupling; the results for

S(T ) and χ(T ) are shown in figure 2.5. Using the Boltzmann entropy S = ln(Ω),

where Ω is the multiplicity of the system, we see that at high temperatures, the

impurity system contributes 16 states to the total Hilbert space. This is due to

each impurity site permitting the usual four states. However, as the temperature

is lowered U becomes relatively large compared to the energy scale of the system,

and the states |0〉 and |↑↓〉 (recall that these are degenerate for p-h symmetry)

become unfavourable. These degrees of freedom are frozen out and each impurity

becomes occupied by a single electron with spin degeneracy. The presence of a

single electron is responsible for the emergence of a local moment FL regime in

each impurity system, contributing 4 states. As T is further decreased, the local

moment forms a tightly bound singlet with the adjacent s-waves (represented by
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Figure 2.5: The entropy contribution S(T ) made by the impurity to the system

of two uncoupled Anderson impurities as a function of temperature T . The inset

shows the contributed uniform spin susceptibility χ(T ). The NRG parameters are

ε = −0.0005, U = 0.001, V = 0.004, Λ = 6.0 and NS = 4000.
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the first conduction site on the tight-binding chain), and becomes screened. In this

FL regime the impurities are in a many-body singlet with the s-waves, and hence

only contribute 1 state so that S(T ) = 0. χ(T ) varies accordingly as the system

transitions between the FPs, in agreement with [24]. Our results agree with the

established underlying physical picture of the 1IAM, and confirm our calculations.

2.4 Calculation of Dynamic Quantities

Originally, the NRG was used to just calculate static properties of the impurity

system. In attempting to understand the process of excitation of a localised electron

to the bulk via x-ray absorption, the NRG was generalised to calculate dynamic

quantities [90]. Over the following two decades, the method evolved into what is

now referred to as the ‘conventional’ method for calculation of dynamic response

functions using the NRG [33, 34, 91, 31]. We outline our definitions, and the NRG

calculations required, and will proceed to describe the conventional method, before

expanding on the more sophisticated methods we use.

2.4.1 Green Function, Spectral Density and Susceptibility Defini-

tions

All the dynamic quantities we calculate are related to the retarded Green function,

GAB(t− t′) = −iΘ(t− t′) 〈〈
[
A(t), B(t′)

]
s
〉〉 (2.4.1)

where we set t′ = 0, and A and B are either Bosonic or Fermionic operators. The

algebra is defined as [A,B]s = AB − sBA, s = 1 if A and B are Fermionic, and

s = −1 otherwise. We interpret GAB(t) as follows. At time t′ = 0, the operator

B acts on the vacuum to create some initial state, and at time t, A acts on this to

create a final state (or vice versa). GAB(t) is the propagator between the initial and

final states.

We are interested in the system response to some field which provides energy ω,

and we thus perform a Laplace transformation to express (2.4.1) as

GAB(z) = −i
∫ ∞

0
dt eizt Tr

(
e−βH

Z
[A(t), B]s

)
(2.4.2)

where Re[z] = ω. Our correlation function between operators A and B is given by

〈〈A;B〉〉 (ω) = − 1

π
lim
δ→0+

GAB(ω + iδ), (2.4.3)
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and the imaginary part of this is the spectral density, ρAB(ω) = Im 〈〈A;B〉〉 (ω).

We now define the dynamic quantities we use throughout our investigations of the

2IAM. The local density of states4 on impurity α is defined by

ρα(ω) = Im
〈〈
dασ; d†ασ

〉〉
(ω) (2.4.4)

and measures the amount of energy required to add (or remove) an electron to (or

from) the impurity. Note that we assume that no magnetic field is present so σ may

take any value without changing ρα. The 1-particle local spectral density on the

first conduction site in channel α is denoted

ρC
α(ω) = Im

〈〈
cα0σ; c†α0σ

〉〉
(ω). (2.4.5)

We define the transverse spin susceptibility between impurities α and β as

χαβ(ω) =
〈〈
S+
α ;S−β

〉〉
(ω) (2.4.6)

where α = β is permitted. We are particularly interested in the spin dynamics at a

quantum critical point, discussed in chapter 5, where the total and staggered spin

susceptibilities of the 2IAM are studied. These are respectively defined by

χtot(ω) =
〈〈
S+

1 + S+
2 ;S−1 + S−2

〉〉
(ω)

= χ11(ω) + χ12(ω) + χ21(ω) + χ22(ω)
(2.4.7)

and
χstg(ω) =

〈〈
S+

1 − S
+
2 ;S−1 − S

−
2

〉〉
(ω)

= χ11(ω)− χ12(ω)− χ21(ω) + χ22(ω).
(2.4.8)

χtot(ω) measures the system response to a field which seeks to align the spins on

each impurity, whilst χstg(ω) measures the response to a field seeking to oppositely

align the spins. In our investigation of the critical point, we also study the response

of the local singlet and triplet susceptibilities; these are defined by

χsng(ω) = −1

2

〈〈
d†1↑d

†
2↓ − d

†
1↓d
†
2↑; d2↓d1↑ − d2↑d1↓

〉〉
(ω) (2.4.9)

and

χtrp(ω) = −1

2

〈〈
d†1↑d

†
2↓ + d†1↓d

†
2↑; d2↓d1↑ + d2↑d1↓

〉〉
(ω). (2.4.10)

They respectively measure the response of the system to a stimulus which creates

or destroys a local singlet or triplet. The spectral density (2.4.3) satisfies certain

4Whenever we refer to spectral density without specifying any operators, we referring to ρα(ω).
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properties which we aim to reproduce in the NRG. In particular, the T = 0 spectral

sum rule ∫ ∞
−∞

dω ρAB(ω) = Tr [ρ [A,B]s] (2.4.11)

can be satisfied to machine precision, using the approaches in [36] and [37]. The

local density of states satisfies
∫∞
−∞ dωρα(ω) = 1, whilst the imaginary part of the

spin susceptibilities satisfy∫ ∞
−∞

dω Imχαβ(ω) =
1

Z
Tr
[
e−βH

[
S+
α , S

−
β

]]
=

2

Z
Tr
[
e−βHSαz

]
δαβ. (2.4.12)

In the absence of a magnetic field,
∫∞
−∞ dωImχαβ(ω) = 0 since positive and negative

spin projections are degenerate. We also compute
∫∞
−∞ dωImχsng(ω) =

∫∞
−∞ dωImχtrp(ω) =

n/2− 1.

2.4.2 Conventional NRG Approach to Dynamic Quantities

We now outline the conventional approach to calculating dynamic quantities using

the NRG. If we compute the trace in (2.4.2) using the retained states at some

iteration N then, as in the calculation of thermodynamic quantities, we can gain

insight into the system properties over some energy scale characterised by ωN =

Λ−(N−1)/2. Suppressing the various quantum numbers on our states, those retained

at iteration N are denoted |r;N〉 and have energy Er(N). Since we are interested

in calculating the dynamic properties of H, we need to use the unscaled energy

eigenvalues, denoted εr(N) = Λ−(N−1)/2Er(N), which approximately satisfy

H |r;N〉 = εr(N) |r;N〉 . (2.4.13)

Adopting the Lehmann formulation of the Green function, we can write

GAB(z) =
1

ZN

∑
r1r2

[
AN

]
r1r2

[
BN

]
r2r1

[
e−βεr1 (N) + e−βεr2 (N)

]
z − [εr2(N)− εr1(N)]

, (2.4.14)

where we define the local matrix elements[
AN

]
r1r2

= 〈r1;N |A |r2;N〉[
BN

]
r1r2

= 〈r1;N |B |r2;N〉
(2.4.15)

which must be calculated during the NRG procedure (as described in detail in ap-

pendix D). Note that we now scale the energy levels rather than the temperature.

The partition function ZN is defined as usual by ZN =
∑

r exp [−βεr(N)], and for
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T = 0 is equal to the degeneracy of the ground state. With the NRG, we only

calculate the spectral densities. In our formalism these are

ρAB(ω) =
1

ZN

∑
r1r2

[
AN

]
r1r2

[
BN

]
r2r1

[
e−βεr1 (N) + e−βεr2 (N)

]
δ (ω −∆E) (2.4.16)

where ∆E = εr2(N)− εr1(N). We thus obtain the spectral density, using the calcu-

lated properties for the system, at some iteration N . Since our system is discrete,

the spectral density is comprised of a set of peaks. We argue (using separation of

energy scales) that the spectral density is only really valid for energies ∆E ∼ ωN ,

and introduce a criterion that only peaks satisfying ωmin < ∆E < ωmax are retained.

The boundary energies satisfy (ωmin/ωN ) ∼ (ωmax/ωN ) ∼ O(1). We obtain infor-

mation for the spectral density on lower energy scales in the next NRG iteration. In

this way we build the spectral density over the entire NRG by piecing together peaks

from each iteration. It is important to note that the NRG is supposed to calculate

the properties of the continuous model given by (2.1.1), but we see from (2.4.16)

that we obtain a set of peaks rather than a continuous curve. To map the NRG spec-

tral density back to the continuum model, we broaden the peaks into logarithmic

Gaussians (which accounts for the fact the energy space has been logarithmically

discretised). Namely, we make the replacement

δ(ω −∆E) −→


e−b

2/4

|∆E|b
√
π

exp

[
−
(

ln(ω/∆E)
b

)2
]

sgn(ω/∆E) = 1

0 otherwise

(2.4.17)

which is normalised to preserve the area under the curve5. We call b the broad-

ening factor. The value it should take depends on Λ and is somewhat ambiguous.

We determine it by computing spectral densities for the uncoupled 2IAM, and find

what value of b best satisfies the Friedel sum rule without introducing too many

numerical artefacts (in practice, some oscillations in the spectra are unavoidable).

We use b = 1.25 for Λ = 6. The conventional method is used to calculate ρα(ω)

for the channel symmetric uncoupled 2IAM and we compare this to the spectral

density calculated for the 1IAM (with equal coupling constants) in figure 2.6. In

principle, the results should be equal. However, the spectra differ in two key ways.

The value of π∆ρα(0), fixed by the Friedel sum rule, is erroneously represented in

5As the NRG proceeds, we expect ∆E ∼ Λ−N/2. It follows that ∆E will become close to zero,

and given that we are using double precision, numerical issues can arise. For ∆E . 10−14, the

factor of 1/∆E can blow up since small numerical errors in ∆E can cause large errors in 1/∆E.
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Figure 2.6: Comparison of the 1-particle spectral densities for the p-h symmetric

1IAM and uncoupled 2IAM as calculated using the conventional method. For the

1IAM we obtain π∆ρ(0) = 1.12 whilst for the 2IAM we find π∆ρ(0) = 0.94. The
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ωmax = 2.4ωN .
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each calculation, and the areas under the curves should satisfy
∫∞
−∞dω ρα(ω) = 1.

These observations underline several curable failings in the conventional method.

Firstly, the excitations of the system are computed with respect to only the lev-

els of the iteration N . Therefore the ground state, as well as other excited states,

is incorrectly identified. In order to get around this problem, we must allow the

iterative diagonalisation to complete, and use the final ground state in our calcula-

tions. This approach proceeds by computing the density matrix for the full NRG

chain, and reducing sequentially to obtain a reduced density matrix corresponding

to the impurity. Secondly, the conventional method assumes that equation (2.4.14)

is a faithful representation of (2.4.2). This is not true as the truncation necessarily

results in an incomplete eigenspace. Finally, the spectra depend very strongly on

the values of ωmin and ωmax that one chooses; these directly effect the area under

the curves and the height of any peaks. These three shortcomings can be rectified

through more formal calculation of the correlation functions. The authors of [92]

and [93] identify a complete basis set generated by the NRG, which allows reliable

computation of the trace [36, 37]. We also must identify the system ground state

as the ground state of the final NRG iteration. We can then build a density matrix

and calculate (2.4.2) much more accurately.

2.4.3 Anders-Schiller Complete NRG Basis

The established approach to the iterative diagonalisation of the NRG posits that

one starts with an impurity system (coupled to a conduction electron site on each

chain) and increases the length of the chains at each iteration. However, an alter-

native approach is to suppose that the length M of the chains is predetermined and

constant for all iterations, and only the hopping matrix elements are changed. At

iteration N , the hopping element tN = Λ−N/2ξN is switched on, while all hopping

elements tN+1 . . . tM−1 remain zero. As in [36, 92, 93], we adopt the latter inter-

pretation. Correspondingly, the energies of HN acquire an additional degeneracy

16M−N , which comes from taking the sites N + 1, N + 2 . . .M for each bath as an

environment (similar to Hofstetter’s approach to calculating local Green functions

[35]) as depicted in figure 2.7. We define the set of states corresponding to the
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Figure 2.7: Illustration of the 2IAM at iteration N of a total M . An environment,

described by Henv
N,M = H1

N,M+H2
N,M , is identified in which all the hopping amplitudes

tN , tN+1 . . . tM−1 are zero. The Hamiltonian HN then acts on the entire model, with

M + 1 sites on each chain.

uncoupled site N on each channel to be

{|ψ;N〉} = {|φ;N〉1 ⊗ |φ;N〉2} ∀ |φ;N〉α ∈
{
|0;N〉α , |↑;N〉α , |↓;N〉α , |↑↓;N〉α

}
.

(2.4.18)

It follows that the set of states

|r;N〉
M⊗

N ′=N+1

{
|ψ;N ′〉

}
(2.4.19)

are all eigenstates of HN with eigenvalue Er(N); these encompass the additional en-

ergy degeneracies. We account for these by including an environment label e, which

contains all possible configurations of the environment states. The eigenstates of

HN are thus denoted |r, e;N〉.

We denote Nmin as the first iteration where states are truncated. In contrast to the

conventional NRG, the truncated states are now retained (but not used to progress

the NRG) and labelled as |r, e;Nmin〉dis, whilst the remaining states are labelled as

|r, e;Nmin〉kp. We continue this process as depicted in figure 2.8, up until iteration

M , where all states of HM are to be regarded as truncated. Since this procedure

keeps track of all the states generated from the NRG, which are initially complete, we

are able to build from them a complete basis. After the NRG has reached iteration

M , we may compile these states and observe

I =

M∑
N=Nmin

∑
r,e

|r, e;N〉dis dis〈r, e;N | (2.4.20)

where it is important to note that r and e are N -dependent. Since all the retained

states at iteration N are used to compute the states at iteration N + 1, there is a

relationship between the states |r, e;N〉kp and all eigenstates of subsequent Hamil-

tonians. To visualise this, the identity operator may be divided into I = I−N + I+N
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Figure 2.8: The construction of a complete basis from the iterative diagonalisation.

Truncation first occurs at iteration N = Nmin, and from then onwards all truncated

states (enclosed by the green boxes) at iterationN are stored as |r, e;N〉dis. Regarding

the final set of states, corresponding to HM , as truncated, the collection of truncated

states is complete. We further note in the text a relationship between states |r, e;N〉kp
retained at iteration N (enclosed in the orange boxes) and all subsequent eigenstates.

where

I−N =

N∑
N ′=Nmin

∑
r,e

|r, e;N ′〉dis dis〈r, e;N
′| (2.4.21)

and

I+N =

M∑
N ′=N+1

∑
r,e

|r, e;N ′〉dis dis〈r, e;N
′|. (2.4.22)

We see that I−N projects onto the subspace spanned by all truncated states up to

iteration N , whilst I+N projects onto the subspace spanned by all subsequent eigen-

states. However, one may argue that at iteration N , the collection of all truncated

states and those retained is complete. Therefore the operator I+N must also project
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onto the subspace spanned by the retained states at iteration N , such that

I+N =
∑
r,e

|r, e;N〉kp kp〈r, e;N |. (2.4.23)

We hence have a complete basis that may be constructed from any N ≤ M , with

which one may compute the Green function and spectral density.

2.4.4 Complete Fock Space Approach to T = 0 Green Functions

One of the failings of the conventional method for NRG calculation of dynamic

quantities is its inability to identify the ground state. As argued in [35], a way

around this is to allow the NRG to reach the final iteration M , and construct the

density matrix using the final states. The density matrix is then to be reduced

by tracing out the environment degrees of freedom. The iteration scheme for this

procedure is derived in appendix E. Following the discussions in [36] and [37], we

now demonstrate how calculation of the dynamic quantities using the NRG proceeds

given the complete Anders-Schiller basis and reduced density matrix. Similar to the

conventional method, we make the assumption that the complete basis is also an

approximate eigenbasis of HM , such that

HM |r, e;N〉dis ' Er(N) |r, e;N〉dis , (2.4.24)

where Er(N) is the scaled energy. Equivalently, we assume that the complete basis

satisfies H |r, e;N〉dis ' εr(N) |r, e;N〉dis. These assumptions are validated by the

notion that at iteration N we have a good sampling of energies on the scale ωN .

At this point, we distinguish between the approaches taken in [36] and [37]; the full

density matrix, ρ = 1
ZM

e−βH , is determined by the insertion of the identity (2.4.20)

such that

ρ =
1

ZM

M∑
N=Nmin

∑
r,e

e−βεr(N) |r, e;N〉dis dis〈r, e;N | (2.4.25)

as in [37]. However, we could approximate to T ∼ 0 and argue that since each

iteration HN corresponds to a separate temperature scale, thermodynamic proper-

ties evaluated at that scale can be approximately described by the energies of HN .

Making this argument, the density matrix becomes

ρ ≈ 1

ZM

∑
r

e−βEr(M) |r;M〉 〈r;M | (2.4.26)

with ZM =
∑

r e−βεr(M). This approximation is used in [36] and we shall adopt it in

this work, but we stress that our results are only valid for T = 0. We also point out
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that the eigenstates |r;M〉 are elements of the complete basis, and are orthogonal to

all |r, e;N〉dis for N 6= M . Given these precursors, we derive the full Green function

(2.4.2) following the arguments of [36]. The result is

GAB(z) = Gi
AB(z) +Gii

AB(z) +Giii
AB(z) (2.4.27)

where

Gi
AB(z) =

1

ZM

∑
l1,l2

[
AM

]
l1,l2

[
BM

]
l2,l1

e−βεl1 (M) + se−βεl2 (M)

z −
[
εl2(M)− εl1(M)

] (2.4.28)

accounts for contributions from the final NRG iteration M , whilst

Gii
AB(z) =

M−1∑
N=Nmin

∑
l

∑
k1,k2

[
AN

]
l,k1

[
ρNred

]
k1,k2

[
BN

]
k2,l

s

z −
[
εk2(N)− εl(N)

]
(2.4.29)

and

Giii
AB(z) =

M−1∑
N=Nmin

∑
l

∑
k1,k2

[
BN

]
l,k1

[
ρNred

]
k1,k2

[
AN

]
k2,l

1

z −
[
εl(N)− εk2(N)

]
(2.4.30)

respectively account for the negative and positive frequency contributions. In the

above expressions we follow [36] and define l to sum over the discarded states, and k

to sum over the retained states. The reduced density matrix ρNred is constructed as

in Hofstetter’s approach [35], and we apply the formalism to the 2IAM in appendix

E. In addition, the matrix elements are defined as[
AN

]
l,k

= 〈l;N |A |k;N〉 (2.4.31)

with the expression of B being similar6. We choose a notation which illustrates that

in the numerics, one may perform these calculations using matrix multiplication

which, as we have discussed, gives rise to a boost in computational efficiency.

This formalism of the Green function contains no truncation errors due to the trace,

and always satisfies the spectral sum rule7 given in (2.4.11). Using this method,

6Provided the bra and ket states carry equal environment labels, the local matrix element is

independent of them. Environment labels are thus suppressed, and local matrix elements can be

calculated in exactly the same way as the conventional approach to spectral densities.
7This is true for T = 0, but for finite temperatures we must treat the density matrix more

generally. See [37] for more details.
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we compute the dynamic quantities listed in section 2.4.1. These quantities are

discussed extensively throughout this work. It is important to note that the NRG

still fails to satisfy π∆ρα(0) = 1, instead we find π∆ρα(0) ≈ 0.85 representing a

systematic 15% underestimation which should be taken into account whenever we

require the value of ρα(0).

The origin of this error is in the discretisation of the model. In the formulation

of the Wilson chain, one expands sections of the conduction band into a Fourier

series, each term of which is labelled by an index p. The impurity only couples

directly to the p = 0 term, which is then coupled to p > 0 terms. The strength of

this latter coupling is characterised by (1−Λ−1)/2π, and is therefore very weak for

small Λ. The higher p terms are neglected, giving rise to the observed error, which

increases as Λ increases. We use a considerably large Λ and as a result our errors

are also reasonably large.

Since this error emerges from the value of Λ used (and also how we broaden the

discrete spectra into a continuous one), there is no dependence on any other model

quantities (such as coupling constants). We have tested this extensively, by compar-

ing the value of ρα(0) to that obtained by means of RPT (see next chapter) and we

find that the error is systematic. This is further evidenced by figure 5.21 in chapter

5 which shows that when this error is accounted for, the two methods agree very

well, even when the low-energy FL regimes differ.

2.5 The Discrete vs Continuum Model

Under the NRG mapping and approximations outlined in section 2.1, we seek to

understand the continuum model (2.1.1) by studying the discrete model (2.1.2).

However, the physical quantities calculated for each model are progressively more

inconsistent as Λ increases. For example, when one calculates the static spin sus-

ceptibility [25], or the bulk density of states [94], the results differ by a factor of

AΛ =
1

2

Λ + 1

Λ− 1
ln(Λ). (2.5.1)

As a result, for large Λ the results become increasingly less reliable. This can be

prevented by accounting for the AΛ factor by rescaling the hybridisation width in

the discrete model. We define the hybridisation width of the continuum and discrete
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models respectively as ∆cont and ∆dis, and they are related by

∆dis = AΛ∆cont. (2.5.2)

All quantities calculated using the NRG for a quoted ∆cont have a hybridisation

width ∆dis. We shall often use the value of ρα(0) to compare NRG results with

RPT results, and also to calculate local occupancies via the Friedel sum rule. We

therefore must establish the relation between the spectral densities in the continuum

and discrete models, respectively denoted ρdis
α (ω) and ρcont

α (ω). We argue that local

occupation should be equal in the discrete and continuum models which, by the

Friedel sum rule, implies

∆disρdis
α (0) = ∆contρcont

α (0). (2.5.3)

We thus quote values of ρcont
α (0) given by

ρcont
α (0) = AΛρ

dis
α (0). (2.5.4)

Subject to the usual 15% systematic error, we consistently obtain good agreement

with the Friedel sum rule. When we quote results in terms of ∆, we are referring to

the continuum value ∆cont, and likewise results for ρα(0).
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Chapter 3

Renormalised Perturbation

Theory: Parameters and

Dynamic Quantities

The NRG, discussed in the previous chapter, provides a formalism which allows us

to calculate static and dynamic quantities of the 2IAM, which remain valid over all

energy scales reached by the iterative diagonalisation algorithm. However it provides

no obvious insight into how the structure of the Hamiltonian changes with the energy

scale, whether new types of interactions emerge, or the relevance of a quasiparticle

picture. The RPT presumes a low-energy FL structure of the Hamiltonian, in terms

of renormalised coupling constants and quasiparticles, and is applied in this chapter

to calculate dynamic quantities (also in terms of the renormalised parameters). It is

not immediately obvious how dynamic quantities in terms of unknown renormalised

coupling constants will be useful in our investigations; however, these renormalised

parameters may be calculated using the NRG. The combination of approaches is

very powerful and provides quantitative insight into the low-energy structure, and

any emergent symmetry, of the Hamiltonian. We make extensive use of the RPT in

our analysis of the emergent SU(4) behaviour in chapter 4, as well as the quantum

critical point we consider in chapter 5.
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3.1 Calculation of Renormalised Parameters and the

NRG

We are able to calculate the renormalised parameters using the NRG, by the ap-

proaches developed in [40, 95, 96]. The interaction terms are to be considered as a

perturbation to the non-interacting NRG Hamiltonian (2.1.6). Suppose we consider

the free Hamiltonian at iteration N for bath α, denoted H0
α(N), such that each

channel contains N + 2 sites (including their respective impurities). We define a

basis |i〉 = c†αiσ |0〉 , (c
†
α−1σ = d†ασ) for fixed σ so that we may build a spin-dependent

matrix representation of the Hamiltonian and calculate the local Green function. It

follows from the (2.1.6) that

H0
α(N) =



Λ(N−1)/2εα −Λ(N−1)/2Vα 0 0 · · ·
−Λ(N−1)/2Vα 0 −Λ(N−1)/2ξ0 0

0 −Λ(N−1)/2ξ0 0 −Λ(N−2)/2ξ1

0 0 −Λ(N−2)/2ξ1 0
...

. . .


. (3.1.1)

The indices i which label elements in the Hamiltonian are chosen to span i ∈
{−1, 0, 1 . . . N} such that i = −1 corresponds to the impurity site. The local Green

functions for the non-interacting system are the matrix elements of the resolvent,

Rα(ω) =
(
ωI−H0

α(N)
)−1

[87]. We hence define the non-interacting local impurity

Green function G
(0)
α (ω) = 〈−1|Rα(ω) |−1〉. Using the identity(

A B

C D

)−1

=

( (
A−BD−1C

)−1 (
BD−1C −A

)−1
BD−1

D−1C
(
BD−1C −A

)−1 (
D − CA−1B

)−1

)
, (3.1.2)

which assumes matrices A and D are invertible, we calculate G
(0)
α (ω) recursively in

terms of the local Green functions of the conduction sites as

G(0)
α (ω) =

1

ω − Λ(N−1)/2εα − ΛN−1V 2
α g00(ω)

, (3.1.3)
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where g00(ω) = 〈0|Rα(ω) |0〉 is the local Green function corresponding to the first

conduction site1 given by

g00(ω) =
1

ω −
ξ2

0ΛN−1

ω −
ξ2

1ΛN−2

. . .
Λξ2

N−1

ω −
ξ2
N

ω

(3.1.4)

where the Green function on the final site in the NRG chain is given by

gNN (ω) =
1

ω
. (3.1.5)

Given the impurity Green function and following [40], we are able to calculate the

renormalised parameters corresponding to the quadratic part of the Hamiltonian,

using that the 1-particle excitations are given by the poles of the Green function,

and also that the NRG provides the energy of these excitations. We therefore require

E − Λ
(N−1)/2εα − ΛN−1V 2

α g00(E) = 0 (3.1.6)

for E denoting the energies of the 1-particle excitations, relative to the ground state.

The NRG provides the excitation energies of the system in terms of quasiparticles,

relative to a ground state Q = 0. The 1-particle excitation energies at iteration N ,

Epα(N) and Ehα(N), for the ‘particle’ and ‘hole’ quasiparticles are given respectively

by the lowest energies of the Qα = 1, Sz = 1/2 and Qα = −1, Sz = −1/2 sectors. Note

that these energies may lie in any of the S = 1/2, 3/2, 5/2 . . . sectors. We hence obtain

the equations

Epα(N)− Λ
(N−1)/2εα(N)− ΛN−1Vα(N)2g00(Epα(N)) = 0

−Ehα(N)− Λ
(N−1)/2εα(N)− ΛN−1Vα(N)2g00(−Ehα(N)) = 0,

(3.1.7)

where we have promoted the coupling constants εα and Vα to carry N -dependence.

These equations may be solved simultaneously so that

πεα(N)

2∆α(N)
= Λ

(N−1)/2Ehα(N)g00(Epα(N)) + Epα(N)g00(−Ehα(N))

Epα(N) + Ehα(N)

π

2∆α(N)
= ΛN−1 g00(Epα(N))− g00(−Ehα(N))

Epα(N) + Ehα(N)
,

(3.1.8)

1In the model we consider, both Wilson chains are identical, so the conduction site Green

functions do not carry the label α.
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and we define our renormalised parameters by

ε̃α = lim
N→∞

εα(N)

∆̃α = lim
N→∞

∆α(N).
(3.1.9)

We now turn our attention to the calculation of interaction parameters; we may

separate the Hamiltonian into a free part H0
α(N), and an interaction term H ′(N).

The free Hamiltonian may be diagonalised and written in terms of quasiparticle

creation / annihilation operators. These are respectively pαr and hαr, where r

labels the energy of the excitation. We write

H0
α(N) =

N/2∑
r=0

Epαr(N)p†αrσpαrσ + Ehαr(N)h†αrσhαrσ (3.1.10)

where N is even and Epαr(N) is the energy of a r+1 particle excited state (similarly

defined for hole states). The impurity site operators dασ may be written in terms of

the particle and hole operators by means of a basis transformation;

dασ =

N/2∑
r=0

(
ψpαr(−1)pαrσ + ψhαr(−1)h†αrσ̄

)
(3.1.11)

with σ̄ = −σ. The impurity Green function at iteration N is then given by

G(0)
α (ω) =

∑
r

|ψpαr(−1)|2

ω − Epαr(N)
+
∑
r

|ψhαr(−1)|2

ω + Ehαr(N)
. (3.1.12)

If one performs a Laurent expansion about a simple pole, corresponding to either

Epα(N) or Ehα(N), and (infinitesimally close to the pole) equates the result to the

continued fraction above then one may show that

|ψpαr(−1)|2 =
1

1− ΛN−1Ṽ 2
α∂ωg00(Epαr)

(3.1.13)

and

|ψhαr(−1)|2 =
1

1− ΛN−1Ṽ 2
α∂ωg00(−Ehαr)

. (3.1.14)

The calculation of these overlaps, and the expression of the impurity electron op-

erators in terms of the quasiparticle operators, sets the stage for the application of

perturbation theory. To compute the renormalised on-site Coulomb interaction, we

consider a perturbative correction to the transformed Hamiltonian, denoted HUα(N)

and given by

HUα(N) = Ũα(N)Λ(N−1)/2 : d†α↑dα↑d
†
α↓dα↓ :, (3.1.15)
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which is normally ordered to enforce the requirement that the Coulomb interaction

takes place between 2 quasiparticles, and includes the factor Λ(N−1)/2 to account for

the rescaling [40, 95]. As N → ∞, the interaction coupling constants tend to zero

as the system becomes free. We therefore calculate only the first order corrections

to the low lying states, and thus obtain an estimate of Ũα. In the Brillouin-Wigner

perturbation theory, the first order approximation to the energy eigenvalues is the

expectation value of the perturbative Hamiltonian in the corresponding unperturbed

eigenstate. The lowest energy 2-particle state for bath α, |pp;α〉 = p†α0↓p
†
α0↑ |0〉, gives

a correction

〈pp;α|HUα(N) |pp;α〉 = Ũppα(N)Λ(N−1)/2 |ψpα0(−1)|2 |ψpα0(−1)|2 . (3.1.16)

This may be computed directly from the NRG, and for the 2-particle state is given

by

〈pp;α|HUα(N) |pp;α〉 = Eppα(N)− 2Epα(N) (3.1.17)

where Eppα(N) is the lowest energy 2-particle state. We hence write the renormalised

Uppα as

Ũppα = lim
N→∞

Λ−(N−1)/2 Eppα(N)− 2Epα(N)

|ψpα0(−1)|2 |ψpα0(−1)|2
. (3.1.18)

In the same way, one may compute the particle-hole and hole-hole on-site Coulomb

interactions, Ũphα and Ũhhα respectively. The inter-impurity Coulomb interaction

is similarly calculated. We take a perturbative Hamiltonian

HU12(N) = Ũ12(N)Λ(N−1)/2
∑
σσ′

: d†1σd1σd
†
2σ′d2σ′ : (3.1.19)

and we find that the inter-impurity Coulomb coupling constant splits into four vari-

ants, between a particle and hole in each channel. As before the renormalised inter-

action takes the form

Ũ12 p1p2 = lim
N→∞

Λ−(N−1)/2Ep1p2(N)− Ep1(N)− Ep2(N)

|ψp10(−1)|2 |ψp20(−1)|2
, (3.1.20)

with the other variants taking similar forms. Finally, the renormalised inter-impurity

magnetic interaction J is determined by considering the Hamiltonian

HJ(N) = 2J̃(N)Λ(N−1)/2 : S1 · S2 : (3.1.21)

which introduces an energy splitting between singlet and triplet states. We denote

ES p1p2 the lowest energy singlet (S = 0) state for a system with one quasiparticle
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on each impurity, and ET p1p2 the lowest energy triplet (S = 1) state for the same

system. We also define the matrix elements, evaluated respectively at the singlet

and triplet energies as

|ψS α p1p2 |
2 =

1

1− ΛN−1Ṽ 2
α∂ωg00(ES p1p2/2)

(3.1.22)

and

|ψT α p1p2 |
2 =

1

1− ΛN−1Ṽ 2
α∂ωg00(ET p1p2/2)

. (3.1.23)

The renormalised J is then written as

2J̃p1p2 = lim
N→∞

Λ−(N−1)/2 ET p1p2(N)− ES p1p2(N)

|ψT 1 p1p2 | |ψT 2 p1p2 | |ψS 1 p1p2 | |ψS 2 p1p2 |
, (3.1.24)

and the interactions between other particle/hole variants are analogous [96, 95]. The

renormalised parameters give insight into the low-energy behaviour of the system.

The quasiparticle level ε̃α corresponds to the energy of the quasiparticle resonance.

In a system with p-h symmetry in channel α, ε̃α = 0 since the resonance forms at

the Fermi level. The system enters the low-energy regime for temperatures of order

TK, which is set by the bare model parameters. If we have a reasonably large Λ (say

Λ = 6) then we can reach this temperature scale in fewer NRG iterations than for

smaller Λ. For Λ = 6 we find around 30 iterations to be sufficient for the parameters

to plateau. Typically, the renormalised parameters plateau when they are equal to

around 5 significant figures.

3.2 Renormalised Perturbation Theory and the Ander-

son Model

We now introduce the RPT for the 2IAM2, following the methods outlined in

[97, 98, 99, 54]. RPT takes the approach of rescaling our bare Fermionic fields

and the coupling constants, in a manner achieved by expressing the Hamiltonian

and Green function in a low-energy form. Furthermore, it relates the bare couplings

to the renormalised couplings precisely. RPT differs from bare perturbation theory

in the following sense: in bare perturbation theory, one calculates a series expan-

sion in terms of the bare parameters. In the RPT, we perform a non-perturbative

method to calculate the low-energy FP in terms of renormalised parameters. We

then perturb the low-energy system and expand in these renormalised parameters.

2The formalism is analogously applied to the 1IAM.
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Although we consider the model in the absence of a local magnetic field, certain

dynamic quantities (ie spin susceptibility) require that we explicitly include one,

which we label hα. The localised d-level energy is then given by εασ = εα − σhα.

In practice, we always set hα = 0. The 1-particle local Green function of the non-

interacting impurity electrons of the 2IAM is given by

G(0)
ασ(ω) =

1

ω − εασ + i∆ασsgn(ω)
(3.2.1)

as shown in [59]. The inclusion of interactions is accomplished by introduction of

a self-energy Σασ(ω, h) [54]. This is defined in terms of the full (interacting) Green

function Gασ(ω) by the Dyson equation

Σασ(ω, h) =
[
G(0)
ασ(ω)

]−1
−
[
Gασ(ω)

]−1
(3.2.2)

so that the interacting impurity Green function takes the form

Gασ(ω) =
1

ω − εασ + i∆ασsgn(ω)− Σασ(ω, h)
. (3.2.3)

In order to understand how the model behaves at low energies, which will corre-

spond to the FPs of the RG, we assume that the FPs of the system are described

by quasiparticles in a FL regime. FLs, which describe the low-temperature interac-

tions of electrons in a typical metal, have a number of properties which are worth

noting. Both the specific heat and entropy scale linearly with T , the resistivity

as T 2, while the thermal conductivity coefficient goes as T−1. The self energy sat-

isfies ImΣ(ω) ∼ ω2 for small ω. Good introductions to this theory are [100] and [101].

Since ImΣ(ω) ∼ ω2, we expect the renormalised self-energy Σ̃ασ(ω, h) to vanish as

ω → 0, and the renormalised Green function G̃ασ(ω) will describe a non-interacting

system with renormalised coupling constants ε̃ασ and ∆̃ασ. To acquire the desired

form, we expand Σασ(ω, h) around ω = 0;

Σασ(ω, h) = Σασ(0, h) + ω∂ωΣασ(ω, 0)
∣∣∣
ω=0

+ Σrem
ασ (ω, h), (3.2.4)

where we have defined the ‘remainder’ self-energy Σrem
ασ (ω, h) ∼ O

(
ω2
)
. Upon in-

sertion into the full Green function we obtain

Gασ(ω) =
1

[1− ∂ωΣασ(0, 0)]ω − [εασ + Σασ(0, h)] + i∆ασsgn(ω)− Σrem
ασ (ω, h)

,

(3.2.5)
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from which we can define the renormalised Green function,

G̃ασ(ω) =
1

ω − ε̃ασ + i∆̃ασsgn(ω)− Σ̃ασ(ω, h)
(3.2.6)

in terms of renormalised parameters. These are given by

ε̃ασ = zασ [εασ + Σασ(0, h)]

∆̃ασ = zασ∆ασ

Σ̃ασ(ω) = zασΣrem
ασ (ω, h),

(3.2.7)

where the quasiparticle weight is defined as

zασ =
1

1− ∂ωΣασ(0, 0)
(3.2.8)

and scales the bare particles into quasiparticles d̃†ασ = d†ασ/
√
zασ. Note that zασ

and ε̃ασ are real; this follows from the Luttinger theorem Im [Σασ(0, h)] = 0 [102].

Furthermore, the renormalised self-energy Σ̃ασ(ω, h) scales asO(ω2) by construction,

so that exactly at the low-energy FP, where ω2 ∼ 0, the system is described by a

free effective Hamiltonian H̃0 similar to the original model, except with renormalised

parameters and no quartic interaction terms;

H̃0 =
∑
αk

εαkc
†
αkσcαkσ +

∑
αk

Ṽασ

[
c†αkσd̃ασ + d̃†ασcαkσ

]
+
∑
σ

ε̃ασd̃
†
ασd̃ασ. (3.2.9)

The conduction electrons do not interact and therefore do not renormalise. It follows

from (3.2.3) that the 1-quasiparticle Green function at the free FL FP is given by

G̃(0)
ασ(ω) =

1

ω − ε̃ασ + i∆̃ασsgn(ω)
(3.2.10)

and the non-interacting quasiparticle density of states is

ρ̃(0)
ασ(ω) =

1

π

∆̃ασ

(ε̃ασ − ω)2 + ∆̃ 2
ασ

. (3.2.11)

Hence the free model satisfies

ñασ =
1

2
− 1

π
arctan

(
ε̃ασ

∆̃ασ

)
(3.2.12)

which is equivalent to the exact result due to Langreth [60] and we obtain nασ = ñασ,

which has been proved in [103]. From this equality, our assumption that the low-

energy system is a Fermi liquid, and (1.3.8), we have that the quasiparticle spectral

density and the bare spectral density are related by

ρα(0) = zαρ̃α(0). (3.2.13)
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For small ω, we can thus approximate ρα(ω) ' zαρ̃α(ω). Away from the FL fixed

point, we have interactions governed by the renormalised parameters Ũα, Ũ12 and

J̃ . To understand how they renormalise (and also to motivate the diagrammatic

perturbation theory) we write the quartic terms of the bare Hamiltonian as

H(4) =
∑
α

Uα
2
d†ασd

†
ασ′dασ′dασ +

2U12 − J
4

∑
α6=α′

d†ασd
†
α′σ′dα′σ′dασ

− J

2

∑
α6=α′

d†ασd
†
α′σ′dασ′dα′σ,

(3.2.14)

which illustrates the terms, and their couplings, responsible for 2-particle inter- and

intra-channel scattering. The renormalisation of the couplings can be defined in

terms of the 4-point vertex function

Γα1σ1;α2σ2
α3σ3;α4σ4

(ω1, ω2, ω3, ω4)

=

 4∏
j=1

∫ ∞
−∞

dτj
2π

e−iωjτj

〈Tτdα1σ1
(τ1) dα2σ2

(τ2) d†α3σ3
(τ3) d†α4σ4

(τ4)
〉
,

(3.2.15)

where Tτ denotes time ordering, which is scaled by the quasiparticle weights

Γ̃α1σ1;α2σ2
α3σ3;α4σ4

(0, 0, 0, 0) =
√
z1z2z3z4Γα1σ1;α2σ2

α3σ3;α4σ4
(0, 0, 0, 0). (3.2.16)

The renormalised interaction strengths then satisfy

Γ̃α1σ1;α2σ2
α3σ3;α4σ4

(0, 0, 0, 0) = Ũαδ
α
α1
δαα2

δαα3
δαα4

[
δσ1
σ4
δσ2
σ3
− δσ1

σ3
δσ2
σ4

]
+

(
Ũ12 −

J̃

2

)[
δα1
α4
δα2
α3
δσ1
σ4
δσ2
σ3
− δα1

α3
δα2
α4
δσ1
σ3
δσ2
σ4

]
− J̃

[
δα1
α3
δα2
α4
δσ1
σ4
δσ2
σ3
− δα1

α4
δα2
α3
δσ1
σ3
δσ2
σ4

]
,

(3.2.17)

where we follow [104], and can be calculated individually by invoking their respective

cases of the 4-point function.

3.3 The Kondo Temperature

We identify the Kondo temperature TK α as the energy scale below which the im-

purity system α enters its low-energy FL regime, however we note that it is only

meaningful if this scale is universal (so that there is strong correlation). Otherwise

TK α is simply the renormalised temperature scale. TK α is therefore related to the

degree of renormalisation required to bring the system to the low-energy FP, which

72



is characterised by the quasiparticle weight zα. Throughout our work, we thus define

the Kondo temperature by

TK α =
1

4
π∆̃. (3.3.1)

At p-h symmetry, when a single electron resides on each impurity, we may enter a

Kondo regime in the limit of strong local Coulomb interactions compared to hybridi-

sation amplitude. When this regime is reached we find Ũα = π∆̃α. We demonstrate

the emergence of the Kondo regime in figure 3.1, and show that when we are in

this regime, the system is exponentially renormalised with respect to Uα. This is

characterised by TK α ∼ e−Uα/π∆.

Since TK α corresponds to the energy scale of the low-energy FP, it is possible to

probe an impurity system to measure it. On the low-energy scale we describe the

system in terms of quasiparticles in a FL, and the energy scale where they emerge

corresponds to a peak in the spectral density. TK α is therefore given (approximately)

by the width of the quasi-particle peak in ρα(ω). We note that when the low-energy

FP does not correspond to a FL, our definition of TK α breaks down. In this case,

relevant to our discussion in chapter 5, we can estimate TK α from the width of the

low-energy resonance in ρα(ω).

We also point out that there are several different definitions of TK. As an extension

of Kondo’s perturbative treatment of the s-d model, [16] showed that the divergence

characterising the failure of this treatment occurred at a temperature

T ∼ De−
1/2Jρ(0), (3.3.2)

which one can also use as a definition of TK. Through the inclusion of a magnetic

field in the s-d model, [105] related the T = 0 spin susceptibility χ(0) to the Kondo

temperature by

TK =
(gµB)2

4χ(0)
(3.3.3)

where g is the spin g-factor, and µB is the Bohr magneton. At p-h symmetry

(where low-energy Kondo physics emerge), and in the strong correlation regime, our

definition of TK is equivalent to this, where we set gµB = 1.
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Figure 3.1: Renormalised parameters for the uncoupled channel symmetric, p-h

symmetric 2IAM. For U/π∆ > 3, we enter the strong correlation limit where Ũ '
π∆̃ and the model is governed by Kondo physics. TK, shown in the inset, exhibits

logarithmic dependence on U in the strong correlation limit.

74



3.4 Counter-terms and Diagrammatic Perturbation

Theory

The approach above allows one to very easily determine the renormalised parameters

and quasiparticle density of states by making the assumption that the low-energy

Hamiltonian is given by (3.2.9). However, the renormalised Hamiltonian H̃ is only

valid over very small energy scales and therefore is clearly not equivalent to the

full (bare) Hamiltonian H. The high-energy physics is contained in counter-terms;

these are constraints which effectively cancel the divergences from the renormalised

theory. We express the bare impurity system3 as the Lagrangian

L =
∑
ασ

d†ασ (τ)
[
∂τ + εασ − i∆ασ

]
dασ (τ) +

∑
α

Uαnα↑ (τ)nα↓ (τ)

+ U12

∑
σσ′

n1σ (τ)n2σ′ (τ) + 2JS1 (τ) · S2 (τ) ,
(3.4.1)

whilst the Lagrangian of the renormalised system is given by

L̃ =
∑
ασ

d̃†ασ (τ)
[
∂τ + ε̃ασ − i∆̃ασ

]
d̃ασ (τ) +

∑
α

Ũαñα↑ (τ) ñα↓ (τ)

+ Ũ12

∑
σσ′

ñ1σ (τ) ñ2σ′ (τ) + 2J̃S̃1 (τ) · S̃2 (τ) ,
(3.4.2)

and τ is used to denote imaginary-time. We construct a counter-term Lagrangian

LCT =
∑
ασ

d̃†ασ (τ) [λ2,α,σ∂τ + λ1,α,σ] d̃ασ (τ) +
∑
α

λ3,αñα↑ (τ) ñα↓ (τ)

+ λ4

∑
σσ′

ñ1σ (τ) ñ2σ′ (τ) + λ5S̃1 (τ) · S̃2 (τ) ,
(3.4.3)

and demand that it contains the high-energy behaviour of our system, so that

L = L̃+ LCT. (3.4.4)

We thus obtain expressions for the counter-terms

λ1,α,σ = −zαΣασ(0, h)

λ2,α,σ = zα − 1

λ3,α = z 2
αUα − Ũα

λ4 = z1z2U12 − Ũ12

λ5 = 2z1z2J − 2J̃ .

(3.4.5)

3For simplicity, we leave out terms corresponding to the bulk as these play no role here.
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Having formalised the difference between the renormalised and bare Hamiltonians,

we now mention the difference between renormalised and bare quantities as pertain-

ing to measurement in a laboratory. If an experiment takes place on some energy

scale, then the quantities and couplings the experimentalist would measure are those

which are renormalised to that scale. On higher energy scales the couplings would

become more like the bare couplings, whilst on lower energy scales they tend towards

those defined by the stable FP. As an example, if a 1IAM was cooled to temperatures

below TK, and an experimentalist attempted to measure the value of U , they would

measure Ũ .

Using the counter-terms, and our definitions of the renormalised parameters, we

are able to perform diagrammatic perturbation theory on the low-energy system.

The counter-terms are expanded in terms of the renormalised interaction parame-

ters, with the coefficients being determined by the renormalisation conditions

Σ̃σ(0, 0) = 0,

∂ωΣ̃σ(0, 0) = 0,
(3.4.6)

and (3.2.17). These follow from the requirement that the low-energy FP is a FL.

The reorganised renormalised Hamiltonian

H̃ =
∑
αk

εαkc
†
αkσcαkσ +

∑
αk

Ṽα

[
c†αkσdασ + d†ασcαkσ

]
+
∑
α

ε̃αd
†
ασdασ

+
∑
α

Ũα
2
d†ασd

†
ασ′dασ′dασ +

2Ũ12 − J̃
4

∑
α 6=α′

d†ασd
†
α′σ′dα′σ′dασ

− J̃

2

∑
α 6=α′

d†ασd
†
α′σ′dασ′dα′σ,

(3.4.7)

gives rise to the interaction vertices shown in figure 3.2. The general Feynman rules,

derived in [106] and [107], are adapted for our model and we list them as:

1. Vertices associated to the intra-impurity Coulomb interaction (figure 3.2a) on

dot α contribute a factor of −iŨα.

2. Vertices associated to the inter-impurity direct term (figure 3.2b) contribute a

factor −i(Ũ12 − J̃/2).

3. Vertices associated to the inter-impurity exchange term (figure 3.2c) contribute

a factor +iJ̃ .
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Ũα

α, σ α, σ

α, σ̄ α, σ̄

(a)

(
Ũ12 − J̃/2

)

α, σ α, σ

α′, σ′ α′, σ′

(b)

−J̃

α′, σ α, σ

α, σ′ α′, σ′

(c)

Figure 3.2: The scattering events, with their corresponding vertex factors, allowed

by the renormalised Hamiltonian (3.4.7). We use the convention that α 6= α′. In (a),

we see that scattering due to the local intra-impurity Coulomb term arises between

opposite-spin electrons in the same channel. The direct, inter-impurity scattering

shown in (b) scatters electrons in different channels, and does not depend on the spin.

Meanwhile in (c), the exchange (Heisenberg) term scatters electrons into different

channels.
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4. Internal propagators of energy ω and spin σ in channel α contribute a factor

iG̃
(0)
ασ(ω). If evaluating a self-energy, there is an additional factor limδ→0+ exp (iωδ)

which restricts the contour integration.

5. Energy is conserved at every vertex, and any internal energy ω is integrated

out by insertion of
∫∞
−∞ dω/2π.

6. Every Fermion loop contributes a factor of −1.

7. The resultant expression is to be multiplied by an overall factor i.

8. Interaction vertices must be adjusted according to the counter-terms.

The Feynman rules allow us to calculate, to certain order in the renormalised pa-

rameters, a number of different quantities. We focus on calculating these quantities

at the Fermi level ω = 0. To first order, we write Σ̃ασ(0, h) as the sum of diagrams

as in figure 3.3. The first diagram is given by the integral

I = −i(−iŨ) lim
δ→0+

∫ ∞
−∞

dω′

2π
iG

(0)
ασ̄(ω′)eiδω

′
(3.4.8)

where, as is usual for a self-energy diagram, the external legs are not included (they

are only shown to illustrate that we are considering the self-energy in the channel

α, σ). We calculate I = Ũαñασ̄(h), with the other relevant diagrams evaluated

similarly. Note that due to the absence of a Fermion loop in the oyster diagram,

the result differs by a minus sign. The first order correction to the self-energy is

therefore

Σ̃(1)
ασ(0, h) = Ũαñασ̄(h) + (Ũ12 − J̃/2)ñα′σ(h) + (Ũ12 − J̃/2)ñα′σ̄(h) + J̃ ñα′σ(h),

(3.4.9)

and in order to satisfy the renormalisation conditions and counter-term rules, it is

to be implied that we subtract the same expression with h = 0. We may use this

expression to calculate both static and dynamic quantities. It is particularly useful in

calculating ‘longitudinal’ dynamic quantities, which depend on the local occupation4

〈ñασ(h)〉; by the exact Friedel sum rule for a system of interacting quasiparticles,

we have

〈ñασ(h)〉 =
1

2
− 1

π
arctan

[
ε̃ασ + Σ̃

(1)
ασ(0, h)

∆̃σ

]
. (3.4.10)

4We use ñασ(h) to denote the local channel occupation of the non-interacting FP quasiparticle

system, while 〈ñασ(h)〉 represents the local occupation when interactions are present.
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Σ̃(1)
ασ(0, h) =

α, σ̄, ω′

α, σ
+

α′, σ, ω′

α, σ

+

α′, σ̄, ω′

α, σ
+

α′, σ, ω′

α, σ

α, σ

Figure 3.3: The allowed first order corrections to the renormalised self-energy.

3.5 Calculation of Dynamic Quantities

We now use the RPT to calculate the dynamic quantities that are relevant to our

work presented here. We begin by calculation of T = 0, ω = 0 longitudinal suscep-

tibilities (we use these in our analysis of emergent SU(4) symmetry in chapter 4),

before proceeding to calculate transverse susceptibilities (useful in understanding the

quantum critical point we discuss in chapter 5). We also provide a brief description

of how the formalism developed extends to finite frequency and temperature.

3.5.1 ω = 0

The zero-frequency zero-temperature spin susceptibility

χS =
1

2

∑
α

∂hα [〈ñα↑(hα)〉 − 〈ñα↓(hα)〉]
∣∣∣
hα=0

, (3.5.1)

evaluated in the absence of a magnetic field, can be calculated by inserting (3.4.9)

into (3.4.10) and differentiating as usual. We find

χS =
1

2

∑
α

ρ̃(0)
α (0)

[
1 + Ũαρ̃

(0)
α (0)− J̃ ρ̃(0)

α′ (0)
]
. (3.5.2)
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The spin indices have been dropped since we set h = 0. Similarly, we define the

charge susceptibility at ω = T = 0 to be

χC = −4
∑
ασ

∂ε̃ 〈ñασ(hα)〉
∣∣∣
hα=0

, (3.5.3)

where ε̃ =
∑

ασ ε̃ασ, which is calculated as

χC =
∑
α

2ρ̃(0)
α (0)

[
1− Ũαρ̃(0)

α (0)
]
− 8Ũ12ρ̃

(0)
1 (0)ρ̃

(0)
2 (0). (3.5.4)

Any difference between impurity levels εα can give rise to a ‘pseudospin’ field, where

the occupation on impurity α = 1 corresponds to an ‘up’ state and the occupation

on impurity α = 2 corresponds to a ‘down’ pseudospin. We define a pseudospin

susceptibility

χPS = −
∑
ασ

∂η̃ 〈ñασ(hα)〉
∣∣∣
hα=0

, (3.5.5)

where η̃ =
∑

σ ε̃1σ −
∑

σ ε̃2σ. We evaluate this, again using (3.4.9), and find

χPS =
∑
α

1

2
ρ̃(0)
α (0)

[
1− Ũαρ̃(0)

α (0)
]

+ 2Ũ12ρ̃
(0)
1 (0)ρ̃

(0)
2 (0). (3.5.6)

The constant factors in our definitions (3.5.1), (3.5.3) and (3.5.5) are present for

convenience in our calculations throughout chapter 4. We define the Wilson Ratios,

corresponding to each susceptibility, as

RS = 2χS

ρ̃
(0)
1 (0)+ρ̃

(0)
2 (0)

(3.5.7)

RC = 2χC

ρ̃
(0)
1 (0)+ρ̃

(0)
2 (0)

(3.5.8)

RPS = 2χPS

ρ̃
(0)
1 (0)+ρ̃

(0)
2 (0)

. (3.5.9)

Heuristically, these ratios represent the interactions present in the system, with the

total Wilson ratio in a non-interacting metal (ie Sommerfeld model) taking unit

value. We use them in chapter 4 to formulate criteria for the emergence of an SU(4)

Kondo regime, and to study systems which ‘nearly’ achieve such a regime.

In our analysis of the quantum critical point generated by the Heisenberg inter-

action in chapter 5, we use the NRG to calculate transverse dynamic quantities,

and now seek to calculate these using the RPT. We cannot proceed as above, since

our previous method relied on expressing the dynamic quantities in terms of local

occupation. We thus sum the appropriate diagrams corresponding to the quantity

at hand.
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χαα(0) =

α, ↑, ω′ α, ↑, ω′

α, ↓, ω′ α, ↓, ω′

+ Ũα

α, ↑, ω′ α, ↑, ω′′

α, ↓, ω′ α, ↓, ω′′

Figure 3.4: The transverse spin susceptibility, between equal impurities, expressed

to first order.

The transverse spin susceptibility, between impurities α and β as defined in (2.4.6),

is given by

χαβ(ω) =
〈〈
d†α↑dα↓; d

†
β↓dβ↑

〉〉
(ω) (3.5.10)

where we use S+
α = d†α↑dα↓ and S−α = d†α↓dα↑. We initially specialise to the case

α = β and interpret this as the Fourier transform of the propagator which at time

t = 0, in channel α, creates a spin down particle and spin up hole, which are both

annihilated at time t = t. To first order, χαα(0) is expressed as the sum of diagrams

shown in figure 3.4. Using the Feynman rules, the diagrams respectively correspond

to terms

−i
∫ ∞
−∞

dω′

2π

[
iG

(0)
ασ̄(ω′)

]2
(3.5.11)

and

−i
(
−iŨα

)∫ ∞
−∞

dω′

2π

dω′′

2π

[
iG

(0)
ασ̄(ω′)

]2 [
iG

(0)
ασ̄(ω′′)

]2
, (3.5.12)

where we note that both diagrams are in fact Fermion loops5. We find

χαα(0) = ρ̃(0)
α (0)

[
1 + Ũαρ̃

(0)
α (0)

]
. (3.5.13)

In the case β = α′ 6= α, the only contributing diagram (to first order) is due to the

exchange interaction, which maintains a particle’s spin but changes its channel. The

corresponding diagram is shown in figure 3.5, which we evaluate as

χαα′(0) = −J̃ ρ̃(0)
α (0)ρ̃

(0)
α′ (0). (3.5.14)

5We do not close the loops at either end in our diagrams since this suggests that spin is not

conserved.
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χαα′(0) = −J̃

α′, ↑, ω′ α, ↑, ω′′

α′, ↓, ω′ α, ↓, ω′′

Figure 3.5: The transverse spin susceptibility, between different impurities (α 6= α′),

expressed to first order.

Using (2.4.7) and (2.4.8) we hence arrive at expressions for the total and staggered

transverse spin susceptibilities, respectively

χtot(0) =
∑
α

ρ̃(0)
α (0)

[
1 + Ũαρ̃

(0)
α (0)

]
− 2J̃ ρ̃

(0)
1 (0)ρ̃

(0)
2 (0) (3.5.15)

and

χstg(0) =
∑
α

ρ̃(0)
α (0)

[
1 + Ũαρ̃

(0)
α (0)

]
+ 2J̃ ρ̃

(0)
1 (0)ρ̃

(0)
2 (0). (3.5.16)

We can also calculate the singlet and triplet susceptibilities using the RPT. We

express them in terms of the 2-particle inter-impurity Green function

Ωσ1σ2(ω) =
〈〈
d†1σ1

d†2σ̄1
; d2σ2

d1σ̄2

〉〉
(ω), (3.5.17)

so that

χsng(ω) =
1

2
[Ω↑↓(ω)− Ω↑↑(ω)− Ω↓↓(ω) + Ω↓↑(ω)] (3.5.18)

and

χtrp(ω) =
1

2
[Ω↑↓(ω) + Ω↑↑(ω) + Ω↓↓(ω) + Ω↓↑(ω)] . (3.5.19)

To first order, the diagrammatic representations of Ωσ1σ2(0) are shown in figure 3.6.

The zeroth order term in figure 3.6a is given by

iΠ̃(0) :=

∫ ∞
−∞

dω′

2π

[
iG̃

(0)
1 (ω′)

] [
iG̃

(0)
2 (−ω′)

]
= −i

∫ ∞
−∞

dω′

2π
sgn(ω′)

(ω′ + ε̃2) ∆̃1 + (ω′ − ε̃1) ∆̃2[
(ω′ − ε̃1)2 + ∆̃1

] [
(ω′ + ε̃2)2 + ∆̃2

] . (3.5.20)

For the general case we do not calculate this expression explicitly (the result depends

on the signs of the renormalised levels, and whether the model is p-h symmetric),

but we note that in the case of channel symmetry, it is given by

Π̃(0) = − 1

πε̃
arctan

(
ε̃

∆̃

)
. (3.5.21)
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(a)

Ω↑↓(0) =

2, ↓,−ω′ 2, ↓,−ω′

1, ↑, ω′ 1, ↑, ω′

+ Ũ12 − J̃/2

2, ↓,−ω′ 2, ↓,−ω′′

1, ↑, ω′ 1, ↑, ω′′

(b)

Ω↑↑(0) = −J̃

2, ↑,−ω′ 1, ↑,−ω′′

1, ↓, ω′ 2, ↓, ω′′

(c)

Ω↓↓(0) = −J̃

2, ↓,−ω′ 1, ↓,−ω′′

1, ↑, ω′ 2, ↑, ω′′

(d)

Ω↓↑(0) =

2, ↑,−ω′ 2, ↑,−ω′

1, ↓, ω′ 1, ↓, ω′

+ Ũ12 − J̃/2

2, ↑,−ω′ 2, ↑,−ω′′

1, ↓, ω′ 1, ↓, ω′′

Figure 3.6: First order contributions to the various inter-impurity 2-particle Green

functions useful to the calculation of the singlet and triplet pairing susceptibilities.
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Evaluating the diagrams, we obtain

Ω↑↓(0) = Ω↓↑(0) = Π(0)

[
1 +

(
Ũ12 −

J̃

2

)
Π(0)

]
, (3.5.22)

Ω↑↑(0) = Ω↓↓(0) = J̃Π(0)2, (3.5.23)

where we note that the first order diagrams carry the same sign since∫ ∞
−∞

dω′′

2π

[
iG̃

(0)
2 (ω′′)

] [
iG̃

(0)
1 (−ω′′)

]
= −iΠ̃(0). (3.5.24)

We hence calculate

χsng(0) = Π(0)

[
1 +

(
Ũ12 −

3J̃

2

)
Π(0)

]
(3.5.25)

and

χtrp(0) = Π(0)

[
1 +

(
Ũ12 +

J̃

2

)
Π(0)

]
. (3.5.26)

3.5.2 ω 6= 0

Our calculations of the dynamic quantities only provide insight into their values at

the Fermi level, however it is possible to extend the approach to finite frequencies.

In this regime, we must calculate terms to higher orders, where there is repeated

scattering between the quasiparticles. To correctly account for the counter-terms,

we perform the expansion in terms of the ‘barred’ couplings

Ūα = Ũα − λ3,α

Ū12 = Ũ12 − λ4

J̄ = J̃ − λ5.

(3.5.27)

The sum over all distinct diagrams allows us to calculate the renormalised parame-

ters from these. For example, the renormalised intra-impurity Coulomb interaction

is given by the sum over all orders of the diagrams shown in figure 3.7 as Ũα
(
Ūα, J̄

)
.

One may invert the resultant expression to find the barred couplings in terms of the

renormalised ones: Ūα

(
Ũα, J̃

)
. We perform the finite-frequency calculations simi-

lar to the zero-frequency case, using the barred couplings. By inserting expressions

Ūα

(
Ũα, J̃

)
, Ū12

(
Ũ12, J̃

)
and J̄

(
Ũ12, J̃

)
, the results of the perturbation theory may

be interpreted using the usual renormalised couplings. We do not perform explicit

calculations using this approach.
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(Zeroth Order)

α, ↓ α, ↓

α, ↑ α, ↑
(First Order)

Ūα

α, ↓ α, ↓

α, ↑ α, ↑

(Second Order)

Ūα Ūα

α, ↓

α, ↑

α, ↓α, ↓

α, ↑ α, ↑

J̄ J̄

α, ↓

α, ↑

α, ↓β, ↓

β, ↑ α, ↑

(Third Order)

Ūα Ūα Ūα

α, ↓

α, ↑

α, ↓α, ↓α, ↓

α, ↑ α, ↑ α, ↑

J̄ J̄ Ūα

α, ↓

α, ↑

α, ↓α, ↓β, ↓

β, ↑ α, ↑ α, ↑

J̄ Ūβ J̄

α, ↓

α, ↑

α, ↓β, ↓β, ↓

β, ↑ β, ↑ α, ↑

Ūα J̄ J̄

α, ↓

α, ↑

α, ↓β, ↓α, ↓

α, ↑ β, ↑ α, ↑

Figure 3.7: Contributions to the renormalised intra-impurity Coulomb interaction

Ũα due to repeated quasiparticle scattering. The perturbative expansion is in terms

of couplings Ūα = Ũα − λ3,α and J̄ = J̃ − λ5. The sum over these diagrams (and

those to higher order) gives the scattering amplitude Ũα.
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3.5.3 1-Particle Spectral Density for the Low Temperature Regime

We finally seek to express to second order the 1-particle spectral density at finite ω

and T , which we denote ρα(ω, T ). Away from the Fermi level, ρα(ω, T ) is deduced

from the interacting Green function

Gα(ω, T ) =
zα

ω − ε̃α + i∆̃αsgn(ω)− Σ̃α(ω, T )
, (3.5.28)

and evaluated as

ρα(ω, T ) =
zα
π

∆̃α − Σ̃I
α(ω, T )[

ω − ε̃α − Σ̃R
α (ω, T )

]2
+
[
∆̃α − Σ̃I

α(ω, T )
]2 , (3.5.29)

where Σ̃R
α (ω, T ) = ReΣ̃α(ω, T ) and Σ̃I

α(ω, T ) = ImΣ̃α(ω, T ). Since we limit our

discussion to consider only FL FPs, Σ̃R
α (ω, T ) and Σ̃I

α(ω, T ) both scale as ω2 or

T 2. Expanding ρα(ω, T ) to second order in ω and T , and using the standard series

(1− x)−1 = 1 + x+ x2 +O(x3), we obtain

ρα(ω, T ) = ρα(0, 0)

[
1 +

2πε̃α

∆̃α

ρ̃α(0)ω + π2ρ̃α(0)2

(
3ε̃2α
∆̃2
α

− 1

)
ω2

− 2πε̃α

∆̃α

ρ̃α(0)Σ̃R
α (ω, T ) + πρ̃α(0)

(
1− ε̃2α

∆̃2
α

)
Σ̃I
α(ω, T )

]
(3.5.30)

which indicates that we require expressions for the real and imaginary parts of the

renormalised self-energy. These have been calculated previously [108, 99, 97, 109],

for the case J̃ = 0, and we quote the results

Σ̃I
α(ω, T ) = −π

2
[ρ̃α(0)]3

[
Ũ2
α + 2Ũ2

12

] [
ω2 + π2T 2

]
(3.5.31)

and

Σ̃R
α (ω, T ) = − ε̃α

3∆̃α

[ρ̃α(0)]2
[
Ũα + 2Ũ12

]
π3T 2

+
ε̃α

3∆̃α

[ρ̃α(0)]3
[
Ũα + 2Ũ12

]2
π3T 2

+
ε̃α

3∆̃α

[ρ̃α(0)]2
[
Ũ2
α + 2Ũ2

12

] [
ρ̃α(0)− 1

πε̃α
arctan

(
ε̃α

∆̃α

)]
π3T 2.

(3.5.32)

These expressions, combined with (3.5.30), allow us to determine the low-temperature

behaviour of the 1-particle spectra. We will use this in chapter 4 to determine the

temperature-dependence of the conductance between the impurity sites, and for-

mulate an argument that specific properties of the conductance are indicative of a

low-energy SU(4) symmetry.
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Chapter 4

Emergent SU(4) Kondo Physics

In this chapter, we investigate whether an SU(4) Kondo regime, with unit total

occupation, can arise on low energy scales in the 2IAM where there is no bare

SU(4) symmetry, and the bare parameters resemble values attainable in a DQD

experimental setup. We use the RPT to determine conditions on the renormalised

parameters and Wilson ratios which are indicative of a low-energy Kondo regime that

exhibits SU(4) symmetry. We test the parameter regimes where these conditions can

be satisfied. Our study allows us to define a single TK, and we then use the NRG

to determine how this depends on U12. We finalise our investigation by proposing a

general property of the conductance which is indicative of an emergent SU(4) Kondo

system with n = 1. Our work is geared towards experimental observation of this

enhanced symmetry regime, and is likely to contribute to ongoing experimental work

in the wider community.

4.1 Introduction

The usual Kondo effect, due to SU(2) spin degeneracy, has been accredited with

explaining many different phenomena spanning the field of strongly correlated elec-

trons. These include superconductivity [59], Kondo/topological insulators [110, 111]

and the non-Fermi liquid (see chapter 5) properties associated with strange metals

[112]. As we discuss in the chapter 1, the SU(2) Kondo effect has been well studied

in gated quantum dot devices, in which certain model parameters may be tuned.

In particular, the application of a bias voltage and subsequent measurement of the

current has allowed detailed study of the Kondo many-body singlet, and its emer-

gence [113, 114]. Given the importance of the Kondo effect in explaining several
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many-body problems, there is strong theoretical and experimental interest in more

exotic Kondo states.

There has been a particular focus on understanding local models where there is

an SU(2) psuedospin symmetry, due to the charge configuration, in addition to the

usual SU(2) spin symmetry. These models are particularly relevant for carbon nan-

otube systems [115, 116, 117, 118] and DQD systems [119, 120, 121] where the total

dot occupation is restricted to unity. We restrict our discussions to consider the DQD

system only. The psuedospin symmetry in the DQD system is due to the occupation

on each dot. We consider large inter-dot and intra-dot Coulomb repulsions so that

the system prefers to contain a single electron, which is localised to one of the dots.

The occupation on dot 1 corresponds to a pseudospin ‘up’ state, whilst the occupa-

tion on dot 2 corresponds to a ‘down’ state. The charge degrees of freedom hence give

rise to the SU(2) pseudospin symmetry, and the total1 charge symmetry has there-

fore been promoted from U(1) to U(2) ∼= U(1)⊗SU(2). The model in this regime can

give rise to an SU(4) ‘spin’ symmetry, but note that SU(4) ≥ SU(2)⊗SU(2) ∼= SO(4).

Correspondingly, in the 4-dimensional fundamental representation, there exist off-

block-diagonal elements which couple the pseudospin and spin sectors, and in this

sense the spin and charge degrees of freedom become entangled. A property of such

a system is that, due to this entanglement, spin-polarised currents may be observed

in the absence of a magnetic field [122]. This would have applications in the field of

spintronics.

A detailed spectroscopic study of a DQD system, and a comparison with NRG

calculations led to an initial claim that emergent SU(4) Kondo physics had been

observed [123]. However, a study using the RPT concluded that due to the relative

values of the inter- and intra-dot Coulomb coupling constants, the experimental sys-

tem could not have been in an SU(4) Kondo regime [124]. In addition, tuning the

couplings between the leads and dots in the DQD system is experimentally challeng-

ing, and an SU(4) symmetry requires that the couplings are precisely equal. This

difficulty suggests that it may be more feasible to search for an SU(4) regime which

1To keep our notation compact, we discuss the total charge symmetry. This is invariance under

a single U(1), rather than the usual U(1)⊗U(1), which corresponds to conservation of the sum of

particles in all charge and spin channels. One can easily check that channel charge (and in fact

charge in each spin channel) is individually conserved in the SU(4) model.
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emerges on lower energy scales, rather than fine tune the couplings to the leads.

Through use of the non-crossing approximation, which assumes infinite inter- and

intra-dot Coulomb repulsions, it has been shown that SU(4) may be restored on

lower energy scales through adjustment of the gate voltages [125]. In effect, this

tuning of the difference between the dot levels is equivalent to the application of

pseudospin field. We seek to extend this work, using the RPT and NRG, to test

whether SU(4) symmetry can emerge when the Coulomb repulsions are finite.

4.2 Relating the DQD System and 2IAM

Our investigation is heavily motivated by the experimental possibility of unambigu-

ously observing emergent SU(4) Kondo physics. These experiments are carried out

in engineered DQD structures, with a general schematic as shown in figure 1.4. We

see that each dot has a source and drain lead, so that NRG studies of the system

might appear to be prohibited due to the presence of 4 conduction baths. We show

in this section that we can regard the equilibrium DQD system as the 2IAM. The

DQD Hamiltonian is formulated as

HDQD =
∑
ναk

εναkc
†
ναkσcναkσ +

∑
ναk

Vναk

[
c†ναkσdασ + d†ασcναkσ

]
+
∑
α

[
εαd
†
ασdασ + Uαnα↑nα↓

]
+ U12

∑
σσ′

n1σ n2σ′

(4.2.1)

where α ∈ {1, 2} sums over the dots as usual, and ν ∈ {S,D} sums over the source

and drain leads connected to dot α. Throughout this chapter we switch off any

inter-dot magnetic interaction. We define the Fermionic operators

b†αkσ =
1√

|VSαk|2 + |VDαk|2

[
VSαkc

†
Sαkσ + VDαkc

†
Dαkσ

]
b̄†αkσ =

1√
|VSαk|2 + |VDαk|2

[
V ∗Dαkc

†
Sαkσ − V

∗
Sαkc

†
Dαkσ,

] (4.2.2)

which satisfy the usual Dirac algebra, and enforce the equilibrium condition that

µSα = µDα, or equivalently εSαk = εDαk = εαk. The DQD Hamiltonian is then given

by

HDQD =
∑
αk

εαkb̄
†
αkσ b̄αkσ +

∑
αk

εαkb
†
αkσbαkσ +

∑
αk

Vαk

[
b†αkσdασ + d†ασbαkσ

]
+
∑
α

[
εαd
†
ασdασ + Uαnα↑nα↓

]
+ U12

∑
σσ′

n1σ n2σ′

(4.2.3)
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where

Vαk =

√
|VSαk|2 + |VDαk|2, (4.2.4)

and may therefore be decomposed into two subsystems. There is an uncoupled non-

interacting Fermi gas of the b̄ electrons which play no role in the dynamics of the

dots, and the 2IAM which describes how the dots themselves are only coupled to the

b electrons. We perform calculations for the equilibrium DQD system through use

of the NRG and RPT as formulated for the 2IAM. We take the usual approximation

that Vαk = Vα and assume that the system is isotropic. The hybridisation width on

dot α is then given by ∆α = ∆Sα + ∆Dα.

4.3 SU(4) on the Bare Scale

To manifest SU(4) in the 2IAM on the bare scale, the Hamiltonian must satisfy a

number of conditions (these are to be used in the next section to specify the structure

of the low-energy SU(4) effective Hamiltonian). We see that if U1 = U2 = U12 := U

and ε1 = ε2 := ε then the impurity Hamiltonian becomes

Himp =

(
ε+

3U

2

)
n+

U

2
(n− 2)2 − 2U

=

(
ε− U

2

)∑
ασ

nασ +
U

2

∑
α1α2
σ1σ2

nα1σ1nα2σ2 .
(4.3.1)

If we enforce the requirement that each bath has equal hybridisation, V1 = V2 := V

then we obtain the full Hamiltonian

H =
∑
αk

εkc
†
αkσcαkσ +

∑
αk

V
[
c†αkσdασ + d†ασcαkσ

]
+

(
ε− U

2

)∑
ασ

nασ +
U

2

∑
α1α2
σ1σ2

nα1σ1nα2σ2 .
(4.3.2)

This model exhibits the symmetry of interest. To make it manifest, we introduce

the vectors

Ψk =


c1k↑

c1k↓

c2k↑

c2k↓

 , Φ =


d1↑

d1↓

d2↑

d2↓

 , (4.3.3)
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which respectively encapsulate the degrees of freedom of the bulk and impurity

systems. The Hamiltonian is then given by

H =
∑
k

εkΨ†kΨk +
∑
k

V
[
Ψ†kΦ + Φ†Ψk

]
+

(
ε− 5U

2

)
Φ†Φ +

U

2

(
Φ†Φ

)(
Φ†Φ

)
.

(4.3.4)

This is invariant under the coupled transformation{
Ψk → UΨk

Φ → UΦ
, (4.3.5)

if U †U = UU † = I, so the corresponding symmetry group is U(4) ∼= SU(4)⊗U(1).

An observation of the Kondo effect, enhanced by the pseudospin degeneracy, in

a DQD system [126] led the authors to estimate the coupling constants as U1 '
1.2meV, U2 ' 1.5meV, U12 ' 0.1meV, ∆1 ' ∆2 ' 0.005−0.020meV. These motivate

the need for our study; SU(4) symmetry does not (feasibly) exist on the bare scale,

and if one hopes to observe it then it must emerge on lower energy scales.

4.4 Low-Energy Requirements for an n = 1 SU(4)

Kondo Regime

We have established that the 2IAM is invariant under SU(4) if U1 = U2 = U12,

∆1 = ∆2 and ε1 = ε2. These conditions must therefore be satisfied by the low

energy Hamiltonian if SU(4) invariance is to emerge. We hence require

Ũ1 = Ũ2 = Ũ12 := Ũ (4.4.1)

∆̃1 = ∆̃2 := ∆̃ (4.4.2)

ε̃1 = ε̃2 := ε̃. (4.4.3)

Due to the orbital degeneracy we also require that the electron has an equal proba-

bility of occupying either dot. We thus demand ρ1(ω) = ρ2(ω) := ρ(ω) for small ω.

Since ρα(0) = zαρ̃α(0), we hence arrive at the further condition

z1 = z2 := z. (4.4.4)

The satisfaction of these constraints guarantees a low-energy emergent SU(4) sym-

metry, but does not guarantee an n = 1 Kondo regime. Using the renormalised

form of the Friedel sum rule (3.2.12), the localisation of a single electron in the
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DQD requires ε̃ = ∆̃. Finally, to be in the Kondo regime the single d-electron must

be totally localised to the dots such that the charge fluctuations are suppressed. We

hence require χC = 0, where χC is given in (3.5.3). It follows that Ũ ρ̃(0) = 1/3. We

condense all these requirements into 3 conditions:

1. ρ1(ω) = ρ2(ω) = ρ(ω) in the limit ω → 0,

2. n = 1,

3. RS = RPS = 4/3.

We use the satisfied conditions to identify the ‘type’ of low energy FP. If all con-

ditions are satisfied, then we have an n = 1 SU(4) Kondo regime with a universal

energy scale T
SU(4)
K := 1/4ρ̃(0). If condition (1) is only satisfied at ω = 0 and con-

ditions (2) and (3) are satisfied, then we attribute the low energy FP with having

restricted SU(4) symmetry. If only (1) and (2) are satisfied, but charge fluctuations

are sufficiently suppressed so that 1 < RPS . 4/3 and 4/3 . RPS < 2 , then we

describe the FP has having approximate SU(4) symmetry.

An important observation is that if ∆1 6= ∆2, we can not satisfy both conditions

∆̃1 = ∆̃2 and z1 = z2. Therefore in DQD systems with ∆1 6= ∆2, we cannot have an

emergent ‘strict’ SU(4) Kondo regime. However, we could still obtain a restricted

SU(4) point in such a system.

4.5 Emergence of the SU(4), n = 1 Kondo Regime

Having established the criteria for a low-energy SU(4) Kondo system, we investigate

whether the introduction of a pseudospin field can give rise to such a regime, in the

case where U1, U2 and U12 are finite (this is possible in the case where U1, U2 and U12

are infinite [125]). We begin with the case U1 = U2 = U12 = 0.5, with π∆1 = 0.01

and π∆2 = 0.007896. We set ε1 = −0.0933 and tune ε2 so that n = 1. Since the

Coulomb repulsions are of the order of the bandwidth D = 1, and much larger than

the hybridisation widths, we expect SU(4) symmetry to emerge on the lowest en-

ergy scales as the model has become more like those considered in [125]. Following

their method, we introduce a pseudospin field δε12 = ε1 − ε22 and probe the result-

ing low-energy FL FPs, searching for an enhancement of χPS. The enhancement

2To maintain the total local occupation, we change both ε1 and ε2 as we vary δε12 as ε1 + δε12/2

and ε2 − δε12/2.
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Figure 4.1: The ratios ∆̃2/∆̃1, ε̃2/ε̃1, ρ̃2(0)/ρ̃1(0), Ũ2/Ũ1, and Ũ12/Ũ1 for the model

with π∆1 = 0.01, π∆2 = 0.007896, U1 = U2 = U12 = 0.5. For these parameters,

δC = 2.960151343× 10−4 [109].

is maximal at δε12 = δC = 2.960151343 × 10−4, and we define δε = δε12 − δC as a

convenient measure of the deviation from this value. We plot in figure 4.1 the ratios

∆̃2/∆̃1, ε̃2/ε̃1, ρ̃2(0)/ρ̃1(0), Ũ2/Ũ1, and Ũ12/Ũ1. With the exception of ∆̃2/∆̃1, these

ratios cross at around unit value, so that we have a good approximation to emergent

SU(4). However, we do not find ∆̃1 = ∆̃2. This is due to the aforementioned issue

that if ∆1 6= ∆2, we cannot obtain a strict SU(4) point. In this case z2/z1 = 1.05,

so we obtain a restricted SU(4) symmetry. As discussed, the emergence of an SU(4)

symmetry is not indicative of unit occupation or a Kondo regime. We show in figure

4.2a that n = 1 for all values of δε12. Notice that the individual dot occupations

cross at δε 6= 0. This is due to the Friedel sum rule; if ρ1(0) = ρ2(0) and ∆1 6= ∆2,

then n1 6= n2. Figure 4.2b shows that RPS is enhanced to 4/3 (illustrated by the

dashed line), while RS is diminished to the same value and RC = 0. We therefore

have that, at δε = 0, the system is in an n = 1 Kondo regime. There is a single

emergent energy scale defined by the intersection of the TKα which we calculate as

TK ' 1.01× 10−10, as shown in figure 4.3. Noting from figure 3.1 that TK decreases

logarithmically with U/π∆ in the strong correlation regime, the small TK is not
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Figure 4.2: The individual and total occupations of each dot (a) and the spin and

pseudospin Wilson ratios (b) for the same model as considered in figure 4.1.
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Figure 4.3: The values of TKα for each dot as a function of the deviation from the

point of maximal RPS. The model parameters are the same as those in figure 4.1.
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Figure 4.4: The ratios ∆̃2/∆̃1, ε̃2/ε̃1, ρ̃2(0)/ρ̃1(0), Ũ2/Ũ1, and Ũ12/Ũ1 for the model

with π∆1 = 0.01, π∆2 = 0.007896, U1 = U2 = 5, U12 = 3. For these parameters,

δC = 6.113003× 10−4 [109].

surprising. We have performed a similar analysis of models with U1 = U2 = U12

for smaller values of U/π∆1, and find similar results, with a larger TK. We thus

conclude that in the model with ∆1 6= ∆2 and U1 = U2 = U12, it is possible to re-

store a restricted SU(4) symmetry3, through application of a pseudospin field, and

simultaneously achieve an n = 1 Kondo regime. This is in line with the conclusions

of [125], which we have extended to the case of U finite and, furthermore, U < D.

We proceed to the more experimentally attainable system U1 = U2 6= U12. Ini-

tially we consider the case U1 = U2 > D and U12 > D, and pick U1 = U2 = 5,

U12 = 3. For this case we calculate δC = 6.113003 × 10−4. The ratios of the

renormalised parameters are plotted in figure 4.4, and show that as in the previous

cases, all ratios with the exception of ∆̃2/∆̃1 become 1 at δε = 0. We thus have

the possibility of a restricted SU(4) regime, and figure 4.5 confirms that this is the

case. We have therefore shown that the conclusions of [125] also hold in this case.

3Since the SU(4) FP is restricted, we gain little information regarding the energy scales on which

the symmetry persists. We therefore do not define a T
SU(4)
K .
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Figure 4.5: The relevant Wilson ratios (a) and the individual Kondo temperatures

(b) as a function of δε/π∆1 for the model parameters as given in the caption of figure

4.4.

Although it may appear that the difference between U1 = U2 and U12 plays little

role, the Kondo temperature, given by TK ' 2.4 × 10−8, differs substantially from

what we might expect - it is larger than the model with U1 = U2 = U12 = 0.5. The

degree of renormalisation is thus drastically altered by U12, and we shall discuss this

later in the chapter.

We now bring down the Coulomb repulsions so that they are smaller than D, and

choose U1 = U2 = 0.05, U12 = 0.03. We calculate δC = −2.00 × 10−5. Unlike the

previous parameter sets, in this case the renormalised coupling constant ratios do

not all reach 1. Figure 4.6 shows that Ũ12/Ũ1 only achieves the value of ∼ 1/2 at

δε = 0 so that there cannot be an SU(4) point in this model. Despite this, we still

see an enhancement of RPS shown in figure 4.7a. The model therefore reaches an

approximate SU(4) FP. In line with the previous comments on the dependence of

TK on U12, we have in this case TK ' 1.35×10−3, whereas for U1 = U2 = U12 = 0.05

we had found TK ' 6.30 × 10−4. It seems, as before, that a decrease of U12 results

in an increase in TK. We also break the restriction U1 = U2 and find similar results.

Our calculations point to the conclusion that the application of a pseudospin field

can restore a restricted SU(4) n = 1 Kondo regime if U1 = U2 = U12, and in the

case U1 > D, U2 > D but only if U12 > D. Otherwise there is an enhancement of

χPS which leads to an approximate SU(4) point. This conclusion has direct signif-
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Figure 4.6: The ratios ∆̃2/∆̃1, ε̃2/ε̃1, ρ̃2(0)/ρ̃1(0), Ũ2/Ũ1, and Ũ12/Ũ1 for the model

with π∆1 = 0.01, π∆2 = 0.007896, U1 = U2 = 0.05, U12 = 0.03. For these parame-

ters, δC = −2.00× 10−5 [109].
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Figure 4.7: The relevant Wilson ratios (a) and the individual Kondo temperatures

(b) as a function of δε/π∆1 for the model parameters as given in the caption of figure

4.6.
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icance to current experimental efforts towards observing emergent SU(4) in DQD

systems. It is likely in such systems that U1, U2 > D but the value of U12 will be

much smaller [126]. If it is such that U12 > D, then the experimentalists will be

able to obtain a restricted SU(4) point by varying the gate voltages, otherwise they

will only obtain an approximate SU(4) point, but the changes in χS and χPS will

provide experimental evidence that this regime has been reached.

4.6 Lingering Symmetry on Higher Energy Scales?

Our results point only towards an emergent restricted SU(4) symmetry in a typical

DQD system. We now investigate, using the NRG to calculate spectral densities,

the extent to which the restricted SU(4) symmetry survives on higher energy scales.

To gain an idea over the range of ω one could expect the SU(4) symmetry to per-

sist, we first consider the model with SU(4) symmetry on the bare and renormalised

scales. We set U1 = U2 = U12 = 0.05, π∆1 = π∆2 = 0.01 and find that for unit

occupation, we require ε1 = ε2 = −0.021. On the lowest energy scales, we calcu-

late Ũ1 = Ũ2 = Ũ12 = 1.25 × 10−3 and ε̃1 = ε̃2 = ∆̃1 = ∆̃2 = 6.05 × 10−4. The

model is therefore in an SU(4) Kondo regime with n = 1. We plot in figure 4.8 the

1-particle spectral density of the d-electrons and quasiparticles (normalised to their

values at the Fermi level to account for the systematic underestimation of this value

in the NRG). It is clear that there is a region where the d-electron spectral density

is very similar to the low energy quasiparticle model, which also exhibits the SU(4)

symmetry. This region is approximately between ω = ±T SU(4)
K /2, indicated by the

vertical dashed lines. This scale corresponds to the energy scale where an n = 1

SU(4) Kondo regime persists.

We now seek to understand how this scale differs for a restricted SU(4) Kondo

regime. We therefore modify our parameters to reintroduce an anisotropic differ-

ence between the hybridisations, and set π∆1 = 0.01, π∆2 = 0.007896 as before.

In line with requirement (1), we now compare the spectral densities on each dot,

rather than with the quasiparticle spectra. This gives us a measure of the energy

range where the criterion is satisfied. We find ρ1(0) = ρ2(0) = 38.0 and compare the

ratios ρα(ω)/ρα(0). These are plotted in figure 4.9. For these parameters, we have

TK = 6.3× 10−4 and we plot, as vertical dashed lines, the boundaries of the region

where |ω| < TK/2. The agreement between ρ1(ω) and ρ2(ω) is generally poor within
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Figure 4.8: Comparison of the d-electron spectral density ρ(ω) and the non-

interacting quasiparticle spectral density ρ̃(ω) for the model with U1 = U2 = U12 =

0.05, π∆1 = π∆2 = 0.01 and ε1 = ε2 = −0.021. The vertical dashed lines correspond

to ω = ±T SU(4)
K /2. We see that the width of the peak, which occurs at ω = ε̃1 = ε̃2,

is indicative of the Kondo temperature T
SU(4)
K .
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Figure 4.10: Plot of ρ(ω) for the channel symmetric model with U1 = U2 = 0.05

and π∆1 = π∆2 = 0.01. When U12 = 0.05, ε1 = ε2 = −0.021 and when U12 = 0.03,

ε1 = ε2 = −0.015.

this region. We conclude that, in contrast to the case of a strict SU(4) n = 1 Kondo

regime, the symmetry does not survive on energy scales governed by TK when the

system has a restricted SU(4) symmetry. It does, however, survive on much lower

energy scales close to the Fermi level.

Finally we discuss how the spectral densities change when U1 = U2 := U 6= U12,

where D > U and U > U12. In this regime we only achieve an approximate SU(4)

FP. We have already seen that the value of U12 appears significant in setting the

degree of renormalisation. To investigate this, we take the parameters considered

in figure 4.8, but set U12 = 0.03. In this model we find Ũ1 = Ũ2 = 3.34 × 10−3,

Ũ12 = 1.64 × 10−3, ε̃1 = ε̃2 = ∆̃1 = ∆̃2 = 1.11 × 10−3. We thus have RS = 1.48

and RPS = 0.99 and achieve an approximate SU(4) FP with TK = 1.73× 10−3. We

compare the spectral density of this model with the case U12 = 0.05 in figure 4.10.

We see that, as predicted from the RPT analysis, TK, which governs the width of

the peaks, has increased as U12 decreased. However, if we compare to a model with

U,U12 > D a different picture emerges. The case with U = 5, U12 = 3 gives rise
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to a Kondo temperature TK = 2.4 × 10−8 whilst U = U12 = 0.5 gives a smaller

value of TK = 1.0× 10−10. One would expect that TK would be smaller for the case

with the larger U , but this is not the case. These results show that U12 plays a

counter-intuitive role in setting this energy scale.

4.7 Inter-Dot and Intra-Dot Interactions and the Kondo

Temperature

We now investigate how U12 effects the degree of renormalisation, characterised by

TK, and explore whether it restricts the possibility of emergent SU(4) symmetry.

We set π∆1 = π∆2 = 0.01 and fix U = U1 = U2, varying U12 subject to the re-

quirement n1 = n2 = 1/2. It follows that for all U12, ε1 = ε2. We plot the ratios

Ũ/2π∆̃ and Ũ12/2π∆̃ as a function of U12/U , for 2 values of U , in figure 4.11a. For a

restricted, or strict, SU(4) point we require Ũ/2π∆̃ = Ũ12/2π∆̃. We see again that

if U,U12 < D then SU(4) symmetry may not be achieved unless U = U12, which

corresponds to a strict symmetry. The Wilson ratios RS and RPS are plotted against

U12/U for the same values of U in figure 4.11b. We see, in line with our previous

conclusions, that it is possible to achieve only an approximate SU(4) point for all

U12 6= U . We show how the Kondo temperature varies for two different values of U

in figure 4.11c. The change in TK as one increases U12 is severe - for the lower value

of U there is a general decline, but the values of TK when U12 = 0 and when U12 = U

are similar in magnitude. For the larger value of U , the increase of U12 → U induces

a change in TK of 8 orders of magnitude. While it is not surprising that an increase

in U12 causes a decrease in TK, as it freezes out fluctuations between the n = 0 and

n = 1 states, such a significant change is worth investigation. The different values

of TK for the 2 cases of U are apparent in the spectral densities, which we plot in

figure 4.12. For U = 0.05, plotted in 4.12a, the quasiparticle peak of ρ(ω) shows a

narrowing as U12 increases. In line with the change in TK plotted in figure 4.11c, the

widths of the quasiparticle peaks are all of similar orders. Conversely the spectral

density peaks for the case U = 0.5, displayed in figure 4.12b, show a substantial

narrowing of the quasiparticle peaks as U12 increases. There is also an emergence of

atomic peaks at ω = ε and ω = ε+U12, which indicates that U12 plays a similar role

to U in the 1IAM. We qualitatively relate the degree of renormalisation to the bare

value of ε. This is plotted against U12/U for the 2 cases of U in figure 4.13. We see

that as U12 increases, the requirement n1 = n2 = 1/2 causes ε to be dragged further

102



(a)

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

U12/U

U = 0.05
U = 0.50

(b)

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

U12/U

U = 0.05
U = 0.50

(c)

10−10

10−8

10−6

10−4

10−2

0.0 0.2 0.4 0.6 0.8 1.0

T
K

U12/U

U = 0.05
U = 0.50

Figure 4.11: Results from [109] for the model with U1 = U2 = U , π∆1 = π∆2 = 0.01

where U12 is varied in the range 0 < U12 < U . For each U12, ε1 = ε2 is set so that

n1 = n2 = 1/2. In (a) we plot of the ratio of renormalised parameters Ũ/2π∆̃ and

Ũ12/2π∆̃. The curves approaching the value of 1/3 from above correspond to Ũ/2π∆̃

and those approaching from below to Ũ12/2π∆̃. (b) is a plot of the Wilson ratios

RS and RPS, where the curves approaching the value of 4/3 from above correspond

to RS and those approaching from below to RPS. (c) shows how TK varies as U12 is

switched on and approaches U .
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Figure 4.12: Spectral densities, and the impurity levels, for the model with π∆1 =

π∆2 = 0.01 and varying values of U12/U . (a) and (b) respectively show the spectral

density for the model with U = 0.05 and U = 0.5.
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Figure 4.13: A plot showing how the value of ε changes with U12 for the different

cases of U . The model parameters are the same as those in figure 4.12 [109].
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below the Fermi level, and much more significantly so in the case U = 0.5. However,

we require it to be rescaled to ε̃ = ∆̃ > 0. It follows that, since ε decreases much

more quickly in the case of larger U , the degree of renormalisation should be much

greater in this case. The qualitative agreement between figures 4.11c and 4.13 leads

us to speculate that TK is largely determined by ε, with ln (TK) ∼ ε. In the strict

SU(4) model under the limit U,U12 → ∞ this dependence is well known [59, 125].

Our results suggest that it persists in an approximate SU(4) regime with U 6= U12

and U,U12 finite.

We perform similar investigations for the n = 2 model, with the p-h symmetry

condition (1.4.4) satisfied. If our assertion that, when n = 1, the degree of renor-

malisation is regulated by the requirement ε̃ = ∆̃ then we should see dramatically

different behaviour for n = 2 (where ε̃ = 0). In this case, at a universal SU(4)

Kondo FP one should obtain Ũ ρ̃(0) = 1/3 where ρ̃(0) = 1/π∆̃. We plot the ratios

Ũ/π∆̃ and Ũ12/π∆̃ as a function of U12/U in figure 4.14a. For the n = 1 model

the ratios continuously approach the universal value of 1/3 as U12/U → 1. In this

case however, the ratios do not approach 1/3 until U12 ' U , when there is a rapid

convergence to this value, representing a crossover from an SU(2) to SU(4) Kondo

regime. This has been previously found in [96]4. To demonstrate the impact of this

rapid convergence to the value of 1/3, we plot the Wilson ratios RS and RPS against

U12/U for various values of U in figure 4.14b. We see that one may still obtain

an approximate SU(4) FP, as in the n = 1 model, but only for U12 very close to

U . Given that in DQD structures the value of U12 is determined by the distance

between the dots, it may not be finely tuned. Hence any experimental observation

of an n = 2 Kondo regime would be exceptionally challenging.

Again in contrast to the n = 1 model, the value of TK, plotted against U12/U

in figure 4.14c, is largely invariant as U12 is increased, but increases significantly

when U12/U ' 1. We summarise the distinction between the 2 models as fol-

lows. When U12/U corresponds to the regime of approximate SU(4) symmetry, and

U12 → U from below, TK decreases as n = 1, and increases for n = 2. The value

of ε = −U/2− U12 is largely unchanged throughout the region where TK increases,

implying that it no longer determines the degree of renormalisation. We also see the

4It was also found in [96] that as U12 is increased beyond U there is a QCP between two charge-

ordered phases (originally seen in [127]). We do not observe such a QCP for n = 1.
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Figure 4.14: Results from [109] corresponding to the model with U1 = U2 = U ,

π∆1 = π∆2 = 0.01 and p-h symmetry. In (a) we plot of the ratio of renormalised

parameters Ũ/π∆̃ and Ũ12/π∆̃. The curves approaching the value of 1/3 from above

correspond to Ũ/π∆̃ and those approaching from below to Ũ12/π∆̃. (b) shows the

Wilson ratios RS and RPS, where the curves approaching the value of 4/3 from above

correspond to RS and those approaching from below to RPS. (c) is a plot of the

Kondo temperature for the various values of U as a function of U12/U .
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Figure 4.15: Plot of ρ(ω)/ρ(0) with parameters U1 = U2 = 0.05, π∆1 = π∆2 = 0.01

and p-h symmetry, for various values of U12.

change in the values of TK in the spectral density. We plot in figure 4.15 the spectra

in the SU(2) case U = 0.05, U12 = 0.02 and the SU(4) model with U = U12 = 0.05.

We see that the peak corresponding to an SU(4) n = 2 Kondo FP is much broader

compared to the SU(2) peak.

Our investigation presented in this section confirms that in the channel-symmetric

model with U1 = U2 < D, we cannot achieve a strict SU(4) Kondo regime, for

n = 1 and n = 2, unless U12 = U . Otherwise, we may only achieve an approximate

SU(4) FP. For the case n = 1, an approximate SU(4) FP is easily accessible, as an

enhancement in χPS arises over a large range of U12/U . When n = 2 this range is

so narrow that experimental observation of any FP other than the usual SU(2) is

unlikely. For U12 6= U the value of TK differs in the n = 1 and n = 2 cases, and

we speculate that in the n = 1 system the restriction ε̃ = ∆̃ induces a very strong

renormalisation. This is not observed in the n = 2 system where this restriction no

longer applies.

107



4.8 Distinguishing the SU(2) and SU(4) Kondo Regimes

A powerful experimental technique for probing the many-body Kondo effect in detail

is the study of the dot conductance [79, 128, 129]. The constraint ε̃ = ∆̃ for an n = 1

SU(4) Kondo regime clearly implies a different many-body resonance in the spectral

density as compared to the SU(2) and n = 2 SU(4) model. We now investigate

how this changes the conductance and whether this is relevant to experiment. We

consider the channel symmetric model U1 = U2 and ∆1 = ∆2 as in the previous

section.

The current Iα(T, Vα) at temperature T flowing through dot α, via source and

drain baths with respective chemical potentials µSα and µDα, which give rise to a

voltage Vα, is calculated in [80] using a non-equilibrium Keldysh formalism, and

perturbatively in [130]. The result is

Iα(T, Vα) =
4∆Sα∆Dα

∆Sα + ∆Dα

∫ ∞
−∞

dω (fSα(ω)− fDα(ω))

(
− 1

π
ImGα(ω, T )

)
, (4.8.1)

where fνα(ω) is related to the Fermi function via fνα(ω) = fF(ω−µνα) and Gα(ω, T )

is the 1-particle local spectral density defined in (3.5.28). Following the arguments

of [80], when the dot coupling to the source and drain is small we can consider the

current as providing only a weak perturbation to the many-body correlated states,

so that the current provides reliable information on these states. We limit our

discussion to the equilibrium case µSα = µDα, which corresponds to the zero bias

situation. In this case, the conductance of dot α is given by

Gα(T ) = − 4∆Sα∆Dα

∆Sα + ∆Dα

∫ ∞
−∞

dω ∂ωfF(ω)ρα(ω, T ) (4.8.2)

and we use that −∂ωfF(ω) = βeβωfF(ω)2. We calculate Gα(T ) to order T 2 using

the RPT as in chapter 3. The finite-frequency finite-temperature spectral density

ρα(ω, T ) is given in terms of renormalised parameters in (3.5.29), and the real and

imaginary self-energies in (3.5.32) and (3.5.31) respectively.

For the SU(2) regime, we have Ũ = π∆̃, ρ̃(0) = 1/π∆̃ and Ũ12 = ε̃ = 0. In this case

Σ̃R
α (ω, T ) = 0. Expanding ρα(ω, T ) to order T 2, as in (3.5.30), and performing the

integration, we obtain the expression

G(T )

G(0)

∣∣∣∣
SU(2)

= 1− π4

48
(1 + φ)

(
T

TK

)2

+O(T 4) (4.8.3)
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where the channel label has been dropped due to the assumed channel symmetry,

and

φ =
2Ũ2 + 4Ũ2

12

(π∆̃)2
(4.8.4)

which takes the value φ = 2. In the SU(4) n = 1 Kondo regime, we have the

requirements ε̃ = ∆̃, Ũ = Ũ12, and ρ̃(0) = 1/2π∆̃. It follows that Σ̃R
α (ω, T ) 6= 0

due to the finite ε̃, and this changes the low-T behaviour of the conductance. We

calculate
G(T )

G(0)

∣∣∣∣
SU(4)

= 1 +
π4

24
(1− ψ)

(
T

TK

)2

+O(T 4) (4.8.5)

where we find ψ ' −0.279. This analysis has yielded a significant distinguishing

feature between the n = 2 SU(2) and n = 1 SU(4) Kondo regimes; G(T ) shows

an initial decrease for the SU(2) model, but an increase for the SU(4) model. The

difference between the 2 models is related to the behaviour of the spectral density.

When n = 2, ρ(ω) has a peak centred at ω = 0 which decreases as ω increases from

the Fermi level, whilst the peak structure for the SU(4) model is constrained by the

requirement n = 1. In this model we have a narrow peak at ω = ε̃ > 0 so that ρ(ω)

increases as ω increases from 0. Differences between various physical quantities in

SU(N) impurity models has been found before, and attributed to the peak structure

of the spectral density [131].

The difference between G(T ) in the SU(2) and SU(4) models has been previously

found in NRG calculations [123], and we have illustrated that this difference can be

used to differentiate between the 2 regimes. Our result therefore should be useful to

the experimental community seeking to observe an n = 1 SU(4) Kondo regime.

4.9 Conclusions

In this chapter we have investigated the possibility of emergent SU(4) Kondo regimes

in DQD devices, and how these might be observed by an experimentalist. A common

problem facing such an experimentalist is that fine control of the hybridisations and

Coulomb interactions in DQD devices is currently not possible. We found that, in

line with the conclusions of [125], if U1 = U2 = U12 and ∆1 6= ∆2, then the SU(4)

Kondo regime may be restored on low energy scales by application of a pseudospin

field ε1− ε2. This is significant for experimentalists because the use of gate voltages

in DQD systems allows fine control of the levels εα. However, the symmetry restora-
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tion is limited for such a model; one may only attain a restricted SU(4) symmetry.

This regime only holds on very low energy scales (much lower than TK).

When U1 = U2 6= U12, and the model is channel symmetric, we find that a re-

stricted SU(4) Kondo regime may still be reached, but only when U1, U2, U12 > D.

Otherwise, there is an emergent approximate SU(4) symmetry regime, where χPS is

enhanced and χS is suppressed, but not sufficiently to achieve a strict, or restricted,

SU(4) FP. For the n = 1 model, approximate SU(4) symmetry emerges over a broad

range of U12/U and a strict SU(4) point at U12 = U . However, in the case n = 2,

approximate SU(4) symmetry only emergences for U12 very close to U , otherwise

there is no enhancement of χPS and the system remains in an SU(2) Kondo state.

We have also studied how TK depends on the bare parameters, and the role of

U12 in governing the degree of renormalisation. We showed that U12 behaved simi-

larly to U in the 1IAM, in that an increase in U12 caused a narrowing of the Kondo

resonance, occurring at ε̃ in the spectral density, and the emergence of atomic peaks.

However, we found the degree of renormalisation is largely due to the bare value of

ε, which had to be set such that n = 1. As U12 was increased, so ε decreased fur-

ther below the Fermi level. To satisfy n = 1 we require ε̃ = ∆̃ > 0 so that as U12

increased so did the degree of renormalisation. The qualitative agreement between

ε and TK as a function of U12 led us to speculate that the relation ln (TK) ∼ ε holds

in an approximate SU(4) regime in addition to the strict SU(4) model. Studies of

the n = 2 model, where ε̃ 6= ∆̃ did not show such a dependence. For similar U/π∆,

TK was many orders of magnitude larger in the n = 2 model as compared to n = 1.

We finally looked at the conductance of the dots, and showed that a way to dis-

tinguish between the SU(2) and SU(4) Kondo FPs is to study the temperature-

dependence of G(T ). In the SU(4) system, G(T ) increases with T , whilst for the

SU(2) model G(T ) decreases. This result relies only on the renormalised parameters

satisfying their appropriate conditions for SU(4) or SU(2) symmetry, and does not

rely on a universal energy scale. It should therefore be possible to observe it in a

restricted SU(4) regime, which we have showed is experimentally attainable.
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Chapter 5

Local Quantum Criticality and

Majorana Fermions

In this chapter we study the Quantum Critical Point (QCP) which arises in the

2IAM when the impurities are coupled by a magnetic Heisenberg term. We cal-

culate dynamic quantities of the model in various regimes, such as p-h asymmetry

and channel asymmetry, and explicitly show the divergence of certain susceptibili-

ties. We draw connections to the 2 Channel Kondo Model (2CKM) and an SO(7)

invariant Majorana Fermion (MF) model, and discuss possible physical pictures of

the mechanisms underlying the QCP. We begin by introducing the concept of QCPs

and MFs, and show how the Anderson model can be related to an MF model. We

then review the 2CKM (which has a QCP with similar properties to that of the

2IAM) and introduce an MF model which has been proposed to describe the 2CKM

QCP. Afterwards, we proceed to present our results and interpretations.

5.1 Quantum Criticality

Inter-impurity interactions occurring in coupled impurity/quantum dot models often

govern the critical behaviour of such systems. A critical point is best understood

thermodynamically in terms of phase transitions. Let us suppose we have some

system whose state or phase is entirely described by some thermodynamic quan-

tity which we term the order parameter. A first order phase transition is a point

in phase-space across which the order parameter changes discontinuously. At the

transition, two distinct phases (each characterised by the order parameter) coexist

in equilibrium. Often one can tune another thermodynamic quantity in a way that
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results in a line of first order transition points in phase-space; the phase equilibrium

curve [132]. At the endpoint of this curve, the competing phases become one. This

is a critical point, and it corresponds to a continuous, second-order phase transition.

Critical points appear in both quantum and classical models, but in each case they

are governed by different physics. In a fully classical system, we can think of the

state of matter as being described by the set of all momenta and positions of the

atoms and electrons. For finite temperatures the momenta and positions follow

from Boltzmann’s distribution and, in equilibrium, the minimisation of the Gibbs

free energy F = U − TS, where U and S are respectively the internal energy and

entropy. In order to keep F minimal, there is competition between U and S, driven

by the thermal fluctuations of the system. On approach to the critical point, the

system decomposes into isolated ‘chunks’ of the different phases separated by the

critical point, and the macroscopic properties begin to resemble a superposition of

the two phases. Classically, the change in the two phases represents a reorganisation

of the particles. For example, if one brings liquid water close to the liquid-vapour

critical point then one can observe increased compressibility and decreased electrical

conductance (as well as other changes), so that the system resembles vapour whilst

retaining some ‘liquid-like’ characteristics [133]. At the critical point the chunks of

each competing phase are more-or-less equally distributed throughout the system,

with a divergent correlation length.

The description of a QCP differs from the classical case in the sense that, rather

than looking for competing phases characterised by classical canonical variables, we

look for competing regimes of the ground-state wavefunction of a many-body system

[134]. A QCP therefore only resides at T = 0, unlike a classical critical point; this

difference is ultimately responsible for the distinction between the two. At T = 0,

there are no thermal fluctuations present, so the critical behaviour is a result of

the quantum fluctuations in the system [135]. All finite temperature critical points

may be described by the theory of classical phase transitions, even those with an

underlying quantum mechanical description. We may think of (inverse) tempera-

ture as setting an (imaginary) time-scale. Since the QCP exists at T = 0, there is

no timescale, so the time that the system requires to return to thermal equilibrium

after a perturbation diverges on approach to the critical point. In addition to spatial

scale invariance, at a QCP we acquire temporal scale invariance. This allows the
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quantum critical state to survive in finite (but low) temperature regimes, permitting

experimental measurements to take place.

The merging of the phases at the QCP results in long-ranged critical phenomena

which is due to a divergent correlation length and emergent scale invariance [136].

The QCP is therefore described by a FP of the RG, which exhibits the same charac-

teristic scale invariance. Due to the large correlation length, the system at criticality

becomes highly sensitive to certain changes in the environment; this results in a di-

vergent susceptibility [47]. We study the low temperature behaviour of the 2IAM

and when we change J we observe different low temperature RG FPs which repre-

sent distinct phases. If J is tuned correctly, we see the emergence of a QCP with

unusual physical properties which are intimately linked to MF models.

5.2 Majorana Fermions and Overscreening

An important theme throughout this chapter is the notion of screening, and the

emergence of MFs. These are a general type of particle which are their own antipar-

ticle (and hence carry only half the degrees of freedom of ‘normal’ particles), and

whose existence is permitted by the Dirac equation [137]. Across the discipline of

physics, there are many important questions regarding MFs (such as whether the

neutrino is Majorana or Dirac [138]). In our work we specialise to the ‘condensed

matter’ picture of MFs, which could also be called Majorana bound states - these

are combinations of particles and holes. We do not discuss real fundamental parti-

cles (like a neutrino), rather we discuss only low-energy quasiparticles satisfying the

defining algebra of a MF.

MFs are of great interest to the condensed matter community because they give

rise to non-Abelian statistics [139, 140] associated to some modes in the system.

The statistics are determined by exchange of particles; in the typical case of Bosons

and Fermions, the wavefunction is respectively symmetric and anti-symmetric under

exchange. In 2 spacetime dimensions one can obtain particles which do not obey

this simple exchange rule. Let us denote the group of exchange transformations

in the usual Bosonic/Fermionic case Z2 = {−1, 1}. If we instead let our exchange

group become some general non-Abelian group then, in some cases, behaviour use-

ful to topological quantum computers emerges [139, 141, 142]. Specifically, these
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2-dimensional quasiparticles with strange statistics, ‘non-Abelian anyons’, can be

used to construct qubits which are stable with respect to perturbations, unlike the

conventional trapped particle quantum computers, which are subject to severe de-

coherence. This stability is due to braiding, where the anyons world lines wrap

around each other but are topologically protected from merging. MFs are examples

of anyons, and it is therefore interesting to the condensed matter community that

they arise at the QCP of certain impurity systems.

Whether MFs emerge in quantum impurity systems is determined by the mech-

anism employed to screen the impurity. We here distinguish between the ‘screened’,

‘underscreened’ and ‘overscreened’ cases. Suppose our impurity system of spin S

is coupled to n channels, so that there are n different species of conduction elec-

trons to couple to. If there are exactly enough conduction electrons to screen the

impurity, 2S = n, then the static spin may be screened, resulting in an SU(2S + 1)

Kondo regime. If there is an insufficient number of conduction electrons to fully

screen the spin, 2S > n, then the spin is underscreened. Conversely, if there are

too many conduction species, 2S < n, then the spin is overscreened [143]. In the

unscreened cases, the residual interacting degrees of freedom determine the system

behaviour. In the underscreened case, an effective, low-energy ferromagnetic inter-

action emerges, which logarithmically tends to zero on the lowest energy scales [144].

This reproduces a stable FL regime.

Conversely, in the overscreened case, where there is an antiferromagnetic effective

coupling, a new ‘intermediate-coupling’ FP emerges, which is responsible for the low-

energy behaviour [144, 145]. Various methods have been developed for understand-

ing the properties of the low-energy FP in overscreened impurity models, including

the Bethe Ansatz [146], Bosonisation [147, 148] and Boundary Conformal Field The-

ory (BCFT) [149, 20, 150, 151, 152]. These all show that this intermediate-coupling

FP is of Non-Fermi Liquid (NFL) nature, and corresponds to a QCP. Curiously, the

T = 0 impurity system contribution to the entropy is ln(2)/2, implying that the mul-

tiplicity of the atomic states is non-integer. This property can be explained by the

presence of a single uncoupled MF mode [148]. A local Dirac Fermion has 2 degrees

of freedom (corresponding to spin up and down) and thus contributes an entropy of

ln(2). A half-degree of freedom will contribute half this entropy. Clearly the 2IAM

cannot be overscreened, as each impurity may support a spin 1/2 and is coupled to
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its own bath, so one might question whether such anomalous properties can arise.

At p-h symmetry, where we map to the 2 Impurity Kondo Model (2IKM), it has

been shown that the NFL FPs of the 2-impurity and overscreened 2-channel models

are equal, modulo potential scattering [153]. Therefore phenomena associated with

overscreening can be achieved in 2-impurity models.

5.3 Majorana Fermions in the 2IAM

When p-h symmetry is enforced, we have claimed that the charge symmetry is

promoted from U(1) to SU(2) in each channel. Unlike the SU(4) case, there is no

coupling or entanglement between the spin and charge sectors, resulting in a global

SO(4)⊗SO(4) symmetry (in the model with no-inter impurity interactions). The

channels remain invariant under U(1), since SO(2) ∼= U(1) and SO(2) ≤ SO(4), but

if we manifest the full SO(4) invariance, the model loses its manifest U(1) symmetry

in each channel. We may describe the model in terms of two spin-like variables;

spin (the usual) and isospin. An MF model emerges very naturally as we make

explicit the SO(4) symmetry; they are linear superpositions of particle and hole

excitations corresponding to each degree of freedom. In this section, we demonstrate

the emergence of the symmetry, and motivate why this is useful for our analysis of

the QCP. We define a total of 8 MF species, which are Hermitian, corresponding to

the impurity sites,

d0 =
1√
2

[
d†1,↑ + d1,↑

]
d1 = − i√

2

[
d†1,↑ − d1,↑

]
d2 = − 1√

2

[
d†1,↓ + d1,↓

]
d3 = − i√

2

[
d†1,↓ − d1,↓

]

d4 =
1√
2

[
d†2,↑ + d2,↑

]
d5 = − i√

2

[
d†2,↑ − d2,↑

]
d6 = − 1√

2

[
d†2,↓ + d2,↓

]
d7 = − i√

2

[
d†2,↓ − d2,↓

]
(5.3.1)
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and a further 8 which are built from conduction electrons/holes,

χ0(n) =
1√
2

e
inπ
2

[
c†1,n,↑ + (−1)nc1,n,↑

]
χ1(n) = − i√

2
e
inπ
2

[
c†1,n,↑ − (−1)nc1,n,↑

]
χ2(n) = − 1√

2
e
inπ
2

[
c†1,n,↓ + (−1)nc1,n,↓

]
χ3(n) = − i√

2
e
inπ
2

[
c†1,n,↓ − (−1)nc1,n,↓

]

χ4(n) =
1√
2

e
inπ
2

[
c†2,n,↑ + (−1)nc2,n,↑

]
χ5(n) = − i√

2
e
inπ
2

[
c†2,n,↑ − (−1)nc2,n,↑

]
χ6(n) = − 1√

2
e
inπ
2

[
c†2,n,↓ + (−1)nc2,n,↓

]
χ7(n) = − i√

2
e
inπ
2

[
c†2,n,↓ − (−1)nc2,n,↓

]
.

(5.3.2)

These obey the anticommutation relations{
χi(n)†, χj(m)†

}
=
{
χi(n)†, χj(m)

}
=
{
χi(n), χj(m)

}
= δijδmn (5.3.3)

and {
d†i , d

†
j

}
=
{
d†i , dj

}
=
{
di , dj

}
= δij , (5.3.4)

which we take to be the defining property of an MF. Neglecting inter-impurity

interactions and enforcing p-h symmetry, the 2IAM Hamiltonian may be expressed

as

H = i

∞∑
n=0

3∑
i=0

ξnΛ−n/2χi(n+ 1)χi(n) + iV1

3∑
i=0

χi(0)di + U1d0d1d2d3

+ i
∞∑
n=0

7∑
i=4

ξnΛ−n/2χi(n+ 1)χi(n) + iV2

7∑
i=4

χi(0)di + U2d4d5d6d7

(5.3.5)

where n labels the 2-body site on the tight-binding chain. Note that we express

the NRG Hamiltonian, rather than the continuous one, in a basis of MFs for two

reasons. Firstly, to illustrate the model with which previous NRG studies have been

carried out, such as in [154]. Secondly, the NRG Hamiltonian is simply a tight-

binding chain with strong similarities to the Kitaev model [142], which provides a

simple representation of the MFs. To make manifest the symmetry, we define the

vectors

Ω1(n) =


χ0(n)

χ1(n)

χ2(n)

χ3(n)

 , Ω2(n) =


χ4(n)

χ5(n)

χ6(n)

χ7(n)

 , Π1 =


d0

d1

d2

d3

 , Π2 =


d4

d5

d6

d7

 ,

(5.3.6)
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so that the model is given by

H = i
∞∑
n=0

ξnΛ−n/2Ωα(n+ 1)TΩα(n) + i
∑
α

VαΩα(0)TΠα +
∑
α

Uαdet
[
ΠT
α1
]
.

(5.3.7)

This is invariant under the transformation{
Ωα(n) → MαΩα(n)

Πα → MαΠα

, (5.3.8)

where Mα is constrained by the Hermiticity of the MFs to contain only real entries,

if MT
αMα = MαM

T
α = 1 and detMα = 1. The uncoupled p-h symmetric 2IAM

is thus invariant under SO(4)⊗SO(4). In the channel symmetric free model, the

symmetry group expands to O(8). At the QCP we study, all the interaction terms

renormalise to 0 [96] so that one might expect an emergent O(8) symmetry, in a

basis spanned by MFs. However, there is the same ln(2)/2 entropy contribution as

in the overscreened models, which suggests that there is a free MF mode. This is

supported by a BCFT argument that our model, at p-h symmetry, has an emergent

O(7) symmetry [155]. There is a very close analogy to the 2CKM, whose QCP has

very similar properties to the 2IAM, and for which an MF model has been developed

[156].

5.4 Majorana Model for the 2CKM

In the 2CKM, where a static spin S = 1/2 is symmetrically coupled to two non-

interacting electron baths, the bulk electrons try to screen the impurity spin at low

temperatures. In this system, each conduction bath is competing to form a Kondo

singlet with the static impurity spin. Since there is no way of a single half-integer spin

being coupled to an even number of half-spin electrons such that there is no residual

spin, the impurity system remains spinful and therefore, at zero temperature, con-

tributes to the entropy. The impurity spin is overscreened and the low-temperature

system is hence disordered. At this NFL FP, a property indicative of the presence

of a free MF mode, S(0) = ln(2)/2 arises [147, 148, 157, 158]. This entropy contri-

bution accompanies a logarithmic divergence (with respect to temperature) of the

uniform spin susceptibility and specific heat [23]. Although the entropy is seemingly

unphysical, the associated NFL behaviour (divergence of thermodynamic quanti-

ties) has been observed in certain Cerium and Uranium systems, and this behaviour

attributed to the overscreened Kondo effect [159, 160, 161, 162, 163, 164]. NFL
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behaviour associated to multi-channel Kondo systems has also been observed in QD

devices [165].

One early approach1 to understanding the 2CKM was the study of the σ-τ model

[168] where, rather than two channels, there was only one channel but the impurity

was coupled to both the channel spin and isospin. The σ-τ model has a NFL FP

which displays some similar properties to that of the 2CKM, but does not explicitly

demonstrate the presence of an uncoupled MF mode. The O(3)-symmetric Ander-

son model [169], becomes equivalent (at large U) to the σ-τ model by means of a

Schrieffer-Wolff transformation. This model has the Hamiltonian

HO(3) = i

∞∑
n=0

3∑
i=0

ξnΛ−n/2χi(n+ 1)χi(n) + iV

3∑
i=1

χi(0)di + iV0χ0(0)d0 + Ud0d1d2d3

(5.4.1)

with an explicit invariance under the transformation
χ1(n)

χ2(n)

χ3(n)

→M


χ1(n)

χ2(n)

χ3(n)

 ,


d1

d2

d3

→M


d1

d2

d3

 (5.4.2)

for M ∈ SO(3), and in the free case we have an O(3) symmetry. HO(3) exhibits

a critical point as V0 → 0, where the static NFL features of the 2CKM emerge,

which has been shown explicitly using NRG calculations [154]. Interestingly, one

sees that in the limit V0 → 0, the d0 MF becomes totally decoupled from the bulk

and gives rise to the anomalous entropy. Although the σ-τ and the O(3)-symmetric

Anderson models show properties very similar to the NFL QCP of the 2CKM, the

models are not equivalent (although certain dynamic quantities have been argued

to be identical for both models, over all energy scales [170]). In particular, the σ-τ

and the O(3) models do not permit overscreening of the impurity [23], since there

is only 1 electron bath. Motivated by these models, the excitation spectra of the

2CKM was shown to be governed by 2 sectors of MFs [156], indicating that free MF

modes govern the observable physics.

The MF model for the NFL FP of the 2CKM is built upon the idea that some

1We specialise to discussing literature which points towards an MF model for the 2CKM/2IKM,

but it is worth noting that alternative approaches to understanding the NFL have also been relatively

successful. These include Bethe Ansatz [146, 166], Bosonisation [147, 167] and BCFT [20, 152, 155].
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Energy Degeneracy

0 2

1/8 4

1/2 10

5/8 12

1 26

9/8 32

3/2 60

13/8 76

Table 5.1: The low-lying energy levels of the 2CKM at the NFL FP, calculated

by BCFT [171]. The energies are in terms of a scale set by vF. We also include

the degeneracies, which arise from the quantum numbers associated to the spin and

representation of SO(5).

MF modes are free. In the same way as for the 2IAM, the bulk degrees of freedom

give rise to 8 species of non-local MFs. The authors of [156] superpose sets of 8 free

MFs, of which some are connected to the impurity and the remainder disconnected.

Motivated by the boundary conditions considered in the BCFT treatment of the

multi-channel Kondo model, connected MFs are considered periodic, whilst discon-

nected MFs are antiperiodic. A single free MF, which lives on a chain of length N ,

is described by the Hamiltonian

HMF = it

N−1∑
n=0

χ(n)χ(n+ 1) (5.4.3)

where the periodic MF modes satisfy χ(N) = χ(0), and the antiperiodic χ(N) =

−χ(0). Assuming a linear dispersion,

εk =
πvF

l
k, (5.4.4)

where l sets the length scale and vF is the Fermi velocity, one can diagonalise HMF

and calculate the spectra for the MFs. Periodic MFs have single-particle energies

0, 1, 2, etc (in units of πvF/l) whilst antiperiodic MFs have single-particle energies

1/2, 3/2, 5/2 etc. BCFT studies of the 2CKM has allowed calculation of the NFL levels

at the QCP [171, 150], given in table 5.1, and have uncovered an emergent SO(5)

symmetry. The free model, formulated as in section 5.3, has 8 different species of

conduction MFs, and the low-energy model has an SO(5) symmetry. The construc-

tion of an MF model for the 2CKM therefore contained different combinations of
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Figure 5.1: MF model of the 2CKM NFL FP, as proposed in [156]. Only energy

levels with a circle may be occupied, and the 2 sectors act independently to describe

the levels 0, 1/2, 1 etc (sector I) and 1/8, 5/8, 9/8 etc (sector II). Energies are in units

of πvF/l. PBC and APBC respectively indicate periodic and antiperiodic boundary

conditions.

8 MFs, of which 5 would have different boundary conditions from the remaining 3.

The successful model, formulated in [156], has 2 sectors, I and II, where the ground

states of each sector are shifted by 1/8. In sector I, there are 2 sets of 8 MFs, and each

set has 3 MFs with periodic boundary conditions, and 5 with antiperiodic. Only one

set may not be empty. Sector I gives us the 2CKM energies which are not shifted

by 1/8. There are 2 ground states, 1 corresponding to each set, where all 5 periodic

MFs are not excited. As an example, to obtain an energy of 3/2, we may excite any

5 MFs to 3/2 (5 ways of doing this), excite a single periodic and antiperiodic MF (15

ways), or excite any 3 antiperiodic MFs to energy 1/2 (10 ways). Noting we have 2

sets, the total degeneracy is therefore given by 60. The same approach is taken with

sector II, which reproduces the energies shifted by 1/8. This schema is illustrated in

figure 5.1, and we show in table 5.2 how the many-body energies of the NFL can

be constructed. This model gives a nice interpretation of both the emergent SO(5)

symmetry, and the role of MFs, although it is somewhat mysterious why the sets

and sectors come together as they do. A similar model has not been proposed for

the 2IKM, however, which would be desirable because it also exhibits QCP with

similar anomalous properties.
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ENFL Sector
∑
nE [E] Degeneracy Total Degeneracy

0 I 3[0] 1× 2 2

1/8 II 5[0] 1× 4 4

1/2 I 1[1/2] 5× 2 10

5/8 II 1[1/2] 3× 4 12

1 I 1[1] 3× 2

2[1/2]
(

5
2

)
× 2 26

9/8 II 1[1] 5× 4

2[1/2]
(

3
2

)
× 4 32

3/2 I 1[3/2] 5× 2

3[1/2]
(

5
3

)
× 2

1[1] + 1[1/2] (3× 5)× 2 60

13/8 II 1[3/2] 3× 4

3[1/2] 1× 4

1[1] + 1[1/2] (5× 3)× 4 76

Table 5.2: The combinations of MFs which correspond to the 2CKM NFL FP

energies.
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5.5 2-Impurity Kondo Systems

In the 2IKM, one considers 2 distinct static impurity spins, S1 and S2, coupled

to separated baths (labelled by α ∈ {1, 2}), with an antiferromagnetic Heisenberg

interaction between the static spins. The Hamiltonian is given by

H2IKM =
∑
α

[∑
k

εαkc
†
αkσcαkσ + 2JαSα(0) · Sα

]
+ 2JS1 · S2 (5.5.1)

where Sα(0) denotes the spin density of bath α local to impurity α. Like the 2CKM,

the 2IKM exhibits a QCP governed by a NFL FP [172, 173], although the underlying

physical picture differs. In the 2IKM, at the QCP, the system is competing between

each of the baths screening their own impurity (for such a setup one could imagine

J̃ → 0, while J̃1, J̃2 →∞) and the two impurity spins becoming so strongly coupled

that they form a local singlet, and decouple from the rest of the system (now we

would propose J̃ →∞, while J̃1, J̃2 → 0).

The total local spin susceptibility χ(ω) quantifies the system response to a local

field which seeks to fix the single impurity spin. In the 2CKM at the QCP, the

inability of the baths to screen the static spin leads to long range correlations be-

tween the bulk electrons. As a result, the application of a local field to the impurity

site leads to a divergence of χ(ω) as ω → 0. In the 2IKM, it is the staggered spin

susceptibility (measuring the response to a field which seeks to oppositely align the

impurity spins) which diverges, whilst the total spin susceptibility (corresponding

to the entire impurity system) remains finite [23].

Despite the differences in the underlying physical pictures and divergent quanti-

ties, the 2-channel and 2-impurity Kondo system QCPs both exhibit the anomalous

entropy of S(0) = ln(2)/2. This has been shown in the 2IKM analytically as well as

numerically, through Bosonisation [174] and BCFT [155]. It is therefore suggested

that an MF description is required for the 2-impurity case. It has been shown that

the QCP of the 2CKM and 2IKM are identical with the exception of potential scat-

tering [153], and therefore it seems probable that there are free MFs in the 2IKM.

In our work, we consider the 2IAM, which is equivalent on low energy scales to the

2IKM when p-h symmetry is enforced. Our study of the QCP at p-h symmetry

leads us to build an MF model for the 2IKM, although not for the 2IAM away from

p-h symmetry.

122



5.6 Anderson Systems

At p-h symmetry, similar results to the 2CKM and 2IKM are obtained for the 2

Channel Anderson Model [175, 176] and the 2IAM [96, 108, 95]. As in the Kondo

cases, there is an anomalous entropy contribution of ln(2)/2 at the QCPs, and the

total spin susceptibility diverges logarithmically for the 2CAM, whilst it is the stag-

gered spin susceptibility which diverges in the 2IAM (with the total susceptibility

remaining finite).

We study in detail the QCP of the 2IAM, through use of the NRG, and calculate

dynamic quantities which show explicitly the divergences in certain correlation func-

tions as well as properties of the density of states at the Fermi level. In addition, by

calculating the imaginary part of the spin correlation functions, we explicitly show

a logarithmic divergence of the relevant susceptibilities. An advantage of the NRG

approach, compared to the Bethe Ansatz and BCFT approach, is that we can break

symmetries in the bare model and investigate how the low-energy FP is affected.

When we break p-h symmetry, we find that the anomalous properties persist, and

study the dynamic quantities to gain a picture of the underlying physics. We also

study how the QCP changes for the model with U1 6= U2 and relate the p-h symmet-

ric channel asymmetric case to the 2CKM, which is achieved when U1/π∆ is large

(strong correlation) and U2 = 0.

Before we present our results and discussion, it is worth noting that this QCP is

very well studied [26, 177, 178, 151, 155, 174], as are QCPs in similar models with

modified symmetries [179]. However, there are shortages in the literature that we

attempt to address. The QCP of the 2IKM/2IAM exhibits anomalous MF charac-

teristics which have never been explained, and many of the methods which have been

used to study the QCP assume p-h symmetry (eg Bethe ansatz, BCFT). However,

the transition has been shown to exist when p-h symmetry is broken [96], and there

have been few studies attempting to clarify the difference between the p-h symmet-

ric and asymmetric transitions. Furthermore, the dynamics of the system have not

been calculated before, and we use these to motivate a physical interpretation of the

QCP.
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Figure 5.2: Comparison of the low-lying energy levels for the p-h symmetric model

with U/π∆ = 6, π∆ = 0.01. In (a), we set J = 0 whilst in (b), J/π∆ = 1.

5.7 Particle-Hole Symmetry

We begin by studying the 2IAM with p-h symmetry, and channel symmetry, whilst

setting U/π∆ large (so that the system exhibits strong correlation). In this regime,

the model is equivalent to the 2IKM on low-energy scales. We can therefore com-

pare our results for the 2IAM to the previous studies on the 2IKM, and interpret

the underlying physics similarly. We set π∆ = 0.01, and U/π∆ = 6. In figure 5.2 we

plot the low-lying energy levels, as a function of the NRG iteration N , in the case

J = 0 (a) and J/π∆ = 1 (b). We see that the low energy eigenstate structure is

totally changed and, in particular, the even and odd FPs of each case have swapped.

It has been shown in [96] that for J above a critical value JC, ∆̃ = 0, implying that

the impurity sites have been totally decoupled from the baths. This corresponds to

changing the number of coupled 2-body sites by 1, so that the odd and even FPs

are exchanged. Our results support this picture.

We can calculate JC by continuously partitioning a bracket JL < JC < JU where

JL corresponds to the low energy regime where even/odd FPs have not been in-

terchanged, and JU to the regime where they have. For this model we calculate

JC = 8.8542371 × 10−6, in agreement with [96] which states that, in the strong

correlation regime, JC = 1.378TK, where TK is defined by TK = π∆̃(U, 0)/4 and

∆̃(U, J) is the renormalised hybridisation width in a model with bare parameters

U and J . This ratio has also been found in [180, 178, 177], which study the 2IKM
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Figure 5.3: The RG flow of the lowest odd N and even N energy eigenvalues of

the NRG Hamiltonians HN . The model is channel symmetric and p-h symmetric,

with U/π∆ = 6. Some energies, which flow towards the illustrated levels have been

omitted for clarity.

and we note that the authors use a different definition of TK (so that the ratio is

different, but a relevant substitution confirms equivalence). We plot in figure 5.3

the RG flow of the low-lying energies towards the unstable FP which emerges at

J = JC. This FP is a QCP [96, 108]. Strikingly, the odd and even levels flow to the

same FP, which suggests that we can build the levels from a superposition of the

system with odd and even chain lengths. We build on this idea in section 5.10. The

level structure is also of interest, as the degeneracies indicate that we are in a NFL

regime [155]. We limit these levels to the continuum and compare with the BCFT

analysis also in section 5.10. We cannot tune J precisely so that the RG flow ends

exactly at the NFL FP, since it is unstable. The RG flow can, however, be brought

arbitrarily close to the NFL FP, resulting in a ‘plateau’ of the levels, and to perform

T = 0 calculations we simply claim that these levels correspond to the low-energy

regime (since the NFL regime is a FP, this is true). For larger N , there is a crossover

from the NFL to (even/odd) FL regime.

The NFL exhibits an anomalous impurity entropy contribution ln(2)/2 as T → 0, as

shown in figure 5.4. As in the 2CKM and 2IKM, this is suggestive of the presence

of a decoupled half degree of freedom (an MF mode). We also note that one must

be very close to the value of JC to see NFL behaviour - an accuracy of around 8

significant figures is required for an extended plateau. The renormalised parameters

(a), and their ratios (b), on approach to the critical point (J < JC) are plotted in

figure 5.5. We see that ∆̃, Ũ and J̃ all vanish as J → JC, but their ratios tend
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J̃/π∆̃ are plotted in (b). The model parameters are the same as those in figure 5.3.
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to the constant values Ũ/π∆̃ → 1 and J̃/π∆̃ → 2. There is hence an emergent

single energy scale, T ∗, which is defined by Ũ = J̃/2 = π∆̃ = 4T ∗, and vanishes as

J → JC (so that the system is conformally invariant). These results are in agree-

ment with [96] and, using the RPT, the ratios provide insight into the behaviour of

the dynamic quantities. Since ∆̃→ 0 as J → JC, we have ρ̃(0) = 1/π∆̃→∞ whilst

z → 0. Under channel symmetry, the total and staggered spin susceptibilities, given

respectively in (3.5.15) and (3.5.16) become

χtot(0) = 2ρ̃(0)
(

1 + Ũ ρ̃(0)− J̃ ρ̃(0)
)

(5.7.1)

and

χstg(0) = 2ρ̃(0)
(

1 + Ũ ρ̃(0) + J̃ ρ̃(0)
)
. (5.7.2)

Since Ũ ρ̃(0) → 1 and J̃ ρ̃(0) → 2, we can expect a divergence of the staggered spin

susceptibility at J = JC, whilst χtot(0) should not diverge. We can infer similar

properties of the singlet and triplet susceptibilities. Defined in (3.5.20), the particle-

particle scattering term, in the strong correlation limit with channel symmetry,

becomes

Π̃(0) = − 1

π∆̃
, (5.7.3)

so that we obtain

χsng(0) = − 1

π∆̃

(
1 +

3J̃

2π∆̃

)
(5.7.4)

and

χtrp(0) = − 1

π∆̃

(
1− J̃

2π∆̃

)
(5.7.5)

where we use (3.5.25) and (3.5.26), and set Ũ12 = 0. We can hence expect a diver-

gence of the singlet susceptibility. The emergence of universality, and that we find

JC = 1.378TK, implies that our calculations are consistent with the literature, and

we now proceed to present NRG calculations of various dynamic quantities.

The underlying dynamics of the NFL FP are the same for all values of p-h and

channel symmetry models we consider. We list the values of JC for these models

in table 5.3. We have found that the scaled levels Er(N) are identical for all of

these models. This is because p-h symmetry constrains the low-energy FP. What

is perhaps surprising is that the same universal ratios as before, Ũ/π∆̃ → 1 and

J̃/π∆̃ → 2, hold even in the weakly correlated model, with U = 0, implying emer-

gent strong correlation [108]. We plot in figure 5.6a π∆ρ(ω) for the cases J/JC = 0.5
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U JC

0.00 5.07566704× 10−3

0.04 8.89795460× 10−5

0.06 8.85423711× 10−6

0.10 7.86416000× 10−8

Table 5.3: The calculated values of JC, to 9 significant figures, for the p-h and

channel symmetric model with π∆ = 0.01.
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Figure 5.6: The spectral density below (J < JC) and above (J > JC) the transition

corresponding to the parameters as given in the caption of figure 5.3. Note that the

spectra have been scaled by the correction factor as discussed in chapter 2.

and J/JC = 0.999. We see that, in line with the usual J = 0 2IAM at p-h symmetry,

π∆ρ(0) = 1 due to the Friedel sum rule. However, the peak structure in the case

J/JC = 0.999 is very different from that of J/JC = 0.5, which looks like a typical

Kondo resonance. On the energy scales corresponding to the NFL FP, we see the

emergence of a broad peak, of width characterised by TK whose maximum appears

to correspond to π∆ρ(0) = 1/2. When the RG flow heads away from the NFL FP,

towards a stable FL FP, we obtain the usual result as constrained by the Friedel sum

rule. However, the width of the Kondo peak is governed by ∆̃(U, J) ∝ T ∗ where

T ∗ → 0 as J → JC. When J = JC/2, the RG flow is not influenced by the NFL FP,

so we obtain the usual Kondo peak, again of width ∆̃(U, J).

In contrast to this result, we plot π∆ρ(ω) for the cases J/JC = 1.001 and J/JC = 2

in figure 5.6b. We now obtain the unusual result π∆ρ(0) = 0, implying that the
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Figure 5.7: The 1-particle spectral density at J = JC for various values of U . We

take π∆ = 0.01, and the values of JC are given in table 5.3.

Kondo many-body singlet has been destroyed and adding or removing localised elec-

trons now costs energy. The Kondo resonance has been bifurcated into 2 peaks above

and below the Fermi level. When J/JC = 1.001, the RG flows close to the NFL FP,

and on the energy scales where NFL behaviour manifests in the model (these are the

energy scales where the anomalous entropy persists), we see that ρ(ω) again appears

to be fixed to the value π∆ρ(0) = 1/2 similar to the J < JC case. When the RG flow

approaches the stable FP regime, we obtain π∆ρ(0) = 0. The model is said to be

pseudogapped in this regime, which is consistent with the results of [96] where the

authors found that for p-h symmetry, ∆̃ = 0 for J > JC. The discontinuous change

in ρ(0) as J crosses JC corresponds to the π/2 phase shift, which is also observed in

[96]. One might expect by (1.3.4) that this phase shift would change the local occu-

pation, however this is not the case since p-h symmetry ensures ρ(ω) is symmetric

about ω = 0 so that the local occupation is always 1 on each impurity. We interpret

the impurities to be so strongly bound that they are decoupled from the conduction

electron baths, and the narrow peaks either side of the Fermi level to correspond to

the energy required to add or remove an electron. We also plot π∆ρ(ω) for the case

J = JC in figure 5.7, where we consider several values of U/π∆. We see that a peak

at the Fermi level persists, but only reaches the height π∆ρ(0) = 1/2, so that some

spectral weight has been suddenly displaced. The value π∆ρ(0) = 1/2 appears to be

universal in the model with p-h symmetry.

These observations alone do not paint a very clear picture of the underlying physics

of the QCP. We interpret the case J < JC as the system being in a Kondo regime,
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Figure 5.8: The binding energy ES of the localised singlet that forms for J > JC, as

a function of J/JC− 1. To a good approximation, the curve is linear (the correlation

coefficient is given as R2 = 0.9915) and is hence suggestive of the relationship ES =

α (J/JC − 1)
β
. We calculate α = 5.8982 × 10−8 and β = 1.6836 numerically using

least-squared regression.

where the impurities each contain a single electron which forms a many-body sin-

glet with the first conduction site. Conversely, we interpret J > JC as leading to

the formation of a localised singlet. It follows that the addition or removal of a

single electron to the impurity system will require the singlet to be broken, which

costs energy. For this reason the spectral density has developed a pseudogap, with

the distance between the peaks either side corresponding to the binding energy ES

of the singlet. Unsurprisingly, as one as increases J the binding energy increases,

and the peaks either side of the Fermi level move apart. We plot this in figure 5.8,

which shows that ES = α (J/JC − 1)β, where α and β are positive constants, with

α ∼ O(TK). We illustrate the 2 competing regimes in figure 5.9. The system at

J = JC is interpreted as a superposition of these 2 regimes. The normalised su-

perposition of ρ(ω) above and below the transition is very similar to the ρ(ω) at

the transition, and supports the notion that here the system is in a superposition

of each regime. Also in support of this notion is the fact that the even-odd oscilla-

tions disappear at the NFL FP. Since ∆̃ = 0 for J > JC the system in this regime

would have an excitation spectra corresponding to an even chain length, whilst the

system’s excitation spectra for J < JC would be odd (or vice versa). Superposing

an even and odd chain length would cause the even-odd oscillations to vanish.

Having formulated a picture of the NFL FP, we now test it using NRG calcula-

tions of various spin susceptibilities. With the NRG, we can only calculate the
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Figure 5.9: Schematic of the competing low energy regimes at the J = JC QCP.

The localised impurity sites are represented by the blue circles, whilst de-localised

conduction sites are depicted by the black circles.

imaginary parts of the Green functions, but the real part may be determined by

means of a Hilbert transform. However, the low-energy behaviour occurring on

scales ω ∼ O(10−10) requires a logarithmic mesh close to ω = 0. This makes the

numerics of performing the Hilbert transform very challenging. For this reason we

present only results for the imaginary part of the susceptibilities. In figures 5.10 and

5.11 respectively we plot Imχtot(ω) and Imχstg(ω) for the model with U/π∆ = 6

at J = JC. We see that as ω → 0, Imχtot(ω) approaches zero monotonically, and

passes through it. Conversely, Imχstg(ω) is discontinuous about ω = 0. The real

part of the susceptibility is given by

Reχstg(ω) = − 1

π
lim
δ→0

∫ ∞
δ

dω′
Imχstg(ω + ω′)− Imχstg(ω − ω′)

ω′
(5.7.6)

[181]. We see that if Imχstg(ω) is discontinuous at ω = 0 then there is a logarithmic

divergence of Reχstg(ω) at ω = 0. In agreement with the RPT, we therefore have

that the staggered spin susceptibility diverges at J = JC, whilst the total spin sus-

ceptibility remains finite. If the NFL FP represents the superposition of Kondo and

local singlet regimes, then any perturbation which seeks to ‘push’ the system towards

one of these regimes would result in long ranged behaviour and the corresponding

susceptibility would therefore diverge. The total spin susceptibility measures the

response to a field which seeks to arrange the spins on each impurity in parallel.

In the Kondo regime this would have no effect (due to the local spin up and down

states being degenerate), but in a local singlet regime this would result in a triplet
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Figure 5.10: Plot of the imaginary part of the total spin susceptibility for the p-h

and channel symmetric model with U/π∆ = 6. The inset shows a close-up of the

behaviour around the Fermi level.
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Figure 5.11: Plot of the imaginary part of the staggered spin susceptibility for the

p-h and channel symmetric model with U/π∆ = 6. The inset shows a close-up of the

behaviour around the Fermi level.
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Figure 5.12: Plot of the imaginary part of the singlet (orange) and triplet (blue)

pairing susceptibilities for the p-h and channel symmetric model with U/π∆ = 6.

The inset shows a close-up of the behaviour around the Fermi level. The triplet

susceptibility is plotted against the axis on the right.

state forming. Whilst it would destroy the NFL ground state, this would cost energy

so there is no divergence at the Fermi level. Arranging the spins oppositely, on the

other hand, could result in the formation of a singlet. The system is highly sensitive

to any field attempting to achieve such an arrangement, and we thus have that the

staggered susceptibility diverges.

The singlet and triplet susceptibilities, measuring the system response to adding

or removing a local singlet or triplet state, can also be calculated using the NRG.

We plot these, again for the case U/π∆ = 6 and J = JC, in figure 5.12. We see that

the singlet susceptibility diverges (in the real part) whilst the triplet susceptibility

remains finite. This is for the same reason that χstg(ω) diverges. Creating a singlet

would collapse the ‘frustrated’ QCP ground state into the local singlet regime. When

the system ceases to be in a superposition (J 6= JC), we find that all the divergences
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Figure 5.13: Plot of ρC(ω) for the p-h symmetric model with U/π∆ = 6 above and

below the transition at JC.

disappear, and close to the transition the susceptibilities are instead enhanced.

We also attempt to make sense of the observation in [96] that when J > JC, and the

impurity sites are decoupled from the chains, the first conduction site becomes an

‘effective’ impurity. We also note from [96] that we may express the Green function

of the first impurity site, GC
α(ω), in terms of the local impurity Green function as

GC
α(ω) = −iπ

2

2
(1− iπ∆αGα(ω)) (5.7.7)

which leads to the sum rule

πDρC
α(0) = 1− π∆αρα(0). (5.7.8)

We thus expect that when ρ(0) is a minimum, ρC(0) is a maximum and vice versa2.

We plot ρC(ω) in figure 5.13 for the cases J = 0.5JC (a) and J = 2JC (b). We

see that when J < JC, and ρ(ω) has a resonance at the Fermi level, ρC(ω) has an

‘anti-resonance’ at the Fermi level, such that ρC(0) = 0. The width is of the order

2This kind of structure appears to propagate down the Wilson chain, as can be seen from the

continued fraction approach to calculating the conduction Green functions discussed in chapter 3.

135



0.10

0.15

0.20

0.25

0.30

0.35

-2.0 -1.0 0.0 1.0 2.0

ρ
C

(ω
)

ω/10−4

U = 0.00
U = 0.06
U = 0.10

Figure 5.14: Plot of ρC(ω) at J = JC for various values of U . We take π∆ = 0.01,

and the values of JC are given in table 5.3.

∆̃(U, J) = 5.31× 10−6. Conversely, when J > JC, ρC(ω) has a narrow resonance at

the Fermi level, reaching the value ρC(0) = 0.272, corresponding to πDρC(0) = 1.

The values of ρC(0) are the same for the different values of U we consider. We

interpret the renormalised parameters calculated in [96] as corresponding to this

site, which behaves as an effective impurity. At J = JC, ρC(ω) exhibits the same

behaviour as ρ(ω) in that it appears to be a superposition of the cases J < JC and

J > JC, with ρC(0) = 0.136, such that πDρC(0) = 1/2 (taking the midpoint of the

cases J < JC and J > JC). This is shown in figure 5.14 for various values of U/π∆,

and like the value of π∆ρ(0), it appears that ρC(0) is universal for the p-h symmetric

model.

Our investigation of the p-h symmetric system around the NFL QCP provides ev-

idence to suggest that the ground state of the QCP is a superposition of the local

singlet and Kondo regimes. We have shown that the susceptibility to a field which

could place the localised d-electrons in a singlet diverges at J = JC. We have also

presented 1-particle spectral densities for the impurity and first conduction site in

the regimes J < JC and J > JC. It appears that at J = JC, the values of π∆ρ(0)

and ρC(0) are fixed regardless of the value of U . We find that for J < JC the

model is in a Kondo regime, whilst for J > JC the system forms a local singlet,

with the emergence of two peaks in the spectral density which replace the Kondo

resonance. The separation between these peaks represents the binding energy of

the singlet, and we have shown that as J increases above JC, so the peaks move

further apart. Finally, we have speculated that these two regimes correspond to a
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ε U U12 JC

−2.10× 10−2 5.00× 10−2 5.00× 10−2 1.76290677× 10−2

−1.00× 10−2 0.00 0.00 1.51263226× 10−2

1.59× 10−3 5.00× 10−3 0.00 5.44017626× 10−3

Table 5.4: The calculated values of JC, to 9 significant figures, for the p-h asym-

metric and channel symmetric model with π∆ = 0.01.
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Figure 5.15: The RG flow of the distinct low-lying energies of the NRG Hamiltonian

towards the NFL FP at J = JC, for two different models. We see that the structure

of the levels is different for the two cases.

chain with even/odd (or vice versa) boundary conditions, so that the RG flow of the

scaled NRG energies at J = JC does not exhibit even/odd oscillations.

5.8 Particle-Hole Asymmetry

We now study the transition away from p-h symmetry. The structure of the NFL FP

is no longer constrained, so for different bare parameters we obtain different levels.

We calculate 3 different QCPs for p-h asymmetry, and give the corresponding param-

eters in table 5.4. We plot the RG flow of the low-lying energies at J = JC in figure

5.15 where we see that the levels in the QCPs of the ε = 1.59×10−3, U = 5.00×10−3

(a) and ε = −1.00× 10−2, U = 0.00 (b) models are significantly different. However,

the odd/even oscillations still vanish at the NFL FP in the p-h asymmetric case,

and the anomalous ln(2)/2 entropy persists, as shown in figures 5.16a and 5.16b re-

spectively. In addition, we find that the renormalised parameters all tend to zero as

J → JC (figure 5.17a) and the relations Ũ ρ̃(0)→ 1 and J̃ ρ̃(0)→ 2 still hold. These

are plotted against J/JC in figure 5.17b. Therefore, despite the energy spectrum at
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Figure 5.16: Plots of the low-lying NRG energy levels (a) and the entropy S(T ) (b)

for the model with parameters ε = 1.59× 10−3, U = 5.00× 10−3.
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Figure 5.17: Plots of the renormalised parameters on approach to the NFL QCP

from below. In (a) we plot ε̃, ∆̃, Ũ and J̃ against J/JC, whilst the quantities Ũ ρ̃(0)

and J̃ ρ̃(0) are plotted in (b). The model parameters are the same as those in figure

5.16.
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Figure 5.18: The 1-particle d-site spectral density for J < JC. The model in

(a) has parameters ε = 1.59 × 10−3, U = 5.00 × 10−3 whilst (b) corresponds to

ε = −1.00× 10−2, U = 0.00. We set π∆ = 0.01.

the NFL FP, we can expect a number of similarities with the p-h symmetric case

and we investigate these in this section.

We first study the 1-particle functions. For the p-h symmetric model, we found

π∆ρ(0) = 1 for J < JC, and π∆ρ(0) = 0 for J > JC. The former result is due to the

Friedel sum rule and that ε̃ = 0. Away from p-h symmetry, when ε̃ 6= 0, it is unsur-

prising that these results do not persist. We plot ρ(ω) in figure 5.18, considering the

cases J/JC = 0.6, 0.8, 0.99 for 2 separate p-h asymmetric models. We see that value

of ρ(0) increases as J → JC, and the peaks narrow as T ∗ → 0. In addition, we see

that the peak shifts towards the Fermi level as J → JC. We plot the spectra on the

other side of the transition, J > JC, in figure 5.19, again for 2 different model pa-

rameters and several values of J/JC. These plots show that there has been a sudden

loss of spectral density at the Fermi level and that an anti-resonance has formed, but

a pseudogap has not. The anti-resonance grows wider and deeper as J increases. As

in the p-h symmetric model, the discontinuous change in ρ(0) is due to a π/2 phase

shift which does not change the local occupation of d-electrons. We also see that ε̃

has crossed the Fermi level and as J increases moves further away from it. Corre-

spondingly, a 2-(quasi)particle state is brought below the Fermi level (or liberated),

but spectral weight has not been redistributed, since the width of the quasiparticle

peak is infinitesimal just below and above the transition. We conjecture that this

2-quasiparticle state is a singlet. This localisation/liberation of 2 quasiparticles does
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Figure 5.19: The 1-particle d-site spectral density for J > JC. The parameters

corresponding to (a) and (b) are the same as those in figure 5.18.

not change the number of d-electrons. We plot n as a function of J/JC in figure 5.20,

as calculated by the NRG (integrating ρ(ω) up to the Fermi level) and RPT. We

see that the RPT and NRG give different results for the occupation as J increases

past JC, but agree reasonably well for J < JC. The fact that ε̃ has changed sign

results in the localisation of a 2-particle state according to the RPT, but this is not

reflected in the NRG. In the limit J →∞ the ground state is a local singlet, so that

we expect n → 2, which implies that RPT analysis must be modified to correctly

calculate the occupation. We note from [96] that there is a phase shift of π/2 across

the transition. We account for this phase shift by modifying the Friedel sum rule

for the regime J > JC, where we make the substitution ηασ → η̄ασ = ηασ + φ, for

φ = ±π/2, and ηασ given by

ηασ =
π

2
− arctan

(
ε̃ασ

∆̃α

)
. (5.8.1)

The phase of impurity α is given by η̄α =
∑

σ η̄ασ, and satisfies the modified relations

nα =
η̄α
π

=
ηα
π

+
2φ

π
(5.8.2)

and

ρα(0) =
1

π∆α
cos2

(π
2
nα

)
. (5.8.3)

Note from (1.3.3) that since the phase is shifted by a constant, the form of the

spectral density has not changed. The value of φ is determined by the value of ε;

for ε ≤ 0, we take φ = π/2, and φ = −π/2 otherwise. This prescription also holds
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Figure 5.20: Plot of n as a function of J/JC for the p-h asymmetric model with

parameters ε = 1.59 × 10−3, U = 5.00 × 10−3, as calculated by the NRG and RPT.

Notice that for J > JC, the RPT results no longer agrees with the NRG. The inset

corresponds to the model with parameters ε = −1.00× 10−2, U = 0.00 for which no

renormalised parameters are available. The renormalised parameters for J > JC were

provided by the authors of [96].
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Figure 5.21: Plot of ρ(0) as a function of J/JC for the p-h asymmetric model with

parameters ε = 1.59× 10−3, U = 5.00× 10−3. The crosses show the values calculated

using the RPT, ρ(0) = zρ̃(0). The insets show that ρ(0) stabilises as we get very

close to the transition. The renormalised parameters for J > JC were provided by

the authors of [96].

for p-h symmetry. An important consequence of the phase shift is the emergence

of a difference between nα and ñα = ηα/π. For the regime J > JC we now have

ñα = nα ± 1 such that as J →∞ and n→ 2, we have ñ→ 0 or ñ→ 4. This shift is

reflected by ε̃ crossing the Fermi level.

The authors of [96] found a discontinuous loss of spectral density at the Fermi

level as J increases through JC, and proposed a prescription for calculating the

renormalised parameters in the regime J > JC. We confirm their results in figure

5.21, where we show explicitly the values of ρ(0) calculated by the NRG and com-

pare them to those they calculated using the RPT and presented in their paper.

There is excellent agreement between the methods, and we see that sufficiently close

to the transition, |J/JC − 1| . 10−3, the value of ρ(0) stabilises. Notice that the

midpoint between the values of ρ(0) above and below the transition corresponds to

π∆ρ(0) = 1/2. If, at J = JC, the system is in a superposition of the J < JC and
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Figure 5.22: Plot of ρ(ω) at J = JC for various p-h asymmetric models.

J > JC regimes, then we might expect the corresponding value of ρ(0) to be the

midpoint of the ρ(0) above and below the transition. We plot π∆ρ(ω) at J = JC

for two sets of p-h asymmetric parameters in figure 5.22. As we predict, and similar

to the p-h symmetric model, we find π∆ρ(0) = 1/2, and posit that this value is

universal to the magnetically induced QCP of the 2IAM. Interestingly, regardless of

the bare parameters, the QCP appears to be constrained such that the midpoint of

ρ(0) above and below the transition is 1/2π∆. In the p-h symmetric model, we saw

a similar behaviour with ρC(0). In that case ρC(0) was equal for any J < JC and

for J > JC. Away from p-h symmetry this will no longer hold, as now the value

of ρ(0) varies with J . We therefore calculate ρC(ω) very close to the transition, at

J/JC = 0.999999 and J/JC = 1.000001. We plot these cases in figure 5.23a. On the

lowest energy scales, ω < 10−12, the system crosses over from the NFL to FL regime,

and we obtain an anti-resonance (J < JC) and resonance (J > JC). At the anti-

resonance we obtain πDρC(0) = 0.155 whilst at the resonance πDρC(0) = 0.854.

The midpoint of these two values, corresponding to πDρC(0) = 1/2, is equal to that

found at J = JC in the model with p-h symmetry. We plot ρC(ω), at J = JC,

in figure 5.23b for two p-h asymmetric models, and find that this value again ap-

pears to be universal. We point out that the values of π∆ρ(0) and πDρC(0) are

interchanged either side of the transition. This suggests that the impurity spectral

weight which is lost has ‘jumped’ to the next conduction site. We speculate that this

may lead to a description of the first conduction site as an ‘effective impurity’ in the

p-h asymmetric regime. This was conjectured in [96] for the case with p-h symmetry.

The 1-particle spectral functions suggest some similarities to the p-h symmetric

143



(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

-1.0 -0.5 0.0 0.5 1.0

ρ
C

(ω
)

ω/10−11

J = 0.999999JC
J = 1.000001JC

(b)

0.10

0.15

0.20

0.25

0.30

0.35

-0.04 -0.02 0.00 0.02 0.04

ρ
C

(ω
)

ω

ε = 1.59× 10−3, U = 5.00× 10−3

ε = −1.00× 10−2, U = 0.00

Figure 5.23: Plots of ρC(ω) for various models. In (a) we plot ρC(ω) just above and

below the transition for the model with parameters ε = 1.59×10−3, U = 5.00×10−3.

In (b) we plot ρC(ω) at the transition for 2 different models, showing that ρC(0)

appears to be universal.

model. As J moves across JC, we see a discontinuous loss of spectral density at

the Fermi level. Although some spectral density persists at ω = 0 for J > JC,

this behaviour is similar to the p-h symmetric model. Interestingly, the behaviour

of ρ(0) around the transition is suggestive that the model tries (although fails) to

restore the p-h symmetric condition ρ(0) = 1/π∆ when J < JC, as ρ(0) increases

as J → JC. The result ρ(0) = 0 is only achieved in the limit J →∞. We also have

that the NFL at J = JC obeys very similar properties to the p-h symmetric case.

We find that the value of ρ(0) and ρC(0) take half their values just above and below

the transition, and despite that fact that the energy levels differ at the NFL FP in

p-h asymmetry, the results π∆ρ(0) = 1/2 and ρC(0) = 0.137 are equal to the p-h

symmetric values. This suggests that these are universal.

The physics of the QCP, however, appears to be different in the cases of p-h sym-

metry or asymmetry. In p-h symmetry we had a competition between local singlet

and Kondo singlet regimes. In both these regimes, each impurity is occupied by a

single electron. The occupancy is fixed by p-h symmetry. Away from p-h symmetry,

the occupancy changes (n→ 2 as J →∞). We find that the π/2 phase shift corre-

sponds to a 2-quasiparticle state being pulled below or above the Fermi level, since

ε̃ changes sign. However, we do not find a discontinuous change in the d-electron

occupancy across the transition. The d-electron and quasiparticle occupation num-
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Figure 5.24: Plots focusing on the low-energy behaviour of Imχtot(ω) (a) and

Imχstg(ω) (b) below, at, and above the transition J = JC. The model parameters

are ε = 1.59× 10−3, U = 5.00× 10−3.

bers are related by ñ = n± 2, so that across the transition 2 quasiparticles, bound

in what we conjecture to be a singlet state, are localised or liberated. Despite the

differing underlying physics, the π/2 phase shift is universal and the model in both

p-h symmetric and asymmetric regimes satisfies the same modified Friedel sum rule.

We now present results for the 2-particle spectral functions, to attempt to clar-

ify our picture of the QCP. We note from [96] that for J > JC, ∆̃ > 0, implying

that z is finite. Since d̃ = d/
√
z, the local susceptibilities in terms of d-electrons are

proportional to the corresponding quasiparticle susceptibilities. In figure 5.24, we

plot Imχtot(ω) (a) and Imχstg(ω) (b) for the cases J/JC = 1/2, 1, 2. Noting that the

gradient at ω = 0 determines the value of the real part at ω = 0, we see that as J

increases, χtot becomes suppressed. This is not surprising since, for a large J , the

atomic system seeks to be in a singlet; a superposition of the system with oppositely

aligned spins. As in the p-h symmetric case, χtot(ω) does not diverge at J = JC.

Also in agreement with the p-h symmetric model, χstg(ω) diverges at J = JC, and

not when J 6= JC. This suggests that one of the competing regimes at the QCP is

comprised of oppositely aligned spins on the impurities. If our speculation that this

2-quasiparticle state, which rises or falls below the Fermi level, corresponds to the

localisation or liberation of a singlet quasiparticle pair is true, then the NFL will be

very sensitive to the addition of a singlet state, and the corresponding susceptibility

will diverge. We plot in figure 5.25a and 5.25b the singlet and triplet susceptibilities.
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Figure 5.25: Plots focusing on the low-energy behaviour of Imχsng(ω) (a) and

Imχtrp(ω) (b) below, at, and above the transition J = JC. The model has the

same parameters as is figure 5.24.

At J = JC, we see that χsng(ω) diverges, whilst away from JC it remains finite. Note

the very different forms of χsng(ω) for J < JC and J > JC. This is due to the fact

that the local occupation changes with J , and the area under χsng(ω) is equal to

n/2− 1. There is no divergence of χtrp(ω), and above and below the transition the

curves also change to reflect the different occupancies. It thus appears that a singlet

pair is added or removed as J crosses JC.

Our study of the QCP away from p-h symmetry has highlighted several similar-

ities and differences to the p-h symmetric model. The NFL FP is described by

different, non-universal levels which differ according to the bare parameters. How-

ever we recover the anomalous ln(2)/2 entropy and the even-odd oscillations still

vanish at the NFL FP. Close to the NFL FP, the levels stabilise (this corresponds

to the region where ρ(0) is unchanging) and we find that the odd and even FPs are

exchanged above and below the transition. We had also observed this for p-h sym-

metry. Analysis of the dynamic quantities illustrates that the competing regimes at

the QCP are slightly different in the p-h symmetric and asymmetric cases. At p-h

symmetry, the values of ρ(0) and ρC(0) were fixed above and below the transition.

Away from p-h symmetry, however, these values change with J , and plateau only

very close to J = JC. The discontinuous change in these quantities occurs in a

similar manner in both cases, with their values at J = JC being universal.
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A 2-quasiparticle state is brought above or below the Fermi level. Our suscepti-

bility calculations suggest that this 2-body state is in fact a quasiparticle singlet,

and the QCP separates a system with and without this state. This is in contrast

to the p-h symmetric model, where the competing regimes were argued to be a

Kondo singlet and local singlet. We relate this to the renormalised hybridisation.

As discussed in [96], when J > JC, ∆̃ = 0 for p-h symmetry whilst ∆̃ 6= 0 away

from p-h symmetry. It follows that just above the transition, the d-site electrons

are totally decoupled in the case of p-h symmetry, whilst for p-h asymmetry, there

are d-electrons which are not in a singlet and retain the possibility of hopping into

the bath. We interpret this as signifying that whilst there are 2 local quasiparti-

cles/holes bound in a singlet, there are also free quasiparticles/holes which may hop

into the bath. Further studies are required to fully clarify the underlying physics in

this system.

5.9 Relation to the 2CKM

We have investigated the QCP at and away from p-h symmetry, and our results

have provided some insight into the similarities and differences between the 2 cases.

However, we have not developed any insight into the NFL FP structure, or the

anomalous entropy. Recent work [153] has shown an intimate connection between

the NFL FP of the 2IKM and 2CKM. Both of these models are well studied, and

exact results using the BCFT approach provide the NFL levels/degeneracies. As

we discussed in section 5.4, the NFL levels of the 2CKM have been explained by

a MF model. We now study the correspondence between the 2IKM and 2CKM.

In the next section we shall formulate an MF model for the 2IKM. We enforce p-h

symmetry and strong correlation (to obtain a Kondo regime), and to achieve the

2CKM we set U2 = 0. As usual, we take π∆1 = π∆2 = π∆ = 0.01 and U12 = 0.

We are therefore able to continuously move between the 2IKM and 2CKM, by ad-

justing the ratio U2/U1 from 1 to 0 (retaining p-h symmetry). We calculate QCPs

for the model with U1/π∆ = 10 and U2/U1 = 0, 0.1, 0.5, 0.9, 1.0 and give their cor-

responding values of JC table 5.5. We plot JC against U2/U1 in figure 5.26a, and

see that JC ∼ e−U2/U1 . Since JC is indicative of TK, the degree of renormalisation

is determined by U2, with the strongest renormalisation occurring in the channel

symmetric model. We also find that the NFL levels and degeneracies are identical

for all U2, as shown in figure 5.26b. This may seem in contrast to the result that

147



U1 U2 JC

0.10 0.00 5.08205945× 10−4

0.10 0.01 2.04835025× 10−4

0.10 0.05 4.42970400× 10−6

0.10 0.09 1.50967700× 10−7

0.10 0.10 7.86416000× 10−8

Table 5.5: The calculated values of JC, to 9 significant figures, for the p-h symmetric,

channel asymmetric model with π∆ = 0.01.
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Figure 5.26: In (a) we plot JC as a function of U2/U1 for the model where U1/π∆ =

10. (b) shows that the low-lying energy levels are the same for all NFL FPs regardless

of the value of U2. Note that in this plot we take U1/π∆ = 6, where the transition

occurs at JC = 9.03119710× 10−4.

the 2CKM model and 2IKM have different energy levels and degeneracies [155, 171],

however we argue that the hybridisation between impurity 1 and it’s neighbouring

conduction electron constitutes a potential scattering. This is because we can have

virtual processes involving electrons hopping off the impurity, whilst in the 2CKM,

the coupling between these two sites is a Heisenberg one, so these types of processes

are not permitted in the bare model. The authors of [153] show that the NFL FPs

of the 2CKM, with the addition of potential scattering, and the 2IKM are the same.

Our results are in agreement with their work.

We now present calculations of dynamic quantities for the 2IKM, and 2CKM, and

initially focus on the 1-particle spectral densities. As we limit U2 → 0, we expect TK2
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Figure 5.27: Plots of the non-interacting (a) and interacting (b) impurity site spec-

tral densities at J = JC. In (a) we consider several values of U2/U1 to explicitly

show that ρ2(0) becomes a local minimum for U2 6= U1. In (b) we plot only the case

U2 = 0, as this spectral density changes very little with U2.

to increase, since we are moving to the regime of weak correlation. Correspondingly,

the peak of ρ2(ω) will broaden. However, at J = JC, we expect that ρ2(0) = 1/2π∆,

as we found in all previous cases. This means that ρ2(ω) will be dragged down at

the Fermi level, such that ρ2(0) is a local minimum. We plot π∆ρ2(ω), for J = JC,

in figure 5.27a and see that when U2 = U1, where we have the 2IKM, the value of

ρ(0) is a local maximum but as soon as this equality is broken then ρ(0) becomes a

local minimum, and looks like a conduction site spectral density. Meanwhile, ρ1(ω)

changes very little with U2, and we plot it for the case U2 = 0 in figure 5.27b. We

also analyse ρC
1 (ω) at J = JC, which we plot in figure 5.28. Similar to ρ2(ω), there is

a well defined local minimum at the Fermi level. The insets show the broad structure

of ρC
1 (ω) and ρ2(ω), clearly showing that they have the same features. We there-

fore assert that at J = JC, the interacting site has a resonance at the Fermi level,

whilst its neighbouring sites have anti-resonances, meaning that we can interpret

the system as a single Kondo site (impurity 1) coupled to two conduction baths.

Our system thus corresponds to the 2CKM.

Away from J = JC, this peak structure breaks down. For J < JC, both ρ1(ω) and

ρ2(ω) develop peaks at the Fermi level, whilst ρC
1 (ω) and ρC

2 (ω) are both gapped.

We explain this as follows; on the lowest energy scales, the hybridisation V1 be-

comes an effective antiferromagnetic Heisenberg coupling Jeff ∼ −V 2
1 /U1. The QCP
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Figure 5.28: Plot of ρC1 (ω) at J = JC, showing the formation of a local minimum

at ω = 0, where the universal value 0.13 is reached. The insets compare the spectral

densities on sites adjacent to the interacting impurity site, showing that they have

very similar features.
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Figure 5.29: Schematic of the competing low energy regimes at the J = JC QCP of

the 2IAM whose low energy regime corresponds to the 2CKM. The localised impurity

sites are represented by the large circles, with the large black circle corresponding to

the non-interacting impurity site. De-localised conduction sites are depicted by the

black circles. The singly-occupied levels represent the low energy behaviour of the

system, with the electrons enclosed in the red ellipse forming a singlet.

occurs due to the competition between J and Jeff resulting in an overscreening of

the impurity. When J < JC, the effective Heisenberg term wins, and the impurity

forms a Kondo singlet with the first conduction site of the chain it is hybridised to.

Therefore a Kondo peak develops in ρ1(ω). The non-interacting impurity is then

decoupled from the interacting impurity and is the first site in a tight-binding chain

of free electrons. It therefore forms a (Lorentzian) peak centred on the Fermi level.

For J > JC, the magnetic coupling between the interacting and non-interacting

impurity wins over the hybridisation-induced effective magnetic coupling. We find

in this case that both ρ1(ω) and ρ2(ω) become pseudogapped at the Fermi level

whilst the ρC
1 (ω) and ρC

2 (ω) develop peaks. The impurity sites hence form a singlet,

but our non-interacting impurity is a localised level. The singlet is therefore local

and the 2 impurities decouple, as in the channel symmetric model considered above.

The first conduction sites then develop peaks. We argue that since we have compe-

tition between a single interacting site forming a singlet with one of two adjacent

conduction sites, as depicted in figure 5.29, our model corresponds to the 2CKM.

We now present 2-particle functions to support our arguments. Since the inter-

acting impurity is overscreened at J = JC, the spins on the chain sites are frus-

trated. Therefore if one attempts to align the non-interacting impurity sites spin,

oppositely or in parallel, with the interacting impurity’s spin, this will disrupt the

entire spin chains and result in long ranged behaviour. In a departure from the

2IAM/2IKM results, we thus expect both the staggered and total spin susceptibil-
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Figure 5.30: A plot of Imχtot(ω) for models with 0 ≤ U2/U1 ≤ 1, at the transition

J = JC. The inset shows explicitly the low-energy discontinuities/divergences.

ities to diverge. We plot Imχtot(ω) in figure 5.30, for several values of U2/U1, and

see that in the channel symmetric case where U2/U1 = 1, Imχtot(ω) passes smoothly

through the Fermi level. However, as soon as U2 6= U1 there emerges a discontinuity,

implying a divergence in the real part. We note that the ‘size’ of the divergence,

Imχtot(δ
+)−Imχtot(−δ+), where δ+ → 0, δ > 0, appears to be approximately pro-

portional to (U2 − U1)/U1. We also plot Imχstg(ω), in figure 5.31, and see that this

diverges for all values of U2/U1. Interestingly, the size of the discontinuity appears

to increase suddenly when U2 = U1. These dynamic quantities are in line with our

assertion that the NFL FP we are considering is that of the 2CKM. We also consider

the singlet and triplet susceptibilities. Since the conduction site in channel 1 and

the non-interacting impurity site are competing to form a singlet with the interact-

ing impurity, we expect the singlet susceptibility to diverge. However the triplet

susceptibility should not diverge since the formation of a triplet needn’t change the

spins on the sites, and because the system is not competing to be in a local triplet

regime. We plot Imχsng(ω) in figure 5.32 and Imχtrp(ω) in figure 5.33, and see that

the singlet susceptibility diverges for all U2/U1 whilst the triplet susceptibility does

not.
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Figure 5.31: A plot of Imχstg(ω) for models with 0 ≤ U2/U1 ≤ 1, at the transition

J = JC. The inset shows explicitly the low-energy discontinuities/divergences.
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We have studied the 2IAM in the p-h symmetric case with U2 = 0 and claimed that

the low energy model is equivalent to that of the 2CKM, rather than the 2IKM. We

have noted from [153] that the presence of a potential scattering term (in our case

a hybridisation which plays the role of an antiferromagnetic exchange interaction

on the low energy scale) implies equivalence between the NFL FPs of the 2 mod-

els. We have presented dynamic quantities which support this notion. At J = JC,

the spectral densities on the sites neighbouring impurity 1 (with local interactions)

look very similar, with an anti-resonance (but no gap) at the Fermi level, whilst the

spectral density on the interacting impurity is peaked. This then looks like a single

impurity hybridised with 2 conduction baths. In this case we would expect the total,

staggered and singlet susceptibilities to diverge, and we have shown that this is the

case.

Away from J = JC, we note significant differences between our model and the

2CKM. For J < JC, our interacting impurity forms a Kondo singlet with the

first conduction electron site, resulting in a Kondo resonance in ρ1(ω). The non-
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interacting impurity is decoupled and ρ2(ω) takes a Lorentzian form. Meanwhile, for

J > JC, the impurities form a singlet. Here we have a departure from the 2CKM:

Our non-interacting impurity is described by a localised level, so that the J > JC

singlet decouples from the bulk (hence ρ1(0) = ρ2(0) = 0). In the 2CKM, we would

expect a Kondo resonance as ω → 0. We argue that this difference comes down to

our additional potential scattering [153]. As expected, away from the NFL FP, there

are no divergences of dynamic quantities.

5.10 MF Model for the 2IKM QCP

We have provided evidence supporting the idea that we may obtain the 2CKM

NFL FP by making one of the impurities of our p-h symmetric 2IAM/2IKM non-

interacting. This is a significant result because there is a description, in terms of

MFs, which accurately reproduces the NFL excitation levels and degeneracies of

the 2CKM NFL FP [156], whilst such a description does not exist for the 2IKM. A

model like this is desirable because the anomalous entropy suggests the presence of

a free (or decoupled) MF. In this section we draw upon the MF description of the

2CKM to propose an MF model underlying the 2IKM NFL FP, or equivalently the

NFL FP of the 2IAM at p-h symmetry.

We first establish that our results at p-h symmetry are consistent with the 2IKM.

BCFT studies of the 2IKM QCP have provided the energy levels of the NFL FP

[155], which we provide in table 5.6. The energies are in units of πvF/l. We can

establish equivalence with these values by limiting our NRG calculations to the con-

tinuum Λ = 1. In practice, we can only go down to Λ = 2.5 because the NFL FP is

unstable, and as one decreases Λ, a larger number of states must be retained at each

iteration of the NRG. We scale our energy levels such that the first level is equal to

3/8. Higher energy levels should therefore be equal to the values in table 5.6 as Λ→ 1.

We plot our scaled low-lying energies as a function of Λ in figure 5.34 for the p-h

symmetric model. The energy levels approach the values given by the BCFT as we

expect, and for Λ = 2.5 we also find agreement with the degeneracies from the NRG.

Given the agreement, we are in a position to propose an MF model for the 2IKM

NFL FP. We note from [155] the emergence of an SO(7) symmetry, and from our

discussions in section 5.3 that we expect a basis of 8 MFs. In the 2CKM, where
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Energy Degeneracy

0 1

3/8 8

1/2 7

7/8 8

1 22

11/8 56

3/2 49

15/8 64

Table 5.6: The low-lying energy levels of the 2IKM at the NFL FP, calculated by

BCFT [155]. The energies are in terms of a scale set by the Fermi velocity. We

also include the degeneracies, which arise from the quantum numbers associated to

various species of spin and isospin. In the original work [155], the states are labelled

by spin j and 2 flavours of isospin i1, i2, due to an SU(2)⊗SU(2)⊗SU(2) symmetry.

The degeneracy of each state is given by (2i1 + 1)(2i2 + 1)(2j + 1).

there is an SO(5) symmetry, the MF model was formulated by combining sets of

5 antiperiodic MFs with 3 periodic. We hence consider a set of 8 MFs, where 1

has periodic boundary conditions and the remaining 7 have anti-periodic boundary

conditions. We name this system sector I, noting that the ground state degeneracy

is correct. As with the 2CKM, we must construct a sector II, comprised of sets

of 8 MFs where 7 are periodic and 1 is antiperiodic. These will correspond to the

energies shifted by 3/8, so the ground state is offset from the ground state of sector I

by this amount. We note from table 5.6 that the degeneracy of the state with energy

3/8 is 8, so we have 8 sets in sector II. The combination of these sectors is illustrated

in figure 5.35, and we show in table 5.7 how we can build the NFL energy levels and

degeneracies from this model. This MF model reproduces the correct spectrum, and

we are now in a position to offer an interpretation of the anomalous ln(2)/2 entropy,

indicative of a single unhybridised MF, we see in the 2IKM.

Our calculations of dynamic quantities, in the case of the p-h symmetric 2IAM,

indicate that at the QCP the system ground state is competing between 2 regimes.

For J < JC, the ground state is 2 uncoupled many-body Kondo singlets, formed

between the impurities and their adjacent baths. We denote this ground state |KS〉.
Meanwhile, for J > JC, the ground state is a local 2-body singlet, formed between
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analysis [155], which are given with their degeneracies in table 5.6.

the impurities. This ground state is to be called |LS〉. At J = JC, the ground state

must be a combination of |KS〉 and |LS〉. We identify a possible excitation between

these ground states as a Majorana zero mode

χ =
1√
2
|LS〉 〈KS|+ 1√

2
|KS〉 〈LS| (5.10.1)

which is Hermitian and satisfies χ2 = 1/2. The excitations of the system are given by

the eigenoperators of the Liouville operator L, where LO = [H,O]. We expect that

Lχ = 0, which would imply that χ is a zero mode excitation. This mode would be re-

sponsible for driving the system between the competing ground states, and gives rise

to the residual entropy which is due to topological entanglement [182]. The entropy

contribution associated with Majorana zero modes is well known to be ln(2)/2 [183].

The Majorana zero mode occurring in the 2IKM is likely to be very similar to

the mechanism which gives the anomalous entropy in other impurity systems. Away

from p-h symmetry, we are currently unable to propose a MF model, but we spec-

ulate that a zero mode akin to χ is present in the system. This mode would drive

excitations between a system with and without a localised quasiparticle singlet. Sim-

ilarly, in the 2CKM model, the excitation would be between Kondo singlets formed

with each channel.
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Figure 5.35: MF model of the 2IKM NFL FP. Only energy levels with a circle may

be occupied, and the 2 sectors act independently to describe the levels 0, 1/2, 1 etc

(sector I) and 3/8, 7/8, 11/8 etc (sector II). Energies are in units of πvF/l.

ENFL Sector
∑
nE [E] Degeneracy Total Degeneracy

0 I 1[0] 1 1

3/8 II 7[0] 1× 8 8

1/2 I 1[1/2] 7 7

7/8 II 1[1/2] 1× 8 8

1 I 1[1] 1

2[1/2]
(

7
2

)
22

11/8 II 1[1] 7× 8 56

3/2 I 1[3/2] 7

3[1/2]
(

7
3

)
1[1] + 1[1/2] 7 49

15/8 II 1[3/2] 1× 8

1[1] + 1[1/2] 7× 8 64

Table 5.7: The combinations of MFs which correspond to the 2IKM NFL FP energies

and degeneracies.
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5.11 Conclusions

We have studied the NFL QCP of the 2IAM in regimes with and without various

symmetries. We began our investigation with the channel symmetric and p-h sym-

metric model, which on low energy scales is equivalent to the 2IKM. In line with

previous studies, we found a disappearance of the even/odd oscillations of the NRG

levels at the NFL FP, which accompanied the emergence of a residual entropy con-

tribution of ln(2)/2. We calculated the 1-particle spectral densities of the impurity

and conduction electrons. In the J > JC regime ρ(ω) showed the formation of a

2-peak pseudogapped structure replacing the Kondo resonance for J < JC. We

interpret the separation between the 2 peaks as the binding energy of a local sin-

glet on the impurity sites. Meanwhile, ρC(ω) developed a peak at the Fermi level,

with πDρC(0) = 1. This is indicative of it becoming an ‘effective impurity,’ as was

conjectured in [96]. The 1-particle functions give rise to the picture that the QCP

separates a Kondo and local singlet regime. The 2-particle functions at J = JC

showed that the susceptibilities which could result in the formation of a singlet di-

verge, providing evidence for this picture. We also note the intriguing property that

π∆ρ(0) = πDρC(0) = 1/2 at J = JC, which we suggest signifies the takeover of the

conduction site as an effective impurity.

The picture away from p-h symmetry appears to be more complicated. We find

the same disappearance of even/odd oscillations, exchange of odd and even FPs,

and anomalous entropy as in the p-h symmetric model, but the key differences

emerge from the fact that the local occupation is no longer constrained to 1 on each

impurity. This is only achieved asymptotically in the limit J →∞. For J > JC an

antiresonance emerges close to the Fermi level in addition to a quasiparticle peak

(which occurs on the other side of the Fermi level). This is similar to the p-h sym-

metric model, but there is no pseudogap (as J →∞ a pseudogap forms at the Fermi

level). We find that ε̃ changes sign across the transition, which signifies that a 2-

quasiparticle state is localised or liberated. This change in quasiparticle occupation

is not reflected in a redistribution of d-electron spectral weight, and is explained by a

π/2 phase shift across the transition which results in a modified Friedel sum rule and

implies that ñ = n± 2. The modified relations hold for both the p-h symmetric and

asymmetric models. We conjecture that the 2-quasiparticle state is a singlet, and

this is supported by the 2-particle functions we calculated. A significant similarity
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to the p-h symmetric model, however, is that π∆ρ(0) = πDρC(0) = 1/2 at J = JC,

and either side of JC, the lost spectral weight of ρ(ω) at the Fermi level has ‘jumped’

to the conduction site. In a departure to the observations of [96], but in a consistent

manner with p-h symmetry, we thus conjecture that for J > JC the conduction site

acts as an effective impurity. The physical picture, in terms of d-electrons, is thus

not clear. We know that there is a formation of a local singlet on one side of the

transition, but there are not necessarily enough electrons to actually form it. Also,

for J > JC, d-electrons remain hybridised to the bath, so the singlet may appear

to be non-local. We conjecture that 2 quasiparticles/quasiholes are localised, while

others, which are also present on the impurity sites, are hybridised. Further work is

required to clarify this picture.

In the p-h symmetric model with channel anisotropy, we study the connection be-

tween the 2IKM and 2CKM. In agreement with [153] we find that the NFL FPs are

equivalent as we tune U2 from U2 = U1 (2IKM) to U2 = 0 (2CKM). This is due to the

potential scattering (hybridisation) present in our bare model. Our calculation of

dynamic quantities shows that at J = JC, we obtain a peak structure in the spectral

densities which indicates that our model corresponds to the 2CKM. In particular,

the peaked interacting impurity is coupled to 2 sites with anti-resonances at the

Fermi level. Moreover, we have shown a divergence in both the staggered and total

spin susceptibilities which also agrees with the claim that the model is equivalent to

the 2CKM.

The observation that we may obtain the 2CKM from the 2IKM is significant be-

cause there exists a model in terms of MFs which explains the NFL levels of the

2CKM [156]. The anomalous entropy, which is suggestive of a free MF mode, that

emerges in several quantum impurity models has yet to be explained. A first step to

understanding the entropy is to explain the NFL FP spectra of the models in terms

of MFs. We construct such a model for the 2IKM, and conjecture that the ln(2)/2

entropy is due to a Majorana zero mode. This would allow the system to ‘jump’

between the competing ground states with no energy, with a similar mechanism for

the 2CKM and p-h asymmetric 2IAM.

There is much work to be done to find a unified picture of the QCP of the 2IAM/2IKM

and 2CKM. We need to clarify the underlying physics away from p-h symmetry. It
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is likely that study of the p-h asymmetric 2 channel Anderson model would help in

this goal, as this could be compared with the 2CKM. There are still open questions

regarding the free MF mode which appears in our models. To explain the anoma-

lous entropy we must show that the inter-ground-state excitation χ is a zero mode.

It would also be interesting to understand the role of topology in the QCPs. The

emergent fractional entropy indicates that topology is important, and the possible

presence of Majorana zero modes leads one to ask whether coupled/overscreened

impurities could be used to construct a topological quantum computer.
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M. Sieck, and T. Trappmann (1994) Phys. Rev. Lett. 72, 3262–3265.

[165] R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon

Nat. Phys. 446, 267–171.

[166] A. M. Tsvelik and P. B. Wiegmann Z. Phys. B: Condens. Matter 54(3),

201–206.

[167] G. Zaránd and J. von Delft (2000) Phys. Rev. B 61, 6918–6933.

[168] P. Coleman, L. B. Ioffe, and A. M. Tsvelik (1995) Phys. Rev. B 52, 6611–

6627.

[169] P. Coleman and A. J. Schofield (1995) Phys. Rev. Lett. 75, 2184–2187.

[170] S. Bradley, R. Bulla, A. Hewson, and G.-M. Zhang (1999) Eur. Phys. J. B

11(4), 535–550.

[171] I. Affleck, A. W. W. Ludwig, H.-B. Pang, and D. L. Cox (1992) Phys. Rev.

B 45, 7918–7935.

[172] B. Jones and K. Ingersent (1994) Physica B 199, 411 – 412.

171



[173] K. Ingersent, B. A. Jones, and J. W. Wilkins (1992) Phys. Rev. Lett. 69,

2594–2597.

[174] J. Gan (1995) Phys. Rev. B 51, 8287–8309.

[175] C. J. Bolech and N. Andrei (2002) Phys. Rev. Lett. 88, 237206.

[176] H. Johannesson, N. Andrei, and C. J. Bolech (2003) Phys. Rev. B 68, 075112.

[177] B. A. Jones and C. M. Varma (1989) Phys. Rev. B 40, 324–329.

[178] C. Sire, C. M. Varma, and H. R. Krishnamurthy (1993) Phys. Rev. B 48,

13833–13839.

[179] M. Fabrizio, A. F. Ho, L. D. Leo, and G. E. Santoro (2003) Phys. Rev. Lett.

91, 246402.

[180] B. A. Jones, C. M. Varma, and J. W. Wilkins (1988) Phys. Rev. Lett. 61,

125–128.

[181] A. Zygmund (1988) Trigonometric Series, Cambridge University Press

second edition.

[182] A. Kitaev and J. Preskill (2006) Phys. Rev. Lett. 96, 110404.

[183] C.-Y. Hou, K. Shtengel, G. Refael, and P. M. Goldbart (2012) New J. Phys.

14(10), 105005.

172



Acknowledgements

A PhD is a long, arduous and isolating endeavour, requiring support and assistance

from many people. At the risk of being mawkish, I would like to give a mention to

all those who helped me through.

Firstly, I am very grateful to my supervisors, Alex Hewson, Ortwin Hess and Derek

Lee, for their assistance and encouragement over the last four years. I am especially

indebted to Alex Hewson for his careful supervision and for sharing his phenomenal

knowledge. He has offered continuous help and insight, as well as many interesting

conversations over cake and tea.

I would also like to thank our collaborators, Dan Crow and Yunori Nishikawa, who

have made massive contributions to the work I have presented. Their experience,

knowledge, and assistance have been invaluable over the past few years.

Aside from the academic support, I have been helped through by my friends and

family. My parents and brother, Jack, have been encouraging and supportive when-

ever I have needed to run from London and hide in amongst the fields, cliffs, and

pubs of the countryside.

My friends and (ex)housemates, especially Savi, Jim, Noe, Anna and Ayisha have

ensured that my life revolved around things other than physics, and I have had

many awesome nights drinking beers, watching TV and talking with them. At some

points during the PhD, these were the only things keeping me going.

My colleagues in the condensed matter group have provided many interesting and

fun discussions over various tea breaks, and excursions to certain Polish and Ger-

man bars. I would especially like to thank Doris for her friendship and many hours

173



of tea, cookies, and assortments of ghastly spirits. She and her husband Fabi have

been super accommodating upon visiting their home in Germany, and these (usually

nerdy) trips have been great fun.

A special mention is owed to members of the space and atmospherics group. In

particular to Ruth, Josh, Jamie, Benoit and Amy. We have gone on numerous awe-

some adventures over the last three years, seeking out mountains and challenges

throughout Europe. These trips have been amazing and long may they continue.

Finally, and most importantly, I am massively indebted to my partner Alex. His love,

understanding, and support have kept me going through some very tough times. His

parents, Orietta and Reinhard, have also been great. Their encouragement, accom-

modation, various treats and many finely cooked dinners have significantly helped

me through this experience.

174



Appendix A

List of Clebsch-Gordan

Coefficients

To derive the iterative diagonalisation scheme for the NRG, and calculate the local

matrix elements, we need to combine angular momenta. In this appendix, we pro-

vide the relevant Clebsch-Gordan coefficients in the form most useful to us. These

coefficients, and others, can be found in [88], and are presented here in a form more

convenient to our calculations. We suppose that we have some spin system (S, Sz)

which we seek to combine with a spin system (SO, σ) to obtain (S′, S′z). We present

the Clebsch-Gordan coefficients in the form

〈S, Sz;SO, σ|S′, S′z〉 .

There are two useful cases in our work.

Case I: SO = 1/2

〈S − 1/2, Sz − 1/2; 1/2, 1/2|S, Sz〉 =

√
S + Sz

2S
,

〈S − 1/2, Sz + 1/2; 1/2,−1/2|S, Sz〉 =

√
S − Sz

2S
,

〈S + 1/2, Sz − 1/2; 1/2, 1/2|S, Sz〉 = −
√
S − Sz + 1

2S + 2
,

〈S + 1/2, Sz + 1/2; 1/2,−1/2|S, Sz〉 =

√
S + Sz + 1

2S + 2
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Case II: SO = 1

〈S − 1, Sz − 1; 1, 1|S, Sz〉 =

√
(S + Sz − 1) (S + Sz)

2S (2S − 1)
,

〈S − 1, Sz; 1, 0|S, Sz〉 =

√
(S − Sz) (S + Sz)

S (2S − 1)
,

〈S − 1, Sz + 1; 1,−1|S, Sz〉 =

√
(S − Sz − 1) (S − Sz)

2S(2S − 1)
,

〈S, Sz − 1; 1, 1|S, Sz〉 = −

√
(S + Sz) (S − Sz + 1)

2S (S + 1)
,

〈S, Sz; 1, 0|S, Sz〉 =
Sz√

S(S + 1)
,

〈S, Sz + 1; 1,−1|S, Sz〉 =

√
(S − Sz) (S + Sz + 1)

2S(S + 1)
,

〈S + 1, Sz − 1; 1, 1|S, Sz〉 =

√
(S − Sz + 1) (S − Sz + 2)

(2S + 2)(2S + 3)
,

〈S + 1, Sz; 1, 0|S, Sz〉 = −

√
(S − Sz + 1) (S + Sz + 1)

(S + 1) (2S + 3)
,

〈S + 1, Sz + 1; 1,−1|S, Sz〉 =

√
(S + Sz + 2) (S + Sz + 1)

(2S + 2)(2S + 3)
.
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Appendix B

Iterative Diagonalisation for the

2-Impurity NRG

The iteration diagonalisation executed in the NRG carries out the transformation

HN → HN+1. There are two key stages in this process. The first is the construction

of the basis of HN+1 in terms of the eigenstates of HN and the new site basis states.

The second is the calculation of the matrix elements of HN+1 in this basis. In this

appendix we provide the formulae required to carry out these calculations.

B.1 Basis States of HN+1

In this section we apply the definitions of (2.2.3) and list the basis states of HN+1.

For clarity, we adopt the labelling convention |i, j〉 = |Q1, Q2, S, Sz, r, i, j;N〉. The

basis states are as follow.

|0, 0〉 = |0〉1 |0〉2 |Q1 + 1, Q2 + 1, S, Sz, r;N〉

|0, 1〉 =

√
S + Sz

2S
|0〉1 |↑〉2 |Q1 + 1, Q2, S − 1/2, Sz − 1/2, r;N〉

+

√
S − Sz

2S
|0〉1 |↓〉2 |Q1 + 1, Q2, S − 1/2, Sz + 1/2, r;N〉

|0, 2〉 = −
√
S − Sz + 1

2S + 2
|0〉1 |↑〉2 |Q1 + 1, Q2, S + 1/2, Sz − 1/2, r;N〉

+

√
S + Sz + 1

2S + 2
|0〉1 |↓〉2 |Q1 + 1, Q2, S + 1/2, Sz + 1/2, r;N〉
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|0, 3〉 = |0〉1 |↑↓〉2 |Q1 + 1, Q2 − 1, S, Sz, r;N〉

|1, 0〉 =

√
S + Sz

2S
|↑〉1 |0〉2 |Q1, Q2 + 1, S − 1/2, Sz − 1/2, r;N〉

+

√
S − Sz

2S
|↓〉1 |0〉2 |Q1, Q2 + 1, S − 1/2, Sz + 1/2, r;N〉

|1, 1〉 =

√
(S + Sz)(S + Sz − 1)

2S(2S − 1)
|↑〉1 |↑〉2 |Q1, Q2, S − 1, Sz − 1, r;N〉

+

√
(S + Sz)(S − Sz)

2S(2S − 1)
|↓〉1 |↑〉2 |Q1, Q2, S − 1, Sz, r;N〉

+

√
(S + Sz)(S − Sz)

2S(2S − 1)
|↑〉1 |↓〉2 |Q1, Q2, S − 1, Sz, r;N〉

+

√
(S − Sz)(S − Sz − 1)

2S(2S − 1)
|↓〉1 |↓〉2 |Q1, Q2, S − 1, Sz + 1, r;N〉

|1, 2〉 = −

√
(S − Sz + 1)(S + Sz)

(2S + 1)(2S + 2)
|↑〉1 |↑〉2 |Q1, Q2, S, Sz − 1, r;N〉

−

√
(S − Sz + 1)(S − Sz + 1)

(2S + 1)(2S + 2)
|↓〉1 |↑〉2 |Q1, Q2, S, Sz, r;N〉

+

√
(S + Sz + 1)(S + Sz + 1)

(2S + 1)(2S + 2)
|↑〉1 |↓〉2 |Q1, Q2, S, Sz, r;N〉

+

√
(S + Sz + 1)(S − Sz)

(2S + 1)(2S + 2)
|↓〉1 |↓〉2 |Q1, Q2, S, Sz + 1, r;N〉

|1, 3〉 =

√
S + Sz

2S
|↑〉1 |↑↓〉2 |Q1, Q2 − 1, S − 1/2, Sz − 1/2, r;N〉

+

√
S − Sz

2S
|↓〉1 |↑↓〉2 |Q1, Q2 − 1, S − 1/2, Sz + 1/2, r;N〉

|2, 0〉 = −
√
S − Sz + 1

2S + 2
|↑〉1 |0〉2 |Q1, Q2 + 1, S + 1/2, Sz − 1/2, r;N〉

+

√
S + Sz + 1

2S + 2
|↓〉1 |0〉2 |Q1, Q2 + 1, S + 1/2, Sz + 1/2, r;N〉
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|2, 1〉 = −

√
(S + Sz)(S − Sz + 1)

2S(2S + 1)
|↑〉1 |↑〉2 |Q1, Q2, S, Sz − 1, r;N〉

+

√
(S + Sz)(S + Sz)

2S(2S + 1)
|↓〉1 |↑〉2 |Q1, Q2, S, Sz, r;N〉

−

√
(S − Sz)(S − Sz)

2S(2S + 1)
|↑〉1 |↓〉2 |Q1, Q2, S, Sz, r;N〉

+

√
(S − Sz)(S + Sz + 1)

2S(2S + 1)
|↓〉1 |↓〉2 |Q1, Q2, S, Sz + 1, r;N〉

|2, 2〉 =

√
(S − Sz + 1)(S − Sz + 2)

(2S + 2)(2S + 3)
|↑〉1 |↑〉2 |Q1, Q2, S + 1, Sz − 1, r;N〉

−

√
(S − Sz + 1)(S + Sz + 1)

(2S + 2)(2S + 3)
|↓〉1 |↑〉2 |Q1, Q2, S + 1, Sz, r;N〉

−

√
(S + Sz + 1)(S − Sz + 1)

(2S + 2)(2S + 3)
|↑〉1 |↓〉2 |Q1, Q2, S + 1, Sz, r;N〉

+

√
(S + Sz + 1)(S + Sz + 2)

(2S + 2)(2S + 3)
|↓〉1 |↓〉2 |Q1, Q2, S + 1, Sz + 1, r;N〉

|2, 3〉 = −
√
S − Sz + 1

2S + 2
|↑〉1 |↑↓〉2 |Q1, Q2 − 1, S + 1/2, Sz − 1/2, r;N〉

+

√
S + Sz + 1

2S + 2
|↓〉1 |↑↓〉2 |Q1, Q2 − 1, S + 1/2, Sz + 1/2, r;N〉

|3, 0〉 = |↑↓〉1 |0〉2 |Q1 − 1, Q2 + 1, S, Sz, r;N〉

|3, 1〉 =

√
S + Sz

2S
|↑↓〉1 |↑〉2 |Q1 − 1, Q2, S − 1/2, Sz − 1/2, r;N〉

+

√
S − Sz

2S
|↑↓〉1 |↓〉2 |Q1 − 1, Q2, S − 1/2, Sz + 1/2, r;N〉

|3, 2〉 = −
√
S − Sz + 1

2S + 2
|↑↓〉1 |↑〉2 |Q1 − 1, Q2, S + 1/2, Sz − 1/2, r;N〉

+

√
S + Sz + 1

2S + 2
|↑↓〉1 |↓〉2 |Q1 − 1, Q2, S + 1/2, Sz + 1/2, r;N〉
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|3, 3〉 = |↑↓〉1 |↑↓〉2 |Q1 − 1, Q2 − 1, S, Sz, r;N〉

B.2 Matrix Elements of HN+1

Given these basis definitions, we can proceed to calculate the matrix elements of

HN+1. We have the definition

HN+1 = Λ
1/2HN +

∑
α

ξN

[
c†αNσcα(N+1)σ + c†α(N+1)σcαNσ

]
, (B.1)

and it follows that the diagonal components of HN+1 are easy to calculate

〈i, j|HN+1 |i, j〉 = Λ
1/2EQ1,Q2,S,Sz ,r(N). (B.2)

To compute the off-diagonal components, we define the Hamiltonian

H ′ = c†1Nσc1(N+1)σ + c†2Nσc2(N+1)σ, (B.3)

such that

HN+1 = Λ
1/2HN + ξN

[
H ′ + (H ′)†

]
. (B.4)

We calculate only the matrix elements of H ′, and then symmetrise our Hamiltonian.

This is numerically advantageous since we only need to calculate half the entries of

the matrix representation of HN+1. We compute these matrix elements in terms of

reduced matrix elements

〈Q′1, Q′2, S′, r′;N ||c
†
N ||Q1, Q2, S, r;N〉 (B.5)

defined by

〈Q′1, Q′2, S′, S′z, r′;N | c
†
Nσ |Q1, Q2, S, Sz, r;N〉

= 〈S, Sz; 1/2, σ|S′, S′z〉 〈Q′1, Q′2, S′, r′;N ||c
†
N ||Q1, Q2, S, r;N〉 . (B.6)

Additionally, the reduced eigenstates decompose into a reduced eigenbasis in a way

defined by

|Q1, Q2, S, r;N〉 =
∑
p,i,j

UQ1Q2S (r; p, i, j;N) |Q1, Q2, S, p, i, j;N〉 (B.7)
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where the label p is summed over all states in the HN−1 system. The off-diagonal

matrix elements are given as follow.

〈0, 0|H ′ |0, 1〉 = 〈Q1 + 1.Q2 + 1, S, r′;N ||c†2N ||Q1 + 1, Q2, S − 1/2, r;N〉

〈0, 0|H ′ |0, 2〉 = 〈Q1 + 1, Q2 + 1, S, r′;N ||c†2N ||Q1 + 1, Q2, S + 1/2, r;N〉

〈0, 1|H ′ |0, 3〉 =

√
2S

2S + 1
〈Q1 + 1, Q2, S − 1/2, r′;N ||c†2N ||Q1 + 1, Q2 − 1, S, r;N〉

〈0, 2|H ′ |0, 3〉 = −
√

2S + 2

2S + 1
〈Q1 + 1, Q2, S + 1/2, r′;N ||c†2N ||Q1 + 1, Q2 − 1, S, r;N〉

〈0, 0|H ′ |1, 0〉 = 〈Q1 + 1, Q2 + 1, S, r′;N ||c†1N ||Q1, Q2 + 1, S − 1/2, r;N〉

〈0, 1|H ′ |1, 1〉 = −〈Q1 + 1, Q2, S − 1/2, r′;N ||c†1N ||Q1, Q2, S − 1, r;N〉

〈1, 0|H ′ |1, 1〉 = 〈Q1, Q2 + 1, S − 1/2, r′;N ||c†2N ||Q1, Q2, S − 1, r;N〉

〈0, 2|H ′ |1, 2〉 = −〈Q1 + 1, Q2, S + 1/2, r′;N ||c†1N ||Q1, Q2, S, r;N〉

〈1, 0|H ′ |1, 2〉 =

√
2S(2S + 2)

2S + 1
〈Q1, Q2 + 1, S − 1/2, r′;N ||c†2N ||Q1, Q2, S, r;N〉

〈2, 0|H ′ |1, 2〉 = − 1

2S + 1
〈Q1, Q2 + 1, S + 1/2, r′;N ||c†2N ||Q1, Q2, S, r;N〉
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〈0, 3|H ′ |1, 3〉 = 〈Q1 + 1, Q2 − 1, S, r′;N ||c†1N ||Q1, Q2 − 1, S − 1/2, r;N〉

〈1, 1|H ′ |1, 3〉 =

√
2S − 1

2S
〈Q1, Q2, S − 1, r′;N ||c†2N ||Q1, Q2 − 1, S − 1/2, r;N〉

〈1, 2|H ′ |1, 3〉 = −
√

2S + 2

2S + 1
〈Q1, Q2, S, r

′;N ||c†2N ||Q1, Q2 − 1, S − 1/2, r;N〉

〈2, 1|H ′ |1, 3〉 = − 1√
2S(2S + 1)

〈Q1, Q2, S, r
′;N ||c†2N ||Q1, Q2 − 1, S − 1/2, r;N〉

〈0, 0|H ′ |2, 0〉 = 〈Q1 + 1, Q2 + 1, S, r′;N ||c†1N ||Q1, Q2 + 1, S + 1/2, r;N〉

〈0, 1|H ′ |2, 1〉 = −〈Q1 + 1, Q2, S − 1/2, r′;N ||c†1N ||Q1, Q2, S, r;N〉

〈1, 0|H ′ |2, 1〉 =
1

2S + 1
〈Q1, Q2 + 1, S − 1/2, r′;N ||c†2N ||Q1, Q2, S, r;N〉

〈2, 0|H ′ |2, 1〉 =

√
2S(2S + 2)

2S + 1
〈Q1, Q2 + 1, S + 1/2, r′;N ||c†2N ||Q1, Q2, S, r;N〉

〈0, 2|H ′ |2, 2〉 = −〈Q1 + 1, Q2, S + 1/2, r′;N ||c†1N ||Q1, Q2, S + 1, r;N〉

〈2, 0|H ′ |2, 2〉 = 〈Q1, Q2 + 1, S + 1/2, r′;N ||c†2N ||Q1, Q2, S + 1, r;N〉
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〈0, 3|H ′ |2, 3〉 = 〈Q1 + 1, Q2 − 1, S, r′;N ||c†1N ||Q1, Q2 − 1, S + 1/2, r;N〉

〈1, 2|H ′ |2, 3〉 = − 1√
(2S + 1)(2S + 2)

〈Q1, Q2, S, r
′;N ||c†2N ||Q1, Q2 − 1, S + 1/2, r;N〉

〈2, 1|H ′ |2, 3〉 =

√
2S

2S + 1
〈Q1, Q2, S, r

′;N ||c†2N ||Q1, Q2 − 1, S + 1/2, r;N〉

〈2, 2|H ′ |2, 3〉 = −
√

2S + 3

2S + 2
〈Q1, Q2, S + 1, r′;N ||c†2N ||Q1, Q2 − 1, S + 1/2, r;N〉

〈1, 0|H ′ |3, 0〉 =

√
2S

2S + 1
〈Q1, Q2 + 1, S − 1/2, r′;N ||c†1N ||Q1 − 1, Q2 + 1, S, r;N〉

〈2, 0|H ′ |3, 0〉 = −
√

2S + 2

2S + 1
〈Q1, Q2 + 1, S + 1/2, r′;N ||c†1N ||Q1 − 1, Q2 + 1, S, r;N〉

〈3, 0|H ′ |3, 1〉 = 〈Q1 − 1, Q2 + 1, S, r′;N ||c†2N ||Q1 − 1, Q2, S − 1/2, r;N〉

〈1, 1|H ′ |3, 1〉 = −
√

2S − 1

2S
〈Q1, Q2, S − 1, r′;N ||c†1N ||Q1 − 1, Q2, S − 1/2, r;N〉

〈2, 1|H ′ |3, 1〉 =

√
2S + 1

2S
〈Q1, Q2, S, r

′;N ||c†1N ||Q1 − 1, Q2, S − 1/2, r;N〉

〈3, 0|H ′ |3, 2〉 = 〈Q1 − 1, Q2 + 1, S, r′;N ||c†2N ||Q1 − 1, Q2, S + 1/2, r;N〉
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〈1, 2|H ′ |3, 2〉 = −
√

2S + 1

2S + 2
〈Q1, Q2, S, r

′;N ||c†1N ||Q1 − 1, Q2, S + 1/2, r;N〉

〈2, 2|H ′ |3, 2〉 =

√
2S + 3

2S + 2
〈Q1, Q2, S + 1, r′;N ||c†1N ||Q1 − 1, Q2, S + 1/2, r;N〉

〈1, 3|H ′ |3, 3〉 =

√
2S

2S + 1
〈Q1, Q2 − 1, S − 1/2, r′;N ||c†1N ||Q1 − 1, Q2 − 1, S, r;N〉

〈2, 3|H ′ |3, 3〉 = −
√

2S + 2

2S + 1
〈Q1, Q2 − 1, S + 1/2, r′;N ||c†1N ||Q1 − 1, Q2 − 1, S, r;N〉

〈3, 1|H ′ |3, 3〉 =

√
2S

2S + 1
〈Q1 − 1, Q2, S − 1/2, r′;N ||c†2N ||Q1 − 1, Q2 − 1, S, r;N〉

〈3, 2|H ′ |3, 3〉 = −
√

2S + 2

2S + 1
〈Q1 − 1, Q2, S + 1/2, r′;N ||c†2N ||Q1 − 1, Q2 − 1, S, r;N〉

B.3 Computation of the Reduced Matrix Elements

We thus have all the matrix elements of HN+1 in terms of the reduced matrix

elements of the site N operators. We must therefore express these matrix ele-

ments in terms of the eigenvector entries of the HN system, which are stored as

UQ1Q2S (r; p, i, j;N). As before, the generic reduced matrix element

〈Q′1, Q′2, S′, r′;N ||c
†
N ||Q1, Q2, S, r;N〉 (B.1)
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may be written in terms of matrix elements of the basis states as

〈Q′1, Q′2, S′, r′;N ||c
†
N ||Q1, Q2, S, r;N〉

=
∑
p,i,j
p′,i′,j′

UQ′1Q′2S′
(
r′; p′, i′, j′;N

)
UQ1Q2S (r; p, i, j;N)

〈Q′1, Q′2, S′, S′z, p′, i′, j′;N |c
†
N↑|Q1, Q2, S, Sz − 1/2, p, i, j;N〉

〈S, Sz − 1/2; 1/2, 1/2|S′, S′z〉
(B.2)

where we have used the Wigner-Eckart theorem. All of the Hamiltonian matrix

elements may be written in terms of the four reduced matrix elements

〈Q1 + 1, Q2 + 1, S, r′;N ||c†1N ||Q1, Q2 + 1, S − 1/2, r;N〉 ,

〈Q1 + 1, Q2 + 1, S, r′;N ||c†1N ||Q1, Q2 + 1, S + 1/2, r;N〉 ,

〈Q1 + 1, Q2 + 1, S, r′;N ||c†2N ||Q1 + 1, Q2, S − 1/2, r;N〉 ,

〈Q1 + 1, Q2 + 1, S, r′;N ||c†2N ||Q1 + 1, Q2, S + 1/2, r;N〉

which we compute as

〈Q1 + 1, Q2 + 1, S, r′;N ||c†1N ||Q1, Q2 + 1, S − 1/2, r;N〉

=
∑
p

Γ(1, 0, 0, 0)δN−1 (Q1 + 1, Q2 + 2, S − 1/2)

+ Γ(1, 1, 0, 1)δN−1 (Q1 + 1, Q2 + 1, S − 1)

+

√
2S(2S + 2)

2S + 1
Γ(1, 2, 0, 2)δN−1 (Q1 + 1, Q2 + 1, S)

+
1

2S + 1
Γ(2, 1, 0, 2)δN−1 (Q1 + 1, Q2 + 1, S)

+ Γ(1, 3, 0, 3)δN−1 (Q1 + 1, Q2, S − 1/2)

− 1√
2S(2S + 1)

Γ(3, 1, 1, 2)δN−1 (Q1, Q2 + 1, S − 1/2)

+

√
2S

2S + 1
Γ(3, 0, 2, 0)δN−1 (Q1, Q2 + 2, S)

+

√
2S − 1

2S
Γ(3, 1, 2, 1)δN−1 (Q1, Q2 + 1, S − 1/2)

+

√
2S

2S + 1
Γ(3, 2, 2, 2)δN−1 (Q1, Q2 + 1, S + 1/2)

+

√
2S

2S + 1
Γ(3, 3, 2, 3)δN−1 (Q1, Q2, S) ,
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and

〈Q1 + 1, Q2 + 1, S, r′;N ||c†1N ||Q1, Q2 + 1, S + 1/2, r;N〉

=
∑
p

Λ(2, 0, 0, 0)δN−1 (Q1 + 1, Q2 + 2, S + 1/2)

− 1

2S + 1
Λ(1, 2, 0, 1)δN−1 (Q1 + 1, Q2 + 1, S)

+

√
2S(2S + 2)

2S + 1
Λ(2, 1, 0, 1)δN−1 (Q1 + 1, Q2 + 1, S)

+ Λ(2, 2, 0, 2)δN−1 (Q1 + 1, Q2 + 1, S + 1)

+ Λ(2, 3, 0, 3)δN−1 (Q1 + 1, Q2, S + 1/2)

−
√

2S + 2

2S + 1
Λ(3, 0, 1, 0)δN−1 (Q1, Q2 + 2, S)

−
√

2S + 2

2S + 1
Λ(3, 1, 1, 1)δN−1 (Q1, Q2 + 1, S − 1/2)

−
√

2S + 3

2S + 2
Λ(3, 2, 1, 2)δN−1 (Q1, Q2 + 1, S + 1/2)

−
√

2S + 2

2S + 1
Λ(3, 3, 1, 3)δN−1 (Q1, Q2, S)

− 1√
(2S + 1)(2S + 2)

Λ(3, 2, 2, 1)δN−1 (Q1, Q2 + 1, S + 1/2)
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for channel 1, whilst for channel 2 we have

〈Q1 + 1, Q2 + 1, S, r′;N ||c†2N ||Q1 + 1, Q2, S − 1/2, r;N〉

=
∑
p

Θ(0, 1, 0, 0)δN−1 (Q1 + 2, Q2 + 1, S − 1/2)

+

√
2S

2S + 1
Θ(0, 3, 0, 2)δN−1 (Q1 + 2, Q2, S)

−Θ(1, 1, 1, 0)δN−1 (Q1 + 1, Q2 + 1, S − 1)

−
√

2S

2S + 1
Θ(1, 3, 1, 2)δN−1 (Q1 + 1, Q2, S − 1/2)

−Θ(2, 1, 2, 0)δN−1 (Q1 + 1, Q2 + 1, S)

−
√

2S

2S + 1
Θ(2, 3, 2, 2)δN−1 (Q1 + 1, Q2, S + 1/2)

+ Θ(3, 1, 3, 0)δN−1 (Q1, Q2 + 1, S − 1/2)

+

√
2S

2S + 1
Θ(3, 3, 3, 2)δN−1 (Q1, Q2, S)

and

〈Q1 + 1, Q2 + 1, S, r′;N ||c†2N ||Q1 + 1, Q2, S + 1/2, r;N〉

=
∑
p

Π(0, 2, 0, 0)δN−1 (Q1 + 2, Q2 + 1, S + 1/2)

−
√

2S + 2

2S + 1
Π(0, 3, 0, 1)δN−1 (Q1 + 2, Q2, S)

−Π(1, 2, 1, 0)δN−1 (Q1 + 1, Q2 + 1, S)

+

√
2S + 2

2S + 1
Π(1, 3, 1, 1)δN−1 (Q1 + 1, Q2, S − 1/2)

−Π(2, 2, 2, 0)δN−1 (Q1 + 1, Q2 + 1, S + 1)

+

√
2S + 2

2S + 1
Π(2, 3, 2, 1)δN−1 (Q1 + 1, Q2, S + 1/2)

+ Π(3, 2, 3, 0)δN−1 (Q1, Q2 + 1, S + 1/2)

−
√

2S + 2

2S + 1
Π(3, 3, 3, 1)δN−1 (Q1, Q2, S) ,

187



where we have defined

Γ(i′, j′, i, j) = UQ1+1, Q2+1, S

(
r′; p′, i′, j′;N

)
UQ1, Q2+1, S−1/2

(
r; p, i, j;N

)
Λ(i′, j′, i, j) = UQ1+1, Q2+1, S

(
r′; p′, i′, j′;N

)
UQ1, Q2+1, S+1/2

(
r; p, i, j;N

)
Θ(i′, j′, i, j) = UQ1+1, Q2+1, S

(
r′; p′, i′, j′;N

)
UQ1+1, Q2, S−1/2

(
r; p, i, j;N

)
Π(i′, j′, i, j) = UQ1+1, Q2+1, S

(
r′; p′, i′, j′;N

)
UQ1+1, Q2, S+1/2

(
r; p, i, j;N

)
.

The delta function

δN−1(Q1, Q2, S)

takes value 1 if the sector (Q1, Q2, S) is allowed in the system described by HN−1,

and is otherwise 0.
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Appendix C

Calculation of Thermodynamic

Quantities of the Conduction

Band

The impurity contribution to Stot(T ) and χtot(T ) is determined by calculating these

quantities for the ‘no-impurity’ Hamiltonian

H0
N =

N−1∑
n=0

ξnΛ(N−n−1)/2
[
c†nσc(n+1)σ + c†(n+1)σcnσ

]
(C.1)

and subtracting them from the corresponding total quantities. We assume the con-

duction baths are identical, so drop the channel index. The thermodynamic quanti-

ties of this quadratic Hamiltonian may be determined exactly as follows. We define

V †σ =
(
c†0σ, c

†
1σ . . . c

†
Nσ

)
(C.2)

so that

H0
N = V †σMVσ (C.3)

where the tri-diagonal matrixM is given by

M = Λ(N−1)/2



0 ξ0 0 0 · · ·
ξ0 0 Λ−1/2ξ1 0

0 Λ−1/2ξ1 0 Λ−1ξ2

0 0 Λ−1ξ2 0
...

. . .


. (C.4)
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By virtue of the zero-diagonal and being symmetric, the matrix M has an equal

number of positive and negative eigenvalues (and if N is even, there is a single

zero eigenvalue). Moreover, the eigenvalues are Z2 symmetric such that if λ is an

eigenvalue, then so is −λ. We will denote the positive eigenvalues ofM as ηO
i and

ηE
i for the cases N odd and N even, respectively. The labels i are given by

i ∈
{

1, 2, . . .
1

2
(N + 1)

}
(C.5)

for odd N and

i ∈
{

0, 1, 2, . . .
N

2

}
(C.6)

for even N (with ηE
0 = 0). Correspondingly, we can map the free Hamiltonian to a

diagonal quasiparticle Hamiltonian, given by

H0
N =

(N+1)/2∑
n=1

ηO
n

[
p†nσpnσ + h†nσhnσ

]
(C.7)

for odd N and

H0
N = ηE

0 p
†
0σp0σ +

N/2∑
n=1

ηE
n

[
p†nσpnσ + h†nσhnσ

]
(C.8)

for even N . The Bogoliubov quasiparticle operators p and h can be thought of as the

scalar product of the eigenvectors ofM with the vector V †σ , and are respectively the

‘particle’ and ‘hole’ operators. The thermodynamic quantities of these Hamiltonians

are simple to calculate; we illustrate this by considering a simplified case.

Suppose we have a Hamiltonian of the form

H0 = εc†σcσ, (C.9)

where we can define an eigenbasis as |00〉, |↑ 0〉, |0 ↓〉 and |↑↓〉. Using this basis, we

may write

Z =
(

1 + e−βε
)2

〈〈Sz〉〉 = 0

〈〈S 2
z 〉〉 =

1

2Z
e−βε

〈〈H0〉〉 =
2ε

Z

(
1 + e−βε

)
e−βε

〈〈(H0) 2〉〉 =
2ε2

Z

(
1 + 2e−βε

)
e−βε,

(C.10)
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from which the thermodynamic quantities of interest trivially follow. Let us now

suppose that we have the Hamiltonian

H0 = ε1a
†
σaσ + ε2b

†
σbσ (C.11)

and define
H1 = ε1a

†
σaσ

H2 = ε2b
†
σbσ.

(C.12)

One can show the following properties:

Z = Z1Z2

〈〈H0〉〉 = 〈〈H1〉〉+ 〈〈H2〉〉

〈〈Sz〉〉 = 〈〈S1z〉〉+ 〈〈S2z〉〉

〈〈H1H2〉〉 = 〈〈H1〉〉 〈〈H2〉〉

〈〈S1zS2z〉〉 = 〈〈S1z〉〉 〈〈S2z〉〉 .

(C.13)

These imply that

S0(T ) = S1(T ) + S2(T )

χ0(T ) = χ1(T ) + χ2(T ).
(C.14)

Extending this, we see that for a Hamiltonian given by

H0 =
∑
i

εic
†
iσciσ (C.15)

we can write
S0(T ) =

∑
i

Si(T )

χ0(T ) =
∑
i

χi(T ).
(C.16)

This formalism can be directly applied to the diagonalised free quasiparticle Hamil-

tonian to obtain the thermodynamic quantities for the conduction band. For sim-

plicity, we only calculate S0(T ) and χ0(T ) for even N , for which

ln(Z0
N ) = 4 ln

(
1 + e−β̄η

E
0

)
+ 8

N/2∑
n=1

ln
(

1 + e−β̄η
E
n

)
, (C.17)

while we obtain the traces

〈〈H〉〉0N = 4
ηE

0 e−β̄η
E
0(

1 + e−β̄η
E
0

) + 8

N/2∑
n=1

ηE
n e−β̄η

E
n(

1 + e−β̄ηE
n

) (C.18)
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and

〈〈S 2
z 〉〉

0
N =

e−β̄η
E
0(

1 + e−β̄η
E
0

)2 + 2

N/2∑
n=1

e−β̄η
E
n(

1 + e−β̄ηE
n

)2 . (C.19)

Note that the extra factor of 2 arises to account for both baths. We are thus able

to compute the impurity contribution to S(T ) and χ(T ) over all the energy scales

reached by the NRG.
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Appendix D

Local Matrix Elements for NRG

Calculations

We see from (2.4.2) that the calculation of Green functions requires the trace over the

operators A and B. We will compute the trace in an eigenbasis, and therefore must

discuss how we determine the matrix elements of the local operators in our NRG.

Given the eigenstates of the atomic system, the calculation of the matrix elements is

easy. In this appendix, we discuss how we can keep track of these matrix elements,

which will be reduced using the Wigner-Eckart theorom, as the NRG progresses.

The eigenbasis at iteration N is the set of states

|Q1, Q2, S, Sz, r;N〉 =
∑
i,j,p

UQ1Q2S(r; p, i, j;N) |Q1, Q2, S, Sz, p, i, j;N − 1〉 (D.1)

but the calculations involve the reduced eigenbasis populated by

|Q1, Q2, S, r;N〉 =
∑
i,j,p

UQ1Q2S(r; p, i, j;N) |Q1, Q2, S, p, i, j;N − 1〉 . (D.2)

Reduced matrix elements of the form

〈Q′1, Q′2, S′, r′;N ||O||Q1, Q2, S, r;N〉 (D.3)

are therefore required, where O is some operator. Let us suppose that the action of

O creates some spin eigenstate of spin SO and changes Sz by σ. The reduced matrix
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elements are thus given by

〈Q1, Q2, S, r;N + 1||O||Q′1, Q′2, S′, r′;N + 1〉

=
∑
i,j,p
i′,j′,p′

UQ1Q2S

(
r ; i, j , r ;N + 1

)
UQ′1Q′2S′

(
r′; i′, j′, r′;N + 1

)
〈Q1, Q2, S, p , i, j;N ||O||Q′1, Q′2, S′, p′, i′, j′;N〉

(D.4)

where, by the Wigner-Eckart theorem (2.2.9), we have

〈Q1, Q2, S, r, i, j;N ||O||Q′1, Q′2, S′, r′, i, j;N〉

=
〈Q1, Q2, S, Sz, r , i, j;N |O |Q′1, Q′2, S′, Sz − σ, r′N , i′, j′;N〉

〈S′, Sz − σ;SO, σ|S, Sz〉
.

(D.5)

These reduced matrix elements can be calculated using the corresponding Clebsch-

Gordan coefficients. Since there is no magnetic field, only operator total spin SO

is important. We consider 3 cases in the work presented. SO = 0 corresponds to

calculating matrix elements of the singlet state, SO = 1/2 corresponds to 1-particle

matrix elements. SO = 1 is required to calculate triplet and spin raising/lowering

matrix elements.

Let us suppose that the operator O maps from charge Q to Q′ (ie it creates (Q′−Q)

electrons). We also suppose it acts on a system of spin S′ such that the final spin of

the system is S. S can take values S = S′+SO, S
′+SO− 1, S′+SO− 2, . . . S′−SO.

We provide the local matrix elements

〈Q1, Q2, S, r, i, j;N ||O||Q′1, Q′2, S′, r′, i′, j′;N〉 (D.6)

in terms of the matrix elements

〈Q1, Q2, S, r;N ||O||Q′1, Q′2, S′, r′;N〉 (D.7)

to establish an iteration procedure. Note that the N label is omitted to make the

matrix elements appear (slightly) less confusing.

D.1 SO = 0

〈Q1, Q2, S, r, 0, 0||Ô||Q′1, Q′2, S, r′, 0, 0〉

= 〈Q1 + 1, Q2 + 1, S, r||Ô||Q′1 + 1, Q′2 + 1, S, r′〉
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〈Q1, Q2, S, r, 0, 1||Ô||Q′1, Q′2, S, r′, 0, 1〉

= 〈Q1 + 1, Q2, S − 1/2, r||Ô||Q′1 + 1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 0, 2||Ô||Q′1, Q′2, S, r′, 0, 2〉

= 〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 0, 3||Ô||Q′1, Q′2, S, r′, 0, 3〉

= 〈Q1 + 1, Q2 − 1, S, r||Ô||Q′1 + 1, Q′2 − 1, S, r′〉

〈Q1, Q2, S, r, 1, 0||Ô||Q′1, Q′2, S, r′, 1, 0〉

= 〈Q1, Q2 + 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S, r′, 1, 1〉

= 〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S, r′, 1, 2〉

= 〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 1, 3||Ô||Q′1, Q′2, S, r′, 1, 3〉

= 〈Q1, Q2 − 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 2, 0||Ô||Q′1, Q′2, S, r′, 2, 0〉

= 〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S, r′, 2, 1〉

= 〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S, r′, 2, 2〉

= 〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 2, 3||Ô||Q′1, Q′2, S, r′, 2, 3〉

= 〈Q1, Q2 − 1, S + 1/2, r||Ô||Q′1, Q′2 − 1, S + 1/2, r′〉
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〈Q1, Q2, S, r, 3, 0||Ô||Q′1, Q′2, S, r′, 3, 0〉

= 〈Q1 − 1, Q2 + 1, S, r||Ô||Q′1 − 1, Q′2 + 1, S, r′〉

〈Q1, Q2, S, r, 3, 1||Ô||Q′1, Q′2, S, r′, 3, 1〉

= 〈Q1 − 1, Q2, S − 1/2, r||Ô||Q′1 − 1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 3, 2||Ô||Q′1, Q′2, S, r′, 3, 2〉

= 〈Q1 − 1, Q2, S + 1/2, r||Ô||Q′1 − 1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 3, 3||Ô||Q′1, Q′2, S, r′, 3, 3〉

= 〈Q1 − 1, Q2 − 1, S, r||Ô||Q′1 − 1, Q′2 − 1, S, r′〉

D.2 SO = 1/2

D.2.1 S′ = S − 1/2

〈Q1, Q2, S, r, 0, 0||Ô||Q′1, Q′2, S − 1/2, r′, 0, 0〉

= 〈Q1 + 1, Q2 + 1, S, r||Ô||Q′1 + 1, Q′2 + 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 0, 1||Ô||Q′1, Q′2, S − 1/2, r′, 0, 1〉

= −〈Q1 + 1, Q2, S − 1/2, r||Ô||Q′1 + 1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 0, 1||Ô||Q′1, Q′2, S − 1/2, r′, 0, 2〉

= − 1

2S + 1
〈Q1 + 1, Q2, S − 1/2, r||Ô||Q′1 + 1, Q′2, S, r

′〉

〈Q1, Q2, S, r, 0, 2||Ô||Q′1, Q′2, S − 1/2, r′, 0, 2〉

= −
2
√
S(S + 1)

2S + 1
〈Q1 + 1, Q2, S + 1/2, r||Ô||Q′1 + 1, Q′2, S, r

′〉

〈Q1, Q2, S, r, 0, 3||Ô||Q′1, Q′2, S − 1/2, r′, 0, 3〉

= 〈Q1 + 1, Q2 − 1, S, r||Ô||Q′1 + 1, Q′2 − 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 0||Ô||Q′1, Q′2, S − 1/2, r′, 1, 0〉

= −〈Q1, Q2 + 1, S − 1/2, r||Ô||Q′1, Q′2 + 1, S − 1, r′〉
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〈Q1, Q2, S, r, 1, 0||Ô||Q′1, Q′2, S − 1/2, r′, 2, 0〉

= − 1

2S + 1
〈Q1, Q2 + 1, S − 1/2, r||Ô||Q′1 + 1, Q′2, S, r

′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S − 1/2, r′, 1, 1〉

= 〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S − 3/2, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S − 1/2, r′, 1, 2〉

=
1

2S

√
2S − 1

2S + 1
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S − 1/2, r′, 2, 1〉

=
1

2S
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S − 1/2, r′, 1, 2〉

=
2
√
S(S + 1)

2S + 1
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S − 1/2, r′, 2, 2〉

=
1

2S + 1

√
S

S + 1
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 1, 3||Ô||Q′1, Q′2, S − 1/2, r′, 1, 3〉

= −〈Q1, Q2 − 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S − 1, r′〉

〈Q1, Q2, S, r, 1, 3||Ô||Q′1, Q′2, S − 1/2, r′, 2, 3〉

= − 1

2S + 1
〈Q1, Q2 − 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S, r′〉

〈Q1, Q2, S, r, 2, 0||Ô||Q′1, Q′2, S − 1/2, r′, 2, 0〉

= −
2
√
S(S + 1)

2S + 1
〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S − 1/2, r′, 1, 2〉

= − 1

2S(2S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1/2, r′〉
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〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S − 1/2, r′, 2, 1〉

=

√
(2S + 1)(2S − 1)

2S
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S − 1/2, r′, 2, 2〉

=
1

2S + 1
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S − 1/2, r′, 2, 2〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 3||Ô||Q′1, Q′2, S − 1/2, r′, 2, 3〉

= −
2
√
S(S + 1)

2S + 1
〈Q1, Q2 − 1, S + 1/2, r||Ô||Q′1, Q′2 − 1, S, r′〉

〈Q1, Q2, S, r, 3, 0||Ô||Q′1, Q′2, S − 1/2, r′, 3, 0〉

= 〈Q1 − 1, Q2 + 1, S, r||Ô||Q′1 − 1, Q′2 + 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 3, 1||Ô||Q′1, Q′2, S − 1/2, r′, 3, 1〉

= −〈Q1 − 1, Q2, S − 1/2, r||Ô||Q′1 − 1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 3, 1||Ô||Q′1, Q′2, S − 1/2, r′, 3, 2〉

= − 1

2S + 1
〈Q1 − 1, Q2, S − 1/2, r||Ô||Q′1 − 1, Q′2, S, r

′〉

〈Q1, Q2, S, r, 3, 2||Ô||Q′1, Q′2, S − 1/2, r′, 3, 2〉

= −
2
√
S(S + 1)

2S + 1
〈Q1 − 1, Q2, S + 1/2, r||Ô||Q′1 − 1, Q′2, S, r

′〉

〈Q1, Q2, S, r, 3, 3||Ô||Q′1, Q′2, S − 1/2, r′, 3, 3〉

= 〈Q1 − 1, Q2 − 1, S, r||Ô||Q′1 − 1, Q′2 − 1, S − 1/2, r′〉
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D.2.2 S′ = S + 1/2

〈Q1, Q2, S, r, 0, 0||Ô||Q′1, Q′2, S + 1/2, r′, 0, 0〉

= 〈Q1 + 1, Q2 + 1, S, r||Ô||Q′1 + 1, Q′2 + 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 0, 1||Ô||Q′1, Q′2, S + 1/2, r′, 0, 1〉

= −
2
√
S(S + 1)

2S + 1
〈Q1 + 1, Q2, S − 1/2, r||Ô||Q′1 + 1, Q′2, S, r

′〉

〈Q1, Q2, S, r, 0, 2||Ô||Q′1, Q′2, S + 1/2, r′, 0, 1〉

=
1

2S + 1
〈Q1 + 1, Q2, S + 1/2, r||Ô||Q′1 + 1, Q′2, S, r

′〉

〈Q1, Q2, S, r, 0, 2||Ô||Q′1, Q′2, S + 1/2, r′, 0, 2〉

= −〈Q1 + 1, Q2, S + 1/2, r||Ô||Q′1 + 1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 0, 3||Ô||Q′1, Q′2, S + 1/2, r′, 0, 3〉

= 〈Q1 + 1, Q2 − 1, S, r||Ô||Q′1 + 1, Q′2 − 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 1, 0||Ô||Q′1, Q′2, S + 1/2, r′, 1, 0〉

= −
2
√
S(S + 1)

2S + 1
〈Q1, Q2 + 1, S − 1/2, r||Ô||Q′1, Q′2 + 1, S, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S + 1/2, r′, 1, 1〉

=

√
(2S − 1)(S + 1)

S(2S + 1)
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S + 1/2, r′, 1, 1〉

= − 1

2S + 1
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S + 1/2, r′, 1, 2〉

=

√
(2S + 3)(2S + 1)

2(S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1/2, r′〉
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〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S + 1/2, r′, 2, 1〉

= − 1

(2S + 1)(2S + 2)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 1, 3||Ô||Q′1, Q′2, S + 1/2, r′, 1, 3〉

= −
2
√
S(S + 1)

2S + 1
〈Q1, Q2 − 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S, r′〉

〈Q1, Q2, S, r, 2, 0||Ô||Q′1, Q′2, S + 1/2, r′, 1, 0〉

=
1

2S + 1
〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S, r′〉

〈Q1, Q2, S, r, 2, 0||Ô||Q′1, Q′2, S + 1/2, r′, 2, 0〉

= −〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S + 1, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S + 1/2, r′, 1, 1〉

= − 1

2S + 1

√
S + 1

S
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S + 1/2, r′, 2, 1〉

=
2
√
S(S + 1)

2S + 1
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S + 1/2, r′, 1, 2〉

= − 1

2S + 2
〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S + 1/2, r′, 2, 1〉

= − 1

2S + 2

√
2S + 3

2S + 1
〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S + 1/2, r′, 2, 2〉

= 〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S + 3/2, r′〉
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〈Q1, Q2, S, r, 2, 3||Ô||Q′1, Q′2, S + 1/2, r′, 1, 3〉

=
1

2S + 1
〈Q1, Q2 − 1, S + 1/2, r||Ô||Q′1, Q′2 − 1, S, r′〉

〈Q1, Q2, S, r, 2, 3||Ô||Q′1, Q′2, S + 1/2, r′, 2, 3〉

= −〈Q1, Q2 − 1, S + 1/2, r||Ô||Q′1, Q′2 − 1, S + 1, r′〉

〈Q1, Q2, S, r, 3, 0||Ô||Q′1, Q′2, S + 1/2, r′, 3, 0〉

= 〈Q1 − 1, Q2 + 1, S, r||Ô||Q′1 − 1, Q′2 + 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 3, 1||Ô||Q′1, Q′2, S + 1/2, r′, 3, 1〉

= −
2
√
S(S + 1)

2S + 1
〈Q1 − 1, Q2, S − 1/2, r||Ô||Q′1 − 1, Q′2, S, r

′〉

〈Q1, Q2, S, r, 3, 2||Ô||Q′1, Q′2, S + 1/2, r′, 3, 1〉

=
1

2S + 1
〈Q1 − 1, Q2, S + 1/2, r||Ô||Q′1 − 1, Q′2, S, r

′〉

〈Q1, Q2, S, r, 3, 2||Ô||Q′1, Q′2, S + 1/2, r′, 3, 2〉

= −〈Q1 − 1, Q2, S + 1/2, r||Ô||Q′1 − 1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 3, 3||Ô||Q′1, Q′2, S + 1/2, r′, 3, 3〉

= 〈Q1 − 1, Q2 − 1, S, r||Ô||Q′1 − 1, Q′2 − 1, S + 1/2, r′〉

D.3 SO = 1

D.3.1 S′ = S − 1

〈Q1, Q2, S, r, 0, 0||Ô||Q′1, Q′2, S − 1, r′, 0, 0〉

= 〈Q1 + 1, Q2 + 1, S, r||Ô||Q′1 + 1, Q′2 + 1, S − 1, r′〉

〈Q1, Q2, S, r, 0, 1||Ô||Q′1, Q′2, S − 1, r′, 0, 1〉

= 〈Q1 + 1, Q2, S − 1/2, r||Ô||Q′1 + 1, Q′2, S − 3/2, r′〉
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〈Q1, Q2, S, r, 0, 1||Ô||Q′1, Q′2, S − 1, r′, 0, 2〉

=
1√

S(2S + 1)
〈Q1 + 1, Q2, S − 1/2, r||Ô||Q′1 + 1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 0, 2||Ô||Q′1, Q′2, S − 1, r′, 0, 2〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1 + 1, Q2, S + 1/2, r||Ô||Q′1 + 1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 0, 3||Ô||Q′1, Q′2, S − 1, r′, 0, 3〉

= 〈Q1 + 1, Q2 − 1, S, r||Ô||Q′1 + 1, Q′2 − 1, S − 1, r′〉

〈Q1, Q2, S, r, 1, 0||Ô||Q′1, Q′2, S − 1, r′, 1, 0〉

= 〈Q1, Q2 + 1, S − 1/2, r||Ô||Q′1, Q′2 + 1, S − 3/2, r′〉

〈Q1, Q2, S, r, 1, 0||Ô||Q′1, Q′2, S − 1, r′, 2, 0〉

=
1√

S(2S + 1)
〈Q1, Q2 + 1, S − 1/2, r||Ô||Q′1, Q′2 + 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S − 1, r′, 1, 1〉

= 〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S − 2, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S − 1, r′, 1, 2〉

=
1

S

√
S − 1

2S − 1
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S − 1, r′, 2, 1〉

=
1√

S(2S − 1)
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S − 1, r′, 2, 2〉

=
1

S(2S + 1)
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S, r′〉
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〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S − 1, r′, 1, 2〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S − 1, r′, 2, 2〉

=
1

2S + 1

√
2S − 1

S
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 1, 3||Ô||Q′1, Q′2, S − 1, r′, 1, 3〉

= 〈Q1, Q2 − 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S − 3/2, r′〉

〈Q1, Q2, S, r, 1, 3||Ô||Q′1, Q′2, S − 1, r′, 2, 3〉

=
1√

S(2S + 1)
〈Q1, Q2 − 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 2, 0||Ô||Q′1, Q′2, S − 1, r′, 2, 0〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S − 1, r′, 1, 2〉

= − 1

S
√

(2S − 1)(2S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S − 1, r′, 2, 1〉

=

√
(S − 1)(2S + 1)

S(2S − 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S − 1, r′, 2, 2〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S − 1, r′, 2, 2〉

=

√
(2S − 1)(2S + 3)

2S + 1
〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S, r′〉
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〈Q1, Q2, S, r, 2, 3||Ô||Q′1, Q′2, S − 1, r′, 2, 3〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1, Q2 − 1, S + 1/2, r||Ô||Q′1, Q′2 − 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 3, 0||Ô||Q′1, Q′2, S − 1, r′, 3, 0〉

= 〈Q1 − 1, Q2 + 1, S, r||Ô||Q′1 − 1, Q′2 + 1, S − 1, r′〉

〈Q1, Q2, S, r, 3, 1||Ô||Q′1, Q′2, S − 1, r′, 3, 1〉

= 〈Q1 − 1, Q2, S − 1/2, r||Ô||Q′1 − 1, Q′2, S − 3/2, r′〉

〈Q1, Q2, S, r, 3, 1||Ô||Q′1, Q′2, S − 1, r′, 3, 2〉

=
1√

S(2S + 1)
〈Q1 − 1, Q2, S − 1/2, r||Ô||Q′1 − 1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 3, 2||Ô||Q′1, Q′2, S − 1, r′, 3, 2〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1 − 1, Q2, S + 1/2, r||Ô||Q′1 − 1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 3, 3||Ô||Q′1, Q′2, S − 1, r′, 3, 3〉

= 〈Q1 − 1, Q2 − 1, S, r||Ô||Q′1 − 1, Q′2 − 1, S − 1, r′〉

D.3.2 S′ = S

〈Q1, Q2, S, r, 0, 0||Ô||Q′1, Q′2, S, r′, 0, 0〉

= 〈Q1 + 1, Q2 + 1, S, r||Ô||Q′1 + 1, Q′2 + 1, S, r′〉

〈Q1, Q2, S, r, 0, 1||Ô||Q′1, Q′2, S, r′, 0, 1〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1 + 1, Q2, S − 1/2, r||Ô||Q′1 + 1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 0, 1||Ô||Q′1, Q′2, S, r′, 0, 2〉

=
1√

(S + 1)(2S + 1)
〈Q1 + 1, Q2, S − 1/2, r||Ô||Q′1 + 1, Q′2, S + 1/2, r′〉
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〈Q1, Q2, S, r, 0, 2||Ô||Q′1, Q′2, S, r′, 0, 1〉

= − 1√
S(2S + 1)

〈Q1 + 1, Q2, S + 1/2, r||Ô||Q′1 + 1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 0, 2||Ô||Q′1, Q′2, S, r′, 0, 2〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1 + 1, Q2, S + 1/2, r||Ô||Q′1 + 1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 0, 3||Ô||Q′1, Q′2, S, r′, 0, 3〉

= 〈Q1 + 1, Q2 − 1, S, r||Ô||Q′1 + 1, Q′2 − 1, S, r′〉

〈Q1, Q2, S, r, 1, 0||Ô||Q′1, Q′2, S, r′, 1, 0〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1, Q2 + 1, S − 1/2, r||Ô||Q′1, Q′2 + 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 0||Ô||Q′1, Q′2, S, r′, 2, 0〉

=
1√

(S + 1)(2S + 1)
〈Q1, Q2 + 1, S − 1/2, r||Ô||Q′1, Q′2 + 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S, r′, 1, 1〉

=

√
(S − 1)(S + 1)

S
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S, r′, 1, 2〉

=
1

2S + 1

√
2S − 1

S
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S, r′, 2, 1〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S, r′, 1, 1〉

= − 1√
S(2S + 1)

〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1, r′〉
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〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S, r′, 1, 2〉

=
S(2S + 3)

(S + 1)(2S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S, r′, 2, 1〉

= − 1

(2S + 1)
√
S(S + 1)

〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S, r′, 2, 2〉

=
1

S + 1

√
S

2S + 1
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 1, 3||Ô||Q′1, Q′2, S, r′, 1, 3〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1, Q2 − 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 1, 3||Ô||Q′1, Q′2, S, r′, 2, 3〉

=
1√

(S + 1)(2S + 1)
〈Q1, Q2 − 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 0||Ô||Q′1, Q′2, S, r′, 1, 0〉

= − 1√
S(2S + 1)

〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 2, 0||Ô||Q′1, Q′2, S, r′, 2, 0〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S, r′, 1, 1〉

= − 1

S

√
S + 1

2S + 1
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S − 1, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S, r′, 1, 2〉

= − 1

(2S + 1)
√
S(S + 1)

〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉
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〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S, r′, 2, 1〉

=
(S + 1)(2S − 1)

S(2S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S, r′, 2, 2〉

=
1√

(S + 1)(2S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S, r′, 1, 2〉

= −
√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S, r′, 2, 1〉

= − 1

2S + 1

√
2S + 3

S + 1
〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S, r′, 2, 2〉

=

√
S(S + 2)

S + 1
〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 2, 3||Ô||Q′1, Q′2, S, r′, 1, 3〉

= − 1√
S(2S + 1)

〈Q1, Q2 − 1, S + 1/2, r||Ô||Q′1, Q′2 − 1, S − 1/2, r′〉

〈Q1, Q2, S, r, 2, 3||Ô||Q′1, Q′2, S, r′, 2, 3〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1, Q2 − 1, S + 1/2, r||Ô||Q′1, Q′2 − 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 3, 0||Ô||Q′1, Q′2, S, r′, 3, 0〉

= 〈Q1 − 1, Q2 + 1, S, r||Ô||Q′1 − 1, Q′2 + 1, S, r′〉

〈Q1, Q2, S, r, 3, 1||Ô||Q′1, Q′2, S, r′, 3, 1〉

=

√
(S + 1)(2S − 1)

S(2S + 1)
〈Q1 − 1, Q2, S − 1/2, r||Ô||Q′1 − 1, Q′2, S − 1/2, r′〉
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〈Q1, Q2, S, r, 3, 1||Ô||Q′1, Q′2, S, r′, 3, 2〉

=
1√

(S + 1)(2S + 1)
〈Q1 − 1, Q2, S − 1/2, r||Ô||Q′1 − 1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 3, 2||Ô||Q′1, Q′2, S, r′, 3, 1〉

= − 1√
S(2S + 1)

〈Q1 − 1, Q2, S + 1/2, r||Ô||Q′1 − 1, Q′2, S − 1/2, r′〉

〈Q1, Q2, S, r, 3, 2||Ô||Q′1, Q′2, S, r′, 3, 2〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1 − 1, Q2, S + 1/2, r||Ô||Q′1 − 1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 3, 3||Ô||Q′1, Q′2, S, r′, 3, 3〉

= 〈Q1 − 1, Q2 − 1, S, r||Ô||Q′1 − 1, Q′2 − 1, S, r′〉

D.3.3 S′ = S + 1

〈Q1, Q2, S, r, 0, 0||Ô||Q′1, Q′2, S + 1, r′, 0, 0〉

= 〈Q1 + 1, Q2 + 1, S, r||Ô||Q′1 + 1, Q′2 + 1, S + 1, r′〉

〈Q1, Q2, S, r, 0, 1||Ô||Q′1, Q′2, S + 1, r′, 0, 1〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1 + 1, Q2, S − 1/2, r||Ô||Q′1 + 1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 0, 2||Ô||Q′1, Q′2, S + 1, r′, 0, 1〉

= − 1√
(S + 1)(2S + 1)

〈Q1 + 1, Q2, S + 1/2, r||Ô||Q′1 + 1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 0, 2||Ô||Q′1, Q′2, S + 1, r′, 0, 2〉

= 〈Q1 + 1, Q2, S + 1/2, r||Ô||Q′1 + 1, Q′2, S + 3/2, r′〉

〈Q1, Q2, S, r, 0, 3||Ô||Q′1, Q′2, S + 1, r′, 0, 3〉

= 〈Q1 + 1, Q2 − 1, S, r||Ô||Q′1 + 1, Q′2 − 1, S + 1, r′〉
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〈Q1, Q2, S, r, 1, 0||Ô||Q′1, Q′2, S + 1, r′, 1, 0〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1, Q2 + 1, S − 1/2, r||Ô||Q′1, Q′2 + 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 1, 1||Ô||Q′1, Q′2, S + 1, r′, 1, 1〉

=

√
(2S − 1)(2S + 3)

2S + 1
〈Q1, Q2, S − 1, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S + 1, r′, 1, 1〉

= −
√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S + 1, r′, 1, 2〉

=

√
(S + 2)(2S + 1)

(S + 1)(2S + 3)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 1, 2||Ô||Q′1, Q′2, S + 1, r′, 2, 1〉

= − 1

(S + 1)
√

(2S + 1)(2S + 3)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 1, 3||Ô||Q′1, Q′2, S + 1, r′, 1, 3〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1, Q2 − 1, S − 1/2, r||Ô||Q′1, Q′2 − 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 0||Ô||Q′1, Q′2, S + 1, r′, 1, 0〉

= − 1√
(S + 1)(2S + 1)

〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 0||Ô||Q′1, Q′2, S + 1, r′, 2, 0〉

= 〈Q1, Q2 + 1, S + 1/2, r||Ô||Q′1, Q′2 + 1, S + 3/2, r′〉

〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S + 1, r′, 1, 1〉

= − 1

2S + 1

√
2S + 3

S + 1
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S, r′〉
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〈Q1, Q2, S, r, 2, 1||Ô||Q′1, Q′2, S + 1, r′, 2, 1〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1, Q2, S, r||Ô||Q′1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S + 1, r′, 1, 1〉

=
1

(S + 1)(2S + 1)
〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S + 1, r′, 1, 2〉

= − 1√
(S + 1)(2S + 3)

〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S + 1, r′, 2, 1〉

= − 1

S + 1

√
S + 2

2S + 3
〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S + 1, r′〉

〈Q1, Q2, S, r, 2, 2||Ô||Q′1, Q′2, S + 1, r′, 2, 2〉

= 〈Q1, Q2, S + 1, r||Ô||Q′1, Q′2, S + 2, r′〉

〈Q1, Q2, S, r, 2, 3||Ô||Q′1, Q′2, S + 1, r′, 1, 3〉

= − 1√
(S + 1)(2S + 1)

〈Q1, Q2 − 1, S + 1/2, r||Ô||Q′1, Q′2 − 1, S + 1/2, r′〉

〈Q1, Q2, S, r, 2, 3||Ô||Q′1, Q′2, S + 1, r′, 2, 3〉

= 〈Q1, Q2 − 1, S + 1/2, r||Ô||Q′1, Q′2 − 1, S + 3/2, r′〉

〈Q1, Q2, S, r, 3, 0||Ô||Q′1, Q′2, S + 1, r′, 3, 0〉

= 〈Q1 − 1, Q2 + 1, S, r||Ô||Q′1 − 1, Q′2 + 1, S + 1, r′〉

〈Q1, Q2, S, r, 3, 1||Ô||Q′1, Q′2, S + 1, r′, 3, 1〉

=

√
S(2S + 3)

(S + 1)(2S + 1)
〈Q1 − 1, Q2, S − 1/2, r||Ô||Q′1 − 1, Q′2, S + 1/2, r′〉
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〈Q1, Q2, S, r, 3, 2||Ô||Q′1, Q′2, S + 1, r′, 3, 1〉

= − 1√
(S + 1)(2S + 1)

〈Q1 − 1, Q2, S + 1/2, r||Ô||Q′1 − 1, Q′2, S + 1/2, r′〉

〈Q1, Q2, S, r, 3, 2||Ô||Q′1, Q′2, S + 1, r′, 3, 2〉

= 〈Q1 − 1, Q2, S + 1/2, r||Ô||Q′1 − 1, Q′2, S + 3/2, r′〉

〈Q1, Q2, S, r, 3, 3||Ô||Q′1, Q′2, S + 1, r′, 3, 3〉

= 〈Q1 − 1, Q2 − 1, S, r||Ô||Q′1 − 1, Q′2 − 1, S + 1, r′〉
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Appendix E

Reduction of the Density

Matrix in the NRG

One of the failings of the conventional method for NRG calculation of dynamic

quantities is its inability to identify the ground state. As argued in [35], a way

around this is to allow the NRG to reach the final iteration M , and construct the

density matrix using the final states. The density matrix is then to be reduced by

tracing out the environment states. At iteration M we will assume that the density

matrix ρM is diagonal and given by

ρM =
∑
Q1,Q2

S,Sz ,r,r′

e−βεQ1,Q2,S,r
(M)

ZM

|Q1, Q2, S, Sz, r
′;M〉WM (Q1, Q2, S, r

′, r) 〈Q1, Q2, S, Sz, r;M |

(E.1)

where

εQ1,Q2,S,r(M) = Λ−(M−1)/2EQ1,Q2,S,r(M) (E.2)

is the unscaled energy of the approximated Anderson Hamiltonian. This assumption

is valid for low temperatures, as it assumes that the final NRG states (corresponding

to the lowest energy scales reached) are the only important ones for describing the

dynamics of the system. For T = 0, WM (Q1, Q2, S, r
′
M , rM ) = 0 unless the arguments

correspond to the ground state. We define the reduced density matrix at iteration

N as

ρNred =
∑

Q1,Q2,S,Sz
r′,r

|Q1, Q2, S, Sz, r
′;N〉WN (Q1, Q2, S, r

′, r) 〈Q1, Q2, S, Sz, r;N | ,

(E.3)
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and suppose that we have ρNred, and seek ρN−1
red . This is determined by tracing out the

degrees of freedom in the N -length chain which are not present in the (N−1)-length

NRG chain;

ρN−1
red =

∑
σ1,σ2

〈σ2;N | 〈σ1;N |ρNred |σ1;N〉 |σ2;N〉 (E.4)

where |σα;N〉 ∈ {|0;N〉α , |↑;N〉α , |↓;N〉α , |↑↓;N〉α}. We proceed by means of the

unitary basis decomposition

|Q1, Q2, S, Sz, r;N〉 =
∑
i,j,p

UQ1Q2S(r; p, i, j;N) |Q1, Q2, S, Sz, r, i, j;N − 1〉 (E.5)

to write

ρNred =
∑

Q1,Q2,S,Sz
r′,r

∑
i,j,p
i′,j′,p′

|Q1, Q2, S, Sz, p
′, i′, j′;N − 1〉 〈Q1, Q2, S, Sz, p, i, j;N − 1|

UQ1Q2S(r′; p′, i′, j′;N)WN (Q1, Q2, S, r
′, r)UQ1Q2S(r; p, i, j;N).

(E.6)
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Through use of our basis definitions, we calculate explicitly

WN−1(Q1, Q2, S, p
′, p )

=
∑
r,r′

χN (Q1 − 1, Q2 − 1, S, r′, p′, r , p , 0, 0)

+
2S + 2

2S + 1
χN (Q1 − 1, Q2, S + 1/2, r′, p′, r , p , 0, 1)

+
2S

2S + 1
χN (Q1 − 1, Q2, S − 1/2, r′, p′, r , p , 0, 2)

+ χN (Q1 − 1, Q2 + 1, S, r′, p′, r , p , 0, 3)

+
2S + 2

2S + 1
χN (Q1, Q2 − 1, S + 1/2, r′, p′, r , p , 1, 0)

+
2S + 3

2S + 1
χN (Q1, Q2, S + 1, r′, p′, r , p , 1, 1)

+ χN (Q1, Q2, S, r
′, p′, r , p , 1, 2)

+
2S + 2

2S + 1
χN (Q1, Q2 + 1, S + 1/2, r′, p′, r , p , 1, 3)

+
2S

2S + 1
χN (Q1, Q2 − 1, S − 1/2, r′, p′, r , p , 2, 0)

+ χN (Q1, Q2, S, r
′, p′, r , p , 2, 1)

+
2S − 1

2S + 1
χN (Q1, Q2, S − 1, r′, p′, r , p , 2, 2)

+
2S

2S + 1
χN (Q1, Q2 + 1, S − 1/2, r′, p′, r , p , 2, 3)

+ χN (Q1 + 1, Q2 − 1, S, r′, p′, r , p , 3, 0)

+
2S + 2

2S + 1
χN (Q1 + 1, Q2, S + 1/2, r′, p′, r , p , 3, 1)

+
2S

2S + 1
χN (Q1 + 1, Q2, S − 1/2, r′, p′, r , p , 3, 2)

+ χN (Q1 + 1, Q2 + 1, S, r′, p′, r , p , 3, 3)

(E.7)

where we define

χN (Q1, Q2, S, r
′, p′, r , p , i, j)

= UQ1,Q2,S(r′; p′, i, j;N)WN (Q1, Q2, S, r
′, r )UQ1,Q2,S(r; p, i, j;N).

(E.8)

We are hence able to iteratively reduce ρM and obtain correlation functions which

correctly identify the ground state. Note that this expression can be written as

multiplication of matrices, and hence can be implemented efficiently on a computer.
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