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Abstract—In order to predict future observations of a noise-
driven system, we have to find a model that exactly or at
least approximately describes the behavior of the system so
that the current system state can be recovered from past
observations. However, sometimes it is very difficult to model
a system accurately, such as real ocean waves. It is therefore
particularly interesting to analyze ocean wave properties in
the time-domain using autoregressive moving average (ARMA)
models. Two ARMA/AR based models and their equivalent state
space representations will be used for predicting future ocean
wave elevations, where unknown parameters will be determined
using linear least squares and auto-covariance least squares
algorithms. Compared to existing wave prediction methods, in
this paper (i) an ARMA model is used to enhance the prediction
performance, (ii) noise covariances in the ARMA/AR model are
computed rather than guessed and (iii) we show that, in practice,
low pass filtering of historical wave data does not improve the
forecasting results.

I. INTRODUCTION

A wave energy converter (WEC) is a device for capturing
wave power directly from surface waves or from pressure
fluctuations below the surface [3]. In 2011, renewable energy
resources, including solar, wind, geothermal as well as biofuel,
contributed about 8.2% of the world’s total energy generation
and the number is still increasing [12]. As a new renewable and
sustainable energy resource and major competitor of offshore
wind power, ocean waves have the highest energy density
per unit area of all renewable resources [2]. The total wave
power that can be generated around the coasts of the world
is of the order of 1 TW, similar to current global electricity
consumption [2], [4]. In 2008, the first wave power farm was
opened in Portugal. Since then, many European countries, the
United States and Russia have launched their own wave power
farms to harvest energy from the ocean.

Real-time control of WECs requires knowledge of future
incident wave elevations in order to approach optimal effi-
ciency of wave energy extraction. The energy conversion in
most WECs are based either on the relative oscillation between
bodies or on oscillating pressure distributions within fixed or
moving chambers [6]. Therefore, it is important to know the
wave elevations before applying any future control techniques
(i.e. latching or declutching control) in order to enable efficient
power absorption over a wide range of wave conditions.

In [6] an autoregressive (AR) based ocean wave prediction
model was introduced, which assumes that the current wave
height depends linearly on a number of past wave heights.
The linear relationship between the current and past wave
heights is represented by the AR parameters, where the initial
values are determined from low pass filtered historical data
with a forgetting factor λ. When new data is received, the AR
parameters are updated using the recursive least squares (RLS)
method.

In order to improve the prediction accuracy of ocean waves,
[6] tried to remove high frequency components in historical
ocean waves data using a low-pass filter. The main problem
of this approach is the delay caused by low-pass filtering.
In signal processing, signal delays can be compensated by
adjusting/shifting the original signal or using a zero-phase
low-pass filter, so that the smoothed signal will be in phase
and have the same number of data points as the original one.
However, when we try tried to predict the smoothed signal,
those delays significantly affected the performance of wave
prediction. We are going to discuss this questionable approach
in a later section.

Results in [6] show that the AR-RLS model with a for-
getting factor is a promising way of forecasting ocean wave
elevations. One main problem of the prediction model is that, if
the measurements do not add new information to the system,
then after a certain time the RLS gains may grow without
bound. Hence, the estimated AR parameters can experience a
very large growth, known as the phenomenon of blow-up [6].
Another problem is that there is no method for determining the
value of the forgetting factor λ; this is tuned based on historical
data and is assumed not to change as new information comes
in.

In order to overcome the disadvantages of using the AR-
RLS model with a forgetting factor, [6] introduced an LTV
state space model representation for AR processes, where
the state dynamics matrix is an identity matrix, so that the
evolution of AR parameters follow a random walk. The
AR parameters can then be estimated and predicted as un-
known system states using the Kalman filter and predictor,
respectively. The main difficulty of predicting ocean wave
heights using a Kalman filter and predictor is that the initial
state, corresponding error covariance, process and output noise



statistics are all unknown.
In this paper, ocean waves are predicted based on original

rather than low-pass filtered historical wave data. The instabil-
ity issue in wave prediction is resolved by using a corrected
RLS formulation. An ARMA based state space model is used
to predict ocean waves, where all the unknown parameters and
noise covariances are estimated by using linear least squares
(LLS) algorithms. In addition, an AR based state space model
introduced in [6] is also examined, where the AR parameters
and noise covariances are estimated using the auto-covariance
least squares (ALS) algorithm.

Two ALS-based noise covariance estimation methods were
introduced in [7], [8] and [11]. The ALS method establishes a
linear relationship between the unknown noise covariances and
covariance of innovation sequence that is obtained by using
guessed noise covariances. Covariances can be determined by
solving a constrained (positive-definite) linear least squares
problem. The differences between the ALS method in [7], [8]
and [11] are that the ALS method in [7], [8] does not involve
any approximations and is able to estimate the initial state
error covariance. Thus, in this paper, we are going to use the
ALS method [7], [8] for noise covariance estimation.

This paper is organized as follows: In Section II, we intro-
duce the models and formulations for ocean wave prediction.
In Section III we discuss and investigate the influence of data
smoothing on wave forecasting. A numerical example is given
in Section IV. Finally, we draw conclusions in Section V.
x ∼ N (µ, P ) denotes a random vector variable x with a

normal distribution with mean µ and covariance matrix P .
‖w‖2W := x>Wx denotes weighted least squares of vector x.
bxe denotes the largest integer closest to x, i.e. b3.5e = 4 and
b3.4e = 3. A† denotes the Moore-Penrose generalized inverse
of a matrix A, such that XX†X = X .

II. AUTOREGRESSIVE MOVING AVERAGE MODEL

Suppose we have a sufficient amount of historical wave
data (yk)Mk=1, and assume historical wave data can be fitted
into a stationary stochastic model, namely an autoregressive
moving average (ARMA) model, such that

yk+1 :=

p∑
i=1

φiyk+1−i +

q∑
i=1

θiwk+1−i + wk+1, (1)

where φi ∈ < and θi ∈ < are the parameters of the AR and
MA model, respectively, and wk ∼ N (0, Q). Stationary mod-
els assume that the process remains in statistical equilibrium
with probabilistic properties (mean and variance) that do not
change over time [1].

The ARMA model (1) can be written as the following state
space representation [9]

xk+1 := Axk +Gwk+1,

yk := Cxk
(2)

where C :=
[
1 θ1 θ2 · · · θn−1

]

A :=


φ1 φ2 · · · φn−1 φn
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 · · · 0 1 0

 , G :=


1
0
0
...
0

 , (3)

n := max{p, q + 1}, φi = 0 for i > p and θi = 0 for i > q.
Because φi, θi, wk and Q are all unknown, in order to

determine them given (yk)Mk=1, one has to solve the maximum
likelihood estimation (MLE) problem, such that [9]

max p(y1:M |φ, θ,Q) = max

M∏
k=2

p(yk|yk−1, φ, θ,Q),

= max

M∏
k=2

(2πΣ)−
1
2 e(− yk−Cxk

Σ )

(4)

where Σ is the innovation covariance. There are two main
disadvantages of solving the MLE (4) problem: firstly, be-
cause (4) is a nonlinear optimization problem, finding a global
optimal is not guaranteed; secondly, for higher order ARMA
models, solving (4) could be computationally expensive.

Alternatively, φi, θi and Q can be approximated by solving
two LLS problems. Firstly, we assume that the white Gaussian
noise term wk can be estimated by ŵ1

...
ŵM−h


︸ ︷︷ ︸
ŵ1,M−h

=

yh+1

...
yM


︸ ︷︷ ︸
yh+1,M

−

 yh · · · y1

...
. . .

...
yM−1 · · · yM−h


︸ ︷︷ ︸

Y1,M−1

φ̃1

...
φ̃h


︸ ︷︷ ︸
φ̃1,h

, (5)

where φ̃1,h = Y †1,M−1yh+1,M and h can be determined using
the Akaike information criterion (AIC) [6]. Now we could
establish a linear relationship between φi, θi, wk and yk

ŵr+1,M−h = yh+r+1,M −Hρ (6)

where r = max{p, q}, ρ =
[
φ̂1 · · · φ̂p θ̂1 · · · θ̂q

]>
and

H :=

 yh+r · · · yh+r−p+1 ŵr · · · ŵr−q
...

. . .
...

...
. . .

...
yM−1 · · · yM−p ŵM−h−1 · · · ŵM−h−q

 .
Hence, ρ = H†yh+r+1,M and Q̂ ≈ ŵr+1,M−hŵ

>
r+1,M−h

M−h−r .
Once φi, θi and Q are all determined, the state sequence

(xk)Mk=1 can be obtained using a steady state Kalman filter,
where the steady state error covariance P∞ can be obtained by
solving the discrete algebraic Riccati equation (DARE) [13, p.
194]

P∞ = AP∞A
>+GQG>−AP∞C>

(
CP∞C

>)−1
CP∞A

>.
(7)

Hence, the steady state Kalman gain L∞ is given by [13, p.
195]

L∞ =
(
P∞C

>) (CP∞C>)−1
. (8)



After the state x̂M is determined, we could recursively predict
future observations {yk}

M+Tf

k=M+1 (Tf is a positive integer) by
using

yM+i = CAix̂M , i = 1, 2, . . . , Tf . (9)

When the new observation yk, k > M , becomes available, the
state vector x̂k is updated using an steady state Kalman filter
based only on the most recent observation data yk.

An AR-based state space model was introduced in [6],
which assumes the AR parameters φ are slowly varying with
time. Let the state vector xk :=

[
φk,1 φk,2 · · · φk,p

]>
and time-varying output matrix

Ck :=
[
yk−1 yk−2 · · · yk−p

]
.

Suppose the evolution of the state vector xk follows a random
walk, so that

xk+1 := xk + wk

yk := Ckxk + vk
, (10)

where wk ∼ N (0, Q), vk ∼ N (0, R) are two uncorrelated
random variables and the order p of the AR model can be
determined using the Akaike information criterion (AIC) [6].
Since yk is a scalar, the state in (10) can be estimated using
the following simplified Kalman filter equations:

Lk = Pk|k−1C
>
k

(
CkPk|k−1C

>
k +R

)−1
, (11a)

Pk+1|k = Pk|k−1 +Q

− Pk|k−1C
>
k

(
CkPk|k−1C

>
k +R

)−1
CkPk|k−1

= Pk|k−1 +Q−
Pk|k−1C

>
k CkPk|k−1

CkPk|k−1C
>
k +R

. (11b)

In [6], xM is estimated by solving a weighted LLS problem

x̂M := arg min
xM

‖y1,M − Y1,M−1xM‖2Λ ,

where the weight matrix Λ ∈ <M×M is defined as Λ :=⊕M−n−1
k=0 λk and λ ∈ [0.97, 0.995] is the forgetting factor, so

that more weight is given to recent observations according to
an exponential law [6]. Hence, if Y1,M−1 is a full column rank
matrix, then

x̂M =
(
Y >1,M−1Λ−1Y1,M−1

)−1
Y >1,M−1Λ−1yn+1,M .

Once x̂M is determined, future wave heights can be predicted
using Ckx̂M . When the new observation yk becomes available,
the AR parameters x̂k will be updated by [6]

Lk = P̃k+1C
>
k , (12a)

P̃k+1 = P̃k

(
CkP̃kC

>
k + λ

)−1

, (12b)

x̂k = x̂k−1 + Lk (yk − Ckx̂k−1) , (12c)

with state error covariance P̃m = I and P̃M = x̂M x̂
>
M .

There are two mistakes with the approach in [6]. Firstly,
incorrect RLS equations (12) are used. The correct formulation
should be

Lk = P̃k+1C
>
k λ
−1, (13a)

P̃k+1 = λP̃k

(
CkP̃kC

>
k + λ

)−1

, (13b)

Algorithm 1 Noise Covariance Estimation with ALS [7], [8]
1: Given κ, κ ≤ M , (yk)

κ
k=1, x̂1|0, initial guesses of P1, Q

and R, determine the smoothed initial state x̂1|κ by using
the Kalman smoother for k̄ = 1, · · · , κ.

2: Set x̂1|0 = x̂1|κ, then recursively determine the filtered
states (x̂k)

M
k=1 using the Kalman filter.

3: Construct A using (5) in [7], [8]. Calculate the innovation
sequence (yk − Cx̂k)

M
k=1.

4: Determine the lag N by looking at the auto-correlation
plot of the innovation sequence.

5: Estimate P1, Q and R using the ALS algorithm in [7],
[8].

thus (12) is only correct when λ = 1; secondly, an inappro-
priate state error covariance P̃M is applied, because

P̃M = E
{

(xM − x̂M ) (xM − x̂M )
>
}

= E
{
xMx

>
M

}
− x̂M x̂>M 6= x̂M x̂

>
M .

Our choice of P̃m may not be correct either, but P̃M will be-
come accurate after several iterations. Most of the time, these
two mistakes may not lead to a serious problem, because [6]
limits the choice of λ within 0.97 and 0.995, which makes (12)
approximately equal to (13). PM is a positive definite matrix,
which may only have a limited effect on system stability and
prediction accuracy. However, these two mistakes will cause
a robustness problem if the measurements do not add new
information to the system [6]. We will discuss more details in
Section IV-B.

In [6], covariances Q and R in (11) are all user-defined
matrices. Inappropriate choices could result in poor or even
unstable wave height predictions. In order to improve the
prediction performance, one could use Algorithm 1 to provide
optimal covariance matrices for estimation model (10).

III. CAN SMOOTHED HISTORICAL DATA HELP THE
FORECASTING?

Figure 1 is the wave spectrum that was recorded at Galway
at 01:20 on 11 March 2005 with a sampling frequency of
fs = 2.56 Hz and total data length L = 3072 [10].

It is stated in [6] that when predicting a signal from
historical data using an AR based model, it is often the case
that high frequency disturbances in the historical data may
significantly affect the prediction performance. Thus, historical
data needs to be smoothed using a low-pass filter before
passing through the AR model for forecasting.

In order to verify this statement, we set up Forecasting
Test 1 and 2 with the prediction horizon Tf = b4fse and
prediction length Th = 250.

Figure 2 shows the forecasting results given by Forecasting
Test 1, 2 and ARMA model (1) without data smoothing. The
accuracy of prediction are determined by the percentage of
fitness [6]:

Fit% := 100%− ‖y − ŷ‖`2
‖y‖`2

. (14)
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Fig. 1. Spectrum of measured ocean waves

Forecasting Test 1
1: Given smoothed wave data (ỹk)Lk=1, let M := 1500.
2: Calculate ρ and Q based on (ỹk)Mk=1 using (5) and (6).
3: Estimate x̂M in (2) using the steady state Kalman filter.
4: Predict future wave (ŷk)M+Th

k=M+Tf
:

5: for t = 1, . . . , Th do
6: ŷM+Tf+t−1 = CATf x̂M+t−1.
7: Given new data ỹM+t, estimate x̂M+t using a Kalman

filter.
8: end for

where y is the measured wave heights, ŷ is the predicted wave
heights.

Based on the recording at 5:20 on 10 February 2005,
Figure 2 clearly indicates that the best result is produced by
Test 1 with Fit% = 71%, followed by the result using ARMA
model without data smoothing with Fit% = 57.78%, the worst
result is given by Test 2 with Fit% = 40%.

When a signal is smoothed by a low-pass filter, a constant
delay will be introduced in the output signal. The length of
the delay D can be pre-calculated, which depends on the cut-
off frequency, order and the type of the filter. In order to

Forecasting Test 2
1: Let M := 1500, given original wave data (yk)Mk=1.
2: Obtain smoothed signal (ỹk)1500

k=1 by using a low pass filter
with cut-off frequency fc = 1.2 rad/s and filter delay D.

3: Calculate ρ and Q based on (ỹk)Mk=1 using (5) and (6).
4: Estimate x̂M in (2) using a steady state Kalman filter.
5: Predict future wave (ŷk)M+Th

k=M+Tf
:

6: for t = 1, . . . , Th do
7: ŷM+Tf+t−1 = CATf x̂M+t−1.
8: Given new yM+t, obtain smoothed signal (ỹ)M+t

k=1 .
9: Estimate (x̂k)M+t

k=M+t−D using a Kalman filter.
10: end for
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Fig. 2. Ocean waves forecasting tests

compensate filter delays, one has to add the same amount of
extra data at the end of the original signal before filtering, for
example[

y1 y2 · · · yK yK · · · yK
]
∈ <1×(K+D), (15)

so that the filtered signal can be shifted in phase and still has
the same data length as the original signal. The reason why
Test 1 provides better results than Test 2 is that the smoothed
data (ỹk)Kk=1, M < K < L − D used in Test 1 is obtained
using [

y1 y2 · · · yK yK+1 · · · yK+D

]
,

rather than (15), and requires future observations
yK+1 · · · yK+D. Therefore, it is practically impossible
to use Test 1 for wave prediction; hence, low-pass filtering
the historical data will not help the ocean wave forecasting.

IV. PERFORMANCE OF WAVE PREDICTION

In this section, the performance of ocean wave prediction
using models (1) and (10) will be examined and compared
with existing methods. The ocean wave data was recorded at
Galway with a sampling frequency of fs = 2.56 Hz and total
data length L = 3072 [10]; the first M = 1500 points will be
used as the historical wave. We are going to use the remaining
points as the reference signal to examine the performance of
ocean wave prediction.

For the ALS-based covariance estimation algorithms in [7],
[8], we set Me := 1000; N is determined by plotting the auto-
correlation function of the innovation sequence. The initial
guesses of Pm, Q and R are set to In×10−1, In×10−7 and 1,
respectively. In order to reduce the computational complexity,
we assume that all covariance matrices are diagonal.

A. Prediction Horizon and Choice of p and q in ARMA Model

The prediction horizon Tf is one of the important param-
eters in ocean wave forecasting, which indicates how many
seconds we would like to predict the wave elevations into the
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Fig. 3. Percentage of fitness orders of ARMA model

future; we define Tf := NTs, where Ts is the sampling time
and N is a positive integer. The prediction horizon should be
long enough for the WEC to respond; typically this should
be approximately equal to half of the typical period Tp [5].
Figure 1 indicates that the peak frequency ωp is located at
0.6 rad/s, thus the prediction horizon Tf ≈ 4 sec should be
long enough.

In order to determine the orders p and q in the ARMA
model (1), different combinations of p and q are tested
using the first 250 predictions, Figures 3 show the prediction
performance versus the orders of the ARMA model, based on
the recording at 1:20 on 11 of March 2005.

B. Robustness of AR Prediction Models

We proceed to test and compare the robustness of ARMA
models (1) and the AR model of [6] when there is a period
of time without any signal. Figure 4 illustrates that when the
signal is resumed after approximately a 38 sec signal loss,
wave prediction using the ARMA models shows a strong
tracking ability and good prediction performance, while the
wave prediction using the AR model in [6] tends to infinity,
due to mistakes we discussed earlier.

C. Which Prediction Model is Better?

In this section, we compare prediction results and compu-
tation time based on model (1) and (10). Table I compares
the forecasting performance between using ARMA model (1)
(without smoothing) and Forecasting Test 2. Table I verifies
the statement we made in Section III that low-pass filtering
the historical data will not improve the accuracy of wave
forecasting.

Tables I and II compares the wave prediction results and the
computation time taken Tf between ARMA model (1) and AR
model (10) using 10 different ocean wave data. Tables I and II
show that prediction using an ARMA model is more accurate
and much faster than the AR model (10). Figure 5 illustrates
140 sec of ocean wave prediction with approximately 4 sec
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Fig. 4. Robustness tests for AR prediction with models

TABLE I
OCEAN WAVE PREDICTION RESULTS

ARMA Model (1) Forecasting Test 2

Time, Date p q Fit% T fc Fit%sec rad/s
13:20, 02/02/05 87 0 56 51.9 1 53
22:20, 30/11/04 98 0 52 51.5 0.9 27
08:20, 01/11/04 63 7 49 51.6 1 42
00:27, 16/02/05 82 0 53 51.9 1 49
17:20, 23/01/05 51 5 62 51.5 0.9 57
01:20, 11/03/05 71 7 58 51.6 1.5 48
00:22, 01/10/04 64 2 53 51.7 0.8 37
14:20, 24/10/04 87 2 53 51.7 1.2 34
01:20, 15/12/04 63 3 54 51.6 0.7 33
15:20, 31/12/04 51 5 51 51 1 39

TABLE II
OCEAN WAVE PREDICTION RESULTS WITH AR MODEL (10)

Time, Date p (rad/s) Fit% T (sec)
13:20, 02/02/05 93 53 648
22:20, 30/11/04 84 45 535
08:20, 01/11/04 94 45 663
00:27, 16/02/05 82 50 512
17:20, 23/01/05 96 60 697
01:20, 11/03/05 71 55 394
00:22, 01/10/04 53 51 233
14:20, 24/10/04 94 49 667
01:20, 15/12/04 63 46 317
15:20, 31/12/04 57 40 264

prediction horizon using both ARMA model (1) and AR
model (10), reference waves are based on the recording at
22:20 on 30 November 2004. Figure 6 shows the percentage
of fitness versus the prediction horizon using both ARMA
model (1) and AR model (10), based on the recording at 17:20
on 11 January 2005.
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Fig. 5. Wave prediction performances for different prediction models
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V. CONCLUSIONS

In this paper, we focused on forecasting ocean wave eleva-
tions for wave energy converters. Two existing ARMA/AR
based state space wave prediction models were firstly re-
viewed, for which the noise covariances in the AR model
were determined using ALS algorithm. This was followed by

discussions of the accuracy and stability issues of the wave
prediction method of [6]. Two forecasting tests were used
to investigate the influence of using smoothed data in wave
forecasting. We found there is no evidence to indicate any
improvements in prediction accuracy by using the smoothed
data rather than original data.

Following this, we tested the performance and efficiency of
both model (1) and (10) using 10 different ocean wave data
files. Results have shown that ARMA model (1) gave the best
prediction performance and is the fastest, compared to the AR
model (10) with ALS method.

Future work could involve using the expectation maximiza-
tion (EM) method to identify parameters in ARMA model.
Moreover, instead of predicting ocean waves at one location
from one measurement, one could predict ocean waves based
on the reconstruction of the wave field from an array of
distributed measurements.
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