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Abstract— For nonlinear state space systems with additive
noises, sometimes the number of process noise signals could
be less than the dimension of the state space. In order to
improve the accuracy and stability of nonlinear state estimation,
this paper provides for the first time the derivation of the
full information estimator (FIE) for such nonlinear systems.
We verify our derivation of the FIE by firstly proving the
unbiasedness and minimum-variance of the FIE for linear time
varying (LTV) systems, then showing the equivalence between
the Kalman filter/smoother and the FIE for LTV systems.
Finally, we prove that the FIE will provide more accurate state
estimates than the extended Kalman filter (EKF) and smoother
(EKS) for nonlinear systems.

I. INTRODUCTION

Given the system dynamics, people often want to forecast
future system outputs based on current information. For
example, in defense, the arrival time and exact target of an
incoming cruise missile have to be predicted, in order to
eliminate the threat as early as possible. Before predicting
a system’s outputs, we have to know the system’s internal
behavior, the so-called “states”, which are usually unknown.
If systems are disturbed by noise, which they usually are,
then the situation will become more difficult.

The Kalman filter is the most notable and widely used
linear state estimation algorithm of the past few decades.
Given previous system outputs, the algorithm recursively
estimates states in a noise-driven linear dynamical system
by minimizing the mean-square error between the true and
estimate state. If the complete outputs are available, the
state estimation error can be further reduced by the Kalman
smoother [12]. An “forward-backward” smoothing algorithm
was introduced in [12], where the forward step is a Kalman
filter and the backward step determines smoothed state esti-
mates by maximizing the likelihood of outputs given states.

For unconstrained nonlinear systems, the extended Kalman
filter (EKF) and smoother (EKS) estimate state error co-
variance by linearizing nonlinear dynamics with a first-
order Taylor expansion around the current estimate. How-
ever, when the error in the higher order terms neglected
by the linear (first-order) model are significant, the EKF
could exhibit poor convergence characteristics and biased
estimates [14]. Moreover, general recursive solutions, such
as Kalman filtering, are unavailable if there exists physical
limits or algebraic constraints on system states. In order to
solve these two challenges, for additive system noises, the
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full information estimator (FIE) avoids model linearization
by reformulating the original estimation as an optimization
problem, which allows for the natural addition of inequality
constraints [11].

In [4], the Kalman filter as well as the EKF are considered
from a different point of view, where the algorithms can
be derived from a single iteration of Newton’s method on
a certain quadratic form with a judiciously chosen initial
guess [4]. This idea is very important and allows us to
establish a relationship between Kalman-based algorithms
and the FIE, hence we could compare their performance for
both linear and nonlinear systems.

For a noise-driven nonlinear system, the number of addi-
tive process noises signals can be less than the number of
state variables, hence the process noise has to multiply a tall
matrix, before being added to the nonlinear dynamics1. The
main problem of applying the FIE to such a system is that
the probability density function of the successor state given
current state does not exist due to the covariance matrix not
being positive definite. The main contribution of this paper
is therefore to provide the derivation of the FIE for nonlinear
systems with additive noises, where the sizes of both process
and output noises are smaller or equal to the size of state and
output, respectively.

In order to verify our derivation of the FIE for nonlin-
ear systems with additive noises, we replace the nonlinear
dynamics with linear time-varying (LTV) terms and prove
the unbiasedness and minimum-variance of the FIE for such
LTV systems, followed by several results that show the
equivalence between the Kalman filter/smoother and the FIE
for linear unconstrained systems. Finally, we prove that the
FIE will provide more accurate state estimates than the EKF
and EKS for nonlinear unconstrained systems.

This paper is organized as follows: Section II provides
the derivation of the FIE for nonlinear systems with addi-
tive noises. Section III shows the relationship between the
Kalman based state estimators and the FIE. Finally, we draw
conclusions in Section IV.

II. FULL INFORMATION ESTIMATION FOR NONLINEAR
SYSTEMS WITH ADDITIVE NOISES

Consider a discrete-time nonlinear state space model:

xk+1 := f(xk) +Gkwk

yk := h(xk) +Hkvk
(1)

where xk ∈ Xk is the unknown state, yk ∈ <p is the output
measurement. Gk ∈ <n×r and Hk ∈ <p×q are two full

1An example can be found in [9].



column rank time-varying matrices2. wk and vk are two
unknown noise terms, which affect the state and output,
respectively.

Assumption 1: The noise sequences (wk)Mk=1 and (vk)Mk=1

are two random variables having Gaussian (or normal) distri-
butions N(0, Q) and N(0, R), respectively, with zero mean
and positive-definite covariance matrices Q and R.

Assumption 2: The probability distribution p(x1) of the
initial state has Gaussian distribution p(x1) ∼ N

(
x̃1, P1|0

)
,

where x̃1 is the a priori most likely value of x1 and P1|0 is
the corresponding error covariance.

Assumption 3: Functions f(·) and h(·) are twice differ-
entiable. The discrete-time nonlinear model (1) is uniformly
observable [7] and there exists a stable state observer for (1)
with nonempty feasible region.

Given measurements (yk)
M
k=1 and initial conditions, we

would like to find the state xk that maximizes the conditional
probability density p(xk|y1:M ). Unfortunately, p(xk|y1:M )
is difficult to obtain exactly for a nonlinear model, thus we
focus our attention on the entire trajectory of states (xk)

M
k=1,

rather than just one single state xk by maximizing the proba-
bility density p(x1:M |y1:M ) of the whole state sequence [13].

Lemma 1: Consider two random vectors w ∈ <r×1 and
x ∈ <n×1, n > r, where x = m + Gw, m is a constant
vector. If G is a full column rank matrix, w ∼ N(0, Q) and
Q � 0, then the probability distribution of x is given by

p(x) ∝ 1√
(2π)r|W |

e−
1
2‖S(x−m)‖2

W−1 ,

where W is positive definite matrix and S is a constant
matrix.

Proof: Because G is a full column rank matrix, the
random vector x has a singular joint normal distribution,
such that p(x) ∼ N

(
0, GQG>

)
, where GQG> � 0. By

using the singular value or eigenvalue decomposition, we
have

GQG> = UPU> = U

[
Q̃ 0
0 0

]
U>,

where Q̃ ∈ <r is a nonsingular matrix, U is a unitary matrix,
such that U−1 = U>. Define a random vector z, such that

z :=
[
z>1 z>2

]>
= U−1x = U−1Gw,

where z1 ∈ <r×1. Since z ∼ N(U−1m,P ), by definition of
the singular joint normal distribution [3, pp. 376-377], we
have

p(z) =
δ(z2 −M n−r,n

r+1 U−1m)√
(2π)r|Q̃|

e
− 1

2‖z1−Mr,n
1 U−1m‖2

Q̃−1 ,

because the Dirac delta function δ(z2−M n−r,n
r+1 U−1m) is the

probability mass function of the degenerate (deterministic)
variable z2, we have

p(z) ∝ 1√
(2π)r|Q̃|

e
− 1

2‖z1−Mr,n
1 U−1m‖2

Q̃−1 .

2This condition is required for uniqueness of the conditional densities
p(xk+1|xk) and p(yk|xk) to be defined later.

Using transformation of variables [15, p. 22] gives

p(x) = p(z)
∣∣J (U−1x)

∣∣ ∝ 1√
(2π)r|W |

e−
1
2‖S(x−m)‖2

W−1 ,

where J (·) denotes the Jacobian matrix, W = Q̃ and S =
M r,n

1 U−1.
Proposition 1: For nonlinear system (1), given output

measurements (yk)
M
k=1; if Assumption 1 and 2 hold, Gk and

Hk are full column rank matrices, then p(x1:M |y1:M ) can
be written as a function of x1, (wk)Mk=1 and (vk)Mk=1.

Proof: From Bayes’ theorem we have

p(x1:M |y1:M ) ∝ p(y1:M |x1:M )p(x1:M ),

where

p(y1:M |x1:M ) =
∏M

k=1 p(yk|xk),

p(x1:M ) = p(x1)
∏M−1

k=1 p(xk+1|xk).

By Assumption 1 and Lemma 1, we have

p(yk|xk) ∝ 1√
(2π)q|R̃k|

e
− 1

2‖M
q,p
1 Y −1

k (yk−h(xk))‖2
R̃
−1
k ,

(2a)

p(xk+1|xk) ∝ 1√
(2π)r|Q̃k|

e
− 1

2‖M
r,n
1 X −1

k (xk+1−f(xk))‖2
Q̃
−1
k ,

(2b)

where Xk and Yk are unitary matrices, Q̃k � 0 and R̃k � 0,

GkQG
>
k = XkP

x
k X >

k = Xk

[
Q̃k 0
0 0

]
X >

k ,

HkRH
>
k = YkP

y
k Y >k = Yk

[
R̃k 0
0 0

]
Y >k .

Rearranging ‖M r,n
1 X −1

k (xk+1−f(xk))‖2
Q̃−1

k

in (2a) gives

‖M r,n
1 X −1

k (xk+1 − f(xk))‖2
Q̃−1

k

= ‖M r,n
1 X −1

k Gkwk‖2Q̃−1
k

= w>k G
>
k X −>

k (P x
k )†X −1

k Gkwk

= w>k G
>
k

(
XkP

x
k X >

k

)†
Gkwk = w>k G

>
k

(
GkQG

>
k

)†
Gkwk

= w>k Q
−1wk, (3a)

where (·)† denotes the MoorePenrose pseudo-inverse. Simi-
larly for the term ‖M q,p

1 Y −1
k (yk − h(xk))‖2

R̃−1
k

in (2b),

‖M q,p
1 Y −1

k (yk − h(xk))‖2
R̃−1

k

= v>k R
−1vk. (3b)

Because |Q̃k| and |R̃k| can be written as a linear function
of |Q| and |R|, respectively. Substituting (3) into (2) gives

p(xk+1|xk) ∝ 1√
(2π)r|Q|

e
− 1

2‖wk‖2Q−1 ,

p(yk|xk) ∝ 1√
(2π)q|R|

e−
1
2‖vk‖

2
R−1 .



Hence, we have

p(y1:M |x1:M ) ∝
M∏
k=1

1√
(2π)q|R|

e−
1
2v
>
k R−1vk

p(x1:M ) ∝ p(x1)

M−1∏
k=1

1√
(2π)r|Q|

e−
1
2w
>
k Q−1wk .

Therefore, p(x1:M |y1:M ) can be written as a function of x1,
(wk)Mk=1 and (vk)Mk=1.

By taking the logarithm on both sides of p(x1:M |y1:M )
and removing the constant terms, yields the FIE for (1) [13]

:

min
X1,M

1

2
‖w0‖2P−1

1|0
+

1

2

M−1∑
k=1

‖wk‖2Q−1 +
1

2

M∑
k=1

‖vk‖2R−1

s.t xk+1 = f(xk) +Gkwk, k = 1, . . . ,M − 1

yk = h(xk) +Hkvk, k = 1, . . . ,M
(4)

where the decision variables and their optimal solutions are

X1,M :=
[
x>1 w>1 v>1 x>2 · · · x>M−1 w

>
M−1 v

>
M−1 x

>
M

]>
,

X∗1,M =:
[
x̂>1|M ŵ>1|M v̂>1|M x̂>2|M · · · ŵ>M−1 v̂

>
M−1 x̂

>
M

]>
,

w0 := x1 − x̃1, (x̂k|M )Mk=1, (ŵk|M )Mk=1 and (v̂k|M )Mk=1 are
the estimates of the state and system noise sequence (xk)Mk=1,
(wk)Mk=0 and (vk)Mk=1, respectively, with (̂·)M := (̂·)M |M ,
given output sequence y1:M .

III. RELATIONS BETWEEN KALMAN-BASED STATE
ESTIMATION AND FULL INFORMATION ESTIMATION

Theorem 1: Consider the LTV system

xk+1 = Akxk +Gkwk

yk = Ckxk +Hkvk
(5)

where Ak and Ck are full rank dynamics and sensor matrices,
Gk and Hk are full column rank matrices, given output
measurements (yk)

k̄
k=1, 1 < k̄ ≤M . If Assumptions 1 and 2

hold, then the FIE (4) is a linear unbiased estimator [6, p.
11] of the state sequence (xk)

k̄
k=1 regardless of the choice of

covariances P1, Q and R; if covariances are accurate, then
the FIE is a best linear unbiased estimator (BLUE) [6, p.
555] of the state sequence (xk)

k̄
k=1.

Proof: If both Gk and Hk are invertible matrices,
then (4) becomes a weighted linear least squares problem
and a proof of statement that the FIE is a unbiased estimator
and BLUE can found in [1]. However, if both Gk and Hk are
not invertible, a different approach is required, as presented
here.

By involving Lagrange multipliers (αk)
k̄−1
k=0 and (βk)

k̄
k=1

for equality constraints and the initial condition, respectively,
the FIE problem (4) can be written as the following uncon-
strained optimization problem:

Z∗k̄ := arg min
Zk̄

Sk̄, (6)

where

S1 :=
1

2
‖w0‖2P−1

1|0
+ γ>1 (x̃1 − x1 − w0) +

1

2
‖v1‖2R−1

+ β>1 (y1 − C1x1 −H1v1) ,

Sk̄ := Sk̄−1 +
1

2
‖vk̄‖2R−1 + β>k̄ (yk̄ − Ck̄xk̄ −Hk̄vk̄) +

1

2
‖wk̄−1‖2Q−1 + α>k̄−1

(
xk̄ −Ak̄−1xk̄−1 −Gk̄−1wk̄−1

)
,

Zk̄ :=
[
w>0 v>1 α>0 β>1 x>1 w>1 v>2 α>1 · · · β>k̄ x>

k̄

]>
,

Z∗
k̄

=:
[
ŵ>

0|k̄ v̂
>
1|k̄ α̂

>
0|k̄ β̂

>
1|k̄ x̂

>
1|k̄ ŵ

>
1|k̄ v̂

>
2|k̄ · · · β̂

>
k̄
x̂>
k̄

]>
.

The necessary condition of Z∗
k̄

being an optimum of (6) is

∂Sk̄(Zk̄)

∂Zk̄

= JSk̄(Zk̄) = HSk̄
Zk̄ − bSk̄

= 0, (7)

where the Hessian matrix HSk̄
is defined by

HSk̄
:=

[
HSk̄−1

0

0 0N0

]
+

[
0Nk̄−1−n 0

0 H +
Sk̄−1

]
.

N0 := r+ q+ 2n+ p, Nk̄−1 is the number of rows/columns
of the previous Hessian matrix HSk̄−1

; matrices HS1

and H +
Sk̄−1

are given by

HS1
:=


P−1

1|0 0 −In 0 0

0 R−1 0 −H>1 0
−In 0 0 0 −In
0 −H1 0 0 −C1

0 0 −In −C>1 0


and H +

Sk̄−1
:=

0 0 0 −A>
k̄−1

0 0

0 Q−1 0 −G>
k̄−1

0 0

0 0 R−1 0 −H>
k̄

0
−Ak̄−1 −Gk̄−1 0 0 0 In

0 0 −Hk̄ 0 0 −Ck̄

0 0 0 In −C>
k̄

0

 ,

respectively; the constant vector bSk̄
is defined by

bSk̄
:=
[
01,n+q − x̃>1 − y>1 01,n · · · − y>k̄ 01,n

]>
= HSk̄

Zk̄ = HSk̄
Zx
k̄ + BSk̄

Zd
k̄ ,

where BSk̄
:=

HSk̄
× diag

([
In+q

02n+p,n+q

]
, Ik̄−1 ⊗

[
Ir+q

02n+p,q+r

])
and

Zd
k̄

:=
[
w>0 v>1 w>1 v>2 w>2 · · · w>

k̄−1
v>
k̄

]>
,

Zx
k̄

:=
[
0 α>0 β>1 x>1 · · · 0 α>

k̄−1
β>
k̄

x>
k̄

]>
.

Because Ak and Ck are full rank matrices, HSk̄
is non-

singular3, Z∗
k̄

can be uniquely determined using (7), such
that

Z∗k̄ = H −1
Sk̄

bSk̄
. (8)

3The non-singularity can be proved by recursively showing that the
determinant of

{
HSk

}k̄

k=1
is non-zero using [2, Fact 2.14.9].



Taking the expectation on both sides yields

H −1
Sk̄

E
{
HSk̄

Zx
k̄ + BSk̄

Zd
k̄

}
= Zx

k̄ .

Now, if we build the matrix HSk̄
based on inaccurate P1|0, Q

and R, and called it H̃Sk̄
, P̃1|0, Q̃ and R̃, respectively, then

there exists a matrix DH such that DH := HSk̄
− H̃Sk̄

,
hence we have

Z̃∗k̄ = H̃ −1
Sk̄

bSk̄
.

Taking the expectation on both sides yields

H̃ −1
Sk̄

(
H̃Sk̄

+DH

)
Zx
k̄ = Zx

k̄ + H̃ −1
Sk̄

DHZ
x
k̄ = Zx

k̄ .

Since (xk)
k̄
k=1 are parts of vector Zx

k̄
, the FIE is an unbiased

linear estimator of the state sequence (xk)
k̄
k=1, regardless the

choice of covariances P1|0, Q and R. The covariance of Z∗
k̄

is given by

C{Z∗k̄} = H −1
Sk̄

BSk̄
ΣB>Sk̄

H −>
Sk̄

,

where Σ = diag
(
P1|0, R, Ik̄−1 ⊗ diag (Q,R)

)
. There exists

a matrix DH−1 := H −1
Sk̄
− H̃ −1

Sk̄
, hence we have

C{Z̃∗k̄} =(
H −1

Sk̄
+DH−1

)
BSk̄

ΣB>Sk̄

(
H −1

Sk̄
+DH−1

)>
= C{Z∗k̄}

+ 2H −1
Sk̄

BSk̄
ΣB>Sk̄

D>H−1 +DH−1BSk̄
ΣB>Sk̄

D>H−1 .

Since DH−1BSk̄
ΣB>Sk̄

D>H−1 � 0 and

H −1
Sk̄

BSk̄
ΣB>Sk̄

= diag

[ E

02n+p,3n+p+q

]
,

k̄⊕
k=2

[
Ek

02n+p,N0

] ,

where
⊕N

k=1Gk := diag (G1, · · · , GN ) and

E :=

[
In 0 −P1|0 0 0
0 Ip 0 −H1R 0

]
,

Ek :=

[
In 0 −Gk−1Q 0 0
0 Ip 0 −HkR 0

]
,

covariance of (xk)
k̄
k=1 is minimized if DH−1 = 0. Thus, the

FIE is a best linear unbiased estimator (BLUE) of the state
sequence (xk)

k̄
k=1, if P1|0, Q and R are all accurate.

Proposition 2: For the LTV system (5), given output
measurements (yk)

k̄
k=1, 1 < k̄ ≤M , if Assumptions 1 and 2

hold, then the FIE (4) and Kalman filter [5] are equivalent
methods for estimating the current state x̂k̄.

Proof: The proof should be straightforward by slightly
modify the results given in [4].

Proposition 3: For the LTV system (5), given output
measurements (yk)

M
k=1 and all estimated states (x̂k)

M
k=1,

if Assumptions 1 and 2 hold, then the FIE and Kalman
smoother [12] are equivalent methods for estimating the
smoothed state x̂k|M , 1 < k̄ < M .

Proof: Because y1:M and x̂1:M are all given,
the smoothed state x̂k̄|M can be estimated by maximiz-
ing p(xk̄:M |y1:M ), such that [12].

p(xk̄:M |y1:M ) ∝ p(xk̄+1:M , yk̄+1:M |xk̄, y1:k̄)p(xk̄|y1:k̄),

∝ p(xk̄+1:M , yk̄+1:M |xk̄)p(xk̄|y1:k̄),

∝ p(yk̄+1:M |xk̄+1:M )p(xk̄+1:M |xk̄)p(xk̄|y1:k̄),

hence, x̂M−1|M can be estimated by

min
XM−1,M

‖vM‖2R−1 + ‖wM−1‖2Q−1 + ‖xM−1 − x̂M−1‖2P−1
M−1

s.t. xM = AM−1xM−1 +GM−1wM−1,

yM = CMxM +HkvM ,
(9)

By involving Lagrange multipliers αM−1 and βM for equal-
ity constraints, (9) can be written as the following uncon-
strained optimization problem:

Z∗M−1,M := arg min
ZM−1,M

‖xM−1 − x̂M−1‖2P−1
M−1

+ ‖vM‖2R−1

+ β>M [yM − CMxM −HMvM ] + ‖wM−1‖2Q−1

+ α>M−1 [xM −AM−1xM−1 −GM−1wM−1] .

where ZM−1,M :=
[
x>M−1 w

>
M−1 v

>
M α>M−1 β

>
M x>M

]>
,

Z∗M−1,M =:
[
x̂>M−1|M ŵ>M−1|M v̂>M α̂>M−1|M β̂>M x̂>M

]>
.

Since all estimated states (x̂k)
M
k=1 are given, vM is deter-

ministic and βM becomes a free variable, hence we have

min
ZM−1|M

S̃M−1|M =

min
ZM−1|M

‖xM−1 − x̂M−1‖2P−1
M−1

+
{
‖wM−1‖2Q−1

+ α>M−1 [x̂M −AM−1xM−1 −GM−1wM−1]
}
, (10)

where ZM−1|M =
[
x>M−1 w>M−1 α>M−1

]>
, Z∗M−1|M =:[

x̂>M−1|M ŵ>M−1|M α̂>M−1|M
]>

. The necessary condition
of Z∗M−1|M being an optimum of (9) is that

∂SM−1|M (ZM−1|M )

∂ZM−1|M
= HSM−1|MZM−1|M −bSM−1|M = 0,

where the Hessian matrix HSM−1|M and constant vec-
tor bSM−1|M are defined by

HSM−1|M :=

 P−1
M−1 0 −A>M−1

0 Q−1 −G>M−1

−AM−1 −GM−1 0


and

bSM−1|M :=
[
x̂>M−1P

−1
M−1 0 −x̂>M

]>
,

respectively. Since P−1
M−1 is nonsingular, by using [2, Fact

2.17.3], we have

x̂M−1|M = M n,2n+r
1 H −1

SM−1|M
bSM−1|M

= x̂M−1 + PM−1A
>
M−1P

−1
M |M−1 (x̂M −AM−1x̂M−1) .



Now, for estimating x̂M−2|M , we have

min
ZM−2,M

‖xM−2 − x̂M−2‖2P−1
M−2

+

M∑
k=M−1

[
‖vk‖2R−1 + β>k (yk − Ckxk −Hkvk)

]
+

M−1∑
k=M−2

[
‖wk‖2Q−1 + α>k (xk+1 −Akxk −Gkwk)

]
.

Since x̂M−1|M , (x̂k)
M
k=1 and (Pk)

M
k=1 are given, (vk)

M
k=M−1

and wM−1 are deterministic, (βk)
M
k=M−1 and αM−1 are free

variable, hence we have

min
ZM−2|M

‖xM−2 − x̂M−2‖2P−1
M−2

+
[
‖wM−2‖2Q−1

+ α>M−2

(
x̂M−1|M −AM−2xM−2 −GM−2wM−2

) ]
,

and

x̂M−2|M = x̂M−2 + UM−2

(
x̂M−1|M −AM−2x̂M−2

)
,

where UM−2 := PM−2A
>
M−2P

−1
M−1|M−2. Therefore, by

induction, we have

x̂k|M = x̂k + PkA
>
k P
−1
k+1|k

(
x̂k+1|M −Akx̂k

)
,

which is the same as the Kalman smoother [12].
Proposition 4: For the nonlinear system (1), where Gk

and Hk are full column rank matrices, given output mea-
surements (yk)

k̄
k=1, 1 < k̄ ≤M , if Assumptions 1 to 3 hold,

then state estimation using the FIE (4) will have a smaller
estimation error ek̄ compared to the EKF.

Proof: In [4], it was proven that the EFK is equivalent
to solving the FIE problem (4) by only one single Newton
step with a carefully chosen initial guess; hence, by opti-
mality, the state estimation using the FIE will have smaller
estimation error ek̄ than the EKF.

Proposition 5: For the nonlinear system (1), given output
measurements (yk)

M
k=1, all estimated states (x̂k)

M
k=1 and

noise covariances, if Assumptions 1 to 3 hold, then the state
estimate using the FIE (4) will have smaller error ek|M :=
‖xk − x̂k|M‖ compared to the extended Kalman smoother
(EKS), such that

x̂k|M = x̂k + PkA
>
k P
−1
k+1|k

(
x̂k+1|M − f(x̂k)

)
,

where Ak := ∂f(·)
∂xk

∣∣∣
xk=x̂k
wk=0

.

Proof: Similarly to Proposition 3, x̂M−1|M can be
estimated by

min
XM−1,M

‖vM‖2R−1 + ‖wM−1‖2Q−1 + ‖xM−1 − x̂M−1‖2P−1
M−1

s.t. xM = f(xM−1) +GM−1wM−1,

yM = h(xM ) +HkvM .
(11)

By involving Lagrange multipliers αM−1 and βM for equal-
ity constraints, (11) can be written as the following uncon-
strained optimization problem:

Z∗M−1,M := arg min
ZM−1,M

‖xM−1 − x̂M−1‖2P−1
M−1

+ ‖vM‖2R−1 + β>M [yM − h(xM )−HMvM ]

+ ‖wM−1‖2Q−1 + α>M−1 [xM − f(xM−1)−GM−1wM−1] .

where ZM−1,M =
[
x>M−1 w>M−1 v>M α>M−1 β>M x>M

]>
.

Since all estimated states (x̂k)
M
k=1 are given, vM is deter-

ministic and βM becomes a free variable, hence we have

min
ZM−1|M

S̃M−1|M =

min
ZM−1|M

1

2
‖xM−1 − x̂M−1‖2P−1

M−1
+
{1

2
‖wM−1‖2Q−1

+ α>M−1 [x̂M − f(xM−1)−GM−1wM−1]
}
. (12)

Because (12) is an unconstrained nonlinear optimization
problem, in order to ensure the convergence of (12), one
could use a backtracking line search combined with New-
ton’s method. Moreover, for a non-convex optimization prob-
lem like (12), a pure Newton method is not guaranteed to
produce a descent direction when the current iterate is not
close to the solution [8, p. 31]. One has to keep monitoring
the positive definiteness of the Hessian HS̃M−1|M

and modify
the Hessian when necessary [8, pp. 49–56]. Finally, the
optimum4 of (12) can be found by recursively calculating

Z
(i+1)
M−1|M = Z

(i)
M−1|M − aiH

−1

S̃M−1|M
JS̃M−1|M

,

given initial guess Z(1)
M−1|M , until Z(i+1)

M−1|M has converged to
its optimal value Z∗M−1|M , where the scalar ai is called step
length, which is determined using a backtracking line search
method, with initial value a1 = 1 [8, p. 37]. The expressions
for JS̃M−1|M

and HS̃M−1|M
are given by

JS̃M−1|M
:=

P−1
M−1(xM−1 − x̂M−1)− ∂f>

∂xM−1
αM−1

Q−1wM−1 −GM−1αM−1

x̂M − f(xM−1)−GM−1wM−1

 ,

HS̃M−1|M
≈

 P−1
M−1 0 − ∂f>

∂xM−1

0 Q−1 −G>M−1

− ∂f
∂xM−1

−GM−1 0

 ,
where all the second derivatives of f(·) are ignored.

Since the system dynamics are nonlinear, the global op-
timum Z∗

k̄
is not guaranteed to be found and line search

method usually takes several iterations to find a local opti-
mum. Let us pick an initial guess of the optimum, such that
Z

(1)
M−1|M :=

[
x̂

(1)>
M−1|M 0 0

]>
, where x̂

(1)
M−1|M := x̂M−1.

4In order to prevent converging to a stationary point rather than a
minimizer, negative curvature information from the Hessian HS̃M−1|M
may be required [8, p. 40].



Hence,

Z
(2)
M−1|M

=

x̂>M−1

0
0

−
 P−1

M−1 0 −A>M−1

0 Q−1 −G>M−1

−AM−1 −GM−1 0

−1  0
0
x̂−M

 ,
where x̂−M := x̂M − f(x̂M−1). Hence we have

x̂
(2)
M−1|M = x̂

(1)
M−1|M + PM−1A

>
M−1P

−1
M |M−1x̂

−
M .

It is clear to see that for the smoothed estimate x̂M−1|M , the
EKS is equivalent to solving (11) by only one line search
step with a carefully chosen initial guess Z(1)

M−1|M ; hence, by
optimality, the optimum x̂M−1|M obtained by solving (11)
will have a smaller eM−1|M than the EKS.

Therefore, by induction, the EKS is solving

min
X1,M

‖ε1‖2P−1
1

+

M∑
k=1

‖vk‖2R−1 +

M−1∑
k=1

‖wk‖2Q−1

s.t. xk+1 = f(xk) +Gkwk, k = 1, · · · ,M − 1

yk = h(xk) +Hkvk, k = 1, · · · ,M

by single backtracking step, given
(
x̂k|M

)M
k=ks+1

, (x̂k)
M
k=1

and a carefully chosen initial guess

Z
(1)
1|M :=

[
0 x̂>1 0 x̂>2 · · · 0 x̂>M

]>
.

Hence, by optimality, the state estimate using the FIE will
have a smaller error ek|M than the EKS.

IV. CONCLUSIONS

In this paper, we used the definition of singular joint
probability density to prove that the joint probability density
function of a full column rank matrix G multiplying with a
normal distributed random vector w is directly proportional
to the joint probability density function of that random vector
w; hence provided the derivation of the FIE for nonlinear
systems with additive noises, where Gk and Hk are full
column rank matrices. We compared the FIE with Kalman
based algorithms for both linear and nonlinear systems. We
proved that, for a linear system, the FIE is a BLUE of
the unknown system states, if initial and noise statistics are
accurate. The FIE and Kalman filter/smoother are completely
equivalent for a linear system and FIE will provide better
estimates for nonlinear systems compared to both the EKF
and EKS. Future work could involve deriving the FIE for the
nonlinear system

xk+1 := f(xk, wk),

yk := h(xk, vk).

Because noise terms wk and vk are not additive to the
nonlinear dynamics, evaluating the state and output transition
probability density functions p(x1:M ) and p(y1:M |x1:M ), re-
spectively, will become difficult, which requires the solution
of a functional difference equation, namely the discrete-time
analog of the Fokker-Planck equation [10]. Alternatively,

p(xk+1|xk) and p(yk|xk) can be approximated by first order
Taylor series:

f(xk, 0) = f(x̂k, 0) +Ak(xk − x̂k) + ef0
, (13a)

h(xk, 0) = h(x̂k, 0) + Ck(xk − x̂k) + eh0
(13b)

and

f(xk, wk) = f(x̂k, 0) +Ak(xk − x̂k) +Gkwk + ef , (14a)
h(xk, vk) = h(x̂k, 0) + Ck(xk − x̂k) +Hkvk + eh, (14b)

where Ck := ∂h(·)
∂xk

∣∣∣
xk=x̂k
vk=0

, Gk := ∂f(·)
∂wk

∣∣∣
xk=x̂k
wk=0

and Hk :=

∂h(·)
∂vk

∣∣∣
xk=x̂k
vk=0

. Substituting (13) to (14) gives

f(xk, wk) = f(xk, 0) +Gkwk + ef − ef0 ,

h(xk, vk) = h(xk, 0) +Hkvk + eh − eh0 .

By ignoring all error terms, if Gk and Hk are both full
column rank matrices, then

f(xk, wk) ≈f(xk, 0) +Gkwk,

h(xk, vk) ≈h(xk, 0) +Hkvk.

So that p(x1:M ) and p(y1:M |x1:M ) can be approximated
using Proposition 1.
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