Microservices Architecture Enables DevOps: An Experience Report
on Migration to a Cloud-Native Architecture

Armin Balalaie Abbas Heydarnoori Pooyan Jamshidi

Abstract

The microservices architecture is one of the first service-based architectural styles that has been
introduced, applied in practice, and become popular when the DevOps practices gained momentum in
the software industry. Migrating monolithic architectures to cloud-native architectures like microservices
brings in many benefits such as flexibility to adapt to the technological changes and independent resource
management for different system components. Here, we report our experiences and lessons learned during
incremental migration and architectural refactoring of a commercial Mobile Backend as a Service to
microservices. We provide a detailed explanation of how we adopted DevOps and its practices, and
how these practices facilitated a smooth migration process. Furthermore, we have taken a step towards
devising microservices migration patterns by wrapping our experiences in different projects into reusable
migration practices.

1 Introduction

According to Google Trends, both DevOps and microservices are recognized as growing concepts and interest-
ingly with an equal rate after 2014 (cf. Figure 1). Although DevOps practices can also be used for monoliths,
but microservices enables an effective implementation of the DevOps through promoting the importance of
small teams [1]. Microservices architecture is a cloud-native architecture that aims to realize software sys-
tems as a package of small services, each independently deployable on a potentially different platform and
technological stack, and running in its own process while communicating through lightweight mechanisms
like RESTful or RPC-based APIs (e.g., Finagle). In this setting, each service is a business capability that
can utilize various programming languages and data stores and is developed by a small team [2].

Migrating monolithic architectures to microservices brings in many benefits including, but not limited to
flexibility to adapt to the technological changes in order to avoid technology lock-in, and more importantly,
reduced time-to-market, and better development team structuring around services [3].

Here we explain our experiences and lessons learned during incremental migration of the Backtory (http:
//www.backtory.com/) platform, a commercial Mobile Backend as a Service (MBaaS), to microservices in
the context of the DevOps practices. Microservices helped Backtory in a variety of ways, especially in
shipping new features more frequently, and in providing scalability for the collective set of users coming from
different mobile application developers. Furthermore, we report on a number of migration patterns based
on our observations in different migration projects. These patterns can be used by either practitioners who
aim to migrate their current monolithic software systems to microservices, or system consultants who help
organizations to prepare migration plans for adopting the DevOps practices in the migration process towards
the microservices. To save space, the details of these migration patterns are provided in a supplementary
technical report [4].

http://www.backtory.com/
http://www.backtory.com/

[l DevOps

. Microservices

~ v

<D
Figure 1: Google Trends report for DevOps and Microservices keywords

DevOps and Microservices (SIDEBAR) DevOps is a set of practices [1] which not only aims to de-
crease the time between applying a change to a system and the change being transferred to the production
environment, but also insists on keeping the software quality in terms of both code and the delivery mech-
anism as one of the key elements in the development process. Any techniques that enables the mentioned
goal is considered as a DevOps practice [1, 5].

Continuous Delivery (CD) [6] is a DevOps practice that enables on-demand deployment of a software to
any environment through the automated machinery. CD is an essential counterpart for microservices as the
number of deployable units increases. Yet another critical DevOps practice is the Continuous Monitoring
(CM) [7] which not only provides developers with performance-related feedbacks but also facilitates detecting
any operational anomalies [5].

2 The Architectural Concerns for Microservices Migration

2.1 The Architecture of Backtory Before the Migration

Backtory is a commercial MBaaS platform that has been developed in PegahTech Co. (http://www.
pegahtech.ir/). Backtory provides mobile developers who does not know any server-side programming
languages with backend services. The original functionality of Backtory was a RDBMS as a Service. De-
velopers could define their database schemas in the Backtory’s developer dashboard, and Backtory would
provide them an SDK for their desired target platform (e.g., Android or iOS). Afterwards, the developers
can only code in their desired platforms using their domain objects, and the objects would make some service
calls on their behalf in order to fulfill their requests. Over time, new services are being added to Backtory
like Chat as a Service, Indexing as a Service, NoSQL as a Service, and so on.

Backtory is written in Java using the Spring framework. The underlying RDBMS is an Oracle 11g. Maven
is used for fetching dependencies and building the project. All of the services were in a Git repository, and
the modules feature of Maven was used to build different services. The deployment of services to development
machines was done using the Maven’s Jetty plugin. However, the deployment to the production machine
was a manual task. The architecture of Backtory before the migration to microservices is illustrated in
Figure 2(a). In this figure, solid arrows and dashed arrows respectively illustrate the direction of service calls
and library dependencies. Figure 2(a) also demonstrates that Backtory consisted of five major components,
see Appendix A

http://www.pegahtech.ir/
http://www.pegahtech.ir/

2.2 Why Did We Plan to Migrate Towards the Microservices in the First Place?

What motivated us to perform a migration to a microservices architecture was an issue raised with a require-
ment for a Chat as a Service. To implement this requirement, we chose ejabberd due to its known built-in
scalability and its ability to run on clusters. To this end, we wrote a python script that enabled ejabberd
to perform authentications using our Backtory platform. The big issue in our service was the on-demand
capability. This issue made us to perform a series of actions which resulted in raising new motivations for
migration to microservices:

e The need for reusability: To address the on-demand capability, we started to automate the process of
setting up a chat service. One of these steps was to spin off a database for each user. In our system,
there was a pool of servers, each of which had an instance of the Oracle DBMS installed and an instance
of DeveloperServices running. During the RDBMS instantiation, a server was selected randomly and
related users and table-spaces were created in the Oracle server. This had several issues since it was
just designed to fulfill the RDBMS service needs, and it was tightly coupled to the Oracle server.
Consequently, we needed a database reservation system that both of our services could use.

e The need for decentralized data governance: Another issue was that every time anyone intended to
add some metadata about different services, they were added to DeveloperData. This was not a good
practice since services are independent units that only share their contracts with other parts of the
system.

e The need for automated deployment: As the number of services was growing, another problem was to
automate the deployment process and to decouple the build life cycle of each service from others.

e The need for built-in scalability: The vision of Backtory is to serve millions of users. By increasing the
number of services, we needed a new approach for handling such kind of scalability because scaling
services individually requires major efforts and can be error-prone if not handled properly. Therefore,
our solution was to locate service instances dynamically through the Service Discovery [4] component
and balancing the load among them using an internal Load Balancer component.

2.3 The Target Architecture of Backtory After the Migration

To realize microservices architecture and to satisfy our new requirements, we transformed the Backtory’s core
architecture to a target architecture by performing some refactorings. These changes included introducing
microservices-specific components and re-architecting the system.

In the state-of-the-art about microservices [8, 9], Domain Driven Design and Bounded Context are
introduced as common practices to transform the system’s architecture into microservices [10]. As we did not
have a complex domain, we decided to re-architect the system based on domain entities in the DeveloperData.
The final architecture is depicted in Figure 2(g).

The new technology stack for Backtory was the Spring Boot for embedded application server and fast
service initialization, the operating system’s environment variables for configuration, and the Spring Cloud’s
Context and the Config Server for separating the configuration from the source code as recommended by
the CD practices. Additionally, we chose the Netflix OSS for providing some of the microservices-specific
components, i.e., Service Discovery [4], and the Spring Cloud Netflix that integrates the Spring framework
with the Netflix OSS project. We also chose Eureka for Service Discovery [4], Ribbon as Load Balancer,
Hystrix as Circuit Breaker [11] and Zuul as Edge Server [4], that all are parts of the Netflix OSS project.
We specifically chose Ribbon among other load balancers, e.g. HAProxy, because of its integration with the
Spring framework and other Netflix OSS projects, in particular Eureka.

Backtory } Backtory | Backtory / Backtory)

<<component>> <<component>>

v v %7 <<component>>
Edge Server
<<service>> <<service>> <<service>> <<servnoe>> <<servnoe>>
s <<sarvico>> <<sonvice>>

<<library>> <<library>> <<service>> <<library>> <<semoe>> <<|:nmponenb->
DeveloperData CommonLib CommonLib Configuration Server <<service>> <<component>:
Configuration Serm

<<component>>

(a) (b) (c)
Backtory / Backtory] Backtory
! i <<component>> CB = Circuit Breaker
<<component>> TS o
Ede Server e EdgeServer
<<service>> <<service>> <<service>> <<service>> %7

<<service>> <<service>> <<service>>
ceiB d cBILB I cBLB cBLB i CBILE: cBILB cBILB DeveloperinfoServices
<<service>> <<service>> <<service>> <<service>>

B

]] - - oo s <<component>> <<component>>
Configuration Server Service Discovery Conﬂ;DuTap:::r;ervor ServlcT::i:':sry Setvicabiscovery; Configurationserver
(e) (f) (9)
6itlob Gitlab € € B e D
9 9 ' 9 U 9 Deploy 9 o308
Fetch \ Fetch Build Test e Deploy
Gitlob @ & o © fastsitah @ @ &]
- —_— = Deploy |~ L - . - = Deploy |~ Coretr,
Fetch Test o Deploy Fetch Build Test oA Deploy
Gitlab @ / Gitlab @ & e .
9 ' 9 8 9 Deploy 9 Corets
Fetch Build Fetch Test O Deploy
(h)
!docker &docker o Tear
i . e Ops o o e o
Microservice #1 Monitoring Server i i i i i ’ ') l ' X
%collec’rd M Kibana)
; o &
Send (I) () QA ' ' ' ' 1
Query J e © o o o i . 3
S ' ' ' ' ' Cross: fwcim m:.?w Gross functional Tedm
O o Send i L i i
ip} elasticsearch. 5 L

° b ¢ o

Figure 2: (a) The architecture of Backtory before the migration, (b) Transforming DeveloperData to a
Service, (c¢) Introducing Configuration Server, (d) Introducing Edge Server, (e) Introducing Dynamic Service
Collaboration, (f) Introducing ResourceManager, (g) Target architecture of Backtory after the migration,
(h) The final delivery pipeline, (i) The monitoring and performance feedback infrastructure, (j) DevOps
team formation

3 The Migration Process

The changes we made throughout the migration process included (i) architectural refactorings and (ii) some
necessary changes to enable DevOps.

3.1 Architectural Refactoring

Migrating the system towards the target architecture was not a one-step procedure and we performed it
incrementally without affecting the end-users. We treated the migration steps as architectural changes
(adding or removing components) that consists of two states: (i) before the migration, and (ii) after the
migration.

3.1.1 Preparing the Continuous Integration Pipeline

Continuous Integration (CI) is the first step towards CD. It allows developers to integrate their work with
the others’ early and on a regular basis, and helps to prevent future conflicts [6]. To this end, a CI server, an
as-a-service or self-hosted code repository, and an artifact repository are needed. We chose Jenkins as the CI
server, self-hosted Gitlab as the code repository, and Artifactory as the artifact repository (cf. Figure 2(h)).

Since services can have a number of instances running, deploying microservices using virtualization is
not cost-effective and introduces a heavy computational overhead. Furthermore, we needed to use the
Configuration Management systems in order to create the production and test environments.

By utilizing containers, we could deploy service instances with lower overheads than the virtualization,
and with a better isolation. Another major benefit is the portability since we could deploy anywhere that
supports containerization without any changes to our source codes or container images. Docker is a tool for
the containerization of applications [12]. As we were going to use Docker, we needed the Docker Registry to
be in our pipeline as well.

To summarize, in this step, we integrated the Gitlab, Jenkins, Artifactory, and Docker Registry as a CI
pipeline. As can be seen in Figure 2(h), the fundamental difference between this delivery pipeline with a
monolithic one is in the existence of independent pipeline delivery for each service, thereby each of them can
be deployed independently. Previously, we were using integration tests which needed running the whole set of
tests in case of a change in just one service. We replaced integration tests with consumer-driven contracts [13]
and tests which leaded to independent testing of each service using expectations of their consumers. This
change minimizes the inter-team coordination which despite of a more complex testing strategy, enables
forming smaller teams as a DevOps practice.

3.1.2 Transforming DeveloperData to a Service

In this step, we changed the DeveloperData to use Spring Boot because of its advantages (see Section 2.3).
Furthermore, as shown in Figure 2(b), we changed it to expose its functionalities as a RESTful APIL In
this way, its dependent services would not be affected when the internal structure of DeveloperData changes.
Since they have service-level dependency, the governance of DeveloperData entities will be done by a single
service and DeveloperData would not act as an Integration Database [14] for its dependent services anymore.
Accordingly, we adapted DeveloperServices and ContentServices to use DeveloperData as a service and not as
a Maven dependency.

3.1.3 Introducing Continuous Delivery

One of the best practices in the CD is to separate the source code, the configuration, and the environment
specification so that they can evolve independently [6]. In this way, we can change the configuration without

redeploying the source code. By leveraging Docker, we removed the need for specifying environments since
the Docker images produce the same behavior in different environments. In order to separate the source code
and the configuration, we ported every service to Spring Boot and changed them to use the Spring Cloud
Configuration Server and the Spring Cloud Context for resolving their configuration values (cf. Figure 2(c)).
In this step, we also separated services’ code repositories to have a clearer change history and to separate
the build life cycle of each service. We also created the Dockerfile for each service that is a configuration for
creating Docker images for that service. We then created a CI job per service and ran them to populate our
repositories. Having the Docker image of each service in our private Docker registry, we were able to run
the whole system with Docker Compose using only one configuration file. Starting from this step, we had
an automated deployment on a single server.

3.1.4 Introducing Edge Server

As we were going to re-architect the system and it was supposed to change the internal service architecture,
we introduced Edge Server [4] to the system to minimize the impact of internal changes on end-users as
shown in Figure 2(d). Accordingly, we adapted the DeveloperWebsite.

3.1.5 Introducing Dynamic Service Collaboration

In this step, we introduced the Service Discovery [4], Load Balancer, and Circuit Breaker [11] to the system
as shown in Figure 2(e). Dependent services should locate each other via the Service Discovery [4] and
Load Balancer; and the Circuit Breaker [11] will make our system more resilient during the service calls.
By introducing these components to the system, we made our developers more comfortable with these new
concepts, and it accelerated the rest of the migration process.

3.1.6 Introducing ResourceManager

In this step, we introduced the ResourceManager by factoring out the entities that were related to servers,
i.e., the AvailableServer, from the DeveloperData and introducing some new features, i.e., MySQL database
reservation, for satisfying our chat service requirements (cf. Figure 2(f)). Accordingly, we adapted the
DeveloperServices to use this service for database reservations.

3.1.7 Introducing ChatServices and DeveloperInfoServices

As the final step in the architectural refactoring, we introduced the following services (see the target archi-
tecture in Figure 2(g)):

e The DeveloperInfoServices by factoring out developer related entities (e.g., the Developer) from the
DeveloperData.

e The ChatServices for persisting chat service instances metadata and handling chat service instance
creations.

3.1.8 Clusterization

In this step, we set up a cluster of CoreOS instances with Kubernetes agents installed on them. We then
deployed our services on this cluster instead of a single server. As can be seen in Figure 2(h), independent
testing of services using consumer-driven tests enabled us to also deploy each service independently. Hence,
the occurrence of a change in a service would not result in the redeployment of the whole system anymore.

3.2 Crosscutting Changes
3.2.1 Filling the Gap Between the Dev and Ops via Continuous Monitoring

In the context of microservices, each service can have its own independent monitoring facility owned by the
Ops team and thereby, enables independent flow of per service performance information to the development.
Appropriate parametric performance models can be adopted in order to provide a good estimate of the
end-to-end system performance or to facilitate what-if analyses. This helps the Dev team to refactor the
architecture in order to remove the performance bottlenecks [5].

As shown in Figure 2(i), the microservices monitoring solution we used consists of both of the client
and server containers. The server container takes care of the actual monitoring tools. In our deployment,
it contains Kibana for visualization and Elasticsearch for consolidation of the monitoring metrics. Through
the capabilities of Elasticsearch, one can horizontally scale and cluster multiple monitoring components.
The client container contains the monitoring agents and the facilities to forward the data to the server. In
this particular instance, it contains the Logstash and the collected modules. The Logstash connects to the
Elasticsearch cluster as the client and stores the processed and transformed metrics data there. Note that
with this architecture, we are able to monitor each microservice independently and react to any anomalies
that we can uncover based on the online monitoring data. For detecting anomalies, we used a statistical model
that we trained using the monitoring data in normal situations and then for each new incoming monitoring
data point, the anomaly detection module calculates a score, with the help of principle component analysis,
to spot outliers.

3.2.2 Changing Team Structures

Traditional software methods encourage horizontal division of project members to functionally separated
teams. This division normally causes the creation of Dev, QA, and Ops teams (cf. Figure 2(j)). This type
of separation delays the development life cycle in transition between teams and through various reactions
which exist regarding the change frequency in different teams. Moreover, in the microservices setting, as
each team would be responsible for their own services, they cannot benefit from the higher comprehensibility
of the code and easier joining of new team members which is caused by the decomposition of the system.
In contrast, DevOps recommends vertical dividing of project members into small cross-functional teams
which also fits microservices well. Each team is responsible for a service and consists of people with different
skills, like development and operations skills, and they cooperate from the beginning of the project to create
more value for the end-users of that particular service through more frequent release of new features to the
production, and hence, remove the transition overheads which were existed in the horizontal team formation.
Furthermore, as each team is focused on a particular service, the maintainability and comprehensibility of
each service’s code is much higher, and new members can be added to the teams with a lower learning curve.
During the migration, as depicted in Figure 2(j), we gradually formed small cross-functional teams for
each new service constructed as a result of architectural refactorings. Furthermore, we formed a core team
consisted of representatives of each service’s team which is responsible for shared capabilities. This team
has an overall view of the service interactions in the system and are in charge of any critical architectural
decision. Additionally, any inter-service refactorings which involves transferring of functionalities between
services and updating the corresponding rules in the Edge Server [4] are handled through this team.

4 Lessons Learned

Migrating an on-premise application to a microservices architecture is a non-trivial task. During this migra-
tion, we faced several challenges that we were able to solve. In the following, we share some of the lessons

we have learned in this process that we think might be helpful for others who are also trying to migrate to
microservices:

e Deployment in the development environment is difficult: It is true that the application’s code is now
in isolated services, however, to run those services in their machines, developers need to deploy the
dependent services as well. We had this problem since the Introducing Dynamic Service Collaboration
step. In our case, we chose the Docker Compose and put a sample deployment description file in each
service so that the dependent services can be easily deployed from our private Docker registry.

e Service contracts are critical: Changing so many services that only expose their contracts to each
other could be an error-prone task. Even a small change in the contracts can break a part of the
system or even the system as a whole. Service versioning is a solution. Nonetheless, it could make the
deployment procedure of each service even more complex. Therefore, people usually do not recommend
service versioning for microservices. Thus, techniques like Tolerant Reader [13] are more advisable in
order to avoid service versioning. Consumer-driven contracts [13] could be a great help in this regard,
as the team responsible for the service can be confident that most of their consumers are satisfied with
their service.

e Distributed system development needs skilled developers: Microservices is a distributed architectural
style. Furthermore, in order for it to be fully functional, it needs some supporting services like service
discovery, load balancer, and so on. At the early steps of migration, we tend to spend a lot of time for
describing these concepts and their corresponding tools and libraries to novice developers, and still,
there were many situations that they misuse them. Hence, to get the most out of microservices, those
team members are needed who are familiar with these concepts and are comfortable with this type of
programming.

e Creating service development templates is important: Polyglot persistence and the usage of different
programming languages are promises of microservices. Nevertheless, in practice, a radical interpretation
of these promises could result in a chaos in the system and make it even unmaintainable. As a
solution, from the beginning of architectural refactoring steps, we started to create service development
templates. We have different templates for creating a microservice in Java using different data stores
which includes a simple sample of a correct implementation. Recently, we are also working on creating
templates for NodeJS. One simple rule is that each new template, should be first considered by a senior
developer for identifying potential challenges.

e Microservices is not a silver bullet: Microservices was beneficial for us because we needed that amount
of flexibility in our system, and that we had the Spring Cloud and Netflix OSS that made our migra-
tion and development a lot easier. However, as mentioned before, by adopting microservices several
complexities would be introduced to the system that require a considerable amount of effort to resolve
them.

New migration experience
New domain
ew domain —

| K N\

W
© B

(4

Migration pattern
discoyery

Migration pattern
selection

Q E; Extract migration
N @

pattern

Migration Pattern
Repository

MPTS Muti-appiicelion Mecermiztic

Migration pattern
selection”and assembly

Store migration
guidelines

pattern into
repository

Figure 3: The process of selecting patterns, instantiating and composing a migration plan as well as extending
the repository.

5 Microservices Migration Patterns

After conducting the migration project described so far in this article, we decided to make our experiences
and best practices more accessible for other similar projects by abstracting them as migration patterns.
In this way, these practices can be reused to create a migration plan by instantiating and composing the
patterns.

Migrating to cloud, and specifically migrating through cloud-native architectures, like microservices, is
a multi-dimensional problem, and consequently, it is a non-trivial task [15]. Therefore, in the absence of a
well-thought methodology, it can be transformed to a trial-and-error endeavor which may not only waste a
lot of time, but also lead to a wrong solution. Furthermore, as factors like the requirements, the current
situation, the skills of team members, etc., could vary in different companies and scenarios, a unique and
rigid methodology would not suffice. Thus, instead of a one-fit-all methodology, we decided to choose a
Situational Method Engineering (SME) [16] approach.

The first step towards the SME approach is to prepare a method base or pattern repository consisting
of reusable process patterns or method chunks, each instantiated from a predefined meta-model. To this
end, using our previous experience in defining migration patterns [17], we documented our experience in
this project and similar practices in the state-of-the-art of microservices (see [4, 3], http://microservices.
io/) as method chunks. We tried to enrich each step in our migration with the precise definition of the
corresponding situation, the problem to be solved, and the possible challenges of the proposed solution
forming a pattern template (see [4]). Part of these patterns relates to exactly describing why we need
supporting components, e.g., Service Discovery [4], and the prerequisites for their introduction. Additionally,
we provided some solutions and advices for decomposing a monolithic system to constituting services, and
preparing the current and the target architectures of the system as a roadmap for migration planning. Still,
we provide some hints about the containerization of services and their deployment in a cluster. The details
of our patterns can be found in [4]. However, for traceability purposes, a mapping between the identified
patterns and the corresponding sections in this article that describe those patterns can be found in Table 1.

As shown in Figure 3, having an initial set of these patterns available, a method engineer can construct a
concrete method based on his specific requirements for the migration by applying the construction guidelines.
For example, following the need for polyglotness, one can reach the decomposition patterns. Then, with
respect to her specific needs, she can select a suitable pattern.

http://microservices.io/
http://microservices.io/

Table 1: Patterns and Sections map

Identity | Pattern Name Section | DevOps Impact
MP1 Enable the Continuous Integration 3.1.1 CI is the first step towards CD which is a known DevOps
practice
MP2 Recover the Current Architecture 2.2
MP3 Decompose the Monolith 2.3 Enables the decomposition of the system to smaller ser-
MP4 Decompose the Monolith Based on 2.3 vices which leads to smaller teams
Data Ownership
MP5 Change Code Dependency to Ser- 3.1.2
vice Call
MP6 Introduce Service Discovery 3.1.5 . .
- - - Dynamic discovery of services removes the need for man-
MP7 Introduce Service Discovery Client 3.1.5 ual wiring, thereby advocates more independent deploy-
MPS8 Introduce Internal Load Balancer 3.1.5 e
ment pipelines
MP9 Introduce External Load Balancer 3.1.5
MP10 Introduce Circuit Breaker 3.1.5 Failing fast can decrease the coupling between services
and thereby, contributes to the independency of services’
deployment
MP11 Introduce Configuration Server 3.1.3 Separating configuration from code is a CD best practice,
and CD is a known DevOps practice
MP12 Introduce Edge Server 3.1.4 Edge Server not only allows Dev to more easily change
the internal structure of the system but also permits Ops
to better monitor the overall status of each service
MP13 Containerize the Services 3.1.3 Containers can produce the same environment in both
production and development, thus, reduces the conflicts
between Dev and Ops
MP14 Deploy into a Cluster and Orches- 3.1.8 Cluster management tools reduce the difficulties around
trate Containers deployment of many instances from different services in
production, thus, reduces the resistance of Ops towards
Dev changes
MP15 Monitor the System and Provide 3.2.1 Performance monitoring enables systematic collection of
Feedback performance data and sharing to enhance decision mak-
ing. For example, the Dev team can use such information
to refactor the architecture if they find out there exists a
performance anomaly in their system

The architectural refactorings as the result of pattern applications cannot occur in an ad hoc manner.

There exists some invariants that should be satisfied during the architectural transition [18]. Keeping the
system in a stable state after applying a pattern, performing one architectural change at a time, and keeping
the end-users of the system unaffected are the most important invariants which should be taken into account
during an architectural change. Although a single step itself needs to conform to these invariants, the steps
and their execution order collectively can violate them, and therefore, the method engineer should consider
this during the migration pattern selection. In the migration process of Backtory, we have introduced the
Edge Server before introducing components related to dynamic collaboration between services for making
all of the following changes transparent to end-users. If the order of these steps have been changed, we could
not satisfy some of the mentioned invariants.

Each of the future migrations can contribute to the repository of patterns as well. This can be done via
introducing new migration patterns that were lacking before and were used in that particular project. This
repository will serve as an extensible source for the DevOps community through which they can reuse patterns
for migrating towards microservices, like the one for architectural patterns at http://microservices.io/.

10

http://microservices.io/

5.1 How the Microservices Migration Patterns Enable DevOps

Traditional methods for software development advocate separated Dev and Ops team in which the Dev team
provides the Ops team with deployment artifacts and details. The problem is that these teams have different
behaviors regarding the frequency of changes such that the Dev team tends to produce more changes and the
Ops team insists on higher stability. Furthermore, due to the existence of large teams working on monolithic
systems, any changes needs a lot of coordination. Even with the componentization of the system, the final
integration needs that amount of coordination, and the problem is still present. These issues collectively
delays the whole development life cycle.

DevOps together with microservices are tackling the above mentioned issues via providing the necessary
equipments for minimizing the coordination amongst the teams responsible for each component, and remov-
ing the barriers for an effective and reciprocal relationship between the Dev and the Ops teams. Indeed,
in the DevOps setting, these teams help each other through continuous valuable feedbacks. To elaborate
further, in Table 1, we briefly describe the impact of our devised patterns on the DevOps and the problems
they tackle.

Appendix A Backtory Components Before the Migration
Backtory consisted of the following five components before the migration:

e CommonLib: This is a place for putting shared functionalities, like utility classes, that are going to be
used by the rest of the system.

e DeveloperData: This holds the information of developers who are using the Backtory service and their
domain model metadata entities that are shared between the DeveloperServices and the ContentServices
components.

e DewveloperServices: This is where the services related to managing the domain model of developers’
projects reside in. Using these services, developers could add new models, edit existing ones, and so
on.

e ContentServices: This holds the services that the target SDK is using to perform the CRUD operations
on the model’s objects.

e Developer Website: This is an application written in HTML and JQuery and acts as a dashboard for
developers. For this purpose, it leverages the DeveloperServices component.

References

[1] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective. Addison-Wesley Profes-
sional, 2015.

[2] M. Fowler and J. Lewis, “Microservices.” http://martinfowler.com/articles/microservices.html,
March 2014. [Last accessed 3-October-2015].

[3] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to cloud-native architectures using microser-
vices: An experience report,” in In Proceedings of the 1st International Workshop on Cloud Adoption
and Migration, September 2015.

11

http://martinfowler.com/articles/microservices.html

[4]

A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices migration patterns,” Tech. Rep. TR-SUT-
CE-ASE-2015-01, Automated Software Engineering Group, Sharif University of Technology, Tehran,
Tran, October 2015. [Available Online at http://ase.ce.sharif.edu/pubs/techreports/ TR-SUT-CE-ASE-
2015-01-Microservices.pdf].

A. Brunnert, A. van Hoorn, F. Willnecker, A. Danciu, W. Hasselbring, C. Heger, N. R. Herbst,
P. Jamshidi, R. Jung, J. von Kistowski, A. Koziolek, J. Krof}; S. Spinner, C. Vogele, J. Walter, and
A. Wert, “Performance-oriented devops: A research agenda,” CoRR, vol. abs/1508.04752, 2015.

J. Humble and D. Farley, Continuous delivery: Reliable Software Releases through Build, Test, and
Deployment Automation. Addison-Wesley Professional, 2010.

A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and D. Kieselhorst, “Continuous
monitoring of software services: Design and application of the kieker framework,” research report, Kiel
University, November 2009.

S. Newman, Building Microservices. O’'Reilly Media, 2015.

M. Stine, Migrating to Cloud-Native Application Architectures. O’Reilly Media, 2015.

V. Vernon, Implementing Domain-driven Design. Addison-Wesley Professional, 2013.

M. Nygard, Release It!: Design and Deploy Production-Ready Software. Pragmatic Bookshelf, 2007.
C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing, no. 3, pp. 24-31, 2015.

R. Daigneau, Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and RESTful
Web Services. Addison-Wesley Professional, 2011.

G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley Professional, 2004.

P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration research: A systematic review,” IEEE Trans-
actions on Cloud Computing, vol. 1, pp. 142-157, July 2013.

B. Henderson-Sellers, J. Ralyt, P. Agerfalk, and M. Rossi, Situational Method Engineering. Springer-
Verlag Berlin Heidelberg, 2014.

P. Jamshidi, C. Pahl, S. Chinenyeze, and X. Liu, “Cloud migration patterns: A multi-cloud architec-
tural perspective,” in Proceedings of the 10th International Workshop on Engineering Service-Oriented
Applications, 2014.

A. Ahmad, P. Jamshidi, and C. Pahl, “Classification and comparison of architecture evolution reuse
knowledgea systematic review,” Journal of Software: Evolution and Process, vol. 26, no. 7, pp. 654691,
2014.

12

About the Authors

Armin Balalaie is a master’s student at the Sharif University of Technology. His re-
search interests include software engineering, cloud computing, and distributed systems.
Contact him at armin.balalaie@gmail.com.

Abbas Heydarnoori is an assistant professor at the Sharif University of Technology.
Before, he was a post-doctoral fellow at the University of Lugano, Switzerland. Abbas
holds a PhD from the University of Waterloo, Canada. His research interests focus on
reverse engineering and re-engineering of software systems, mining software repositories,
and recommendation systems in software engineering. Contact him at heydarnoori@
sharif.edu.

Pooyan Jamshidi is a post-doctoral research associate in the Department of Com-
puting at Imperial College London, UK. Pooyan holds a PhD in Computing from Dublin
City University, Ireland. His primary research interest is in the areas of self-adaptive
software, where he applies statistical machine learning and control theory to enable
self-organizing behaviors in distributed systems which are designed to process big data.
Contact him at p.jamshidi@imperial.ac.uk.

13

armin.balalaie@gmail.com
heydarnoori@sharif.edu
heydarnoori@sharif.edu
p.jamshidi@imperial.ac.uk

	Introduction
	The Architectural Concerns for Microservices Migration
	The Architecture of Backtory Before the Migration
	Why Did We Plan to Migrate Towards the Microservices in the First Place?
	The Target Architecture of Backtory After the Migration

	The Migration Process
	Architectural Refactoring
	Preparing the Continuous Integration Pipeline
	Transforming DeveloperData to a Service
	Introducing Continuous Delivery
	Introducing Edge Server
	Introducing Dynamic Service Collaboration
	Introducing ResourceManager
	Introducing ChatServices and DeveloperInfoServices
	Clusterization

	Crosscutting Changes
	Filling the Gap Between the Dev and Ops via Continuous Monitoring
	Changing Team Structures

	Lessons Learned
	Microservices Migration Patterns
	How the Microservices Migration Patterns Enable DevOps

	Appendix Backtory Components Before the Migration

