
Noname manuscript No.
(will be inserted by the editor)

L∞ Estimates on Trajectories Confined to a Closed Subset, for Control
Systems With Bounded Time Variation

Piernicola Bettiol · Richard B. Vinter

Dedicated to R. Tyrrell Rockafellar

Received: date / Accepted: date

Abstract The term ‘distance estimate’ for state constrained control systems refers to an estimate on
the distance of an arbitrary state trajectory from the subset of state trajectories that satisfy a given state
constraint. Distance estimates have found widespread application in state constrained optimal control. They
have been used to establish regularity properties of the value function, to establish the non-degeneracy of
first order conditions of optimality, and to validate the characterization of the value function as a unique
solution of the HJB equation. The most extensively applied estimates of this nature are so-called linear L∞

distance estimates. The earliest estimates of this nature were derived under hypotheses that required the
multifunctions, or controlled differential equations, describing the dynamic constraint, to be locally Lipschitz
continuous w.r.t. the time variable. Recently, it has been shown that the Lipschitz continuity hypothesis
can be weakened to a one-sided absolute continuity hypothesis. This paper provides new, less restrictive,
hypotheses on the time-dependence of the dynamic constraint, under which linear L∞ estimates are valid.
Here, one-sided absolute continuity is replaced by the requirement of one-sided bounded variation. This
refinement of hypotheses is significant because it makes possible the application of analytical techniques
based on distance estimates to important, new classes of discontinuous systems including some hybrid
control systems. A number of examples are investigated showing that, for control systems that do not have
bounded variation the w.r.t. time, the desired estimates are not in general valid, and thereby illustrating
the important role of the bounded variation hypothesis in distance estimate analysis.

Keywords Differential Inclusions · State Constraints · Optimal Control

1 Introduction

Linear L∞ estimates for control systems, which govern the distance of an arbitrary state trajectory from
the set of state trajectories confined to a closed set A, have widespread applications in the theory of state
constrained optimal control. They have been used to establish regularity properties of the value function
(cf. [21], [2], [3], [4], [11], [14], [12]). They also have an important role in the formulation of hypotheses under
which first order necessary conditions of optimality are non-degenerate (see e.g. [17], [18], [7]), under which
the value function may be identified as the unique generalized solution of the Hamilton-Jacobi equation
([21], [15]), and to investigate sensitivity relations ([8], [13], [6]).

The question of what hypotheses need to be imposed, concerning the time-dependence of the underlying
differential inclusion, in order for such estimates to be valid, is a delicate one. Suppose that A is a general
closed set and an appropriate inward pointing condition is satisfied. Then a linear L∞ estimate is valid if
the time dependence is Lipschitz continuous. On the other hand, examples are known, showing that if the
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time dependence is assumed merely to be continuous, then linear estimates may fail to be valid.

Recently, it has been shown that the Lipschitz continuity hypothesis can be replaced by a weaker, one-
sided absolute continuity hypothesis. In this paper we show that a further weakening of the hypotheses is
possible; linear L∞ estimates are derived for differential inclusions, whose time dependence has bounded
variation from the left. This is significant, because it allows control systems whose time dependence involves
two-sided discontinuities, fractional singularities, etc. Linear L∞ estimates have been previously established
by Frankowska and Rampazzo [14], under similar, but non-equivalent, hypotheses concerning the time-
dependence of the differential inclusion, which also cover some of these cases. Properties of control systems
with bounded variation time dependence are also explored in [16] and [23].

Consider the state-constrained differential inclusion, described as follows:{
ẋ(t) ∈ F (t, x(t)) for a.e. t ∈ [S, T ]
x(t) ∈ A for all t ∈ [S, T ] ,

in which [S, T ] is a given interval (T > S), F (., .) : [S, T ] × Rn ; Rn is a given multifunction with closed,
non-empty values and A ⊂ Rn is a given closed set.

Given a subinterval (possibly closed or left open) I ⊂ [S, T ], we shall refer to an absolutely continuous func-
tion x(.) : I → Rn which satisfies ẋ(t) ∈ F (t, x(t)) a.e. as an F -trajectory (on I). An F -trajectory x(.) on
I is said to be ‘feasible’ (on I) if x(t) ∈ A for all t ∈ I, and ‘strictly feasible’ (on I) if x(t) ∈ intA for all t ∈ I.

This paper concerns hypotheses under which estimates, and their refinements, of the following type are
valid: given a ball r0B in Rn there exists a constant K > 0 such that, for any F -trajectory x̂(.) on a closed
subinterval I ⊂ [S, T ], emanating from r0B ∩A, we have

||x̂(.)− x(.)||L∞(I) ≤ K max
t∈I

dA(x̂(t)) ,

for some feasible F -trajectory x(.) with the same initial value. Such estimates are referred to as linear L∞

distance estimates for F -trajectories confined to a closed set. They provide an upper bound on the distance
of a given F -trajectory x̂(.) from the set of F -trajectories satisfying a state constraint, in terms of the
expression maxt∈I dA(x̂(t)), which can be interpreted as a measure of the state constraint violation by x̂(.).

Notation. For a given interval [t0, t1] ⊂ R the space Lp([t0, t1];Rn), p = 1 or p = ∞, is written briefly
Lp(t0, t1) or Lp. We denote the Lebesgue subsets of [S, T ] by L. B denotes the closed unit ball in Euclidean
space. The Euclidean distance is written | . |, intC denotes the interior of a set C in Euclidean space. We
write coC for the convex hull of C. Take a closed set D ⊂ Rn and x ∈ D. The Clarke tangent cone to D at
x is written TD(x) (cf. [10]). We denote by χD(.) the indicator function of D, that is the function taking
value 1 on D and 0 elsewhere. dD(x) denotes the Euclidean distance of the point x from the set D, namely
miny∈D |x− y|. For arbitrary non-empty closed sets in Rn, D′ and D, we denote by dD(D′) the excess from
set D to a set D′:

dD(D′) := inf{β > 0 |D′ ⊂ D + βB} ,

(alternatively referred to as the ‘asymmetric Hausdorff distance’ of the set D′ from the set D.) The Haus-
dorff distance between the sets D and D′ is written dH(D,D′) := max{dD(D′), dD′(D)}.

Given a multifunction G : D ; Rn and x ∈ D (where D is closed), we define respectively the limit inferior
and the limit superior (in the Kuratowski sense) of G at x to be (cf. [1], [22])

lim inf
x′

D→x
G(x′) := {v ∈ Rn : lim sup

x′
D→x

dG(x′)(v) = 0} ,

lim sup
x′

D→x

G(x′) := {v ∈ Rn : lim inf
x′

D→x
dG(x′)(v) = 0} .

The notation x′
D→ x indicates consideration of convergent sequences x′ → x, all elements of which belong to

D. An alternative, and often useful, characterization of the lim inf operator on a set-valued function G(.) is
as follows: v ∈ lim inf

x′
D→x

G(x′) if and only if for every ε > 0 there exists η > 0 such that (v+εB)∩G(x′) 6= ∅
for every x′ ∈ (x+ ηB) ∩D.
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2 Distance Estimates

This Section provides conditions for the validity of linear L∞ distance estimates for the state constrained
differential inclusion {

ẋ(t) ∈ F (t, x(t)) for a.e. t ∈ [S, T ]
x(t) ∈ A for all t ∈ [S, T ] ,

in which A is a given closed, non-empty subset of Rn.

The distinctive feature of the first theorem is the unrestricitve nature of hypothesis (BVL) under which,
together with hypotheses of a more standard nature, linear L∞ estimates are asserted. (BVL) merely
requires that the multifunction F (t, x) has bounded variation from the left, w.r.t. the t variable, in a sense
made precise in the hypothesis statement. (BVL) contrasts with the comparable hypothesis invoked in [5],
requiring that F (t, x) is absolutely continuous from the left w.r.t. the t variable.

Theorem 1 Fix r0 > 0. Assume that, for some constant c > 0 and some kF (.) ∈ L1(S, T ) and for
R := ec(T−S)(r0 + 1), the following hypotheses (H1), (H2), (CQ) and (BVL) are satisfied:

(H1): F : [S, T ]× Rn ; Rn takes closed, non-empty values, F (., x) is L-measurable for all x ∈ Rn, and

F (t, x) ⊂ c(1 + |x|) B for all (t, x) ∈ [S, T ]× Rn .

(H2):

F (t, x′) ⊂ F (t, x) + kF (t)|x− x′| B for all x, x′ ∈ RB and a.e. t ∈ [S, T ] .

(CQ): For each (t, x) ∈ [S, T ]× (RB ∩ ∂A),(
lim inf

(t′,x′)
D→(t,x)

coF (t′, x′)
)
∩ intTA(x) 6= ∅ ,

where D = [S, T ]×A.
(BVL): F (., x) has bounded variation from the left uniformly over x ∈ (∂A + η̄B) ∩ RB for some η̄ > 0, in

the following sense: there exists a non-decreasing bounded variation function η(.) : [S, T ] → R (called a
‘modulus of variation of F (., x)’) such that, for every [s, t] ⊂ [S, T ] and x ∈ (∂A+ η̄B) ∩RB,

F (s, x) ⊂ F (t, x) + (η(t)− η(s))× B .

Then there exists a constant K > 0 with the following property:

Given any interval [t0, t1] ⊂ [S, T ], any F -trajectory x̂(.) on [t0, t1] with x̂(t0) ∈ A ∩
(
ec(t0−S)(r0 +1)−1

)
B,

and any ρ > 0 such that

ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]} ,

we can find an F -trajectory x(.) on [t0, t1] such that x(t0) = x̂(t0),

x(t) ∈ intA for all t ∈ (t0, t1]

and

||x̂(.)− x(.)||L∞(t0,t1) ≤ K ρ . (1)

The assertions of the theorem cover two cases, each of independent interest:

Case A: max{dA(x̂(t)) | t ∈ [t0, t1]} > 0 (x̂(.) is not feasible).

In this case, an F -trajectory x(.) with initial value x̂(t0) and strictly feasible on (t0, t1] exists, which satisfies
the linear distance estimate

||x̂(.)− x(.)||L∞(t0,t1) ≤ K max{dA(x̂(t)) | t ∈ [t0, t1]} .

(This follows from the theorem statement, after setting ρ := max{dA(x̂(t)) | t ∈ [t0, t1]} .)

Case B: max{dA(x̂(t)) | t ∈ [t0, t1]} = 0 (x̂(.) is feasible).
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In this case, for arbitrary ε > 0, there exists an F -trajectory x(.), with initial value x̂(t0) and strictly feasible
on (t0, t1] such that

||x̂(.)− x(.)||L∞(t0,t1) ≤ ε

(This follows from the theorem statement, after setting ρ := ε/K .)

The next theorem is a variant on the preceding distance estimate, in which it is asserted that, if F (t, x) has
a two-sided bounded variation property w.r.t. the time variable (in place of the one-sided property required
in Thm. 1), a linear L∞ is still valid, under a less restrictive version of the inward pointing condition.

Theorem 2 The assertions of Thm. 1 remain valid when assumptions (CQ) and (BVL) are replaced by
the following hypotheses (CQ)′ and (BV):

(CQ)′: For each t ∈ [S, T ), s ∈ (S, T ] and x ∈ RB ∩ ∂A,(
lim inf
x′

A→x
lim sup
t′↓t

coF (t′, x′)
)
∩ intTA(x) 6= ∅ ,(

lim inf
x′

A→x
lim sup
s′↑s

coF (s′, x′)
)
∩ intTA(x) 6= ∅ .

(BV): F (., x) has bounded variation uniformly over x ∈ (∂A + η̄B) ∩ B for some η̄ > 0, in the following
sense: there exists a non-decreasing bounded variation function η(.) : [S, T ] → R such that, for every
[s, t] ⊂ [S, T ] and x ∈ (∂A+ η̄B) ∩RB,

dH(F (s, x), F (t, x)) ≤ η(t)− η(s) .

3 Examples

In this section we take [S, T ] = [0, 1].

Example 1. Choose an integer N ≥ 4 and define the times

τk =
1

Nk
for k = 1, 2, . . . (2)

Consider the 3-vectors

v0 = (
1

N + 1
, 0, 0), v1 = (1,

N + 1

N − 1
, 0), v2 = (1,−N + 1

N − 1
, 0) . (3)

Now define the multifunction F (.) : [0, 1] ; R3

F (t) :=


{v0} ∪ {v1} ∪ {v2} for t = 0
{v0} ∪ {v1} for t ∈ (τi, τi−1]
{v0} ∪ {v2} for t ∈ (τi+1, τi]

(4)

i = 1, 3, . . . Take A to be the set

A = {x ∈ R3 | x2 − x1 + x3 ≤ 0, −x2 − x1 + x3 ≤ 0} . (5)

The following information about (F (.), A) is proved in [5].

Take any α ∈ (0, 1) and r0 > 0. Then the integer parameter N in (2) and (3) can be chosen such that
(F (.), A), defined by (4) and (5), have the following property: given any K > 0 and δ > 0, there exists an
interval [t0, t1] ⊂ [0.1] of length not greater than δ and an F -trajectory x̂(.) on [t0, t1] with x̂(t0) ∈ A∩ (r0B)
such that

max
t∈[t0,t1]

dA(x̂(t)) > 0

and

||x̂(.)− x(.)||L∞(t0,t1) > K
∣∣ max
t∈[t0,t1]

dA(x̂(t))
∣∣α ,
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for all feasible F -trajectories x(.) on [t0, t1] with initial state x̂(t0).

According to the preceding statement, a linear L∞ estimate is not valid for the choice (4) and (5) of
(F (.), A). Nor even a weaker, Hölder-type distance estimate is valid, in which |maxt∈[t0,t1] dA(x̂(t))|α re-
places |maxt∈[t0,t1] dA(x̂(t))|, for α an arbitrary constant in the interval (0, 1).

The statement is consistent with Thm. 1. Indeed, for (F (.), A) given by (4) and (5), hypotheses (H1), (H2)
and (CQ) are satisfied. Hypothesis (BVL) is not satisfied however. This is because, for this choice of (F (.), A)
in which F (.) is a function of t alone, condition (BVL) can be equivalently expressed:

sup{
M−1∑
j=0

max
v∈F (sj)

dF (sj+1)(v)} < ∞ , (6)

in which the supremum is taken over all partitions {s0 = 0, s1, . . . , sM = 1} of [0, 1]. But, for any integer
M and partition

{s0 = 0, s1 = τM−1, s2 = τM−2, . . . , sM = τ0} ,

in which the τj ’s are given by (2), it can be deduced from the analysis in [5] that

M−1∑
j=0

max
v∈F (sj)

dF (sj+1)(v) > M .

Since M is an arbitrary integer, (6) cannot be valid.

The example of (F (.), A) given by (4) and (5) is revealing because it tells that the assertions of Thm. 1
are not valid under hypotheses (H1), (H2), (CQ) alone; they must be supplemented by some hypothesis on
the t-dependence of F (t, x). In this paper we show that it suffices to assume F (., x) has bounded variation
(from the left).

The essential role of a ‘bounded variation’ hypothesis on the t dependence of F (t, x), for purposes of
establishing linear L∞ distance estimates, is further illustrated by the next example. This shows that
if all the hypotheses Thm. 2 are satisfied, but the bounded variation hypothesis is discarded, then the
consequences are even more severe than those revealed in the previous example; now it is no longer possible,
in general to prove a distance estimate of the form

||x̂(.)− x(.)||L∞(I) ≤ d(max
t∈I

dA(x̂(t))) ,

where d(.) : [0,∞)→ [0,∞) is any continuous function such that d(0) = 0. This example is the first example,
to the authors’ knowledge, in which such discontinuous behaviour is revealed.

Example 2. Let N be any integer such that N ≥ 4 and take the decreasing sequence of times τk := 1
Nk , for

k = 0, 1, 2, 3, . . . , as in Example 1. Consider the function z(.) : [0, 1]→ R, which is defined by the following
properties: z(0) = 0,

z(τk) := (−1)kτk ,

and

ż(t) = (−1)k
N + 1

N − 1
for (τk+1, τk] .

For each k, we write sk for the time when the piecewise affine function z(.) takes value zero in the interval
[τk+1, τk]:

sk =
2τk
N + 1

for k = 0, 1, 2, 3, . . . .

We shall consider a differential inclusion employing vectors w1 = w1(t), w2 = w2(x), w3 = w3(x) and w4 in
R4:

w1 := (ν(N), 0, ν(N)− εk, 1), for t ∈ (τk+1, τk] ,

w2(x) :=

(
1,
N + 1

N − 1
(1 + x4), 0, 0

)
and w3(x) :=

(
1,−N + 1

N − 1
(1 + x4), 0, 0

)
,
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w4 := (ν(N), 0, 0, 0) ,

in which

ν(N) :=
1

N + 1
and εk :=

1

Nk+2
.

Define the (t, x)-dependent multi-function F : [0, 1]× R4 ; R4

F (t, x) :=


{w1(t)} ∪ {w2(x)} if t ∈ (τi, τi−1)
{w1(t)} ∪ {w3(x)} if t ∈ (τi+1, τi)
{w1(t)} ∪ {w2(x)} ∪ {w3(x)} ∪ {w4} if t = 0, τi, τi−1 ,

for i = 1, 3, 5, . . . . Observe that the multivalued function F is Lipschitz w.r.t. x, and it is measurable but
not of bounded time variation w.r.t. t (for the same argument employed in Example 1 applies in this case).

Consider the state constrained differential inclusion

(CS)t0,x0


ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [t0, 1] ,
x(t) ∈ A for all t ∈ [t0, 1] ,
x(t0) = x0 ,

where the state constraint set A is defined by

A = {x ∈ R4 | x2 − x1 + x3 ≤ 0, −x2 − x1 + x3 ≤ 0} .

Notice that the constrained differential inclusion (F,A) satisfies hypotheses (H1), (H2) and (CQ)′ of Thm.
2, but not (BV).

Fix any integer i ≥ 10. Consider the state constrained differential inclusion (CS)si,xi defined on the time
interval [si, 1], where

xi := (2si, 0, 2si, 0) ∈ A .

Take the F -trajectory x̂(.) : [si, 1]→ R4:

x̂(t) =
(
x̂1(t), x̂2(t), x̂3(t), x̂4(t)

)
= (t+ si, z(t), 2si, 0) , for t ∈ [si, 1], i = 1, 2, . . . . (7)

Observe that x̂(si) = xi ∈ A, and that x̂(.) is an F -trajectory which is not feasible, with violation rate

max
t∈[si,1]

dA(x̂(t)) =
si√

3

(
= max

k≤i
dA(x̂(τk))

)
. (8)

For any feasible F -trajectory x(.) on [si, 1], starting from xi = (2si, 0, 2si, 0), we obtain

||x(.)− x̂(.)||L∞(si,1) ≥
√

2(N − 1)

4(N + 1)
.

Details of the derivation appear in the Appendix (Section 7).

We draw the following conclusions from the above estimates: data for the state constrained control system
(F (., .), A) can be chosen, which satisfy hypotheses (H1), (H2), (CQ)′ of Thm. 2, but not (BV), for which
the following assertions are true.

There exists c > 0 such that for any ρ > 0 it is possible to find a non-feasible F -trajectory x̂(.) on an interval
[t0, t1] ⊂ [0, 1] satisfying:

max
t∈[t0,t1]

dA(x̂(t)) ≤ ρ

and
||x(.)− x̂(.)||L∞(t0,t1) > c ,

for all feasible trajectories x(.) with the same initial state. The example reveals a fundamental discontinuity
phenomenon regarding the distance of an arbitrary state trajectory from the set of feasible state trajecto-
ries (emanating from the same initial state), when F (t, x) fails to have certain regularity properties w.r.t. t.
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Consider next an optimal control problem in which we seek to minimize a ‘terminal cost’ g(x(T )) over
feasible state trajectories emanating from a fixed initial state, under the hypotheses of either Thm. 1 or
Thm. 2. Then is easy to deduce from either of these theorems that the value function (the infimum cost
regarded as a function of the initial state and time) is Lipschitz continuous.

The purpose of the last example is to show that, if all the hypotheses of Thm. 2 are satisfied, with the
exception of the bounded variation hypothesis (BV), it is possible that the value function is not even con-
tinuous.

Example 3. Consider the following optimal control problem

(P )t0,x0


Minimize g(x(1)) = x4(1)
over arcs x(.) = (x1(.), x2(.), x3(.), x4(.)) ∈W 1,1([t0, 1];R4) s.t.
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [t0, 1] ,
x(t) ∈ A for all t ∈ [t0, 1] ,
x(t0) = x0 ,

where the state constrained control system (F (., .), A) is as described in Example 2.

The value function V : [0, 1]× R4 → R ∪ {+∞} is

V (t, x) = inf (P )t,x , (9)

where the right hand side is interpreted as the infimum cost (under the hypotheses we shall impose it cannot
be −∞) in the case that admissible F -trajectories for (P )t,x exist and as +∞ otherwise. Clearly

V (0, (0, 0, 0, 0)) = g(x̄(1)) = 0

where x̄(.) is the F -trajectory

x̄(t) := (t, z(t), 0, 0), for all t ∈ [0, 1] .

On the other hand, from the analysis of Example 2, it follows that

V (si, xi) > inf
x(.) feasible

x4(1) >
N − 1

2(N + 1)
.

These inequalities confirm the discontinuity of V (., .) at (0, 0).

4 Preliminary Analysis

We shall make extensive use of the following well-known theorem (see, e.g., [1] or [22]), providing conditions
for existence F -trajectories with accompanying estimates.

Theorem 3 (Filippov’s Existence Theorem) Consider a multi-function F : [S, T ] × Rn ; Rn taking
closed, non-empty values such that F (., x) is L-measurable for all x ∈ Rn and satisfies:

(H2)′: There exists kF (.) ∈ L1(S, T ) such that

F (t, x′) ∈ F (t, x) + kF (t)|x− x′| B for all x, x′ ∈ Rn and a.e. t ∈ [S, T ] .

Take any absolutely continuous arc y : [S, T ] → Rn and ξ ∈ Rn. If dF (.,y(.))(ẏ(.)) ∈ L1(S, T ), then, there
exists an F -trajectory x(.) satisfying x(S) = ξ such that for all t ∈ (S, T ]

||y(.)− x(.)||L∞(S,t) ≤ |y(S)− x(S)|+
∫ t

S

|ẏ(s)− ẋ(s)| ds

≤ e
∫ t
S
kF (s) ds

(
|ξ − y(S)|+

∫ t

S

dF (s,y(s))(ẏ(s)) ds

)
.
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Henceforth we take F (., .) to be the multifunction in the statement of Thm. 1, satisfying (H1), (H2), (CQ)
and (BVL) for some positive numbers r0, c, η̄ (and R := ec(T−S)(r0 + 1)), some function kF (.), and some
non-decreasing function η(.). In the subsequent analysis we assume that hypothesis (H2) has been replaced
by the stronger hypothesis (H2)′. There is no loss of generality involved since, if (H2)′ is violated we can
redefine F (t, x) for |x| > R so that (H2)′ is satisfied, and (H1) continues to hold, and the assertions of the
theorem are the same for the original constant c and function kF (.).

The following lemma summarises some consequences of the ‘bounded variation’ hypothesis (BVL):

Lemma 1 Take a multifunction F (., .) : [S, T ]×Rn ; Rn that satisfies hypotheses (H1), (H2)′ and (BVL)
of the theorem statement. Take also any interval [a, b] ⊂ [S, T ]. Define F̃ (., .) : [a, b]× Rn ; Rn to be

F̃ (t, x) =


lim supt↓a F (t, x) if t = a
F (t, x) if t ∈ (a, b)
lim supt↑b F (t, x) if t = b ,

(10)

for any x ∈ Rn. Then F (., .) takes values, closed non-empty sets, and

F̃ (t, x) ⊂ F̃ (t, x′) + kF (t)|x− x′|B and F̃ (t, x) ∈ c(1 + |x|)B

for all x, x′ ∈ (∂A+ η̄B) ∩RB and t ∈ [a, b]. Furthermore

sup
x∈(∂A+η̄B)∩RB

dF̃ (t,x)(F̃ (s, x)) ≤ η̃(t)− η̃(s) , (11)

for any [s, t] ⊂ [a, b], where

η̃(t) =


η(a+) for t = a
η(t) for t ∈ (a, b)
η(b−) for t = b ,

where η(.) is the ‘modulus of variation’ in hypothesis (BVL).
Assume, in addition, that also (BV) is satisfied. Then, we can supplement the assertions above with the
following extra information

sup
x∈(∂A+η̄B)∩RB

dH(F̃ (s, x), F̃ (t, x)) ≤ η̃(t)− η̃(s) . (12)

Proof.
Suppose first that assumptions (H1), (H2)′ and (BVL) are satisfied. We omit proof of the assertions that the
constructed F̃ (., .) takes values non-empty closed sets, and inherits the Lipschitz continuity and boundedness
properties of the original multifunction F (., .) (with the same constants), since this is a straightforward
exercise. Consider the final assertion. Take any [s, t] ⊂ [a, b]. We must show (11). This relation is obviously
true for a < s < t < b. Consider the case [s, t] = [a, b]. (The remaining cases [s, t] = [a, t′] or [t′, b], for some
t′ ∈ (a, b) are similar, but simpler, to deal with.) Fix x ∈ (∂A+ η̄B) ∩ RB. Take any v ∈ F̃ (a, x). We must
find w ∈ F̃ (b, x) such that

|v − w| ≤ η(b−)− η(a+) . (13)

By definition of the ‘lim sup’ operation, there exist si ↓ a and vi → v such that vi ∈ F (si, x) for each i.
Now take any sequence ti ↑ b. Then by the properties of F (t, x), which coincides with F̃ (t, x) for t ∈ (a, b)
we have: for each x, there exists wi ∈ F (ti, x) such that

|vi − wi| ≤ η(ti)− η(si) (14)

The sequence {wi} is bounded, in view of hypothesis (H1). So, by restricting attention to a subsequence,
we can arrange that wi → w for some w ∈ Rn. But then, again by definition of the ‘lim sup’ operation,
w ∈ F̃ (b, x). Passing to the limit in (14), and noting that η(.), as a monotone function, has left and right
limits everywhere, we arrive at (13).

If the stronger assumption (BV) is also satisfied, then (12) follows from the argument above in view of the
symmetric property of the Hausdorff distance.
The proof is complete. ut

The next lemma, a proof of which appears in [5], states implications of the inward pointing condition (CQ):
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Lemma 2 Suppose the multifunction F : [S, T ] × Rn ; Rn and the closed set A satisfy assumption (CQ)
(for some R ≥ 0). Then there exist M > 0 , ε > 0 and η̄ > 0 with the following property: for any
(t, x) ∈ [S, T ]×

(
(∂A+ η̄B) ∩RB ∩A

)
, there exists v ∈ coF (t, x) ∩MB such that

y + [0, ε](v + εB) ⊂ A (15)

for all y ∈ (x+ εB) ∩A.

Comment: We take note, for future use, of an implication of this lemma. Take any [t0, t1] ⊂ [S, T ] and define
F̃ (., .) : [t0, t1, ]×Rn ; Rn according to (10). Take an arbitrary point (t, x) ∈ [S, T ]×

(
(∂A+ η̄B)∩RB∩A

)
.

Then there exists a point v ∈ co F̃ (t, x) such that (15) is true for all y ∈ (x+ εB)∩A. Here ε is the positive
constant as in the lemma statement. This follows from the way (CQ) is formulated and the fact that, for
any (t, x) ∈ [t0, t1]× Rn:

lim inf
(t′,x′)

D→(t,x)

coF (t′, x′) ⊂ lim inf
(t′,x′)

D→(t,x)

co F̃ (t′, x′) ,

where D = [S, T ]×A.

Henceforth, we take ε > 0 and η̄ > 0 to be the constants referred to in Lemma 2. We can arrange (by
reducing its size if necessary) that η̄ is also the constant appearing in hypothesis (BVL). (This is true since,
if (BVL)) is valid for some η̄, then it remains valid for any lower positive value of this parameter.)

The lemmas below are aimed at simplifying the proof of Thm. 1, by showing that attention can be restricted
to a special case.

Lemma 3 Assume that hypotheses (H1), (H2)′, (CQ) and (BVL) are satisfied (for the given r0, c etc.).
Assume also

(H3): F (t, x) is convex for all (t, x) ∈ [S, T ]× Rn,

Suppose that, for δ > 0 and ρ̄ > 0 sufficiently small, there exists a constant K > 0 (whose magnitude
depends on the magnitude of r0, c, kF (.), 1/ε and 1/η̄), with the following property:

(A): ‘Given any interval [t0, t1] ⊂ [S, T ], any F -trajectory x̂(.) on [t0, t1] with x̂(t0) ∈ A ∩
(
ec(t0−S)(r0 + 1)−

1
)
B, and a positive number ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]} , which satisfy the conditions

(i) |t0 − t1| ≤ δ

(ii) ρ ≤ ρ̄

we can find an F -trajectory x(.) on [t0, t1] such that x(t0) = x̂(t0),

x(t) ∈ intA for all t ∈ (t0, t1] and

||x̂(.)− x(.)||L∞(t0,t1) ≤ K ρ .’

Then, for δ and ρ̄ sufficiently small, we can find an ‘adjusted’ constant K (whose magnitude depends on the
magnitude of r0, c, kF (.), 1/ε and 1/η̄) that possesses a modification of property (A), in which the conditions
(i) and (ii) are no longer imposed, and when the extra hypothesis (H3) is no longer required to be satisfied.

This lemma appears in [5, Lemma 5.2], with two minor differences. First (BVL) is replaced by a stronger
hypothesis (ACL) ‘absolute continuity from the left’. We can ignore the change from (ACL) to (BVL),
because it does not affect the proof in [5, Lemma 5.2]. The other is the information in the above lemma
that the magnitude of the constant K depends on the parameters r0 , c, etc., which is proved in [5], though
not explicitly stated in this reference.

Lemma 4 Assume that, for δ > 0, ρ̄ > 0 and γ > 0 sufficiently small, the assertions of Thm. 1 are valid
under hypotheses (H1), (H2)′, (CQ) and (BVL) and under the additional hypothesis:

(H3): F (t, x) is convex for all (t, x) ∈ [S, T ]× Rn,
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and when the following conditions are imposed on the reference F -trajectory x̂(.) : [s, t] → Rn, with
x̂(s) ∈ A ∩

(
ec(s−S)(r0 + 1)− 1

)
B, and the positive number ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]}:

(i): ρ ≤ ρ̄

(ii): t− s ≤ δ.

(iii): η(t0)− η(t1) ≤ γ .

Then the assertions are valid under (H1), (H2)′, (CQ) and (BVL) alone, and without conditions (i) - (iii)
on x̂(.) and ρ.

Proof. Assume (H1), (H2)′, (BVL) and (H3). Let us assume that, for δ > 0, ρ̄ > 0 and γ > 0 sufficiently
small, there exists a number K (whose magnitude depends on the magnitude of the constants r0, c, kF , δ,
ρ̄, γ and 1/ε) with the property:

(B): ‘Given any interval [t0, t1] ⊂ [S, T ], any F -trajectory x̂(.) on [t0, t1] with x̂(t0) ∈ A ∩
(
ec(t0−S)(r0 + 1)−

1
)
B satisfying conditions (i)-(iii) above, and any ρ > 0 such that

ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]} , (16)

we can find an F -trajectory x(.) on [t0, t1] such that x(t0) = x̂(t0),

x(t) ∈ intA for all t ∈ (t0, t1] (17)

and
||x̂(.)− x(.)||L∞(t0,t1) ≤ K ρ .’

In view of the preceding lemma, our task is to show:

‘For sufficiently small values of δ > 0 and ρ̄ > 0, there exists an adjusted constant K (whose magnitude
depends on the same parameters) possessing a modification of property (B), in which (iii) is no longer re-
quired to be satisfied.’

Choose any γ > 0, δ > 0, ρ̄ > 0 and K > 0, such that K which possesses property (B) above.

The function η(.) is increasing, and can therefore be decomposed into the sum of a continuous functions
ηc(.) and a countable family of functions {si(.)} satisfying, for each i,

si(t) = ai ×
{

1 if t > σi
0 if t < σi ,

in which {σi} is a sequence of distinct points in [S, T ] (the ‘jump times’) and {ai} is a sequence of non-
negative numbers (the ‘jumps’). (In the analysis to follow, we do not have to take account of the value of
si(.) at its jump time σi.) The collection of jumps {ai} satisfies∑

i

ai < ∞ .

In view of this last relation, there exists a finite index set J ⊂ {1, 2, . . .} such that∑
i/∈J

ai < γ/2 .

Since the jump times {σi} are distinct, there exists ᾱ > 0 such that

|σi − σj | > ᾱ for i, j ∈ J, i 6= j .

By reducing the size of δ > 0, if necessary, we can also ensure that

ηc(t′)− ηc(s′) < γ/2

for all subinterval [s′, t′] ⊂ [S, T ] such that t′ − s′ ≤ δ. Now further reduce the size of δ, if necessary, to
ensure also that δ < ᾱ.
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Take any interval [t0, t1] ⊂ [S, T ] and F -trajectory x̂(.) on [t0, t1] with x̂(t0) ∈ A ∩
(
ec(t−S)(r0 + 1) − 1

)
B

such that conditions (i) and (ii) are satisfied, i.e.

t1 − t0 ≤ δ and max{dA(x̂(t)) | t ∈ [s, t]} ≤ ρ̄ .

Since we have arranged that δ < ᾱ, there is at most one jump time t̄ = σj , with j ∈ J , located in the
interval [t0, t1]. It follows that

η(t̄−)− η(t+0 ) ≤ γ and η(t−1 )− η(t̄+) ≤ γ . (18)

Case 1: t̄ ∈ (t0, t1).

Define F̃1(., .) : [t0, t̄] × Rn ; Rn according to (10) when [a, b] = [t0, t̄], and F̃2(., .) : [t̄, t1] × Rn ; Rn
according to (10) when [a, b] = [t̄, t1].

F̃1(., .) satisfies the hypotheses (H1), (H2)′, (BVL), (H3) of F (., .), restricted to [t0, t̄]× Rn, with the same
constants c, R and η̄, and function kF (.). Also, the assertions of Lemma 1 continue to be true, with the
same constants ε > 0 and η̄, when F̃1(., .) replaces F (., .). By Lemma 1 and (18) however, the variation
modulus η̃1(.) of F̃1(., .) is such that

η̃1(t̄)− η̃1(t0) = η(t̄−)− η(t+0 ) < γ .

We have shown that x̂(.) restricted to [t0, t̄] satisfies not just condition (i) and (ii), but also condition (iii),
in the lemma statement, when x̂(.) is interpreted as a F̃1-trajectory. We have confirmed that K possesses
property (B). This means that, if we take any ρ > 0 such that

ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]} .

and ρ ≤ ρ̄, there exists an F̃1(., .) trajectory x1(.) (which is also an F -trajectory) satisfying x1(t0) = x̂(t0)
and

||x̂(.)− x1(.)||L∞(t0,t̄) ≤ K ρ .

Also, x1(t) ∈ intA for t ∈ (t0, t̄]. By Filippov’s Existence Theorem 3, there exists an F -trajectory y(.) on
[t̄, t1] such that y(t̄) = x1(t̄) and

||y(.)− x̂(.)||L∞(t̄,t1) ≤ k1Kρ ,

where k1 := e
∫ T
S
kF (t) dt. We see that

max{dA(y(t)) | t ∈ [t0, t̄]} ≤ (1 + k1K)ρ .

Define ρ1 > 0 to be
ρ1 := (1 + k1K)ρ .

Making further use of property (B), now in relation to F̃2(., .), we conclude that there exists an F̃2-trajectory
x2(.) on [t̄, t1] (which is also an F -trajectory) such that

||y(.)− x2(.)||L∞(t̄,t1) ≤ Kρ1 = (k1K + 1)Kρ ,

such that x2(t) ∈ intA for all t ∈ [t̄, t1]. (We have used the fact that y(t̄) = x1(t̄) ∈ intA.) But then, by the
triangle inequality,

||x̂(.)− x2(.)||L∞(t̄,t1) ≤ (1 + k1 + k1K)Kρ .

Now define x(.) to be the F -trajectory on [t0, t1] obtained by concatenating x1(.) (on [t0, t̄]) and x2(.) (on
[t̄, t1]). Then x(t0) = x̂(0) and x(t) ∈ intA for t ∈ (t0, t̄]. Furthermore

||x̂(.)− x(.)||L∞(t0,t1) ≤ max{k1Kρ, (1 + k1 + k1K)Kρ} = K′ρ

where
K′ := (1 + k1 + k1K)K .

Case 2: t̄ /∈ (t0, t1).

In this case, t̄ coincides with either t0 or t1, so either [t0, t̄] or [t̄, t1] degenerate to a single point. Invoking the
hypothesis of the lemma just once yields an F -trajectory x(.) on [t0, t1] such that x(0) = x̂(t0), x(t) ∈ intA
for t ∈ (t0, t1] and satisfying

||x̂(.)− x(.)||L∞(t0,t1) ≤ Kρ ≤ max{k1Kρ, (1 + k1 + k1K)Kρ} = K′ρ .

In either case, we have exhibited a new K, written K′, with the desired properties. ut
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5 Proof of Theorem 1

Fix r0 > 0. Assume that the multifunction F (., .) and set A in the theorem statement satisfy (H1), (H2)′,
(H3), (CQ) and (BVL) with constant c > 0 and function kF (.) ∈ L1(S, T ), for R := ec(T−S)(1 + r0). Write
also R̄ := c(1 +R). (The constants R and R̄ bound, respectively, magnitudes and velocities of arcs x(.) on
subintervals of [S, T ] originating in r0B and satisfying |ẋ| ≤ c(1 + |x|).) Let η̄ > 0 and η(.) be the constant
and modulus of variation appearing in (BVL) (and also in Lemma 2), and let ε > 0 and M > 0 be the
constants from Lemma 2. Increase the size of R̄, if necessary, we can also ensure that R̄ ≥M .

We know (see Lemma 2) that, given any (t, x) ∈ [S, T ]×
(
(∂A+ η̄B) ∩RB ∩A

)
, v ∈ coF (t, x) ∩ R̄B can be

found such that

x′ + [0, ε](v + εB) ⊂ A (19)

for all x′ ∈ (x+ εB) ∩A. By hypothesis (BVL)

F (s, x) ⊂ F (t, x) + (η(t)− η(s))B (20)

for all points x ∈ (∂A+ η̄B) ∩RB and subintervals [s, t] ⊂ [S, T ].

Let ω(.) : [0, T − S]→ [0,∞) be the function

ω(α) := sup{
∫
I

kF (s)ds}

where the supremum is taken over sub-intervals I ⊂ [S, T ] of length not greater than α. Since kF (.) ∈
L1(S, T ), by properties of integrable functions, ω(.) is well-defined on [0, T − S], and ω(α)→ 0, as α ↓ 0.

Fix k > 0 such that k > ε−1 and take constants δ > 0, ρ̄ > 0 and γ > 0 in such a manner that

δ ≤ ε, ρ̄+ R̄δ < ε, kρ̄ < δ, ρ̄ ≤ η̄, 4δR̄ ≤ η̄, (21)

and

eω(δ)(γ + ω(δ)R̄(T − S)) < ε, 2eω(δ)(γ + ω(δ)R̄) k < (kε− 1) . (22)

The assertions of the theorem will be confirmed provided that we establish the existence a constant K >
0 such that, for any interval [t0, t1] ⊂ [S, T ], given any F -trajectory x̂(.) on [t0, t1] with x̂(t0) ∈ A ∩(
ec(t0−S)(r0 + 1) − 1

)
B, and any ρ > 0 satisfying ρ ≥ max{dA(x̂(t)) | t ∈ [t0, t1]}, we can find a feasible

F -trajectory x(.) on [t0, t1] with x(t0) = x̂(t0) and such that

||x̂(.)− x(.)||L∞(t0,t1) ≤ K ρ

and

x(t) ∈ intA for t ∈ (t0, t1] .

Owing to the reduction Lemmas 3 and 4, we can restrict attention, without loss of generality, to the case
in which F (., .) is convex valued,

(i): ρ ≤ ρ̄,

(ii): t1 − t0 ≤ δ and

(iii): η(t1)− η(t0) ≤ γ .

Observe that, if x̂(t0) ∈
(
A∩

(
ec(t0−S)(r0 +1)−1

)
B
)
\(∂A+ η̄

2B), then the third and the fourth conditions in
(21), together with (ii) above, imply that x(.) = x̂(.) is a feasible F -trajectory having the required properties.
Therefore, it is not restrictive to impose also that x̂(t0) ∈ (∂A + η̄

2B) ∩ A ∩
(
ec(t0−S)(r0 + 1) − 1

)
B. An

immediate consequence (from the definition of R) is that

x̂(t0) ∈ (∂A+
η̄

2
B) ∩RB ∩A.
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Then, recalling the fact that the multifunction F (., .) can be considered convex valued, there exists a vector
v ∈ F (t0, x̂(t0))∩R̄B satisfying property (19) for (t, x) = (t0, x̂(t0)). Now, consider the arc y(.) : [t0, t1]→ Rn
such that y(t0) = x̂(t0) and

ẏ(t) =

{
v if t ∈ [t0, (t0 + kρ) ∧ t1]
˙̂x(t− kρ) if t ∈ (t0 + kρ, t1] and if ˙̂x(t− kρ) exists .

If t0 + kρ < t1, then it immediately follows that, for all t ≥ t0 + kρ,

y(t) = x̂(t− kρ) + kρv . (23)

Recalling that R̄ constitutes an upper bound for the magnitude for both v and || ˙̂x(.)||L∞ , we deduce that

||x̂(.)− y(.)||L∞(t0,t1) ≤ 2R̄kρ . (24)

In addition, from (20) we also obtain that, for all s ∈ [t0, (t0 + kρ) ∧ t1],

dF (s,y(s))(ẏ(s)) ≤ (η(s)− η(t0)) + dF (t0,y(s))(v)

≤ γ + kF (s)R̄ (s− t0) . (25)

Invoking Filippov’s existence theorem and taking into account condition (25), we can find an F -trajectory
x(.) on [t0, (t0 + kρ) ∧ t1] with x(t0) = y(t0) and such that, for any t ∈ [t0, (t0 + kρ) ∧ t1]

||x(.)− y(.)||L∞(t0,t) ≤ eω(δ)(γ + ω(δ)R̄) (t− t0) . (26)

Consider now the case in which t0+kρ < t1. Conditions (20), (21) and (23) imply that, for a.e. s ∈ [t0+kρ, t1],

dF (s,y(s))(ẏ(s)) = dF (s,kρv+x̂(s−kρ))( ˙̂x(s− kρ))

≤ kF (s)R̄kρ+ dF (s,x̂(s−kρ))( ˙̂x(s− kρ))

≤ kF (s)R̄kρ+ (η(s)− η(s− kρ)) + dF (s−kρ,x̂(s−kρ))( ˙̂x(s− kρ))

= kF (s)R̄kρ+ γ + 0 .

Then it follows that, for any t ∈ [t0 + kρ, t1],∫ t

t0+kρ

dF (s,y(s))(ẏ(s)) ds ≤ (ω(δ)R̄+ γ)kρ .

Thus, the F -trajectory x(.) can be extended from [t0, (t0 + kρ) ∧ t1] to [t0, t1] by applying again Filippov’s
Theorem, in such a manner that

||x(.)− y(.)||L∞(t0,t1) ≤ 2eω(δ)(γ + ω(δ)R̄)kρ . (27)

From (24) and (27) we deduce the required estimate:

||x̂(.)− x(.)||L∞(t0,t1) ≤ Kρ

in which

K = 2
(
R̄+ eω(δ)(γ + ω(δ)R̄)

)
k .

To complete the proof we must show that

x(t) ∈ intA for t ∈ (t0, t1] .

There are two cases to consider (we are assuming that t0 + kρ < t1, otherwise only the first case occurs):

Case 1.: t ∈ (t0, t0 + kρ]. Since y(t) = x̂(t0) + (t− t0)v and t− t0 ≤ ε, it follows from (19) that

y(t) + (t− t0)εB = x̂(t0) + (t− t0)(v + εB) ⊂ A .

Then, conditions (26) and (22) immediately yield x(t) ∈ intA, for all t ∈ (t0, t0 + kρ].



14 Piernicola Bettiol, Richard B. Vinter

Case 2.: t ∈ (t0 + kρ, t1]. Write z(t) a projection on A of the arc t → x̂(t − kρ). It means that, for each
t ∈ (t0 + kρ, t1], we select z(t) ∈ A such that

|x̂(t− kρ)− z(t)| = dA(x̂(t− kρ)) (≤ ρ) .

As a consequence, invoking (23), we obtain

y(t) ∈ z(t) + kρv + ρB , (28)

and, since |x̂(t− kρ)− x̂(t0)| ≤ R̄(t1 − t0) for all t ∈ (t0 + kρ, t1], appealing once again (21), we also have

|z(t)− x̂(t0)| ≤ ρ̄+ R̄δ < ε .

Thus bearing in mind (19) and (21), we see that

z(t) + kρv + kρεB ⊂ A ,

and, owing to (28),

y(t) + (kε− 1)ρB ⊂ A .

Taking into account (22) and (27), we deduce that x(t) ∈ intA in this case as well, confirming all the
assertions of the theorem. ut

6 Proof of Theorem 2

If the state constrained control system (F (., .), A) satisfy assumptions (H1), (H2) and (CQ), then, employing
‘stability’ properties of the interior of Clarke tangent cone, Lemma 2 guarantees the existence of vectors in
co F (t, x) pointing uniformly inward A, whenever x is close to the boundary of A. The crucial step in this
proof is to show that, if we impose just condition (CQ)′, which is weaker than condition (CQ), still we can
obtain implications similar to those ones stated in Lemma 2. The next lemma ensures that the required
properties are valid if, in addition, we are allowed to make use of condition (BV).

Lemma 5 Suppose the multifunction F : [S, T ] × Rn ; Rn and the closed set A satisfy hypotheses (H1),
(H2), (BV) and (CQ)′. Then there exist M > 0, ε > 0, η̄ > 0 and a finite time set {τj}j∈J ⊂ [S, T ] with
the following property: for any (t, x) ∈ [S, T ]×

(
(∂A+ η̄B) ∩RB ∩A

)
, there exists

v ∈


coF (t, x) ∩MB if t /∈ {τj}j∈J(

lim supτ↓t coF (τ, x)
)
∩MB if t ∈ {τj}j∈J ,

such that

y + [0, ε](v + εB) ⊂ A

for all y ∈ (x+ εB) ∩A.

Proof.

Fix any (t, x) ∈ [S, T ]× (RB ∩ ∂A). From (CQ)′ we can find vectors

v1 ∈
(

lim inf
x′

A→x
lim sup
t′↓t

coF (t′, x′)
)
∩ intTA(x) ,

and

v2 ∈
(

lim inf
x′

A→x
lim sup
t′↑t

coF (t′, x′)
)
∩ intTA(x) .

Write Mt,x := max{|v1|, |v2|}+ 1.
In view of Rockafellar’s characterization of the interior of the Clarke tangent cone (cf. [19], [20] ), there exist
γ ∈ (0, 1/2) and r > 0 such that

y + [0, γ](v1 + 2γB) ⊂ A , for all y ∈ (x+ 2rB) ∩A (29)
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and

y + [0, γ](v2 + 2γB) ⊂ A , for all y ∈ (x+ 2rB) ∩A . (30)

From the definition of the lim inf operator (in the sense of Kuratowski), we can deduce the existence of
r̄ ∈ (0, r) such that

sup
x′∈(x+r̄B)∩A

lim sup
t′↓t

dcoF (t′,x′)(v1) <
γ

2
(31)

and

sup
x′∈(x+r̄B)∩A

lim sup
t′↑t

dcoF (t′,x′)(v2) <
γ

2
. (32)

Taking into account assumption (BV) and the same argument employed in the proof of Lemma 4, we denote
η(.) the modulus of variation of F (., .), which can be decomposed into a sum of a continuous function ηc(.)
and a singular (discontinuous) component. Write {σi} and {ai} respectively the sequence of the countable
distinct jump times and the sequence of the (countable) non-negative jumps of η(.) in [S, T ]. We can find
numbers δ > 0 and ᾱ > 0 such that

ηc(t′)− ηc(s′) < γ/2 (33)

for each subinterval [s′, t′] ⊂ [S, T ] with t′ − s′ ≤ δ, and∑
i/∈J

ai < γ/2 , (34)

where J ⊂ {1, 2, . . .} is a finite index set for which

|σi − σj | > ᾱ for i, j ∈ J, i 6= j .

Take δt ∈ (0, δ) such that [t− δt, t+ δt] ∩ {σi : i ∈ J} 6= ∅. Define F̃1(., .) : [t− δt, t]× Rn ; Rn according
to (10) when [a, b] = [t− δt, t], and F̃2(., .) : [t, t+ δt]× Rn ; Rn according to (10) when [a, b] = [t, t+ δt].
F̃1(., .) and F̃2(., .) satisfy the hypotheses (H1), (H2)′, (H3) of F (., .), restricted respectively to [t−δt, t]×Rn
and [t, t+ δt]× Rn, with the same constants c > 0 and η̄ > 0, and function kF (.). Moreover, the assertions
of Lemma 1 hold true when F̃1(., .) and F̃2(., .) replace F̃ (., .). Then, from (12), for all s′ ∈ [t − δt, t], we
have

sup
x∈(∂A+η̄B)∩RB

dH(F̃1(s′, x), F̃1(t, x)) ≤ η̃1(t)− η̃1(s′) (35)

and for all t′ ∈ [t, t+ δt], we have

sup
x∈(∂A+η̄B)∩RB

dH(F̃2(t, x), F̃2(t′, x)) ≤ η̃2(t′)− η̃2(t) . (36)

Also conditions (31) and (32) can be rephrased in terms of F̃1(., .) and F̃2(., .): for all x′ ∈ (x+ r̄B) ∩A

(v1 +
γ

2
B) ∩ co F̃1(t, x′) 6= ∅ and (v2 +

γ

2
B) ∩ co F̃2(t, x′) 6= ∅ .

Thus, for all x′ ∈ (x+ r̄B) ∩A and for all s′ ∈ [t− δt, t), there exists v′ ∈ co F̃1(s′, x′) ∩Mt,xB such that

|v1 − v′| ≤
γ

2
+ η̃1(t)− η̃1(s′) ≤ 3

2
γ ,

where, taking account of (33) and (34), we have used the following fact:

η̃1(t)− η̃1(s′) ≤ η(t−)− η(s′+) < γ .

Similarly, for all x′ ∈ (x+ r̄B)∩A and for all t′ ∈ (t, t+ δt], there exists w′ ∈ co F̃2(t′, x′)∩Mt,xB such that

|v2 − w′| ≤
γ

2
+ η̃2(t)− η̃2(t′) ≤ 3

2
γ .

(Observe that in the relations above, F̃1(s′, x′) = F (s′, x′) for all s′ ∈ (t − δt, t), and F̃2(t′, x′) = F (t′, x′)
for all t′ ∈ (t, t+ δt).)
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Therefore, for all t′ ∈ (t−δt, t+δt), t
′ 6= t, and for all x′ ∈ (x+ r̄B)∩A, we can find v′ ∈ coF (t′, x′)∩Mt,xB

such that

y + [0, γ](v′ +
γ

2
B) ⊂ A , for all y ∈ (x′ + r̄B) ∩A .

And, if t′ = t, for all x′ ∈ (x+ r̄B) ∩A, there exists ṽ ∈ F̃2(t, x′) ∩Mt,xB satisfying

y + [0, γ](ṽ +
γ

2
B) ⊂ A , for all y ∈ (x′ + r̄B) ∩A .

Set εt,x := min{δt, r̄, γ/2}. Then we have proved the following property: for any (t, x) ∈ [S, T ]× (RB∩ ∂A)
there exist εt,x > 0 and Mt,x such that for all (t′, x′) ∈ [S, T ]×A with |x− x′| < εt,x and |t− t′| < εt,x, we
can find

v′ ∈


coF (t′, x′) ∩Mt,xB if t′ 6= t

co F̃2(t′, x′) ∩Mt,xB if t′ = t ,

satisfying

y + [0, εt,x](v′ + εt,xB) ⊂ A , for all y ∈ (x′ + εt,xB) ∩A .

To conclude we apply a standard compactness argument. ut

Proof of Theorem 2. In view of Lemma 5, we can define the following multifunction

F̃ (t, x) :=


F (t, x) if t /∈ {τj}j∈J

lim supτ↓t F (τ, x) if t ∈ {τj}j∈J .

Then, the approach used in the proof of Thm. 1 is applicable to (F̃ , A). Since an F̃ -trajectory is also an
F -trajectory and vice versa, we obtain the validity of the required properties. ut

7 Appendix

In this appendix we give the details of Example 2 of Section 3. For a reference F -trajectory x(.) =
(x1(.), x2(.), x3(.), x4(.)) and time interval [σ1, σ2] ⊂ [0, 1], we shall define the number

d[σ1,σ2](x(.)) := meas {s ∈ [σ1, σ2] : ẋ(s) 6= ˙̂x(s)} = meas {s ∈ [σ1, σ2] : ẋ(s) = w0(s)} ,

which provides the measure of the subset of [σ1, σ2] ⊂ [0, 1] in which the choice for the velocity of x(.) differs
from that one of x̂(.).
Take any i ≥ 10. We notice that for any feasible F -trajectory x(.) on [si, 1], starting from xi = (2si, 0, 2si, 0),
we cannot use just vectors w1 and w2 for its dynamics (as for x̂(.)). Indeed, if we chose only vectors w1

and w2 for the F -trajectory x(.), clearly it would violate the state constraint A. More precisely, on the time
interval [si, τi], we have:

x̂1(τi)− x1(τi) =

∫ τk−1

τk

(
˙̂x1(s)− ẋ1(s)

)
ds

= (1− ν(N)) d[si,τi](x(.)) , (37)

|(x̂2(τi)| − |x2(τi))| =
N + 1

N − 1
×
(
d[si,τi](x(.))− ∈ τ{s∈[si,τi] : ẋ2(s) 6=0} x4(s) ds

)
, (38)

x3(τi) = x3(si) + (ν(N)− εi) d[si,τi](x(.)) = 2si + (ν(N)− εi) d[si,τi](x(.)) , (39)

and

x4(τi) = x4(si) + d[si,τi](x(.)) . (40)

Therefore, a lower-bound of the measure of the set in which we are ‘forced’ to employ v0 on [si, τi] is given
by:

d[si,τi](x(.)) >
N − 1

2 + εi(N − 1)
>

N2 − 1

3N + 1
si . (41)



L∞ Estimates on Trajectories Confined to a Closed Subset, for Control Systems With Bounded Time Variation 17

Whereas, for all k = 1, . . . , i, we obtain

x̂1(τk−1)− x1(τk−1) = x̂1(τk)− x1(τk) +

∫ τk−1

τk

(
˙̂x1(s)− ẋ1(s)

)
ds

= x̂1(τk)− x1(τk) + (1− ν(N)) d[τk,τk−1](x(.)) , (42)

N + 1

N − 1
×

(
d[τk,τk−1](x(.))−

∫
{s∈[τk,τk−1] : ẋ2(s) 6=0}

x4(s) ds

)
=

= |
(
x̂2(τk−1)− x2(τk−1)

)
−
(
x̂2(τk)− x2(τk)

)
|

= |x̂2(τk−1)| − |x2(τk−1)|+ |x̂2(τk)| − |x2(τk)| .

In addition
x3(τk−1) = x3(τk) + (ν(N)− εk−1) d[τk,τk−1](x(.)) , (43)

and
x4(τk−1) = x4(τk) + d[τk,τk−1](x(.)) , (44)

Bearing in mind the state constraint relation |x2(t)| ≤ x1(t) − x3(t), for all t ∈ [si, 1], from the above
inequalities, (42), (43), (43) and (44), we derive

N + 1

N − 1
× d[τk,τk−1](x(.))− N + 1

N − 1
×
∫
{s∈[τk,τk−1] : ẋ2(s)6=0}

x4(s) ds >

> 2[x̂1(τk)− x1(τk) + x3(τk)− 2si] + 2si ,

and so [
2

N − 1
+ εk−1

]
× d[τk,τk−1](x(.)) > 2[x̂1(τk)− x1(τk) + x3(τk)− 2si] + 2si +

+
N + 1

N − 1
×
[
(N − 1)τk − d[τk,τk−1](x(.))

]
x4(τk) . (45)

Observe that from (42) and (43) we also have:

x̂1(τk−1)− x1(τk−1) + x3(τk−1)− 2si = x̂1(τk)− x1(τk) + x3(τk)− 2si + (1− εk−1) d[τk,τk−1](x(.)) . (46)

Write, for all k = 0, . . . , i
yk := x̂1(τk)− x1(τk) + x3(τk)− 2si (> 0) .

Then applying recursively (44) and (46) we respectively obtain:

x4(τk) = x4(τk+1) + d[τk+1,τk](x(.)) =

i−1∑
j=k

d[τj+1,τj ](x(.)) + d[si,τi](x(.))

and

yk = yk+1 + (1− εk) d[τk+1,τk](x(.)) =

i−1∑
j=k

(1− εj) d[τj+1,τj ](x(.)) + (1− εi) d[si,τi](x(.))

 . (47)

Thus

x4(τk) >
1

(1− εi)
yk . (48)

Now only one of the following two cases may occur:
Case 1: for all k = 1, . . . , i

d[τk,τk−1](x(.)) <
N − 1

2
τk . (49)

Case 2: for some k0 ∈ {0, . . . , i− 1} we have

d[τk0
,τk0−1](x(.)) ≥ N − 1

2
τk0

. (50)
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We start considering the first case. Condition (49) implies that, for all k = 1, . . . , i

(N − 1)τk − d[τk,τk−1](x(.)) >
N − 1

2
τk . (51)

From the choice of εk it follows that, for all k = 1, . . . , i

(1− εk)
N − 1

2 + (N − 1)εk
×
(

2 +
(N + 1)

2(1− εi)
τk

)
> N − 1 . (52)

Therefore, using (51) and (48) in inequality (45), and bearing in mind (52), we deduce the validity of the
following estimate for all k = 1, . . . , i:

yk−1 > yk + (1− εk−1)
N − 1

2 + (N − 1)εk−1
×
[(

2 +
(N + 1)

2(1− εi)
τk−1

)
yk + 2si

]

>

[
1 + (1− εk−1)

N − 1

2 + (N − 1)εk−1
×
(

2 +
(N + 1)

2(1− εi)
τk−1

)]
yk

+2(1− εk−1)
N − 1

2 + (N − 1)εk−1
si

> N × yk + 2(1− εk−1)
N − 1

2 + (N − 1)εk−1
si . (53)

Recalling the definition of yi and estimate (41) we also have

yi = (1− εi) d[si,τi](x(.)) > (1− εi)
N − 1

2 + (N − 1)εi
si

>
N(N2 − 1)

(N + 1)(3N + 1)
si =

2N(N − 1)

(N + 1)(3N + 1)

1

N i
. (54)

Combining (53) and (54) yields

y0 > N i × yi >
2N(N − 1)

(N + 1)(3N + 1)
.

Suppose now that Case 2 occurs, and write k0 the smaller integer in {0, . . . , i− 1} such that we have

d[τk0
,τk0−1](x(.)) ≥ N − 1

2
τk0

.

It means that for all k = 1, . . . , k0 − 1

d[τk,τk−1](x(.)) <
N − 1

2
τk ,

that is

(N − 1)τk − d[τk,τk−1](x(.)) >
N − 1

2
τk .

Then we can use for k = 1, . . . , k0 − 1 estimate (53), obtaining:

y0 ≥ Nk0−1 yk0−1 +

k0−2∑
j−0

N jsi . (55)

But, from (47), we deduce in particular that

yk0−1 > (1− ε) d[τk0
,τk0−1](x(.)) ≥ (1− ε) N − 1

2
τk0

.

As a consequence

y0 > Nk0−1 N(N − 1)

2(N + 1)

1

Nk0
≥ N − 1

2(N + 1)
.

In conclusion, observing that ||x(.)− x̂(.)||L∞ ≥ y0, we have proved that, for all i ≥ 10:

||x(.)− x̂(.)||L∞([si,1]) ≥
√

2

2
× y0 ≥

√
2

2
min

{
N − 1

2(N + 1)
;

2N(N − 1)

(N + 1)(3N + 1)

}
=

√
2(N − 1)

4(N + 1)
.
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