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Abstract

This paper provides necessary conditions of optimality for optimal control problems, in which
the pathwise constraints comprise both ‘pure’ constraints on the state variable and also ‘mixed’
constraints on control and state variables. The proofs are along the lines of earlier analysis for
mixed constraint problems, according to which Clarke’s theory of ‘stratified’ necessary conditions is
applied to a modified optimal control problem resulting from absorbing the mixed constraint into the
dynamics; the difference here is that necessary conditions which now take account of the presence
of pure state constraints are applied to the modified problem. Necessary conditions are given for a
rather general formulation of the problem containing both forms of the constraints, and then these
are specialized to apply to problems having special structure. While combined pure state and mixed
control/state problems have been previously treated in the literature, the necessary conditions in this
paper are proved under less restrictive hypotheses and for novel formulations of the constraints.
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1 Introduction

The Pontryagin Maximum Principle (PMP), dating from the 1950’s, is a cornerstone of Optimal Control
Theory [15]. In its original form, the PMP provides necessary conditions that a solution x(.) : [a, b]→ Rn
to a controlled differential equation (named a state trajectory) and the associated control function u(.) :
[a, b]→ Rm, minimize a cost function, subject to a pathwise constraint on the control function u(.):

u(t) ∈ U(t) for all t ∈ [a, b]

and to a constraint on the endpoints of x(.):

(x(a), x(b)) ∈ E ,

in which U(t) ⊂ Rm, a ≤ t ≤ T , and E ⊂ Rn × Rn are given sets. The PMP features an absolutely
continuous function p(.) (the costate trajectory) that satisfies a differential equation, named the costate
equation (or a related differential inclusion, if the data is non-smooth) and boundary conditions named
the transversality conditions. Information is then provided about the optimal control: ‘the Hamiltonian
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evaluated along the optimal state trajectory and costate trajectory is maximized at the minimizing con-
trol function, pointwise in time’.

In subsequent research into extensions to take account of pathwise constraints also for state trajectories,
it was early recognised that different techniques were required to deal with the two types of constraints:

1. mixed control/state constraints:

φ1(t, x(t), u(t)) ≤ 0 and φ2(t, x(t), u(t)) = 0 , (1.1)

2. pure state constraints: h(t, x(t)) ≤ 0 ,

involving the given functions φ1(., ., .), φ2(., ., .) and h(., .).

In the mixed control/state constraint literature, typified by [13], [8] and [10], the aim is usually to show
that the constraint can be accommodated, under a suitable constraint qualification, by means of Lagrange
multipliers, namely suitably bounded measurable functions ζ1(.) and ζ2(.) on [a, b]. The modified PMP
is, once again, expressed in terms of an absolutely continuous costate trajectory p(.). It takes the form
of the original PMP, in a restricted sense, when the cost is modified by the addition of the term:∫ b

a

φ1(t, x(t), u(t)) · ζ1(t)dt+

∫ b

a

φ2(t, x(t), u(t)) · ζ2(t)dt,

together with ‘complementary slackness’ conditions. (The conditions are ‘restricted’ in the sense that the
Hamiltonian is maximized along the optimal state trajectory x̄(.), not over U(t) but over the smaller set
U(t) ∩ {u′ : φ1(t, x̄(t), u′) ≤ 0 and φ2(t, x̄(t), u′) = 0}.)

Implicit in the derivation of this modified PMP is the notion that, under a suitable ‘constraint qualifi-
cation’, the mixed constraints can be absorbed into the dynamic constraint in such a manner that the
hypotheses on the dynamic constraint invoked in the original PMP continue to be satisfied; application
of the original PMP to the reformulated optimal control problem, with an ‘absorbed’ dynamic constraint,
yields the desired, modified, necessary conditions.

It might be thought that the theory of necessary conditions for pure state constraints ‘h(t, x(t)) ≤ 0’
could simply be subsumed into that for mixed state constraints, by setting φ1(t, x, u) = h(t, x). But this
is not possible (if we are to use the proof techniques referred to above) because, when φ1(t, x, u) does
not depend on u(.), the constraint qualification is violated, in consequence of which the mixed constraint
cannot be used to eliminate control variable components and thereby generate an equivalent optimal
control problem to which standard versions of the PMP can be applied. This is the reason why ‘pure’
state constraints have been treated separately from ‘mixed control/state constraints’, and accounts for
the fundamentally different nature of modifications to the PMP that have been derived for optimal con-
trol problems with pure state constraints: the modified PMP, in the latter case, is formulated in terms of
a ‘measure multiplier’ and a, possibly discontinuous, costate trajectory q(.) that is of bounded variation.
Papers rigorously treating pure state constraints and involving a discountinuous costate trajectory go
back to the independent work of Dubovitskii and Milyutin [9] and of Warga [20] in the 1960’s; references
to the early literature appear, for example, in [19]. Necessary conditions to cover the combined occurence
of the two types of constraints has been derived by Dmitruk [10] and other members of the Dubovitski-
Milyutin school (see [11] for an overview of this work), and also by Makowski and Neustadt [13].

A breakthrough in the development of new tools to tackle a variety of differently structured optimal con-
trol problems, with nonsmooth data, was the publication of Clarke’s memoir [4], the centrepiece of which
was ‘stratified’ necessary conditions for optimal control problems, whose dynamic constraint took the form
of a differential inclusion. The memoir introduced a new, and very useful, way of capturing the requisite
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Lipschitz continuity-like properties of the differential inclusion for the validation of the Euler-Lagrange
inclusion, and related necessary conditions, namely the ‘bounded slope’ hypothesis. Subsequently, Clarke
and Pinho [5] examined the implications of these tools for ‘mixed constraint problems’. Necessary con-
ditions were provided for very general formulations of mixed constraint problems, by showing that they
could be reduced to the optimal control problems treated in [4], by absorbing the mixed constraints into
the dynamic constraint in such a manner that the bounded slope hypothesis continued to be satisfied.
The results in [5] improve on many earlier-derived mixed constraint conditions, as described in detail in
[5, Section 8], in some respects even when attention is restricted to problems with smooth data. However
the presence of pure state constraints is excluded from the necessary conditions in [5]:

‘. . the bounded slope condition excludes unilateral state constraints . . It is well-known that the neces-
sary conditions of the type given . . fail, and their appropriate extensions involve measures and costate
trajectories that are discontinuous’.

The aim of this paper is to provide extensions of the necessary conditions for mixed control/state con-
straints problems of [5], to allow also for pure state constraints. A key tool is the set of stratified necessary
conditions of [1], that generalize the main necessary conditions in Clarke’s memoir, to allow for unilateral
state constraints. The proof technique for deriving necessary conditions, applying to optimal control
problems with both mixed control/state and pure state constraints, is to reduce the problems to ones
involving pure state constraints alone, by absorbing the mixed constraints into the dynamic constraint,
and applying the stratified pure-state-constraint necessary conditions of [1].

The necessary conditions for combined mixed control/state and pure state constraints of this paper re-
duce (in important respects) to the main necessary conditions in [5] and [6] for mixed constraints alone
(both in a general setting and when the mixed constraint has explicit representations including those of
[6]), following removal of the pure state constraint. [5, Section 8] (‘relation to the literature’) gives details
of the respects in which the necessary conditions in [5] improve on earlier necessary conditions, regarding
hypotheses on the mixed state constraint data. These improvements are all the more in evidence in this
paper, since the framework is broadened to include pure state constraints. On the other hand, this paper
extends the earlier necessary conditions involving both mixed constraints and pure state constraints in [10]
and [13], by allowing non-smooth data, by adopting a very general formulation of the mixed constraints
of the form ‘(x(t), v(t)) ∈ S(t, w(t))’ involving the controls (u = (v, w)) and states x in place of a col-
lection of functional equality and inequality constraints, and by permitting general endpoint constraints.

This paper treats only optimal control problems with mixed constraints that are ‘regular’, in the sense
that they separate into a constraint satisfying the bounded slope condition and pure control and state
constraint. It fails to provide conditions for problems with mixed constraints that do not decompose in
this way, for example ‘|x|2 + |u|2 ≤ 1’. Necessary conditions for such problems have been studied by
Milyutin et al. For an overview, references to this work and some open questions, see [11].

We mention that the ‘stratified’ necessary conditions in this paper are expressed in terms of an arbitrary
radius multifunction R(t), in place of the balls ˙̄x(t) + r(t)B involving the radius function r(t), as in
[5]. This extra degree of generality in these necessary conditions for the general formulation of the
optimal control problem of Section 2, simplifies the application of these conditions to take account of
more structured formulations of the problem in Section 3, as compared with the analysis in [6].

Finally, at the suggestion of a reviewer, we comment on key differences between our proof techniques
and the Dubovitskii/Milyutin scheme applied to control/state constraint problems as summarized, for
example, in [11]. In the latter literature, the necessary conditions are deduced from an abstract Lagrange
multiplier rule for an abstract optimization problem on Banach spaces, involving constraints associated
with the original dynamic constraint, with the endpoint constraints, and with the mixed constraint (each
parameterized by a control function). The constraint associated with the original dynamic constraint is
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expressed in terms of a mapping from W 1,1 to L1. It is straightforward to show that this mapping is
‘regular’ (i.e. Frechet differentiable and surjective) as required for the application of the abstract multi-
plier rule; it gives rise to a Lagrange multiplier in L∞ = (L1)∗, which, in consequence of the multiplier
rule conditions, can be represented by an absolutely continuous function (in the case of no pure state
constraints), interpreted as the costate trajectory. The endpoint constraints translate into transversality
conditions via the abstract multiplier rule. The troublesome constraint is the mixed constraint which, in
the abstract framework, gives rise to a constraint function with range space in L∞. The Lagrange multi-
plier associated with this constraint is an element in the topological dual space (L∞)∗. An important step
in the application of the Dubovitskii/Milyutin scheme in this context is to show that, under a constraint
qualification (positive linear independence of the gradients of the ‘mixed’ constraint functional w.r.t. the
control variable), this element can be represented by a point in the pre-dual space L∞; this point appears
as a Lagrange multiplier for the mixed constraint in the final statement of the necessary conditions. The
proof techniques used in this paper (and in the related paper [6]), by contrast, circumvent altogether the
difficulties associated with the fact that the natural space for the mixed-constraint Lagrange multiplier
is in the difficult-to-deal-with space (L∞)∗; this is achieved by using the constraint qualification (now
manifesting itself as the ‘bounded slope’ condition) at the beginning of the proof, to justify eliminating the
mixed constraint by absorbing it into the dynamic constraint, instead of at the end of the proof to refine
the consequences of the application of the abstract Lagrange multiplier. The dynamic constraint (in our
framework) now becomes a differential inclusion but, with the help of nonsmooth analysis, this can be
simply accommodated in the necessary conditions via a costate function, corresponding to the straight-
forward manner in which the differential equation constraint is dealt with in the Dubovistskii/Milyutin
scheme. Advantages of our approach are simplicity (at least in avoiding consideration of the (L∞)∗ as a
multiplier space) and that it permits consideration of nonsmooth data. An advantage of the Dubovist-
skii/Milyutin scheme is that it can be also used to derive necessary conditions for ‘irregular’ problems,
namely problems for which the pathwise constraints do not separate into a pure state constraint and a
mixed control/state constraint satisfying the bounded slope condition (see, e.g., [11]).

Notation: The Euclidean norm of a vector x ∈ Rn is |x|. B indicates the open unit ball in Rn and the
distance function of a point x ∈ Rn from a set A ⊂ Rn is defined as

dA(x) := inf{|x− y| : y ∈ A} .

The convex hull of the set A is written coA. Given a multifunction F (.) : Rn ; Rk, we denote by GrF (.)
the graph of F (.).

L1( [a, b] ; Rn ) and L1( [a, b] ; Rn ) have their usual meanings as spaces of integrable and essentially
bounded, measurable n-vector valued functions on [a, b]. W 1,1( [a, b] ; Rn ) denotes the space of abso-
lutely continuous functions x : [a, b]→ Rn, equipped with the norm

‖x‖W 1,1 := |x(a)|+
∫ b

a

|ẋ(t)| dt .

We write L1 in place of L1([a, b];Rn), etc., when no ambiguity arises. NBV +[a, b] denotes the space of
nondecreasing, real-valued functions µ(.) on [a, b] of bounded variation, vanishing at the point a and right
continuous on (a, b). The total variation of a function µ(.) ∈ NBV +[a, b] is written ||µ||T.V.. As is well
known, each point µ(.) ∈ NBV +[a, b] defines a Borel measure on [a, b]. This associated measure is also
denoted µ. We denote by supp the support of the measure µ.

We make use of some constructs from nonsmooth analysis, described in detail, for example, in [7, 19]:
given a closed set E ⊂ Rn and x ∈ E, the proximal normal cone of E at x is

NP
E (x):={ζ ∈ Rn : ∃ ε > 0 and M > 0 s.t. ζ · (y − x) ≤M |x− y|2 for all y ∈ E ∩ x+ εB}.
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The limiting normal cone of E at x is

NL
E (x) := { lim

i→∞
ζi : ζi ∈ NP

E (xi) and xi ∈ E for all i, and xi → x} .

The Clarke normal cone of E at x is NC
E (x) := coNL

E (x). If E is convex, the two normal cones coincide
with the normal of cone of convex analysis, and are written NC

E (x). More generally, a set E is said to be
regular at x ∈ E if NL

E (x) = NC
E (x).

The Clarke tangent cone of E at x is the polar set of the limiting normal cone, i.e.

TCE (x) := {η ∈ Rn | 〈η, ζ〉 ≤ 0 for all ζ ∈ NL
E (x)} .

Given a lower semicontinuous function f(.) : Rn → R ∪ {+∞} and a point x ∈ dom f(.) := {x ∈
Rn | f(x) < +∞}, the proximal subdifferential of f(.) at x is the set

∂P f(x) :=

{
ζ ∈ Rn : ∃ σ > 0 and ε > 0 such that ∀ y ∈ x+ εB

f(y)− f(x) ≥ 〈ζ, y − x〉 − σ|y − x|2
}
.

The limiting subdifferential of f(.) at x is

∂Lf(x) := { lim
i→∞

ζi : ζi ∈ ∂P f(xi), xi → x, f(xi)→ f(x)} .

In the case f(.) is Lipschitz continuous on a neighborhood of x, we define Clarke generalized gradients
∂Cf(x) := co ∂Lf(x). We say that f(.) is strictly differentiable at x if f(.) is Frêchet differentiable at x,
Lipschitz continuous on a neighborhood of x and {∇f(x)} = ∂Cf(x) . When the function f(.) depends
on two variables (x, y) we write ∂Cf(., ȳ)(x̄) to denote the Clarke generalized gradient of the function
x→ f(x, ȳ) at x̄.

2 Necessary Conditions for a General Problem

Consider the following optimal control problem:

(P )



Minimize J(x(.), u(.)) := `(x(a), x(b)) +
∫ b
a

Λ(t, x(t), u(t)) dt

over processes (x(.), u(.)) such that

ẋ(t) = f(t, x(t), u(t)), a.e. t ∈ [a, b],

u(t) = (v(t), w(t)), w(t) ∈W (t), a.e. t ∈ [a, b],

(x(t), v(t)) ∈ S(t, w(t)), a.e. t ∈ [a, b],

h(t, x(t)) ≤ 0, for all t ∈ [a, b],

(x(a), x(b)) ∈ E .

the data for which comprises integers n > 0, m > 0, mv ≥ 0 and mw ≥ 0 such that m = mv + mw,
functions `(., .) : Rn × Rn → R, Λ(., ., .) : [a, b] × Rn × Rm → R, f(., ., .) : [a, b] × Rn × Rm → Rn
and h(., .) : [a, b] × Rn → R, and sets S ⊂ R1+n+m, E ⊂ Rn × Rn and W ⊂ R1+mw . (Interpret
W (t) := {w : (t, w) ∈W}, S(t, w) := {(x, v) : (t, x, (v, w)) ∈ S}, S(t, x) = {u : (t, x, u) ∈ S}, etc.)

A process is a pair of functions (x(.), u(.)), in which x(.) is a W 1,1([a, b];Rn) function and u(.) =
(v(.), w(.)) : [a, b]→ Rm is a measurable function, satisfying ẋ(t) = f(t, x(t), u(t)) and w(t) ∈ W (t) a.e..
A process (x(.), u(.)) in which x(.) and u(.) satisfy the constraints of (P ), and for which t→ Λ(t, x(t), u(t))
is integrable, is called a feasible process.

As in [4], we consider local minimizers for problem (P ), with respect to a given ‘radius multifunction’
R(.) in the following sense:
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Definition 2.1

(a): a multifunction R(.) : [a, b] ; Rm is called a radius multifunction if R(t) is a non-empty, open,
convex set for each t and there exists r0 > 0 such that r0B ⊂ R(t) a.e..

(b): Given a radius multifunction R(.) : [a, b] ; Rm, a feasible process (x̄(.), ū(.)) for (P ) is said to be
a W 1,1 local minimizer w.r.t. R(.) if there exists ε > 0 such that

J(x(.), u(.)) ≥ J(x̄(.), ū(.))

over all the feasible processes (x(.), u(.)) satisfying

‖x− x̄‖W 1,1 ≤ ε and u(t) ∈ R(t) a.e..

If R(t) ≡ Rm, we simply say that ‘(x̄(.), ū(.))) is a W 1,1 local minimizer’.

We shall invoke the following hypotheses, in which (x̄(.), (ū(.) = (v̄(.), w̄(.))) is a given feasible process.
For some ε > 0:

(H1): `(., .) is Lipschitz continuous on a neighborhood of (x̄(a), x̄(b)). E is closed. W and S are L×Bm′

measurable subsets of [a, b]×Rmw and [a, b]×Rm+n respectively, where L×Bm′
denotes the product

σ-algebra of L and Bm′
, in which L denotes the Lebesgue subsets of [a, b] and Bm′

the Borel subsets
of Rm′

for m′ = mw or m+ n.

(H2): h(., .) is upper semicontinuous and there exists kh > 0 such that

|h(t, x′)− h(t, x)| ≤ kh|x′ − x|,

for all t in [a, b] and all x′, x ∈ x̄(t) + εB.

(H3): for each (x, v) ∈ Rn × Rmv , f(., x, (v, .)) and Λ(., x, (v, .)) are L × Bmw measurable. For a.e.
t ∈ [a, b] and every w ∈ W (t) the functions (x, v) 7→ f(t, x, v, w) and (x, v) 7→ Λ(t, x, v, w) are
Lipschitz continuous on a neighborhood of

((x̄(t) + εB)×R(t, w)) ∩ S(t, w),

where R(t, w) := {v : (v, w) ∈ R(t)}. The Lipschitz constants, which may depend on t and w,
can be chosen to be L × Bmw measurable functions. We denote these Lipschitz constants by the
symbols kfx(t, w), kfv (t, w), kΛ

x (t, w), and kΛ
v (t, w), thus:

|Λ(t, x1, v1, w)− Λ(t, x2, v2, w)| ≤ kΛ
x (t, w)|x1 − x2|+ kΛ

v (t, w)|v1 − v2| ,
|f(t, x1, v1, w)− f(t, x2, v2, w)| ≤ kfx(t, w)|x1 − x2|+ kfv (t, w)|v1 − v2|

for any (x1, v1) and (x2, v2) in a neighbourhood of ((x̄(t) + εB)×R(t, w)) ∩ S(t, w) and w ∈W (t),
a.e. t ∈ [a, b].

(BS): (‘Bounded Slope Condition’) The set S(t, w) is closed for each w ∈W (t), a.e. t ∈ [a, b]. There exists
a measurable function kS(.) such that, given any w ∈ W (t) and (x, v) ∈ ((x̄(t) + εB)×R(t, w)) ∩
S(t, w) we have

(α, β) ∈ NP
S(t,w)(x, v) ⊂ Rn × Rmv =⇒ |α| ≤ kS(t)|β|, a.e. t ∈ [a, b] ,

and kS(t) ≥ k0 > 0, a.e., for some k0 > 0.

There follows a set of necessary conditions for a feasible process to be a W 1,1 local minimizer w.r.t. R(.),
a given radius multifunction. For λ0 ≥ 0 define the Hamiltonian:

Hλ0

(t, x, v, w, p) := p · f(t, x, v, w)− λ0 Λ(t, x, v, w) .
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Theorem 2.2 (General Necessary Conditions) Let R(.) be a radius multifunction and let (x̄(.), ū(.) =
(v̄(.), w̄(.))) be a W 1,1 local minimizer w.r.t. R(.). Assume hypotheses (H1)-(H3) and (BS) are satisfied.
Assume also that

kfx(t, w̄(t)), kΛ
x (t, w̄(t)), kS(t)[kfv (t, w̄(t)) + kΛ

v (t, w̄(t))] are integrable , (2.1)

and
∃ η > 0 such that ū(t) + ηkS(t)B ⊂ R(t), for a.e. t ∈ [a, b]. (2.2)

Then there exists a multiplier set (p(.), µ(.), λ0) ∈ W 1,1 ×NBV +[a, b]× R+ and a µ-integrable function
m(.) : [a, b]→ Rn such that

(a): λ0 + ‖p(.)‖L∞ + ‖µ‖T.V. = 1,

(b): (−ṗ(t), 0) ∈ ∂C Hλ0

(t, ., ., w̄(t), q(t))(x̄(t), v̄(t))−NC
S(t,w̄(t))(x̄(t), v̄(t)) a.e.,

(c): m(t) ∈ co ∂>x h(t, x̄(t)) µ-a.e. and supp{µ} ⊂ {t : h(t, x̄(t)) = 0},

(d): (q(a),−q(b)) ∈ λ0∂L`(x̄(a), x̄(b)) +NL
E (x̄(a), x̄(b)).

(e): For any u = (v, w) ∈ R(t) ∩ S(t, x̄(t)) such that w ∈W (t),

Hλ0

(t, x̄(t), ū(t), q(t)) ≥ Hλ0

(t, x̄(t), u, q(t)) a.e. t ∈ [a, b].

Here, q(t) :=

{
p(t) +

∫
[a,t]

m(s)µ(ds) if t ∈ (a, b]

p(a) if t = a ,
(2.3)

S(t, x) = {(v, w) : (t, x, (v, w)) ∈ S} (consistent with earlier notation), and ∂>x h(t, x) is the set

∂>x h(t, x) := { lim
(ti,xi)→(t,x)

∇h(ti, xi) : ∇h(ti, xi) exists and h(ti, xi) > 0 for each i} .

A proof of Theorem 2.2 is given in Section 4. These conditions are expressed in terms of the function
q(.) that is right continuous on (a, b). The assertions of the theorem remain the same if q(.) is replaced
by the function q′(.), which coincides with q(.) at the end-times, and which, at interior points t ∈ (a, b)
is left continous and given by q′(t) = p(t) +

∫
[a,t)

m(s)µ(ds), as in [19].

Comments.

(i): The requirement that kS(.) in (BS) satisfies kS(t) ≥ k0, for some k0 > 0, is essential. The minoriza-
tion condition might seem superfluous because, if it is violated, we can always arrange that (BS)
is satisfied by addition of a positive constant. But this ignores the fact that kS(.) is also required
to satisfy the condition ū(t) + ηkS(t) ⊂ R(t), and addition of a positive constant to kS(.) might
result in violation of this latter condition. A simple counter example can be constructed along the
lines of [1, Ex. 1] illustrating that the assertions of Th. 2.2 are in general false if the minorization
condition is omitted.

(ii): Because the necessary conditions (a)-(e) are invariant under positive scaling of the Lagrange mul-
tipliers (λ0, p(.), µ), they can be replaced by equivalent conditions, in which (a) now takes the form
λ0 + ‖p(.)‖L∞ + ‖µ‖T.V. > 0. This alternative form is convenient in some applications.

(iii): In the formulation (P ) of the optimal control problem, we interpret ‘(x(t), v(t)) ∈ S(t, w(t)) a.e.’ as
a mixed control/state constraint, as in the previous work of Clarke and Pinho [5]. This description
of the constraint reduces to the standard mixed constraint description (1.1), in the form of a set
of functional inequality and equality constraints, when the data does not depend on w, so that we
can identify u with the control component v alone, and S(t) (no longer dependent on w) is chosen
to be

S(t) := {(x, u) : φ1(t, x, u) ≤ 0 and φ2(t, x, u) = 0} . (2.4)
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While the special case (2.4) covers most applications involving mixed control/state constraints,
the more general description ‘(x(t), v(t)) ∈ S(t, w(t)))’ is a useful starting point for formulating
hypotheses under which necessary conditions of optimality may be derived for a wide variety of
problems.

(iv): The pure state constraint description ‘h(t, x(t)) ≤ 0’ of problem (P ), involving the function h(t, x)
which is upper semicontinuous and uniformly Lipschitz w.r.t. the x variable, has been widely em-
ployed since its introduction in [3], because of its versality. We recall that it covers multiple
functional state inequality constraints of the type ‘hi(t, x(t)) ≤ 0’, i = 1, . . . , ks, which can be
accommodated by setting h(t, x) := maxi hi(t, x), and it subsumes constraints imposed on a given
closed subset I ⊂ [a, b] of the time interval, of the form

x(t) ∈ A(t) for all t ∈ I,

in which A(.) : [a, b] → Rn is a given upper semicontinuous multifunction, taking values closed
subsets. In this case we choose

h(t, x) :=

{
dA(t)(x) if t ∈ I
−1 otherwise .

(v): Following [10] and [5], we have partitioned the control variable as u = (v, w); the components v
and w will each have a different status, regarding the hypotheses that are imposed on them for
the derivation of necessary conditions. The purpose here is to capture within a single framework,
and thereby achieve greater generality, problems involving a simple set inclusion constraint on the
control ‘w(t) ∈ W (t)’, problems in which the contol/state variables (x, v) are required to satisfy,
say, pathwise functional equality and inequality constraints, and a combination of such problems.
A version of the theorem, valid for the case mw = 0 is obtained by eliminating, in an obvious way,
all reference to w variable in the theorem statement and accompanying hypotheses. Likewise, a
version valid for the case mv = 0 is obtained by removing all reference to the v variable.

(vi): Theorem 2.2 extends [5, Theorem 3.2], to allow for the presence of additional, pure state con-
straints. Notice that, as in [5], Theorem 2.2 incorporates information about the dependence of the
Hamiltonian on the control, along a minimizing state trajectory and costate trajectory both in the
form of the extended costate inclusion (c.f. [16]) and the Weierstrass condition (conditions (b) and
(e) of the theorem statement). Earlier necessary conditions for problem (P), involving both pure
and mixed constraints, for problems with nonsmooth data and for which ‘bounded slope’ type hy-
potheses on the mixed constraint are invoked, appear in [2]. Our necessary conditions, embodied in
Theorem 2.2, broadly confirm the assertions of [2, Theorem 2] (the convergence analysis in [2], jus-
tifying the costate inclusion, is incomplete) and extend them in numerous respects. The conditions
in this paper allow for a more general description of the mixed constraint (not just one involving
mixed equality and inequality constraints as in [2]), for partitioned control variables u = (v, w)
in which very much weaker hypotheses are imposed on the data regarding w dependence and for
‘stratification’ (i.e. minimizers w.r.t. a radius multifunction). In our applications of the necessary
conditions in the next section, we also allow non-compact control constraint sets.

3 Necessary Condition for Mixed Constraints in Explicit Form

Theorem 2.2 of the previous section provides necessary conditions for optimal control problems involving
mixed state and control constraints and pure state constraints, when the mixed constraint is captured
by the condition

(x(t), u(t)) ∈ S(t) ,
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in which S(.) is a given multifunction. Theorem 2.2 can be used as a starting point for the derivation of
necessary conditions, in which the set S(.) is of the form

S(t) := {(x, u) ∈ Rn × Rm : φ(t, x, u) ∈ Φ(t) and u ∈ U(t)}, (3.1)

in which φ : [a, b] × Rn × Rm → Rκ and Φ(.) : [a, b] ; Rκ is a Lebesgue measurable multifunction
that takes values closed sets. The most widely considered special case of (3.1) (functional inequality and
equality constraints) is that when, for some integers κ1 ≥ 0 and κ2 ≥ 0 such that κ1 + κ2 = κ, φ(., ., .) is
partitioned as φ(., ., .) = (φ1(., ., .), φ2(., ., .)) into Rκ1 and Rκ2 valued functions respectively and

Φ(t) ≡
κ1︷ ︸︸ ︷

(−∞, 0]× . . .× (−∞, 0] ×
κ2︷ ︸︸ ︷

{0} × . . .× {0} . (3.2)

The idea is to express the conditions directly in terms of φ(., .) and Φ(.), under hypotheses that generalize
earlier conditions governing the u-dependence of φ(x, u) (classical rank conditions or, more generally,
Mangasarian-Fromowitz type conditions on the gradients of this function, and ‘surjectivity conditions’
originating in the work of Schwarzkopf [17].) We consider henceforth the variant of problem (P ), labelled
(PS), in which we no longer distinguish block components v and w of the control variable u, and when
we impose both a mixed constraint of the type (3.1), an implicit control constraint u ∈ U(t) (in which
U(.) : [a, b] ; Rm), and a pure state constraint:

(PS)



Minimize `(x(a), x(b)) +
∫ b
a

Λ(t, x(t), u(t))dt
over processes (x(.), u(.)) satisfying
ẋ(t) = f(t, x(t), u(t)) a.e.,
φ(t, x(t), u(t)) ∈ Φ(t) and u(t) ∈ U(t) a.e.,
h(t, x(t)) ≤ 0 for all t ∈ [a, b],
(x(a), x(b)) ∈ E .

The following theorem provides necessary conditions for optimal control problems involving mixed con-
straints formulated as (3.1), under hypotheses on the mixed constraint data, expressed directly in terms
of φ(., ., .) and Φ(.), namely:

(H3)′: Φ(.) is a Lebesgue measurable multifunction taking values non-empty, closed subsets of Rκ. U(.) has
L × Bm measurable graph and takes values closed sets. f(t, ., .), Λ(t, ., .) and φ(t, ., .) are Lipschitz
continuous on a neighbourhood of (x̄(t) + εB×R(t)) ∩ S(t), for a.e. t ∈ [a, b],

in which (x̄(.)), ū(.)) is the process of interest, and (for a given radius multifunction R(.)), the following
constraint qualification is imposed, in place of the ‘bounded slope’ condition (BS):

(CQ): There exists a measurable function M(.) : [a, b] → R such that, for every x ∈ x̄(t) + εB and
u ∈ R(t) ∩ U(t) satisfying φ(t, x, u) ∈ Φ(t),

λ ∈ NL
Φ(t)(φ(t, x, u)), (α, β) ∈ Rn × Rm

(α, β) ∈ ∂L (λ · φ)(t, ., .)(x, u) + {0} ×NL
U(t)(u)

}
=⇒ |λ| ≤M(t)|β| a.e..

Theorem 3.1 (Explicit Mixed Constraints Conditions I) Let (x̄(.), ū(.)) be a W 1,1 local minimizer
for (PS), w.r.t. some radius multifunction R(.). Assume that, for some ε > 0, hypotheses (H1), (H2),
(H3 ′) and (CQ) are satisfied. Assume also

kfx(t), kΛ
x (t), M(t)kφx(t)[kfu(t) + kΛ

u (t)] are integrable

and there exists η > 0 such that ū(t) + ηM(t)kφx(t)B ⊂ R(t) a.e..

Then there exists a multiplier set (p(.), µ, λ0) ∈W 1,1×NBV +×R+ and a bounded µ-measurable function
m(.) : [a, b] → Rn for which all the assertions of Theorem 2.2 are valid, when (PS) is interpreted as a
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special case of (P), in which the w component of the control is absent (write u for v) and S(t) is as
defined in (3.1).

If in addition φ(t, ., .) is strictly differentiable at (x̄(t), ū(t)) and U(t) and Φ(t) are regular at ū(t) and at
φ(t, x̄(t), ū(t)) respectively, a.e. t ∈ [a, b], then the costate inclusion condition (b) in Theorem 2.2 can be
replaced by

(−ṗ(t), 0) ∈ ∂C{q(t) · f(t, ., .)− λ0Λ(t, ., .)− 〈λ(t), φ(t, ., .)〉}(x̄(t), ū(t))− {0} ×NC
U(t)(ū(t)) a.e., (3.3)

in which λ(.) : [a, b]→ Rκ is some measurable function that satisfies

λ(t) ∈ NC
Φ(t)(φ(t, x̄(t), ū(t))) a.e.. (3.4)

Furthermore, for M(.) as in (CQ),

|λ(t)| ≤M(t){|q(t)|kfu(t) + λ0kΛ
u (t)} a.e..

A proof of Theorem 3.1 is given in Section 5.

Comments.

(i): As we have earlier observed, the standard formulation of mixed constraints, in the form of a com-
bination of functional equality and inequality constraints, is captured by choosing φ(., ., .) and Φ(.)
according to (3.1) and (3.2). In this case, the necessary conditions of Theorem 3.1 take a familiar
form, involving a multiplier function λ(.) = (λ1(.), λ2(.)), partitioned into multiplier functions as-
sociated with the inequality constraint, λ1(.), and with the equality constraint, λ2(.). If the data is
smooth, condition (3.3) becomes the costate equation with added multiplier terms

−ṗ(t) = q(t) · fx(t, x̄(t), ū(t))− λ1(t) · φ1
x(t, x̄(t), ū(t))− λ2(t) · φ2

x(t, x̄(t), ū(t))

(as, for example, in [8]) and (3.4) is simply the complementary slackness condition, relating to the
inequality constraint multiplier λ1(.):

λ1
i (t) ≥ 0 and ‘φ1

i (t, x̄(t), ū(t)) < 0 =⇒ λ1
i (t) = 0’ for i = 1, . . . , κ1, a.e..

(ii): Necessary conditions for nonsmooth optimal control problems with mixed constraints formulated
as ‘φ(t, x(t), u(t)) ∈ Φ(t)’ and in which constraint qualification (CQ) is invoked, are given in [5].
Theorem 2.2 extends [5, Theorem 4.3] to allow also for the presence of a pure state constraint
(h(t, x(t)) ≤ 0).

Typically in the earlier mixed constraints literature, when Φ(.) is given by (3.2), necessary conditions are
derived under hypotheses on gradients of the function φ(t, x, u) w.r.t. the u variable, which ensure satis-
faction of hypothesis (CQ). An exception is the set of necessary conditions due to Schwarzkopf [17], [18] in
which hypotheses imposed on the gradients of φ are replaced by a convexity hypothesis on the generalized
velocity sets involved, together with a surjectivity hypothesis on the mixed constraint functional φ(., ., .).

The following theorem provides necessary conditions for optimal control problem (PS), involving both
a mixed constraint and an implicit control constraint under regularity hypotheses on the data (labelled
(H3′′) that replace (H3′)), and under hypotheses imposed on the mixed constraint data (labelled (SC)
‘Schwarzkopf Condition’), which retain the character of the hypotheses in [17], namely

(H3′′) (a) the function (t, u) 7→ (f(t, x, u), φ(t, x, u)) is L × Bm measurable for each x, U(.) has L × Bm
measurable graph. Φ(.) is a Lebesgue measurable multifunction taking values non-empty,
closed subsets of Rk,
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(b) there exists a function kf (.) ∈ L1 such that, for every u ∈ U(t) the function f(t, ., u) is Lipschitz
continuous with Lipschitz constant kf (t) on x̄(t) + εB, a.e.,

(c) there exists a constant kφ such that for a.e. t, every u ∈ U(t), the function φ(t, ., u) is Lipschitz
continuous with Lipschitz constant kφ on x̄(t) + εB, and this function is strictly differentiable
at x̄(t),

and

(SC) There exists an integrable function r(.), and a constant δ > 0 such that the multifunction

Ur(t) := {u ∈ U(t) : |f(t, x̄(t), u)| ≤ r(t) a.e. }
satisfies

φ(t, x̄(t), ū(t)) + δB ⊂ φ(t, x̄(t), Ur(t))− T ηt a.e. (3.5)

where, for each t, T ηt is a subset of Rκ satisfying

T ηt ⊂ ∩
z∈Sηt

(
TCΦ(t)(z)

)
in which

Sηt := {z ∈ Φ(t) : |z − φ(t, x̄(t), ū(t))| ≤ η × (1 + dr(t))}
for some η > 0. Here dr(.) is the (possibly infinite valued) function

dr(t) := 2 · sup{|φ(t, x̄(t), u)| : u ∈ Ur(t)} . (3.6)

(Notice that a possible choice of T ηt in (SC) is T ηt = {0}. But other choices may be possible, such as that
discussed in Comment (i) below, that make condition (3.5) less restrictive.)

Define the extended Hamiltonian by

Hλ0

(E)(t, x, u, p, λ) = Hλ0

(t, x, u, p)− 〈λ, φ(t, x, u)〉.

Theorem 3.2 (Explicit Mixed Constraints Conditions II) Let (x̄(t), ū(t)) be a W 1,1 local mini-
mizer for (PS). Assume, for some ε > 0, (H1), (H2), (H3 ′′) and (SC) are satisfied. Assume also

(C): {(f(t, x, u),Λ(t, x, u), φ(t, x, u)) : u ∈ U(t)} is convex, for all x ∈ x̄(t) + εB, a.e. t ∈ [a, b].

Then there exists a multiplier set (p(.), µ, λ(.), λ0), in which (p(.), µ, λ0) ∈ W 1,1 × NBV + × R+ and
λ(.) : [a, b]→ Rκ is an integrable function, such that

(a) λ0 + ‖p‖L∞ + ‖µ‖T.V. = 1 .

(b) −ṗ(t) ∈ ∂CHλ0

(E)(t, ., ū(t), q(t), λ(t))(x̄(t)) a.e.

(c) m(t) ∈ co ∂>x h(t, x̄(t)) µ-a.e. and supp{µ} ⊂ {t : h(t, x̄(t)) = 0}.

(d) (q(a),−q(b)) ∈ λ0∂L`(x̄(a), x̄(b)) +NL
E (x̄(a), x̄(b)) .

(e) Hλ0

(E)(t, x̄(t), ū(t), q(t), λ(t)) ≥ Hλ0

(E)(t, x̄(t), u, q(t), λ(t)) for all u ∈ U(t) a.e.,

in which q(.) is defined by (2.3) and λ(t) ∈ NC
Φ(t)(φ(t, x̄(t), ū(t))) a.e..

If the ‘convexity’ hypothesis (C) is replaced by

(C+L): There exists σ0 > 0 such that, for a.e. t ∈ [a, b], Φ(t) and U(t) are closed, convex sets, U(t) ⊂ σ0B
and φ(t, x, .) is an affine function, i.e.

φ(t, x, u) := θ0(t, x) +
∑m
k=1 u

iθi(t, x), for some functions θi(t, x) : [a, b]× Rn → Rκ, i = 0, . . . ,m.
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Then the above assertions remain valid, except that (b) is replaced by (3.3) and the ‘extended’ Weierstrass
condition (e) is replaced by the weaker Weierstrass condition of Theorem 2.2, namely

Hλ0

(t, x̄(t), ū(t), q(t)) ≥ Hλ0

(t, x̄(t), u, q(t)) for all u ∈ U(t) ∩ {u′ : φ(t, x̄(t), u′) ∈ Φ(t)}, a.e. t ∈ [a, b] .

A proof of Theorem 3.1 is given in Section 5.

Comments

(i): Necessary conditions for non - smooth optimal control problems with mixed constraints, under
Schwartzkopf type surjectivity hypotheses, are given in [6]. Theorem 3.2 extends [6, Theorem 3.2]
to allow also for pure state constraints. Even when the pure state constraint is absent, Theorem 3.2
refines [6, Theorem 3.2], because the condition (3.5) in hypothesis (SC) now involves the set T ηt .
In the most common case when Φ(.) is given by (3.2) (mixed equality and inequality constraints),
we can choose

T ηt =

κ1︷ ︸︸ ︷
(−∞, 0]× . . .× (−∞, 0] ×

κ2︷ ︸︸ ︷
{0} × . . .× {0} .

With this choice, condition (3.5) becomes:

(φ1, φ2)(t, x̄(t), ū(t)) + δ · (B× B) ⊂
(φ1, φ2)(t, x̄(t), Ur(t)) + ([0,+∞)× . . .× [0,+∞)) × ({0} × . . .× {0}) . (3.7)

In the special case when the equality constraint (‘φ2(t, x(t), u(t)) = 0’) is absent, condition (3.7)
is simply the Slater type condition: there exists δ > 0 and a measurable function u(.) such that
u(t) ∈ Ur(t) and φ1

i (t, x̄(t), u(t)) ≤ −δ a.e..

Notice that the analogous hypothesis in [6, Theorem 3.1] can be interpreted as (SC) when we take
T ηt = {0}, that is, it replaces (3.7) by the more restrictive hypothesis

(φ1, φ2)(t, x̄(t), ū(t)) + δ · (B× B) ⊂ (φ1, φ2)(t, x̄(t), Ur(t)) .

The possibility of invoking less restrictive hypotheses, expressed in terms of the tangent cone of
Φ(t) is discussed in [6, Section 3] under the heading ‘tangential covering conditions’.

(ii): Theorems 2.2, 3.1 and 3.2 provide three sets of necessary conditions that result from bringing to-
gether the ‘pure state constraints’ necessary conditions of [1] and the techniques of [6] for treating
mixed state-control constraints by absorbing them into the dynamic constraint. Similar exten-
sions can be achieved for all the sets of necessary conditions in [6], and elsewhere, for different
formulations of optimal control problems involving mixed state-control constraints, to allow for the
presence of state constraints, including differential algebraic formulations and calculus of variations
formulations.

(iii) Theorem 3.2 under hypothesis (C+L) partially answers an open question raised in [6, pag. 10]
regarding the validity of Theorem 3.2 without convexity hypotheses on the extended velocity set.

4 Proof of Theorem 2.2

The proof is an adaptation of the proof of [5, Theorem 2.1], to allow for the presence of state constraints
and for the more general radius multifunction here considered. The idea is to reformulate Problem (P) as
a differential inclusion optimal control problem with state constraints by absorbing the mixed constraint
into the dynamics. We apply known necessary conditions to the reformulated problem, and express these
necessary conditions directly in terms of the data for the original problem (P). The main difference is
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that we make use of the necessary conditions in [1, Corollary 2.2] for ‘pure’ state constrained problems,
in place of the necessary conditions for pure state constraint free problems employed in [5].

Observe at the outset that we can, without loss of generality, restrict attention to the case when the
integral cost is absent, since the full statement can be derived from the special case when L(., ., .) ≡ 0 by
means of standard state augmentation techniques. We can modify the Lipschitz constants to ensure that
kfx(., w) is positive valued and kS(t) ≥ 1 a.e., without violating the hypotheses. We can assume, finally,
that

(A1): For every t ∈ [a, b], W (t) is a finite set.

(A2): There exist an integrable function C(.) : [a, b]→ R such that, for a.e. t ∈ [a, b] and w ∈W (t):

(x, v) ∈ (x̄(t) + εB)×R(t, w) ∩ S(t, w) =⇒
|kfx(t, w)− kfx(t, w̄(t))|+ kS(t)|kfv (t, w)− kfv (t, w̄(t))|+ |f(t, x, (v, w))− ˙̄x(t)| ≤ C(t).

Reductions to special cases, involving hypotheses (A1) and (A2), introduced in [3], are now standard in
the derivation of necessary conditions (See [3, p. 201 et seq.] or [19, Lemma 6.3.1]). Justification for using
them depends on introducing finite, inner approximations of the sets W (t) and robustness properties of
the necessary conditions under limit taking: the ‘state constraint’ necessary conditions here considered
have the required robustness properties for this procedure to apply.

Let (x̄(.), ū(.)) be a W 1,1 local minimizer for (P) w.r.t. the radius multifunction R(.). Define

k(t) := max
w∈W (t)

kfx(t, w) + kS(t)× max
w∈W (t)

kfv (t, w) and c(t) := k(t)/kS(t) , (4.1)

which are integrable by (2.1) and (A2) and since kS(t) ≥ 1, and let F (., .) be the multifunction

F (t, x) := {(f(t, x, u), r(t, u)) : u = (v, w), (x, v) ∈ S(t, w), w ∈W (t)}. (4.2)

in which r(t, u) := c(t)(u− ū(t)).

We remark that F (t, x) is non-empty for all x ∈ x̄(t)+ εB, a.e. t ∈ [a, b] following, if required, a reduction
in the size of ε > 0. This is because we can deduce from the bounded slope condition (BS) and (2.2),
with the help of [4, Theorem 3.5.2.], that S(t, x, w) is non-empty for all w ∈ W (t), x ∈ x̄(t) + ε′B. a.e.
t ∈ [a, b] (for some suitably small ε′ > 0).

Consider the following optimal control problem in which the dynamics are modelled as a differential
inclusion:

(P ′)



Minimize `(x(a), x(b))

over (x(.), z(.)) ∈W 1,1 satisfying

(ẋ(t), ż(t)) ∈ F (t, x(t)) a.e. t ∈ [a, b],

h(t, x(t)) ≤ 0 for all t ∈ [a, b],

(x(a), x(b)) ∈ E, z(a) = 0 .

With the help of measurable select theory, we can show that the feasible F -trajectory (x̄(t), z̄(t) ≡ 0) is
a W 1,1 local minimizer w.r.t. the radius multifunction:

RF (t) := Rn × c(t) (R(t)− ū(t)) .

(Note that the ‘extra’ state variable z is introduced into the dynamic constraint (ẋ, ż) ∈ F of (P ′), in
order to derive stratified necessary conditions involving the radius multifunction R(.).) The hypotheses
are satisfied under which the necessary conditions of [1, Corollary 2.2] are valid, w.r.t. the W 1,1 local
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minimizer (x̄(.), z̄(.) ≡ 0). The key conditions to check, regarding the required properties of F (., .), are
the bounded slope condition (with reference to the radius multifunction RF (.)), which is here conveniently
expressed in the form: for some possibly readjusted ε > 0 and some k(.) ∈ L1 such that for any x ∈
x̄(t) + εB and and u ∈ Rm s.t. (f(t, x, u), r(t, u)) ∈ F (t, x) ∩RF (t),

(α, (β, τ)) ∈ NP
Gr F (t,.)(x, f(t, x, u), r(t, u)) ⊂ Rn × Rn × Rm =⇒ |α| ≤ k(t)|(|β|+ |τ |) , a.e. (4.3)

and the compatibility condition: there exists η > 0 such that

( ˙̄x(t), 0) + ηk(t)B ⊂ RF (t) a.e.. (4.4)

Condition (4.4) is satisfied when k(.) is chosen according to (4.1), and since (ū(t) + ηkS(t)B) ⊂ R(t),
which permit us to conclude

( ˙̄x(t), 0) + ηk(t)B ⊂ ( ˙̄x(t), 0) + η (Rn × c(t)kS(t)B) ⊂ Rn × c(t)(R(t)− ū(t)) = RF (t) a.e.

as required. Condition (4.3) is also satisfied, in view of the following lemma:

Lemma 4.1 Fix w ∈ W (t) and (x, v) ∈ ((x̄(t) + εB) × R(t, w)) ∩ S(t, w), where, consistent with our
notation, R(t, w) := {v : (v, w) ∈ R(t)}. Take any (α, β, τ) ∈ Rn × Rn × Rm such that (α, β, τ) ∈
NL
GrF (t,.)(x, f(t, x, v, w), r(t, v, w)). Then,

|α| ≤ k(t)(|β|+ |τ |) a.e.

Furthermore

(α, 0) ∈ ∂L {−〈β, f(t, ., ., w)〉 − 〈τ, r(t, ., w)〉+ 2k(t)[|β|+ |τ |]dS(t,w)(., .)}(x, v).

This lemma in proved in [5]. (The proof of [5, Prop. 9.1] covers the case when the w-control is absent and
the analysis on [5, pp. 23-24] extends the estimates to allow for w-dependent data). Notice we have taken
advantage of the supplementary hypothesis ‘kS(t) ≥ 1’ to simplify the estimates in [5, Prop. 9.1]. We
deduce from [1, Corollary 2.2] the following information: there exist an absolutely continuous function
p(.) ∈W 1,1([a, b];Rn), λ0 ≥ 0, µ(.) ∈ NBV +[a, b] and a µ-integrable function m(.), such that

(i): λ0 + ‖p‖L∞ + ‖µ‖T.V. = 1,

(ii): ṗ(t) ∈ co
{
η : (η, q(t), 0) ∈ NL

GrF (t,.)(x̄(t), ˙̄x(t), 0)
}

a.e.,

(iii): (q(a),−q(b)) ∈ λ0∂L`(x̄(a), x̄(b)) +NL
E (x̄(a), x̄(b)),

(iv): For any (e1, e2) ∈ Rn × Rm such that (e1, e2) ∈ F (t, x̄(t)) ∩RF (t),

〈q(t), ˙̄x(t)〉 ≥ 〈q(t), e1〉+ 〈p0, e2〉 a.e. t ∈ [a, b],

(v): m(t) ∈ co ∂>x h(t, x̄(t)) µ-a.e. and supp{µ} ⊂ {t : h(t, x̄(t)) = 0},

in which q(.) : [a, b]→ Rn is as defined in (2.3). By condition (ii) and Lemma 4.1,

(η, 0) ∈ ∂L{−〈q(t), f(t, ., ., w̄(t))〉+ 2k(t)|q(t)|dS(t,w̄(t))(., .)}(x̄(t), v̄(t)).

(Note that the costate associated with the z variable is identically zero and so drops out of the above
conditions.) Reviewing these conditions, we see that the proof of the theorem will be complete if we
can show that condition (iv) implies the Weierstrass condition (e) and condition (ii) implies the costate
inclusion (b). But (iv) tells

〈q(t), ˙̄x(t)〉 ≥ 〈q(t), f(t, x̄(t), u)〉
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for a.e. t and all u = (w, v) such that (x̄(t), v) ∈ S(t, w), w ∈W (t) and

(f(t, x̄(t), u), r(t, u)) ∈ RF (t) = Rn × c(t)(R(t)− ū(t)).

This is precisely condition (e) expressed in terms of the radius multifunction R(.), since this last condition
can be equivalently stated ‘c(t)(u− ū(t)) ∈ c(t)(R(t)− ū(t))’, i.e ‘u ∈ R(t)’ since c(t) > 0, a.e..

Finally, we look at the implications of (ii). Using the facts that ∂C = co ∂L and, given two Lipschitz
functions f and g, we have ∂C (−f) = −∂C f and ∂C(f + g) ⊂ ∂Cf + ∂Cg we conclude

(−ṗ(t), 0) ∈ ∂C {〈q(t), f(t, ., ., w̄(t))〉}(x̄(t), v̄(t))− ∂C{2k(t)|q(t)|dS(t,w̄(t))(., .)}(x̄(t), v̄(t)), (4.5)

which implies condition (b) in the theorem statement, since the Clarke generalized gradient is positively
homogeneous and, for fixed t, ∂CdS(t,w̄(t))(x̄(t), v̄(t)) ⊂ NC

S(t,w̄(t))(x̄(t), v̄(t)).

5 Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1.

Problem (PS) is a special case of (P ), in which the w-component of the control variable is absent (we
indentify v with u) and S(t) = {(x, u) : φ̃(t, x, u) ∈ Φ̃(t)}, in which

φ̃(t, x, u) = (φ(t, x, u), u) and Φ̃(t) = Φ(t)× U(t) .

Proving the first part of the theorem requires us to confirm that the data for the special case satisfies the
hypotheses of Theorem 2.2, with reference to the W 11 local minimizer (x̄(.), ū(.)) and radius multifunction
R(.). We attend only to the verification of the key ‘bounded slope’ hypothesis (BS) of Theorem 2.2, with
the above identification of S(t). A straightforward refinement of the analysis in [5, Proof of Prop. 4.2]
(to taken account of the special structure of φ̃(., ., .) and Φ̃(.)) permits us to deduce the following: under
the hypotheses of Theorem 3.1, for a.e. t, and (x, u) ∈ S(t) such that x ∈ x̄(t)+ εB, u ∈ R(t), the relation
(α, β) ∈ NP

S(t)(x, u) implies

|α| ≤M(t)kφx(t)|β| , (5.1)

where M(t) is as in hypothesis (CQ); furthermore , for a.e. t ∈ [a, b] there exists λ ∈ NL
Φ(t)(φ(t, x, u) such

that
(α, β) ∈ ∂L〈λ, φ(t, ., .)〉(x, u) + {0} ×NL

U(t)(u). (5.2)

We deduce from property (5.1) that (BS) is indeed satisfied, when we identify kS(t) = M(t)kφx(t).

Now suppose that φ(t, ., .) is strictly differentiable at (x̄(t), ū(t)) and that U(t) and Φ(t) are regular at
ū(t) and at φ(t, x̄(t), ū(t)). Making use of relation (5.2) which, at the point (x, u) = (x̄(t), ū(t)), becomes
(by strict differentiability and regularity)

(α, β) ∈ ∇〈λ, φ(t, ., .)〉(x, u) + {0} ×NC
U(t)(u) ,

and also the sum rule for Clarke generalized gradients, we see that the costate inclusion (b) of Theorem 2.2
can be replaced by

(−ṗ(t), 0)∈∂C{q(t) · f(t, ., .)− λ0Λ(t, ., .)− 〈λ(t), φ(t, ., .)〉}(x̄(t), ū(t))− {0}×NC
U(t)(ū(t)),

for some function λ(.), a.e. t. (The function λ(.) can be chosen to be measurable.) We have ar-
rived at the costate inclusion of Theorem 3.1. Finally note that, any (ζ1, ζ2) ∈ ∂C{q(t) · f(t, ., .) −
λ0Λ(t, ., .)〉}(x̄(t), ū(t)) satisfies |ζ2| ≤ |q(t)|kfu(t) + λ0kΛ

u (t). Examination of the adjoint inclusion in
combination with hypothesis (CQ) yields the estimate

|λ(t)| ≤M(t)
(
|q(t)|kfu(t) + λ0kΛ

u (t)
)
, a.e..
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Note that the regularity hypothesis of the set U(t) and Φ(t) at ū(t) and at φ(t, x̄(t), ū(t)), a.e., is required
in order to make use of hypothesis (CQ).

Proof of Theorem 3.2.

We first confirm the assertions of the theorem excluding the final assertion. Accordingly assume (C), in
addition to the preceding hypotheses in the theorem statment. Following [6], we obtain, as a corollary to
Theorem 2.2, necessary conditions for a special case of (P ), in which the data is affine w.r.t. the control
variable. These necessary conditions are used, subsequently, to derive necessary conditions for problem
(PS) under the Schwartzkopf type surjectivity hypothesis in place of a constraint qualification such as
(CQ), governing the mixed constraint data. The difference is that our analysis takes as starting point the
state constrained necessary conditions of Theorem 2.2 of this paper in place of the state constraint-free
conditions of [6, Theorem 3.2]. The special case of (P ) that we need to consider is:

(P ′′)



Minimize `(x(a), x(b)),

ẋ(t) =

N∑
i=0

ci(t)g
i(t, x(t)), a.e. t ∈ [a, b],

N∑
i=0

ci(t)θ
i(t, x(t)) ∈ Φ(t), c ∈ Σ, a.e. t ∈ [a, b],

h(t, x(t)) ≤ 0, for all t ∈ [a, b],

(x(a), x(b)) ∈ E.

Here gi(., .) : [a, b] × Rn → Rn and θi(., .) : [a, b] × Rn → Rκ (for i = 0, . . . , N), `(., .) : Rn × Rn → R,
h(., .) : [a, b]× Rn → R are given functions, and Φ ⊂ R× Rκ, Σ ⊂ RN+1, E ⊂ Rn × Rn are given sets.

To fit (P ′′) to the framework of problem (P ) (when the control variable u is not partitioned, i.e. u =
(v, w) comprises only the variable v, which we write here as c), we take the dynamic constraint to be
ẋ(t) = f(t, x(t), c(t)) with

f(t, x, c) =

N∑
i=0

cig
i(t, x)

and the sets S(t) in the ‘mixed constraint’ (x(t), c(t)) ∈ S(t) to be

S(t) = {(x, c) : (φ(t, x, c), c) ∈ Φ(t)× Σ} ,

in which

φ(t, x, c) =

N∑
i=0

ciθ
i(t, x) .

Lemma 5.1 Let (x̄(.), c̄(.)) be a W 1,1 local minimizer for (P ′′) w.r.t. the radius multifunction R(t) =
c̄(t) +RB a.e., for some R > 0. Assume that, for some ε > 0,

(L1): `(., .) is Lipschitz continuous on a neighborhood of (x̄(a), x̄(b)). The function h(., .) satisfies hypoth-
esis (H2). E is closed. Σ is a compact, convex set.

(L2): The functions gi(., .) and θi(., .) are L × Bn measurable. There exist an integrable function kg(.)
and a constant kθ such that gi(t, .) and θi(t, .) are Lipschitz continuous on x̄(t) + εB, a.e. t ∈ (a, b),
i = 0, . . . , N . t → gi(t, x̄(t)) is integrable and θi(t, .) is strictly differentiable at x̄(t), for a.e.
t ∈ [a, b]. Φ(.) is a Lebesgue measurable multifunction taking values non-empty, closed subsets of
Rκ.
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(BS ′): There exists a constant M > 0 such that, for a.e. t ∈ [a, b], the following condition is satisfied:
given any x ∈ x̄(t) + εB, c ∈ Σ ∩ (c̄(t) + RB) such that φ(t, x, c) ∈ Φ(t), λ ∈ NC

Φ(t)(φ(t, x, c)) and

γ ∈ NC
Σ (c), we have

β = (λ · θ0(t, x), . . . , λ · θN (t, x)) + γ =⇒ |λ| ≤M |β|. (5.3)

Then there exist p(.) ∈ W 1,1, λ0 ≥ 0, µ(.) ∈ NBV +[a, b], a µ-integrable function m(.) ∈ ∂>x h(t, x̄(t))
µ-a.e. and a integrable function λ : [a, b]→ Rκ satisfying λ(t) ∈ NC

Φ(t)(φ(t, x̄(t), c̄(t))) such that

(i): (p(.), λ0, µ) 6= (0, 0, 0)

(ii): −ṗ(t) ∈ ∂C{〈q(t), f(t, ., c̄(t))〉 − 〈λ(t), φ(t, ., c̄(t))〉}(x̄(t)) a.e.,

(iii): 〈q(t), f(t, x̄(t), c̄(t))〉 − 〈λ(t), φ(t, x̄(t), c̄(t))〉

≥ 〈q(t), f(t, x̄(t), c)〉 − 〈λ(t), φ(t, x̄(t), c)〉 for all c ∈ Σ, a.e.,

(iv): (q(a),−q(b)) ∈ λ0∂L`(x̄(a), x̄(b)) +NL
E (x̄(a), x̄(b)),

in which q(t) :=

{
p(t) +

∫
[a,t]

m(s)µ(ds) if t ∈ (a, b]

p(a) for t = a .

The lemma is proved as [6, Cor. 2.2], in the special case that there are no state constraints, by showing
that the data for problem (P ′′), regarded as a special case of P , satisfies the hypotheses of the state
constraint free version of Theorem 2.2 and by applying the necessary conditions of this theorem to (P ′′).
The analysis in [6] transcribes directly and without alteration, when the full version of Theorem 2.2 is
substituted for the state constraint-free version, to furnish a proof of the lemma.

We are now ready to prove Theorem 3.2. Consider then a W 1,1 local minimizer (x̄(t), ū(t)) for (PS)
under the hypotheses of Theorem 3.2. We notice immediately that we can assume, without loss of
generality, that φ(t, x̄(t), ū(t)) ≡ 0 since replacing φ(t, x, u) by φ(t, x, u) − φ(t, x̄(t), ū(t)) and Φ(t) by
Φ(t) − φ(t, x̄(t), ū(t)) ensures that this condition is satisfied, yet has no effect on the assertions of the
theorem or validity of the hypotheses under which it applies. The use of state augmentation techniques
permit us to restrict attention to the case when Λ(., ., .) ≡ 0.

Write ei, i = 1, . . . , κ, for the canonical basis vectors of Rκ. In consequence of (SC), there exist controls
u+
i (.) and u−i (.) (we can choose them to be measurable) such that

φ(t, x̄(t), u+
i (t))− φ(t, x̄(t), ū(t)) ∈ δei + T ηt (5.4)

φ(t, x̄(t), u−i (t))− φ(t, x̄(t), ū(t)) ∈ −δei + T ηt (5.5)

|f(t, x̄(t), u+(t))− f(t, x̄(t), ū(t))| ≤ r(t) + | ˙̄x(t)|,
|f(t, x̄(t), u−(t))− f(t, x̄(t), ū(t))| ≤ r(t) + | ˙̄x(t)|,

for i = 1, . . . , κ, where r(.), δ, and T η are the same as in hypothesis (SC). In view of hypothesis (H3)′′,
we can further arrange, by reducing the size of ε > 0 if necessary, that

|φ(t, x, u+
i (t))− φ(t, x̄(t), u+

i (t))|≤ δ/(12κ), |φ(t, x, u−i (t))− φ(t, x̄(t), u−i (t))|≤ δ/(12κ), (5.6)

and
|φ(t, x, ū(t))− φ(t, x̄(t), ū(t))| ≤ δ/(12κ), (5.7)

for all x ∈ x̄(t) + εB, j = 1, . . . , κ, a.e.
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Fix any d > 0 and define

Ud(t) := {u ∈ U(t) : |(f(t, x̄(t), u)− f(t, x̄(t), ū(t)), φ(t, x̄(t), u))| ≤ 1/d}
h′(t, p, λ, u) := 〈p, f(t, x̄(t), u)− f(t, x̄(t), ū(t))〉 − 〈λ, φ(t, x̄(t), u)〉
Hd(t, p, λ) := sup{h′(t, p, λ, u) : u ∈ Ud(t)}.

Let {(pj , λj) | j = 2κ+ 1, . . . , Nd} be a collection of vectors in B such that

B ⊂ ∪
j

(
(pj , λj) + d2B

)
. (5.8)

We can choose measurable controls vj(.), j = 2κ+ 1, . . . , Nd with values in Ud(.) and satisfying

Hd(t, pj , λj)− d < h′(t, pj , λj , vj(t)) a.e..

Consider now problem (P ′′) when Φ(.), `(., .), h(.) and E are as in problem (PS),

g0(t, x) := f(t, x, ū(t)), θ0(t, x) = φ(t, x, ū(t))
gi(t, x) := f(t, x, u+

(i+1)/2(t))− f(t, x, ū(t)), θi(t, x) = φ(t, x, u+
(1+i)/2(t))− φ(t, x, ū(t)),

i = 1, 3, . . . , 2κ− 1
gi(t, x) := f(t, x, u−i/2(t))− f(t, x, ū(t)), θi(t, x) = φ(t, x, u−i/2(t))− φ(t, x, ū(t)),

i = 2, 4, . . . , 2κ
gi(t, x) := f(t, x, vi(t))− f(t, x, ū(t)), θi(t, x) = φ(t, x, vi(t))− φ(t, x, ū(t)),

i = 2κ+ 1, . . . , Nd ,

and

Σ :=

{
c = (c0, . . . , cNd) : c0 = 1, ci ≥ 0, i = 1, 2, . . . , Nd and

Nd∑
1

ci ≤ 1

}
.

Making use of the ‘convexity’ hypothesis (C) in Theorem 3.2 and appealing to measurable selection
theory, we can show that (x̄(.), c̄(t) ≡ (1, 0, . . . , 0)) is a W 1,1 local minimizer w.r.t. to the constant radius
multifunction c̄(t) + RB for any positive constant R > 0. Following reduction in the size of ε, we can
choose R > 0 to satisfy:

0 < R < 1 and max{εkφ(1 + 2R), R} < η , (5.9)

in which η > 0 is the constant of Hypothesis (SC).

Our aim now is to apply the necessary conditions of Lemma 5.1, with respect to the minimizer (x̄(.), c̄(.)),
for radius multfunction R(.) ≡ RB, checking first that the relevant hypotheses are satisfied. Consider

hypothesis (BS ′). Take (x, c) ∈ (x̄(t) + εB) × Σ such that
∑Nd
i=1 ci < R,

∑Nd
i=0 ciθ

i(t, x) ∈ Φ(t), λ ∈
NC

Φ(t)(φ(t, x, c)), γ ∈ NC
Σ (c) and

β = (
〈
λ, θ0(t, x)

〉
, . . . ,

〈
λ, θNd(t, x)

〉
) + γ . (5.10)

We must show, for a.e. t ∈ [a, b],
|λ| ≤M |β| , (5.11)

for some M independent of (x, c) and γ. Notice that γ is a vector of non-positive numbers because

γ ∈ NΣ(c) and
∑Nd
i=1 ci < 1. Examination of the i = 1 and 2 components of the Nd + 1-vector relation

(5.10), in the light of (5.4), (5.5), (5.6) and (5.7), yields:

β1 = δλ1 + µ1|λ|+ 〈λ, ξ1〉+ γ1 and β2 = −δλ1 + µ2|λ|+ 〈λ, ξ2〉+ γ2 , (5.12)
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for some numbers µi, γi such that |µi| ≤ δ/6κ and γi ≤ 0 for i = 1, 2, and vectors ξi ∈ T η
t for i = 1, 2.

Notice however that, in consequence of (5.9),∣∣∣∣∣
Nd∑
i=0

ciθ
i(t, x)− θ0(t, x̄(t))

∣∣∣∣∣ ≤ εkφ + (

Nd∑
i=1

ci)(2εkφ + dr(t)) ≤ εkφ(1 + 2R) +Rdr(t)

≤ η · (1 + dr(t))

in which dr(.) is the function in (3.6).
It follows from the definition of T ηt as an intersection of tangent cones to Φ(t) over base points in the

set Sηt , and the fact that
∑Nd
i=0 ciθ

i(t, x) lies in this set, that

ξi ∈ T η
t ⊂ TCΦ(t)(

Nd∑
i=0

ciθ
i(t, x)) for i = 1, 2 .

Since λ ∈ NC
Φ(t)(

∑Nd
i=0 ciθ

i(t, x)), we have 〈λ, ξi〉 ≤ 0, for i = 1, 2 . From (5.12) then,

β1 = δλ1 + µ1|λ|+ γ̃1 and β2 = −δλ1 + µ2|λ|+ γ̃2 , (5.13)

for some γ̃i ≤ 0, i = 1, 2. Adding the two preceding relations gives β1 + β2 = (µ1 + µ2)|λ| + γ̃1 + γ̃2.
Noting that γ̃i’s are non-positive, and using the bounds on the µi’s, we conclude |γ̃i| ≤ 2|β|+ (δ/3κ)|λ|,
for i = 1, 2. But then, by (5.13),

|λi| ≤ |β|/δ + (1/6κ)|λ|+ 2|β|/δ + (1/3κ)|λ| = 3|β|/δ + (1/2κ)|λ| for i = 1, 2.

Analogous bounds can be established for λ2, . . . , λ2κ. Summing such bounds over i, yields |λ| ≤ (3κ/δ)|β|+
(1/2)|λ|, whence |λ| ≤ (6κ/δ)|β|. We have confirmed (5.11) with M = (6κ/δ).

Verification of the remaining hypotheses is straighforward. Applying Lemma 5.1, we deduce immediately
that, for some (p(.), λ0, µ) and some integrable λ(.):

λ0 + ‖p‖L∞ + ‖µ‖T.V. = 1 (5.14)

−ṗ(t) ∈ ∂C{〈q(t), f(t, ., ū(t))〉 − 〈λ(t), φ(t, ., ū(t))〉}(x̄(t)) a.e. (5.15)

m(t) ∈ co ∂>x h(t, x̄(t)) µ-a.e. and supp{µ} ⊂ {t : h(t, x̄(t)) = 0}, (5.16)

(q(a),−q(b)) ∈ λ0∂L`(x̄(a), x̄(b)) +NL
E (x̄(a), x̄(b)). (5.17)

in which q(.) is defined by (2.3). Following the analysis, in [6] we deduce from the Weierstrass condition
in the Lemma that the ‘multiplier’ λ(.) is bounded according to:

|λ(t)| ≤ 12 · (κ2/δ) · ||q(.)||L∞ · (r(t) + | ˙̄x(t)|) , (5.18)

The Weierstrass condition and (5.8) can also be shown to imply (see [6]):

〈q(t), f(t, x̄(t), ū(t))〉 − 〈λ(t), f(t, x̄(t), u)〉
≥ −3d

(
12κ2/δ × (r(t) + | ˙̄x(t)|)(kh + 1) + 1

)
for each u ∈ Ud(t), a.e. (5.19)

(Here, r(.) and δ are as in hypothesis (SC) and kh is as in hypothesis (H2)). Reviewing (5.14) - (5.19), we
see that the assertions of the Theorem have been confirmed except that the Weierstrass condition (5.19)
appears in a restricted, approximate form, in which U(t) is replace by the subset Ud(t). The final step
is to take a sequence di ↓ 0 and, for each i, carry out the preceding analysis, expressing the multipliers
(in relations (5.14) - (5.19)) as (pi(.), λ

0
i , µi, λi). Define qi(.) according to (2.3) (when pi(.) replaces p(.),

etc). Using the fact that, for a.e. t,

u ∈ U(t) =⇒ u ∈ Ud(t) for all i sufficiently large,
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we carry out a standard convergence analysis to confirm the validity of (5.14)-(5.19), now involving the
‘full’ Weierstrass condition, in terms of multipliers (p(.), µ, λ(.)) and some selection of co ∂>h(t, x̄(t)),
where the multipliers are cluster points of pi(.), etc. (See, e.g. [19]). (Observe that (5.18), implying that
the ṗi(.)’s are uniformly integrably bounded, has a crucial role here.)

Finally, we need to consider the case when hypothesis (C+L) replaces (C). Let us assume then that
φ(t, x, u) has the special structure φ(t, x, u) := θ0(t, x) +

∑m
k=1 u

iθi(t, x), and Φ(t) and U(t) are convex
sets. The assertions of Theorem 3.2 will follow, in this case, from an application of Theorem 3.1 to prob-
lem (PS). provided, of course, the relevant hypotheses are satisfied. We attend only to the verification
of (CQ), since satisfaction of the remaining hypotheses is automatic. This requires us to verify:

Claim: There exists a constant M > 0 such that, for every x ∈ x̄(t) + εB and u ∈ U(t) such that
φ(t, x, u) ∈ Φ(t), we have:

λ ∈ NC
Φ(t)(φ(t, x, u)), γ ∈ NC

U(t)(u), β = (λ · θ1(t, x), . . . , λ · θm(t, x)) + γ ⇒ |λ| ≤M |β|.

for a.e. t ∈ [a, b].

To accomplish this task, let us take any time t located in the set of full measure on which relevant
conditions are satisfied, and (x, u), (λ, γ) and β with the properties listed in the above ‘claim’. Since
γ ∈ NC

U(t)(u) and U(t) is convex,

γ · (u′ − u) ≤ 0 for all u′ ∈ U(t) . (5.20)

Since φ(t, x̄(t), ū(t)) ∈ Φ(t), λ ∈ NC
Φ(t)(φ(t, x, u)) and Φ(t) is convex,

λ · (φ(t, x̄(t), ū(t))− φ(t, x, u)) ≤ 0. (5.21)

Since, finally, λ ∈ NC
Φ(t)(φ(t, x0, u0)) and ξ ∈ T ηt ⊂ TCΦ(t)(φ(t, x0, u0)), we have

λ · ξ ≤ 0 . (5.22)

We may assume, without loss of generality, that λ 6= 0 (otherwise the claimed property is true with
M = 0). By hypothesis (SC) (in which, we may choose Ur(t) ≡ U(t) since U(.) is bounded) there exists
u′ ∈ U(t) such that

φ(t, x̄(t), ū(t))− λ

|λ|
δ = φ(t, x̄(t), u′)− ξ. (5.23)

By (5.23), (5.20), (5.21) and (5.22), and since β = (λ · θ1(t, x), . . . , λ · θm(t, x)) + γ, we have

β · (u′ − u) = (λ · θ1(t, x), . . . , λ · θm(t, x)) · (u′ − u) + γ · (u′ − u)

≤ λ · φ(t, x̄(t), u′)− λ · φ(t, x̄(t), ū(t)) + kφε|λ|
≤ −|λ|(δ − kφε).

Reducing the size of ε, if necessary, we can arrange that δ > kφε. (δ is as in hypothesis (SC) and kφ is as
in hypothesis (H3 ′′)(c)). Since U(t) ⊂ σ0B, we have from the preceding relation

|λ| ≤M |β| ,

with M = 2σ0/(δ − kφε). We have justified the claim, and the proof of the theorem is complete.
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