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Abstract

This paper concerns the validity of estimates on the distance of an arbitrary state trajectory
from the set of state trajectories which lie in a given state constraint set. These so called
distance estimates have wide-spread application in state constrained optimal control, includ-
ing justifying the use of the Maximum Principle in normal form and establishing regularity
properties of value functions. We focus on linear, L∞ distance estimates which, of all the
available estimates have, so far, been the most widely used. Such estimates are known to be
valid for general, closed state constraint sets, provided the functions defining the dynamic
constraint are Lipschitz continuous, with respect to the time and state variables. We ask
whether linear, L∞ distance estimates remain valid when the Lipschitz continuity hypothesis
governing t-dependence of the data is relaxed. We show by counter-example that these dis-
tance estimates are not valid in general if the hypothesis of Lipschitz continuity is replaced by
continuity. We also provide a new hypothesis, ‘absolute continuous from the left’, for the va-
lidity of linear, L∞ estimates. The new hypothesis is less restrictive than Lipschitz continuity
and even allows discontinuous time dependence in certain cases. It is satisfied, in particular,
by differential inclusions exhibiting non-Lipschitz t-dependence at isolated points, governed,
for example, by a fractional-power modulus of continuity. The relevance of distance estimates
for state constrained differential inclusions permitting fractional-power time dependence is
illustrated by an example in engineering design, where we encounter an isolated, square-root
type singularity, concerning the t-dependence of the data.
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1 Introduction

Consider the state-constrained differential inclusion, described as follows:{
ẋ(t) ∈ F (t, x(t)) for a.e. t ∈ [S, T ]
x(t) ∈ A for all t ∈ [S, T ] ,

in which [S, T ] is a given interval (T > S), F (., .) : [S, T ] × Rn ; Rn is a given multifunction
with closed, non-empty values and A ⊂ Rn is a given closed set.

Given a subinterval (possibly closed or left open) I ⊂ [S, T ], we shall refer to an absolutely
continuous function x(.) : I → Rn which satisfies ẋ(t) ∈ F (t, x(t)) a.e. as an F -trajectory (on
I). An F -trajectory x(.) on I is said to be ‘feasible’ (on I) if x(t) ∈ A for all t ∈ I, and ‘strictly
feasible’ (on I) if x(t) ∈ intA for all t ∈ I.

In this paper, attention focuses on hypotheses for the validity of estimates of the type: given a
ball r0B in Rn there exists a constant K > 0 such that, for any F -trajectory x̂(.) on a closed
subinterval I ⊂ [S, T ], emanating from r0B ∩A, we have

||x̂(.)− x(.)||L∞ ≤ K max
t∈I

dA(x̂(t)) ,

for some feasible F -trajectory x(.) with the same initial value. Such estimates are referred to
as linear L∞ estimates (on the distance of a general F -trajectory x̂(.), from the set of feasible
F -trajectories with shared left endpoint, expressed in terms of maxt∈I dA(x̂(t)), which is inter-
preted as a measure of the state constraint violation by x̂(.)). The significance of such estimates,
in studying regularity of the value function, establishing validity of ‘normal’ forms of the state
constrained Maximum Principle, characterizing the value function in terms of solutions to the
Hamilton Jacobi equation, in other areas, is well documented. (See for instance [4], [5], [7], [9],
[10], [13], [14], [15], [16], [20]; and for related results cf. also [2], [3], [6].) While other, related,
estimates, involving stronger norms on the left side and different measures of state constraint
violation, are of interest, linear L∞ distance estimates have, so far, found most widespread ap-
plication and are therefore currently of greatest interest.

In the case when A has a C1+ boundary (i.e. A, locally, has the representation {x | h(x) ≤ 0},
for some C1 function with non-vanishing on the boundary of A, locally Lipschitz gradient), linear
L∞ distance estimates of the type described above are known to be valid under the following
hypotheses:

• F (., x) is measurable, and F (t, .) has linear growth and is Lipschitz continuous,

• F (t, x) satisfies a ‘strictly inward pointing’ condition near the boundary of A.

See, e.g., [4]. We refer to these hypotheses as the ‘basic’ hypotheses.

In this paper we examine the validity of linear, L∞ estimates when no assumptions are made
about the nature of the state constraint sets A considered, except that they are closed and
non-empty (‘general’ state constraint sets). We provide answers to two questions. First:

Are linear, L∞ distance estimates valid merely under the basic hypotheses, for general state
constraint sets A?

We show, by exhibiting two counter-examples, that the answer is in general ‘no’. The counter-
examples, besides answering the above question, reveal more subtle limitations on the validity of
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distance estimates for state constrained differential inclusions, for general state constraint sets.
The first counter-example demonstrates that not even a weaker, super-linear, Hölder distance
estimate is in general valid, under the basic hypotheses. A second counter-example shows that,
even if we additionally assume that F (., .) is a continuous multi-function, the linear estimate
still fails to be valid in general; nor is a super-linear ‘ρ | ln(ρ)|’ distance estimate valid, where ρ
is the state constraint violation. The question then arises:

What supplementary hypothesis regarding t-regularity of F is required for validity of linear, L∞

estimates, for general state constraint sets A?

It is already known (see [9]) that such estimates are valid when F is Lipschitz w.r.t. x and does
not depend on t, and techniques are provided in [13] for establishing linear distance estimates
in some cases involving time-dependent F ’s, including the case when F (., .) is Lipschitz contin-
uous in both variables. In the present paper we propose a new supplementary hypothesis for
the validity of linear, L∞ distance estimates, namely the requirement that F (., x) is ‘absolutely
continuous from the left’.

The new supplementary hypothesis on the t-dependence of F is significantly weaker than Lips-
chitz continuity. It allows F to depend on t according to fractional powers of t, but it also covers
some situations where F fails to be Hölder continuous w.r.t. t for any Hölder index α ∈ (0, 1).
Since the new supplementary hypothesis requires merely absolute continuity from the left, it is
satisfied in some situations in which F is discontinuous.

The relevance of the new supplementary condition in engineering design is illustrated by ref-
erence to an optimal design problem in civil engineering, where the object is to determine the
distribution of constituent materials in a beam to maximize rigidity. The design problem takes
the form of a state constrained optimal control problem, in which the functions defining the
control system dynamics are not Lipschitz continuous with respect to the time-like variable, but
have a square-root type dependency covered by the new supplementary hypothesis. This paper
provides linear L∞ distance estimates for such control systems, which in turn can be used to
derive the Maximum Principle in the normal form for solution of the problem.

The analytical techniques employed to construct ‘neighboring’ feasible F -trajectories, and thereby
to prove the desired distance estimates, are based on directing the velocity into the interior of
A over an initial period of time which is proportional to the state constraint violation, and then
introducing a time-delay. They are akin to the techniques earlier used by [20], [10], [13] and [9].
But adapting these techniques, to give stronger conclusions (‘strict’ feasibility of the constructed
F -trajectory) and to take account of the weaker hypotheses imposed (‘absolute continuity’ from
the left), is far from straightforward.

Notation. For a given interval [t0, t1] ⊂ R the space Lp([t0, t1];Rn), p = 1 or p =∞, is written
briefly Lp(t0, t1) or Lp. B denotes the closed unit ball in Euclidean space. The Euclidean distance
is written | . |, intC denotes the interior of a set C in Euclidean space. Take a closed set D ⊂ Rn
and x ∈ D. We write coD for the convex hull of D. The Clarke tangent cone to D at x is
written TD(x) (cf. [8]). We denote by χD(.) the indicator function of D, that is the function
taking value 1 on D and 0 elsewhere. dD(x) denotes the Euclidean distance of the point x from
the set D, namely miny∈D |x − y|. We denote by ΠD(x) the possibly set-valued projection of
the point x ∈ Rn into D. For arbitrary non-empty closed sets in Rn, D′ and D, we denote by
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dD(D′) the excess from set D to a set D′:

dD(D′) = inf{β > 0 |D′ ⊂ D + βB} ,

(alternatively referred to as the ‘asymmetric Hausdorff distance’ of the set D′ from the set D.)

Given a multifunction G : D ; Rn and x ∈ D (where D is closed), we define the limit inferior
(in the Kuratowski sense) of G at x to be (cf. [1] or [21])

lim inf
x′

D→x
G(x′) := {v ∈ Rn : lim sup

x′
D→x

dG(x′)(v) = 0} .

The notation x′
D→ x indicates consideration of convergent sequences x′ → x, all elements of

which belong to D. An alternative, and often useful, characterization of the lim inf operator on
a set-valued function G(.) is as follows: v ∈ lim inf

x′
D→x

G(x′) if and only if for every ε > 0 there

exists η > 0 such that (v+ εB)∩G(x′) 6= ∅ for every x′ ∈ (x+ηB)∩D. We denote the Lebesgue
subsets of [S, T ] by L.

2 Distance Estimates

We state conditions for the validity of linear, L∞ estimates relating to state constrained differ-
ential inclusions of the Introduction,{

ẋ(t) ∈ F (t, x(t)) for a.e. t ∈ [S, T ]
x(t) ∈ A for all t ∈ [S, T ] ,

for a general closed, non-empty state constraint set A, under the ‘basic’ hypotheses of the
introduction (now precisely described) and a supplementary hypothesis ‘absolute continuity
from the left’, regarding the t-dependence of F .

Definition 2.1 Given a set X0 ⊂ Rn and a multifunction F (., .) : [S, T ]×Rn ; Rn, we say that
F (., x) is absolutely continuous from the left, uniformly over x ∈ X0 if and only if the following
condition is satisfied: given any ε > 0 we may find δ > 0 such that, for any finite partition of
[S, T ]

S ≤ s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sm < tm ≤ T

satisfying
∑m

i=1(ti − si) < δ, we have

m∑
i=1

dF (ti,x)(F (si, x)) < ε .

A convenient characterization of absolute continuity from the left is provided by the following
lemma, stated without proof.

Lemma 2.2 Given a subset X0 ⊂ Rn and a multifunction F (., .) : [S, T ]×Rn ; Rn, then F (., x)
is absolutely continuous from the left uniformly over X0 if and only if there exists γ(.) ∈ L1(S, T )
such that

F (s, x) ⊂ F (t, x) +

∫ t

s
γ(s′) ds′ B (1)

for all subintervals [s, t] ⊂ [S, T ] and x ∈ X0.

For an interval I ⊂ [S, T ] and an arc x(.) : I → Rn we define

ρI(x(.)) := sup
t∈I

dA(x(t)) .

4



Theorem 2.3 Fix r0 > 0. Assume that, for some constant c > 0 and some kF (.) ∈ L1 and for
R := ec(T−S)(r0 + 1), the following hypotheses (H1), (H2), (CQ) and (ACL) are satisfied:

(H1): F : [S, T ] × Rn ; Rn takes closed, non-empty values, F (., x) is L-measurable for all
x ∈ Rn, and

F (t, x) ⊂ c(1 + |x|) B for all (t, x) ∈ [S, T ]× Rn .

(H2):
F (t, x′) ⊂ F (t, x) + kF (t)|x− x′| B for all x, x′ ∈ RB and a.e. t ∈ [S, T ] .

(CQ): For each (t, x) ∈ [S, T ]× (RB ∩ ∂A),(
lim inf

(t′,x′)
D→(t,x)

coF (t′, x′)
)
∩ intTA(x) 6= ∅ ,

where D = [S, T ]×A.

(ACL): There exists η > 0 such that F (., x) is absolutely continuous from the left, uniformly over
x ∈ (∂A+ ηB) ∩RB.

Then, there exists a constant K > 0 with the following property:

Given any interval [t0, t1] ⊂ [S, T ], any F -trajectory x̂(.) on [t0, t1] with x̂(t0) ∈ A∩
(
ec(t0−S)(r0+

1)− 1
)
B, and any ρ > 0 such that

ρ ≥ ρ[t0,t1](x̂(.)) ,

we can find an F -trajectory x(.) on [t0, t1] such that x(t0) = x̂(t0),

x(t) ∈ intA for all t ∈ (t0, t1]

and
||x̂(.)− x(.)||L∞(t0,t1) ≤ K ρ .

The assertions of the theorem cover two cases, each of independent interest:

Case A: ρ[t0,t1](x̂(.)) > 0 (x̂(.) is not feasible).

In this case, an F -trajectory x(.), with initial value x̂(t0) and strictly feasible on (t0, t1] exists,
which satisfies the linear distance estimate

||x̂(.)− x(.)||L∞(t0,t1) ≤ K ρ[t0,t1](x̂(.)) .

(This follows from the theorem statement, after setting ρ := ρ[t0,t1](x̂(.)) .)

Case B: ρ[t0,t1](x̂(.)) = 0 (x̂(.) is feasible).

In this case, for arbitrary ε > 0, there exists an F -trajectory x(.), with initial value x̂(t0) and
strictly feasible on (t0, t1] such that

||x̂(.)− x(.)||L∞(t0,t1) ≤ ε

(This follows from the theorem statement, after setting ρ := ε/K .)

5



3 Discussion of the Supplementary Hypothesis

The concept of ‘absolute continuity from the left’ of a set valued function has been considered
earlier in the control theory literature as a hypothesis on a time varying constraint set in the-
orems asserting the existence of viable trajectories for differential inclusions with measurable
time dependence. (See [11], [12] and [17].) It is used here for the first time, as a hypothesis
regarding the t-dependence of F (t, x) for validity of distance estimates.

It is clear from Lemma 2.2 that hypothesis (ACL), ‘absolute continuity from the left uniformly
over (∂A + ηB) ∩ RB’, is a weaker hypothesis than ‘F(.,.) is locally Lipschitz continuous’, and
therefore improves on earlier invoked hypotheses for the validity of linear, L∞ distance estimates.
Indeed, if F (., .) is locally Lipschitz continuous then the conditions of Lemma 2.2 are satisfied
with γ(.) ≡ K, where K is a Lipschitz constant for F (., .) on [S, T ]×RB.

The fact that (ACL) imposes the requirement that F (., x) is absolutely continuous merely from
the left, i.e. it is defined in terms of the asymmetric distance function rather than the Hausdorff
distance function, means that (ACL) permits examples of F (., .) which are discontinuous.

Example 1: Consider the control system{
ẋ(t) = f(x) + b(t)u(t) a.e. t ∈ [0, 1]
u(t) ∈ [−1, 1]

where f is a locally Lipschitz function on R and b(.) is the discontinuous function

b(t) =

{
0.5 if t ∈ [0, 0.5]
1 if t ∈ (0.5, 1] .

This control system generates the same trajectories as the differential inclusion with discontin-
uous velocity set

F (t, x) = f(x) + b(t)[−1, 1] .

This multifunction is absolutely continuous from the left uniformly over x ∈ RB for any R. Yet
it is discontinuous.

The relation between (ACL) and the hypothesis ‘F (., x) is Hölder continuous from the left with
index α ∈ (0, 1) uniformly over x ∈ RB’, in the sense that:

there exists K > 0 such that for all intervals [s, t] ⊂ [S, T ] and x ∈ RB

F (s, x) ⊂ F (t, x) +K(t− s)α B ,

is not a simple one. Classical constructions of functions that are Hölder continuous for some
index α, yet are nowhere differentiable (consider for example ‘space-filling’ Peano curves, [19]),
permit us to conclude that F (., x) may be Hölder continuous from the left, yet fail to satisfy
(ACL). On the other hand, the function f : [0, 1] → R, vanishing at 0 and with derivative
expressible as the absolutely convergent sum

df(t)/dt =

∞∑
k=1

(
1

2
)k t

1
k ,

of L1(0, 1) functions, yields a multifunction F (t, x) = {f(t)} satisfying (ACL) but which is not
Hölder continuous for any index α. More generally, (ACL) permits multifunctions for which the
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modulus of absolute continuity γ(.) in (1) is a weighted sum of fractional powers of t on the
interval [0, 1], thus

γ(t) =

∞∑
k=1

ckt
βk . (2)

Here, all the exponents β1, β2, . . . are assumed to lie in (0, 1) and the ck’s are non-negative num-
bers satisfying

∑∞
k=1 ck <∞.

region of constant composition

x

y

z

Example 2: The purpose of this example is to illustrate the potential relevance of the weakened
supplementary hypothesis (ACL) in applications. In this example, concerning civil engineering
design, the object is to design a beam in 3D space, of infinite length, with a smooth surface and
having a constant cross-section in the direction of the z-axis, to maximize bending rigidity (which
we may interpret as minimizing the displacement of the free edge, for a fixed uniform load per
unit length along this edge). The beam is to be constructed from a composition of two materials
A and B; the composition varies along the x axis, but is constant on any plane normal to the x
axis. We can think of A as a material which adds stiffness to the structure, but which must be
blended with the less expensive material B to reduce cost.

Suppose that the cross-section of the beam orthogonal to the z axis is a parabola, and the free
edge is located at (x, y) = (0, 0). Thus points (x, y) on the surface of the beam satisfy

y = x1/2, 0 ≤ x ≤ 1 .

Let w(x) ∈ [0, 1] denote variation of the proportion of material A w.r.t. x. We assume there
is a bound V of the volume per unit length of material A in the beam. This gives rise to the
isoperimetric constraint ∫ 1

0
2w(x)|x|1/2dx ≤ V .

A restriction is placed on the rate of variation of the composition along the x axis, giving rise
to the constraint

|dw(x)/dx| ≤ k for all x ∈ [0, 1] . (3)
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Finally, the proportion of w(x) material A, for any x, must satisfy the constraint

w(x) ∈ [0, 1] for all x ∈ [0, 1] . (4)

The cost function will be a complicated function of additional variables, whose values are ob-
tained by solving differential equations which depend on w(.).

This problem can be set up as an optimal control problem in which x is a time-like variable and
u(x) = dw(x)/dx is the control, involving the control constraint (3) and the state constraint
(4). To investigate the solution with the help of the Maximum Principle involves replacing the
isoperimetric constraint with a differential equation for an augmented state variable e satisfying
the differential equation

de(x)/dx = 2w(x)|x|1/2 .

The key point here is that the augmented dynamics above involve data exhibiting non-Lipschitz
behavior w.r.t. the time-like variable. But data of this nature is permitted by hypothesis (ACL),
because the x-dependence is governed by a fractional power modulus of absolute continuity, as in
(2). Notice that, whatever way the smooth profile of the beam is modeled (here, by a parabola), the
x-dependence of the position of the upper surface of the beam will have an infinite derivative at
the free edge, and will fail to conform to hypotheses requiring Lipschitz continuous dependence.

4 Limitations on the Validity of Linear Distance Estimates for
State Constrained Differential Inclusions

We recall that for state constraint sets with smooth boundaries, linear, L∞ distance estimates
are valid for differential inclusions ẋ ∈ F (t, x) and A satisfying hypotheses (H1), (H2), (CQ)
alone. For general closed state constraint sets A however, currently available proofs of such
distance estimates require the imposition of a supplementary hypothesis on the regularity of
F (., x). Concerning the need for a supplementary hypothesis, we note:

Proposition 4.1 Data F (., .), and A, satisfying hypotheses (H1), (H2), (CQ) (for some r0)
can be chosen with the following property: given any K > 0, α ∈ (0, 1) and δ > 0, there exists
an interval [t0, t1] ⊂ I of length not greater than δ and an F -trajectory x̂(.) on [t0, t1] with
x̂(t0) ∈ A ∩

(
ec(t0−S)(r0 + 1)− 1

)
B such that ρ[t0,t1](x̂(.)) > 0 and

||x̂(.)− x(.)||L∞(t0,t1) > K
∣∣ρ[t0,t1](x̂(.))

∣∣α ,
for all feasible F -trajectories x(.) on [t0, t1] with initial state x̂(t0).

This proposition confirms that linear, L∞ distance estimates are not valid in general under the
basic hypotheses, not even ‘in the small’, i.e. over a sufficiently small time interval. It tells
furthermore that not even weaker, Hölder- type distance estimates, with arbitrary Hölder index
α ∈ (0, 1), are valid.

It might be thought that lack of continuity is the obstacle to obtaining linear distance estimates.
The following proposition confirms however that this is not the case.

Proposition 4.2 Data F (., .), [S, T ] and A, satisfying hypotheses (H1), (H2), (CQ) (for some
constant r0) and also the supplementary hypothesis

(C): F (., .) is continuous,
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can be chosen with the following property: given any K > 0 and δ > 0, there exists an interval
[t0, t1] ⊂ [S, T ] and an F -trajectory x̂(.) on [t0, t1] with x̂(t0) ∈ A ∩

(
ec(t0−S)(r0 + 1)− 1

)
B such

that t1 − t0 ≤ δ, ρ[t0,t1](x̂(.)) > 0 and

||x̂(.)− x(.)||L∞(t0,t1) ≥ K θ
(
ρ[t0,t1](x̂(.))

)
,

for all feasible F -trajectories x(.) on [t0, t1] with initial state x̂(t0). Here, θ(.) is the modulus

θ(ρ) = (1 + | ln(ρ)|) ρ for ρ > 0 .

This proposition tells us that adding the supplementary hypothesis ‘F is continuous’ to the basic
hypotheses is not enough to furnish linear L∞ distance estimates; not even (1 + | ln(ρ)|)ρ-type
distance estimates are in general valid under such hypotheses. (Note that (1+| ln(ρ)|)ρ estimates
are intermediate between linear estimates and Hölder estimates: i.e. they are weaker than linear
estimates, yet stronger than Hölder estimates, of any index.)

The proofs of the above propositions are based on the construction of two counter-examples to
the conjecture ‘linear, L∞ distance estimates are valid under the basic hypotheses’, details of
which are given in the Appendix.

5 Preliminary Analysis

In this section we take some preliminary steps towards the proof of Thm. 2.3. We show that
some additional, simplifying assumptions on the data can be made, and examine some useful
implications of hypothesis (CQ). Throughout r0 > 0 is fixed. c is the constant of hypotheses
(H1) and and R is the constant of the theorem statement.

We begin by recalling an important existence theorem with accompanying estimates, known as
Filippov’s Existence Theorem (see [1] or [21]), which is frequently invoked in our analysis.

Theorem 5.1 (Filippov’s Existence Theorem) Consider a multi-function F : [S, T ]×Rn ;

Rn taking closed non-empty values such that F (., x) is L-measurable for all x ∈ Rn and satisfies:

(H2)′: There exists kF (.) ∈ L1(S, T ) such that

F (t, x′) ∈ F (t, x) + kF (t)|x− x′| B for all x, x′ ∈ Rn and a.e. t ∈ [S, T ] .

Take any absolutely continuous arc y : [S, T ] → Rn and ξ ∈ Rn. If dF (.,y(.))(ẏ(.)) ∈ L1(S, T ),
then, there exists an F -trajectory x(.) satisfying x(S) = ξ such that for all t ∈ (S, T ]

||y(.)− x(.)||L∞(S,t) ≤ |y(S)− x(S)|+
∫ t

S
|ẏ(s)− ẋ(s)| ds

≤ e
∫ t
S kF (s) ds

(
|ξ − y(S)|+

∫ t

S
dF (s,y(s))(ẏ(s)) ds

)
.

Lemma 5.2 (Hypothesis Reduction) Fix δ > 0 and ρ̄ > 0. Assume that the assertions of
Thm. 2.3 (for the given r0) are valid under hypotheses (H1), (H2)′ (the strengthened version of
(H2) defined in the statement of Thm. 5.1), (CQ) and (ACL) and under the additional hypoth-
esis on the data:
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(H3): F (t, x) is convex for all (t, x) ∈ [S, T ]× Rn,

and when the following conditions are imposed on the reference F -trajectory x̂(.) : [s, t] → Rn,
with x̂(s) ∈ A ∩

(
ec(s−S)(r0 + 1)− 1

)
B, and the positive number ρ ≥ ρ(x̂(.)):

(i): ρ ≤ ρ̄, and

(ii): t− s ≤ δ.

Then the assertions are valid under (H1), (H2), (CQ) and (ACL) alone.

Proof. In what follows, r0 > 0 and R = ec(T−S)(r0 + 1).

Step 1: Assume that the assertions are valid (with constant K) under hypotheses (H1), (H2)′,
(H3), (CQ) and (ACL), and when it is assumed that x̂(.) on [s, t] satisfies conditions (i) and
(ii). We show that they remain valid (with a modified K) even if x̂(.) violates condition (i).

By assumption, the assertions are valid (with constant K) if ρ ≤ ρ̄. Suppose that ρ > ρ̄. By
standard viability theorems (see for instance [11] or [12]), there exists some feasible F -trajectory
x(.) on [s, t], with x(s) = x̂(s). Now apply the special case of the theorem we assume to be
valid, treating x(.) as the reference trajectory, to justify replacing x(.) by an F -trajectory (we
do not re-label) that is strictly feasible on (s, t]. Then by (H1)

||x(.)− x̂(.)||L∞ ≤ 2c(1 +R)(T − S) ≤ 2ρ̄−1c(1 +R)(T − S)× ρ .

So the assertions of the theorem are valid, in absence of the condition (i), with the larger constant
K

max{K, 2ρ̄−1c(1 +R)(T − S)} .

Step 2: Assume that the assertions are valid (with constant K) under hypotheses (H1), (H2)′,
(H3), (CQ) and (ACL), and when it is assumed that the reference trajectory x̂(.) on [s, t] satis-
fies condition (ii). We show that they remain valid (with a modified K) even if condition (ii) is
violated.

Choose N to be the smallest integer such that N−1(T − S) ≤ δ. Write x0(.) = x̂(.). Partition
[s, t] as a family of N contiguous intervals {[ti0, ti1]}Ni=1 with t10 = s and tN1 = t, each of length at
most δ. Now apply the special case of the theorem (in which condition (ii) is assumed to hold)
with x̂(.)|[t10,t11] as reference trajectory, to yield an F -trajectory x1(.) on [t10, t

1
1] such that x1(.) is

strictly feasible on (t10, t
1
1], x1(t10) = x̂(t10) and

||x1(.)− x0(.)||L∞(t10,t
1
1) ≤ Kρ .

Invoking the Filippov Existence Theorem (Thm. 5.1), we can extend x1(.) as an F -trajectory
to [t10, t

N
1 ] (we do not re-label) such that

||x1(.)− x0(.)||L∞(t10,t
N
1 ) ≤ K1Kρ = K1K (ρ(x0(.)) ∨ ρ) ,

for some constant K1 that does not depend on the choice of x̂(.). Now apply the special case of
the theorem (in which condition (ii) is satisfied), taking as reference trajectory x1(.) restricted
to [t20, t

2
1], to yield an F -trajectory x2(.) on [t10, t

2
1] that is strictly feasible on (t10, t

2
1], which we

10



extend to [t10, t
N
1 ], and so on. We thereby generate a sequence of F -trajectories xi(.) on [t10, t

N
1 ],

i = 1, . . . , N , such that for each i = 1, . . . , N , xi(.) is strictly feasible on (t10, t
i
1] and

||xi(.)− xi−1(.)||L∞(t10,t
N
1 ) ≤ K1K (ρ(xi−1(.)) ∨ ρ) .

We also have
ρ(xi(.)) ∨ ρ ≤ (ρ(xi−1(.)) ∨ ρ) + ||xi(.)− xi−1||L∞(t10,t

N
1 ) .

Now write x(.) = xN (.). Then x(.) is strictly feasible on (t10, t
N
0 ] = (s, t] and, from the preceding

relations,
||x(.)− x̂(.)||L∞(s,t) ≤ K̄ρ ,

in which K̄ = (1 + K1K)N − 1. The assertions are therefore valid even if (ii) is not satisfied,
when we replace K by K̄.

Step 3: Assume that the assertions are valid (with constant K) under hypotheses (H1), (H2)′,
(H3), (CQ) and (ACL). We show that they remain valid even if (H3) is violated, i.e. F is not
convex valued.

Assume that the above hypotheses are satisfied, with the exception of (H3). Replace F by
coF . Then the above hypotheses, including (H3), are satisfied. The special case of the theorem
yields a constant K (independent of the choice of reference trajectory x̂(.) on [s, t]) and a coF
trajectory x′(.) : [s, t]→ Rn, which is strictly feasible on (s, t], such that

||x′(.)− x̂(.)||L∞(s,t) ≤ K ρ .

Choose a decreasing sequence {si} in (s, t], with s1 = t, such that si ↓ s. Since x′(.) is strictly
feasible on (s, t] we can find a sequence of positive numbers εi ∈ (0, ρ) such that εi ↓ 0 and, for
i = 1, 2, . . .

x′(σ) + εiB ⊂ A for all σ ∈ [si, t] . (5)

Take a sequence of positive numbers {αi}. (We shall place restrictions on the αi’s presently.)
By the Relaxation Theorem (which asserts the density, with respect to the L∞ norm, of the set
of F -trajectories with a fixed initial state in the set of coF -trajectories, with the same initial
state; cf. [1] or [21]), there exists a sequence of F -trajectories xi(.) : [si, t]→ Rn such that, for
all integer i ≥ 2, we have xi(si) = x′(si) and

||xi(.)− x′(.)||L∞(si,t) ≤ αi . (6)

For each integer j ≥ 2, we construct an F -trajectory yj(.) : [sj , t]→ Rn as follows:

yj(.) restricted to (sj , sj−1] coincides with xj(.). yj(.) restricted to (sj−1, sj−2] is an F -trajectory
with initial state yj(sj−1), obtained by applying Theorem 5.1 with reference trajectory xj−1(.),
and so on, until yj(.) has been constructed on the whole interval [sj , s1 = t].

Now fix an integer j > 2. We deduce from Theorem 5.1 that, for each 2 ≤ i < j,

||yj(.)− xi(.)||L∞(si,si−1) ≤ M |yj(si)− x′(si)|
||ẏj(.)− ẋi(.)||L1(si,si−1) ≤ M |yj(si)− x′(si)| ,

11



where M := exp
∫ T
S kF (σ)dσ. (We have also used the fact that xi(si) = x′(si)). From these

relations and (6) it follows that for each 2 ≤ i < j and any integer m, we have

||yj(.)− x′(.)||L∞(si,si−1) ≤
j∑
k=i

Mk−iαk (7)

||ẏj+m(.)− ẏj(.)||L1(si,si−1) ≤ 2

j+m∑
k=i+1

Mk−iαk . (8)

Notice that for each j ≥ 2, yj(sj) = x′(sj). So we can extend each F -trajectory yj(.) as an coF
trajectory to all of [s, t], setting yj(σ) = x′(σ) for σ ∈ [s, sj ]. (We do not re-label.)

Now choose the sequence {αk} to satisfy

∞∑
k=i

Mkαk < εi/2, for all i ≥ 2 . (9)

This condition is satisfied, in particular, if we assume that εi < 1/3, for all i ≥ 2, and we chose
αk = (εk/M)k.
Since the yi(.)’s have initial value x̂(s) and in view of hypothesis (H1), we can extract a subse-
quence (we do not re-label) converging uniformly to a coF -trajectory x(.) on [s, t], with initial
value x̂(s). We conclude from (5), (7) and (9) that x(.) is strictly feasible on (s, t]. To see this,
take any σ ∈ (s, t] and note that σ ∈ (si, si−1] for some i ≥ 2. But then from (7) and (9) we
have

yj(σ) ∈ x′(σ) +
εi
2
B ⊂ intA, for all j ≥ i .

Since the yj(.)’s converge uniformly to x(.),

x(σ) ∈ x′(σ) +
εi
2
B ⊂ intA .

On the other hand, for each k ≥ 2, the yi’s, restricted to [sk, t], are F -trajectories, which,
owing to (8), define a Cauchy sequence in W 1,1(sk, sk−1). It may be deduced that the limiting
coF -trajectory x(.) is actually an F -trajectory. Finally we note that, since each εi ≤ ρ,

||x̂(.)− x(.)||L∞(s,t) ≤ ||x̂(.)− x′(.)||L∞(s,t) + ||x(.)− x′(.)||L∞(s,t) ≤ K̄ρ ,

where K̄ = K + 1. This is the desired distance estimate, with the modified constant K̄.

Step 4: Assume that the assertions are valid (with constant K) under hypotheses (H1), (H2)′,
(CQ) and (ACL). We show that they remain valid when (H2)′ is replaced by (H2).

Define the multivalued function F̃ (t, x) := F (t,ΠRB(x)) (we recall that ΠRB(x) is the unique
projection of the point x ∈ Rn into the closed ball RB). Since the projection on the (convex)
set RB is Lipschitz with Lipschitz constant 1, it follows that F̃ is globally integrably Lipschitz
with respect to x and satisfies (H2)′ w.r.t. the same function kF (.).

Consider an arbitrary reference F̃ -trajectory x̂(.) on [s, t] with x̂(s) ∈ A ∩
(
ec(s−S)(r0 +1)−1

)
B.

The special case of Thm. 2.3 yields an F̃ -trajectory x(.) with the desired properties. But, since
x̂(.) and x(.) stay in RB, x̂(.) and x(.) are in fact F -trajectories. We are therefore justified in
assuming that (H2) has been replaced by the stronger hypothesis (H2)′. The proof of Lemma
5.2 is complete.

12



Hypothesis (CQ) is a local condition on the existence of velocities in F pointing into the interior
of A, at each point (t, x) ∈ [S, T ]× (RB ∩ ∂A), in some uniform sense conveyed by a parameter
ε > 0. The proof of the following lemma exploits the properties of the lim inf operation on
a sequence of sets, to show that (CQ) implies a related global property, in which the same
uniformity parameter ε serves for all points (t, x) ∈ [S, T ] ×

(
(∂A + ηB) ∩ RB ∩ A

)
for some

η > 0:

Lemma 5.3 Suppose the multifunction F : [S, T ] × Rn ; Rn and the closed set A satisfy
hypothesis (CQ) (for some R ≥ 0). Then there exist M > 0, ε > 0 and η > 0 with the following
property: for any (t, x) ∈ [S, T ] ×

(
(∂A + ηB) ∩ RB ∩ A

)
, there exists v ∈ coF (t, x) such that

|v| ≤M and
y + [0, ε](v + εB) ⊂ A

for all y ∈ (x+ εB) ∩A.

Proof.

Step 1: We claim that for each (t, x) ∈ [S, T ]×
(
RB∩ ∂A

)
there exist Mt,x > 0, εt,x ∈ (0, 1) and

δt,x ∈ (0, εt,x] such that, given any (t′, x′) ∈ ((t, x)+δt,xB)∩ ([S, T ]×A), a vector v′ ∈ coF (t′, x′)
can be found such that |v′| ≤Mt,x and

y′ + [0, εt,x](v′ + εt,xB) ⊂ A, for all y′ ∈ (x′ + εt,xB) ∩A .

Indeed, take any (t, x) ∈ [S, T ]× (RB ∩ ∂A) and chose any vector

v ∈
(

lim inf
(t′,x′)

[S,T ]×A−→ (t,x)

coF (t′, x′)
)
∩ intTA(x) .

By the characterization of the interior of the Clarke tangent cone (see for instance [18]), there
exists ε ∈ (0, 1) such that

y + [0, ε](v + 2εB) ⊂ A for all y ∈ (x+ 2εB) ∩A . (10)

On the other hand, by definition of the limit inferior operation, there exists δ ∈ (0, ε] such that,
given any (t′, x′) ∈ ((t, x) + δB)∩ ([S, T ]×A), there exists v′ ∈ coF (t′, x′) satisfying |v− v′| ≤ ε.
Then, |v′| ≤ |v|+ 1(=: Mt,x).

Now take any y′ ∈ (x′+εB)∩A. Then, since x′+εB ⊂ x+2εB and v′ ∈ v+εB, we may conclude
from (10)

y′ + [0, ε](v′ + εB) ⊂ A for all y′ ∈ (x′ + εB) ∩A .

Step 2: By a standard compactness argument, we can find a finite number of points (ti, xi) ∈
[S, T ]×

(
RB ∩ ∂A

)
and numbers Mi > 0, εi > δi > 0, for i = 1, . . . ,m, such that⋃

i=1,...,m

(
(ti, xi) + δi

◦
B
)
⊃ [S, T ]×

(
RB ∩ ∂A

)
(11)

(here
◦
B denotes the open unit ball), and for each (t′, x′) ∈ ((ti, xi) + δiB) ∩ ([S, T ] × A), there

exists a vector v′ ∈ coF (t′, x′) such that |v′| ≤Mi and

y′ + [0, εi](v
′ + εiB) ⊂ A, for all y′ ∈ (x′ + εiB) ∩A.
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Notice also that there exists η ∈ (0,mini=1,...,m δi) such that⋃
i=1,...,m

(
(ti, xi) + δi

◦
B
)
⊃ [S, T ]×

(
(∂A+ ηB) ∩RB

)
,

otherwise we could find a sequence of points (sj , yj) ∈ RB\
⋃
i=1,...,m

(
(ti, xi) + δi

◦
B
)

such that

(sj , yj)→ (s, y) ∈ [S, T ]×
(
RB ∩ ∂A

)
, which would contradict (11).

To conclude we just take ε = mini=1,...,m εi, M = maxi=1,...,mMi and the assertions of the lemma
immediately follow.

6 Proof of Theorem 2.3

Fix r0 > 0. Set R := ec(T−S)(1 + r0) and R̄ := c(1 + R). (The constants R and R̄ bound,
respectively, magnitudes and velocities of arcs x(.) on subintervals of [S, T ] originating in r0B
and satisfying |ẋ| ≤ c(1 + |x|).)

We know (see Lemma 5.3) that there exist M > 0, ε > 0 and η > 0 with the property: given
any (t, x) ∈ [S, T ]×

(
(∂A+ ηB) ∩RB ∩A

)
, v ∈ coF (t, x) can be found such that |v| ≤M and

x′ + [0, ε](v + εB) ⊂ A (12)

for all x′ ∈ (x + εB) ∩ A. Notice that assumption (H1) yields |v| ≤ R̄ and so, in fact, we can
take M = R̄. From assumption (ACL) we also know that η > 0 can be chosen such that

F (t, x) ⊂ F (s, x) +

∫ t

s
γ(s′)ds′ B (13)

for all points x ∈ (∂A + ηB) ∩ RB and subintervals [s, t] ⊂ [S, T ]. Here γ(.) is the summable
function of Lemma 2.2.

Let kF (.) be the integrable function of hypothesis (H2). Define the non-negative functions θ(.)
and ω(.) on [0, T − S]

θ(σ) := sup{
∫
I
γ(s)ds} and ω(σ) := sup{

∫
I
kF (s)ds}

where (in both definitions) the supremum is taken over sub-intervals I ⊂ [S, T ] of length not
greater than σ. By properties of integrable functions, θ(σ)→ 0 and ω(σ)→ 0, as σ ↓ 0.

Take k > 0 such that k > ε−1 and choose ∆ > 0 and ρ̄ > 0 such that

∆ ≤ ε, ρ̄+ R̄∆ < ε, kρ̄ < ε, ρ̄ ≤ η, 4∆R̄ ≤ η, (14)

and

eω(∆)(θ(∆) + ω(∆)R̄(T − S)) < ε, 2eω(∆)(θ(∆) + ω(∆)R̄) k < (kε− 1) . (15)

To prove the theorem we must find K > 0 such that, given any sub-interval [t0, t1] ⊂ [S, T ],
F -trajectory x̂(.) on [t0, t1] with x̂(t0) ∈ A ∩

(
ec(t0−S)(r0 + 1) − 1

)
B and ρ > 0 satisfying

ρ ≥ ρ[t0,t1](x̂(.)), there exists a feasible F -trajectory x(.) on [t0, t1] with the same initial state
satisfying

||x̂(.)− x(.)||L∞(t0,t1) ≤ K ρ .
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In view of Lemma 5.2, we can assume, without loss of generality, that F (., .) is convex valued,
ρ ≤ ρ̄ and t1 − t0 ≤ ∆.

Notice that we can restrict attention to the case x̂(t0) ∈ (∂A+ η
2B)∩A∩

(
ec(t0−S)(r0 + 1)− 1

)
B.

Indeed, if x̂(t0) ∈
(
A ∩

(
ec(t0−S)(r0 + 1)− 1

)
B
)
\ (∂A+ η

2B), then it follows from condition (14)
on ∆ that x(.) = x̂(.) has the required properties.

Since F (., .) is now convex valued and

x̂(t0) ∈ (∂A+
η

2
B) ∩A ∩

(
ec(t0−S)(r0 + 1)− 1

)
B ⊂ (∂A+

η

2
B) ∩RB ∩A,

we can chose a vector v ∈ F (t0, x̂(t0)) satisfying condition (12) when (t, x) = (t0, x̂(t0)). Define
y(.) : [t0, t1]→ Rn to be the arc satisfying y(t0) = x̂(t0) and

ẏ(t) =

{
v if t ∈ [t0, (t0 + kρ) ∧ t1]
˙̂x(t− kρ) if t ∈ (t0 + kρ, t1] and if ˙̂x(t− kρ) exists .

Note that, for t ≥ t0 + kρ,
y(t) = x̂(t− kρ) + kρv . (16)

Observing that both v and || ˙̂x(.)||L∞ are bounded by R̄, we conclude that

||x̂(.)− y(.)||L∞(t0,t1) ≤ 2R̄kρ . (17)

Take any s ∈ [t0, (t0 + kρ) ∧ t1]. In view of (13), and since ||ẏ||L∞ ≤ R̄ and v ∈ F (t0, x0), we
have

dF (s,y(s))(ẏ(s)) ≤ θ(∆) + dF (t0,y(s))(v)

≤ θ(∆) + kF (s)R̄ (s− t0) . (18)

By Theorem 5.1, and using the estimate (18), there exists an F -trajectory x(.) on [t0, (t0+kρ)∧t1]
such that x(t0) = y(t0) and, for any t ∈ [t0, (t0 + kρ) ∧ t1]

||x(.)− y(.)||L∞(t0,t) ≤ eω(∆)(θ(∆) + ω(∆)R̄) (t− t0) . (19)

If t0 + kρ < t1, then from (13), (14) and (16) it follows that, for a.e. s ∈ [t0 + kρ, t1],

dF (s,y(s))(ẏ(s)) = dF (s,kρv+x̂(s−kρ))( ˙̂x(s− kρ))

≤ kF (s)R̄kρ+ dF (s,x̂(s−kρ))( ˙̂x(s− kρ))

≤ kF (s)R̄kρ+

∫ s

s−kρ
γ(s′) ds′ + dF (s−kρ,x̂(s−kρ))( ˙̂x(s− kρ))

= kF (s)R̄kρ+

∫ s

s−kρ
γ(s′) ds′ + 0 .

But by Fubini’s Theorem∫ t

t0+kρ

∫ s

s−kρ
γ(s′)ds′ds =

∫ t

t0

∫ t1

t0

χ[t0+kρ,t](s) χ[s−kρ,s](s
′) ds γ(s′) ds′ ≤ θ(∆)kρ .

We deduce that, for any t ∈ [t0 + kρ, t1],∫ t

t0+kρ
dF (s,y(s))(ẏ(s)) ds ≤ (ω(∆)R̄+ θ(∆))kρ .
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Appealing once again to Theorem 5.1, we can extend the F -trajectory x(.) from [t0, (t0 +kρ)∧t1]
to [t0, t1] (we do not re-label) such that

||x(.)− y(.)||L∞(t0,t1) ≤ 2eω(∆)(θ(∆) + ω(∆)R̄)kρ . (20)

It follows from (17) that
||x̂(.)− x(.)||L∞(t0,t1) ≤ Kρ

where
K = 2

(
R̄+ eω(∆)(θ(∆) + ω(∆)R̄)

)
k .

It remains then to show that

x(t) ∈ intA for t ∈ (t0, t1] .

We need to consider two cases:

Case (A): t ∈ (t0, t0 + kρ]. Since y(t) = x̂(t0) + (t − t0)v and t − t0 ≤ ε, it follows from (12)
that

y(t) + (t− t0)εB = x̂(t0) + (t− t0)(v + εB) ⊂ A .

But then, by (19) and (15), x(t) ∈ intA .

Case (B): t ∈ (t0 + kρ, t1]. Let π(.) be a projection on A of the arc t→ x̂(t− kρ):

π(t) ∈ ΠA(x̂(t− kρ)) .

We have π(t) ∈ A and

|x̂(t− kρ)− π(t)| = dA(x̂(t− kρ)) ≤ ρ .

From (16)
y(t) ∈ π(t) + kρv + ρB . (21)

Since |x̂(t− kρ)− x̂(t0)| ≤ R̄(t1 − t0),

|π(t)− x̂(t0)| ≤ ρ̄+ R̄∆ .

Taking note of (12) and (14), we see that

π(t) + kρv + kρεB ⊂ A .

So, by (21),
y(t) + (kε− 1)ρB ⊂ A .

But then, in view of (15) and (20), x(t) ∈ intA in this case also. The proof is complete.

7 Appendix

In this appendix we provide proofs of the two propositions in Section 4, concerning the validity,
or otherwise, of distance estimates, in the absence of a supplementary hypothesis on the regu-
larity of F (., x).

Proof of Proposition 4.1. To prove the proposition it suffices to construct an interval [S, T ],
multifunction F : [S, T ] × Rn ; Rn and a closed set A ⊂ Rn, satisfying (for some r0 > 0)
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hypotheses (H1), (H2) and (CQ) (but not (ACL)) with the following properties: for any K > 0,
δ > 0 and α ∈ (0, 1), there exist an interval I ⊂ [S, T ] of length not greater than δ, and an
F -trajectory x̂(.) on I with initial state in r0B such that

||x̂(.)− x(.)||L∞(I) > K
∣∣ρI(x̂(.))

∣∣α ,
for all feasible F -trajectories x(.) on I with the same initial state. We proceed to construct such
an F and A. Notice that F , defined below, depends only on t, and the A is the intersection of
two closed half-spaces (which might be thought of as the simplest kind of state constraint set
with non-smooth boundary).

Fix an integer N ≥ 3 and a real number ν ∈ (0, 1
4 ]. Let y(.) : [0, 1]→ R be the function defined

by the properties: y(0) = 0,

y(tk) := (−1)k
tk
2
,

and

ẏ(t) = (−1)k
N + 1

2(N − 1)
for (tk+1, tk],

where tk is the decreasing sequence of times

tk :=
1

Nk
, k = 0, 1, 2, 3, . . . .

For each k, we write sk for the time when the piecewise affine function y(.) takes value zero in
the interval [tk+1, tk]:

sk =
2tk

N + 1
for k = 0, 1, 2, 3, . . . .

Let v0, v1 and v3 be the vectors in R3:

v0 = (ν, 0, 0), v1 =

(
1/2,

N + 1

2(N − 1)
, 0

)
and v2 =

(
1/2,− N + 1

2(N − 1)
, 0

)
.

Set [S, T ] = [0, 1], r0 = 1 and take the time-dependent multi-function F (.) : [0, 1] ; R3

F (t) :=

{
{v0} ∪ {v1} if t ∈ (tk+1, tk]
{v0} ∪ {v2} if t ∈ (tk+2, tk+1],

where k = 0, 2, 4, . . . . Consider the state-constrained differential inclusion

ẋ(t) ∈ F (t) a.e. t ∈ [0, 1] (22)

x(t) ∈ A for all t ∈ [0, 1] ,

in which the state constraint A is the closed set

A = {x ∈ R3 | x2 − x1 + x3 ≤ 0, −x2 − x1 + x3 ≤ 0} .

For these choices of F and A, hypotheses (H1)-(H2) and (CQ) are satisfied (for the given r0).
But condition (ACL) is not satisfied.

Consider now the family of F -trajectories {x̂i(.) : [si, 1]→ R3 | i = 1, 2, . . . }:

x̂i(t) =
(
x̂1,i(t), x̂2,i(t), x̂3,i(t)

)
=

(
t+ si

2
, y(t), si

)
, for t ∈ [si, 1], i = 1, 2, . . . (23)
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For each i, x̂i(si) = ξi, where
ξi = (si, 0, si) .

Observe that, for each i, ξ ∈ A ∩ r0B and x̂i(.) is an F -trajectory which is not feasible, with
violation

ρ[si,1](x̂i(.)) =

√
3

2
si

(
= max

k≥i
dA(x̂i(tk))

)
. (24)

Notice also that for any i such that ti ≤ δ the state constraint violation of the arc x̂i(.)

restricted to [si, δ] has the same value: ρ[si,δ](x̂i(.)) =
√

3
2 si.

Now take ν = ν(N) := 1
N+1 and define

β(N) :=

(
1

2
− ν(N)

)(
N − 1

1 + [N − 1]ν(N)

)
.

Note that β(N)
N → 1/4 as N →∞.

Next take x(.) =
(
x1(.), x2(.), x3(.)

)
to be any feasible F -trajectory on [si, 1] with initial data

x(si) = ξi. It has to satisfy the inequality |x2(t)| ≤ x1(t)− x3(t), for all t ∈ [si, 1], that is

|x2(t)| ≤ x1(t)− si for all t ∈ [si, 1] . (25)

Moreover, for all 1 ≤ j ≤ i we have

x̂1,i(tj−1)− x1(tj−1) = x̂1,i(tj)− x1(tj) +

∫ tj−1

tj

(
˙̂x1,i(t)− ẋ1(t)

)
dt

= x̂1,i(tj)− x1(tj) +

(
1

2
− ν(N)

)
d[tj ,tj−1]( ˙̂xi(.), ẋ(.)) , (26)

where, given an interval I ⊂ [S, T ], we write

dI( ˙̂xi(.), ẋ(.)) := meas {t ∈ I | ˙̂xi(.) 6= ẋ(.)} .

From (25) and (26), we can deduce

|x2(tj−1)| ≤ |x̂2,i(tj−1)| − si
2
− (x̂1,i(tj)− x1(tj))−

(
1

2
− ν(N)

)
d[tj ,tj−1]( ˙̂xi(.), ẋ(.))

and therefore

|x̂2,i(tj−1)− x2(tj−1)| ≥ si
2

+ (x̂1,i(tj)− x1(tj)) +

(
1

2
− ν(N)

)
d[tj ,tj−1]( ˙̂xi(.), ẋ(.)) . (27)

We also know that

|(x̂2,i(tj−1)− x2(tj−1))− (x̂2,i(tj)− x2(tj))| =
N + 1

2(N − 1)
d[tj ,tj−1]( ˙̂xi(.), ẋ(.)) . (28)

Thus (27) and (28) imply that

N + 1

2(N − 1)
d[tj ,tj−1]( ˙̂xi(.), ẋ(.)) ≥ si + (x̂1,i(tj)− x1(tj)) +

(
1

2
− ν(N)

)
d[tj ,tj−1]( ˙̂xi(.), ẋ(.))

and therefore

d[tj ,tj−1]( ˙̂xi(.), ẋ(.)) ≥ N − 1

1 + [N − 1]ν(N)

(
si + (x̂1,i(tj)− x1(tj))

)
. (29)
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Using (24), (26) and (29), for all j = 1, . . . , i, we have

|x̂1,i(tj−1)− x1(tj−1)| ≥ 2√
3
β(N) ρ(x̂i(.)) + (1 + β(N)) |x̂1,i(tj)− x1(tj)| . (30)

On the other hand, from (24) and (25), similarly as in (30), we obtain

|x̂1,i(ti)− x1(ti)| =

(
1

2
− ν(N)

)
d[si,ti](

˙̂xi(.), ẋ(.)) ≥ 1√
3

(
1

2
− ν(N)

)
ρ(x̂i(.)) . (31)

Fix any δ ∈ (0, 1). Then there exists k ∈ N such that tk+1 ≤ δ ≤ tk. Consider now any i ≥ k+3.
The following estimates can be deduced from (30) and (31)

|x̂1,i(tk+1)− x1(tk+1)| ≥ 1

4
√

3

i−k−1∑
j=0

(1 + β(N))jρ(x̂i(.))

>
1

4
√

3
(1 + β(N))logN (δ)−1

( √
3

N + 1

)logN (1+β(N))

[ρ(x̂i(.))]
1−logN (1+β(N)) . (32)

From the properties of log functions, we deduce that

logN (1 + β(N)) =
ln(1 + β(N))

ln(N)
= 1 +

ln( 1
N + β(N)

N )

ln(N)
→ 1 ,

asN →∞, since 1
N +β(N)

N → 1/4. (Taking the logarithm to base e here was an arbitrary choice.)

Now take any α ∈ (0, 1), α′ ∈ (0, α) and K > 0. In view of the preceding relation, we can choose
N such that

1− logN (1 + β(N)) < α′ .

But then, for i ≥ k + 3,

||x̂i(.)− x(.)||L∞(si,tk+1) ≥ c|ρ[si,tk+1](x̂i(.))|α
′
,

in which c > 0 is some number that does not depend on i. Since ρ[si,tk+1](x̂i(.))→ 0, as i→∞,
it follows that

||x̂i(.)− x(.)||L∞(I) ≥ K|ρI(x̂i(.))|α

in which I = [si, tk+1] (an interval of length not greater than δ), if we further arrange that

c > K|ρ[si,tk+1](|x̂i(.))|(α−α
′) .

Proof of Proposition 4.2. To prove the proposition it suffices find an interval [S, T ], multi-
function F : [S, T ]× Rn ; Rn and a closed set A ⊂ Rn satisfying (for some r0 > 0) hypotheses
(H1), (H2), (CQ) and (C) (but not (ACL)), with the following properties: for any K > 0 and
δ > 0, there exist an interval I ⊂ [S, T ] and an F -trajectory x̂(.) on I with initial state in r0B
such that

||x̂(.)− x(.)||L∞(I) > K
(
1 + | ln(ρI x̂(.))|

)
ρI(x̂(.)) ,

for all feasible F -trajectories x(.) on I with the same initial state.
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As before, we set [S, T ] = [0, 1] and take A to be the set

A = {x ∈ R3 | x2 − x1 + x3 ≤ 0, −x2 − x1 + x3 ≤ 0} .

But we replace the earlier multifunction F (.) by a new multifunction Fc(.) : [0, 1] ; R3 (still a
function only of t), which is continuous. Fc(.) is constructed using the vectors

v0 = (0, 1, 0), v1 = (1/2, 1, 0) and v2 = (1/2,−1, 0) ,

the decreasing sequences of times {tk} and {sk} of the earlier proof, the sequence of functions
{µk : [tk, tk−1]→ R}

µk(t) :=


t−tk
τk

if t ∈ [tk, tk + τk]

1 if t ∈ [tk + τk, tk−1 − τk]
tk−1−t
τk

if t ∈ [tk−1 − τk, tk−1],

(33)

in which τk = 1
16×32k

, and some sequence of positive numbers εk ↓ 0. Writing

ηk(.) = εk µk(.) ,

we define the multifunction Fc(.) to be

Fc(t) :=

{
{v1} ∪ {v1 + (v0 − v1)ηk(t)} if t ∈ (tk+1, tk]

{v2} ∪ {v2 + (−v0 − v2)ηk(t)} if t ∈ (tk+2, tk+1],

where k = 0, 2, 4, . . . .

(Note that the new multifunction Fc(.) coincides with F (.) at ‘mesh’ points t = t1, t2, . . .; inter-
mediate values are generated by means of a continuous interpolation scheme.)

The data Fc(.) and A verify (H1), (H2), (CQ), and also (C) (for r0 = 1, say). Notice that, if the
series

∑∞
k=1 εk diverges, then Fc(.) does not satisfy assumption (ACL).

For i = 1, 2, . . . take the Fc-trajectory x̂i(.) on [si, 1] with initial value ξi = (si, 0, si) ∈ A to be

the same as before with N = 3. Recall that the state constraint violation of x̂i(.) is
√

3
2 si.

Using a similar analysis to that of the proof of Prop. 4.1 (cf. in particular formulas (26)-(31)),
we can show that for any positive integer k such that tk+1 ≤ δ ≤ tk and any even integer
i ≥ 4k + 16,

|x̂1,i(tk+1)− x1(tk+1)| > 1√
3

[
(i/2 + 1− k)

εi+1

8
+ (i/2− k)

(i/2− k + 1)

2

(εi+1

8

)2
]
ρIi(x̂i(.)) ,

for any feasible Fc-trajectory x(.) on Ii := [si, tk] with initial state x(si) = x̂i(si). Then each Ii
has length not greater than δ. It can be deduced from the above inequality that there exists a
number c, which do not depend on i, such that

||x̂i(.)− x(.)||L∞(Ii) > c(| ln(ρIi(x̂i(.)))|)2ε2i+1 ρIi(x̂i(.)) ,

= Ki × (1 + | ln(ρIi(x̂i(.))|) ρIi(x̂i(.)) ,

for all feasible Fc-trajectories on Ii with initial state x̂i(si) and even i sufficiently large, where

Ki :=
c(| ln(ρIi(x̂i(.)))|)2(

1 + | ln(ρIi(x̂i(.)))|
)3/2 ,
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when we choose
ε2i+1 :=

(
1 + | ln(ρIi(x̂i(.)))|

)−1/2
.

Since εi ≥ 1

( 2 ln(N) × i )
1
4

for each i, clearly the series
∑∞

i=1 εi diverges and, as a consequence,

Fc does not satisfy (ACL). Noting that Ki ↑ ∞, we see that the sequence of Fc-trajectories
{x̂i : Ii → R3} has the required properties for completion of the proof.
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