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Abstract—As a key sampling scheme in Markov chain Monte
Carlo (MCMC) methods, Gibbs sampling is widely used in
various research fields due to its elegant univariate conditional
sampling, especially in tacking with multidimensional sampling
systems. In this paper, a Gibbs-based sampler named as symmet-
ric Metropolis-within-Gibbs (SMWG) algorithm is proposed for
lattice Gaussian sampling. By adopting a symmetric Metropolis-
Hastings (MH) step into the Gibbs update, we show the Markov
chain arising from it is geometrically ergodic, which converges
exponentially fast to the stationary distribution. Moreover, by
optimizing its symmetric proposal distribution, the convergence
efficiency can be further enhanced.
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I. INTRODUCTION

Sampling from the lattice Gaussian distribution is an im-
portant problem in coding and cryptography. In [1], lattice
Gaussian distribution was employed to achieve the full shaping
gain for lattice coding. On the other hand, both the capacity of
the Gaussian channel and the secrecy capacity of the Gaussian
wiretap channel can be obtained through it [2]. As for the
field of cryptography, lattice Gaussian distribution has already
become a central tool in the construction of many primitives
such as lattice-based cryptosystems and fully-homomorphic
encryption for cloud computing [3], [4]. Due to the central role
of the lattice Gaussian distribution playing in these research
areas, how to perform the sampling over it becomes the key.
In fact, lattice Gaussian sampling itself essentially corresponds
to the closest vector problem (CVP) via a polynomial-time
dimension-preserving reduction, which allows to solve the
lattice decoding problems with a suitable variance [5], [6].

However, in contrast to sampling from a continuous Gaus-
sian distribution, it is by no means trivial to sample even from
a low-dimensional discrete Gaussian distribution. Because
of it, Markov chain Monte Carlo (MCMC) methods were
introduced, which attempts to obtain the desired samples via
Markov chains. In particular, the validity of Gibbs sampling in
terms of convergence to the target lattice Gaussian distribution
has been demonstrated in [7], and a flexible block Gibbs
sampling was proposed to further improve the convergence,
where the ergodicity of the chain is still preserved. However,
ergodicity only implies an asymptotic convergence. Since
the Markov chain associated with lattice Gaussian sampling

corresponds to a countably infinite state space, how to specify
the convergence of Gibbs sampling naturally becomes an open
question of interest.

Besides Gibbs sampling, the traditional Metropolis-Hastings
(MH) sampling from MCMC can also be used for lattice
Gaussian sampling and some progress have been made. Specif-
ically, the independent Metropolis-Hastings-Klein (IMHK)
algorithm was proposed in [8], which is uniformly ergodic
with an accessible convergence rate. Furthermore, by taking
advantage of a symmetrical proposal distribution, a symmetric
Metropolis-Klein (SMK) algorithm was given, which not only
converges exponentially fast, but also takes the selection of
the initial state into account. By definition from MCMC, such
a convergence scheme is referred to as geometric ergodicity.

Inspired by the SMK algorithm, in this paper, a Gibbs-
based sampler referred to as symmetric Metropolis-within-
Gibbs algorithm is proposed. It not only makes use of the
univariate sampling from Gibbs sampling, but also retains the
acceptance-rejection rule from the MH sampling. We firstly
show the underlying Markov chain formed by it is geometrical-
ly ergodic. Note that different from the SMK shown in [8], the
proposed Gibbs-based algorithm performs the sampling over
a 1-dimensional symmetric conditional distribution, which
successfully gets rid off the need of Klein’s algorithm. Then,
to further enhance the convergence performance, an optimized
scheme of the proposed algorithm is also given. With the
optimized symmetric proposal distribution, it outperforms the
original one by the convergence rate.

II. LATTICE GAUSSIAN SAMPLING BY GIBBS SAMPLER

Let B = [b1, . . . ,bn] ⊂ Rn consist of n linearly indepen-
dent vectors. The n-dimensional lattice Λ generated by B is
defined by

Λ = {Bx : x ∈ Zn}, (1)

where B is known as the lattice basis. We define the Gaussian
function centered at c ∈ Rn for standard deviation σ > 0 as

ρσ,c(z) = e−
‖z−c‖2

2σ2 , (2)

for all z ∈ Rn. When c or σ are not specified, we assume that
they are 0 and 1 respectively. Then, the discrete Gaussian



distribution over Λ is defined as

DΛ,σ,c(x) =
ρσ,c(Bx)

ρσ,c(Λ)
=

e−
1

2σ2
‖Bx−c‖2∑

x∈Zn e
− 1

2σ2
‖Bx−c‖2

(3)

for all Bx ∈ Λ, where ρσ,c(Λ) ,
∑

Bx∈Λ ρσ,c(Bx) is just a
scaling to make a probability distribution.

On the MCMC front, lattice Gaussian distribution DΛ,σ,c(x)
can be viewed as a complex target distribution π lacking of di-
rect sampling methods. Therefore, Gibbs sampling who makes
use of the 1-dimensional conditional distribution as a tractable
alternative to work with was introduced [7]. Specifically, at
each Markov move of Gibbs sampling, each coordinate of
x is sampled from the following 1-dimensional conditional
distribution

π(xi|x[−i]) =
e−

1
2σ2
‖Bx−c‖2∑

xi∈Z e
− 1

2σ2
‖Bx−c‖2

=
e
− 1

2σ2
i

|xi−c|2∑
xi∈Z e

− 1

2σ2
i

|xi−c|2
. (4)

Here, σi = σ/|bi|, bi represents the scaling coefficient of
xi and c stands for the summation of the rest of n − 1
components of x multiplied by their own scaling coefficients,
1 ≤ i ≤ n denotes the coordinate index of x and x[−i] ,
[x1, . . . , xi−1, xi+1, . . . , xn]T . By repeating such a procedure
with a randomly chosen coordinate i, an underlying Markov
chain {X0,X1, . . .} is induced, whose transition probability
between two adjacent states x and y is defined by the
univariate conditional distribution [9],

P (x,y) = P (xi → yi|x[−i]) = π(yi|x[−i]). (5)

Clearly, x and y only differ from each other by at most one
component while the sampling of yi for the state y highly
depends on the n− 1 unchanged components of x rather than
xi. Without loss of generality, such a single-step move scheme
of Gibbs sampling is considered in the context. To summarize,
the Gibbs sampler for lattice Gaussian distribution is shown in
Algorithm 1, where r = {1/n, . . . , 1/n} stands for a selection
probability set (nonuniform probability set is also possible, see
more details in [10]).

Theorem 1 ([7]). Given the target lattice Gaussian distribu-
tion DΛ,σ,c, the Markov chain induced by Gibbs algorithm is
ergodic:

lim
t→∞
‖P t(x; ·)−DΛ,σ,c(·)‖TV = 0 (6)

for all states x ∈ Zn, where P t(x; ·) denotes a row of the
transition matrix P for t Markov moves and ‖ · ‖TV denotes
the total variation distance.

III. SYMMETRIC METROPOLIS-WITHIN-GIBBS
ALGORITHM

A. Classical MH Algorithms
In [11], the original Metropolis algorithm was successfully

extended to a more general scheme known as the Metropolis-

Algorithm 1 Gibbs algorithm for lattice Gaussian sampling
Input: B, σ, c, r,X0,
Output: samples from the target distribution π = DΛ,σ,c

1: for t =1,2, . . . do
2: randomly choose coordinate index i from set r
3: let x denote the state of Xt−1

4: generate y by sampling yi from π(yi|x[−i])
5: if Markov chain goes to steady then
6: output y as the state Xt

7: end if
8: end for

Hastings (MH) algorithm. In particular, given the current state
x for Markov chain Xt, a state candidate y for the next
Markov move Xt+1 is generated from a proposal distribution
q(x,y). Then the acceptance ratio α is computed by

α(x,y) = min
{

1,
π(y)q(y,x)

π(x)q(x,y)

}
, (7)

and y will be accepted as the new state by Xt+1 with
probability α. Otherwise, x will be retained by Xt+1. In this
way, a Markov chain {X0,X1, . . .} is established with the
transition probability P (x,y) as follows:

P (x,y) =

{
q(x,y)α(x,y) if y 6= x,

1−
∑

z6=x q(x, z)α(x, z) if y = x.
(8)

It is interesting that in MH algorithms, q(x,y) can be
any fixed distribution from which we can conveniently draw
samples. However, the MH algorithm also pays a price for its
flexibility. If the proposal distribution is poorly chosen, either
the acceptance rate is low, or the Markov chain converges
slowly.

B. The Proposed Sampling Algorithm

In principle, Gibbs sampling is a special case of MH sam-
pling that tackles with multi-dimensional problems through
the univariate conditional sampling. More precisely, by letting
q(x,y) = π(yi|x[−i]), then the acceptance ratio α is always
1 by definition, namely,

π(y)q(y,x)

π(x)q(x,y)
=
π(yi|x[−i])π(x[−i])π(xi|x[−i])

π(xi|x[−i])π(x[−i])π(yi|x[−i])
= 1, (9)

thus resulting in the classic Gibbs sampling. Inspired by this,
the Gibbs update is often replaced by a Metropolis-Hastings
step, yielding the Metropolis-within-Gibbs algorithm [10].

Now, we propose the symmetric Metropolis-within-Gibbs
sampling algorithm, where q(x,y) is designed as a 1-
dimensional conditional symmetric Gaussian distribution:

q(x,y) = Q(xi → yi|x[−i]) =
e−

1
2σ2
|yi−xi|2∑

yi∈Z e
− 1

2σ2
|yi−xi|2

=
e−

1
2σ2
|yi−xi|2∑

zi∈Z e
− 1

2σ2
|zi|2

= q(y,x). (10)



Clearly, by doing this, the generation of the state candidate
y is completely independent of the other n − 1 unchanged
components, but heavily depends on the i-th component, i.e.,
xi, in the previous state x. Meanwhile, since the chain is
symmetric, the calculation of the acceptance ratio α is also
greatly simplified by such an inhere elegance:

α = min
{

1,
π(y)

π(x)

}
= min

{
1,
π(yi|x[−i]) · π(x[−i])

π(xi|x[−i]) · π(x[−i])

}

= min

1,
e
− 1

2σ2
i

|yi−c|2

e
− 1

2σ2
i

|xi−c|2

 . (11)

To summarize, different from Gibbs sampling who always
accepts the new sampling candidate determinately, uncertainty
for the sample acceptance in the proposed sampling algorithm
is retained in an Metropolis way [12]. Then, based on (10)
and (11), the transition probability P (x,y) of the symmetric
Metropolis-within-Gibbs algorithm are given by

P (x,y)=


min

{
q(x,y), π(y)q(x,y)

π(x)

}
if y 6=x,

q(x,x)+
∑
z6=x

max
{

0,q(x, z)− π(z)q(x,z)
π(x)

}
if y=x.

(12)
Then, we can easily arrive at the following Theorem. The proof
is straightforward but omitted here. For more details, readers
are referred to [7].

Theorem 2. Given the target lattice Gaussian distribution
DΛ,σ,c, the Markov chain induced by the proposed symmetric
Metropolis-within-Gibbs algorithm is ergodic:

lim
t→∞
‖P t(x; ·)−DΛ,σ,c(·)‖TV = 0 (13)

for all states x ∈ Zn.

IV. GEOMETRIC ERGODICITY

In this section, the proof of the geometric ergodicity for the
proposed algorithm is presented. It should be noticed that at
each step, the proposed Gibbs-based algorithm focuses on the
sampling over a 1-dimensional symmetric distribution rather
than a full dimension distribution. Therefore, compared to the
SMK algorithm, it is more suitable for multidimensional target
distributions.

Definition 1. A Markov chain having stationary distribution
π(·) is geometrically ergodic if there exists 0 < δ < 1 and
M(x) <∞ such that for all x

‖P t(x, ·)− π(·)‖TV ≤M(x)(1− δ)t. (14)

Note that the selection of the initial state also matters,
which is the main difference between geometric ergodicity and
uniform ergodicity [13].

In MCMC, the drift condition is the well-known straight-
forward way to prove the geometric ergodicity [14], and its
definition with respect to a discrete state space Ω is shown
below [13].

Algorithm 2 Symmetric Metropolis-within-Gibbs Algorithm
for Lattice Gaussian Sampling
Input: B, σ, c,X0

Output: samples from the target distribution π = DΛ,σ,c

1: for t =1,2, . . . do
2: randomly choose coordinate index i from set r
3: let x denote the state of Xt−1

4: generate y by the proposal distribution q(x,y) in (10)
5: calculate the acceptance ratio α(x,y) in (11)
6: generate a sample u from the uniform density U [0, 1]
7: if u ≤ α(x,y) then
8: let Xt = y
9: else

10: Xt = x
11: end if
12: if Markov chain goes to steady then
13: output the state of Xt

14: end if
15: end for

Definition 2. A Markov chain with discrete state space Ω
satisfies the drift condition if there are constants 0 < λ < 1
and b <∞, and a function V : Ω→ [1,∞], such that∑

Ω

P (x,y)V (y) ≤ λV (x) + b1C(x) (15)

for all x ∈ Ω, where C is a small set, 1C(x) equals to 1 when
x ∈ C and 0 otherwise.

Here, the small set C means that there exist k > 0, 1 >
δ > 0 and a probability measure v on Ω such that

P k(x,B) ≥ δv(B), ∀x ∈ C (16)

for all measurable subsets B ⊆ Ω (also known as minorisation
condition in literature) [15]. Then, following the footstep
from [8], we try to prove the Markov chain arising from the
proposed algorithm is geometrically ergodic by satisfying the
drift condition.

Theorem 3. Given the invariant lattice Gaussian distribu-
tion DΛ,σ,c, the Markov chain established by the symmetric
Metropolis-within-Gibbs algorithm satisfies the drift condition.
Therefore, it is geometrically ergodic.

Proof. By definition, it is easy to verify that any nonempty
bounded set C ⊆ Z corresponds to a small set. In order to
specify a small set C, we define

C = {xi ∈ Z : π(xi|x[−i]) ≥
1

d2
}, (17)

where d > 1 is a constant set initially.
At each Markov move, given the acceptance ratio α shown

in (11), the acceptance region Axi and the potential rejection
region Rxi for the chain started from x are defined as

Axi = {yi ∈ Z|π(yi|x[−i]) ≥ π(xi|x[−i])}; (18)

Rxi = {yi ∈ Z|π(yi|x[−i]) < π(xi|x[−i])}. (19)



In other words, state candidate y will be accepted by Xt+1

without uncertainty if yi ∈ Axi . On the other hand, y has
a certain risk to be rejected if yi ∈ Rxi . Then, divided by
Axi and Rxi , the discrete term

∑
yi∈Z P (x,y)V (y) can be

expressed as∑
yi∈Z

P (x,y)V (y)=
∑

yi∈Axi

P (x,y)V (y) +
∑

yi∈Rxi

P (x,y)V (y)

=
∑

yi∈Axi

q(x,y)V (y)+
∑

yi∈Rxi

q(x,y)
π(y)

π(x)
V (y)+

∑
yi∈Rxi

q(x,y)

[
1−π(y)

π(x)

]
V (x).

Let V (x) = π(x)−
1
2 , for the consideration of the indicator

function 1C(x), we will discuss the two cases of xi /∈ C
and xi ∈ C respectively to reveal that the drift condition is
satisfied.

(i). In the case of xi /∈ C, as 1C(x) = 0, λ can be expressed
directly as

λ =

∑
yi∈Z

P (x,y)V (y)

V (x)
(20)

Then, by substitution, it follows that

λ=1−
∑

yi∈Axi

q(x,y)

[
1−V (y)

V (x)

]
+
∑

yi∈Rxi

q(x,y)

[
V (x)

V (y)
− V (x)2

V (y)2

]
.

Insight into the term V (x)/V (y), we have

V (x)

V (y)
=

(
π(y)

π(x)

) 1
2

=

 e
− 1

2σ2
i

|yi−c|2

e
− 1

2σ2
i

|xi−c|2

 1
2

. (21)

For further investigation, define a function

ω(x) = e
− 1

2σ2
i

|x−c|2
(22)

and it is straightforward to verify that

lim
|x|→∞

l(x) · ∇log ω(x) = −∞, (23)

where l(x) = x/|x| and ∇ represents the gradient. This
condition implies that for any arbitrarily large γ > 0, there
exists R > 0 such that

ω(x+ a · l(x))

ω(x)
≤ e−a·γ , (24)

where |x| ≥ R, a ≥ 0. Put it another way, as |x| goes to
infinity, ω is at least exponentially decaying with a rate γ
tending to infinity. Hence, once |x| is large enough, even a
minimum discrete integer increment, namely, |∆| = 1, can
make ω(x+∆) become extremely smaller or larger than ω(x).

Now, suppose y1
i = xi + ∆ ∈ Rx, with large enough |xi|,

the ratio of ω(y1
i )/ω(xi) could be arbitrarily small, that is

ω(y1
i )

ω(xi)
→ 0 for |xi| → ∞. (25)

As y1
i is the closest candidate to xi in set Rx, then the follow-

ing relationship holds due to the arbitrarily large exponential

decay rate of ω

ω(y2
i )� ω(y1

i ) for |xi| → ∞, (26)

where y2
i ∈ Rx, y2

i 6= y1
i . Therefore, we have

ω(y2
i )

ω(xi)
� ω(y1

i )

ω(xi)
→ 0 for |xi| → ∞, (27)

implying the summation term about V (x)/V (y) for yi ∈ Rx
will tend to be 0 as |xi| goes to infinity∑
yi∈Rx

V (y)

V (x)
=
∑
yi∈Rx

(
ω(xi)

ω(yi)

) 1
2

→ 0 for |xi| → ∞. (28)

Similarly, the same thing happens to the summation term
about V (y)/V (x) for yi ∈ Ax, namely,∑
yi∈Ax

V (x)

V (y)
=
∑
yi∈Ax

(
ω(yi)

ω(xi)

) 1
2

→ 0 for |xi| → ∞. (29)

Consequently, based on (28) and (29), as |xi| goes to
infinity, the following derivation holds

λ = lim
|xi|→∞

sup

∑
yi∈Z
P (x,y)V (y)

V (x)

= 1− lim
|xi|→∞

inf
∑

yi∈Axi ,yi 6=xi

q(x,y)

= 1− lim
|xi|→∞

inf
∑

yi∈Axi ,yi 6=xi

e−
1

2σ2
|yi−xi|2∑

yi∈Z e
− 1

2σ2
|yi−xi|2

< 1, (30)

which means the drift condition shown in (15) is satisfied in
the case of xi /∈ C.

(ii). On the other hand, if xi ∈ C, i.e., 1C(x) = 1, then for
yi ∈ Axi , we have

V (y) = π(y)−
1
2 =

(
π(yi|x[−i]) · π(x[−i])

)− 1
2

≤
(
π(xi|x[−i]) · π(x[−i])

)− 1
2

(a)

≤ d · π(x[−i])
− 1

2 , (31)

where inequality (a) holds by the definition of small set given
in (17). As the rest of n−1 components x[−i] keep unchanged,
the probability π(x[−i]) is a constant here. Therefore, the
term

∑
yi∈Axi

q(x,y)V (y) can always be upper bounded by a
constant b > 0, namely,∑

yi∈Axi

q(x,y)V (y) ≤ b <∞. (32)

Hence, as |x| goes to infinity, it follows that

lim
|xi|→∞

sup
∑
yi∈Z

P (x,y)V (y)≤ b+ lim
|x|→∞

sup
∑

yi∈Rxi

q(x,y)V (x)

= b+ λV (x), (33)



and based on (28), similarly, it is easy to verify that

λ = lim
|xi|→∞

sup
∑

yi∈Rxi

q(x,y) < 1, (34)

completing the proof.

Overall, the exponential convergence rate can be interpreted
in two folds. On one hand, when xi /∈ C, the Markov chain
shrinks geometrically towards the small set C as λ < 1. On
the other hand, if xi ∈ C, the Markov chain will converge to
the stationary distribution exponentially fast. Obviously, there
is a trade-off between them depending on the set size of C.
However, the problem lies on the fact that C is determined
artificially, resulting in δ and λ flexible and sensitive to any
slight change.

V. ALGORITHM OPTIMIZATION

To further enhance the convergence performance, we now
provide an optimized scheme for the proposed symmetric
Metropolis-within-Gibbs algorithm. In particular, the proposal
distribution is slightly changed as

qopt(x,y) = Qopt(xi → yi) =
Q(xi → yi)

1−Q(xi → xi)
, (35)

which corresponds to eliminate xi itself from the sampling
list of yi. Apparently, this new proposal distribution is still
symmetric while the transition probability Popt(x,y) with y 6=
x becomes

Popt(x,y) = min
{
qopt(x,y),

π(y)qopt(x,y)

π(x)

}
. (36)

Theorem 4. The optimized symmetrical Metropolis-within-
Gibbs algorithm is statistically more efficient than the original
one.

Proof. According to (12) and (36), the following relationship
holds

qopt(x,y) > q(x,y) (37)

for all the cases of y 6= x. Therefore, we have

Popt(x,y) > P (x,y), (38)

which means each of the off-diagonal elements of the tran-
sition matrix Popt is always larger than that of P, namely,
Popt > P. Furthermore, since both of the Markov chains are
reversible by satisfying

π(x) · P (x,y) = π(y) · P (y,x), (39)

the convergence improvement of Popt over P can be verified
by invoking the Peskun’s Theorem shown below, which takes
advantages of a sensible criterion in MCMC known as asymp-
totic efficiency [9].

Lemma 1 ([16]). Suppose P1 and P2 are reversible transition
matrices with the same invariant distribution and P2 ≥ P1.
Then, for all any function f ∈ L2

0(π) = {f ∈ L2(π) : E{f} =
0}, we have

v(f,P1) ≥ v(f,P2). (40)

Here, L2(π) denote the set of all function f(·) that are
square integrable with respect to π and v(f,P) is defined
as sampler’s asymptotic efficiency by

v(f,P) = lim
n→∞

1

n
var

{
n∑
t=1

f(Xt)

}
, (41)

where X0, . . . ,Xt establish the corresponding Markov chain.

From Lemma 1, Popt will lead to a smaller asymptotic vari-
ance for all observable than P, leading to further convergence
efficiency. In other words, the transition matrix in MCMC is
encouraged to entail smaller diagonal elements and larger off-
diagonal elements [17].
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