
Achieving Capacity and Security in Wireless
Communications With Lattice Codes

(Invited Paper)

Cong Ling
Department of Electrical and Electronic Engineering

Imperial College London
London, UK

Email: cling@ieee.org

Abstract—Based on lattice Gaussian distributions and ideal
lattices, we present a unified framework of lattice coding to
achieve the channel capacity and secrecy capacity of wireless
channels in the presence of Gaussian noise. The standard additive
white Gaussian-noise (AWGN) channel, block fading channel, and
multi-input multi-output (MIMO) fading channel are considered,
which form a hierarchy of increasingly challenging problems in
coding theory. To achieve channel capacity, we apply Gaussian
shaping to a suitably defined good lattice for channel coding.
To achieve secrecy capacity, we use a secrecy-good lattice nested
with a coding lattice.

I. INTRODUCTION

The lattice Gaussian distribution has emerged as a common
theme in diverse areas. In mathematics, it was used to prove
the transference theorems of lattices. In cryptography, it un-
derpins lattice-based cryptosystems based on the worst-case
hardness assumptions and fully-homomorphic encryption. In
communications, lattice Gaussian distribution was applied to
shaping of lattice codes.

Coincidentally, ideal lattices are also used in both areas.
These are highly-structured lattices constructed from the ideals
of the ring of integers of a number field, with a multiplicative
structure and succinct representation. While the connection
between lattices and number fields dates back to Minkowski
and was used to build dense lattices for the additive white
Gaussian noise (AWGN) channel a long time ago, Belfiore was
the first to exploit the multiplicative structure of ideal lattices
in Rayleigh fading channels [1]. In cryptography, ideal lattices
not only improve the efficiency of lattice-based cryptosystems
up to a competitive level [2], but also offer a natural tool
for fully-homomorphic encryption where both additions and
multiplications are performed.

More recently, we defined the flatness factor associated
with the lattice Gaussian distribution and derived its many
properties [3, 4]. With this new tool, we are now able
to answer/address several major open questions in coding
theory. For example, Erez and Zamir [5] proposed nested
lattice codes achieving the capacity of the power-constrained
AWGN channel, where a quantization-good lattice serves as
the shaping lattice while an AWGN-good lattice serves as
the coding lattice (dithering is also required). In [4], we
proposed lattice Gaussian coding, where the codebook has a
discrete Gaussian distribution over an AWGN-good lattice; this

technique considerably simplifies the design of [5]. As another
example, in [3] we used the lattice Gaussian distribution to
achieve semantic security over the Gaussian wiretap channel,
which led to the notion of secrecy-good lattices. In both cases,
we do not need a shaping lattice or a dither. Using ideal lattices
and division algebras, we are able to extend this framework
to single-antenna and multi-input multi-output (MIMO) fading
channels.

In this expository paper, which is based on a similar paper
presented at IZS 2014 focusing on the AWGN channel [6]1

and more recent works on fading channels [7, 8], we aim to
present a unified framework of lattice coding for capacity and
security in wireless communications. Nevertheless, the paper
also contains certain new results on fading wiretap channels.
In Section II, we review lattice Gaussian distributions, the
flatness factor and ideal lattices, where we generalize several
definitions to the complex setting. Section III is devoted to
achieving capacity of the AWGN, fading and MIMO chan-
nels. Section IV gives coding schemes for wiretap channels,
where the fine code is a Gaussian-shaped lattice achieving the
capacity of the legitimate channel, and the coarse code is a
secrecy-good lattice which ensures the information leakage on
the eavesdropper’s channel is negligible. Section V outlines the
prospect of lattice codes in network information theory. In the
paper, we try to shed light on the commonality of the schemes
for capacity and for secrecy.

Throughout this paper, we use the natural logarithm, de-
noted by log, and information is measured in nats.

II. BACKGROUND

A. Channel Model

In the general form, our framework is able to tackle the
compound MIMO channel; specializing this model we will
obtain the block fading channel and the AWGN channel. More
precisely, we consider an n× n MIMO channel described by
the equation

y = Hx+w, (1)

where H ∈ Cn×n is the channel matrix, and x ∈ Cn is
the input subject to the power constraint E[x†x] ≤ nP . The

1Note that authors retain copyright of their work at International Zurich
Seminar on Communications (IZS), http://www.izs.ethz.ch/.



noise entries of w are circularly symmetric complex Gaussian
with zero-mean and variance σ2

w. The signal-to-noise ratio
(SNR) per receive antenna is defined by SNR = nP/σ2

w.
Assuming that the receiver has complete knowledge of H (but
the transmitter does not have CSIT), which is fixed during a
whole transmission block. Consider the set H of all channel
matrices with fixed white-input capacity C:

H =
{
H ∈ Cn×n : log det

(
I+ SNRH†H

)
= C} . (2)

This can be viewed as a compound channel with capacity C.
The compound channel model (2) arises in several important
scenarios in communications, such as the outage formulation
in the open-loop mode and broadcast [9].

The compound channel demands a universal code that
achieves the capacity for all members H ∈ H. This represents
one of the most difficult problems in coding theory. Note
that (2) reduces to a compound block fading channel if H
is diagonal (here n denotes the number of blocks), and to the
AWGN channel if H = I.

B. Lattice Gaussian Distribution

In this subsection, we generalize the lattice Gaussian distri-
bution from Z-lattices to Z[i]-lattices2. Everything is formally
the same as its real counterpart in [3], and the difference is a
factor 2 in most cases.

An n-dimensional Z[i]-lattice Λ in the Euclidean space Cn

is a set defined by

Λ = L (B) = {Bx : x ∈ Z[i]n}

where B ∈ Cn×n is the generator matrix. The dual lattice Λ∗

of a lattice Λ is defined as the set of vectors v ∈ Cn such
that ⟨v,λ⟩ = v†λ ∈ Z[i], for all λ ∈ Λ. The volume of Λ is
defined as that of its real equivalent: V (Λ) = | detB|2.

For σ > 0 and c ∈ Cn, the continuous Gaussian distribution
of covariance matrix Σ centered at c is given by

f√Σ,c(x) =
1

πn det(Σ)
e−(x−c)†Σ−1(x−c),

for x ∈ Cn. For convenience, we write f√Σ(x) = f√Σ,0(x).
Consider the Λ-periodic function

f√Σ,Λ(x) =
∑
λ∈Λ

f√Σ,λ(x) =
1

πn det(Σ)

∑
λ∈Λ

e−(x−c)†Σ−1(x−c),

(3)
for all x ∈ Cn. Observe that fσ,Λ restricted to a fundamental
region R(Λ) is a probability density.

We define the discrete Gaussian distribution over Λ centered
at c ∈ Cn as the following discrete distribution taking values
in λ ∈ Λ:

DΛ,
√
Σ,c(λ) =

f√Σ,c(λ)

f√Σ,c(Λ)
, ∀λ ∈ Λ,

where f√Σ,c(Λ) ,
∑

λ∈Λ f√Σ,c(λ) = f√Σ,Λ(c). Again for
convenience, we write DΛ,

√
Σ = DΛ,

√
Σ,0.

2Extension to Z[j] or other imaginary quadratic fields Q(
√
−d) is possible.

The flatness factor of a lattice Λ quantifies the maximum
variation of f√Σ,Λ(x) for x ∈ Cn.

Definition 1 (Flatness factor). For a lattice Λ and for covari-
ance matrix Σ, the flatness factor is defined by:

ϵΛ(
√
Σ) , max

x∈R(Λ)

∣∣∣V (Λ)f√Σ,Λ(x)− 1
∣∣∣ .

In words,
f√Σ,Λ(x)

1/V (Λ) , the ratio between f√Σ,Λ(x) and the
uniform distribution over R(Λ), is within the range [1 −
ϵΛ(

√
Σ), 1 + ϵΛ(

√
Σ)].

Proposition 1 (Expression of ϵΛ(
√
Σ)). We have:

ϵΛ(
√
Σ) =

V (Λ)

πn det(Σ)

∑
λ∈Λ

e−λ†Σ−1λ

=
∑

λ∗∈Λ∗

e−π2λ†Σ−1λ − 1.

In particular, if Σ = σ2I, then

ϵΛ(σ) =

(
γΛ(σ)

π

)n

ΘΛ

(
1

πσ2

)
− 1

= ΘΛ∗
(
πσ2

)
− 1

where γΛ(σ) = V (Λ)1/n

σ2 is the volume-to-noise ratio (VNR),
and ΘΛ(τ) =

∑
λ∈Λ e−πτ∥λ∥2

is the theta series.

The following result guarantees the existence of sequences
of Construction-A lattices whose flatness factors can vanish as
n → ∞.

Theorem 1 (Minkowski-Hlawka). ∀σ > 0 and ∀δ > 0, there
exists a sequence of lattices Λ(n) such that

ϵΛ(n)(σ) ≤ (1 + δ) ·
(
γΛ(n)(σ)

π

)n

, (4)

i.e., the flatness factor can go to zero exponentially for any
fixed VNR γΛ(n)(σ) < π. More generally, ϵΛ(

√
Σ) → 0 if the

generalized VNR γΛ(n)(
√
Σ) = V (Λ)1/n

det(Σ)1/n
< π.

The significance of a small flatness factor is two-fold.
Firstly, it assures the “folded" distribution f√Σ,Λ(x) is flat;
secondly, it implies the discrete Gaussian distribution DΛ,

√
Σ,c

is “smooth". We refer the reader to [3, 4] for more details.
The following lemma is a generalization of Regev’s and is

particularly useful for communications and security [8].

Lemma 1. Given x1 sampled from discrete Gaussian distribu-
tion DΛ+c,

√
Σ1

and x2 sampled from continuous Gaussian dis-
tribution f√Σ2

. Let Σ0 = Σ1+Σ2 and let Σ−1
3 = Σ−1

1 +Σ−1
2 .

If ϵΛ(
√
Σ3) ≤ ε ≤ 1

2 , then the distribution g of x = x1 + x2

is close to f√Σ0
:

g(x) ∈ f√Σ0
(x) [1− 4ε, 1 + 4ε] .

This lemma has profound implications. On one hand, it
implies capacity, i.e., the discrete Gaussian distribution over
a lattice is almost capacity-achieving if the flatness factor
is small [4]. On the other hand, it implies security, i.e.,
Eve’s signal is indistinguishable from a continuous Gaussian
distribution.



C. Ideal Lattices

We refer to [10] for an introduction to algebraic number
theory for coding. Consider a relative extension K/Q(i) of
degree n. There are n homomorphisms σ1, . . . , σn that embed
K into C. The ring of integers of K is denoted by OK , and
its invertible elements are called units. The map σ : K → Cn,
σ(x) = (σ1(x), . . . , σn(x)) is called the canonical embedding.
It takes OK into a lattice in Cn. The volume of this lattice
is given by V (Λ) = 2−n

√
∆K where ∆K is the absolute

discriminant of K.
Under the canonical embedding, an ideal of OK becomes

an ideal lattice. Any ideal can be decomposed as a product of
prime ideals. Let pi be a prime ideal. It follows that OK/pi ≃
Fpl , for some prime p and some integer l.

III. ACHIEVING CHANNEL CAPACITY

A. AWGN Channel

Consider the classic AWGN channel y = x + w where
the vectors have dimension T , the codeword length. In [4],
we proposed a new coding scheme based on the lattice
Gaussian distribution. Let Λ be an AWGN-good lattice in
CT of dimension T , whose error probability vanishes if the
VNR V (Λ)1/T

σ2
w

> πe. The encoder maps the information bits
to points in Λ, which obey the lattice Gaussian distribution

x ∼ DΛ,σs .

Since the continuous Gaussian distribution is capacity-
achieving, we want the lattice Gaussian distribution to be-
have like the continuous Gaussian distribution (in particular
P ≈ σ2

s ). This can be assured by a small flatness factor. Thus,
while we are concerned with the discrete distribution DΛ,σs ,
we in fact require the associated periodic distribution fσs,Λ to
be flat.

Since the lattice points are not equally probable a priori in
the lattice Gaussian coding, we will use maximum-a-posteriori
(MAP) decoding. In [3], it was shown that MAP decoding is
equivalent to Euclidean lattice decoding of Λ using a scaling
coefficient α =

σ2
s

σ2
s+σ2

w
, which is asymptotically equal to the

MMSE coefficient P
P+σ2

w
. In fact, the error probability of the

proposed scheme under MMSE lattice decoding admits almost
the same expression as that of Poltyrev, with σw replaced by
σ̃w = σsσw√

σ2
s+σ2

w

. To satisfy AWGN-goodness, we choose the

fundamental volume V (Λ) such that

V (Λ)1/T > πeσ̃2
w. (5)

Meanwhile, the rate of the scheme is given by the entropy
of the lattice Gaussian distribution:

R → log(πeσ2
s)−

1

T
log V (Λ)

< log(πeσ2
s)− log

(
πe

σ2
sσ

2
w

σ2
s + σ2

w

)
= log

(
1 +

σ2
s

σ2
w

)
→ log (1 + SNR).

Combining these results, we arrive at the following theorem.

Theorem 2 (Coding theorem). Consider a lattice code whose
codewords are drawn from the discrete Gaussian distribution
DΛ,σs for an AWGN-good lattice Λ. Any rate up to the
channel capacity log (1 + SNR) is achievable, while the error
probability of MMSE lattice decoding vanishes exponentially
fast.

B. Block Fading Channel

Recall the coded system model

Y︸︷︷︸
n×T

= H︸︷︷︸
n×n

X︸︷︷︸
n×T

+ W︸︷︷︸
n×T

(6)

where H is diagonal and T is the coherence time (codeword
length). Vectorizing this equation, we obtain

y︸︷︷︸
nT×1

= H︸︷︷︸
nT×nT

x︸︷︷︸
nT×1

+ w︸︷︷︸
nT×1

(7)

where H = IT ⊗ H. Now we design a coding lattice Λ ⊂
CnT so that x ∈ Λ. With Gaussian shaping, the problem of
achieving capacity of compound block fading channels boils
down to finding a lattice that is good for block fading.

Definition 2 (Fading-good lattices [7]). We say that a se-
quence of lattices Λ of increasing dimension nT is uni-
versally good for the block-fading channel if for any VNR
γ(IT⊗H)Λ(σw) > πe and all H s.t. | detH| = D, Pe(Λ,H) →
0 as T → ∞.

We resort to generalized Construction A over OK . Let p ⊂
OK be a prime ideal above p with norm pℓ. Then OK/p ≃
Fpℓ . The OK-lattice Λ associated to a linear code C ⊂ FT

pℓ is
defined as:

Λ = C + pT . (8)

Note that it reduces to usual Construction A Λ = C+pT when
K = Q.

The existence of a universal lattice can be proven by
the Minkowski-Hlawka theorem, i.e., averaging over random
codes C (with p → ∞). The proof is tricky and relies on
the unit group, which compacts the set of quantized channels.
Thus, generalized Construction A is good for block fading
[7]. Then, with MMSE-GDFE lattice decoding for Gaussian
shaping, it can be shown that the average error probability
EΛ[Pe(Λ)] vanishes as long as the VNR > πe (as T → ∞):

|I+ SNRH†H| 1
nV (Λ)

1
nT

σ2
s

> πe. (9)

Thus, any rate

R → n log(πeσ2
s)−

1

T
log(V (Λ)) < log |I+SNRHTH| = C

is achievable. Note that the achievable rate only depends on
H through determinant |I+ SNRH†H|.



C. MIMO Fading Channel

The case of MIMO channels is more technical due to
non-commutativity of the underlying algebra. Let O be the
natural order of cyclic division algebra A. Take a two-sided
ideal J of O and consider the quotient ring O/J . Define a
reduction β : O → O/J . For a linear code C over O/J ,
β−1(C) is a lattice Λ (in Cn2T ). However, the quotient ring
O/J is non-commutative in general, e.g., a matrix ring, skew
polynomial ring etc. Nevertheless it is still possible to prove
the Minkowski-Hlawka theorem using codes over rings. Thus,
there exists a sequence of lattices universally good for MIMO
fading, hence achieving the capacity of compound MIMO
channels. Note that recently [9] and [11] have achieved a
constant gap to the capacity of compound MIMO channels.

IV. APPROACHING SECRECY CAPACITY

A. Gaussian Wiretap Channel

Now consider the Gaussian wiretap channel where Alice
and Bob are the legitimate users, while Eve is an eavesdropper.
The outputs y and z at Bob and Eve’s ends are respectively
given by

y = x+wb, z = x+we, (10)

where wb, we are T -dimensional Gaussian noise vectors with
zero mean and variance σ2

b , σ2
e respectively.

For secrecy rate Rs, we use coset coding induced by a lattice
partition Λe ⊂ Λb such that

1

T
log |Λb/Λe| = Rs.

The fine lattice Λb is the usual coding lattice for Bob, i.e., it
is an AWGN-good lattice. The coarse lattice Λe is new, and
turns out to be a secrecy-good lattice. To encode, Alice uses
the secret bits to select one coset of Λe and transmits a random
point inside this coset.

Consider a message set M = {1, . . . , eTRs}, and a one-to-
one function ϕ : M → Λb/Λe which associates each message
m ∈ M to a coset λ̃m ∈ Λb/Λe. One could choose the coset
representative λm ∈ Λb ∩ R(Λe) for any fundamental region
R(Λe). In order to encode the message m ∈ M, Alice samples
xm from lattice Gaussian distribution

xm ∼ DΛe+λm,σs .

Let σ̃e =
σsσe√
σ2
s+σ2

e

and σ′
s =

√
σ2
s + σ2

e . Regev’s Lemma (cf.

Lemma 1) implies that if ϵΛe
(σ̃e) <

1
2 , then:

V
(
pZ|M(·|m), fσ′

s

)
≤ 4ϵΛe (σ̃e) .

We see that the received signals converge to the same
Gaussian distribution fσ′

s
. This already gives distinguishing

security, which means that, asymptotically, the channel outputs
are indistinguishable for different input messages.

An upper bound on the amount of leaked information then
follows.

Theorem 3 (Information leakage [3]). Suppose that the
wiretap coding scheme described above is employed on the

Gaussian wiretap channel (10), and let εT = ϵΛe (σ̃e). Assume
that εT < 1

2 for all T . Then the mutual information between
the confidential message and the eavesdropper’s signal is
bounded as follows:

I(M;Z) ≤ 8εTTRs − 8εT log 8εT . (11)

A wiretap coding scheme is secure in the sense of strong
secrecy if limT→∞ I(M;Z) = 0. From (11), a flatness factor
εT = o( 1

T ) would be enough. In practice, an exponential decay
of the information leakage is desired, and this motivates the
notion of secrecy-good lattices:

Definition 3 (Secrecy-good lattices). A sequence of lattices
Λ(T ) is secrecy-good if

ϵΛ(n)(σ) = e−Ω(T ), ∀γΛ(T )(σ) < π. (12)

It can be shown that, under mild conditions (similar to those
in [3]), the secrecy rate

R < log(1 + SNRb)− log(1 + SNRe)− 1 (13)

is achievable, which is within 1 nat from the secrecy capacity.
It is worth mentioning that this small gap may be fictitious,
due to our proof technique.

B. Fading Wiretap Channel

The channels for Bob and for Eve are given by

y = Hbx+wb, z = Hex+we,

respectively. We fix the capacity Ce of Eve’s compound
channel with white inputs

He =
{
He ∈ Cn×n : log det

(
I+ SNRe H

†
eHe

)
= Ce} .

as well as the capacity Cb of Bob’s compound channel. The
secrecy capacity of compound MIMO wiretap channels with
white inputs is given by [12]:

Cs = Cb − Ce. (14)

Similarly to lattice coding over the Gaussian wiretap chan-
nel, we use a pair of nested lattices Λb ⊂ Λe. These lattices
are built in the same manner as before:

Λb = Cb + pT Λe = Ce + pT (15)

where the codes satisfy Ce ⊆ Cb.
In order to encode the message m ∈ M, Alice samples

xm from DΛe+λm,σs . Similarly to (7), let He = IT ⊗ He

of size nT . Eve observes a discrete Gaussian distribution
DHe(Λe+λm),Heσs

, contaminated by i.i.d. Gaussian noise of
standard deviation σe. We would like this to be indistinguish-
able from a continuous Gaussian distribution of covariance
matrix Σ0 = σ2

sHeH†
e + σ2

eI, regardless of m. By Lemma 1,
we need

ϵHeΛe(
√

Σ3) → 0

where Σ−1
3 = σ−2

s (HeH†
e)

−1+σ−2
e I. In other words, we want

the flatness factor ϵHeΛe(
√
Σ3) = εT to vanish with T .



Applying Minkowski-Hlawka, we obtain

EΛe [ϵHeΛe(
√
Σ3)]

=
V (Λe)

πnT
det(σ−2

s I+ σ−2
e H†

eHe) (16)

→ V (Λe)

(πσ2
s)

nT
det(I+ SNRe H

†
eHe)

T .

Now we calculate the information leakage to Eve. If we
slightly reduce the VNR of Λe, EΛe [ϵHeΛe(

√
Σ3)] in (16) will

vanish exponentially with T . Similar to the Gaussian wiretap
channel (11), the mutual information between Alice and Eve
is bounded for all Hb, He as

I(M;Z) ≤ 8εTTRs − 8εT log(8εT ). (17)

Again, it is tricky to exhibit the existence of a universal code
for all Hb, He. Fortunately, thanks to the unit groups, this can
be resolved by quantizing the channels in the same manner as
for capacity [12].

For a vanishing flatness factor, we need the condition

det(I+ SNRe H
†
eHe)

1/nV (Λe)
1

nT

σ2
s

< π. (18)

From (9) and (18), we obtain the secrecy rate

Rs < log

∣∣∣I+ SNRb H
†
bHb

∣∣∣∣∣∣I+ SNRe H
†
eHe

∣∣∣ − n = Cb − Ce − n,

which is the secrecy capacity to within a constant gap of n
nats. Again, this gap may well be fictitious.

Then one may claim the existence of a universal lattice code
which achieves the secrecy capacity to within n nats.

C. MIMO Wiretap Channel

The MIMO case is similar, using cyclic division algebra.
The security proof is very much the same, except that Hb and
He are full matrices.

V. MULTI-TERMINAL SYSTEMS IN NETWORK
INFORMATION THEORY

So far we have been concerned with point-to-point channels.
The structure of lattice codes is a significant advantage for
their applications in wireless networks. Due to the superposi-
tion nature of wireless signals, the algebraic structure of lattice
codes lead to new possibilities that were not available before.
In this section, we review several applications pertaining to
future networks.

A. Compute and Forward

In compute-and-forward, the relay computes a linear func-
tion of transmitted messages. Here, an AWGN-good lattice
suffices (along with Gaussian shaping). All the lattices given
in Section III are AWGN-good, although those lattices good
for fading and MIMO channels seem to be an overkill. Note
that explicit construction of AWGN-good lattices are now
available, in particular, polar lattices and LDA lattices with
with O(T log T ) complexity.

B. Dirty Paper Coding and Broadcast Channel
In dirty paper coding, a nested lattice code is required where

the fine lattice is good for channel coding and the coarse lattice
is good for source coding. A construction of polar lattices
achieving the rate-distortion bound of Gaussian sources is
reported in [13]. Combing this lattice with an AWGN-good
lattice yields an explicit code achieving the capacity of the
dirty paper channel with O(T log T ) complexity. It can be
shown that such a dirty paper code in conjunction with
beamforming achieves the capacity of the downlink channel
[14].

C. Distributed Source Coding
Swapping the roles of the fine and coarse lattices yields

a code for the Wyner-Ziv problem. Let X,Y be two jointly
Gaussian sources and X = Y + Z, where Z is Gaussian
and is independent of Y . Given side information Y , the
Wyner-Ziv problem is to reconstruct X . An O(T log T )-
complexity scheme based on polar lattices is also reported in
[13], achieving the rate-distortion bound of Wyner-Ziv coding.
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