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Convergence of Gradient Descent for Low-Rank
Matrix Approximation

Renaud-Alexandre Pitaval, Wei Dai and Olav Tirkkonen

Abstract—This paper provides a proof of global convergence
of gradient search for low-rank matrix approximation. Such
approximations have recently been of interest for large scale
problems, as well as for dictionary learning for sparse signal
representations and matrix completion. The proof is based on
the interpretation of the problem as an optimization on the
Grassmann manifold and Fubiny-Study distance on this space.

I. I NTRODUCTION

Consider the problem of approximating a matrix by another
lower-rank matrix. The solution to this problem is well-known
to be given by the truncated singular value decomposition
(SVD) up to the desired rank [1], [2]. In this paper, we inves-
tigate if one is always able to find the optimum approximation
through a classical first-order optimization algorithm such as
a gradient search. The answer is shown to be positive almost
surely (i.e. with probability one).

Low-rank matrix approximation is a ubiquitous problem
in data processing. Gradient descent has been employed for
truncated SVD in large scale problems [3]–[6] and in related
matrix completion settings [7]–[9]. The considered low-rank
matrix approximation has also application in dictionary learn-
ing for sparse signal representations. For some applications,
it is desirable to use a learning-based approach adapting the
dictionaries based on training data sets. Dictionary update can
be formulated as an optimization problem on manifolds [10]
generalizing the MOD [11] and K-SVD [12] algorithms.
Furthermore, several approximation methods are based on the
power method which is a gradient-descent type algorithm [13],
including non-negative approximation [14], [15] and sparse
approximation [16], [17].

Singular value decomposition is also directly related to
Rayleigh quotient (RQ) maximization. RQ extremization is
a long-standing problem and a number of RQ algorithms and
their convergence properties have been discussed [13], [18].
The seminal work by Edelman, Arias and Smith [13] provides
a taxonomy of such algorithms based on a unified geometric
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understanding, see also [18]. The algorithms are classifiedas
variations of Newton, conjugate gradient, and gradient descent
(a.k.a steepest descent) methods on Grassmann manifolds.
These three methods differ in their speed of convergence.
Conjugate gradient or Newton algorithms provide in gen-
eral faster convergence, but also require higher complexity.
Early approaches to RQ maximization are based on extrin-
sic Euclidean algorithms in embedding space with practical
step sizes. These are locally equivalent to idealized intrinsic
Riemannian methods. Among such algorithms, the Rayleigh
quotient iteration (RQI) is a popular algorithm corresponding
to a Newton method. In general, these algorithms are well-
known to converge locally, however their global convergence
properties seem to be less understood. Following the taxonomy
of [13], some results on convergence of RQ algorithms can be
classified as follows.

Gradient Descent:For a rank-one problem, a steepest
gradient algorithm has been shown to converge globally to
an eigenvalue [19]. This eigenvalue is the optimum one if the
starting point is not orthogonal to the optimum eigenvector.
The higher rank problem is considered in [20] but a proof of
convergence is only given for rank one. Some intermediate
results are given for higher rank where at least one dimension
is shown to converge to the rank-one optimum and the other
dimensions are converging to someother eigenvalues.

Congugate Gradient:The global convergence result of [19]
is extended to a generalized RQ conjugate-gradient algo-
rithm for rank one in [21]. Local convergence properties
of conjugate-gradient algorithms are discussed in [22], [23],
showing faster convergence of conjugate-gradient than steepest
descent.

Newton Methods:According to [24], the global convergence
properties of rank-one RQI are well understood. Rank-one RQI
was shown to either converge to an eigenvector or converge to
the bisector of a pair of eigenvectors in [25]. Later, the setof
points for which the RQI does not converge toan eigenvector
was shown to be a set of measure zero [26]. A Grassmann-RQI
is presented in [24]. It generalizes the classical RQI to higher
dimensional subspaces, along with its cubic local convergence.
For higher-rank, good global convergence properties were also
observed in [25], however the possibility of establishing a
global convergence analysis along the lines of previous proofs
was challenged. Local quadratic convergence of an intrinsic
Newton method is also discussed in [27].

In this paper, we discuss the global convergence of an
idealized gradient descent procedure. A true gradient search
moves in the gradient direction with infinitesimal step sizes,
such assumption has been previously used for convergence
study e.g. in [28]. According to our knowledge, this is
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the first proof showing that an ideal gradient search on a
Grassmann manifold almost surely solves the multiple-rank
matrix approximation problem. Previously, it was known that
there are multiple stationary points for the rank-one matrix
approximation problem [29]. More recently, for the rank-
one case, it was shown that a gradient descent method will
not converge to any other stationary points than the global
minimizer with probability one [10]. Our results show that
this is generally true for any higher rank.

The proof consists in showing that the Fubiny-Study dis-
tance to the optimum is monotonically decreasing along the
gradient path for almost all starting points on the Grassmann
manifold. Since under the Fubiny-Study distance, all othersta-
tionary points are antipodal to the global optimum, by moving
along the gradient path the algorithm is getting closer to the
optimum while ultimately never approaching the other station-
ary points, i.e. the Grassmann manifold is almost everywhere
the basin of attraction of the global optimum. The multiple-
rank case is more delicate than rank-one as we have to handle
multiple principal angles, which results in a non-unique notion
of distance on the Grassmann manifold. As a result, the choice
of distance in the proof is important. We make this argument
explicit by showing that a similar argumentation with the
chordal distance would not allow us to claim convergence
of the algorithm to a global optimum but the decrement of
the Fubini-Study distance does. Finally, our result provides
theoretical support for application of optimization methods to
low-rank matrix approximation problems.

II. PRELIMINARIES ON MANIFOLDS

The gradient descent is performed on a curved surface
consisting of constrained-norm matrices. The proof of con-
vergence will rely on the notion of Stiefel and Grassmann
manifolds.

The complex Stiefel manifoldVC
n,r is defined as the space

of rectangular unitary matrices (withr ≤ n):

VC

n,r =
{

Y ∈ C
n×r | Y

H
Y = Ir

}

. (1)

When r = 1, the Stiefel manifold can be identified as a unit
hypersphere, and forr = n as the unitary groupUr. We denote
by In,r ∈ VC

n,r the truncation of the firstr columns of the
identity matrixIn.

The complex Grassmann manifoldGC
n,r is the set of allr-

dimensional subspaces ofCn. This manifold can be expressed
as the quotient space of the Stiefel manifold and the unitary
group:

GC

n,r
∼= VC

n,r/Ur. (2)

A point in the Grassmann manifold can thus be represented as
the equivalence class ofn×r Stiefel matrices whose columns
span the same space:

[Y ] = {Y U | U ∈ Ur} , (3)

whereY ∈ VC
n,r.

Several different distances can be defined on the Grassmann
manifold [13], [30] based on the notion of principal angles.We
denote two subspaces ofCn as[Y ], [Z] ∈ GC

n,r, with Y , Z ∈
VC
n,r. The singular values ofY HZ are {cos θ1, · · · , cos θr}

where θ1, . . . , θr ∈ [0, π
2 ] are the principal angles between

these two subspaces [30]. We will make use of the two
following distances

1) Thechordal distance :

dCH([Y ], [Z]) =
1√
2
‖Y Y

H −ZZ
H‖F (4)

=
(

r − ‖Y H
Z‖2F

)1/2
(5)

=

(

r −
r
∑

i=1

cos2 θi

)1/2

(6)

=

(

r
∑

i=1

sin2 θi

)1/2

. (7)

2) TheFubini-Study distance

dFS([Y ], [Z]) = arccos | det[Y H
Z]| (8)

= arccos

(

r
∏

i=1

cos θi

)

. (9)

These two distances are non-equivalent in the sense they
are derived from different embeddings thus corresponding to
different Riemannian metrics. The chordal distance is obtained
from the embedding of the Grassmann manifold to the set of
n-by-n projection matrices of rankr [30]. The Fubini-Study
distance is derived via the Plücker embedding [31].

III. G RADIENT DESCENTPROCEDURE FORLOW-RANK

MATRIX APPROXIMATION

We describe a gradient descent procedure on the Grassmann
manifold to solve a low-rank matrix approximation problem.

A. Low-rank Matrix Approximation

Consider a matrixA ∈ C
n×p with p ≤ n, and an integer

r ≤ p. The rank-r matrix approximation problem is to find the
approximationÂ given by min

rankÂ=r
‖A− Â‖F . This problem

can be reformulated equivalently as the following optimization
on the singular subspaces ofA:

min
U∈VC

n,r

f(U) (10)

where

f(U) = min
W∈Cp×r

‖A−UW
H‖2F , ∀U ∈ VC

n,r. (11)

The solution of (10) is known to be achieved by the left singu-
lar subspace associated with ther largest singular values [1],
[2].

The optimization (10) is actually over the Grassmann man-
ifold GC

n,r. A simultaneous right unitary rotation of any pair
(U , W ) leads to the same value of the objective function
‖A − UWH‖2F . Then for anyΩ ∈ Ur, one can verify that
f(UΩ) = f(U). For every fixedU , the optimal solution in
the least square problem (11) isW = AHU . We may then
rewrite

f(U) = ‖A−UU
H
A‖2F = ‖(I −UU

H)A‖2F
= ‖A‖2F − ‖UH

A‖2F . (12)

We note here that the power method is a gradient descent to
minimize the objective function (12) [13], [29].
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B. Global Minimizer on the Grassmann Manifold

The singular value decomposition ofA is A = UAΣV
H
A

with ordered singular valuesσ1 ≥ · · · ≥ σp, and left
singular vectorsUA = (Uopt Uopt⊥) where Uopt ∈ VC

n,r.
The notion of Grassmann manifold is essential in the proof.
We will assume the caseσr > σr+1, so that all global
minimizers of f are in the subspace spanned byUopt, i.e
there is a unique global minimizer on the Grassmann manifold
[Uopt] ∈ GC

n,r. For the degenerate case, there are several global
minimizers on the Grassmann manifold, nevertheless the proof
of convergence still holds.

C. Gradient Descent Procedure

The gradient off at U is obtained by differentiatingf
and projecting onto the tangent space atU . The definitions
used for derivatives and gradients are given in Appendix A.
The differential off at U is Df(U) = −AAHU , and the
gradient restricted to the Grassmann manifold is

∇f(U) = −(I −UU
H)AA

H
U . (13)

Note that here projecting to the tangent space atU of the
Stiefel manifold, or to the tangent space at[U ] of the Grass-
mann manifold leads to the same gradient, cf. Equations (2.53)
and (2.70) in [13].

An ideal gradient search moves towards the optimum along
an intrinsic path on the Grassmann manifold. LetHf =
−∇f(U) be the negative gradient matrix of the objective
funtion f atU . The geodesic in directionHf emanating from
[U ] can be written from a matrix exponential [13],

U(t) = (U U⊥)exp

(

t

(

0 −BH
∇

B∇ 0

))

In,r (14)

whereB∇ = UH
⊥ Hf asHf should satisfy [13, Eq. (2.63)]

in order to be in the horizontal space atU ; and U⊥ is an
orthogonal complement ofU so that

(

U U⊥

)

is a unitary
matrix. This follows from the embedding of the Grassmann
manifold into the unitary group and taking the corresponding
exponential map. There exists several practical methods to
efficiently approximate the matrix exponential [32].

A gradient search with constant step sizeα proceeds as
follows:

Gradient descent procedure:
• Given U ∈ VC

n,r, compute the negative gradient matrix
Hf = −∇f(U).

• Move from U in the directionHf to U(α) according
to (14).

• Repeat until convergence.

For an infinitesimal step sizeǫ, the Riemann gradient update
can be approximated by an Euclidean update in the tangent
space, and one recovers the classical linear gradient procedure,

U(ǫ) ≈ [U U⊥]

(

I + ǫ

(

0 −BH
∇

B∇ 0

))

In,r (15)

= U + ǫU⊥B∇ = U − ǫU⊥U
H
⊥ ∇f (16)

= U − ǫ∇f. (17)

For completeness, we note that an alternative formulation
of the geodesic formula was given in [13, Eq. (2.65)] in terms
of the SVD ofHf = LHΣHR

H
H ,

U(t) = URH cos(ΣHt)R
H
H +LH sin(ΣHt)R

H
H (18)

Due to the quotient space structure, the right-multiplication by
RH

H can be omitted for simplification.

IV. CONVERGENCERESULT

In this section, global convergence of Grassmannian gradi-
ent search for low-rank approximation is presented with the
main lines of the proof. The crux of the proof is to polarize
the Grassmann manifold with the Fubini-Study distance: with
this choice of distance the global optimum is antipodal to all
other stationary points. Then along the gradient descent path,
it is shown that this distance is monotonically decreasing and
thus guaranteeing not approaching any other stationary points.
The result generalizes [10, Thm 1] to higher rank matrix
approximation, but we note that the techniques used here,
notably for the proof of Lemma 1, are rather different than
in [10].

We consider an idealized gradient search with infinitesimal
step size. By construction, the objective function is decreasing
along the gradient path as

∇Hf
f = −‖∇f‖2 < 0. (19)

The existence of a convergent sequence is guaranteed by the
smoothness off . The assumption of an infinitesimal step
insures a decrease inf at every step of the algorithm and hence
convergence to a finite value. Since the overall step length is
gradient-related, the convergence is guaranteed to be toward
a stationary point, see Appendix B. Local convergence with
more elaborated step rules for faster convergence are discussed
in [29].

Theorem 1. Starting from a uniformly randomly chosen point
on the Stiefel manifold, the gradient descent procedure on
low-rank matrix approximation(10) with infinitesimal steps
converges to a global minimizer with probability one.

Sketch of Proof:First, with infinitesimal steps, the gradient
search converges locally to a stationary point, see Appendix B.

Then, let define the Fubini-Study distance between the
subspace spanned byU and the subspace spanned by the
optimumUopt, denoted by

distFS(U) = dFS([U ], [Uopt]). (20)

Accordingly, define the set

B = {U ∈ VC

n,r | distFS(U) =
π

2
}. (21)

corresponding to matrices generating Grassmannian planes
with a maximal principal angle w.r.t.[Uopt] equal to π

2 , so
that the FS-distance attains its maximal valueπ

2 . This is a
set of measure zero [33] of ‘bad’ starting points. IfU ∈ B,
the subspace[U ] has a dimension orthogonal with[Uopt], i.e.
rank(UH

optU) < r or det[UH
optU ] = 0. Conversely, ifU /∈ B,

by definition one satisfiesdistFS(U) < π
2 .
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Recall thatHf = −∇f(U) is the negative gradient matrix
of the objective funtionf atU . The following result is proved
in Appendix C.

Lemma 1. Starting fromU /∈ B, the Fubini-Study distance
to the optimum solution is striclty monotonically decreasing
along the gradient descent path, i.e.∇Hf

distFS < 0, ∀U
satisfyingdistFS(U) ∈ (0, π

2 ).

Lemma 1 implies that first starting fromU /∈ B, the gradient
procedure will step away fromB and thus never enterB, since
distFS(U) < π

2 will hold along the gradient path. Secondly, it
verifies that∇f 6= 0 for all U satisfyingdistFS(U) ∈ (0, π

2 )
1.

Hence, the only stationary points inVC
n,r \ B belong to

the equivalence class[Uopt]. So if the gradient procedure
converges to a stationary point, it can only be the global
optimum on the Grassmann manifold. Finally, sinceB is a
zero-measure set, Theorem 1 is proved.

V. D ISCUSSIONS

A. Chordal Distance

To emphasize the importance of the choice of distance in the
proof of Theorem 1, we provide a similar result than Lemma 1
for the chordal distance. The proof is in Appendix D.

Lemma 2. The chordal distance to the optimum solution is
monotonically decreasing along the gradient descent path,i.e.
∇Hf

distCH ≤ 0. If U is not a stationary point, there is a strict
decrease in the chordal distance w.r.t. the optimum.

Replacing Lemma 1 by Lemma 2 would not be sufficient to
prove the convergence to a global optimum. A strict decrease
in the chordal distance w.r.t. the optimum does not guarantee
that none of the principal angles is converging toπ

2 , meaning
that the algorithm would enterB and converge to another
stationary point than the global minimum. On the other hand,
when starting fromB, the chordal distance to the optimum
will decrease but be strictly lower-bounded by

√
K, where

K > 0 is the number of dimensions in the starting plane[U ]
orthogonal to the optimum. The gradient search will converge
to the closest point to the optimum inB as only the principal
angles not equal toπ/2 will converge to zero.

B. Comments for Non-Infinitesimal Steps

Theorem 1 implies that there exists a small step sizeα that
guarantee global convergence. In practice, for fast convergence
rate, one desires to use the largest possible steps, rather than
infinitesimal steps. In the rank-one case, starting from any
point in B a gradient descent path would stay inB [10] with
any step size. However, for ranks higher than one and with
non-infinitesimal steps, the setB is not anymore an absolute
bottleneck. If the starting point is not a stationary point,the
search is able to escapeB with a large-enough step size.
On the other hand, starting fromU /∈ B and following the
geodesic direction of the gradient atU , one entersB only for
some discrete, periodic values of step sizeα. The periodicity
comes from the fact that the path goes around the Grassmann
manifold which is a closed curved surface.

1Otherwise one would have∇Hf
distFS = −〈∇distFS,∇f〉 = 0.

VI. CONCLUSION

A proof of the global convergence of an ideal gradient
search for low-rank matrix approximations has been presented.
This generalizes a recently shown result for rank-one approx-
imation to higher rank.

APPENDIX

A. Definitions of Derivatives and Gradients

Since the result is presented for complex matrices, the
generalized definition of complex derivative as in [34]–[36]
is used.

Given a real functionf of complex matrix inputX, we
define the complex derivative as

Df(X) =
df

dX∗
(22)

where the derivative for matrix input is defined component-
wise, i.e. such that[df/dX∗]k,l = df/d[X∗]k,l; and the
complex derivative of a real-valued scalar functionf with
complex inputx is defined as

df

dx∗
=

1

2

(

∂f

∂ℜ[x] + i
∂f

∂ℑ[x]

)

(23)

The variablesx andx∗ can be treated as independent variables,
leading e.g. to

DTr[XH
MX] = MX. (24)

Note that the derivativeDf is the conventional gradient in
the ambient space of our manifold problem. The functions
considered are rather functions acting on the Grassmann man-
ifold rather than its linear representation. For computational
purpose, it is appropriated, with a small abuse of notation,to
express derivatives on the Grassmann manifold by derivatives
on the Stiefel manifold, i.e. with respect to the matrixX rather
than its column space[X] [37]. Define the tangent space atX

by TX , we then introduce the notion of directional derivative:
the derivative off along the directionV at X is defined by

∇V f(X) = lim
t→0

f(X + tV )− f(X)

t
. (25)

The gradient off at X is the unique tangent vector∇f
satisfying

〈∇f(X),V 〉 = ∇V f(X) (26)

for all V ∈ TX . This can be computed by projecting the
complex derivativeDf on TX as given by

∇f(X) = (I −XX
H)Df(X). (27)

B. Local Convergence

Local convergence of gradient-related search are discussed
e.g. in [38]. Define a sequence{Uk} emanating from the
gradient procedure. Note that the functionf is infinitely
differentiable. Using the Taylor expansion, we have the zero-
order and first order term:

f(Uk+1) = f(Uk)+〈Df(Uk), (Uk+1−Uk)〉+o(‖Uk+1−Uk‖)
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combined with an expansion of the matrix exponential for
Uk+1 = Uk(ǫ) according to (14)

Uk+1 −Uk =

ǫHf+
∞
∑

n=1

(−1)n
(

ǫ2n

2n!
Uk +

ǫ2n+1

(2n+ 1)!
Hf

)

(HH
f Hf )

n

leads to

f(Uk+1) = f(Uk)− ǫ〈Df(Uk),∇f(Uk)〉+ o(ǫ)

= f(Uk)− ǫ‖∇f(Uk)‖2 + o(ǫ) (28)

where the last equality comes from the property of a projector,
(I −UkU

H
k )2 = (I −UkU

H
k ), and thus

Tr[Df(Uk)
H∇f ] = Tr[((I −UkU

H
k )Df(Uk))

H

×(I −UkU
H
k )Df(Uk)]

= Tr[∇fH∇f ] = ‖∇f(Uk)‖2. (29)

Therefore with ǫ > 0 sufficiently small, one has
f(Uk) ≥ f(Uk+1) ≥ 0 and

f(Uk)− f(Uk+1) ≥ ǫ‖∇f(Uk)‖2. (30)

Since the sequence{f(Uk)} is decreasing and lower
bounded by zero, it converges to a finite value{f(Uk)}. By
continuity of f , the sequence{Uk} is converging to a finite
valueUk andf

(

Uk

)

= f(Uk).
By definition, one has‖∇f(U)‖ = 0 only if U is a station-

ary point. Now, let assume that the accumulation pointUk is
not stationary. By convergence, one hasf(Uk)−f(Uk+1) → 0
which implies thatǫ‖∇f(Uk)‖2 → 0 , which leads to a
contradiction since the finite stepǫ > 0 is strictly positive.

C. Proof of Lemma 1

Consider the directional derivative∇Hf
| det[UHUopt]|2,

which by definition is

∇Hf
| det[UH

Uopt]|2 =

lim
ǫ→0

| det[(U + ǫHf )
HUopt]|2 − | det[UHUopt]|2

ǫ
. (31)

This is equal to∇Hf
det[UHΠoptU

H ] where for simplicity
we have defined the projectorΠopt = UoptU

H
opt. We shall

also useΠu = UUH .
A direct expansion of the first term in the limit in (31) can

be written as

| det[(U + ǫHf )
H
Uopt]|2

= det[(U + ǫHf )
HΠopt(U + ǫHf )]

= det[M1] det[I + ǫM−1
1 M2 + ǫ2M−1

1 M3] (32)

whereM1 = UHΠoptU is an invertible matrix sinceU /∈ B,

M2 = U
HΠoptHf +H

H
f ΠoptU , (33)

and
M3 = H

H
f ΠoptHf . (34)

Given a matrix X, the Taylor series expansion of the
function det[I + tX] with real parametert, at t → 0, yields

det[I + tX] = det[I] +
d det[I + tX]

dt

∣

∣

∣

∣

t=0

t+ o(t). (35)

The coefficient oft in this polynomial can be computed from
Jacobi’s formula for the derivative of the determinant:

d det[I + tX]

dt
= det[I + tX] Tr

[

(I + tX)−1
X
]

. (36)

So for an infinitesimalǫ, we have the following well-known
approximation of the determinant close to identity

det[I + ǫX] = 1 + ǫTr[X] + o(ǫ). (37)

From this, we can reformulate (32) as

| det[(U + ǫHf )
H
Uopt]|2

= (1 + ǫTr[M−1
1 M2] + o(ǫ)) det[M1]. (38)

For further simplification, let us write from the SVD ofA,

AA
H = UoptΣ

2
maxU

H
opt +Uopt⊥Σ

2
minU

H
opt⊥ (39)

andΣmax is a diagonal matrix containing ther-largest singular
values ofA. Similarly Σmin contains the remaining singular
values ofA in decreasing order. Then one hasUH

optAAH =
Σ2

maxU
H
opt and the first-order term in the right-hand side

of (38) simplies to

Tr[M−1
1 M2]

= 2RTr[M−1
1 U

HΠoptHf ]

= 2RTr[M−1
1 U

HΠoptAA
H
U ]

− 2RTr[M−1
1 U

HΠoptΠuAA
H
U ]

= 2RTr[Σ2
maxU

H
optUM

−1
1 U

H
Uopt]

− 2RTr[M−1
1 M1U

H
AA

H
U ]

= 2Tr[Σ2
max]− 2Tr[AA

HΠu] (40)

where in the last equality we have used the fact
M

−1
1 = (UH

optU)−1(UHUopt)
−1 and that the traces are real

since matrices inside are Hermitian. In the intermediate steps,
the real parts have been used for simplicity but it could be
verified also that all traces in (40) are actually real.

This leads directly to

| det[(U + ǫHf )
H
Uopt]|2 = det[M1]

× (1 + 2ǫ(Tr[Σ2
max]− Tr[AA

HΠu]) + o(ǫ)) (41)

and the directional derivative (31) is given by

∇Hf
| det[UH

Uopt]|2 =

2(Tr[Σ2
max]− Tr[AA

HΠu]) | det[UH
Uopt]|2. (42)

As Πu is a projector of rankr, it has only r non-zero
singular values all equal to one. Using the Von Neuman trace
inequality, we can upper bound the last term by

Tr[AA
HΠu] ≤

p
∑

i=1

si[AA
H ]si[Πu] (43)

=

r
∑

i=1

σ2
i × 1 = Tr[Σ2

max] (44)
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wheresi[M ], i = 1, . . . , r are the singular values of the matrix
M in decreasing order. The equality holds if and only ifAAH

can be diagonalized simultaneously withΠu, which would
happen only if it projects on some left-singular subspaces of
A [39]. For U /∈ B, this condition is fulfilled if and only if
U ∈ [Uopt]. For U satysfyingdistFS(U) ∈ (0, π

2 ), one can
conclude that

∇Hf
| det[UH

Uopt]|2 > 0.

Finally, using the chain rule of the directional derivative,
with the fact thatarccos is a strictly decreasing function,
implies that∇Hf

distFS < 0 for distFS(U) ∈ (0, π
2 ). Namely,

one has

∇Hf
distFS(U)

=
d arccos

√
z

dz

∣

∣

∣

∣

| det[UHUopt]|2
×∇Hf

| det[UH
Uopt]|2

=
−∇Hf

| det[UHUopt]|2

2
√

| det[UHUopt]|2 − | det[UHUopt]|4

= (Tr[AA
HΠu]− Tr[Σ2

max])
| det[UHUopt]|

√

1− | det[UHUopt]|2
.

(45)

D. Proof of Lemma 2

For ease of notation, the squared chordal distance between
the subspace spanned byU and the subspace spanned by the
optimumUopt is denoted by

distCH(U) = d2CH([U ], [Uopt]). (46)

Similarly as for∇f , the gradient ofdistCH at U is given
by

∇distCH = −(I −UU
H)UoptU

H
optU . (47)

The relationship between the directional derivative
∇Hf

distCH and the gradient is given by the inner product
between∇distCH and Hf . We then need to show that the
following quantity is negative

∇Hf
distCH = 〈∇distCH,Hf 〉 (48)

= −2Tr[Πopt(I −Πu)AA
HΠu]. (49)

First, note that since the term inside the trace is a product
of Hermitian matrices, this inner product is real. After some
simple algrabra, we have

∇Hf
distCH = 2Tr[AA

HΠuΠoptΠu]

− 2Tr[AA
H 1

2
(ΠuΠopt +ΠoptΠu)]. (50)

The equality arises from the identity2RTr[Z] = Tr[Z] +
Tr[ZH ] combined with the fact that the last term in the first
line is real since the matrices inside the trace are Hermitian.
Using an appropriate factorization, we simplify it furtheras

∇Hf
distCH =

1

2
Tr[AA

H(I − 2Πu)Πopt(I − 2Πu)]

− Tr[AA
HΠopt]. (51)

Since (I − 2Πu) is Hermitian and unitary, it follows that
(I−2Πu)Πopt(I−2Πu) is a projector of same rank asΠopt.
By construction, these projectors haver eigenvalues (and thus
also singular values) equal to one, while the others are equal
to zero.

Using a similar argument than in the proof of Lemma 1,
we can upper bound the first term with the Von Neuman trace
inequality

Tr[AA
H(I − 2Πu)Πopt(I − 2Πu)]

≤
r
∑

i=1

si[AA
H ]si[(I − 2Πu)Πopt(I − 2Πu)] (52)

=

r
∑

i=1

σ2
i = Tr[AA

HΠopt]. (53)

This proves the claim∇Hf
distCH ≤ 0. Again, equality holds

if and only if AAH can be diagonalized simultaneously with
(I − 2Πu)Πopt(I − 2Πu), which would happen only ifΠu

projects on some singular space ofA [39], i.e. a stationary
point.
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