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We propose a solution to the quantum measurement problem in inflation. Our model treats Fourier
modes of cosmological perturbations as analogous to particles in a weakly interacting Bose gas. We
generalize the idea of a macroscopic wave function to cosmological fields, and construct a self-interaction
Hamiltonian that focuses that wave function. By appropriately setting the coupling between modes, we
obtain the standard adiabatic, scale-invariant power spectrum. Because of central limit theorem, we recover
a Gaussian random field, consistent with observations.
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I. INTRODUCTION

Inflation is a very successful paradigm solving the
horizon, flatness and monopole problems. But perhaps its
most interesting aspect is that, it traces the origin of structure
in the Universe to quantum zero-point fluctuations [1,2].We
believe that the Universe had a quantum mechanical begin-
ning, but how exactly did the classical Universe we are
familiar with emerge? While the mechanism has been
studied for decades [3–5], a number of authors have pointed
out important gaps in our understanding [6–8] (for a review,
see [9]). Proponents of the mechanism assume a “quantum
nondemolition measurement” [10], and acknowledge that
the current description is only “pragmatic” and needs
eventually to be fully justified [5].
We propose a solution to this cosmological quantum

measurement problem (8). Our approach is an effective
wave function collapse mechanism arising from a novel
interaction between Fourier modes, inspired by a two-
dimensional weakly interacting Bose gas, to be contrasted
with fundamental modifications to the Schrödinger equa-
tion [11–13]. Our mechanism is not a replacement but
rather an add-on to the standard description. An alternative
approach to the problem is Bohmian mechanics, which
interprets the wave function as an actual field and avoids
the notion of an observer collapsing the wave function [14].
Thecosmicmicrowavebackground(CMB)hasanaverage

temperatureof2.7K,buthassmallvariationsoforderonepart
in 105. These are signatures of slight variations in the
gravitational field in different regions of the Universe at
the surface of last scattering (Sachs-Wolfe effect). This
primordial curvature perturbation field ζðxÞ, which even-
tually led to the formation of large scale structure (LSS) such
as galaxies is analyzed as follows [11],

alm ¼ 1

ð2πÞ3=2
Z

dΩe

X
k

1

5
ζkY�

lmðeÞe−ik:e ð1Þ

where we defined the Fourier modes ζkðηÞ≡
1

ð2πÞ3=2
R
d3xζðx; ηÞeik·x,wherek is thewavevectorcomoving

with expansion of space (working in natural units,
ℏ ¼ c ¼ kB ¼ 1). For a given l, the alm’s fit a normal
distribution with mean zero and standard deviation

ffiffiffiffiffi
Cl

p
.

The standard deviation is independent of m dubbed the
statistical isotropy of the Universe.
The alm’s are essentially a weighted sum over the ζk’s.

But if the latter are independently distributed random
variables, then central limit theorem (CLT) states that, as
long as the standard deviation of each variable ζk is finite,
the probability distribution for each alm will approach a
normal distribution in the limit of a large number of ζk ’s.
Interestingly, this means that each ζk can be drawn from
any distribution. It need not be normally distributed as it is
in the standard description originating from the ground-
state Gaussian wave function of the harmonic oscillator. In
other words, because of CLT, classical Gaussianity of the
alm’s does not imply quantum Gaussianity of the ζk’s; it is
not an if-and-only-if relationship. CLT essentially washes
out the underlying distribution, and generically yields a
Gaussian random field. This is in concord with observa-
tions since non-Gaussianity appears to be small [15]. We
will utilize this flexibility in our solution to the cosmo-
logical measurement problem.

II. QUANTUM FLUCTUATIONS: A REVIEW

Inflation is said to generate adiabatic perturbations
ζðxÞ as follows [2,11,16]. Consider a massless scalar
field minimally coupled to gravity, S ¼ R

d4x
ffiffiffiffiffiffi−gp 1

2

½Mp
2R − ∂μϕ∂μϕ�. The generalization to any single-field,

slow-roll model of inflation with effective potential VðϕÞ is
lengthy but straightforward. Inflation can be characterized
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by the scale factor aðηÞ ¼ −1
Hη, with conformal time η ∈

½η0; 0Þ and Hubble parameter H. Perturbing the action to
second order, we obtain in conformal coordinates gμν ¼
aðηÞ2diagð−1; 1; 1; 1Þ (originally worked out in [17]),
δð2ÞS ¼ 1

2

R
dηd3x½ð∂v∂ηÞ2 − δij∂iv∂jvþ 2

η2
v2� where v is

the Mukhanov-Sasaki variable [18],

v≡ aðηÞζ: ð2Þ
Using the Fourier transform defined earlier, we recover the
Hamiltonian

H ¼
Z

d3k
�
pkp�

k þ vkv�k

�
k2 −

2

η2

��
ð3Þ

where pk ≡ δL=δv�0k ¼ v0k, where
0 is ∂

∂η. This looks like
the Hamiltonian of a scalar field, but with a time-dependent
mass. We quantize in the Schrödinger formalism. It has
been shown to yield results identical to the operator or
Heisenberg formalism; see [4] for the inflationary scenario,
and [19] for a general discussion. Quantization can be done
by promoting vk and pk to operators obeying ½vRk; pR

q � ¼
iδðk − qÞ and ½vIk; pI

q� ¼ iδðk − qÞ where the superscripts
indicate real and imaginary parts. There is a natural choice
of initial state, which is the ground state of the oscillators in
the short-wavelength limit jkηj ≫ 1 known as the
Bunch-Davies (BD) vacuum. Since the Fourier modes
are noninteracting, the functional Schrödinger equation
i ∂
∂ηΨ½vðη;xÞ� ¼ HΨ½vðη;xÞ� can be easily solved by the

ansatz Ψ½vðη;xÞ�≡Q
kψ

R
kðvRk; ηÞψ I

kðvIk; ηÞ, in the discrete
limit where there are countably infinite wave vectors k. We
recover a Schrödinger equation for each Fourier mode k,�

i
∂
∂ηþ

1

2

∂2

∂ðvRkÞ2 −
1

2

�
k2 −

2

η2

�
ðvRkÞ2

�
ψR
k ¼ 0 ð4Þ

and an identical one for vIk. We solve with the ansatz,
Ψkðvk; ηÞ ¼ NkðηÞ expð−ΩkðηÞ2jvkj2Þ. Applying the BD
initial condition, Ωkðkη → −∞Þ ¼ k

2
, we find

Ωk ¼ k
2

ðkηÞ2 þ i=ðkηÞ
ðkηÞ2 þ 1

: ð5Þ

The largest length scales observable on the CMB today
correspond to jkηj ≪ 1,

jΨkðζkÞj2 →
k3

πH2
exp ½−k3jζkj2=H2�: ð6Þ

It is a time-independent solution of the harmonic
oscillator equation i ∂

∂ηΨk ¼ − 1
2

∂2
∂jζkj2 Ψk þ k6

2H4 jζkj2Ψk.

We can easily compute the two-point correlation function,

hΨjζkζ�pjΨi¼2π2

k3
PζðkÞδðk−pÞ; PζðkÞ¼

�
H
2π

�
2

: ð7Þ

The delta function comes from the assumption of noninter-
actionofFouriermodes;anytwomodesareuncorrelated.The
random field ζðxÞ is completely characterized by this two-
point function. Pζ being independent of k is the renowned
Harrison-Zel’dovich scale-invariant power spectrum.
The inflationary paradigm provides a profound quantum

mechanical origin of ζðxÞ, and completes the story of LSS
formation [20]. However, a deep question remains: how
exactly did quantum fluctuations during inflation become
classical perturbations? In Weinberg’s words, “the field
configuration must become locked into one of an ensemble
of classical configurations... It is not apparent just how this

happens...” ([6], p. 476). Symbolically, Ψ½ζðxÞ�→? ζðxÞ,
where quantum fluctuations are described by a wave
functional Ψ½ζðxÞ� over classical configurations ζðxÞ.
There is discussion in the literature of a so-called

quantum-to-classical transition during inflation [1–3].
The quantum state of each Fourier mode vRk becomes
“squeezed.” The two-dimensional Wigner function, a
generalization of a classical probability distribution in
phase space to quantum variables, becomes elongated in
one direction, becoming a cigarlike shape. The bivariate
probability distribution effectively reduces to a probability
distribution of a single variable. The squeezing happens
approximately in the direction of the canonical momentum
operator pk [11]; in this sense, it approximately becomes a
c number, and hence commutes with vk. It is easy to show
this by computing expectation values [3],

hvRkpR
ki¼

i
2

�
1þi

ImΩk

ReΩk

�
; hpR

kv
R
ki¼

i
2

�
1þi

ImΩk

ReΩk

�
−i:

When the physical wavelength λphys ≡ 2πaðηÞ=k becomes
much larger than 1=H, that is, when jkηj ≪ 1, we have
ImΩk=ReΩk ≃ ð1=kηÞ3 ≫ 1. That is, the expectation value
of each product becomes large compared to the commutator.
However, even though the commutator becomes small in

this sense, vk is not a c number. It is assumed that vk
somehow becomes a c number after leaving the horizon
[7,8]. The justification provided is that, when λphys becomes
larger than the causal length scale, which is of order 1=H,
its physics should cease and the mode should “freeze.” But
technically, we are replacing an operator by a c number,
which is akin to making a measurement in standard
quantum mechanics. It is further assumed that, after this
measurement, vk remains frozen until it reenters the
horizon during the radiation era after inflation, upon which
it begins to oscillate classically, and subsequent evolution
of the mode is purely classical.
The Wigner function is also connected to the density

matrix, whose off-diagonal elements become asymptoti-
cally negligible due to various interactions with environ-
ments known as decoherence [21–23]. However, while
decoherence proposals are interesting in that they seem to
“erase” various quantum correlations—or, really, hide that

ALEXANDER, JYOTI, and MAGUEIJO PHYSICAL REVIEW D 94, 043502 (2016)

043502-2



information somewhere in the environment—they do not
solve the measurement problem.

III. MEASUREMENT PROBLEM IN
QUANTUM MECHANICS

Let us do a brief review; the basic idea and notation will
carry over to the cosmological case. Consider

jψi ¼ Ijψi ¼
Z

dxjxihxjψi ¼
Z

dxcxjxi;

the quantum state of a particle. We inserted a completeness
relation and defined the coefficient cx ≡ hxjψi. For exam-
ple, the particle could be prepared in the laboratory to be in
a Gaussian state, cx ¼ e−x

2=2=π1=4. The particle is in a
superposition of all position eigenstates fjxig. If a meas-
urement of the particle’s location is made (e.g. by shining a
laser), then in the standard Copenhagen interpretation the
state is said to collapse,

jψi ¼
Z

dxcxjxi→? jxcoli;

where xcol is the outcome of the measurement. The
Copenhagen interpretation is silent on how the measure-
ment process comes about. The concept of the collapse of
the wave function, into a delta distribution, and the Born
rule, is a calculational tool, not a dynamical process.
In continuous spontaneous localization (CSL) theories
[11–13], a dynamical collapse is postulated. In our model,
we also postulate a dynamical collapse. But instead of
modifying quantum mechanics as done in CSL theories, we
propose new physics, a nonlocal interaction, that shows up
as an effective nonlinear term in the Schrödinger equation
for each Fourier mode. Before we delve into it, let us
formally define the cosmological quantum measurement
problem.

IV. COSMOLOGICAL QUANTUM
MEASUREMENT PROBLEM

Consider a Fock space expansion of our field ζðxÞ
in the field-amplitude basis. jΨi ¼⊗k jΨki. Using
I ¼ ⊗

k

R
dζkjζkihζkj, and defining cζk ≡ hζkjΨki and

Z Y
k

dζk ≡
Z

D½ζ�;
Y
k

cζk ≡ c½ζ�; ⊗
k
jζki≡ j½ζ�i;

where [ζ] is a specific configuration of the field in Fourier
space, and

R
D½ζ� represents integration over all such

configurations, we can express the problem formally as

jΨi ¼
Z

D½ζ� c½ζ� j½ζ�i→? j½ζ�coli; ð8Þ

where ½ζ�col is the collapsed configuration. We already
calculated the coefficients c½ζ� in (6), jcζk j2 ¼ jΨkðζkÞj2.
Equation (8) shows explicitly that during inflation, the

curvature perturbation field is in a linear superposition of
all possible field configurations fj½ζ�ig. We believe that the
collapse happened in this field-amplitude basis because it is
the pointer basis for cosmology [10]; the field-amplitude
operator ζk commutes with standard interaction
Hamiltonians such as ζ4 and ζ2χ2. This means that, once
the collapse to some field-amplitude eigenstate has taken
place, further interaction of the field with itself and any
environment will preserve the eigenstate.
We are faced with two logical possibilities. Either there is

an issue with Copenhagen interpretation—there were
obviously no observers in the early Universe who could
have made the measurement, as any observer, such as
ourselves, would owe their existence to the primordial
density perturbations—or perhaps there was some
unknown dynamics that effectively “selected” one field
configuration ½ζ�col. Let us discuss what this dynamics
could have been.

V. A SOLUTION

The Fourier transform is defined as vðx; ηÞ ¼P
kvkðηÞe−ik·x, with “grid spacing” ks, that is, jk − qj ≥

ks for distinct modes k and q. We will discuss the
continuum limit ks → 0 shortly. Instead of the
Hamiltonian (3), we have H ¼ H0 þ Hint, where H0 ¼P

k½pkp�
k þ vkv�kðk2 − 2

η2
Þ� and we propose the following

two-body interaction between modes,

Hint ¼
1

2π

X
k

X
q∶jq−kj<Δ

γðk; ηÞ δðRk − RqÞ; ð9Þ

where we have absolute value Rk ≡ jζkj, coupling strength
γ, and “interaction window” Δ.
Our interaction is inspired by the renowned “hard-

sphere” model in a two-dimensional weakly interacting
Bose gas [24], with identification of k and ζk to a Bose
particle with label j and position rj, respectively. It is easy
to check consistency; ζk and rj have the same units (setting
mass of the Bose particle to unity).
Since there is explicit k dependence in our Hamiltonian

(as if there was label dependence in a Bose gas), we need to
assume ks ≪ Δ ≪ k. The physical meaning of this is that,
every “particle” (i.e. Fourier mode) within that window is
equivalent, and every two-body interaction between those
pairs of particles is, on average, equivalent (Hartree-Fock
approximation). That is, we assume

Ψðζk1
; ζk2

;…; ζkN
; ηÞ≃ ½Ψðζk; ηÞ�N; ð10Þ

where N, the number of modes in that window, scales as
ðΔ=ksÞ3. We will further assume
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Ψðζk; ηÞ≡ ψðRkÞΘðθkÞ; ð11Þ

and integrate out the angular part. This is valid since the real
and imaginary parts of ζk can be quantized independently as
described before, and the BD initial condition is such that
there is no angular dependence. We have the normalization
condition

R
∞
0 dRkRk

R
2π
0 dθkjΨðζk; ηÞj2 ¼ 1.

It has been shown [25] that the HF approximation (10) is
valid for a two-dimensional Bose gas with any radially
symmetric interaction in the limit of large N and corre-
spondingly small coupling γ, just as it is for a three-
dimensional Bose gas. Physically, this limit means that any
two given modes are weakly coupled, i.e. they are uncorre-
lated to a good approximation.
Under these assumptions, we recover a Schrödinger

equation with a new effective nonlinear term,

i ∂
∂ηψðRk;ηÞ¼−1

2
∂2ψ

∂ðRkÞ2þ
k6R2

k
2H4 ψþNγRkjψ j2ψ . We assume

our interaction is negligible at the beginning of inflation, by
appropriate choice of γ [26]. This means the BD vacuum
with the Gaussian wave function is still the natural initial
state, but the nonlinear term becomes important after a few
e-folds. Upon a dimensionalizing,

i
∂
∂T ψðX; TÞ ¼ −

1

2

∂2ψ

∂X2
þ 1

2
X2ψ þ ΓXjψ j2ψ ; ð12Þ

we have the dimensionless variables

X ≡ Rkk3=2=H; ð13Þ

and T ≡ ηk3=H2, and the lone free parameter Γ≡
γNk9=2=H3 (Fig. 1). The location of the peak for
jψðRkÞj2 needs to scale as 1=k3=2 in order to have a
scale-invariant power spectrum. This can be achieved by
adjusting the k dependence and time dependence of γ, as
follows. We set γ ∝ k−9=2, and the time dependence of γ
such that the length of time our interaction term is switched
on is proportional to k3=H2. This choice of behavior of γ
would effectively make ψðX; ηÞ independent of k, and
hence jψðRk; ηÞj2 will have the desired 1=k3=2 scaling.
Finally, since θk is a random variable uniformly distributed
over ½02πÞ, we will recover the classical Gaussianity of
alm’s via CLT. The amplitude and duration of γ also
controls the precision of collapse.

VI. DISCUSSION

Let us elaborate on (9). Since the HF approximation is
valid in the N → ∞ limit, we may consider taking ks → 0

and replacing
P

k with
R
d3k,

Hint ¼
Z

d3k
Z

kþΔ

k−Δ
d3qγ̄δðRk − RqÞ ¼

Z
d3k

γ̄

j∇kRkj
where γ̄ is some modification of γ for the continuum limit.
It is easy to see that this is distinct from traditional λϕ4

types of interactions. One way is to write the delta function
as a limiting case of a narrow Gaussian, and Taylor expand.
The term RkRq and all higher powers will be non-
negligible, unlike a λϕ4 theory. In addition, our theory is
nonlocal; consider the Schwinger expansion,

1

jR0
kj
¼
Z

1

0

e−ξjR0
kjdξ¼

Z
1

0

dξ

�
1−ξjR0

kjþ
1

2
ξ2jR0

kj2þ���
�

where 0 is shorthand for ∇k. This formula allows us to
express the Hamiltonian in real space; the terms look like
Hint ¼

R
d3xRðxÞ R d3 ~x~x2Rð~xÞ2 þ � � �. Interestingly, in

standard quantum field theories, the position is a label
and Lagrangians are usually label-free. Ours has label
dependence; we may call it the “eye of God.” Further
investigation into its physical meaning is ongoing [27].

VII. CONCLUSION

Thanks to CLT, our interaction Hamiltonian can repro-
duce the standard Gaussian predictions for alm, while
attempting a solution of the measurement problem in
inflation (Fig. 2). This problem and our solution is relevant
for other scenarios in cosmology as well, such as cyclic or
bounce universes, and modified dispersion relation theo-
ries [28].
θk is responsible for the transition from the perfect

rotational and translational symmetry of the quantum state
(BD vacuum) to the (slightly) inhomogeneous and aniso-
tropic Universe that we live in [29]. It is the complex phase
of ζk; it corresponds to translations in physical space, and is
a random variable both in the standard description [3] and
in our model. It is distinct from the phase of standing waves
that lead to Sakharov oscillations in the CMB discussed in
[30]. It will be interesting to further investigate the origin
and behavior of θk, which we shall address elsewhere.
One may take the view that, the cosmological quantum

measurement problem will be resolved once the

FIG. 1. Numerical solution of (12), with Γ ¼ −20. For sim-
plicity, we used comoving time t here instead of T. The effective
nonlinear term modifies the traditional Gaussian profile jψ j2
(black), into an arbitrarily sharp spike (blue). We found the shape
of the spike to be asymptotically Gaussian. See Fig. 2 for the full
wave function jΨj2.
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measurement problem in quantum mechanics is addressed;
hence we should work directly on the latter. However,
because the quantum mechanics of inflation treats the
cosmological Fourier modes as quantum operators, this
enables us to state the quantum measurement problem in

its traditional form and isolate the various aspects of the
measurement problem. In this paper, we only attempt to
address one part of the measurement problem, not by
modifying quantum mechanics but by incorporating new
physics, i.e. a nonlocal interaction between modes.
The cosmological measurement problem is a rich and

compelling arena for both foundational issues of quantum
mechanics as well as a deep understanding of early
Universe cosmology, and may potentially teach us about
aspects of quantum gravity.
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