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The utilizable capacitance of Electrochemical Double Layer Capacitors (EDLCs) is a function of the frequency at which they are
operated and this is strongly dependent on the construction and physical parameters of the device. We simulate the dynamic behavior
of an EDLC using a spatially resolved model based on the porous electrode theory. The model of Verbrugge and Liu (J. Electrochem.
Soc. 152, D79 (2005)) was extended with a dimension describing the transport into the carbon particle pores. Our results show a large
influence of the electrode thickness (Le), separator thickness (Ls) and electrolyte conductivity (κ) on the performance of EDLCs. In
agreement with experimental data, the time constant was an increasing function of Le and Ls and a decreasing function of κ. The
main limitation was found to be on the scale of the whole cell, while transport into the particles became a limiting factor only if
the particle size was unrealistically large. The results were generalized into a simplified relation allowing for a quick evaluation of
performance for the design of new devices. This work provides an insight into the performance limitation of EDLCs and identifies
the critical parameters to consider for both systems engineers and material scientists.
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Electrochemical Double Layer Capacitors (EDLCs) store energy
by the adsorption of ions from an electrolyte (resulting in its capacitive
deionization), storing the ions in the electrochemical double layer of a
charged electrode with a very large surface area. The high charge that
can be stored gives rise to the name supercapacitors or ultracapacitors.
The main advantages of EDLCs when compared to batteries are their
ability to quickly release the stored energy, their high efficiency and
their long cycle life. The amount of energy that can be stored is,
however, not unlimited. The useable capacitance is dependent on the
time scale of their operation and this causes the capacitance of EDLCs
to be a function of frequency. As typical application of EDLCs requires
them to supply or accept pulses of energy at frequencies ranging from
10 Hz to 0.1 Hz,1 it is important that the full capacity can be utilized
in this range. In order to improve the high-frequency behavior, it
is necessary to understand the factors causing the limitation and to
identify the critical ones.

The key to the high capacitance of EDLCs is the high specific
surface area (SSA) of their electrodes. This is achieved by using
highly porous activated graphitic carbon materials.2 According to their
size, the pores can be classified as micropores (<2 nm), mesopores
(2 − 50 nm) or macropores (>50 nm).2 Pores of different sizes are
connected in a highly complex hierarchical structure depending on
the shape of carbon particles. A typical supercapacitor cell consists
of two carbon electrodes with the porous separator in between and
current collectors closing the cell from both sides.

Experimentally, the frequency-dependent capacitance is com-
monly measured using either Cyclic Voltammetry (CV), Electrochem-
ical Impedance Spectroscopy (EIS) or Galvanostatic Cycling (GC).3,4

Yoon et al. (2005) and Pandolfo et al. (2010) investigated the effect of
the electrode thickness Le on the capacitance clearly showing the ca-
pacitance to decay at smaller frequencies for thicker electrodes.5–7 On
the other hand, increasing conductivity was found by Lust et al. (2004)
to increase the capacitance available at high frequencies.8 The sepa-
rator does not contribute to the capacitance and acts as an additional
ionic resistance in the system.9,10

Models on the scale of the whole cell are generally based either on
the equivalent-circuit (EC) approach or porous electrode theory, and
the existing models were recently reviewed by Ike (2015) and Pilon
et al. (2015).11,12 Verbrugge and Liu (2005) used a model based on the
porous electrode theory to calculate the Ragone plot, which relates
the energy density and power density.13 This was however done only
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for one set of parameters. Using a similar formulation of the model,
Allu et al. (2014) performed parametric studies investigating the ef-
fect of transport properties in the following setup: constant current
charge followed constant voltage discharge.14 In a study focused on
the usage of the model for control purposes, Drummond et al. (2015)
used the Verbrugge model to compute the dependence of the complex
capacitance on frequency by means of EIS. Srinivasan et al. (1999)
presented an analytical solution of a simplified EDLC model under
the operating condition of EIS, capturing the effect of electrode thick-
ness in the capacitance vs. frequency plot.15 On the other hand, the
classical de Levie equivalent-circuit model on the scale of one meso-
pore can be analytically solved for different operating conditions,
such as step voltage change or oscillatory voltage or current input.16

Using the transmission line model, Eikerling et al. (2005) modelled
the hierarchical structure of porous electrodes and showed the effect of
carbon particle size in the Electrochemical Impedance Spectroscopy
simulations.17

The main limitation of these equivalent circuit approaches is that
they do not capture the whole physical nature of the system. Although
they can successfully reproduce the electrical response, the effect
of varying salt concentration and the related change in electrolyte
conductivity cannot be correctly accounted for.

The nonlinear model of Biesheuvel and Bazant (2010)18 captures
the dynamics of both the transport on the scale of the whole cell and
the charging or discharging of the electric double layer. However, this
makes the model rather stiff and difficult to solve especially for large
applied voltages. The original approach of18 was extended with the
modified Donnan model for the description of overlapping electric
double layers,19,20 other extensions involved accounting for the ef-
fect of micropores and tortuosity effects.21,22 Recently, Dykstra et al.
(2016) included the effect of mesopores into the model.23 However,
in these models, neither the micropores nor the mesopores are avail-
able for transport and these approaches therefore cannot be used to
determine and compare the transport limitations.

Therefore, although the models available in the literature together
with experimental measurements provide a limited picture about the
factors influencing the performance of supercapacitors, different phe-
nomena are described separately or in a simplified manner which
lacks the context of the whole system. There is therefore a need for
a generalized framework that would allow the different factors that
affect the EDLC performance to be compared in a systematic way.

The model presented in this work extends the work of Verbrugge
and Liu (2005) with an additional dimension accounting for the trans-
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port in mesopores. This extension enables us to quantitatively compare
the transport limitations on the various scales for the first time with a
physics-based model. Moreover, the model can simulate the three most
commonly used electrochemical characterization techniques (CV, EIS
and GC) capturing the specifics of the different modes of operation.
Further, various models of the EDL differential capacitance were
implemented allowing to account for the potential- or concentration-
dependent capacitance, as recently pointed out by various authors.18,24

The model was used to quantify the importance of different factors
for the performance of EDLCs. The bulk resistance of the electrolyte
was identified as the most important factor, while the transport into
the particles limited the performance only when the particles were
unrealistically large. Furthermore, the specifics related with the use of
different techniques to determine the time constant were demonstrated
highlighting the necessity to be careful when comparing simulations
and measurements of different origin. Finally, a simplified relation
allowing for a quick evaluation of the performance of EDLCs is pre-
sented and its predictions are compared with the results of the full
model. The model is made available for download under a creative
commons licence for use as a development tool or to enable the work
to be repeated or extended by others.

Mathematical Model

The model used in this work is based on the porous electrode
theory and it builds on previous papers that employed this approach to
model the dynamic behavior of supercapacitors.13,14,25 In the following
section, we first list and discuss the assumptions of the model, then we
define the computational domain and derive the model equations based
on appropriate balances and finally we introduce different models for
the double-layer capacitance.

List of assumptions.—The processes in EDLC take place on wide
temporal and spatial scales making it (at least for now) impossible to
resolve every detail in one single model. To make the model compu-
tationally tractable the following assumptions were adopted:

1. Large cross-section area of electrodes: The dimensions of the
EDLC cell are assumed to be much larger in the plane parallel
to the electrodes than in the transversal direction (the width and
height are larger than the thickness). This assumption is valid
for most commercial capacitors26 and it allows us to treat the
transport in the cell as effectively one-dimensional.

2. Porous-electrode theory: The two phases of a porous medium, i.e.,
the carbon solid phase and electrolyte liquid phase, are assumed
to be perfectly interpenetrating and are volume-averaged in this
approach. This assumption is valid as long as the size of pores
is significantly smaller than the dimensions of the electrode or
separator. A discussion by Verbrugge and Liu (2005) confirmed
the validity of this approach for the present system. Furthermore,
this assumption enables us to treat the transport into the particles
as effectively one-dimensional.

3. Dilute-solution theory: The concentration dependence of the gov-
erning parameters except for the ionic conductivity is neglected
in this approach. Although this assumption may not be valid for
the high concentrations used in this work, this is a commonly
adopted simplification because of the increased complexity of
concentrated-solution models and due to the fact that a univer-
sally accepted model in this field is still missing.24

4. Binary, symmetric electrolyte: The electrolyte is assumed to con-
sist of only one pair of ions that carry the same absolute charge and
are of the same size. While the first assumption is consistent with
electrolytes used in supercapacitors,13 the size of both bare and
solvated ions usually varies for cations and anions.26,27 However,
it was shown in a modelling study of Drummond et al. (2015)
that the difference in the cell behavior when using symmetric or
asymmetric electrolyte is negligibly small.25

5. Thin electrical double layer: The thickness of EDL is assumed to
be much smaller than the size of pores. This assumption has two
main consequences; first, the structure of the EDL does not have

Figure 1. Schematics of the computational domain.

to be resolved in the model and the capacity of the double layer
is represented as volume-averaged. The second consequence is
that the dynamics of the charging and discharging of the EDL
is much faster than other processes such as charge transport on
the cell-scale28 and it can safely be neglected. This assumption is
clearly not valid for the case of micro-pores, where the pore size is
comparable to the size of ions. There is, however, no universally
accepted theory available for the description of the pore-size
dependent capacitance and the dynamics of the desolvation of
an ion when entering a micro-pore.

Computational domain.—A typical EDLC consists of two carbon
electrodes with a separator in between and two current collectors
closing the cell at each side. The electrodes are formed by compressing
a carbon particles creating a porous structure.26 In this work, the
particles were assumed to be uniformly sized spheres with radius Rp

as shown in the schematics of the domain in Figure 1.

One-dimensional model.—The one-dimensional (1D) version of
the EDLC model was derived by Verbrugge and Liu (2005). In this
work, their equations were taken as a starting point and the model is ex-
tended with the additional dimension, which corresponds to the trans-
port into the carbon particles. The model resolves both the electrodes
and the separator using conservation laws for the charge and mass and
employing corresponding constitutional relations for the fluxes.

Under the assumption of a symmetric electrolyte, the balance of
charge reduces to the following form (see13 for derivation):

aCD
∂ (�1 − �2)

∂t
= −κ (c)

∂2�2

∂x2
, [1]

where a is the specific surface area, CD is the double layer differential
capacitance, �1 is the potential in the solid phase, �2 is the potential
in the electrolyte, t is the time, κ(c) is the concentration-dependent
ionic conductivity and x is the spatial coordinate (see Figure 1).

The equation for the conservation of the total current flowing
through the system can be expressed in various ways, but the for-
mulation of Drummond et al. (2015) is convenient and concise:25

0 = σ
∂2�1

∂x2
+ κ

∂2�2

∂x2
, [2]

where σ is the solid-phase conductivity.
Under the assumptions of the bulk electroneutrality, dilute solution

theory and symmetric binary electrolyte, the material balance of the
electrolyte is given by the following equation:

ε
∂c

∂t
= D

∂2c

∂x2
+ aCD

2F

∂ (�1 − �2)

∂t
, [3]

where ε is the electrode porosity, c is the concentration, D is the
diffusion coefficient and F is the Faraday constant.
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The separator is not electrically conductive, therefore the descrip-
tions of the charge and mass conservation reduce to the following
form:

0 = κs (c)
∂2�2

∂x2
, [4]

εs
∂c

∂t
= Ds

∂2c

∂x2
, [5]

where κs(c) is the concentration-dependent ionic conductivity in the
separator, εs is the separator porosity and Ds is the diffusion coefficient
in the separator.

The transport properties of the porous material for both the charge
and mass transport are derived using the effective medium approach.13

Therefore, upon defining the free-solution diffusion coefficient D0, the
effective diffusion coefficient in the electrodes is given by: D = D0ε

�
,

where � is the tortuosity of the electrode. The effective diffusion
coefficient in the separator is computed as: Ds = D0εs

�s
, where �s is

the tortuosity of the separator. Verbrugge and Liu (2005) showed that
the ionic conductivity of uni-univalent electrolyte can be assumed to
be a linear function of concentration as follows:13

κ (c) = 2F2

RT
Dc, [6]

where R is the universal gas constant and T is the temperature. The
ionic conductivity in the separator κs(c) is obtained from the same
equation using Ds instead of D.

The boundary conditions effectively summarize the fact that no
ions can pass through the current collectors and no electrons can pass
through the separator and they are more thoroughly elaborated for the
case of the multi-scale model below. Equations 1–5 define a system
of partial differential equations with state variables most conveniently
defined as: �2, �1−�2 and c. After a spatial discretization, the system
transforms into a set of differential-algebraic equations (DAE) with
�2 being the algebraic variable.25

Multi-scale model.—The 1D model lumps together the properties
of the electrode material and electrolyte into a handful of parameters:
CD, ε, �, a, κ, σ and D, in the framework of the porous electrode theory.
However, the activated carbon used as the electrode material contains
pores on a broad scale of sizes with very different properties.26 To
account for this fact, the model is extended with an additional di-
mension that describes the transport of the charge and mass into and
from the carbon particles. In this work, the space between particles
is referred to as macro-porous, while the space inside the particles is
called meso-porous.

As the electric conductivity of the carbon material is usually much
larger than the ionic conductivity of the electrolyte,26 it is safe to
assume that the solid phase potential �1 is constant within the particle.
On the other hand, the path for the ions can be more complicated due
to a small porosity and large tortuosity of the porous particle. It is
therefore assumed that the additional resistance originates from the
liquid phase.

The introduction of the additional dimension also extends the num-
ber of parameters characterizing the transport properties. The total
electrode porosity ε = εmac + εmes and surface area a = amac + ames

now consist of two contributions of the macro- and meso-pores, re-
spectively. The porosity εmes and the specific surface area of mesopores
ames are related to the total volume of the electrode, i.e., the carbon
particles and the space between them. Dividing these quantities by
(1 − εmac) converts them to the reference frame of the particles only
and this is done in the following equations. The differential capaci-
tance CD is assumed to be the same in both macro- and meso-pores and
the tortuosities �mac and �mes are independent of the total tortuosity �.
The effective diffusion coefficients are defined as: Dmac = D0εmac

�mac
and

Dmes = D0εmes
�mes(1−εmac) and ionic conductivities κmac and κmes are obtained

from Equation 6 in the same way as in the 1D version of the model.
When a particle is sufficiently small, it can be assumed that it is

surrounded by an electrolyte with approximately constant potential

and concentration. With that assumption, the transport occurs only
in the radial direction and the equation for the charge balance in a
particle is the following:

ames

(1 − εmac)
CD

∂
(
�1 − �p

)
∂t

= −κmes

(
cp

) 1

r 2

∂

∂r

(
r 2 ∂�p

∂r

)
[7]

where �p is the liquid-phase potential in the particle and r is the radial
coordinate (see Figure 1). This equation is entirely analagous to Equa-
tion 1 with the Laplace operator expressed in spherical coordinates.

The mass balance inside the particle is, again in analogy with the
1D model, described by the following equation:

εmes

(1 − εmac)

∂cp

∂t
= Dmes

1

r 2

∂

∂r

(
r 2 ∂cp

∂r

)
+ amesCD

2F (1 − εmac)

∂
(
�1 − �p

)
∂t

,

[8]
where cp is the salt concentration in the meso-pores.

The charge and mass balances in the macro-porous phase contain
an additional term, which corresponds to the flux to or from the
particles. This flux is computed from the derivatives at the particle
surface and the resulting form of the equations is the following:

amacCD
∂ (�1 − �2)

∂t
= −κmac (c)

∂2�2

∂x2
+amacκmes

(
cp

) ∂�p (x)

∂r

∣∣∣∣
r=Rp

[9]

0 = σ
∂2�1

∂x2
+ κmac (c)

∂2�2

∂x2
[10]

εmac
∂c

∂t
= Dmac

∂2c

∂x2
+ amacCD

2F

∂ (�1 − �2)

∂t
− amac Dmes

∂cp (x)

∂r

∣∣∣∣
r=Rp

[11]
The separator is assumed to have no capacitance, therefore the poten-
tial �p and concentration cp in the mesopores are not defined in this
domain. The potential �2 and concentration c are therefore computed
from Equations 4 and 5.

The boundary conditions (BC) reflect the fact that at current col-
lectors (x = 0 and x = 2Le + Ls) all the current is carried by the
electrons (potential �1) as no ions can pass through the collectors.
Conversely, only ions are allowed to pass through the separator, there-
fore the BC express the continuity of fluxes at the boundaries between
the electrodes and separator (x = Le and x = Le + Ls). Finally, there
is a symmetry BC at the particle center (r = 0), while the particle sur-
face (r = Rp) is surrounded by the bulk electrolyte (�2 and c) at the
particular position x . In terms of equations, the boundary conditions
are defined as follows:

�1|x=0 = 0 [12]

∂�2

∂x

∣∣∣∣
x=0

= 0 [13]

∂c

∂x

∣∣∣∣
x=0

= 0 [14]

∂�1

∂x

∣∣∣∣
x=Le

= 0 [15]

κmac (c)
∂�2

∂x

∣∣∣∣
x=L−

e

= κs (c)
∂�2

∂x

∣∣∣∣
x=L+

e

[16]

Dmac
∂c

∂x

∣∣∣∣
x=L−

e

= Ds
∂c

∂x

∣∣∣∣
x=L+

e

[17]

∂�1

∂x

∣∣∣∣
x=(Le+Ls)

= 0 [18]
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κs (c)
∂�2

∂x

∣∣∣∣
x=(Le+Ls)−

= κmac (c)
∂�2

∂x

∣∣∣∣
x=(Le+Ls)+

[19]

Ds
∂c

∂x

∣∣∣∣
x=(Le+Ls)−

= Dmac
∂c

∂x

∣∣∣∣
x=(Le+Ls)+

[20]

�1|x=2Le+Ls
= U [21]

∂�2

∂x

∣∣∣∣
x=2Le+Ls

= 0 [22]

∂c

∂x

∣∣∣∣
x=2Le+Ls

= 0 [23]

∂�p (x)

∂r

∣∣∣∣
r=0

= 0 [24]

∂cp (x)

∂r

∣∣∣∣
r=0

= 0 [25]

�p (x)
∣∣
r=Rp

= �2|x [26]

cp (x)
∣∣
r=Rp

= c|x [27]

Models of capacitance.—In the volume-averaged model of a su-
percapacitor, the EDL is not directly resolved and a model of its
capacitance has to be supplied. The capacitance models for interfaces
with concentrated electrolytes subjected to a large potential difference
were reviewed by Bazant et al. (2009).24 In this work, we employed
three different models: (i) the Helmholtz model as the simplest ap-
proach, which predicts constant capacitance, (ii) the Gouy-Chapman-
Stern model, which accounts for the dependence of the capacitance on
the applied potential difference and (iii) the Bikerman model, which
takes into account also the effect of ion crowding and thus reflects
both potential and concentration dependence of the capacitance.

The differential capacitance in the Helmholtz model CH
D is defined

by the following relation:26

CH
D = εrε0

λS
, [28]

where εr is the relative permittivity of the solvent, ε0 is the vacuum
permittivity and λS is the thickness of the Stern layer, the value of
which could be approximated as half of the bare ion diameter.

The potential-dependent differential capacitance in Gouy-
Chapman-Stern model CGCS

D is given as follows:26

1

CGCS
D

= 1

CH
D

+ 1

CGC
D

, [29]

where the differential capacitance predicted by the Gouy-Chapman
model CGC

D is given by:

CGC
D = εrε0

λD
cosh

(
zeψD

2kBT

)
. [30]

In this equation, z is the charge number, e is the elementary charge, kB

is the Boltzmann constant, ψD is the potential drop across the double
layer and λD is the diffuse-layer thickness (Debye length) defined
as:24

λD =
√

εrε0kBT

2(ze)2c
. [31]

For crowded systems, the Bikerman model defines the differential
capacitance CB

D as follows:24

CB
D = εrε0

λD

×
sinh

(
ze|ψD|

kBT

)
[
1 + 2�bulksinh2

(
zeψD
kBT

)]√
2

�bulk
ln

[
1 + 2�bulksinh2

(
zeψD
kBT

)] ,

[32]

where �bulk = 2a3
solcNA is the packing parameter and asol is the

solvated ion diameter.24,28

The potential drop ψD represents the difference between the poten-
tial of the solid phase and the potential in the bulk of the electrolyte.24

It is therefore defined as ψD = �1 − �2 for the case of macro-pores
and ψD = �1 − �p for the case of meso-pores.

Numerical details.—The x and r in the model are coupled only
through the fluxes in Equations 9 and 11 and boundary conditions
for Equations 7 and 8. Rather than fully two dimensional (2D), the
model can be characterized as consisting of two coupled dimensions
(1D+1D) on different scales. The set of partial differential equations
described by Equations 4, 5 and 7–11 with boundary conditions given
by Equations 12–27 was discretized in space using the Finite Volume
Method (FVM). This results in a set of differential-algebraic equations
with �2 being the algebraic variable. The system was numerically
integrated in time using the MATLAB solver ode15s and consistent
initial conditions were supplied. The spatial discretization step in
the x-direction was equal to h = Le/30 and in the r -direction the
discretization step was equal to hp = Rp/20. The time-step �t was
equal to 0.1 % of the duration of one cycle for the methods introduced
in the next section. Simulations with any of the discretization steps
reduced to one half lead to only negligible changes in the results and
thus the above stated values were considered justified.

Characterization Techniques

To characterize the performance of supercapacitors, we used three
standard electrochemical techniques: the Cyclic Voltammetry (CV),
Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic
Cycling (GC). In this section, we describe the implementation of
these techniques into the model.

As all the methods involve cycling, there is a period at the beginning
of each simulation, where the effect of initial conditions is observable.
To minimize the effect of initial conditions on the results, the cycling
was performed until the change in the value of the cell capacitance
(evaluated in each cycle) in two consecutive cycles was smaller than
0.01 % of the maximum (low-frequency) value of the capacitance.

Cyclic voltammetry (CV).—CV is a transient technique in which
the input voltage UCV is linearly varied with time creating a cycle over
the selected voltage range and the resulting current ICV is measured.
The time-dependent voltage is defined as follows:

UCV (t) = Umax − ν |(t mod 2t0) − t0| , [33]

where ν is the scan rate, t0 = (Umax − Umin)/ν is the half cycle pe-
riod and Umax and Umin are the maximum and minimum voltages,
respectively.28 The charge Q accumulated in the system during one
cycle is given by the following expression:28

Q = 1

2

∮
ICV

ν
dUCV. [34]

The total capacitance CCV (in F) can be obtained from:28

CCV = Q

(Umax − Umin)
. [35]
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The frequency f of the voltage change in CV simulations is the
following:

f = 1

2t0
= ν

2 (Umax − Umin)
. [36]

Electrochemical impedance spectroscopy (EIS).—In EIS simu-
lations, a sinusoidal input of either the voltage or current with small
amplitude is applied to the system. In this work, the input voltage UEIS

was varied according to the following equation:26

UEIS ( f ) = Ufix + δUexp ( j2π f t) , [37]

where Ufix is the fixed voltage and δU is the voltage amplitude. By
fitting the output current IEIS by the equation:26

IEIS ( f ) = Ifix + δI exp [ j (2π f t + �)] , [38]

the fixed current Ifix, current amplitude δI and phase angle � can be
determined.

Having all these quantities at hand, one can define the complex
impedance Z as follows:26

Z ( f ) = δU

δI
exp (− j�) . [39]

The complex capacitance CEIS of the system is given by:

CEIS = CRe − jC Im, [40]

where the real part CRe of the capacitance is obtained as:

CRe = −Z Im

2π f |Z |2 . [41]

And the imaginary part C Im is given by:

C Im = ZRe

2π f |Z |2 , [42]

where ZRe and Z Im are the real and imaginary parts of the complex
impedance and |Z | is its modulus.

Galvanostatic cycling (GC).—GC is a transient technique in which
the current is controlled and voltage measured. In our setup, a constant
current IGC was applied to the system starting from the minimum
voltage Umin until the maximum voltage Umax was reached. Then
the current was reversed, the simulation continued until Umin was
reached and then the cycle was repeated. The time �tGC needed to
complete one cycle from Umin to Umax and back was used to compute
the capacitance CGC as follows:

CGC = IGC�tGC

2 (Umax − Umin)
. [43]

The frequency of cycling in GC can be defined in two ways. The first
involves simply taking the inverse value of �tGC. The disadvantage
of this approach is that the frequency cannot be determined a priori
and it is the result of the simulation. Moreover, the larger is |IGC|, the
larger is the voltage drop due to ohmic losses upon the reversal of the
current, which leads to an increasing overestimation of the frequency
for larger currents. For these reasons, we used a corrected frequency
fGC defined as follows:

fGC = IGC

Cmax2 (Umax − Umin)
, [44]

where Cmax is the capacitance in the low-frequency limit, which can
be a priori computed as:

Cmax = atotCD SLe

2
. [45]

To simulate this technique, the boundary condition at the right cur-
rent collector (x = 2Le + Ls) was changed from constant potential
(Dirichlet BC) to constant current (Neumann BC) as described in
Ref. 13.

Time constant.—The time constant is the characteristic of the
dynamic behavior of the supercapacitor. As pointed out by Zhang
et al. (2015), several definitions of this quantity exist in the literature.3

In this work, the so-called relaxation time constant τ0 was used, which
is defined as:3,29

τ0 = 1

f0
, [46]

where f0 is the frequency at which the capacitance reaches half of its
maximum (low-frequency) value. It also corresponds to the maximum
of the imaginary part of the capacitance C Im obtained from the EIS
simulations.29

Simplified Models

Although the relatively complex model presented in the previous
sections provides a valuable tool for a thorough analysis of the EDLC
behavior, the basic response of the system can be captured by a much
simpler model. The first simplified model is the RC circuit model,
where a resistance and capacitance are connected in series29 and the
second model introduced by de Levie (1964) is based on the equivalent
circuit approach and treats a pore as a network of resistances and
capacitances.16 These models are used in this work for the comparison
with the predictions of the complex model and to establish the limits
of the simplified description.

The complex impedance ZRC of the RC circuit model, i.e., a serial
resistance R and capacitance Cmax is defined as follows:

ZRC = R + 1

j2π f Cmax
. [47]

The real and imaginary capacitance are then extracted entirely analog-
ically to the procedure described for the Electrochemical Impedance
Spectroscopy.

The de Levie model is used to compute the complex impedance
Zp of the porous electrode as follows:16

ZP = RI
coth

√
j2π f RICmax√

j2π f RICmax
, [48]

where RI is the resistance of the pores. The total impedance ZEC of
the cell described by this equivalent circuit model is given by the
following equation:

ZEC = ZP + Rs, [49]

where Rs is the resistance of the separator. In these models, the capac-
itance Cmax is computed as the low-frequency limiting (maximum)
capacitance, see Equation 45. The resistance of the pores RI is the
combined resistance of the solid phase and electrolyte in the elec-
trodes. For this case, it was demonstrated by various authors8,10,15 that
the overall conductivity κ̃ of the porous electrode can be expressed as
follows:

κ̃ = 2κσ

κ + σ
. [50]

The resistance RI is then defined as:8

RI = 2Le

κ̃S
. [51]

Analogically, the resistance of the separator is given by:

Rs = Ls

κs S
. [52]

And the total resistance is R = RI + Rs.

Generalized relation.—Let us now develop an alternative ap-
proach for the determination of the frequency-dependent capacitance
in the RC circuit. When a voltage step �U is applied to this system,
which was initially at zero volts, the actual voltage of the resistor and
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Figure 2. a) Voltage and b) current as a function of time. The model prediction is compared with experimental data of Verbrugge (2005) and the prediction of the
RC circuit model. The specific surface area was a = 4.5 · 107 m2/m3.

the capacitor changes over time. The time-development of the voltage
of the capacitor UC is described by the following function:

UC = �U

[
1 − exp

(
− t

RCmax

)]
. [53]

If we multiply the whole equation by Cmax and divide by �U , we
obtain on the left-hand side the charge of the capacitor QC = CmaxUC

divided by the total voltage diference. By replacing t with the char-
acteristic time τ of the mode at which the system should operate
(e.g., for EIS the characteristic time would be τ = 1/2π f ), the quan-
tity QC/�U on the left-hand side in fact becomes the accesible (or
frequency-dependent) capacitance C( f ) for the process:

C ( f ) = Cmax

[
1 − exp

(
− τ

RCmax

)]
. [54]

Furthermore, the time constant τ0 = 1/ f0, which corresponds to the
frequency f0 at which the accessible capacitance C( f ) is equal to
Cmax/2 can be derived as:

τ0 = 2π ln (2) RCmax. [55]

And by plugging in the expressions for the resistance and capacitance,
the final equation is obtained:

τ0 = π ln (2) aCD Le

(
2Le

κ̃
+ Ls

κs

)
, [56]

which is a direct function of the construction and physical parameters
of the cell.

Results and Discussion

Constant current charge – constant voltage discharge (CCC-
CVD).—Before proceeding to the performance evaluation of super-
capacitors, let us compare the predictions of our model to the exper-
imental data of Verbrugge and Liu (2005).13 In these experiments,
the constant current (I = 100 A) charging was followed by the dis-
charge at constant voltage (U = 1.4 V ). The comparison is shown in
Figure 2 and these results were obtained with the 1D version of the
model in order to obtain a setup comparable to the original paper. The
good agreement between the model prediction and the experimental
data is comparable to different modelling studies that used the same
experimental data for validation.13,14,25

It is worth noting that the simple RC circuit model reproduces
the charge-discharge profile only relatively well. While the constant
current charge is captured very well, the discharging dynamics under
constant voltage is reproduced poorly. This is due to the fact that the
RC circuit model does not take into account the spatial distribution
of potential in the cell. In reality and in the complex model, after the
abrupt change in the voltage the potential difference �1 −�2 initially
quickly changes only in the regions close to the current collectors and
the separator (see Figure 3). This leads to the fact that the cell initially

appears to have lower resistance and capacitance, hence the initial
discharge current is larger and decays more quickly.

The spatial distributions for the CCC-CVD simulation are shown in
Figure 3. During the constant current charging, both the concentration
and potential are changing steadily after an initial transient period.
This period is caused by the electrolyte resistance. On the other hand,
the spatial distributions for constant voltage discharge show more
complicated behavior. There is an abrupt change in the voltage, which
is reflected by the sharp decrease in the separator region (between 50
and 75 micrometers). The fact that the cell starts suddenly discharging
leads to a quick change in the concentration, which however takes
place only in the electrode and it takes some time for the concentration
in the separator to adapt to this trend.

Methods for evaluation of performance.—The performance of an
EDLC can be assessed by a variety of methods, each of which has its
specific advantages and disadvantages. For the sake of simplicity, the
results in this section were once again obtained with the 1D version of
the model. The effect of mesopores is addressed later in a dedicated
section.

The performance of an EDLC is a function of the time-scale at
which the device operates. This is demonstrated in Figure 4, where
the cyclic voltammograms for different values of scan rate are shown.
The shape of the curve changes from an almost rectangular at a slow
scan rate, which is typical for a capacitor, to almost linear for a fast
scan rate, which is characteristic for a resistor.

A similar change occurs in the plot showing the results of EIS
simulations that is shown in Figure 5. Please note that compared to
CV simulations, there is much narrower potential window and also
the curves are smoother due to the different nature of the excitation
signal.

In Galvanostatic Cycling, the voltage response of the system
changes with increasing current as can be seen from Figure 6. The
higher is I, the larger is the step change in voltage after current rever-
sal. Eventually, for large currents this step change that can be ascribed
to the ohmic drop in the system covers the whole potential window
leading to the capacitance equal to zero.

It is clear that the performance of the EDLC is a strong function
of the operating parameters of the characterization methods. This is
expressed in Figure 7 in the plots relating the capacitance to frequence
and current. It is worth noting that the capacitance predicted by EIS
decays at larger frequencies than in CV simulations in Figure 7a.
This effect can be ascribed to the much narrower voltage window and
thus smaller concentration changes in EIS and also to its smoother
excitation signal.

Effect of electrode thickness.—The thickness of the electrode
Le is one of the basic construction parameters of the EDLC cell.
It has a twofold effect on the cell behavior; first, by increasing the
thickness, the ionic resistance of the electrode increases and second,
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Figure 3. Spatial distribution of (a,b) solid phase potential, (c,d) potential in electrolyte and (e,f) salt concentration during constant current charging (a,c,e) and
constant voltage discharging (b,d,f).

Figure 4. Cyclic voltammetry profiles for scan rates a) υ = 0.01 V · s−1 and b) υ = 1 V · s−1.
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Figure 5. Electrochemical impedance spectroscopy profiles for frequencies a) f = 0.001 s−1 and b) f = 1 s−1.

Figure 6. Galvanostatic cycling profiles for currents a) I = 10 A and b) I = 200 A.

Figure 7. a) Capacitance as a function of frequency obtained from Cyclic Voltammetry and Electrochemical Impedance Spectroscopy simulations. b) Capacitance
as a function of current from Galvanostatic Cycling simulations.

Figure 8. (a) The real part of the complex capacitance as a function of frequency for different values of electrode thickness Le . (b) The time constant as a function
electrode thickness as predicted by different methods: Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and Galvanostatic Cycling (GC).
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Figure 9. (a) Total capacitance as a function of frequency for different solvents: acetonitrile (AN), γ-butyrolactone (γ-BL) and propylene carbonate (PC). The
experimental data represented by symbols were taken from Lust (2004).8 The parameters of the simulations were the following: Le = 100 μm, a = 8 ·107 m2/m3,
S = 6.45 · 10−3 m2, κPC = 0.057 S · m−1, κγ−BL = 0.29 S · m−1, κAN = 0.64 S · m−1, σPC = 0.23 S · m−1, σγ−BL = 0.58 S · m−1, σAN = 2.7 S · m−1 and
� = 1.15. (b) Time constant as a function of solvent conductivity (free solution) for base case parameters and for different values of porosity ε.

as the volume of the electrode is increased, the capacitance grows
proportionally. Both these effects can be seen in the EIS simulation
results for different values of Le in Figure 8a. As a consequence,
the time constant τ0 increases with the square of Le and as shown
in Figure 8b this scaling is predicted similarly by different methods.
Unlike the scaling, the value of time constant for a given electrode
thickness varies significantly with the used method and the difference
is as large as 26% between Electrochemical Impedance Spectroscopy
and Galvanostatic Cycling.

These discrepancies can be ascribed to the rather different oper-
ation conditions of the methods. In EIS the voltage window is very
narrow and changes in the input signal are small leading to small
concentration changes and the smallest predicted time constant. On
the other hand CV and GC as dynamic methods cover much larger
voltage ranges leading to larger changes in concentration and thus
conductivity and this results in the larger values of τ0 compared to
EIS. Moreover, in GC, the current direction is switched abruptly from
positive to negative and vice versa, which leads to larger losses in the
system and even further increase of the time constant when compared
to CV.

Effect of electrolyte conductivity.—The conductivity of the elec-
trolyte κ is one of the determining factors for the ionic resistance
of the cell. The choice of solvent has a large effect on κ due to
the solvent permittivity and transport properties. EIS simulations for
three different solvents were performed and the results are shown in

Figure 9a, where they are compared to the experimental data of Lust
et al. (2004).8 The parameters of the model were chosen to resemble
the conditions of the experiments and only those that are different
from the base case are listed in the figure caption. It can be seen that
for larger conductivity the curves shift to higher values of frequency
and there is a good agreement between the model predictions and
experimental results.

To further generalize this important result, the dependence of the
time constant on the ionic conductivity is depicted in Figure 9b. For
low values of κ0, it results in a straight decreasing line in the double
logarithmic plot and because the slope of the line is equal to -1, there
is clearly an inverse proportionality between τ and κ0. The effect
of porosity in the same figure is not negligible, but relatively small
compared to the effect of conductivity. For larger values of the ionic
conductivity, all the curves reach a plateau and do not decrease further.
This is due to the fact that the solid-phase conductivity σ is relatively
small and the resistance of the solid phase becomes determining for
the cell when κ0 is large.

Effect of separator properties.—The separator acts as a resistance
for the ionic current in the cell preventing the electrodes from contact-
ing while allowing the ions to pass through. As such, it is desirable
that the ionic resistance of the separator is the smallest possible. The
results of EIS simulations for different values of separator thickness
are shown in Figure 10a and the predictions are compared with the
experimental results of Tõnurist et al. (2005).10 The parameters of the

Figure 10. (a) Imaginary part of the complex capacitance as a function of frequency for different values of the separator thickness. The experimental data
represented by symbols were taken from Tõnurist (2009).10 The parameters of the simulations were the following: Le = 120 μm, aCD = 72.4 · 107 F/m3,
S = 0.2 · 10−3 m2, κAN = 1.04 S · m−1, c0 = 1000 mol · m−3, � = �s = 1.29 and εs = 0.42. (b) Time constant as a function of separator thickness for base case
parameters and for different values of separator porosity εs .

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 155.198.12.147Downloaded on 2016-09-14 to IP 

http://ecsdl.org/site/terms_use


A2484 Journal of The Electrochemical Society, 163 (10) A2475-A2487 (2016)

Figure 11. Current as a function of voltage from Cyclic Voltammetry simulations for different EDL models. The scan rates were: a) υ = 1 · 10−4 V · s−1 and
b) υ = 0.1 V · s−1.

simulations are given in the caption and they were chosen to resemble
the experimental conditions as closely as possible. The only adjusted
parameter was the tortuosity which was assumed the same in electrode
and in separator and was equal to � = �s = 1.29.

The results are further generalized in Figure 10b where the de-
pendence of the time constant on the separator thickness for different
values of separator porosity are plotted. It can be seen that the depen-
dence results in straight lines, which corresponds with the fact that
the separator acts as an additional ionic resistance. As expected, the
increasing separator porosity reduces the time constant by lowering
the separator resistance.

Models of electric double layer.—Three different models of
the EDL capacitance were used to demonstrate different effects:
the Helmholtz model (constant capacitance), Gouy-Chapman-Stern
model (potential-dependent) and Bikerman model (ion crowding).
The results of CV simulations with different EDL models are shown
in Figure 11 for two different values of scan rate and voltage window
between 0 and 1.4 volts. In this voltage range and for low scan rate
(Figure 11a), there are clear differences between the predictions of
the different models, namely, the increase of capacitance between 0
and 0.4 volts predicted by the GCS model and the gradual decrease of
capacitance with increasing voltage predicted by the Bikerman model.
With increasing scan rate (see Figure 11b) these differences become
blurred by the transport limitation effects discussed in previous sec-
tions.

This effect is reflected in the dependence of capacitance on scan
rate for different EDL models presented in Figure 12. It shows that

Figure 12. Capacitance as a function of scan rate for different models of EDL
capacitance.

while the low-frequency capacitance is predicted differently by each
of the models, the high-frequency decreace of capacitance remains
almost unchanged.

Although it is clear that different physical phenomena represented
by the three different EDL capacitance models affect the supercapac-
itor behavior in the region around zero volts, commonly used devices
rarely operate under these conditions. However, in the voltage win-
dow between 1.4 and 2.8 volts, which is typical for the operation of
supercapacitors and was also used in most of this work, all the EDL
capacitance models provide constant (or nearly constant for the Biker-
man model) value of capacitance (also apparent in Figure 11a). While
the Helmholtz and GCS models agree in the value of capacitance for
high voltages, the Bkerman model predicts much smaller values. This
is probably caused by the crowding effect, which is very strong for
the concentrated salt considered in this work. Nevertheless, the actual
value of the EDL capacitance is usually a fitting parameter for models
on the device-scale. Therefore, the most important conclusion of this
analysis is that even when taking into account various phenomena
affecting the capacitance of a planar EDL, there is only a very small
difference between the predictions of the commonly used EDL mod-
els in the voltage range typically used in commercial devices. The
constant capacitance was assumed for all studies in this work except
for this section. Although the use of the constant capacitance model is
well justified for our case of high salt concentration (i.e., thin EDL),
different approaches are needed when the diffuse part of the EDL
is important. Particularly, the difference between ion adsorption and
salt adsorption becomes more pronounced and it needs to be taken
into account. A framework for the modelling of this phenomenon was
introduced by Biesheuvel and Bazant (2010).18

Experimentally, the capacitance is observed to be dependent on
the cell potential even in the aforementioned typical voltage range.1,30

However, this effect is highly dependent on the specific system un-
der consideration and clearly it cannot be easily described using the
commonly used EDL models. More elaborate approaches such as the
molecular dynamics are necessary to explain these phenomena.

Effect of mesopores.—The multi-scale model allows us to treat
separately the transport of ions between the carbon particles, i.e., in
macro-pores and inside of these particles, i.e., in meso-pores. With
this approach, it is possible to identify the limiting factors for given
parameters. In Figure 13, the time constant obtained from EIS simula-
tions is plotted as a function of the particle radius for different ratios of
macro- to meso-porosity, while the total porosity was the same for all
the simulations. Clearly, there is a certain threshold value of Rp below
which the limitation of the transport inside the particles is negligible.
This threshold value is smaller the smaller is the meso-porosity due to
the fact that εmes effectively reduces the diffusion coefficient and con-
ductivity inside the particles. Similarly, the value of τ0 at the plateau
for small Rp is reduced for larger εmac, which is entirely the same
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Figure 13. Time constant as a function of the carbon particle radius for dif-
ferent ratios of the macropore porostiy εmac and porosity of the particles εmes .

effect as in Figure 9b. Note that the tortuosity in the particles �mes

was much larger than the tortuosity of the inter-particle space �mac

for all simulations. Reversing their ratio would increase the threshold
value of Rp even further. Furthermore, the values of Rp larger than
the electrode thickness obviously do not make physical sense, but the
comparison was made to compare the characteristic times and to show
the region where the resistance of meso-pores may be important.

An interesting effect related to the changes of the concentration
was observed in CV simulations using the multi-scale model. While
in a typical CV simulation using the 1D model the maximum con-
centration change in the system was approx. 20%, the concentration
in particles decreased nearly to zero for some combinations of pa-
rameters when using the multi-scale model and this led to significant
salt depletion. This effect is caused by the decoupling of the space
with relatively large volume and small surface area (macro-pores) and
the pores with small volume and large surface area (meso-pores) and
it cannot therefore be observed in the lumped 1D model. The effect
was not observed in the EIS simulations due to the small change in
voltage.

Although the transport inside the particles, i.e., in mesopores,
might be a limiting factor in some cases, it is always important to
see the whole picture and compare the characteristic times of all phe-
nomena in the system. Based on the presented results, we suggest that
for typical parameters of EDLCs (Rp in the order of micrometers) the
main source of limitation originates from the transport on the scale
of the whole electrode, i.e., in the macropores between the carbon
particles. The meso- and micropores do not limit the high-frequency

Figure 15. Comparison of the time constant predicted by Equation 56 with the
time constant obtained by the complex model using EIS from the parametric
studies of Le , κ0, Ls , ε and εs .

behavior, although they carry the majority of the surface area and thus
capacity of the cell.

Comparison of models.—Predictions of different models are com-
pared in Figure 14 in the Nyquist plot of capacitance and in the plot
of frequency-dependent real capacitance. The RC circuit model as
the most idealized provides a symmetric plot in the C Im−CRe plot,
while the model used in this work and the de Levie model predict
curves that are deformed. This is due to the fact that they both take
into account the spatial distribution of potential in the electrodes and
separator. On the other hand the de Levie model neglects the concen-
tration changes and the resistance in the solid phase. From the results
in Figure 14, the RC circuit model and the de Levie model can be
viewed as limiting cases, while the prediction of the more complex
model lies in between. On the other hand, the prediction of Equa-
tion 54, which was derived from the step-change of voltage in the
RC circuit, agrees with the results of the complex model remarkably
well.

The accuracy of the value of τ0 predicted by Equation 56 is assessed
in Figure 15 by the comparison to the predictions of the complex
model for the parametric studies of Le, κ0, Ls, ε and εs. A straight
line in this plot relating the two predictions corresponds to a perfect
agreement. Although part of the points lie well below the straight line,
it is possible to say that the prediction of Equation 56 agrees well with
the results of the complex model in terms of both the scaling and
the absolute values. Given the relative simplicity of Equation 56, it

Figure 14. (a) Nyquist plot of complex capacitance and (b) the real capacitance as a function of frequency as predicted by different models.
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provides a good tool for the quick evaluation of the time constant for
supercapacitors.

Conclusions

A dynamic multi-scale model of an Electric Double Layer Capac-
itor (EDLC) was developed and used for the evaluation of the EDLC
performance. The performance was described by the time constant τ0,
which characterizes the decrease of the capacitance at high frequen-
cies. In an agreement with experimental studies, the time constant
was shown to increase with increasing thickness of the electrodes and
separator leading to a poorer performance. On the other hand, τ0 de-
creased with increasing ionic conductivity of the electrolyte, but only
until the point, where the resistance of the solid phase (i.e., the carbon
electrode) became important. The assumption of capacitance indepen-
dent of voltage was shown to be well justified unless the cell was close
to its total discharge, at least as predicted by standard double-layer
capacitance models. The resistance of the meso-pores inside the car-

bon particles was demonstrated to be negligible for the typical sizes
of particles around one micrometer. On the other hand, when the volt-
age window was large, salt depletion was observed in the meso-pores
leading to poorer performance. To the best of our knowledge, such
findings obtained with a physics-based model are presented for the
first time. Finally, a generalized equation was derived that is able to
reproduce the results and trends predicted by the complex model with
reasonable accuracy. As such, the models presented in this work can
serve both for a quick evaluation of the performance of new devices
and for thorough inspection of more complex phenomena taking place
in supercapacitors.
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List of Symbols and Parameter Values

Quantity Value Unit Name Reference

Le 50 · 10−6 m Electrode thickness 13
Ls 25 · 10−6 m Separator thickness 13
ε 0.67 - Electrode porosity (total) 13
εmac 0.36 - Electrode porosity (macro-pores) Random close packing of spheres
εmes ε − εmac - Particle porosity (meso-pores) Definition
εs 0.6 - Separator porosity 13
� 2.3 - Electrode tortuosity (total) 13
�mac 1.40 - Electrode tortuosity (macro-pores) 31
�mes 2.6 - Electrode tortuosity (meso-pores) Assumed
�s 1.29 - Separator tortuosity 13
a 3.89 · 107 m2 · m−3 Specific surface area (total) Assumed to match13

amac
3(1−εmac)

Rp
m2 · m−3 Specific surface area (macro-pores) Packed spheres

ames a − ames m2 · m−3 Specific surface area (meso-pores) Definition
S 2.747 m2 Cross section area 25
D0 3.5 · 10−11 m2 · s−1 Diffusion coefficient (free solution) 13
σ 0.0521 S · m−1 Solid-phase conductivity 13
εr 36.6 - Relative permittivity Acetonitrile (Sigma Aldrich)
c0 930 mol · m−3 Initial concentration 13
T 298 K Temperature 13
λS 0.3 · 10−9 m Thickness of Stern layer Approx. half of bare ion size for

NEt4BF4 in acetonitrile27

asol 1.2 · 10−9 m Effective solvated ion diameter Approx. size of solvated ion for
NEt4BF4 in acetonitrile27

Umin 1.4 V Minimum voltage 13
Umax 2.8 V Maximum voltage 13
Ufix 2.1 V Fixed voltage Assumed
δU 5 · 10−3 V Voltage amplitude Assumed
Rp m Carbon particle radius
κ S · m−1 Ionic conductivity
F C · mol−1 Faraday constant
kB J · K−1 Boltzmann constant
e C Elementary charge
NA mol−1 Avogadro constant
R J · K−1 · mol−1 Gas constant
ε0 F · m−1 Vacuum permittivity
ν V · s−1 Scan rate
f s−1 frequency
U V Voltage
I A Current
�1 V Potential in solid phase
�2 V Potential in electrolyte
c mol · m−3 Concentration of electrolyte
�p V Potential in electrolyte (meso-pores)
cp mol · m−3 Concentration of electrolyte (meso-pores)
CD F · m−2 Differential capacitance
τ0 s Time constant
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