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Abstract

We investigate the scalar-wave resonances of systems composed of identical Neumann-type
inclusions arranged periodically around a circular ring. Drawing on natural similarities with the
undamped Rayleigh–Bloch waves supported by infinite linear arrays, we deduce asymptotically
the exponentially small radiative damping in the limit where the ring radius is large relative to
the periodicity. In our asymptotic approach, locally linear Rayleigh–Bloch waves that attenuate
exponentially away from the ring are matched to a ring-scale WKB-type wave field. The latter
provides a descriptive physical picture of how the mode energy is transferred via tunnelling to
a circular evanescent-to-propagating transition region a finite distance away from the ring, from
where radiative grazing rays emanate to the far field. Excluding the zeroth-order standing-wave
modes, the position of the transition circle bifurcates with respect to clockwise and anti-clockwise
contributions, resulting in striking spiral wavefronts.

1 Introduction

Sharp resonances associated with electromagnetic whispering gallery modes have led to their applica-
tion in a wide variety of fields [1, 2]: resonators with circular or spherical boundaries are commonly
employed as nano-scale sensors [3, 4]; filters [5]; components in lasers [6–9]; and cavities for sensitive
experiments into non-linear optics [10], opto-mechanical coupling [11], and other effects. Further to
this, they can be used to couple energy between optical fibres or waveguides, resulting in frequency-
dependent filters, optical switches and logic gates, designating them as fundamental building blocks of
integrated photonics [12]. There are however drawbacks in terms of materials available for manufac-
ture, limitations due to surface roughness, and maximum attainable Q-factors [13]. Given the breadth
of application, there is clear motivation to consider alternative approaches to confining wave energy.

A closely-related strategy for designing a resonator is to exploit the fact that, for suitable material
contrast, modes are strongly confined within a straight waveguide of one medium embedded within
another. Deforming such a structure into a closed ring, and provided that the radius of curvature
is large compared with the operating wavelength, allows guided waves to precess around the ring
with little radiation loss. This interpretation explains the excellent performance of dielectric ring
resonators [14] and optical ring waveguide resonators [15], and detailed theory supporting this is
provided by an extensive literature on curved waveguides [16,17].

As an alternative to using curved waveguides, we can draw upon the extensive literature on array-
guided waves, and use this as the starting point for a structured-ring resonator. It is well known that
linear arrays of inclusions support strongly confined Rayleigh–Bloch waves, and these have application
in electromagnetism such as Yagi–Uda antennas [18, 19], in edge waves for coastlines [20], as spoof
surface plasmons [21], and in elasticity [22, 23]. They have also attracted mathematical attention in
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Figure 1.1: Solutions of the Rayleigh–Bloch eigenvalue problem for two different linear arrays of homogeneous
Neumann inclusions of period 2l. The red dispersion curve in (a) is for an array of slit-like inclusions of height
1.2l, and the blue curves are for C-shaped resonators formed of two concentric 320◦ sectors with radii 0.8l and
0.6l. Frames (b) and (c) show the standing waves at βl = π/2 for the dispersion branches ending at Ω ≈ 0.94
and Ω ≈ 0.65 respectively.

terms of uniqueness and existence issues [24, 25] as well as modelling studies [26, 27]. The ubiquitous
nature of Rayleigh-Bloch waves suggests that structured-ring resonators based on curved periodic
arrays would be applicable to a wide variety of physical settings. Further motivation to investigate
such systems comes from studies of highly-conducting disks periodically decorated with dielectric-filled
grooves, investigated in the context of spoof surface plasmons [28,29], which similarly support localised
resonances.

In this article we consider the scalar Helmholtz equation and arrays of Neumann inclusions for which
Rayleigh–Bloch waves can exist [30]. For an infinite linear array, the frequencies of Bloch-periodic
eigenfunctions lie on dispersion branches beneath the free-space light (sound) cone, as in figure 1.1(a),
and hence the fields are strongly confined to the structure as they are unable to radiate energy;
examples of such highly-confined Rayleigh–Bloch waves, computed numerically using finite element
software [31], are illustrated in figure 1.1(b,c). We investigate resonances of circular rings created by
the deformation of these linear arrays; three such resonances for a ring of slit-like inclusions are shown
in figure 1.2. These geometries are a subset of those recently considered by two of the authors [32],
in which a multiple scale asymptotic method was developed to investigate resonances with wide-angle
modulation. Our aim here is to investigate analytically how the radiation damping, characterised by
the Q-factor, of these resonances depends on the geometry and number of inclusions in the ring.

Asymptotic analysis provides a natural framework within which to analyse the radiation loss. We
consider the limit where the number of inclusions N is large and define ε = π/N � 1, with the
interpretation of ε being half of the angular period of the array, which will later be used as the
asymptotic small parameter. We expect to find resonant modes that, in the vicinity of the struc-
tured ring, and to a leading-order approximation, coincide with the undamped Rayleigh–Bloch modes
supported by the corresponding infinite linear-array configuration. Since Rayleigh–Bloch modes typ-
ically occur at wavelengths comparable to the array periodicity, and since the latter periodicity is
assumed small compared with the ring radius, on the scale of the ring radius we are necessarily in
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Figure 1.2: Resonances of a unit ring of 60 slit-like homogeneous Neumann inclusions of length 1.2π/60, for
different values of the mode number m.

the ray-optics regime of high-frequency wave propagation. Accordingly, the problem separates into an
inner region local to the ring that is then matched to an outer region where a solution in the form
of a Wentzel−Kramers−Brillouin (WKB) ansatz is sought; the WKB method is well-known in the
asymptotic and physics communities [33,34], and specifically has been utilised in the related problem
of a bent waveguide [35]. The application of the method here is somewhat nonstandard, with the
short-scale cyclic quantisation dictated by Bloch’s theorem leading to unfamiliar terms and a bifurca-
tion — captured with a strained-coordinates ansatz — of the ‘turning-point’ problem with respect to
contributions to the wave field propagating in the clockwise and anti-clockwise directions.

The paper is structured as follows. In section 2 we formulate the eigenvalue problem governing the
resonant modes of a structured ring, with the main goal set out in section 3 to analyse the exponentially
small radiation damping. A detailed asymptotic analysis is carried out in section 4, and then employed
in sections 5 and 6, respectively, towards deriving explicit expressions for the radiation loss and field,
the latter explaining spiral wavefields seen in numerical simulations. In section 7, we briefly discuss
an intermediate-asymptotics regime in which the radiation damping is algebraically small and our
asymptotic theory breaks down, and finally we draw together concluding remarks in section 8.

2 Formulation

We consider an array of N identical bounded inclusions located periodically around a circular ring
of radius r0; defining ε = π/N as half of the angular period of the array provides an intuitive small
parameter. Dimensionless Cartesian co-ordinates (x, y) are defined with respect to the centre of the
ring such that the radius is scaled to 1, and the associated polar co-ordinates are (r, φ). A second
set of Cartesian co-ordinates (x̃, ỹ), which are scaled and shifted, are defined via x = 1 + εx̃, y = εỹ,
and using these we define the boundary ∂C of an arbitrarily-chosen inclusion C to satisfy the equation
f(x̃, ỹ) = 0. An elementary cell S is chosen as the infinite wedge |φ| < ε, which we assume contains
only the inclusion C, as shown in figure 2.1, and given the inherent periodicity, along with Bloch’s
theorem, solutions in this wedge-shaped cell can be used to generate the full field everywhere.

Assuming time dependence exp(−iωt), we seek radiating solutions of the planar Helmholtz eigenvalue
problem in S: (

ε2∇2 + Ω2
)
u(x) = 0, (2.1)

where Ω = εωr0/c is the dimensionless frequency, c the wave speed, and the Laplace operator is defined
in terms of the dimensionless co-ordinates (x, y). The homogeneous Neumann condition

∂u

∂n
= 0 (2.2)
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Figure 2.1: Geometry of the problem in the case of square inclusions, showing the elementary cell S.

is imposed on the inclusion boundary ∂C, along with angular quasi-periodicity across the cell:

u
∣∣
φ=ε

= e2iβu
∣∣
φ=−ε,

∂u

∂φ

∣∣∣∣
φ=ε

= e2iβ
∂u

∂φ

∣∣∣∣
φ=−ε

, (2.3)

where
β =

π

2
− εm (2.4)

is required by cyclic continuity for m ∈ Z.

3 Exponentially small curvature-induced damping

Resonances of open systems, sometimes referred to as quasi-normal modes [36], are characterised by
complex eigenfrequencies. A critical figure of merit, that emphasises how such solutions correspond to
physical, time-dependent fields, is the Q-factor, given by

Q-factor ≡ maximum energy stored in cycle

energy radiated per radian of cycle
∼ Re(ω)

|2 Im(ω)| , (3.1)

where the two expressions coincide in the prevalent limit Im(ω)/Re(ω)→ 0 [37].

In this paper we set out to analyse the limiting Q-factor that, given in terms of the dimensionless
frequency by

Q = Re(Ω)/|2 Im(Ω)|, (3.2)

for resonances governed by the eigenvalue problem of section 2, in the asymptotic limit ε→ 0, and as a
function of the inclusion geometry and the mode number m. The asymptotic smallness of Im(Ω)/Re(Ω)

4



r = 1
r = rT

Figure 3.1: Illustration of the radial field dependence on the interior and exterior of the ring, where the
dotted arrows represent evanescent fields decaying in the directions indicated. As r → 1, the components of
the field decaying toward the inclusion are exponentially smaller than those decaying away from the inclusion.

in this limit will provide a posteriori justification for definition (3.2). In fact, for moderate m we shall
actually find Im(Ω) to be exponentially small in ε, with Re(Ω) of course approaching the corresponding
Rayleigh–Bloch frequency; the limiting Q-factor, Q, is accordingly exponentially large. To help guide
the asymptotic analysis of the next section, it is useful to intuitively describe the physical mechanism
for curvature-induced radiation loss. Whereas the essential physics are akin to curved wave guides and
micro-ring resonators, here the short-scale cyclic periodicity and particularly the ε-quantisation in the
Bloch conditions (2.3) modifies the traditional physical picture.

For a Rayleigh–Bloch wave guided by a linear array of inclusions, the wave field attenuation transverse
to the array is exponential. Since for ε� 1 the ring is only slightly curved relative to the linear array,
it is plausible to think this is also the case for a structured ring. However, for a finite system we expect
outward radiation of energy, and hence at some larger radius the field must propagate energy and
accordingly attenuate algebraically in the radial direction (see Fig. 3.1). The exponential smallness of
the outward radiation is essentially determined by the radial ‘tunnelling’ distance from the structured
ring over which the wave field remains evanescent. We can estimate this distance by envisaging the
unit cell S as a ‘virtual’ waveguide whose O(ε) thickness slowly grows linearly with r, with boundary
conditions that are anti-periodic to leading order as deduced from (2.3) and (2.4). The evanescent
field attenuating away from the inclusion excites the most slowly-decaying modes of this waveguide,
and considering the waveguide to be locally straight, one readily finds an approximate cut-off radius
rT = π/(2Ω0), where Ω0 denotes the Rayleigh–Bloch frequency.

Curvature-induced loss can alternatively be understood with the help of a conformal mapping. A clas-
sical technique for analysing curved waveguides is to map the waveguide and its surrounding into an
auxiliary plane where the waveguide is straight, with the consequence of distorting the spatial distribu-
tion of the material index [16]. While it would be technically difficult to directly apply this technique for
the inclusion-ring geometry, for the present qualitative discussion it is sufficient to consider the mapping
of the region r− 1� O(ε) external to the ring, where the wave field is governed by the constant-index
Helmholtz equation (2.1) (see Fig. 3.2). Defining the complex variable z = x + iy = r exp(iφ), and
the auxiliary complex variable ζ = u + iv, the mapping ζ = iLog(z) = i ln r − φ, where −π < φ < π,
takes the physical domain r > 1 to the semi-infinite strip |u| < π, v > 0. Writing u(x, y) = w(u, v), it
is readily verified that the Helmholtz equation (2.1) transforms to

∂2w

∂u2
+
∂2w

∂v2
+ [r(v)Ω/ε]2w = 0, (3.3)

where r(v) = exp(v). Note that instead of choosing a specific branch of the logarithm we can consider
a mapping to the entire half-plane v > 0, with the transformed wave field 2π periodic as a function of
u; the latter periodicity condition is a manifestation of the cyclic quantisation of the allowed linear-
array Rayleigh–Bloch frequency. Eq. (3.3) shows that in the transformed plane the effective index is
no longer homogeneous, but grows with v; thus the evanescent wave associated with the Rayleigh–
Bloch wave attenuates into a material whose index increases until eventually the wave field becomes
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Figure 3.2: Conformal mapping of the domain external to the curved ring to a Cartesian semi-infinite strip.
In the transformed plane, the Rayleigh–Bloch wave guided along the horizontal axis transversely attenuates
evanescently into a material whose effective index grows with v = ln r; at r ≈ rT = π/(2Ω) the wave field
begins to propagate.

leaky (positioning a high-index material in the vicinity of an interface supporting surface waves is in
fact a well-known experimental technique for phase-matching bulk and surface waves, see Ref. [38]).
Specifically, for r = O(1) a leading-order ray-optics approximation implies |k|2 ≈ (rΩ)2/ε2, where k
denotes a normalised wave vector in the transformed plane. But the Bloch conditions (2.3) suggest a
leading-order lower bound, ε−1π/2, on the projection of k in the direction of the u axis. Accordingly,
the propagation requirement of a real wave vector yields, once again, r > π/(2Ω0).

More accurately, noting that (3.3) is separable, and given the Bloch conditions (2.3), we can write
w = exp[i(∓π/2 + εm)u/ε]W±[v(r)] plus orthogonal terms of higher azimuthal order. Substitution
into (3.3) shows that

ε2
d2W±

dv2
+
[
r2Ω2 − (±π/2− εm)2

]
W± = 0. (3.4)

Assuming the expansion Ω ∼ Ω0 + εΩ1 +O(ε2), this lowest-order mode is radially propagating if

r >
π

2Ω0
∓ ε m

Ω0
− επΩ1

2Ω2
0

+O(ε2); (3.5)

higher-order azimuthal components ‘turn-on’ at larger distances. Of course the same conclusion can
be deduced by an analogous separation of variables in polar coordinates in the context of the above-
discussed wedge-shaped waveguide. The more accurate estimate (3.5) suggests that the turning point
bifurcates, slightly, with respect to the wave-field components propagating clockwise and anticlockwise,
the relative strength of these contributions being dictated by the evanescent tail of the quasi-guided
Rayleigh–Bloch waves along the ring, and hence by the geometry of the inclusions. Notwithstanding
the smallness of this bifurcation we shall find it important when calculating the wave field and the
exponentially small damping to leading order.

4 Asymptotic analysis

4.1 Inner region

Assuming that the inclusions are contained within an O(ε) annulus around the ring r = 1, we define
shifted, scaled polar co-ordinates (R, θ) inside the cell via the relations r = 1 + εR and φ = εθ, giving
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rise to an inner region in which R, θ = O(1). In this region we seek an inner expansion u(x) = Φ(R, θ)
that satisfies (

∂2

∂R2
+

ε

1 + εR

∂

∂R
+

1

(1 + εR)2
∂2

∂θ2
+ Ω2

)
Φ(R, θ) = 0, (4.1)

with quasi-periodicity conditions from (2.3), expanded as

Φ(R, 1) = (−1 + 2iεm+ . . . )Φ(R,−1),

∂Φ

∂θ
(R, 1) = (−1 + 2iεm+ . . . )

∂Φ

∂θ
(R,−1),

(4.2)

and Φ(R, θ) decaying as R → ±∞. As for the Neumann condition (2.2), we note that the mapping
from Cartesian to polar co-ordinates results in an asymptotically small distortion of the inclusion C,
as illustrated in figure 4.1(b). Consequently, applying (2.2) generally entails deriving asymptotically
equivalent conditions on the ‘undeformed’ boundary f(R, θ) = 0.

x̃

ỹ

(a) (b)

R

θ

θ = 1

θ = −1

ỹ = ỹ0 + x̃ tan ε

ỹ = −ỹ0 − x̃ tan ε

Figure 4.1: Schematic of the inner region viewed in (a) shifted, scaled Cartesian co-ordinates and (b) shifted,
scaled polar co-ordinates illustrated for the case of a square inclusion. The inclusion boundary ∂C is defined
in Cartesian co-ordinates by f(x̃, ỹ) = 0, and we have defined ỹ0 = (1/ε) tan ε.

The forms of (4.1) and (4.2) lead us to pose an ansatz of the form

Φ(R, θ) ∼ Φ0(R, θ) + εΦ1(R, θ) + . . . , Ω ∼ Ω0 + εΩ1 + . . . , (4.3)

which yields an eigenvalue problem for the leading order terms:(
∂2

∂R2
+

∂2

∂θ2
+ Ω2

0

)
Φ0(R, θ) = 0, (4.4)

subject to the anti-periodic boundary conditions

Φ0(R, 1) = −Φ0(R,−1),
∂Φ0

∂θ
(R, 1) = −∂Φ0

∂θ
(R,−1), (4.5)

and the homogeneous Neumann condition

∂Φ0

∂N
= 0 (4.6)

on the nominal boundary f(R, θ) = 0, where the derivative is in the direction of the normal N to this
boundary. The decay condition then identifies the solution as a standing Rayleigh–Bloch wave for the
linear array (see figure 4.2), and Ω0 ∈ R is the corresponding eigenfrequency.
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Figure 4.2: Leading order inner expansion Φ0(R, θ) for a square inclusion of side 1.3ε, which in these co-
ordinates is identical to a standing Rayleigh–Bloch wave for the linear array.

In the limit R→∞, the solution Φ0(R, θ) is comprised of a linear combination of evanescent waveguide-
type modes. These are separated in magnitude by exponential order and hence to leading exponential
order only the most slowly-decaying one needs to be considered for matching. Assuming Φ0(R, θ) is
chosen to be real, we have

Φ0(R, θ) ∼ A exp

(
−R
√(π

2

)2
− Ω2

0

)
sin
(π

2
θ + α

)
(4.7)

as R → ∞, where the constants α,A ∈ R, along with the eigenfrequency Ω0, are straightforward to
extract from a numerical solution; here we utilise standard finite element solvers to extract these.

In general it is necessary to proceed to the next order in the asymptotic hierarchy to calculate the
frequency correction Ω1, as this term can be shown to affect the leading-order solution in the outer
region. If the undeformed inclusions are fore-aft symmetric, however, Ω1 vanishes as we shall now
show, and hence we do not require any further analysis of the inner problem. To see this, consider
the inner region in Cartesian co-ordinates as shown in figure 4.1(a), assuming that the inclusion is
symmetric about the ỹ-axis. Writing u(x) = w(x̃, ỹ) in this region, we have(

∂2

∂x̃2
+

∂2

∂ỹ2
+ Ω2

)
w(x̃, ỹ) = 0, (4.8)

subject to the homogeneous Neumann condition on f(x̃, ỹ) = 0, attenuation as x̃ → ±∞, and quasi-
periodicity across the domain. Due to the symmetry of the inclusion, taking ε → −ε is equivalent
to a reflection of the geometry in the ỹ-axis, along with complex conjugation of the Bloch factor
appearing in the boundary conditions. Under this transformation, the inner solution is thus given by
w̄(−x̃, ỹ), and the corresponding frequency is Ω̄, where the bar denotes quantities associated with the
corresponding adjoint problem. As we shall see, the imaginary part of the frequency is exponentially
small with respect to ε, so we deduce that the substitution ε→ −ε has no effect on the eigenfrequency
Ω to all algebraic orders in ε. With this in mind, posing the expansion Ω ∼ Ω0 + εΩ1 + . . . leads us
to conclude that Ω1 = 0. From hereon we will restrict ourselves to fore-aft symmetric inclusions so
that this is guaranteed to be the case. We note that for an inclusion of arbitrary shape the frequency
correction Ω1 can be calculated by deriving a solvability condition on the O(ε) inner-region problem,
which involves an altered Neumann boundary condition as provided by appendix A of [39].

4.2 Outer region

We now turn our attention to the outer region, which lies exterior to the ring and in which r−1 = O(1).
In this region, we define the field u(x) = U(r, θ), which satisfies the equation
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(
ε2
∂2

∂r2
+ ε2

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+ Ω2

)
U(r, θ) = 0, (4.9)

subject to quasi-periodicity,

U(r, 1) = (−1 + 2iεm+ . . . )U(r,−1),

∂U

∂θ
(r, 1) = (−1 + 2iεm+ . . . )

∂U

∂θ
(r,−1),

(4.10)

and matching with Φ(R, θ) as r → 1. We seek a general solution using the WKB ansatz:

U(r, θ) ∼ eiϕ(r)/ε (U0(r, θ) + εU1(r, θ) + . . . ) . (4.11)

The resulting leading order problem is given by(
∂2

∂θ2
+ λ2

)
U0(r, θ) = 0, (4.12)

where

λ2 = r2

[
Ω2

0 −
(

dϕ

dr

)2
]
, (4.13)

subject to the anti-periodic boundary conditions

U0(r, 1) = −U0(r,−1),
∂U0

∂θ
(r, 1) = −∂U0

∂θ
(r,−1). (4.14)

This problem has an infinite number of independent solutions corresponding to λ = ±(2n + 1/2)π,
n ∈ Z, but matching with (4.7) implies that only those with λ = ±π/2 appear to leading exponential
order. The corresponding solutions are given by

U0(r, θ) = U0+(r, θ) + U0−(r, θ), (4.15)

where
U0±(r, θ) = F±(r)e±iπθ/2. (4.16)

At the next order, we have the equation(
∂2

∂θ2
+ λ2

)
U1 = −

(
2ir2

dϕ

dr

∂

∂r
+ ir2

d2ϕ

dr2
+ ir

dϕ

dr

)
U0, (4.17)

where the boundary conditions at this order,

U1(r, 1) = −U1(r,−1) + 2imU0(r,−1),

∂U1

∂θ
(r, 1) = −∂U1

∂θ
(r,−1) + 2im

∂U0

∂θ
(r,−1),

(4.18)

depend on the mode number m. For each of the solutions in (4.15) we derive a solvability condition
using the Fredholm alternative: we subtract the product of (4.17) with U0±(r, θ) from the product of
(4.12), written for U0±(r, θ), with U1(r, θ) and integrate over the angular variable θ. After applying
the boundary conditions, we are left with equations for F±(r), given by

r
d

dr

(
F 2
±r

dϕ

dr

)
= ±imπF 2

±, (4.19)

which are straightforward to solve.
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In agreement with the discussion of section 3, we deduce from (4.13) that the phase function ϕ(r)
changes from real to imaginary at a turning-point radius r = rT where

rT ≡
π

2Ω0
, (4.20)

which we know is greater than 1. It follows from (4.20) that if the Rayleigh–Bloch frequency Ω0

is well below the band-edge light-line frequency π/2, the turning point lies in the outer region, i.e.
rT − 1 = O(1). Conversely, our asymptotic analysis breaks down as rT → 1, in a manner briefly
discussed in section 7.

The WKB solution now follows from (4.15) together with the appropriate solutions of (4.19). In the
region 1 < r < rT the field is evanescent, and is comprised of two outward-decaying terms and two
inward-decaying terms:

U(r, θ) ∼
(
r2T − r2

)−1/4[ {U0+(r, θ) + U0−(r, θ)} e−ψ(r)/ε

+ {V0+(r, θ) + V0−(r, θ)} eψ(r)/ε
]
,

(4.21)

where

U0±(r, θ) = B±e
∓mh(r)e±iπθ/2, (4.22)

V0±(r, θ) = C±e
±mh(r)e±iπθ/2, (4.23)

with

ψ(r) = Ω0

∫ r

1

(r2T/v
2 − 1)1/2dv, (4.24)

and

h(r) = rT

∫ r

1

v−2(r2T/v
2 − 1)−1/2dv. (4.25)

In the following section we will find that in a small region near the turning point the inward-decaying
terms in (4.21) are comparable in magnitude to the outward-decaying terms. This means that in the
majority of the evanescent region, including the region in which the inner and outer solutions must
match, the former are exponentially small and can thus be neglected. We then find that the inner limit
of the outward-decaying field matches with the outer limit (4.7) of the leading-order inner expansion,
provided that

B± = ± 1

2i
A(r2T − 1)1/4e±iα. (4.26)

In the region r > rT we have two outward-propagating terms,

U(r, θ) ∼
(
r2 − r2T

)−1/4 {W0+(r, θ) +W0−(r, θ)} eiϕ(r)/ε, (4.27)

where
W0±(r, θ) = D±e

±imp(r)e±iπθ/2, (4.28)

with

ϕ(r) = Ω0

∫ r

rT

(1− r2T/v2)1/2dv, (4.29)

and
p(r) = arctan

{
(r2/r2T − 1)1/2

}
. (4.30)

In the following section we will establish connection formulae that lead to the following expression for
the amplitudes of the exponentially small outgoing waves:

D± = ±2−13/12A(r2T − 1)1/4e−{ψ(rT)±εmh(rT)}/εei(±α−π/4), (4.31)

where the constants α, A were introduced in (4.7).
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4.3 Transition region

The leading order WKB approximation in the outer region suggests a turning point at r = rT. The
standard turning-point analysis of WKB theory leads us to introduce a scaled co-ordinate variable
s = (r−rT)/ε2/3, and then seek an expansion for U(r, θ) whose terms are increments in powers of ε2/3.
Care must be taken, however, as for non-zero m the boundary conditions (4.10) can only be satisfied
if there is also a term at order ε beyond the leading order, which in turn implies that there must be
a term at order ε1/3, and hence our ansatz needs to be adjusted. The reason for the failure has been
set out in section 3: For each of the outward-decaying terms in (4.21), the ‘actual’ turning point is
shifted from rT by an O(ε) distance, and hence a naive expansion about rT leads to a solution that
is not uniformly asymptotic. Based on this understanding, a natural way to proceed is to utilise the
method of strained co-ordinates: appealing to the linearity of the problem we seek a transition region
solution at leading exponential order of the form

U(r, θ) = ε−1/6 {G+(s+, θ) +G−(s−, θ)} , (4.32)

where
G±(s±, θ) ∼ G0±(s±, θ) + ε2/3G1±(s±, θ) + εG2±(s±, θ) + . . . , (4.33)

with two different strained co-ordinates s± defined via the expansions r ∼ rT + ε2/3s± + εr1± + . . . .
The corrections r1± are to be chosen such that the expansions are uniformly asymptotic as ε → 0.
Substituting into equation (4.9) leads to the same problem for G0+ and G0−, consisting of(

∂2

∂θ2
+ r2TΩ2

0

)
G0±(s±, θ) = 0, (4.34)

subject to the anti-periodic boundary conditions

G0±(s±, 1) = −G0±(s±,−1),
∂G0±

∂θ
(s±, 1) = −∂G0±

∂θ
(s±,−1). (4.35)

Its solutions are given by
G0±(s±, θ) = H0±(s±)e±iπθ/2. (4.36)

At the next order, we have(
∂2

∂θ2
+ r2TΩ2

0

)
G1±(s±, θ) =

(
2s±
rT

∂2

∂θ2
− r2T

∂2

∂s2

)
G0(s±, θ) (4.37)

also subject to anti-periodic boundary conditions

G1±(s±, 1) = −G1±(s±,−1),
∂G1±

∂θ
(s±, 1) = −∂G1±

∂θ
(s±,−1). (4.38)

Solvability conditions at this order, derived by a method analogous to that used to derive (4.19), lead
to Airy equations

d2H0±

ds2±
+

2Ω2
0

rT
s±H0± = 0, (4.39)

which have the solutions

H0±(s±) = a±Ai
(
−
(
2Ω2

0/rT
)1/3

s±

)
+ b± Bi

(
−
(
2Ω2

0/rT
)1/3

s±

)
, (4.40)

where Ai, Bi are Airy functions of the first and second kinds respectively. The explicit form of the
strained co-ordinates s± are still to be determined. In order to do so, we proceed to the next order
problem, consisting of(

∂2

∂θ2
+ r2TΩ2

0

)
G2±(s±, θ) =

(
2r1±
rT

∂2

∂θ2
− 2r2TΩ0Ω1

)
G0±(s±, θ), (4.41)
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subject to the m-dependent boundary conditions

G2±(s±, 1) = −G2±(s±,−1) + 2imG0±(s±,−1),

∂G2±

∂θ
(s±, 1) = −∂G2±

∂θ
(s±,−1) + 2im

∂G0±

∂θ
(s±,−1).

(4.42)

The solvability conditions at this order yield

r1± = ∓m/Ω0, (4.43)

which agrees with our preliminary estimate (3.5) for the bifurcation of the turning-point radius.

4.3.1 Connection formulae

By considering intermediate regions of order εν either side of the turning point, where 0 < ν < 2/3,
the WKB solutions (4.21) and (4.27) are matched with the transition region solution (4.40) to leading
order, yielding connection formulae between their respective preceding constants. On the evanescent
side of the turning point, we find

a± = 213/12π1/6Ω
1/2
0 C±e

−{ψ(rT)±εmh(rT)}/ε, (4.44)

b± = 21/12π1/6Ω
1/2
0 B±e

{ψ(rT)±εmh(rT)}/ε, (4.45)

whilst on the propagating side we find

a± = ib±, (4.46)

D± = 2−1/6π−1/6Ω
−1/2
0 eiπ/4b±. (4.47)

Combining these results with (4.26) leads to the expression (4.31) for the amplitudes of the exponen-
tially small outgoing waves. Note also that (4.44), (4.45) and (4.46) together imply that the inward-
decaying terms in (4.21) are exponentially smaller than the outward-decaying terms everywhere in the
evanescent region where rT − r � ε.

5 Radiation loss

In order to calculate the limiting Q-factor of the resonant system, we derive an equation that represents
energy balance in the system; we subtract the product of (2.1) with the complex conjugate of u(x) from
the from the product of u(x) with the complex conjugate of (2.1), and then integrate over a truncated
wedge S̃, which extends to a finite arc r = r̃ in the propagating region. The resulting equation is given
by

ε2
∫
∂S̃

{
ū
∂u

∂r
− u∂ū

∂r

}
dl = −4iΩrΩi

∫
S̃
|u|2 dS. (5.1)

where Ω = Ωr+iΩi. Substituting the leading order outer and inner solutions into the left and right hand
sides respectively, then expanding to leading order in ε, we arrive at the following simple asymptotic
expression:

Ωi ∼
−
(
|D+|2 + |D−|2

)
1∫
−1

∞∫
∞
|Φ0(R, θ)|2 dRdθ

. (5.2)

Substituting (4.31) for the constants D±, and using the definition (3.2), we finally arrive at the result

Q ∼
Ω0

1∫
−1

∞∫
∞
|Φ0(R, θ)|2 dRdθ

25/12(r2T − 1)1/2A2
sech{2mh(rT)}e2ψ(rT)/ε, (5.3)
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Figure 4.3: Dependence of Q on N for a ring of slit-like inclusions of length 1.2ε, corresponding to those in
figure 1.1(b). Symbols are from full finite element simulation, with different symbols used for different values of
m, and solid lines are from the asymptotic formula (5.3). Note that the vertical axis is scaled logarithmically.

where, using (4.24) and (4.25), respectively,

ψ(rT)/Ω0 = rT cosh−1 rT −
√
r2T − 1, h(rT) = ln

(
rT +

√
rT − 1

)
; (5.4)

recall also that rT = π/(2Ω0), and that A is an O(1) constant extracted from the numerical solution
for the inner-region wave field Φ0 [cf. (4.7)]; since Φ0 scales with A, Q is independent of the arbitrary
magnitude of the resonance. Fig. (4.3) shows excellent agreement between (5.3) and finite-element
simulations for a ring of slit-like inclusions.

Formula (5.3) is the main result of this paper. It provides the radiation damping of a structured-ring
resonator, which depends on inclusion shape through Ω0 (or, alternatively, rT) and Φ0, and also on the
mode number m. Crucially, the exponential order of magnitude is determined by the function ψ(rT),
which is plotted in Fig. 5.1 as a function of Ω0. From this plot we can directly infer the increase in
order of magnitude of the Q-factor as the standing-wave Rayleigh–Bloch frequency Ω0 is lowered from
π/2 by an appropriate design of the inclusion shape. Conversely, in the limit Ω0 → π/2, i.e. rT → 1,
we find from (5.4) that ψT attenuates like (rT − 1)3/2, hinting to the breakdown of the exponential
radiation scaling discussed in section 7.

6 Radiation field

We have established that in the asymptotic limit ε → 0, waves with exponentially small amplitudes
are emitted from the cyclic system. Let us consider the radiation field in the whole exterior domain
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Figure 5.1: The factor ψ(rT) in (5.3) determining the exponential largeness of Q, here shown as a function
of the Rayleigh–Bloch frequency Ω0 = π/(2rT)

.

r > rT, φ ∈ [0, 2π], which in terms of the original polar co-ordinates reads as

U ∼ 1

(r2 − r2T)1/4

(
D+e

i{ϕ(r)+εmp(r)+(π
2−εm)φ}/ε

+D−e
i{ϕ(r)−εmp(r)+(−π

2−εm)φ}/ε). (6.1)

Note that the exponents in (6.1) differ from those in (4.27) by a multiplicative phase term exp(−imφ).
This term represents a relative O(ε) perturbation to the asymptotic solution in the outer-region cell
problem, which nevertheless contributes through a cumulative effect at leading order when extended
to the full plane. This term, with which the extended solution appropriately satisfies Bloch’s theorem,
is consistent with the ‘secular’ part of the solution to (4.17) that is forced by the perturbed Bloch
conditions (4.18).

The expression (6.1) describes the superposition of two waves. To find the directions in which they
propagate, for each term we consider the path of steepest descent, along which

dr

dt
r̂ + r

dφ

dt
φ̂ = −f(t)∇

{
ϕ(r)± εmp(r) +

(
±π

2
φ− εm

)
φ
}

(6.2)

for some parameter t and an unknown function f . This leads to a pair of ordinary differential equations
that determine the directions of the rays, given by

dr

dφ
∼ Ω0r

(
r2/r2T − 1

)1/2 ± εmrT (1− r2T/r2)−1/2(
±π2 − εm

) . (6.3)

Let us first consider the case that m = 0, in which case (6.3) reduces to the following pair of simple
equations

dr

dφ
∼ ± r

rT

√
r2 − r2T, (6.4)

whose solutions are given by

φ− φ0 ∼ ±
[
π

2
− arccot

(√
r2 − r2T
rT

)]
. (6.5)
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We observe from figure 6.1 that these equations describe half-lines that are tangent to the circle r = rT,
starting from the point (r, φ) = (rT, φ0).

x

y

rT
(r,�)

�0

�

Figure 6.1: Ray direction for a wave described by first term in (6.1), given by equation (6.5) with the ‘+’
sign. Here γ = π/2 + φ0 − φ.

For m 6= 0, it is straightforward to check that expanding (6.3) to O(ε) leads to the same equation as
making the substitution rT → rT ∓ εm/Ω0 in (6.4) and expanding. To this order, (6.3) is therefore
identical to the equation satisfied by tangent half-lines to the circle r = rT ∓ εm/Ω0, which is the
shifted turning point we found in section 4.3. For m = 0, the wavefronts associated with these rays
are given to order O(ε) by

φ− φ0 ∼ ∓
2

π
ϕ(r), (6.6)

and the adjustment for m 6= 0 is equivalent to making the substitution rT → rT ∓ εm/Ω0 in the
definition of ϕ(r). The resulting field associated with each term in (6.1) has a spiral pattern as shown
in figure 6.2 (as r → ∞, ϕ(r) ∼ Ω0r so asymptotically (6.6) describes a set of Archimedes spirals).
Patterns like those described above have been observed in the study of sound fields induced by rotating
propellors [40,41], in which case the turning-point ring is referred to as the sonic radius.

π/6

7π/6

π/3

4π/3

π/2

3π/2

2π/3

5π/3

5π/6

11π/6

π 0

Figure 6.2: Radiation field associated with the first term in (6.1) for a ring of slit-like inclusions of length
1.2ε. The blue circle is r = 1, the red circle is r = rT, the dashed black lines are rays given by (6.5), and the
solid black curves are wavefronts given by (6.6).
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m = 0 m = 1 m = 2

Figure 6.3: Real part of u(x) in the case of 60 slit-like inclusions of length 1.2ε. The top line shows full
finite-element simulations corresponding to the quasi-modes shown in figure 1.2, but where the colour scale
has been saturated, and the bottom line shows the corresponding radiation fields for r > rT, calculated using
the asymptotic formula (6.1). In each case the colour scale is linear.

The full radiation field is a superposition of the two terms in (6.1), whose opposing ray directions result
in wavefronts that bend and precess in opposite directions to each other. In the anti-periodic case,
the two terms have equal weighting as |D+| = |D−|, resulting in an interference pattern like the one
seen in the left hand column of figure 6.3. For m 6= 0, the factor e∓mh(rT) in (4.31) causes one term
to dominate over the other, so one spiral is clearly distinguishable, as seen in the right two columns in
figure 6.3.

7 Intermediate asymptotics of algebraic radiation loss

The preceding analysis hinges upon the assumption that the Rayleigh–Bloch frequency Ω0 is sufficiently
far below π/2 that the turning point ring is separated from the inner region containing the inclusions
by an O(1) distance. While a detailed analysis of the case where π/2−Ω0 is small is outside the scope
of this paper, we make the following comments. For fixed π/2 − Ω0, and ε = π/N sufficiently small,
we expect our asymptotic analysis to continue to hold to leading order. As N decreases, however, we
expect our asymptotic analysis to break down as the radius ≈ rT of the turning-point ring shrinks
towards the ring of inclusions; as the tunnelling distance vanishes, we anticipate a transition via a
series of intermediate asymptotic limits from exponential to algebraic radiation damping. Recall in
particular that in section 5 we found that the exponential scaling of (5.3) breaks down when (π/2−Ω0)
and (rT−1) become comparable to ε2/3, which corresponds to the limit in which the O(ε2/3) transition
region overlaps with the inner region.
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Figure 7.1: Dependence of Q on N for a ring of circular inclusions of radius 0.8ε for m = 0. The squares
are from a 12-term multipole expansion treatment, the solid line is from the asymptotic formula (5.3), and the
dashed line is an N2 fit.

To demonstrate this, in figure 7.1 we calculate Q for rings of circular holes of radius 0.8ε, for varying
values of N . From the associated Rayleigh–Bloch eigenvalue problem, we calculate Ω0 = 1.321, which
gives rT − 1 = 0.189. As expected, for very large values of N , our asymptotic method captures the
correct behaviour, but as N is decreased (and ε increased), the curve transitions to having algebraic
dependence, with Q = O(N2) for N . 40; note that ε2/3 = (π/40)2/3 ≈ 0.183 is comparable to
rT − 1, in agreement with our above estimate for the breakdown of the exponential regime. As a final
comment, we expect the transition from exponential to algebraic damping to occur sooner for mode
numbers with m 6= 0, as the turning point for one of the terms moves closer to the ring of inclusions;
this is consistent with what is seen in figure 4.3.

8 Concluding remarks

We have analysed the radiating quasi-normal modes of structured-ring resonators in the limit of a
large number of inclusions. The asymptotics lead to a deeper understanding of the physical origin
of the observed phenomena as well as generating the asymptotic formula (5.3) for the exponentially
large Q-factor. The latter is given entirely in terms of properties of the standing-wave Rayleigh–Bloch
modes supported by the corresponding linear array, along with the number of inclusions N and the
prescribed cyclic mode number m; for the design of structured-ring resonators this allows one to directly
harness previous work on Rayleigh–Bloch waves. In particular, our formula explicitly shows how the
exponential asymptotic order of the loss is determined by the separation between the Rayleigh–Bloch
frequency and the light (sound) line.

We have restricted our attention to moderate cyclic mode numbers m, which ensures the resonance
frequency is close to the Rayleigh–Bloch standing-wave frequency, and inclusion shapes for which the
latter frequency is not too close to the light-line crossing at Ω = π/2. As Ω0 → π/2, or with increasing
m, the resonance frequency approaches the light line, and at least one of the turning-point rings shrinks
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towards the ring of inclusions. In the former limit, we demonstrated a transition with increasing N
between algebraic and exponential radiation damping. For large m, there can be a turning-point ring
for r < 1, with a wave bouncing back and forth between the inclusion array and the internal turning
point ring; this has been observed in Ref. [32].

Lastly we emphasise that the regime of interest here is implicitly that of high frequency, or equiv-
alently of short wavelengths commensurate with the array spacing, wherein the existing modes are
locally guided by the ring of inclusions. Our analysis is therefore complementary to the low-frequency
homogenisation approaches recently used for the Faraday cage [39, 42], where the energy of the reso-
nances is stored over the interior of the ring as opposed to being localised to its circumference.
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