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Abstract It is well accepted that cold plasma sourced by Enceladus is ultimately lost to the solar wind,
while the magnetic flux convecting outward with the plasma must return to the inner magnetosphere.
However, whether the interchange or reconnection, or a combination of the two processes is the dominant
mechanism in returning the magnetic flux is still under debate. Initial Cassini observations have shown that
the magnetic flux returns in the form of flux tubes in the inner magnetosphere. Here we investigate those
events with 10 year Cassini magnetometer data and confirm that their magnetic signatures are determined
by the background plasma environments: inside (outside) the plasma disk, the returning magnetic field is
enhanced (depressed) in strength. The distribution, temporal variation, shape, and transportation rate of the
flux tubes are also characterized. The flux tubes break into smaller ones as they convect in. The shape of their
cross section is closer to circular than fingerlike as produced in the simulations based on the interchange
mechanism. In addition, no sudden changes in any flux tube properties can be found at the “boundary”
which has been claimed to separate the reconnection and interchange-dominant regions. On the other hand,
reasonable cold plasma loss rate and outflow velocity can be obtained if the transport rate of the magnetic
flux matches the reconnection rate, which supports reconnection alone as the dominant mechanism in
unloading the cold plasma from the inner magnetosphere and returning the magnetic flux from the tail.

1. Introduction

The rapidly rotating planets, Saturn and Jupiter, both with plasma sources internal to their magnetosphere,
have many similarities in their magnetospheric dynamics. At Saturn, water-group neutrals are ionized after
being released from the plume of Enceladus at 4 RS, forming a plasma source of typical strength 12–250 kg/s
[Bagenal and Delamere, 2011, and references therein]. This plasma is then accelerated to subcorotation by
its magnetic connection to the ionosphere, convects outward, and is shed to the solar wind ultimately. In this
plasma transfer process, the magnetic flux also convects outward. To conserve the total magnetic flux
imposed on the magnetosphere by the planet’s internal dynamo, the outward-convected magnetic flux
has to return to the inner magnetosphere at exactly the same average rate.

At Jupiter, the magnetic flux returns in the form of flux tubes, characterized by intermittent short duration
increases in the magnetic field strength with abrupt onset and recovery in Io’s plasma torus [Russell et al.,
2000, 2001]. Similar flux tubes were detected from the magnetic field data obtained during the very first orbits
of Cassini at Saturn [Andre et al., 2005]. This time, they consisted of both enhancements and depressions in
the field strength, which are referred to as enhanced flux tubes and depressed flux tubes, respectively.
Although themagnetic signatures are opposite, the plasma in both types of flux tubes has the same properties:
a significant density drop in the low-energy plasma population and an increase in plasma temperature due to
the appearance of a hotter plasma population [Andre et al., 2007]. In their study, even with a sparse data set,
the latitudinal dependence of the opposite magnetic signature is evident, i.e., enhanced flux tubes are
detected near the equator, while depressed ones are detected off the equator. The investigation of energy
dispersion of the hot plasma contained in the depressed flux tubes found that the ages of most flux tubes
are less than 10.8 h (Saturn’s rotation period) [Hill et al., 2005; Chen and Hill, 2008].

The identical plasma properties inside both types of flux tubes suggest that they are different segments of the
same flux tube from the same origin. The apparent opposite magnetic field signatures are due to the different
background plasma environments that these flux tubes are sitting in. Figure 1 sketches the two situations when
Cassini encounters a flux tube, where the two opposite types of magnetic perturbations are detected.

Enceladus sources water-group gas and plasma into a plasma disk from 2.5 to 8 RS (Saturn radius) around
Saturn. The density of the plasma peaks at the equator and decreases exponentially off the equator, dropping
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by orders of magnitude beyond 2 RS from the equator due to the centripetal force [Holmberg et al., 2012]. As
the flux tubes contain ions with a temperature of several keV, it takes barely a few minutes for the transverse
pressure to reach balance across a flux tube, which is typically less than 1 RS in azimuthal direction [Hill et al.,
2005]. As shown in Figure 1, the segment of flux tubes inside the plasma disk is compressed by surrounding
cold and dense plasma, showing an enhancement in the field strength, while the part of the flux tube outside
the plasma disk expands into the surrounding cold and tenuous plasma, resulting in decreased field strength.
Such pressure balance also applies to the enhanced flux tubes detected in Io’s torus. We note that the mag-
nitudes of compression and expansion in Figure 1 are exaggerated. As listed in the flux tube examples, the
field strength enhancement or depression is at most several nanotesla, less than a few percent in a hundred
or more nanotesla background field.

Even after 10 years of Cassini observations, it is still not clear how themagnetic field sheds the cold plasma popu-
lation and returns to the inner magnetosphere. Several mechanisms have been suggested. The first one is inter-
change hypothesis. Siscoe and Summers [1981] calculated the Saturnian magnetosphere to be centrifugally
unstable outside the plasma torus, independent of local time. Therefore, interchange between inner mass-
loadedmagnetic field lines and outermagnetic field lines carrying relatively tenuous but hot plasma can happen
everywhere in the plasma disk. This interchange-driven instability has been modeled using the Rice Convection
Model [Wu, 2009] and later with magnetohydrodynamic modeling [Winglee et al., 2013]. In both simulations,
the magnetic flux and plasma convect inward and outward in the form of finger-shaped structures rooted in
the plasma disk. The second mechanism is the reconnection hypothesis, which has been developed first in
the Jovian magnetosphere [Russell et al., 2000]: tail reconnection, known as the Vasyliunas cycle [Vasyliunas,
1983], sheds themass to form plasma-depleted flux tubes. These flux tubes then convect to the inner magneto-
sphere buoyantly and at the same time corotate with themagnetosphere. This hypothesis explains the depleted
ion composition correlated with the field perturbations and is consistent with our Figure 1 illustration. This
model suggests that the fast flow shooting back from the reconnection X line breaks into flux tubes, which
appear as bubbles if sliced in the equatorial plane. Thomsen et al. [2015] combined the two hypotheses into a
third hypothesis: tail reconnection creates plasma-depleted flux tubes; they then convect to the inner magneto-
sphere and stop at L~8.6, where the cold and dense plasma holds off the hot and tenuous plasma from the tail;
interchange then takes place within L~8.6, injects the hot plasma, and lets the cold plasma flow out. The third
hypothesis believes that the hot plasma population seen in the flux tubes in the innermagnetosphere [Hill et al.,
2005] is the same plasma at L~8.6, instead of the plasma from the tail reconnection site.

In this paper, we test themagnetic flux and plasma circulation hypotheseswith a set of enhanced and depressed
flux tubes identified from 10 year Cassini magnetometer observations. The next section of this paper describes
the data and selection criteria. Thenwe investigate the statistical properties of the flux tubes. This is followed by
the study considering the shape and transportation rate of the magnetic flux. The final section concludes
this study.

Figure 1. (left) A cartoon illustrating the different magnetic signatures in different segments of the same flux tube. To
balance the total pressure across the boundaries, the low-density but high-temperature flux tube is compressed in the
plasma torus and expands off the equator. (right) Examples of enhanced and depressed flux tubes. Their L value, latitude
(Lat), local time (LT), and background field strength (B0) is listed at the corner. Note the different vertical scales of the field
strength between the enhanced and depressed flux tubes.
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2. Data Set and Selection
Criteria

One second magnetic field data mea-
sured by the Cassini magnetometer
[Dougherty et al., 2004] for almost
10 years (from 27 February 2005 to 25
January 2015) are used to search for
the flux tubes. During this period,
Cassini has completed 209 revolutions
around Saturn, covering a radial dis-
tance from inside 3 RS to over 60 RS
and a latitudinal range from about
� 75° to 75°. In earlier studies, Cassini
data obtained within 10 RS are investi-
gated [Andre et al., 2005, 2007; Hill et al.,

2005; Chen and Hill, 2008]. Since the birthplace of plasma-depleted flux tubes may be farther out, we extend
the survey region to L= 18. Here a dipole model is employed to calculate the L from the event location, where
L= r/cos2θ. Here r is the radial distance and θ is the latitude. As the typical subsolar magnetopause distance at
Saturn is about 22 RS, this dipolar assumption is generally valid in our region of interest.

The KRTP (Kronocentric radial theta phi) coordinate system is used in this study: r is pointing radially away
from the center of Saturn to the location of the spacecraft, ϕ is parallel to the kronographic equator and
positive in the direction of corotation, and θ is southward, completing the right-handed set.

We search for candidate events by visually inspecting 6 h linearly detrended magnetic field data, and the
following criteria are applied to collect unambiguous events: (1) the estimated L is less than 18, (2) the
perturbations last over 30 s, (3) the abrupt increase or decrease relative to the background field strength is
at least twice the background noise. Here “abrupt”means that the time for the rise/decrease in the magnetic
field strength at the edges of the tubes is less than half the duration of the flux tube.

These events are further classified into four types by the absolute change in the field strength, as shown in
Figure 2. Type 1 events are generally the ideal cases with sharp boundaries and step-like increase/decrease,
where the field strength jumps to and persists in a relatively constant value. Type 2 events have crater-like struc-
tures in the middle, in addition to the step-like increase/decrease across the flux tube boundary. When the
minimum perturbation of the “crater” temporarily returns the signal to the background value, these flux tubes
are classified as type 3 events. A type 4 event is filled with jumps between maximum perturbation and zero
perturbation and can be taken as a cluster of individual flux tubes. Since we have a statistically significant

number of events in each of the first
three categories and the type 4 events
are believed to represent fragmental
flux tubes near the end of their identifi-
able lives, if not specified, our statistical
studies in this paper are based on the
type 1, type 2 and type 3 events.

3. Statistical Properties

In total, 392 enhanced and 260 depressed
flux tubes (type 4 events excluded) are
identified from the magnetic field data.
In our introduction, examples of typical
flux tubes with detrendedmagnetic field
profiles are given with detailed para-
meters in Figure 1. The duration of all
the events is counted and compared in

Figure 2. Four types of flux tubes identified from the magnetic field data
classified by the absolute change in field strength.

Figure 3. Duration distribution of the flux tubes. The vertical axis shows
the number in each bin normalized by the total counts.
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Figure 3. It appears that flux tubes with durations of 5min or less consist of over 75% of the enhanced flux
tubes, and this percentage decreases to 49% for the depressed flux tubes; 8% of enhanced flux tubes last more
than 20min, while 2.7% of depressed flux tubes last longer than 40min. Therefore, the depressed flux tubes last
generally longer than the enhanced flux tubes. We note that in a bubble model, a short duration does not
necessarily indicate a small flux tube. It is also possible that the spacecraft skimmed through only the flank
of the flux tube. In contrast, in the finger model, the observed time directly reveals the width of the finger.

With a much larger database, we repeat Andre’s study. Figure 4 shows the latitudinal and L distribution of the
flux tubes. Here we assume that the distribution of the flux tubes is equatorial symmetric, so the northern and
southern observations are combined. Figure 4a clearly shows that most of the enhanced flux tubes are
detected within 10° latitude, while the depressed flux tubes are distributed in amuch wider latitudinal region.
The daily rate is defined as the counts normalized by the accumulated observation time. In the same L shell,
for the enhanced flux tubes (Figure 4b), the daily rate is highest near the equator, while for the depressed flux
tubes, the daily rate peaks from 10° to 30° latitude. This result confirms the latitudinal dependence reported
in Andre et al. [2007] and supports the idea illustrated in Figure 1.

In Figure 4, as L decreases, the daily rate of both types of flux tubes first increases, reaches maximum between 6
and 10 in L, and then decreases. No flux tubes are detected inside L=4.We suggest that as the flux tubes convect
in, they break into smaller ones and, meanwhile, reload the cold plasma from the Enceladus torus. The breakup
process will increase the daily rate, while the mass-loading process decreases the plasma pressure difference
across the boundaries of the flux tubes andmakes themagnetic signatures hard to identify. These two processes
with opposite effects on the daily rate compete and result in the peak in daily rate detected at L from 6 to 10.

Since the plasma density in the plasma disk is a function of the radial distance, such dependence should influence
the degree of compression/expansion of the flux tubes. That degree can be qualified by the magnetic pressure
difference across the edges of the flux tubes. Figure 5 shows those differences as a function of L. It is clear that
the magnitude of pressure difference across the flux tubes increases as the L decreases. Our interpretation of
this tendency is that when the flux tubes get closer to the mass-loading region (L≈ 4), the increase of back-
ground cold plasma density is much faster than the refill process of the flux tubes. Therefore, the flux tubes
in the plasma torus are more compressed, and more hot plasma inside the flux tube is squeezed to high
latitude. In this way, for both enhanced and depressed flux tubes, the magnetic pressure difference across
the boundaries increases as the L decreases.

Figure 5 also shows that the pressure differences associated with the depressed flux tubes are always less
than those associated with the enhanced ones, indicating that the plasma pressure inside the depressed flux
tubes is close to the background lobe plasma pressure.

The four different types of flux tubes, as mentioned in Figure 2, are interpreted as flux tubes detected at differ-
ent ages. As Hill et al. [2005] discovered, the drift of energetic particles elongates the flux tubes in the azimuthal

Figure 4. (a) Locations of the flux tubes represented by black (depressed) and red (enhanced) dots. The color shows accumulated observation time as a function of L and
latitude. (b) Daily rate of the enhanced flux tubes. (c) Daily rate of the depressed flux tubes. The color coded accumulated observation time and the daily rates are overlapping
results: when calculating these values in each pixel, the observation time and the counts of the flux tubes in its neighboring width (within a half pixel) are also counted.
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direction and eventually may break
them up. Therefore, we suggested that
type 1 and type 2 events represent the
younger ones, while type 3 and type 4
events are the old ones. The relative
occurrence rate of these four types of
flux tubes as a function of L is shown in
Figure 6. Here only enhanced flux tubes
are counted since they are much easier
to identify. It shows that type 1 and
type 2 events are relatively less often
detected as L decreases. This confirms
our hypothesis that the flux tubes
break into smaller ones as they convect
in, similar to the case at Jupiter [Russell
et al., 2001]. In addition, Figure 6 shows
that the occurrence rate of type 1 and
type 2 flux tubes are always higher
than that of type 3 and type 4 events,
even in small L regions. There are sev-
eral possible reasons: (a) the flux tubes
spend a longer time in type 1 and type
2 phases then quickly go through type

3 and type 4 phases, (b) the old flux tubes are always hard to identify from the background and are under-
counted, and (c) there are some fast flux tubes which can reach the inner magnetosphere without significant
drift taking place in the hot plasma.

4. The Origin and Transport of the Magnetic Flux

The finger or bubble cross sections of the flux tubes can be distinguished from the magnetometer data
statistically, by comparing the entrance and exit normal vectors of the flux tubes. Both vectors are defined
as pointing out from the flux tube. As Figure 7 illustrates, if the flux tube is circular, the angle between the
two normal directions would vary from 0 to 180°, while 0° (180°) corresponds to the Cassini crossing at the
edge (center). If the cross section of the flux tube is fingerlike and rooted in the plasma disk, since the radial

injection velocity is much smaller than
the subcorotating velocity [Chen, 2011],
Cassini would always cross the shorter
side. Therefore, the angle between the
two normal directions should always
be close to 180°.

An analysis has been presented by
Loftus et al. [2015] using minimum var-
iance analysis (MVA) to calculate the
two normal directions. It was found
that the cross sections of the flux tubes
are more consistent with the circular
cases. Here we use another way to
determine normal vectors. Instead of
MVA technique, we calculate the normal

directions using ± B1
→�B2

→

B1
→�B2

→
�� ��, based on the

fact that the flux tube boundaries are
tangential discontinuities, while the
MVA method does not guarantee zeroFigure 6. Occurrence ratio of different types of enhanced flux tubes.

Figure 5. Magnetic pressure difference across the boundaries of the flux
tubes as a function of L. Here the magnetic field data are classified into
three independent groups by successive revolutions. The mean of the
three medians calculated from each group is plotted, and the probable
error is defined as the standard division divided by the square root of 2.
When the observations are absent in a certain region, no error is estimated.
Here the bin size is 4 and overlapped by 2 in L.
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normal magnetic field. Here B1
→

and B2
→

are the averaged magnetic field inside
and outside the flux tube at the bound-
ary. The plus or minus sign is chosen so
that the entrance normal has a positive
ϕ component, while the exit normal
has a negative ϕ component in the
KRTP coordinate system. In addition, if

the angle between B1
→

and B2
→

at either
boundary is less than 0.3°, that flux
tube is not counted here.

The distribution of the angle between
two normal directions is shown in
Figure 8. Here only type 1 and type 2
flux tubes are studied, as their bound-
aries are sharp and clear. Those flux
tubes are classified into two groups by
L value. It is clear that over 75% flux

tubes are detected with the angle being less than 160°. This distribution is against the fingerlike flux tube
but favors the circular model. In addition, there is no significant difference between the distributions
obtained inside and outside L= 8.6. This cannot be explained by the combination hypothesis [Thomsen
et al., 2015], which sets ~8.6 as the boundary separating reconnection and interchange processes.

In Figure 8, the number of flux tubes with the angle being larger than 90° is 5.5 times the number of flux tubes

with the angle being less than 90°. This ratio is
ffiffi
2

p
2� ffiffi

2
p ≈2:4 if Cassini crosses flux tubes with rigidly circular cross

sections randomly. The difference may be due to the undercounting of the small-angle flux tubes. Since Cassini
skimmed through the flank of the flux tubes, they appear to have short durations and are hard to identify.

Since reconnection takes place in the outer magnetosphere and is beyond our observation region, it is
impossible to trace the flux tube formation process with this method. However, we can use the reconnection
rate to derive the transportation rate of the magnetic flux and cold plasma. If tail reconnection is the domi-
nant mechanism in generating the inward convecting magnetic flux, the reconnection rate should be equal

to the magnetic flux transportation rate. Then we can estimate the plasma transport rate:
dM
dt

ρ�2 RS
¼

dΦ
dt
B0
. Here dM

dt

is themass loss rate, dΦdt is themagnetic flux transport rate, ρ is themass density [Holmberg et al., 2012], 2 RS is

the thickness of the plasma disk, and B0 is the averaged background magnetic field strength. We use 100 kV
as the reconnection rate [Badman et al.,
2014], and the calculated mass loss rate
is listed in Table 1. We can see that from
L=5 to 10, this rate is almost constant
at around 130 kg/s, which agrees with
the plasma production rate [Bagenal and
Delamere, 2011, and references there in].
This consistency further supports the tail
reconnection mechanism.

Since the reconnection rate is the mag-
netic flux transportation rate, we can also
estimate the inward and outward con-
vecting velocities of both plasma and
magnetic flux. The outward velocity satis-

fies this equation: dΦ
dt ¼ 2πLRS T tot�TE

T tot

� �

VoutB0. Here Ttot is the total observation

Figure 7. A cartoon illustrating the angle between the entrance and exit
normal directions of the flux tubes if they are circular (up) or fingerlike (down).

Figure 8. The distribution of the angle between the entrance and exit
normal of the flux tubes.
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time and TE is the sum of the event time. The inward velocity can be calculated by balancing the inward and
outward magnetic flux flows: VinBETE=VoutB0(Ttot� TE). The results are also listed in Table 1. We can see that
the outward velocity is from 0.4 to 1.6 km/s, while the inward velocity is from tens to hundreds of km/s. The
magnitude of the outflow velocity is consistent with the observation: ~ 0.5 km/s at L=5 and generally increases
to ~ 2 km/s at L=8.5 [Wilson et al., 2008, Figure 10]. The velocity measurements outside L=8.5 scatter a lot and

are not used to make comparisons here. Since our observed TE
T tot

is on average 5.6 times smaller than the one

given by Chen [2011], the inferred inflow velocity is then 5.6 times larger than Chen’s estimation. The difference
in time ratio comes from different event selection criteria and different data bases. Chen [2011] uses plasma
data to identify the injection events, which are mainly depressed flux tubes off the equator [Chen and Hill,
2008] and have generally longer durations (Figure 2). Here since Cassini spent most of the time near the equa-

tor, we only count the observation time and events within 10° latitude to get TE
T tot

. Therefore, the enhanced flux

tubes contribute most to TE. In addition, the Chen [2011] data set covers 2004 to 2006, while our data set covers
almost 10 years of Cassini data. Although our event time is much less than the number in Chen [2011], it is com-
parable to the number obtained at Jovian magnetosphere [Russell et al., 2000]. It is noticed that the inflow velo-
city does not increasemonotonically with increased radial distance. This is because Vin is very sensitive to TE/Ttot,
and wemight have undercounted the flux tubes in the small L region. Therefore, the inflow velocity here might
have been overestimated.

5. Summary

We have studied both enhanced and depressed flux tubes, which contain the returning magnetic flux from
the outer magnetosphere, using almost 10 years of Cassini magnetic field data. Their detection rate,
compression/expansion extent, and the temporal variation as a function of L value are investigated. The cross
section of the flux tubes is found to be more circular than the fingerlike structure, which is given by simula-
tions based on the interchange mechanism. None of those properties show any sudden change at L~ 8.6,
where a boundary separating the interchange-dominant inner region from the reconnection-dominant outer
region had been suggested [Thomsen et al., 2015]. If we match the magnetic flux transport rate with the
reconnection rate, the estimated plasma loss rate and the outflow velocity are consistent with earlier obser-
vations. Therefore, reconnection is the mechanism shedding the cold plasma sourced by Enceladus and gen-
erating the returning magnetic flux.
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