
S60 3 December 2015 | 7580 | 528

Tuberculosis is a major source of global mortality caused by infection, partly because of a tremendous ongoing burden of undi-
agnosed disease. Improved diagnostic technology may play an increasingly crucial part in global efforts to end tuberculosis, but 
the ability of diagnostic tests to curb tuberculosis transmission is dependent on multiple factors, including the time taken by a 
patient to seek health care, the patient’s symptoms, and the patterns of transmission before diagnosis. Novel diagnostic assays for 
tuberculosis have conventionally been evaluated on the basis of characteristics such as sensitivity and specificity, using assump-
tions that probably overestimate the impact of diagnostic tests on transmission. We argue for a shift in focus to the evaluation 
of such tests’ incremental value, defining outcomes that reflect each test’s purpose (for example, transmissions averted) and 
comparing systems with the test against those without, in terms of those outcomes. Incremental value can also be measured in 
units of outcome per incremental unit of resource (for example, money or human capacity). Using a novel, simplified model of tu-
berculosis transmission that addresses some of the limitations of earlier tuberculosis diagnostic models, we demonstrate that the 
incremental value of any novel test depends not just on its accuracy, but also on elements such as patient behaviour, tuberculosis 
natural history and health systems. By integrating these factors into a single unified framework, we advance an approach to the 
evaluation of new diagnostic tests for tuberculosis that considers the incremental value at the population level and demonstrates 
how additional data could inform more-effective implementation of tuberculosis diagnostic tests under various conditions.
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E very year, nearly three million people develop active tuberculosis (TB), but 
are not notified to health authorities1. Some of these individuals may spon-
taneously resolve their disease, die or be treated in the private sector, but 

many remain infectious, fuelling ongoing transmission in the community. Reach-
ing this ‘missing three million’ remains one of the top priorities for global TB con-
trol2. A widely cited reason for the ongoing gap between incidence and cases noti-
fied is the lack of highly sensitive and deployable diagnostic tests for TB3. Sputum 
smear microscopy, the global cornerstone of TB diagnosis4, can miss half of all 
people with infectious TB5, whereas more sensitive tests cannot routinely be im-
plemented at the point of treatment6,7. Nevertheless, the link between improved 
diagnostic sensitivity and better TB detection remains uncertain. Studies8–11 in dif-
ferent settings have found little or no change in the number of pulmonary TB diag-
noses or deaths when comparing sputum smear microscopy and Xpert MTB/RIF, 
a more sensitive molecular test12. This result may reflect high levels of empirical 
treatment among people who test negative13–15. Against this backdrop, a key ques-
tion remains: if novel diagnostic tests are developed and implemented at scale, 
what impact can we expect on TB epidemiology within populations?

The impact of TB diagnostics on transmission reflects not only the accu-
racy of the test, but also the way in which patients with infectious TB interact 
with members of the community and with health systems over time16,17. These 
infection pathways have at least three crucial dimensions: the transmission 
rate (number of transmission events per unit time), the frequency at which 
people contact health systems (often slower in subpopulations with poor ac-
cess to care), and the probability of starting effective TB treatment after such 
contact18. Each of these dimensions varies through the duration of infectious-
ness (from onset to effective treatment, spontaneous recovery or death)19. 

Mathematical models can be a useful tool in helping to demonstrate how 
these dimensions relate to the impact of diagnostic tests on TB transmis-
sion20–22. Figure 1a depicts the simplest, and most commonly used23–25, con-
ceptualization of TB diagnosis in mathematical models so far. In this frame-
work, on becoming infectious, people with TB experience a series of uniform 
processes. Specifically, they transmit TB at a constant rate, contact the health 
system at a constant rate and undergo a constant probability of successful 
diagnosis (leading to appropriate treatment) with each health-system contact. 
In this framework, the speed at which someone with TB gets treated — and 
the number of people they infect before that treatment — are strongly relat-
ed to the sensitivity of the diagnostic algorithm. If, for example, people with 
TB contact the health system on average every 6 months with a 50% chance 
of being diagnosed at each visit, the mean duration of infectiousness will be 
1 year (approximately the prevalence/incidence ratio estimated by the World 
Health Organization1). If a more sensitive test (for example, replacing sputum 
smear microscopy with Xpert MTB/RIF26,27) can increase that probability of 
diagnosis from 0.5 to 0.75, the mean duration of disease, and thus the trans-
mission per active case, could be cut by one-third. As a result, the projected 
epidemiological impact of a more sensitive diagnostic test in this framework is 
tremendous. This conceptualization of the diagnostic process (constant trans-
mission, constant health-system contact and constant probability of success-
ful diagnosis) over time has permeated nearly all projections of expected epi-
demiological impact from novel diagnostic tests for pulmonary TB — and it is 
almost certainly wrong. Figure 1b shows an alternative conceptualization of the 
TB diagnostic process. In this framework, the transmission rate, frequency of 
health-system contact and probability of successful diagnosis can all change 
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over time19. As an illustration, if patients remain infectious for an average of 10 
months before seeking care and then begin to contact the health system once 
a month28,29, a 50% chance of successful diagnosis per visit would still result 
in a mean duration of infectiousness of 1 year — but increasing the probability 
of diagnosis from 0.5 to 0.75 would only reduce that duration to 11.3 months. 
Worse still, if most transmissions occur in the first 10 months, then even a 
perfect diagnostic test at the health facility could not avert those events. Thus, 
the dynamic trajectories of transmission, health-care seeking and diagnostic 
index of suspicion over the course of TB disease are inextricably linked to the 
epidemiological impact of novel diagnostic tests19,30–33 — and overly simple 
depictions of those trajectories may systematically overestimate that impact. 
Adding complexity to these simple frameworks requires additional data to in-
form a more nuanced understanding of the impact of diagnostic tests. Without 
such data, and models with sufficient flexibility to incorporate them, it is likely 
that projections of the impact of novel diagnostic tests on TB transmission will 
continue to be biased, often dramatically so.

So far, test accuracy (sensitivity and specificity) — and to a lesser extent, 
feasibility of implementation in peripheral settings — has dominated thinking 
about the ‘value’ of new TB diagnostic tests. However, the impact of any novel 
TB diagnostic test will depend on how the health-care system incorporates it34, 
as well as on the dynamics of patient interactions with that health-care system 
(Fig. 1). Epidemiologically, therefore, a novel diagnostic assay should be evaluat-
ed not by its sensitivity and specificity, but rather the extent to which it provides 
diagnostic information beyond earlier tests and practices35 — its incremental 
value. This concept is similar to the classic concept of the expected value of 
diagnostic information (EVDI) promoted by Phelps and Mushlin36, who also 
highlighted the need to combine the EVDI with estimates of cost or resource 
requirements. Subsequent work has expanded on this concept37,38. In this paper, 
we use principles of infectious-disease modelling and diagnostic epidemiology 
to argue for a change in conceptual approach, from one that has focused primar-
ily on a test’s sensitivity to one that centres on its incremental value. 

METHODS
Quantifying the incremental value of diagnostic tests for TB. In the con-
text of TB, there are a number of benefits that new diagnostics could provide. 
These include, but are not limited to, averting TB transmission, averting TB 
morbidity and mortality9, saving money39,40, freeing up health-care capacity 
for other activities, enabling better treatment of other conditions by ruling out 
TB41 and improving patients’ economic situations42 or quality of life43. We fo-
cus here on the use of novel diagnostic tests as tools to avert TB transmission; 
however, the intention of some tests may be to add value in one or more of 
these other areas — and each test’s utility should be evaluated according to 
its intended purpose.

To appropriately estimate the incremental value of a new diagnostic test 
for TB in terms of transmissions averted, one must consider its relationship to 
the diagnostic pathways outlined in Figure 1. Table 1 lists four defining features 
of TB disease and diagnosis (latency44, gradual symptom onset45,46, reliance 
on sputum47 and concentration of transmission among ‘superspreaders’48). 
These features highlight a number of potential diagnostic gaps, or elements 
along the TB diagnostic pathway, which, if filled by a novel diagnostic test, 
could generate substantial incremental value. 

Specifically, in any given setting, TB transmission may occur primarily from 
people who are not sufficiently ill to seek care49,50; those who are seeking care, 
but have symptoms (for example, a mild cough) not specific to TB51; or those 
with severe or prolonged symptoms, but who test negative for TB and are there-
fore not treated (Fig. 1b). Alternatively, most transmission may occur from hard-
to-reach populations in which the rate for seeking care is low52. Each of these 
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Figure 1 | Conceptual diagrams of different tuberculosis (TB) diagnostic models. 
a, The ‘standard’ model. So far, most models of TB diagnosis have assumed that, 
on becoming infectious, individuals with active TB transmit their disease at a 
constant rate, seek care at a constant rate and maintain a constant probability 
of diagnosis and treatment with each care-seeking attempt. In reality, the rate 
at which individuals with active TB transmit disease and seek care, as well as the 
probability of successful diagnosis and treatment, change over time with the 
disease course. This process can be more accurately represented by assuming 
three different stages in the TB diagnostic pathway, as represented at the 
bottom of b. This framework accommodates different types of variation that can 
be crucial in the potential impact of a test. For example, patients might transmit 
their disease at an increasing rate over time as bacillary burden increases, seek 
care more frequently as symptoms progress, and be more likely to receive 
ancillary diagnostic tests (or empiric treatment) as symptoms persist and other 
diagnoses become less likely. 

Feature of TB natural history Description Resultant source of 
transmission

Potential representation 
within models

Diagnostic test capable of 
filling gap

Latency Prolonged latent period Individuals who are asymptomatic or 
have only very mild symptoms

Asymptomatic (or mildly symptomatic) 
infectious state (I

0
)

Test to identify who will progress to 
active disease, allowing targeted 
preventive therapy (‘progression 
biomarker’)

Slow clinical course Early non-specific symptoms (for 
example, cough)

Individuals who are presenting to care, 
but for syndromic management

Infectious state with symptoms 
sufficient to drive care seeking, but 
with low index of suspicion for TB (I

1
)

Test to rule out TB (or suggest further 
testing for TB) in people with a cough 
(‘cough triage test’)

Difficult microbiological 
confirmation

Bacilli often present in low numbers, 
and only in lungs or sputum; no 
specific antibody

Individuals who test false negative 
for TB

Active, care-seeking but undiagnosed 
state (I

2
)

Test to supplant current tests 
with imperfect sensitivity (‘smear 
replacement test’)

Heterogeneous transmission and 
access to care

Transmission concentrated among 
those with poor access to care

Individuals who lack sufficient access 
to seek care rapidly

State with lower care-seeking rate (I’) Smear replacement test for use in 
peripheral settings with poor access 
(‘point-of-care test’)

Table 1 | Four potential diagnostic gaps in tuberculosis (TB).
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gaps suggests a potential diagnostic solution that would have high incremental 
value. This may be a test to predict progression to active TB (and thus allow tar-
geted preventive therapy), one optimized for diagnosing combinations of symp-
toms (such as cough and fever), one that is simply more sensitive, or one that is 
more deployable to peripheral and informal settings (Table 2)53. We incorporate 
these possibilities more formally into a mathematical model of TB transmission.

Model description. Figure 2 presents a simple, illustrative model of TB diagno-
sis and transmission that expands the constant care-seeking approach shown 
in Figure 1a. In this model, the population is divided into different compartments 
that reflect the natural history of TB and incorporate both the stages of the di-
agnostic pathway shown in Figure 1b and the corresponding diagnostic gaps 
listed in Table 1. Movement of people between these compartments can be rep-
resented by a system of ordinary differential equations, with rates of transition 
between compartments (for example,γ0, the rate of initiating care seeking) that 
reflect the inverse of the mean duration of time spent in each phase (for exam-
ple, the mean duration between onset of infectiousness and beginning to seek 
care). As most of these durations are currently unknown (and differ from one 
setting to the next), we assume — for the purposes of illustration — a popula-
tion that is at equilibrium, with values of TB incidence, prevalence and mortality 
that reflect a setting of moderate TB burden (see Supplementary Information). 
We then use this simplified model to estimate, in this hypothetical setting, 
the incremental value of diagnostic tests with different profiles under differ-
ent assumptions about the relative importance of each diagnostic gap. This 
simplified model divides the population of individuals with active TB into three 
categories (Figs 1b and 2): those who are infectious, but who are not actively 
seeking care (I0), those who have early symptoms that trigger less frequent 
care seeking and who have a lower probability of correct diagnosis/empiric 
therapy (I1), and those who have characteristic and prolonged symptoms that 
trigger frequent care seeking and a likely diagnosis with each attempt (I 2). We 
also assume a general population and a sub-population (I’, set at 10% for the 
purposes of illustration) with ‘poor’ access to care whose rate of care seeking is 
a specified fraction (k, set initially at 0.5) of the rate in the general population. 

Importantly, this model captures the three dynamic processes of trans-
mission, health-care seeking and empiric treatment shown in Figure 1b. First, 
the rate of transmission (the probability of a ‘contact’ resulting in TB transmis-
sion, multiplied by the number of potential contacts per unit time) can vary 
over time. For example, β0 (the number of transmissions per person-month 
spent in the asymptomatic infectious state I0) may be higher than β1 and β2 
(transmission rate from the symptomatic states I1 and I2), because the contact 
rate with susceptible individuals may be highest early in the disease course 
(suggested by the high prevalence of TB infection in contact investigations54). 
Alternatively, the inverse might be true because the bacillary burden grows 
over time55. We capture this in the concept of the ‘transmission load’, which 
we define as the proportion of transmission events at the population level that 
occur in each of these three stages. Second, the rate of seeking care can in-
crease over time as symptoms progress. Third, the probability of diagnosis 

with each care-seeking attempt can also increase over time, as symptoms be-
come more suggestive of underlying TB disease56. These two processes can 
be combined into a single ‘rate of successful diagnosis and treatment’ (d) that 
increases over time from d 0

 to d 1
 to d 2. 

We explore three hypothetical settings for how transmission varies during 
the course of TB disease: late diagnostic gap, in which the transmission rate β is 
four-fold higher at each subsequent stage of TB disease (for example, constant 
contact rate with susceptible individuals with increasing bacillary burden); early 
diagnostic gap, in which β falls by a factor of four at each stage (for example, 
pool of susceptible individuals shrinks over time as household members and 
other close contacts are exposed); and high access disparity, in which those 
with least access to care are assumed to have a rate of diagnosis and treatment 
that is 10% (rather than 50%) that of the general population. Each setting is cal-
ibrated to have the same level of TB incidence (see Supplementary Information).

In the context of each of these settings, we explore the potential incremental 
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Figure 2 | Model structure relating diagnostic pathways to transmission load. 
A representation of a simple mathematical model that incorporates the three 
stages of diagnosis shown in Figure 1b. Relative rates of transmission, β, can vary 
from one stage to the next, with γ representing the inverse of the mean duration 
of each stage at the population level. Upward arrows denote removal of cases 
through diagnosis and curative treatment, d, as well as spontaneous resolution 
(not shown, for simplicity). We also assume a fixed proportion of the population 
(10% in the base case) have ‘poor’ access to care, defining an ‘access disparity 
parameter’ k to reflect the relative rates of diagnosis in this population. At 
baseline, we assume that k = 0.5. TB, tuberculosis. 

Illustrative name  
(see Table 1)

Descriptive profile Mathematical 
representation

Approximate number 
needed to screen to identify 
1 additional case, typical 
high-burden setting

Avertable transmission load

Progression biomarker This test could be applied to a general 
population to identify people who 
would subsequently develop active 
TB; these people could be treated with 
highly effective preventive regimens

A proportion of individuals with 
latent TB infection are returned to 
the uninfected state if successfully 
identified and treated

100–500 (1/[lifetime probability of 
incident TB × probability of completing 
effective preventive therapy])

Pre-care seeking, mild symptoms 
and prolonged symptoms (general 
population only)

Cough triage test This test could be applied to all people 
presenting to care with a cough, even 
if suspicion for TB was low — those 
testing positive could have a highly 
sensitive test performed

The probability of successful diagnosis 
in the early symptomatic period 
increases

20–100 (prevalence of active TB among 
all patients with a cough)

Mild symptoms and prolonged 
symptoms (general population only)

Smear replacement test This test would allow highly sensitive 
diagnosis among those already seeking 
care with high suspicion of TB

The probability of successful diagnosis 
in the late symptomatic period 
increases

10–20 (prevalence of smear-negative 
active TB among those with smears 
currently performed)

Prolonged symptoms (general 
population only)

Point-of-care test As for the smear replacement test, but 
one that is possible to deploy in the 
poor-access population

As above 10–20 (prevalence of smear-negative 
active TB among those with smears 
currently performed)

Prolonged symptoms (low-access 
population)

Table 2 | Profiles of three illustrative diagnostic tests for tuberculosis (TB).
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value of four illustrative diagnostic tests: a ‘progression biomarker’ that predicts 
progression from latent to active TB (to facilitate preventive therapy)57; a ‘triage’ 
test that facilitates syndromic diagnosis of people presenting with cough58; a 
more sensitive ‘replacement test’ to supplant current sputum-based confirma-
tory tests for TB59; and a ‘point-of-care test’ that can replace sputum smear in 
peripheral settings60, thereby (unlike the other three tests) being accessible to 
those with poor access to care. These tests, along with their mathematical rep-
resentation in our simplified modelling framework, are summarized in Table 2.

We focus on comparisons between these types of diagnostic tests when 
they are added to the standard of care. To illustrate the transmission contri-
butions of different groups, we assume that progression biomarker, triage and 
replacement tests are deployed in the general population, whereas the point-
of-care test is deployed in the poor-access population. We discuss below how 
different diagnostic gaps might cause each of these illustrative tests to be pre-
ferred over the others, thereby emphasizing the importance of quantifying (or 
at least estimating) the diagnostic gap in any given setting. 

Incorporating resource constraints. Ultimately, discussions of a new diag-
nostic test’s incremental value must also consider any constrained resources 
— whether economic or otherwise — that would be required to implement the 
test. One method for evaluating the incremental value of a diagnostic test in a 
given setting is to first identify any constrained resources required for test im-
plementation. The additional resources required to change from the existing 
standard of care to an algorithm that augments that standard of care with the 
new diagnostic test can then be estimated (the incremental resource require-
ment)61. Finally, this is combined with estimates of the incremental number of 
transmissions averted under this augmented algorithm, relative to the stand-
ard of care (incremental impact). Thus, tests that aim to avert TB transmission 
can be compared using an inverse incremental cost-effectiveness ratio62: (in-
cremental transmissions averted)/(incremental resource requirement), or 

(T1 – T0)/(R1 – R0)
 

where 1 denotes the presence of the new test and 0 denotes its absence.

In settings in which TB diagnostic tests are being compared with other 
interventions (for example, TB treatment or HIV diagnosis), transmissions 
averted can be converted into measures of health utility (such as disabili-
ty-adjusted life years, or DALYs, averted)63 to estimate resources in terms of 
economic costs and to report this incremental value as an incremental cost–
effectiveness ratio. However, when only comparing diagnostic tests with the 
same primary aim (to avert transmission), the formulation of incremental val-
ue in Equation 1 may be more useful; this formulation places the emphasis on 
impact rather than cost and does not require additional model assumptions 
to convert transmissions into DALYs or constrained resources (for example, 
human capacity) into economic costs. Therefore, we use this more direct for-
mulation in our model results.

RESULTS
Incremental value of TB diagnostic tests. Figure 3 shows how the transmis-
sion load at equilibrium (the proportion of population-level transmission con-
tributed by each stage) differs in each transmission scenario. For example, 
in the late diagnostic gap scenario, 35% of all transmission originates from 
individuals with mild symptoms in the general population, whereas this per-
centage falls to 5% in the early diagnostic gap scenario. Importantly, averting 
transmission in the earlier stages (for example, preventing a case from de-
veloping, even before to care seeking) also averts that transmission in later 
stages — seen in Figure 3 by the combined value of the stacked bars. Thus, for 
example, preventing all transmission in the latter two care-seeking stages in 
the general population would avert 51% (35% + 16%) of all transmission in the 
late diagnostic gap scenario, compared with only 5% in the early diagnostic 
gap scenario — and a diagnostic test targeting these stages (for example, the 
‘cough triage’ test) might be expected to have greater impact in settings that 
more closely resemble the late diagnostic gap scenario.  

A notable feature of the late diagnostic gap scenario is that, despite trans-
mission being substantially more intense64 in the prolonged-symptom stage 
I2(16 times greater per unit time than in the pre-care-seeking stage I0), the 
contribution of this stage to transmission remains relatively modest. This is 
largely due to the relatively short time that individuals spend in this late symp-
tomatic stage. We assume here that, under the standard of care (typically 
using sputum smear microscopy), individuals are diagnosed on average after 
1 month in this late symptomatic stage, compared with 6 months spent in the 
asymptomatic stage. However, the high access disparity scenario shows the 
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Figure 3 | Tuberculosis (TB) transmission load under three alternative scenarios. 
The size of each bar denotes the transmission load, defined as the percentage 
of all tuberculosis transmission that occurs within a given diagnostic stage. 
Transmission from the general population is shown in darker colours, with 
that originating from the ‘poor-access’ population shown in lighter colours. 
Interrupting transmission at a given stage also averts transmission in subsequent 
stages (for example, diagnosing a case in stage I
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that this case could have caused in stage I
2
); this effect can be calculated as the 

sum of the transmission load in the relevant stage plus all subsequent stages 
within that population. 

(1)

BOX 1 | ESTIMATING THE INCREMENTAL VALUE OF 
TUBERCULOSIS DIAGNOSTIC TESTS, PER UNIT OF 
CONSTRAINED RESOURCES.

In comparing diagnostic tests for tuberculosis (TB), it is important to 
consider both the incremental impact (presented here as transmis-
sions averted) and the incremental resource requirements associat-
ed with implementing each new test. The following considerations 
are not meant to be an exhaustive list, but a demonstration of some 
of the complexity that must be considered (and corresponding data 
collected) to properly evaluate the incremental value of diagnostic 
tests for TB in the setting of constrained resources. Illustrative con-
siderations therefore include:

Determinants of incremental impact  
(incremental transmissions averted)
1. Epidemiological setting/existing diagnostic gaps
2. Diagnostic test characteristics (accuracy, diagnostic gap 

targeted)     
3. Existing diagnostic algorithms (incremental role of the new test)

Determinants of incremental resource 
requirements
1. Enumeration of constrained resources
2. Number of tests needed to identify one additional case 
3. Per-test outlay of constrained resources (‘unit cost’)
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potential importance of the late symptomatic stage when the rate of diagnosis 
is diminished. Here, transmission in the late symptomatic stage is sufficiently 
strong for 55% of the transmission load to occur from a high-risk (and symp-
tomatic) subgroup that accounts for no more than 10% of the total population 
— a level of disproportionate transmission that is only modestly higher than 
has been suggested in some settings65. 

Incremental value of new diagnostic tests under constrained resources. Fig-
ure 4 shows results for the incremental value (Equation 1), comparing diagnostic 
tests that target different stages and under different transmission scenarios. For 
the denominator of Equation 1, Figure 4 assumes a simple, illustrative example 
for which the constrained resource is the number of individuals who can be test-
ed with a novel test, irrespective of the test type or its unit cost (see Supplemen-
tary Table 2 for further details). This might, for example, reflect a setting in which 
donor funding could be obtained to implement a new test, but the equipment or 
human resources available to conduct those tests were extremely limited. For 
the numerator of Equation 1, Figure 4 assumes the maximum number of trans-
missions averted if the diagnostic test in question (such as the cough triage test) 
could avert all of the transmission occurring in the stage of disease targeted 
(for example, I1, mild symptoms, but seeking care). In practice, owing to factors 
such as imperfect sensitivity and incomplete population-level implementation, 
an actual test would only avert a portion of that maximum transmission load; 
the actual incremental value of each test would therefore be proportionally low-
er. Thus, in dividing the maximum incremental impact by the fixed incremental 
resources available, Figure 4 compares the maximum incremental value for each 
idealized test type, leaving it to subsequent work to estimate what proportion of 
that maximum could actually be achieved by a given test in practice. 

Figure 4 illustrates that — where the primary diagnostic gap is early in 
the disease course — the maximum incremental value for tests that target 
earlier stages is higher than that of the smear-replacement test. By contrast, 
when the primary diagnostic gap is late in the disease course, the maximum 

incremental value of the later-stage diagnostics is far greater (as represented 
by their markedly higher incremental value). Notably, where transmission is 
concentrated among a population with particularly poor access to care, the 
maximum incremental value for a test that can be implemented in this pop-
ulation can be considerably higher than for any other test (as in the access 
disparity scenario). 

Figure 5 shows an alternative scenario for the denominator of Equation 1 in 
which the limiting resource is financial (for example, a fixed amount of money 
available), assuming that the cost per test is higher when applied earlier in the 
diagnostic pathway. (For example, it is more costly to screen a patient for TB 
in a prevalence survey66 than it is in a clinic67.) The ‘unit cost’ of a test is also 
assumed to be higher per person when applied in the poor-access population 
(see Supplementary Table 2), as these individuals are assumed to be harder 
to reach than the general population. In the early diagnostic gap scenario, for 
example, considering this unit cost dramatically lowers the maximum incre-
mental value of the biomarker test that could be achieved per unit of the con-
strained resource, relative to the cough triage and smear replacement tests. As 
a result, under this alternative resource constraint, the cough triage test, rather 
than the biomarker, would be preferred. 

DISCUSSION
In evaluating novel diagnostic tests for TB, it is crucial that we move beyond sim-
ple considerations of elements such as sensitivity, specificity and turnaround 
time — and instead begin to consider the incremental value of diagnostic tests 
that fit certain profiles. We use a simple mathematical model to demonstrate 
key trade-offs in an illustrative setting. This work demonstrates how diagnostic 
tests for TB can be quantitatively assessed in terms of their incremental value 
(incremental impact divided by incremental resource requirement), and moreo-
ver how this incremental value can vary from one setting to the next. 

The prevailing diagnostic gap in a given setting has a profound effect on 
the potential incremental impact of each diagnostic test. When most trans-
mission occurs before patients begin to seek care, diagnostic tests that require 
patients to access the health system are unlikely to have substantial epide-
miological impact; thus, in the early diagnostic gap scenario (Fig. 3) the only 
diagnostic test capable of averting the bulk of the transmission load is the 
prevention biomarker. Similarly, when a substantial disparity exists between 
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Figure 4 | Maximum incremental impact per unit of constrained resources 
for four illustrative diagnostic tests in three alternative scenarios. On the 
y-axis is the maximum incremental impact (number of tuberculosis (TB) 
transmissions averted) for each of four illustrative TB diagnostic tests, divided 
by the incremental resources required to implement each test (Equation 
1). All measures are benchmarked to an incremental impact of 1 for the 
smear replacement test in the general population. Here, we assume that the 
constrained resources are simply proportional to the number of people needed 
to test to diagnose one additional case of active TB. The maximum incremental 
impact is the number of transmissions that would be averted if diagnosis averts 
all transmission associated with a given patient stage in Figure 2. Accordingly, 
the results presented here should be interpreted as an upper bound that are 
illustrative of the role of diagnostic gaps in each stage. In the cases illustrated 
here, the ‘progression biomarker’ (which identifies individuals at risk for 
progression to active TB) is clearly favoured in the early diagnostic gap scenario, 
whereas the point-of-care test (which replaces the smear test in the poor-access 
population, and is deployed only in the poor-access population) is strongly 
favoured in the high access disparity scenario.
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Figure 5 | Maximum incremental value per unit of constrained resources after 
incorporation of a cost function. The same illustrative tests are evaluated in 
the same alternative scenarios as in Figure 4, but in this case we apply a cost 
function that accounts for the fact that diagnosis earlier in the disease process, 
or among low-access populations, is generally more resource-intensive on a 
per-test basis (see Supplementary Table 2 for full assumptions). After considering 
this cost function, the ‘progression biomarker’ is no longer clearly favoured in 
the early diagnostic gap scenario, and the degree to which the point-of-care test 
is favoured over the smear replacement test in the high access disparity scenario 
is reduced by the same factor (8 in this case) by which the cost per person 
screened in the low-access population exceeds that in the general population. 
As in Figure 4, all measures are benchmarked to an incremental impact of 1 for 
the smear replacement test in the general population.
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the high-risk and general population, diagnostics that cannot be implemented 
in the high-risk group are limited in their potential. 

Consideration of incremental impact must also include consideration of in-
cremental resource requirements, however. For example, the resources required 
to avert a transmission are generally much greater when diagnostic tests are 
performed early in the disease course66, or in hard-to-reach populations. As a 
result, those diagnostic tests with the largest maximum incremental impact 
may also be those that require the most resources. In estimating the incremen-
tal resource requirement of a given test, it is important to consider the resources 
for TB control that are constrained in a given setting. In many cases, these con-
strained resources will be purely financial, but in others, there may be limita-
tions on the availability of trained staff or laboratory capacity to perform certain 
tests68. The per-test incremental outlay of the most constrained resources is 
therefore also likely to vary from one setting to the next. Ultimately, the incre-
mental value of a TB diagnostic test depends not on sensitivity and specificity, 
but also on multiple factors that will vary from one system to the next (Box 1). 
For any setting, all six of the elements in Box 1 should be evaluated to help to 
identify the type of novel test that is likely to have the greatest incremental value 
(avert the most TB transmission events, given the constrained resources). As 
assessments of these factors are performed across a variety of settings, consen-
sus may emerge as which tests should be prioritized for development.

Unfortunately, we currently lack the empirical data in most settings to 
make such an informed assessment. Specifically, it is likely that different trans-
mission loads and diagnostic gaps — early, late or among high-risk subpopu-
lations — predominate in different settings, and that resource constraints vary 
widely from one setting to the next. How can this data gap be closed? 

First, we require better evidence regarding how novel diagnostic tests 
function when implemented under field conditions. Such data would allow 
us to estimate the proportion of any diagnostic gap that a new TB test could 
close, as well as the number of tests required to make one additional diagno-
sis. Unfortunately, most diagnostic tests are evaluated primarily in well-fund-
ed trials and demonstration studies, without good evidence of how they per-
form in the real world. For example, Xpert MTB/RIF was recommended on 
the basis of high-quality data about its accuracy and cost-effectiveness under 
controlled conditions and in a large field trial26; however, emerging evidence 
has suggested that, in many settings, the characteristics of Xpert may be dif-
ferent when implemented in the field — including its sensitivity69, calibration70, 
positive predictive value (owing to low pre-test probability)71, and accuracy for 
rifampin resistance72. To make accurate assessments of the incremental value 
of diagnostics, we should collect such data early after launch, and update ex-
pectations and recommendations as those data become available.

Second, we need better data on the performance of existing tests, includ-
ing clinical judgement. These data would enable us to evaluate the incremen-
tal number of transmissions that a novel test might be able to avert, relative to 
the existing standard of care. A series of recent high-quality studies suggests 
that, when patients present with symptoms that are highly suggestive of TB 
in upper-middle income settings (for example, South Africa and Brazil), the 
probability of empirical diagnosis is reasonably high8–11 — but that a large num-
ber of people may be presenting to care with a cough without TB ever being 
considered8. Such studies are crucial to understand the likely diagnostic gaps 
for TB, but unfortunately, very few such analyses have been performed in set-
tings with fewer resources (for example, most of sub-Saharan Africa73,74 and 
Southeast Asia) where empirical diagnosis rates (and the capacity to imple-
ment novel diagnostic tests) may be much lower. Characterizations of relative 
TB transmission from high-risk populations (akin to the ‘low-access’ popula-
tion in Figure 3) compared with the general population are also sparse75, and 
could potentially be informed by better use of surveillance data76. 

Third, and perhaps most challengingly, we need to prioritize characteri-
zations of the transmission load and diagnostic gaps in a variety of settings. 
If we can describe the prevailing transmission loads in any given setting, we 
can then quantify the maximum incremental impact (transmissions averted) 
of any diagnostic test in that setting. Ultimately, for any setting, one should 
be able to delineate what proportion of the transmission load in each of the 
phases of TB (pre-care seeking, mildly symptomatic and prolonged sympto-
matic in the general population and in high-risk groups) is being averted using 

existing tests, and therefore what proportion might still be amenable to imple-
mentation of a novel diagnostic. Molecular characterization of TB (for exam-
ple, through whole-genome sequencing77) in entire populations is becoming 
available and can be linked to conventional epidemiological investigations (for 
example, through contact investigations78) using increasingly discriminatory 
tools for analysis and data collection79. Thus, it may become possible to tri-
angulate an infectious individual’s onset of symptoms, initiation of care-seek-
ing activities and specific transmission events. Studies that merge data on 
transmission, contact patterns, symptom histories, care-seeking patterns and 
interactions with the health-care system on a population level should be pri-
oritized in this regard. In the meantime, simple investigation of surveillance 
data can help to identify geographic hotspots of transmission, and operational 
analyses of diagnostic test implementation can demonstrate where diagnoses 
are probably being missed. Although estimating the duration of an infectious 
episode poses significant challenges, household cohorts using currently avail-
able tools could cast some light on the ‘transmission load’ that occurs early in 
the clinical course80,81.

Finally, we need better investigations of constrained resources in specif-
ic settings to enumerate the resources that are genuinely constrained, and to 
quantify those resources per test performed (as the equivalent of a unit cost). 
Although conventional economic evaluations of interventions against diseases 
such as TB implicitly consider money to be the most constrained resource, oth-
er studies in low-income settings have shown that human resources, laborato-
ry capacity, regulatory infrastructure or ability to implement new interventions 
may be the key limiting factors68. This may be especially true in the modern era 
of direct assistance for health — which may supply money, but not resources 
in the form of trained personnel82. An understanding of the most constrained 
resources in any given setting must then be merged with data on the number of 
tests required to identify an incremental case, as well as the per-test resource 
outlay, for any given novel diagnostic test. Only if we truly understand the re-
sources that are most constrained in a given setting, as well as the resource 
outlay for each type of diagnostic test, can we identify the diagnostic tests that 
will optimize epidemiological impact under existing resource constraints.

Ultimately, the only way to end TB is to diagnose and treat people with TB 
before transmission occurs — novel diagnostics are an essential component 
of any strategy with this aim. If we are to succeed in that endeavour, we must 
think of, and quantify, those tests not just in terms of sensitivity, specificity and 
turnaround time, but rather in terms of their incremental value across a variety 
of epidemiological settings. We present a framework for estimating this incre-
mental value that also highlights the need for additional data in order to inform 
more appropriate prioritization of novel TB diagnostic tests, across settings 
that may differ in their existing diagnostic gaps and resource constraints. As 
we continue to develop diagnostic tests with the goal of curbing TB trans-
mission, we must think beyond accuracy and consider the broader context of 
patient behaviour, health systems and TB natural history.
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