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Abstract

Summary: As the volume of patient-specific genome sequences increases the focus of biomedical

research is switching from the detection of disease-mutations to their interpretation. To this end a

number of techniques have been developed that use mutation data collected within a population to

predict whether individual genes are likely to be disease-causing or not. As both sequence data

and associated analysis tools proliferate, it becomes increasingly difficult for the community to

make sense of these data and their implications. Moreover, no single analysis tool is likely to cap-

ture all relevant genomic features that contribute to the gene’s pathogenicity. Here, we introduce

Web-based Gene Pathogenicity Analysis (WGPA), a web-based tool to analyze genes impacted by

mutations and rank them through the integration of existing prioritization tools, which assess dif-

ferent aspects of gene pathogenicity using population-level sequence data. Additionally, to explore

the polygenic contribution of mutations to disease, WGPA implements gene set enrichment ana-

lysis to prioritize disease-causing genes and gene interaction networks, therefore providing a com-

prehensive annotation of personal genomes data in disease.

Availability and implementation: wgpa.systems-genetics.net

Contact: enrico.petretto@duke-nus.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Motivation

With the growing volume of patient-specific sequences that is

being generated there is an increasing need to annotate these data and

distinguish possible disease causing mutations from benign

mutations. To this end, a number of approaches have been developed

to prioritize genes based on their predicted pathogenicity using whole-

exome and whole-genome data. A recently introduced class of

approaches use the pattern of functional sequence variation (i.e. rare

and common mutations) observed in the human population (Petrovski

et al., 2013), the likelihood of observed mutations according to evolu-

tion (Rackham et al., 2014) or statistical modelling of genes under

selective constraint (Samocha et al., 2014) to prioritize (rank) disease-

causing genes from sets of genes impacted by mutations. Differently

from sequence variant-level analysis (e.g. PolyPhen2 (Adzhubei

et al., 2013)), these methods specifically allow a gene-level analysis of

pathogenicity, providing elegant, yet distinct schemes to evaluate the

significance for individual genes in disease (Enns et al., 2014; Shashi

et al., 2014). Here we provide an easy to use web-based tool (Web-

based Gene Pathogenicity Analysis or WGPA) that integrates these

methods for gene-level pathogenicity analysis (Petrovski et al., 2013;

Rackham et al., 2014; Samocha et al., 2014) as well as any future scor-

ing system, therefore facilitating the assessment of the evidence
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supporting a role for a gene or variant in disease pathogenesis. Beyond

single-gene analyses, WGPA provides a means to assess and test patho-

genicity (using gene set enrichment analysis (Subramanian et al., 2005))

for groups of genes of interest, look for mutations in the so called hot-

zone using the gene level scores in conjunction with PolyPhen-2

(Adzhubei et al., 2013) or FATHMM (Shihab et al., 2013) and also to

incorporate information from known gene interaction networks all

within the same web based framework. Our platform will allow the

scientific community to critically evaluate and interpret the large sets of

mutation data from sequencing studies, aiding in the identification of

genes and networks that play a critical role in disease aetiology.

2 Methods and implementation

2.1 Measures of genic intolerance
To date, only a few methods to predict pathogenicity at the gene

level using sequence or population information alone are available:

Residual variance intolerance score (RVIS) (Petrovski et al., 2013),

Evolutionary intolerance score (EvoTol) (Rackham et al., 2014) and

gene constraint scores (GCS) (Samocha et al., 2014). The combin-

ation of these techniques with other analysis tools can provide a

means to assess pathogenicity for sets of genes that have been found

to be mutated in a disease, such as those identified by whole-exome

and whole-genome sequencing. Here we provide a web-based tool

that integrates in a single framework of analysis the following genic

intolerance measures:

• RVIS identifies an intolerant gene as a gene containing a higher

number of rare mutations than would be expected compared to

other genes with a similar number of mutations.
• EvoTol identifies an intolerant gene as a gene containing an ex-

cess of mutations that, on the protein space, are not favoured by

evolution as compared with other genes with the same number

of mutations.
• GCS identifies excessively constrained genes using a statistical

model which allow to rank genes based on their relative defi-

ciency of functional variation.

2.2 Gene set enrichment analysis of gene pathogenicity
The methods described above provide gene-level scores for the identi-

fication of variants and genes that have a critical role in disease; these

scores can be used to create ranked gene lists where individual highly

intolerant (or constrained) genes can be prioritized. In order to inte-

grate these scores over sets of genes, we provide a gene set enrichment

analysis (GSEA) implementation (Subramanian et al., 2005) that can

be used with RVIS, EvoTol or GCS. Briefly, given a ranked list of

genes (calculated genome-wide for each method described above) the

GSEA tool tests if the genic intolerance scores of a subset of genes

(provided by the user) occupy higher (or lower) positions in the

ranked gene list than what it would be expected by chance. Gene set

enrichment scores and significance level of the enrichment (P-value,

False Discovery Rate (FDR), FWER P-value) are provided, using the

GSEA output format developed by Broad Institute of MIT and

Harvard (Subramanian et al., 2005).

2.3 Interactome data
Genes that are mutated in disease do not operate in isolation, but as

part of highly complex cellular and regulatory systems. A number of

sources of gene interaction data are available, and here we use the

STRING database (von Mering et al., 2003), which provides several

types of gene-gene interaction data. In order to remove less reliable

interactions, we have filtered the STRING network to include only

those interactions that have a STRING confidence score greater

than 500 and are experimentally supported (Rackham et al., 2014).

The interaction data is used to display the pathogenicity scores for a

set of genes on a network which, for instance, can be used to inden-

tify genes that are both intolerant to mutation and network hubs.

2.4 Tools for annotating individual SNPs
In the development of RVIS the authors also defined the ‘hot-zone’

of mutation. This is a set of mutations that are both predicted to be

damaging and also lie within genes that are predicted to be intolerant to

mutation. In order to generalize this concept we have integrated both

PolyPhen-2 and FATHMM, allowing for the hot-zone to be created as

a combination these with of any of the three measures of intolerance.

2.5 Web interface
In order to facilitate the annotation of personal genomes data with re-

spect to disease pathogenesis, we have developed a unified web-based

tool for pathogenicity analysis of individual genes, gene sets and gene

interacting networks. To this aim, we developed an intuitive graphical

user interface that will make the available prioritization methods

(RVIS, EvoTol, GCS) and integrated analysis tools (GSEA, cell-type

specificity, gene interacting networks) easy to access and use by the

general scientific community. The type of input data, integrative ana-

lyses components and outputs are schematically summarized in Figure

1, and include the following inputs, analyses and outputs:

• Inputs – Gene-Level: manual data entry; gene list (*.txt); GRP,

gene set (*.grp); GMX, gene matrix (*.gmx); GMT, gene matrix

transposed (*.gmt); WGCNA, weighted gene co-expression net-

work analysis output (*.wgcna); Variant-Level: manual data

entry; list of protein substitutions (*.txt); list dbSNP identifiers

(*.txt); Network-Level: manual data entry; list of gene identifiers

for STRING (*.txt); list of gene pairs (*.txt)
• Analyses – RVIS, EvoTol (can be stratified by gene expression),

GCS (user-selected); RVIS, EvoTol, GCS combined with variant-

level consequence predictions (PolyPhen2 (Adzhubei et al., 2013))

or FATHMM (Shihab et al., 2013)); gene set enrichment analysis

(for Gene-Level inputs)
• Outputs – genes ranked by their genic intolerance or constraint

scores (graphical and table formats); GSEA results for gene sets

(graphical and table formats); gene pathogenicity annotation

using both the predicted ‘functionally damaging’ mutations and

genic intolerance (or constraint) scores (to identify the so-called

hot-zone, i.e. predicted both highly-intolerant and ‘functionally

damaging’) (graphical and table formats); gene interaction net-

work annotated according to RVIS, EvoTol or GCS allowing

Fig. 1. Schematic representation of the inputs, integrative data analyses com-

ponent and associated outputs available through WGPA
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zooming out of a particular gene and visualizing its connections

to other genes (graphical format).

3 Example

An example of where WGPA will be useful is to prioritize the set

of genes with de novo mutations from trio sequencing projects. For in-

stance in the Epi4K project Allen et al. (2013), trio sequencing was

performed on epilepsy patients resulting in the identification of 329

de novo mutations impacting 176 different genes. By cross matching

the RVIS, GCS and EvoTol scores and focusing on the genes from the

top 25 percentile, we identify a set of 17 genes of interest (ATP2B4,

CHD4, DNM1, FLNA, FLNC, GABRA1, GABRB3, GNAO1,

GRIN1, KCNQ2, MLL, MLL4, MYH6, SCN1A, SCN2A, SCN8A,

WHSC1L1, Supplementary Table S1). Using WGPA it was also pos-

sible to perform a GSEA of each of the measures of intolerance using

the Epi4K mutated genes as the gene set of interest, and show

that in each case the Epi4K mutated gene set is significantly enriched

for predicted pathogenic genes (Supplementary Figure S1).
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