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Plasmodium berghei infection
Fabrizio Lombardo1,2* and George K. Christophides1

Abstract

Background: Insect haemocytes mediate cellular immune responses (e.g., phagocytosis) and contribute to the
synthesis of humoral immune factors. In previous work, a genome-wide molecular characterization of Anopheles
gambiae circulating haemocytes was followed by functional gene characterization using cell-based RNAi screens.
Assays were carried out to investigate the role of selected haemocyte-specific or enriched genes in phagocytosis of
bacterial bio-particles, expression of the antimicrobial peptide cecropin1, and basal and induced expression of the
mosquito complement factor LRIM1 (leucine-rich repeat immune gene I).

Findings: Here we studied the impact of a subset of genes (37 candidates) from the haemocyte-specific dsRNA
collection on the development of Plasmodium in the mosquito by in vivo gene silencing. Our screening identifies
10 novel factors with a role in the mosquito response to Plasmodium. Analysis of in vivo screening phenotypes
reveals a significant anti-correlation between the prevalence of oocysts and melanised ookinetes.

Conclusions: Among novel immune genes are putative pattern recognition proteins (leucine-rich repeat,
fibrinogen-domain and R-type lectins), immune modulation and signalling proteins (LPS-induced tumor necrosis
factor alpha factor, LITAF and CLIP proteases), and components of extracellular matrix such as laminin and collagen.
Additional identified proteins such as the storage protein hexamerin and vesicular-type ATPase (V-ATPase) are
associated for the first time with the mosquito response against Plasmodium.
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Findings
Background
Plasmodium parasites must overcome several barriers
before they can successfully establish infection in their
anopheline mosquito vector. They include the microbio-
logical barrier of the mosquito midgut microbiota, two
physical barriers involving the peritrophic matrix and
the midgut epithelium, and the immunological barrier of
the mosquito innate immune system. The latter plays a
critical role immediately after a Plasmodium ookinete
crosses the midgut epithelium and before it develops
into an oocyst. Circulating haemocytes are important
contributors to the haemolymph immune response
[1, 2]. They take part in defense against invading

microorganisms, both through cellular processes like
phagocytosis and through the production and secretion of
soluble humoral factors, such as antimicrobial peptides,
complement-like proteins and components of proteolytic
enzymes that control melanisation [3, 4].
To identify novel factors of the mosquito immune

response and derive further insights into the function of
haemocytes, we have recently developed in vitro, cell-
based, double-stranded RNA (dsRNA) screens of about
100 Anopheles gambiae genes specifically or predomin-
antly expressed in haemocytes [5]. Using these screens,
we have identified several novel modulators of phagocyt-
osis, antimicrobial peptide expression, and expression of
the complement factor, LRIM1. Here, we use a subset of
this dsRNA collection to identify genes affecting An.
gambiae infection with the rodent parasite Plasmodium
berghei in vivo. This study extends our earlier published
work and concludes the in vivo screening [2]. The data
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obtained from our screen are integrated with in vitro
results obtained previously, highlighting a role of sev-
eral genes in haemocyte innate immune responses to
Plasmodium infection.

In vivo RNAi screen to identify Plasmodium modulators
We selected a subset of 39 dsRNAs corresponding to 37
putative immune modulators from an An. gambiae
haemocyte-specific dsRNA library we had previously gener-
ated (Additional file 1: Table S1). These genes exhibit
enriched expression in haemocytes, are differentially regu-
lated by immune challenges, and/or have immune-related
InterPro domains, signal peptides or transmembrane do-
mains [2, 5]. Experimental procedures, such as gene knock
down (KD), mosquito infections with P. berghei and para-
sites assessment in the midguts, were performed according
to standard protocols, detailed in Additional file 2 (primers
used are listed in Additional file 3: Table S2). KD efficiency
was assessed for a representative group of candidates and
results are summarized in Additional file 4: Table S3.
Four successive screening rounds were implemented

of 39, 29, 20 and 3 dsRNAs, respectively. DsRNAs were
included in the next round of testing if they showed
significant effects or at least a constant trend on either
parasite intensity or prevalence of live oocysts or mela-
nised ookinetes. Quality control and replicate pooling
criteria were applied before performing statistical analyses
(described in Additional file 2). Results are summarized in
Table 1 and records of parasite counts of each gene KD
are reported in Additional file 5: Table S4.
Silencing AGAP007540, AGAP009201 and SNAP_A-

NOPHELES00000017730 (long version of VectorBase
predicted AGAP010658, henceforth AGAP010658*) re-
sulted in a significant increase of oocyst intensities (and
also melanised ookinete intensities, as for AGAP009201).
AGAP007540 and AGAP010658* silencing also led to a
significant decrease in melanised ookinete prevalence (and
intensity as for AGAP010658*). Silencing AGAP003960,
AGAP004017, AGAP004928 and AGAP004993 caused a
decrease in oocyst intensity. AGAP004993 silencing
also significantly decreased the oocyst prevalence.
AGAP011223 silencing decreased oocyst and melanised
ookinete prevalence, while AGAP003879 silencing re-
sulted in a decrease of oocyst intensity and prevalence and
an increase of melanised ookinete intensity and preva-
lence. Lastly, silencing AGAP012034 significantly reduced
the intensity and prevalence of melanised ookinetes and
increased the number of developing oocysts.

Novel modulators of the mosquito immune response to
Plasmodium
The RNAi screen of 37 genes specifically or predomin-
antly expressed in An. gambiae haemocytes identified
ten novel modulators of mosquito infection with P.

berghei. Below is a brief summary of the main characteris-
tics of these genes, such as sequence similarities with known
immune factors or domains and comparisons with pheno-
types of orthologs in other insects (see Additional file 1).
AGAP007540 encodes a putative von Willebrand

factor-type A domain (vWF) protein. The vWF domain
can serve various biological functions in insects includ-
ing haemolymph coagulation and haemostasis, wound
healing and other innate immunity functions [6].
AGAP009201 is highly expressed in circulating haemo-

cytes [2] and encodes for a collagen type IV protein,
thought to be involved in the extracellular matrix, such as
the basal lamina. Laminin and collagen are components of
the basal lamina and interact with invading parasites [7].
Previous in vivo and cell-based RNAi assays have shown
that laminin silencing leads to reduced oocyst intensity
and increased phagocytosis capacity [5]. A role of laminin
was proposed in regulating the expression of the comple-
ment factor LRIM1 during an immune challenge [5]. Here
we reveal that additional putative components of the basal
lamina are involved in these reactions, as recently de-
scribed in the greater wax moth, Galleria mellonella [8],
and the flour beetle Tribolium castaneum [9].
AGAP010658* encodes a homolog of the hexamerin 2

beta of An. darlingi Root and Aedes aegypti (Linneaus)
and the larval serum protein 1 (LSP1.1) of Culex quin-
quefasciatus Say, which serve as major storage proteins
[10]. The strong activation after blood meal suggests that
hexamerins are a source of amino acids for the synthesis
of vitellogenin in the fat body. A function of storage pro-
teins and vitellogenin (Vg) in various facets of arthropod
innate immunity has been described [11]. It has also
been shown that depletion of the lipid carrier protein
lipophorin (Lp) reduces the number of developing Plas-
modium oocysts in the mosquito midgut, while both An.
gambiae Lp and Vg are required for the function of the
complement factor TEP1 (thioester-containing protein 1)
against Plasmodium ookinetes [12].
AGAP003960 encodes a putative transmembrane pro-

tein encompassing peptidase and trypsin-like domains,
possibly involved in immune regulation through proteo-
lytic processing. AGAP003960 transcripts are enriched
in haemocytes and up-regulated upon bacterial challenge
in mosquito cell cultures [13].
The Leucine-Rich Repeat (LRR) domain protein-

encoding gene, AGAP004017, is specifically expressed in
circulating haemocytes [2]. It carries a predicted signal
peptide and a transmembrane domain, and does not be-
long to the LRIM family of proteins [14]. AGAP004017
clusters with AGAP004016, another LRR-containing pro-
tein that is also highly expressed in haemocytes and acts
as a Plasmodium agonist [2].
AGAP004928 (LL6) encodes a LITAF (LPS-induced tumor

necrosis factor alpha factor) domain, a membrane-associated
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motif possibly involved in immune signalling pathways
[15]. We previously showed that this gene plays a role
in bacterial phagocytosis [5]. Recently, additional mem-
bers of this family were associated with the defence
against Plasmodium [16]. Indeed, An. gambiae LITAF-
like 3 (LL3 - AGAP009053) expression is up-regulated
in response to midgut invasion by both rodent and
human malaria parasites, and its KD analysis reveals a
role in anti-Plasmodium defence [17]. Four members of
the LITAF family i.e. LL1, LL2, LL3 and LL4 are closely
related, while LL5 and LL6 are more divergent. LL6
(AGAP004928) clusters with Drosophila melanogaster
CG13559, a member of the fruit fly LITAF family

expressed in the haemocytes and modulated by im-
mune challenge [18].
AGAP004993 encodes an An. gambiae homolog of D.

melanogaster laminin (LanA), an extracellular matrix
protein with several functions. Six laminin paralogs are
found in the An. gambiae genome: netrin 1 (AGAP000228),
netrin 1 homolog (AGAP000225), laminin gamma 1
(AGAP007629), multiple epidermal growth factor-like
domains 10 (AGAP007256), laminin alpha 1/2
(AGAP007849) and laminin beta 1 (AGAP001381).
We previously showed that the latter regulates both
phagocytosis and basal and induced expression of
LRIM1 [5], while laminin gamma 1 and LanB2

Table 1 In vivo RNAi screen results. Gene KDs affecting the number of developing oocysts and the prevalence of developing
oocysts and/or melanised ookinetes are listed. Descriptive statistics (arithmetic mean ± standard error) and P values as results of
statistical tests to compare parasite intensity and prevalence of each group with corresponding LacZ control are reported here.
Upper part of the Table (above the double line): genes affecting oocyst intensity; lower part of the Table (below the double line): genes
affecting prevalence of infection and/or oocyst / melanised ookinete intensities. Significant P values (P < 0.05) are reported. ns: P > 0.05

Developing oocysts Melanised ookinetes

Intensity Prevalence Intensity Prevalence

Gene KD Rep. N. Mean ± SE Fd P§ % P¶ Mean ± SE Fd P§ % P¶

AGAP010658° 3 51 64.4 ± 11.8 3.1 0.0004 86 ns 0.2 ± 0.2 0.1 0.035 5 0.048

LacZ 63 20.8 ± 4.4 80 2.4 ± 1.0 18

AGAP007540 3 45 77.3 ± 12.1 2.1 0.002 84 ns 1.4 ± 0.6 0.6 ns 13 0.008

LacZ 64 37.3 ± 6.2 83 2.2 ± 1.1 29

AGAP009201 3 58 56.6 ± 9.4 1.9 0.032 81 ns 9.0 ± 5.4 6.5 0.040 25 ns

LacZ 84 30.5 ± 5.0 87 1.4 ± 0.6 17

AGAP004017 3 62 23.7 ± 5.0 0.7 0.036 69 ns 5.1 ± 1.7 0.6 ns 39 ns

LacZ 59 34.8 ± 5.5 76 8.0 ± 5.2 27

AGAP004928 3 64 32.5 ± 4.9 0.7 0.042 81 ns 3.5 ± 1.7 3.9 ns 24 ns

LacZ 68 45.9 ± 5.8 95 0.9 ± 0.3 19

AGAP004993 4 60 32.7 ± 7.9 0.6 0.002 69 0.0001 11.3 ± 4.4 1.5 ns 33 ns

LacZ 58 54.0 ± 7.5 85 7.3 ± 2.7 39

AGAP003960 3 52 18.7 ± 3.8 0.5 0.044 71 ns 4.0 ± 0.8 0.2 ns 48 ns

LacZ 47 38.5 ± 7.6 78 16.5 ± 7.1 39

AGAP011223 3 51 60.7 ± 12.9 1.4 ns 80 0.0002 9.6 ± 5.3 3.2 ns 22 0.018

LacZ 47 44.8 ± 11.5 96 3.0 ± 1.1 36

AGAP003879 3 76 40.2 ± 8.3 0.9 0.011 69 0.026 8.6 ± 2.6 1.5 0.003 40 0.0018

LacZ 71 44.3 ± 5.6 87 5.9 ± 4.3 19

AGAP012034 3 37 70.7 ± 25.9 2.0 ns 76 ns 0.7 ± 0.7 0.3 0.005 4 0.0001

LacZ 47 35.9 ± 9.5 81 2.6 ± 0.9 29

Gene KD: ID of silenced genes (VectorBase Gene IDs)
Rep.: number of independent replicates
N.: sample size (total number of mosquitoes across replicates)
Mean ± SE: arithmetic mean ± standard error (SE) of parasite intensities per midgut in each group after pooling replicate data
Fd: fold difference, ratio between mean oocyst (or melanised ookinete) value of a specific gene KD and the LacZ KD
P§: statistical significance according to Mann–Whitney U-Test on oocyst or melanised ookinete intensity of pools (gene-specific KD vs LacZ KD)
%: prevalence (infected mosquitoes/total mosquitoes) of developing oocysts or melanised ookinetes calculated as geometric means of the prevalence of
each replicate
P¶: statistical significance according to Fisher’s Exact Test on oocyst or melanised ookinete prevalence (gene-specific KD vs LacZ KD)
° SNAP_ANOPHELES00000017730
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(AGAP007629, Q9U3U7) were shown to promote oo-
cyst development in the mosquito midgut, possibly by
inhibiting their melanotic encapsulation [19].
AGAP011223 encodes the fibrinogen-related FBN8

(also known as FREP57) that is shown to play a role in
anti-Plasmodium defence [20]. We previously demon-
strated that FBN8 promotes phagocytosis of bacterial
bio-particles [5], highlighting the complex networks
regulating mosquito innate immunity.
AGAP003879 encodes a vesicular-type ATPase, a

transmembrane protein involved in several cellular pro-
cesses [21]. V-ATPase utilizes ATP to actively transport
H+, regulating osmotic changes in mosquito cells and
osmoregulatory tissues, including the stomach, malpig-
hian tubules, gut and rectum. A role of a V-ATPase in
Plasmodium infection in Aedes and Anopheles was previ-
ously suggested, since the typical distribution of oocysts in
the posterior half of the midgut overlaps with the spatial
distribution of V-ATPase-overexpressing epithelial cells
[22]. We previously showed that KD of V-ATPase reduces
phagocytosis of E. coli bio-particles [5]. Here we reveal for
the first time that KD of V-ATPase decreases the oocyst
intensity and prevalence. It remains to be elucidated
whether this effect of V-ATPase is caused by altered cellu-
lar equilibrium of water and ions (as for phagosome

acidification and maturation) or by more conventional
immune mechanisms.
Finally, AGAP012034 encodes a potential new member

of the subfamily B of CLIP-domain serine proteases. The
role of CLIPBs and their putatively inactive homologs,
CLIPAs, as activators or suppressors of the An. gambiae
melanisation response against P. berghei is well known
[23]. AGAP012034 maps to a genomic cluster of four
highly conserved CLIPBs, including CLIPB20 that is reg-
ulated after Serratia marcescens infection [24].
In conclusion, our results identify 10 novel regulators

of the haemocyte immune response to Plasmodium. A
complex role in different immune responses is discov-
ered for some proteins (for instance, V-ATPase and
LL6), as it arises by comparing results of this work with
KD phenotypes from previous screens [5]. Finally, add-
itional proteins such as the storage protein hexamerin
and the V-ATPase are associated for the first time with
the mosquito response against the malaria parasite.

Parasite melanisation is linked to parasite killing
We assessed the overall correlation of the prevalence of
oocysts and melanised ookinetes across the dataset. By
sorting one of the two phenotypes from highest to lowest,
we observed a clear trend of anti-correlation between the

Fig. 1 Correlation between prevalence of live oocysts and melanised ookinetes. A. Oocyst prevalence data from the first round of screening of 39
dsRNA targeting 37 genes sorted from highest (100 %) to lowest (37.50 %). Linear regression and correlation between prevalence of live oocysts
and melanised ookinetes assessed in: B, 22 groups of mosquitoes injected with dsLacZ, which were used as controls in the four rounds of screenings
(correlation coefficients: Pearson r: −0.1686; Spearman r: −0.2376, P = 0.2869); C, 10 groups of mosquitoes injected with dsRNAs that showed effects on
parasite development (correlation coefficients: Pearson r: −0.6351; Spearman r: −0.6991, P = 0.027) and D, 29 groups of mosquitoes injected
with dsRNAs that did not show effects on parasite development (correlation coefficients: Pearson r: −0.1912; Spearman r: −0.2727, P = 0.1523).
Insets in graphs B, C and D report Pearson R2 values and the relative statistical significance (P)
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two variables (Fig. 1a) that led us to partition the data ac-
cording to whether effects on parasite development were
observed or not. Data obtained in the first round of
screening for 39 dsRNA targeting 37 genes were consid-
ered (Fig. 1a, c and d) as well as data from 22 dsLacZ
injections in the four successive rounds of screenings to
be used as a reference (Fig. 1b). A statistically significant
anti-correlation between the two phenotypes was detected
when genes that produced KD phenotypes were analysed
(Fig. 1c) while no correlation was observed when genes
that did not cause KD phenotypes and dsLacZ controls
were evaluated (Fig. 1b and d). The dual role of melanisa-
tion in both parasite killing and clearance has been well
established [25–27]. Our data corroborate the function of
melanisation as a clearance mechanism that follows
parasite killing by the mosquito immune system. Re-
cently, novel insights into the balance between immune
tolerance and resistance, as well as into the ability of
the innate immune system to recognize and combat dif-
ferent pathogens using different strategies allowed the
definition of innate immunity as a combination of both
microbe clearance (melanisation) and damage control
(pathogen survival) [28].
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