
On the Heegaard Floer Homology of Dehn

Surgery and Unknotting Number

A thesis presented for the degree of

Doctor of Philosophy

from

Imperial College London

by

Julian Charles Gibbons

Department of Mathematics

Imperial College London

180 Queen’s Gate, London SW7 2AZ

JULY 1, 2013



2

I declare that this thesis and all the research it contains are the product of my own

work, and that any ideas or quotations from the work of other people, published

or otherwise, are fully acknowledged in accordance with the standard referencing

practices of the discipline.

Signed: Julian Gibbons



3

COPYRIGHT

The copyright of this thesis rests with the author and is made available under a Cre-

ative Commons Attribution-Non Commercial-No Derivatives licence. Researchers are

free to copy, distribute or transmit the thesis on the condition that they attribute it,

that they do not use it for commercial purposes and that they do not alter, transform

or build upon it. For any reuse or distribution, researchers must make clear to others

the licence terms of this work.

Portions of Chapter 5, including tables, are reproduced in modified form from the

following paper, the authors of which include the author of this thesis:

Pretzel Knots with Unknotting Number One.

First published in Communications in Analysis and Geometry in Volume 21,

Number 2, 2013, published by International Press.

Copyright c© 2013 International Press of Boston, Inc. All rights reserved.



4

To my parents, with love and gratitude.



5

ABSTRACT

In this thesis we generalise three theorems from the literature on Heegaard Floer

homology and Dehn surgery: one by Ozsváth and Szabó on deficiency symmetries in

half-integral L-space surgeries, and two by Greene which use Donaldson’s diagonali-

sation theorem as an obstruction to integral and half-integral L-space surgeries. Our

generalisation is two-fold: first, we eliminate the L-space conditions, opening these

techniques up for use with much more general 3-manifolds, and second, we unify the

integral and half-integral surgery results into a broader theorem applicable to non-

zero rational surgeries in S3 which bound sharp, simply connected, negative-definite

smooth 4-manifolds. Such 3-manifolds are quite common and include, for example, a

huge number of Seifert fibred spaces.

Over the course of the first three chapters, we begin by introducing background

material on knots in 3-manifolds, the intersection form of a simply connected 4-

manifold, Spin- and Spinc-structures on 3- and 4-manifolds, and Heegaard Floer ho-

mology (including knot Floer homology). While none of the results in these chapters

are original, all of them are necessary to make sense of what follows. In Chapter 4,

we introduce and prove our main theorems, using arguments that are predominantly

algebraic or combinatorial in nature. We then apply these new theorems to the study

of unknotting number in Chapter 5, making considerable headway into the extremely

difficult problem of classifying the 3-strand pretzel knots with unknotting number

one. Finally, in Chapter 6, we present further applications of the main theorems,

ranging from a plan of attack on the famous Seifert fibred space realisation problem

to more biologically motivated problems concerning rational tangle replacement. An

appendix on the implications of our theorems for DNA topology is provided at the

end.
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INTRODUCTION

Since its inception in the early 20th century, Dehn surgery has consistently been one

of the most fundamental techniques in the study of 3-manifolds. Its significance is

perhaps best demonstrated by the famous theorem of Lickorish [33] and Wallace [71]

which states that every closed, connected, orientable 3-manifold can be obtained by

±1-surgeries on the components of a link in S3. Since this theorem first appeared,

mathematicians have expended a huge amount of effort trying to understand the

connection between the isotopy class of a link L ⊂ Y and the 3-manifolds resulting

from surgery on L. It is perhaps a reflection of the difficulty this goal poses that,

even many decades on, we are still far from achieving it.

Approximately 40 years ago, Moser posed the following innocuous looking question

[41]. She asked for a list of the lens spaces Y ′ which could be obtained by surgery

on non-trivial knots C ⊂ S3, and for a description of the surgeries (i.e. the knots C

and surgery coefficients p/q) that would yield those lens spaces. As harmless as this

question sounds, its solution has proved quite the opposite. The first half, now known

on its own terms as the lens space realisation problem, had to wait several decades

until a seminal piece of work by Greene in 2010 finally pinned down the correct lens

spaces, while the second half, on the surgeries that produce these manifolds, remains

unclear even today. It has been posited (and is almost universally believed) that the

Berge conjecture answers the problem fully, but a proof of this conjecture continues

to elude us.

The reason Moser’s question is so significant is that, in a very real sense, lens

spaces are the simplest of all closed, connected, orientable 3-manifolds. Given that

Dehn surgery is also one of the fundamental techniques in 3-manifold construction,

Moser’s question is about as simple a version of the following basic and natural

question as one could possibly ask.
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Question 1. Given a 3-manifold Y , which other 3-manifolds Y ′ can be obtained from

Y via surgery? Which knots C in Y (and coefficients) yield Y ′?

Anyone who has ever worked on Dehn surgery has almost certainly considered

this question, at least in passing. The main aim of this thesis is to provide a powerful

new tool for the case when Y = S3, inspired by Greene’s solution to the lens space

realisation problem in [26]. In that paper, Greene was able to use the fact that if

a lens space is obtained by surgery in S3 on a non-toroidal knot, then the surgery

coefficient must be integral (see the famous cyclic surgery theorem of Culler, Gordon,

Luecke, and Shalen [12]). He then used the correction terms of Ozsváth and Szabó

[46] and an approach similar to that of Lisca in [36] to finish off the problem. His

core theorem and its proof make critical use of Donaldson’s diagonalisation theorem

[16].

Written explicitly, Greene’s theorem (Theorem 1.6 from [26]) says that if L(p′, q′)

is a lens space obtained by k-surgery in S3, and if p′/q′ = [b1, . . . , bn]
− in Hirzebruch-

Jung continued fraction notation, then there must exist some matrix A such that

−AAt =




−b1 1

1 −b2 1

1 −b3
. . . 1

1 −bn

−k




,

and whose last row has the form

(
σn σn−1 . . . σ1 σ0

)
,

where the σj are non-negative, non-decreasing integers satisfying σ0 ≤ 1 and σj ≤

σ0+σ1+· · ·+σj−1+1 for all j. This last condition is called the changemaker condition,

since it guarantees that if one has coins of value σj , one can use those coins to make

up any value from zero to their sum. This, it turns out, was more or less sufficient to

10
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solve the lens space problem by some ingenious and difficult combinatorics.

The main theorem of this thesis is a direct generalisation of Greene’s result.

Though the proof must wait until Chapter 4 (see Theorem 4.1.3), we can still quote

it here for comparison. We require p/q = [a1, . . . , aℓ]
− in canonical Hirzebruch-Jung

continued fraction notation, and set n = a1 = ⌈p/q⌉ and p = nq − r.

Theorem 1. Suppose that Y ′ = S3
−p/q(C) for some knot C ⊂ S3 and coprime p, q > 0,

and that −Y ′ bounds a sharp, simply connected, negative-definite smooth 4-manifold

X with intersection form QX . Suppose also that W is the trace of the surgery on C,

and that QW is its intersection form. Then if

d(Y ′, i)− d(S3
−p/q(U), i) = 0

for either (a) one value of i if n is odd; or (b) q− r+1 values of i if n is even, there

exists an integral matrix A such that

−AAt = QX ⊕QW .

In addition, if q 6= 1, one can choose A so that its last ℓ rows are:




σr . . . σ1 1 0

−1 1 . . . 1
. . .

−1 1 . . . 1 0

−1 1 . . . 1




,

where there are exactly ai non-zero entries in rows i = 2, . . . , ℓ, all ±1 as above, and

the first row consists of non-negative integers satisfying σ1 ≤ 1, σ1 ≤ · · · ≤ σr, and

the changemaker condition

σj ≤ σ1 + σ2 + · · ·+ σj−1 + 1

11
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for all j = 2, . . . , r. If instead q = 1, then one can choose A so that its last row is:

(
σ′
r . . . σ′

1 σ′
0

)
,

and the elements of {σ′
j}

r
j=0 satisfy the same relations as those of {σj}

r
j=1 above.

Although the similarities between Theorem 1 and Greene’s theorem should be

obvious, it is worth emphasising the two main advantages which make Theorem 1

more applicable.

1. Our new theorem stipulates that Y ′ is obtained by −p/q surgery for non-zero

coefficients. That is, we are no longer restricted to integral surgeries.

2. The assumption that Y ′ be a lens space is no longer necessary. In Greene’s

proof, the main requirement was that Y ′ be an L-space in the sense of Heegaard

Floer homology (of which lens spaces are examples), but in the stronger form

given above, even this hypothesis is unnecessary. Instead, we have two different

Heegaard Floer-related requirements, neither of which are particularly taxing.

They are satisfied, for instance, by a huge number of Seifert fibred spaces.

It is our belief that Theorem 1 provides a significant new tool for tackling problems

such as Question 1, and we are particularly confident that it will yield good results if

applied to the case when Y = S3 and Y ′ is a small Seifert fibred space. Specifically,

we believe that it is capable of identifying a large proportion of the small Seifert

fibred spaces that result from surgeries on non-toroidal knots in S3. This broader

problem, which subsumes the lens space question posed by Moser, has unsurprisingly

also received considerable attention from the topological community; any resolution,

even if only partial, would potentially prove ground-breaking. We discuss this subject

more towards the beginning of Chapter 6.

Stepping down from these lofty airs to the more grounded level of this thesis, how-

ever, there are many other applications of this theorem. One in particular, presented

in Chapter 5, concerns the unknotting number u(K), an invariant which has attained

a considerable degree of knot theoretic infamy: though easy to define, it often resists

12
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calculation. Indeed, even knots with u(K) = 1 are difficult to detect. Courtesy of

the Montesinos theorem [40], which states that the double branched cover Σ(K) of

a knot K with unknotting number one can be obtained by half-integral surgery on

a knot C ⊂ S3 [40], one common method of proving that u(K) 6= 1 has historically

been to show that the equation

Σ(K) = S3
±D/2(C) (1)

cannot be satisfied for any C ⊂ S3 and D = detK. This idea lies, for instance, at the

heart of Lickorish’s linking form criterion [34], but also underpins more sophisticated

and recent techniques by Ozsváth and Szabó [51] (and others, [24, 45]), techniques

best known for their success in classifying all the alternating knots with ten or fewer

crossings that satisfy u(K) = 1. In fact, it is a generalisation of the correction

term symmetries implied by (1) and described in [51] which underscores the proof of

Theorem 1. In this sense, our work generalises a very powerful existing obstruction

to unknotting number one.

Given the difficulty involved in a straight-out computation of u(K), much of the

work in the area, as hinted above, has followed the general trend of choosing a family

F of knots and classifying those K ∈ F which satisfy u(K) = 1. (There are of course

some notable exceptions, such as the case when F is the family of torus knots, see

Kronheimer and Mrowka [31] and Rasmussen [56].) Examples of this trend include

the 2-bridge knots [28], large algebraic knots [23], knots of genus one [10], and the

alternating 3-braids [24]. The work presented in Chapter 5 is similar, tackling the

notoriously difficult case of the 3-strand pretzel knots P (p, q, r). In this way, our

applications of Theorem 1 and its underlying correction term symmetries represent

significant progress in and of themselves: the pretzels P (p, q, r) have not only defied

almost all the classical obstructions to unknotting number one, but also represent,

to the best of the author’s knowledge, the first time the correction term symmetries

have been directly applied to an infinite family of knots.

It should be stated at this point that Greene, in his paper [24], had already

established a version of Theorem 1 in the case q = 2, though still with the very

13
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restrictive requirement that Y ′ be an L-space. While he was able to use it to classify

the alternating 3-braids with u(K) = 1, it was also the L-space requirement which

forced him to consider alternating, rather than general, 3-braids. Our theorem, on

the other hand, is true sans this requirement. In short, Theorem 1 represents a

generalisation of the main theorems of three papers: two by Greene [26, 24], and one

by Ozsváth and Szabó [51].

There are other applications of Theorem 1 beyond the q = 2 case discussed above.

In fact, as we shall see towards the end, it is useful in a large number of rational

tangle replacements, and provides a new and fundamentally different obstruction to

unknotting number one, quite distinct from those revolving around (1). We leave a

detailed discussion of these subjects to the sixth and final chapter.

Organisation

This thesis is divided into six chapters according to a linear structure. The first

three provide what is essentially background material: preliminaries about knots,

Dehn surgery, and 3- and 4-manifolds, but also an introduction to Heegaard Floer

homology and its relative, knot Floer homology. After that, the rest of the material

is new work.

Chapter 4 introduces the main theorem discussed above, proving our matrix-based

obstruction to Dehn surgeries in S3. Its proof occupies the majority of the chapter

and draws extensively on the material set up beforehand. If the reader is pressed for

time or wishes to skip this proof, little harm will come to him or her in later chapters

provided they have digested the theorem’s statement.

Chapter 5 then presents the most significant application of Theorem 1 we have

achieved to date: a near-complete classification of the pretzel knots P (p, q, r) with

unknotting number one. This question, significant both mathematically and bio-

logically, is discussed in some detail, before the final chapter, Chapter 6, provides

further applications of the theorems of Chapter 4. An Appendix is provided on their

biological implications.

14
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CHAPTER 1: KNOTS AND

3-MANIFOLDS

The fundamental ideas and definitions required to make sense of our main theorem are

collected together in this first chapter, which covers the rudiments of knot theory and

Dehn surgery. Since the majority of the material in this chapter should be familiar

to most low-dimensional topologists, the treatment we provide here is sparser on

proofs than the treatment in later chapters dedicated to our new results. It should

be regarded only as a summary of the relevant material; we will not, for example,

explain the names of various common knots. The chapter is biased towards the tools

relevant for unknotting number since this invariant will be of central focus in Chapter

5.

Good references on similar material are Lickorish [35] and Rolfsen [58]. The latter

is particularly helpful for the sections on Dehn surgery.

1.1 Preliminaries

When we speak about a knot K in a 3-manifold Y , we will technically mean a smooth,

oriented embedding K : S1 → Y , but we will also use the word to refer to the image

of this embedding or its equivalence class modulo ambient isotopy. These isotopy

classes may also be called knot types. Throughout the thesis, Y should be taken

to be a closed, connected, oriented 3-manifold; any deviation from this convention,

in particular to the case when Y has boundary, will be noted as appropriate. The

smoothness assumption on K ensures that we avoid pathological examples (e.g. wild

knots) which might possess an infinite number of crossings or exhibit fractal-like self-

replication. Our knots, without exception, will always be tame (see [58]).

Without a doubt, the most common way of identifying knot types is with algebraic

or topological invariants. These range from the very coarse (such as the homology
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class of a knot in H1(Y ); consider, for example, the case Y = S3), to the so-called

perfect knot invariants which give a 1-1 classification of knots by isotopy class. The

following theorem by Gordon and Luecke provides us with an example of the latter.

As one might expect, it is very difficult to manipulate. Since it will be relevant for

our purposes, we spell it out explicitly.

Theorem 1.1.1. Let K ⊂ S3 be a knot, and let N(K) be a tubular neighbourhood of

K. Then K is classified by the homeomorphism class of its knot complement M(K),

defined by

M(K) := S3 \N(K).

Seen in this way, the unknot U , which is characterised by the property that it

bounds a disc in S3, is the unique knot K ⊂ S3 with solid torus complement;

it is therefore (after some additional reasoning) also characterised by the property

π1(M(U)) = Z. On the basis of this evidence, one might hazard even further that it

is classified by the property H1(M(U)) = Z, but a quick application of the Mayer-

Vietoris sequence finds that this equality holds for every K ⊂ S3.

Naturally, it is worth asking whether or not Theorem 1.1.1 remains true for ℓ-

component links L (where ℓ ≥ 2). As it turns out, however, these latter objects

(defined as disjoint unions of ℓ knots) do not posses unique complements, and explicit

examples of homeomorphic complements belonging to non-isotopic links are known to

exist. Hence, even ifM(K) is a perfect knot invariant, it is not a perfect link invariant.

To the best of the author’s knowledge, the search for a perfect link invariant besides

the trivial one (i.e. the links themselves) is currently well beyond our reach.

Given the computational difficulties involved in defining an invariant using the

embedding of K or L itself, the more usual way of studying knots (or links), at

least in S3, is via knot diagrams : projections of K into R2 which are at most 2-1

at isolated points and which remember, at the double-points, which arc passed over

which. The double-points are referred to as crossings, and we attribute signs to each

crossing according to the conventions in Figures 1.1(a) and 1.1(b). Figures 1.1(c)

and 1.1(d) also show the different resolutions possible at that crossing (only one of

which is compatible with the knot’s orientation). A knot is said to be alternating

17
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(a) (b) (c) (d)

Figure 1.1: (a) A positive crossing; (b) a negative crossing; (c) a resolution compatible
with the orientation; and (d) a resolution incompatible with the orientation.

if it possesses a diagram D such that by following the strands in D, one alternates

between over and under crossings.

Using these diagrams, we obtain two easy invariants. The first, called the crossing

number c(D) of a diagram D for K, is defined to be the number of crossings in D;

the second, called the unknotting number u(D), is defined to be the minimal number

of crossings in D that must be changed in order to obtain a diagram of the unknot.

From these diagrammatic calculations, we define the bona fide knot invariants

c(K) := min
D
{c(D)|D is a diagram for K}

u(K) := min
D
{u(D)|D is a diagram for K},

called respectively the crossing and unknotting numbers of K. Diagrams D for which

c(D) = c(K) are called minimal diagrams. Although one might expect that if D

is minimal it realises the unknotting number (i.e. that u(D) = u(K)), this is often

not true, and in general c(K) and u(K) are difficult to compute. A more detailed

discussion of u(K) is provided in Chapter 5.

Since S3 has an orientation reversing homeomorphism (reflection), one of the

most natural operations we can perform on a knot K is the taking of its mirror

image, denoted K. The diagram for K is identical to K except that all crossings

are reversed (sign included); clearly c(K) = c(K) and u(K) = u(K). One must be

careful, however, of falling into the trap of thinking that ι(K) = ι(K) for any invariant

ι and any knot K, unless of course K = K. In this very special circumstance, K is

said to be achiral ; otherwise, it is chiral. The operation of connect sum is defined

by taking two knots K1 and K2 separated by a 2-sphere and performing the usual

manifold connect sum across the 2-sphere. This produces a well-defined knot K1#K2.
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A knot K is said to be prime if the equation K = K1#K2 implies that one of K1 or

K2 is the unknot.

1.2 Seifert Invariants

A remarkable property of knots K ⊂ S3 (or, more generally, of knots K in integral

homology spheres) is that there always exists an orientable surface F , called a Seifert

surface for K, such that ∂F = K. Indeed, this can easily be proved in S3 by the

following algorithm due to Seifert:

1. Orient K and fix a diagram D for K;

2. Resolve all the crossings in D in the orientation-compatible way so that what

remains is a collection of oriented circles, each of which bounds a disc with

compatible orientation;

3. Glue the discs from the previous step together with half-twisted bands to recover

the crossings, again matching orientation.

The result should be an oriented surface F with K as boundary. One must be careful,

however, in restricting one’s attention to such surfaces, since it is not true that this

algorithm exhausts all the possible Seifert surfaces for K.

Once we have chosen a Seifert surface F for K, a number of invariants of K follow

naturally. We begin with the most classical.

Definition 1.2.1 (Signed intersection number). Let A,B be two complementary di-

mensional oriented submanifolds of a compact, oriented manifold M . Moreover, sup-

pose that A and B intersect transversally (by isotoping if necessary). Then for all

x ∈ A ∩ B, define

ǫ : A ∩ B −→ {±1}

by the equation

TxA⊕ TxB = ǫ(x)TxM.
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The value ǫ(x) is called the sign of the intersection point x. The (signed) intersection

number between A and B is the value

A ·B :=
∑

x∈A∩B

ǫ(x),

which is finite by compactness of M .

Definition 1.2.2 (Linking number). Let (K,K ′) be a 2-component link in S3 and let

F be a Seifert surface for K ′. Then the linking number of K and K ′ is defined as

lk(K,K ′) := K · F.

It can be verified that this definition is independent of the chosen Seifert surface F ,

and that lk(·, ·) is symmetric.

The verification that lk(K,K ′) is independent of F considers the homology class

[K] ∈ H1(M(K ′)) = Zµ′ (where µ′ is a generator). It is not too difficult to see that

[K] = ±(K · F )µ′ (the sign ambiguity arises from the ambiguity in our choice of

generator µ′). Since [K] is clearly independent of F , so too must K · F = lk(K,K ′)

be.

Having defined the linking number, it now becomes possible to define a symmetric

bilinear form, called the Seifert form of F , using generators α, β of H1(F ). Explicitly,

since α, β are generators, they are represented by embedded closed, oriented curves

on F which we shall also refer to as α, β. Pushing β slightly away from F according

to the normal specified by the orientation on F , we obtain a second curve β+, disjoint

from α, and may therefore define the following bilinear form:

VF : H1(F )×H1(F ) −→ Z

(α, β) −→ lk(α, β+).

Note that VF is not a symmetric form, but can by symmetrised by taking VF + V t
F ;

this symmetrised form is the one we will refer to as the Seifert form of F .
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It should be pointed out that the Seifert form is not an invariant of K. For

example, it is possible to change the rank of H1(F ) by taking a connect sum with

another, closed surface F ′. However, one can check that this move is equivalent to

taking a direct sum with g copies of ±

(
0 1

1 0

)
, where g is the genus of F ′, and that

it leaves both the signature and determinant of the Seifert form invariant (the latter

up to sign). This is one example of the fact that even though the Seifert form may

not be a knot invariant, many of its associated algebraic invariants are.

Definition 1.2.3 (Knot signature and determinant). Let K ⊂ S3 be a knot with

Seifert surface F . Then the signature, σ(K), and the determinant, detK, of K are

defined by

σ(K) := sig(VF + V t
F ) detK :=

∣∣det(VF + V t
F )
∣∣ .

These are independent of the choice of surface F , as well as the basis chosen for

H1(F ).

Of these two, the signature is the more useful for unknotting number computations

since it can be used to give a lower bound for u(K). Explicitly, 1
2
|σ(K)| ≤ u(K),

which can be proved by comparing Seifert surfaces before and after a crossing change.

Theorem 1.2.4. Suppose that K ′ can be obtained from K by changing a crossing of

sign ǫ. Then

σ(K ′) ∈ {σ(K), σ(K) + 2ǫ}.

In particular, if K has unknotting number one, then we can choose K ′ so that it

is the unknot U . Since the unknot bounds a disc F with trivial H1(F ), it follows that

σ(U) = 0. The following corollary is immediate.

Corollary 1.2.5. Suppose that K ⊂ S3 has unknotting number one, realised by

changing a crossing of sign ǫ. Then σ(K) ∈ {0,−2ǫ}.

Because of this result, the signature is often the first port of call when investigating

unknotting number. We will follow this trend when we attempt to classify the 3-strand

pretzel knots with unknotting number one in Chapter 5.
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1.3 Covering Spaces

As useful as the signature and determinant are for a variety of purposes, they are

far from the only invariants afforded us by Seifert surfaces. Indeed, suppose that

K ⊂ S3 is a knot with Seifert surface F , and suppose that Si is a copy of M(K) cut

along F for all i ∈ Zm (where m ∈ N). Then Si has two boundary components, each

homeomorphic to F , which we label S±
i according to the orientation of F .

Definition 1.3.1 (Cyclic covers of the knot exterior). Using the notation above, we

define the 3-manifold Xm(K) by taking the union
⋃

i∈Zm
Si and gluing S+

i to S−
i+1 for

all i. The resulting manifold is called the m-fold cyclic cover of M(K), and is indeed

a covering space of M(K) with deck transformation group Zm.

If we repeat the above construction with Z instead of Zm, then we obtain the

infinite cyclic cover X∞(K) of M(K) with deck transformation group Z.

The procedure described above is illustrated diagrammatically form = 7 in Figure

1.2. Significantly, we observe that ∂Xm(K) = S1 × S1, and that the meridian µ

of ∂M(K) (the curve which generates the kernel of the homology map induced by

∂N(K) →֒ N(K)) lifts to a portion of the meridian µ̃ in ∂Xm(K) (the curve illustrated

in red in Figure 1.2). If we then attach a solid torus T = S1 ×D2 to Xm(K) along

their boundaries and extend the covering to

ρ : Xm(K) ∪ T −→M(K) ∪N(K) = S3

via the map T → N(K) ≃ T given by (w, z) 7→ (w, zm/ |z|m−1) (in complex number

notation, taking the limit as z → 0), then ρ becomes an m-fold cover branched over

K ⊂ S3.

Definition 1.3.2 (Double branched cover). Set m = 2 in the above discussion. Then

the closed double cover of S3 described above, branched over K, is called the double

(branched) cover of K, denoted Σ(K).

From this description, it is fairly clear that Σ(U) = S3. Other double branched

covers will be discussed later, since they are of particular importance to the unknotting
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Figure 1.2: A diagrammatic representation of X7(K). The knot K can be imagined
as sitting at the centre of the toroidal hole outlined in red.

number of K. In the meantime, we observe that double branched covers satisfy the

following properties:

1. Σ(K) comes equipped with an obvious involution h : Σ(K)→ Σ(K) such that

Σ(K)/h = S3 and Fix(h) = K. This map characterises Σ(K) and its existence

is sometimes used to define Σ(K);

2. Any 3-manifold Σ(K) satisfying the alternative definition just given is unique

(that is, there is only one double branched cover Σ(K) for any knot K ⊂ S3).

This is established in Section 10.F of Rolfsen [58];

3. H1(Σ(K)) is of order detK, which is odd. This can be proved by applying the

Mayer-Vietoris sequence to the decomposition Σ(K) = S1 ∪ S2 (see Theorem

8.D.1 of Rolfsen [58]); and

4. All of this can be repeated for links instead of knots, giving us a unique Σ(L)

for each link L. Once we introduce tangles T later in Section 1.5.2, the same

can be said of Σ(T ).

Although Σ(K) will be our main concern through most of the thesis, we conclude

this section with some remarks on the case m =∞ from above.

Theorem 1.3.3 (Alexander module and ideals). Let X = X∞(K) for some knot

K ⊂ S3. Then H1(X) is a knot invariant called the Alexander module of K, and is
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presented by any matrix representing tVF − V
t
F . As such, the elementary ideals Ai of

A := Z[t, t−1] generated by the (n+ 1− i)× (n+ 1− i)-minors of tVF − V
t
F are also

knot invariants, called the Alexander ideals.

The first Alexander ideal in particular is very familiar to knot theorists. If we

symmetrise the generating polynomial of A1, the result is the Alexander polynomial

of K, denoted ∆K(t) := det(t
1
2VF − t

−
1
2V t

F ), and has the general form

∆K(t) = a0 +
∞∑

i=1

ai(t+ t−1),

where a0 is odd (see Corollary 6.11 of Lickorish [35]). Phrased this way, we see that

detK = |∆K(−1)| is odd, and hence that the size of H1(Σ(K)) is also odd by the

third property above.

This connection aside, our main interest in the Alexander ideals will later rest on

their relevance to unknotting number via the theorem below. Since the proof requires

more technology than we have already set up, we refer the reader to Theorem 7.10 in

Lickorish [35]. The main idea behind the proof goes back to Nakanishi [43].

Theorem 1.3.4. Let K ⊂ S3 be a knot. Then if A/Ai 6= 0, it follows that u(K) ≥ i.

1.4 Dehn Surgery

So far, we have described at least one method for producing 3-manifolds out of knots

in S3, namely the m-fold branched covers, but this is far from the only possible 3-

manifold recipe involving knots. As foreshadowed in the Introduction, it is a second

construction, Dehn surgery, that is most important for this thesis.

Before giving a definition, some preliminaries are in order. To motivate the reader

through these, we give the gentle spoiler that the general idea behind Dehn surgery on

K ⊂ Y is the excavation of a tubular neighbourhood of K followed by the gluing-in

of replacement solid torus.
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1.4.1 Anatomy of a Torus

Consider a tubular neighbourhood N(K) ⊂ Y of a knot K, and observe that N(K) is

homeomorphic to a standard solid torus. Thus ∂N(K) ≃ S1×S1, and H1(∂N(K)) =

Z⊕ Z. In order to identify curves on ∂N(K), which are classified by their homology

classes, we would ideally like to specify our choice of generators in as canonical a

way as possible. One generator is always given to us: the inclusion ∂N(K) →֒

N(K) induces a map H1(∂N(K)) → H1(N(K)) = Z whose kernel Z is generated

by an element µ ∈ H1(∂N(K)). This choice, unique up to sign (and therefore as

an unoriented curve), is called the meridian of K. To complete our basis, we define

a longitude for K as any other homology class λ such that {µ, λ} forms a basis for

H1(∂N(K)), and µ · λ = 1.

It is clear that the longitudes of K are in bijection with Z, for if λ is a generator,

then so too is pµ+λ for all p ∈ Z. A more subtle point, however, is the fact that none

of these λ are canonically preferred over the others; a specification must be made.

We say that a knot K is framed once a particular longitude λ has been chosen, and

we call this choice of λ the framing of K.

The one exception to the previous paragraph is the following situation. Suppose

Y is an integral homology sphere. Then there is a portion of the Mayer-Vietoris

sequence which reads

0 −−−→ H1(∂N(K)) −−−→ H1(N(K))⊕H1(Y \ IntN(K)) −−−→ 0,

and from this we can conclude that H1(Y \ IntN(K)) = Z, generated by the image

of µ, and that the kernel of the map H1(∂N(K))→ H1(Y \ IntN(K)) is also Z. This

kernel is generated by a distinguished longitude λ0 called the canonical longitude of

K. Since µ was only determined up to sign, so too is λ0, though its orientation

relative to µ is determined by the equation µ · λ0 = 1.

An alternative way of realising this canonical longitude uses the following trick: let

F be a Seifert surface for K, and let λ0 be the curve ∂N(K)∩F . Then λ0 represents

the canonical longitude, at least up to orientation, since it is null-homologous in

H1(Y \ IntN(K)) and wraps once around K.
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1.4.2 Definition and Properties

By now, we are finally ready to define Dehn surgery.

Definition 1.4.1 (Dehn surgery on a knot). Let K ⊂ Y be a knot with meridian

µ and framing λ (if Y is an integral homology sphere, take λ to be the canonical

longitude). Then the operation gluing a generic solid torus T to Y \ IntN(K) via

the boundary homeomorphism which sends µT to the knot specified by ±(pµ+ qλ) on

∂N(K) = −∂(Y \ IntN(K)) is called p/q-(Dehn) surgery on K, and the resulting

manifold is denoted Yp/q(K). The extended rational number p/q ∈ Q∗ := Q ∪ {∞} is

called the (surgery) coefficient of K (we set 1/0 =∞).

Definition 1.4.2 (Kirby diagram). If K ⊂ S3 is a canonically framed knot with

surgery coefficient p/q, we call the pair (K, p/q) a Kirby diagram for S3
p/q(K). We

consider Kirby diagrams equivalent if their associated 3-manifolds are homeomorphic

as oriented manifolds.

Before discussing any of the basic properties this construction enjoys, some re-

marks on the definition are in order. First off, notice that while the homeomorphisms

h : ∂T → ∂N(K) between 2-tori are classified up to isotopy by elements of SL(2;Z),

the 3-manifold determined by such h depends only on the image of µT in ∂N(K), for

what remains thereafter is an essentially unique gluing of a 2-disc. Stated differently,

the 3-manifolds obtained by considering general homeomorphisms h are classified

by unoriented knots in ∂N(K), or by the coprime integers ±(p, q) described above.

Second, although µ was defined only up to orientation, since the orientation of λ is

determined by µ, all ambiguities are removed by forming the extended rational num-

ber p/q ∈ Q∗. Thus, the definition of Dehn surgery given above genuinely accounts

for all possible h. And third, observe that as oriented curves on ∂N(K), µ and λ

satisfy µ · λ = 1; as oriented curves on ∂(Y \ IntN(K)) = −∂N(K), they instead

satisfy µ · λ = −1.

Proposition 1.4.3. Dehn surgery on K ⊂ Y satisfies the following properties.

1. Y∞(K) = Y for all K ⊂ Y ;
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2. If Y = S3, then −S3
r (K) = S3

−r(K);

3. If Y is an integral homology sphere, then H1(Yp/q(K)) = Zp.

Proof. In order:

1. To construct Y∞(K), we map µT to µ, and thus are merely refilling the excavated

tubular neighbourhood of K. This clearly recovers Y .

2. Reflect S3, mapping K to K and reversing the orientation on µ. However,

since the orientation on S3 has also been reversed, our insistence that µ · λ = 1

preserves the sign of λ, whence r becomes −r. The result follows.

3. We consider the Mayer-Vietoris sequence:

H1(∂T )
α

−−−→ H1(T )⊕H1(Y \ IntN(K)) −−−→ H1(Yp/q(K)) −−−→ 0,

in which α(µT ) = (0,±pµ) and α(λT ) = (λT , 0). From this, we can see that if

Y is an integral homology sphere, H1(Y \ IntN(K)) = Zµ, whence

H1(Yp/q(K)) =
H1(T )⊕H1(Y \ IntN(K))

imα
=

ZλT ⊕ Zµ

〈λT , pµ〉
= Zp,

as required.

1.4.3 Kirby Calculus

Now that we have defined Dehn surgery, several very important questions immediately

spring to mind. To what extent can a closed, connected, orientable 3-manifold Y be

written as a surgery in S3? Can every such 3-manifold be obtained by surgery on a

knot? To what extent is that surgery unique? The third part of Proposition 1.4.3 tells

us that any manifold with non-cyclic H1(Y ) cannot be obtained by a single surgery,

but what happens if we allow surgery on multiple-component links? Does one obtain

a different answer? Before investigating these questions, one must first make more

precise what one means by surgery on a link.
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Definition 1.4.4 (Dehn surgery on a link). Suppose that L is an ℓ-component link in

Y , that its components K1, . . . , Kℓ are labelled in an arbitrary but fixed way, and that

we have given each Ki a framing λi (canonically, if possible) and surgery coefficient ri.

Then we make the following inductive definition, performing all surgeries in tubular

neighbourhoods N(Ki) of sufficient thinness that they are pairwise disjoint.

Let Mi = S3
r1,...,ri

(K1, . . . , Ki) be the result of surgery on K1, . . . , Ki, and define

Mi+1 as the result of ri+1-surgery on Ki+1 ⊂Mi (thinking of λi+1 ⊂Mi). Then

S3
p1/q1,...,pℓ/qℓ

(K1, . . . , Kn) :=Mn.

Definition 1.4.5 (Kirby diagram of a link). A Kirby diagram for S3
r1,...,rn

(K1, . . . , Kn)

is the collection {(K1, r1), . . . , (Kn, rn)} of canonically framed knots Ki together with

coefficients ri. We consider Kirby diagrams equivalent if their associated 3-manifolds

are homeomorphic as oriented manifolds.

Because the Ki are disjoint, this definition is independent of the labelling of the

Ki.

Definition 1.4.6 (Linking matrix). Suppose that we have a (perhaps non-canonically)

framed link L = (K1, . . . , Kℓ) ⊂ S3. Suppose also that the framing on Ki is λi =

niµi + λ0i , where λ
0
i is the canonical framing. Then the linking matrix of L is the

matrix whose (i, j)-th entry is lk(Ki, Kj) if i 6= j or ni otherwise.

As a remark, observe that since λ0i sits on a Seifert surface for Ki, we must have

lk(Ki, λ
0
i ) = 0. Moreover, as H1(M(Ki)) is generated by the meridian µi (see our

remarks after Definition 1.2.2), it follows that lk(Ki, λi) = ni. Thus, since λi ∼ Ki,

we can view the diagonal entries of the linking matrix as the “self-linking numbers”

determined by the framing of the corresponding knots. If the framing is canonical on

all components of L, then the diagonal is zero.

Allowing for multiple surgeries in this way, the answer to our question about which

3-manifolds can be obtained by surgery on knots and links is given by the following

famous theorem of Lickorish [33] and Wallace [71].
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Theorem 1.4.7 (Lickorish-Wallace). Let Y be a closed, connected, orientable 3-

manifold. Then there exists some link L ⊂ S3 such that Y is the result of surgery on

L. Moreover, we can ensure that all the components of L are unknots, and that the

surgery coefficients are ±1.

The implications of this theorem are huge: most strikingly, Dehn surgery in S3

provides us with a means of studying all closed, connected, orientable 3-manifolds,

provided we can identify the associated Kirby diagrams. With this caveat, our second

question on the uniqueness of surgery presentations becomes even more pertinent. To

answer it, we will need the notion of Dehn twisting.

Definition 1.4.8. Let U ⊂ S3 be an oriented unknot spanning a disc D and L ⊂ S3

an oriented link disjoint from U . Then we say that we have performed a +1-Dehn

twist around U if we cut L at the points of L ∩D, apply a full rotation to L within

a [−1, 1]-neighbourhood of D (in the direction specified by the orientation on U), and

reglue the severed ends.

A k-Dehn twist around U is an application of k Dehn twists around U , where a

negative number k indicates that we have twisted L in the opposite direction to U a

total of −k times.

This procedure is illustrated in Figures 1.3(a), 1.3(b), and 1.3(c). It is just one ex-

ample of the many possible manipulations we can make to a Kirby diagram, together

referred to as the Kirby calculus, which leave the resulting manifold unchanged. The

following theorem, due originally to Kirby [29] and later strengthened by Rolfsen [59],

illustrates a complete set of such moves.

Theorem 1.4.9. Two Kirby diagrams are equivalent if and only if they are related

by a sequence of the following operations:

1. Isotopy within S3;

2. Addition or deletion of components with coefficient ∞;
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Figure 1.3: (a) The set-up for a Dehn twist; (b) our knots after a +1-Dehn twist; and
(c) our knots after a −1-Dehn twist.

3. Dehn twists about unknots U , provided that we change the coefficient r on each

knot K in the Kirby diagram to r′ ∈ Q∗ defined as follows:

r′ :=




r + k · lk(K,U)2 if K 6= U

1
k+r−1 if K = U

.

Although every other move can be reduced to some combination of these three,

there are nevertheless some particularly useful combinations worth keeping in mind.

The one below is especially important (its colloquial name notwithstanding).

Definition 1.4.10 (Slam dunk). Suppose {(K,n), (U, r)} is a Kirby diagram such

that U is a meridian of K and n ∈ Z, as shown in Figure 1.4(a). Then an equivalent

Kirby diagram is provided by (K,n − 1/r), shown in Figure 1.4(b). The move from

the first diagram to the second is known as slam dunking, and the inverse move as

reverse slam dunking.

The two Kirby diagrams in Figures 1.4(a) and 1.4(b) are equivalent since U , being

a meridian ofK, is equivalent to a longitude ofK after we have performed the integral

surgery on K. Hence, the second surgery, on U , is equivalent to a second surgery on

K. One must simply work out the modified coefficient.

The main reason that we will be interested in slam-dunking is the following corol-

lary. We recall that the Hirzebruch-Jung continued fraction [a1, . . . , an]
− is defined
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Figure 1.4: (a) A Kirby diagram before slam dunking; and (b) the same Kirby diagram
after slam dunking.

inductively by

[a1, a2]
− := a1 −

1

a2
[a1, . . . , an]

− = a1 −
1

[a2, . . . , an]−
,

and that if

p/q = a1 − r1 where 0 ≤ r1 < 1; and

r−1
i = ai+1 − ri+1 where 0 ≤ ri+1 < 1.

for all i ≥ 0 (i.e. the ai are obtained from a modified Euclidean algorithm), then

[a1, . . . , an]
− is called the canonical Hirzebruch-Jung continued fraction for p/q.

Corollary 1.4.11. Suppose that Y = S3
p/q(K). Then Y has a Kirby diagram

{(K, a1), (U2, a2), . . . , (Un, an)},

where U2, . . . , Un are unknots, U2 is a meridian for K, and Ui+1 a meridian for

Ui. The integers a1, . . . , an are taken from any Hirzebruch-Jung continued fraction

expansion p/q = [a1, . . . , an]
−.

Proof. We reverse slam dunk the diagram (K, p/q), peeling off unknots one by one

until all the coefficients are integers. The claim about the coefficients of K,U2, . . . , Un

follows by construction.
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1.5 Examples of Dehn Surgery

To conclude this chapter, it is worth pausing to discuss some examples of Dehn

surgery: so far, we have only given abstract definitions, precious few of which have

been made concrete. These examples will be the central objects of interest in Chapters

4 and beyond.

1.5.1 Lens Spaces

The family of 3-manifolds below, which includes S3, consists of the most fundamental

closed, connected, orientable 3-manifolds one can find.

Definition 1.5.1 (Lens spaces). Let U ⊂ S3 be the unknot. The lens space L(p, q)

is defined by

L(p, q) := S3
−p/q(U).

A quick calculation using the van Kampen theorem tells us that π1(L(p, q)) = Zp,

so these 3-manifolds are exceptional in that they have finite cyclic fundamental group.

Since they are obtained by Dehn surgery on the unknot in S3, they are in some sense

the simplest 3-manifolds; it is therefore astonishing that Moser’s question (see the

Introduction) from some four decades ago still remains unanswered. It is a problem

worth keeping in mind for Chapter 4 when we prove our main theorem.

1.5.2 Rational Tangle Calculus

Aside from the description in Definition 1.5.1, lens spaces also arise as the double-

branched covers of the so-called 2-bridge, or rational knots. Though there are many

equivalent definitions of these knots, the easiest one for our purposes uses the theory

of tangles.

Definition 1.5.2 (Tangles). A tangle is a pair (B, T ) (or merely T , as convenient)

consisting of a closed 3-ball B with four marked points on the boundary, NE, SE, SW,

and NW, and a pair of embedded arcs T such

T ∩ ∂B = ∂T = {NE, SE, SW,NW}.
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Figure 1.5: (a) A (rational) tangle T (notice the disc D which separates the two arcs);
(b) a tangle sum T1 + T2; and (c) the numerator closure N(T ) of a tangle T .

If, moreover, (B, T ) ≃ (D2×I, {∗, ∗}×I), then we say that T is a rational tangle

(see Figure 1.5(a)). We consider tangles equivalent up to isotopy relative to ∂T , and,

just as with knots, we define a double branched cover Σ(T ) over B.

Definition 1.5.3 (Tangle operations). The tangle sum T1 + T2 of two tangles T1, T2

is the tangle obtained by joining the NE and SE points of T1 to the NW and SW points

of T2 respectively and including B1 ∪ B2 inside a larger ball B such that ∂(T1 + T2)

consists of the NW and SW points of T1 and the NE and SE points of T2 (see Figure

1.5(b)).

We form the numerator closure N(T ) of a tangle T by adding arcs between the

NE and NW points and the SE and SW points. If T is a rational tangle, then the

resulting knot or link is called a rational or 2-bridge knot or link (see Figure 1.5(c)).

Since the name “2-bridge knot” is more common in the literature, in later chapters

we will primarily refer to rational knots as 2-bridge knots. However, for the moment

we prefer the name “rational knot” (and similarly for links).

One of the remarkable properties of rational tangles (and, indeed, the justification

for their name) is the fact that they are in 1-1 correspondence with the extended

rational numbers [9]. To describe this bijection, we begin with a sequence of integers

(a1, . . . , an), where n ≥ 1, and construct on the one hand an associated element of
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(a) (b) (c) (d) (e)

Figure 1.6: (a) The 0-tangle; (b) the ∞-tangle; (c) a positive twist (horizontal and
vertical); (d) T (−2, 2, 1); and (e) T (2, 1, 1).

Q∗ by taking the continued fraction [an, . . . , a1]
+ defined inductively by

[a2, a1]
+ = a2 +

1

a1
[an, . . . , a1]

+ := an +
1

[an−1, . . . , a1]+
.

On the other hand, the same sequence also determines a rational tangle according to

the parity of n. Starting with one of the two trivial tangles, either the 0-tangle shown

in Figure 1.6(a) or the ∞-tangle shown in Figure 1.6(b), we perform the following

sequence of operations.

1. If n is odd, begin with the 0-tangle and perform a1 horizontal twists (each time

rotating the NE point over the SE point as shown in Figure 1.6(c), or in the

reverse direction if a1 < 0). Then perform a2 vertical twists in a similar manner

(rotating the SW point over the SE point, also shown in the same figure) and

repeat as necessary, alternating between horizontal and vertical twists, until the

final an horizontal twists are finished.

2. If n is even, apply the same procedure, only this time starting with the∞-tangle

and vertical twists.

The tangle one obtains after following this procedure is denoted T (a1, . . . , an). Ex-

amples are provided in Figures 1.6(d) and 1.6(e).

Theorem 1.5.4 (Conway). Every rational tangle T can be written in the form T =

T (a1, . . . , an). Moreover, there is a bijection

T (a1, . . . , an)←→ [an, . . . , a1]
+
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under which T (a1, . . . , an) is isotopic to T (b1, . . . , bm) if and only if [an, . . . , a1]
+ =

[bm, . . . , b1]
+. Thus, T (a1, . . . , an) is also referred to as the p/q-tangle, where p/q =

[an, . . . , a1]
+.

By way of example, consider the tangles shown in Figures 1.6(d) and 1.6(e). As

[1, 2,−2]+ = [1, 1, 2]+ = 5
3
, these two tangles are the same (this can be seen geomet-

rically by twisting the clasp on the left hand side). Observe also that the 0-tangle

corresponds to the fraction 0, while ∞ corresponds to [0, 0]+ = ∞, justifying their

names. In general, rotation by 90 degrees around the axis into the page transforms

the n-tangle into the −n−1-tangle (for n ∈ Z).

One note of caution: despite the conclusions of Theorem 1.5.4, when considering

rational knots or links N(T ), as opposed to rational tangles T , one must be careful

not to assume that the bijection with rational numbers carries through. It is quite

possible that N(T1) = N(T2) even if T1 6= T2. For example, the tangles Tn := T (n, 0)

for n ∈ Z are all distinct, but N(Tn) = U for all n.

1.5.3 The Montesinos Trick

As was mentioned in the previous section, if K is a rational knot, then Σ(K) is a lens

space. In order to see why, it is our aim in this section to illustrate what happens to

Σ(K) if we replace a tangle T ⊂ K with another tangle T ′. An understanding of this

kind of tangle replacement, when lifted to the level of double branched covers, will

also be helpful for our work on unknotting number (see Chapter 5).

Theorem 1.5.5 (Montesinos trick). If T ⊂ B is a rational tangle, then Σ(T ) is a

solid torus whose core projects to an arc between the two components of T . Moreover,

the homeomorphism on ∂B which effects a horizontal twist in T lifts to the homeo-

morphism of ∂Σ(T ) with matrix

(
1 ±1

0 1

)
, written in the H1(∂Σ(T ))-basis {µ, λ} for

some choice of longitude λ. The exact sign of the off-diagonal entry is given by the

choice of orientation on µ. Similarly, a vertical twist on ∂B corresponds to

(
1 0

±1 1

)
.
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T

(a) (b)

Figure 1.7: (a) Isotoping T to the boundary of the ball B, cutting as we go (notice
the arc A joining the two components of T ); and (b) Σ(T ) composed of two copies of
the cut ball, the disc D having lifted to two meridinal discs D1, D2 (notice also that
A has lifted to the core C of Σ(T )).

Proof. This is a simple exercise in the uniqueness of Σ(T ). Take two copies of (B, T )

and observe that because T is rational we can isotope the arcs of T to the boundaries

of their 3-balls, cutting as we do so. After gluing these two nicked balls together, we

obtain a solid torus with an obvious involution, and the uniqueness of Σ(T ) tells us

that this solid torus must be the double cover. The procedure is illustrated in Figures

1.7(a) and 1.7(b). The claims about horizontal and vertical twists should be clear

from the picture.

It is extremely important to observe that we cannot tell, in general, which lon-

gitude the λ described above represents (i.e. we cannot compute lk(λ,C), where C

is the core of T ). If T ⊂ K, and Σ(T ) ⊂ Σ(K) = S3 is standardly embedded, then

we can conclude that C is an unknot and λ is the canonical longitude, but beyond

that it is difficult to say much more. Consequently, one must be very careful when

applying Theorem 1.5.5.

Theorem 1.5.6. If T is the p/q-tangle, then Σ(N(T )) = −L(p, q). What is more, if

p is odd, then N(T ) is the unique knot with this double branched cover. If p is even,

then N(T ) is a link.

Sketch of Proof. We shall only prove the first part; the statement that N(T ) is the

unique knot with the double branched cover can be found in [63], and the statement

36



Knots and 3-manifolds

about links follows from the third part of Proposition 1.4.3 and the third and fourth

properties of Σ(K) listed after Definition 1.3.2.

Suppose that we transform U = N(T (0, 0)) into K = N(T ) by replacing the

central tangle. Then by the Montesinos trick, Theorem 1.5.5, it follows that Σ(K) is

obtained by surgery on a knot C in Σ(U) = S3. It also follows, from the construction

of Σ(U), that C is an unknot. We claim for the moment that the surgery coefficient

p′/q′ is p/q. If this is true, then on comparing this with the second part of Proposition

1.4.3 and Definition 1.5.1, we find that we have just described −L(p, q).

We must therefore prove our claim about the coefficients. The crucial observation

here is that the λ specified in Theorem 1.5.5 is the canonical longitude of C (see the

remarks after the theorem). Since we began constructing the p/q-tangle with the

∞-tangle, if p/q = [an, . . . , a1]
+ then n must be even. On noting that

(
1 1

0 1

)m

=

(
1 m

0 1

)
(together with the transposed formula), we find that the image of µ is given

by the p′µ+ q′λ curve on ∂Σ(T ), where

(
p′

q′

)
=

(
1 ±an

0 1

)(
1 0

±an−1 1

)
. . .

(
1 ±a2

0 1

)(
1 0

±a1 1

)(
1

0

)
.

The signs ± are consistent throughout and depend only on the orientation of µ.

A straightforward induction on n then shows that p′ and q′ are respectively the

numerator and denominator of the continued fraction expansion, at least up to sign,

and hence that p′/q′ = p/q.

Having now identified the lens spaces as the double covers of rational knots, the

following theorem, originally due to Schubert [63], tells us which rational knots are

equivalent. It can also be proved by appealing to Theorem 1.5.6 and applying work

by Reidemeister on the classification of lens spaces [57].

Theorem 1.5.7. The rational knots N(T1) and N(T2), where Ti is the pi/qi-tangle,

are isotopic if and only if p1 = p2 and q1 ≡ q±1
2 mod p1.
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1.5.4 Montesinos Knots and Seifert Fibred Spaces

As a last example, we extend the results of the previous section to the so-called

Montesinos knots and their double branched covers, the Seifert fibred spaces. These

examples are the last ones we will require to make sense of Chapter 5. Much of this

work, as suggested by the presence of his name, goes back to Seifert [64], though a

similar treatment of the material to the one here can be found in Bleiler [3].

Definition 1.5.8 (Montesinos knots and Seifert fibred spaces). Let Ti be the rational

tangle associated with ri ∈ Q∗, for i = 1, . . . , n. Then knots of the form

M(r1, . . . , rn) := N(T1 + · · ·+ Tn)

are referred to as Montesinos knots of length n. Their double branched covers are

called the Seifert fibred spaces with n exceptional fibres. If n = 3, we say that the

double covers are small Seifert fibred spaces.

Proposition 1.5.9. Let K =M(r1, . . . , rn), where ri ∈ Q∗. Then Σ(K) has a Kirby

diagram given by Figure 1.8.

Proof. By Theorem 1.5.6, we know that Σ(M(r)) = S3
r (U). Hence, by reverse slam

dunking the Kirby diagram (U, r), we find that Σ(M(r)) can also be achieved by

surgery on the Hopf link, one component of which has coefficient 0, the other of

which −r−1. In particular, this means that Σ(M(r)) can be obtained from Σ(M(0)) =

S2 × S1 by −r−1-surgery on an S1 fibre.

With this first step done, the claim for generalM(r1, . . . , rn) follows by induction:

because M(r1, . . . , rn−1) = M(r1, . . . , rn−1, 0), the move from Σ(M(r1, . . . , rn−1, 0))

to Σ(M(r1, . . . , rn)) is achieved by another S1 fibre surgery with coefficient −r−1
n . All

that remains is to identify these fibres in a Kirby diagram of S2 × S1. They are the

meridians of the central unknot displayed in Figure 1.8.

Notice that the set of Seifert fibred spaces includes the set of lens spaces. Indeed,

if we suspect a given Seifert fibred space of being a lens space, it is generally not

difficult to work out which one it is thanks to Propositions 1.5.9 and 1.5.6.
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Figure 1.8: Σ(K) for K =M(r1, . . . , rn).
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CHAPTER 2: 4-MANIFOLDS AND

SPINC-STRUCTURES

In recent decades, there has been an explosion of productivity in the 4-manifold

world on topics ranging from questions about the existence and uniqueness of smooth

structures to attempted classifications of the simply connected 4-manifolds. In many

ways, it is one of the richest and most exciting fields of topology active today, as

evidenced by any list of the eminent mathematicians who have contributed to its

diversity.

Sadly, however, it is this same richness which also makes the subject impossible to

treat properly within the confines of this thesis. Instead, this chapter endeavours to

sketch only the bare bones of what we will need. The first part concentrates primarily

on the intersection form, building to the statement of Donaldson’s theorem, and paves

the way for a discussion of Spinc-structures on 3- and 4-manifolds. This in turn leads

us nicely into the Heegaard Floer homology of the following chapter. Prerequisite

material for this discussion, mainly on characteristic classes, can be found in [39].

Unlike our survey in the last chapter, this time we include a substantial number

of proofs since we feel that they are enlightening for the chapters that will follow.

References to the omitted proofs are given as appropriate.

2.1 The Intersection Form

One of the most important oriented smooth 4-manifold invariants, especially in the

simply connected category, is the intersection form. Indeed, given an X in that

category, all the interesting cohomology of X is confined to H2(X) and H2(X, ∂X);

it is therefore on these groups that the intersection form is defined. From this point

on, all 4-manifolds will implicitly be oriented.
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Definition 2.1.1 (Intersection form). Let X be a smooth 4-manifold, possibly with

boundary, and let [X] ∈ H4(X, ∂X) be the fundamental class of X. Then the inter-

section form QX of X is the symmetric bilinear form

QX : H2(X, ∂X)×H2(X, ∂X) −→ Z

(α, β) 7−→ 〈α ∪ β, [X]〉 .

It can easily be shown that the intersection form vanishes if either α or β are

torsion elements, as a result of which QX is often defined modulo torsion. We have

chosen not to do so here since we will be exclusively concerned with the case when X

is simply connected and hence are guaranteed not to encounter torsion in the second

cohomology. We have also chosen to define QX on H2(X, ∂X) instead of H2(X)

as in some books in order to streamline notation in subsequent chapters. The two

definitions are equivalent by virtue of Poincaré duality.

In a similar vein to Definition 2.1.1 (i.e. evaluation of the cup product on the

fundamental class), it is also possible to define other intersection forms:

QX : H2(X, ∂X)×H2(X) −→ Z

QX : H2(X)×H2(X, ∂X) −→ Z

QX : H2(X)×H2(X) −→ Q.

Of these, only the last requires careful explanation (and the extra hypothesis that

∂X be a rational homology 3-sphere). The problem in this case is that α∪β is not an

element of H2(X, ∂X) and therefore cannot be evaluated directly on the fundamental

class. To get around this, one must instead notice that the map  : H2(X, ∂X;Q)→

H2(X;Q) from the long exact sequence in relative cohomology is an isomorphism

and apply −1 to elements of H2(X) (included in H2(X;Q)) before evaluating their

cup product on the image of [X] under the map H4(X, ∂X) →֒ H4(X, ∂X;Q). Since

−1 is defined only with Q-coefficients, it is important to realise that the output may

not be integral, explaining the enlarged codomain (that said, if ∂X is an integral

homology sphere, the form will still be Z-valued). In a similar way, we may also take
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the Z2-valued intersection form of any of the Z-valued ones above. We will denote all

these intersection forms the same way, as QX , hoping that our meaning will be clear

from whatever context we are working in.

The following is one of the fundamental properties of QX from which the form

derives its name.

Proposition 2.1.2. Suppose that α, β ∈ H2(X, ∂X) (or H2(X) as appropriate) and

that A and B are surfaces representing PD(α) and PD(β) respectively. Then

QX(α, β) = A ·B.

Thus, we may also write α · β for QX(α, β).

Suppose now thatX is simply connected (so that the universal coefficients theorem

tells us H2(X) = Hom(H2(X),Z)) and that X has a rational homology sphere Y as

boundary. Then we have the following long exact sequence in relative cohomology:

0 −−−→ H2(X, Y )


−−−→ H2(X) −−−→ H2(Y ) −−−→ 0.

Supposing that we take {αi} as a basis for H2(X, Y ), and letting βj := (PD(αj))
∗ ∈

Hom(H2(X),Z) = H2(X) (where the ∗ denotes dualisation), it is straightforward to

see that

αi · βj = 〈αi ∪ βj, [X]〉 = βj([X] ∩ αi) = (PD(αj))
∗(PD(αi)) = δij.

Thus, if  has matrix (Qij)i,j, we find:

αi · αj = αj · αi = αj · (αi) = αj ·
∑

i,k

Qikβk = Qij.

Hence, with our choice of bases above,  has the same matrix as QX , a fact which

will be extremely useful in Chapters 4 and 5. It is summarised below.

Proposition 2.1.3. Given a choice of basis for H2(X, Y ), where X is simply con-

nected and Y = ∂X is a rational homology sphere, any matrix representing QX is a
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presentation matrix for H2(Y ) = H1(Y ). Consequently, QX is non-degenerate.

Notice that if H1(X) = 0, so that H2(X) = Hom(H2(X),Z), then two elements

K,K ′ ∈ H2(X) written in the dual basis of H2(X) must satisfy

K ·K ′ = KQ−1
X (K ′)t,

where QX is the matrix for the intersection form on X.

The main reason why QX is so important for simply connected 4-manifolds is

explained by the following very deep theorem [18]. It tells us, in essence, that the

intersection form is almost enough to identify closed, simply connected, topological

4-manifolds. The ambiguity in the word “almost” can be made more precise via the

Kirby-Siebenmann invariant, but we refrain from doing so in the interests of brevity.

Definition 2.1.4. If Q is an integral symmetric, bilinear form on some Z-module V ,

and Q(v, v) ≡ 0 mod 2 for all v ∈ V , then we say that Q is even; else, it is odd.

Definition 2.1.5. We say that X is positive- (respectively negative-) definite if QX

is positive- or negative-definite as a symmetric bilinear form.

Theorem 2.1.6 (Freedman). Given any unimodular, symmetric bilinear form Q

over Z, there exists a closed, simply connected, topological 4-manifold X with Q as

intersection form. What is more, if Q is even, then there is precisely one such X; if

Q is odd, then there are two such X, at most one of which admits a smooth structure.

Corollary 2.1.7 (Freedman). Any two closed, simply connected, smooth 4-manifolds

with the same intersection form are homeomorphic.

These theorems, while astonishing in their own right, are mainly included here to

illustrate the huge importance ofQX . They also lead nicely into an equally astonishing

result due to Donaldson [16] which will be of critical importance in Chapters 4, 5,

and 6.

Theorem 2.1.8 (Donaldson). Let X be a closed, simply connected, positive- (respec-

tively negative-)definite smooth 4-manifold. Then there is a basis for H2(X) such that

QX = id (respectively − id).
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This theorem puts a very strict constraint on the number of simply connected,

definite smooth 4-manifolds in existence; it becomes even more remarkable when one

realises that the simply connected hypothesis has been removed in the years since

Donaldson’s original proof. We have chosen to retain it here for historical accuracy

since it suffices for our purposes.

2.2 Examples of Intersection Forms

A natural question at this point is, “How computable is QX?” As luck would have

it, the answer is “surprisingly tractable” in a large number of cases. The aim of this

section is to sketch some of these in detail.

2.2.1 From Surgery

Our first examples come from Dehn surgery, which provides us a plethora of com-

putable intersection forms. In order to explain how, though, we must first specify

what we mean by handle addition (see [20] for a definition of a general n-handle).

Definition 2.2.1 (Handle addition). Suppose that X is a smooth 4-manifold and

suppose that H = D2 × D2 is a 2-handle. Then ∂H = (S1 ×D2

︸ ︷︷ ︸
∂1H

) ∪ (D2 × S1

︸ ︷︷ ︸
∂2H

),

and we can attach H to ∂X via ∂1H. This requires us to specify a framed knot K

(i.e. the image of S1 × {0}) in ∂X; the framing specifies the number of twists in

the diffeomorphism from ∂1H to its image around K. The disc D2 × {∗} ⊂ ∂2H is

referred to as the core of H.

This process is illustrated diagrammatically in Figure 2.1(a) and can be smoothed

as discussed in [20]. In light of it, we have the following proposition, which tells us,

loosely speaking, that 2-handle addition to D4 is equivalent to integral Dehn surgery

in S3.

Proposition 2.2.2. Suppose we attach ℓ smooth 2-handles Hi to the upper boundary

component of S3 × [0, 1] along a (possibly non-canonically) framed link L. Then the
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Figure 2.1: (a) Adding a handle H to a 4-manifold X: a cross-section of the knot K,
which forms the core of ∂1H, is depicted as two red dots, and bounds both a Seifert
surface F and the core D of H; and (b) the addition of two handles H1 and H2 to
the upper boundary of S3 × [0, 1] yields a cobordism from S3 to S3

n1,n2
(K1, K2). The

knots K1 and K2 are also depicted as red dots.

result is a smooth, simply connected cobordism

W : S3 −→ S3
n1,...,nℓ

(K1, . . . , Kℓ),

where λi = niµi+λ
0
i is the framing of Ki given relative to its meridian µi and canonical

longitude λ0i . Moreover, there is a basis for the free group H2(W, ∂W ) such that the

matrix representing QW is the linking matrix of L.

Sketch of Proof. For the first part, consider the trivial cobordism S3 × [0, 1] which

has two boundary components, each S3; we must show that after handle addition, the

upper boundary gives the surgered manifold. Clearly, this upper boundary is given

by

S3 \
ℓ⊔

i=1

N(Ki) ∪
ℓ⊔

i=1

∂2Hi,

where the the union takes place at the S1×S1 boundaries of the ∂2Hi. To obtain our

result, we need only remark that this description is nothing more than Dehn surgery

on the link (K1, . . . , Kℓ), and that the surgery coefficient on Ki is ni (with respect

to λ0i ). The second claim, about the cobordism being simply connected, follows as a
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simple corollary of the fact that this construction can be made without resorting to

any 1-handles (see [20]).

For the second part, consider Seifert surfaces Fi for each knot Ki, and let Di

be the core of Hi. Then, by inducting on the number of handles and applying the

Mayer-Vietoris sequence, Si := Fi ∪ Di represents a generator [Si] ∈ H2(W ). We

can compute their intersections as follows. First, observe that all the intersections

occur in S3 × {1}, since the handles are disjoint (i.e. that only the Fi contribute any

intersections). Second, observe that to compute the intersections of Fi and Fj (or Fi

and a slightly displaced copy of Fi if we want to compute its self-intersection), there

is enough space to isotope IntFi into S
3 × [0, 1), leaving only ∂Fi = Ki in S

3 × {1}.

Consequently, using {PD[S1], . . . ,PD[Sℓ]} as a basis for H2(W, ∂W ), we find that

QW (PD[Si],PD[Sj]) = Si · Sj =




Ki · Fj if i 6= j

ni if i = j
.

Since this right hand side recovers the linking matrix of the non-canonically framed

link L, we apply Poincaré duality and are done.

Let us consider the implications of this proposition. From Theorem 1.4.7, we

know that every closed, connected, oriented 3-manifold Y can be obtained via integral

surgery in S3. Consequently, after capping the S3 component of the cobordism in

Proposition 2.2.2, we now know that Y bounds a smooth 4-manifold (i.e. that any

such Y is smoothly cobordant to the empty manifold). Even better, this 4-manifold

comes with an easily computable intersection form.

It is worth noting, at this point, that the 4-manifolds W predicted by Proposi-

tion 2.2.2 all have non-empty boundary and are thus not covered by Corollary 2.1.7

or Theorem 2.1.8. In particular, two links with the same linking matrix may yield

non-homeomorphic 4-manifolds, and the intersection forms so obtained need not di-

agonalise to ± id if they are definite. This point is an essential subtlety in the proofs

in Chapter 4.

Proposition 2.2.3. Suppose that Y = S3
−p/q(C). Then Y bounds a compact, con-
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nected, oriented, simply connected smooth 4-manifold W with intersection form

QW =




−a1 1

1 −a2 1

1 −a3
. . . 1

1 −aℓ




,

where [a1, . . . , aℓ]
− is any Hirzebruch-Jung continued fraction for p/q.

Proof. This is an exercise in reverse slam dunking. A quick application of Corollary

1.4.11 and Proposition 2.2.2, again capping the S3 component of ∂W , and we are

done.

Definition 2.2.4 (Trace). In the special case when [a1, . . . , aℓ]
− is the canonical

Hirzebruch-Jung continued fraction of p/q, the 4-manifold described in Proposition

2.2.3 is called the trace of the (−p/q-)surgery on C.

2.2.2 From Plumbing

Another fertile source of 4-manifolds with predictable intersection form is the opera-

tion known as plumbing. Here, the principal ingredient is a vertex-weighted, simple

graph. Since we will never mean anything else by the word “graph,” these two con-

ditions should be taken as part of the word’s definition.

Definition 2.2.5 (Plumbing of disc bundles). Let B and B′ be D2-bundles over S2,

and let p and p′ be points on their base spaces possessing D2-neighbourhoods D and

D′ with local trivialisations D ×D2 and D′ ×D2. Then the operation which glues D

to the D2-fibre of B′ and the D2-fibre of B to D′ within these local trivialisations is

called plumbing B and B′.

We can also plumb a disc bundle B onto another smooth 4-manifold X which

contains B′ as a submanifold with properly embedded fibres by plumbing B and B′.

Now for the 4-manifold recipe. Suppose G is a graph with vertex set V (G) and

weights w(v) on each v ∈ V (G). Then we can construct a 4-manifold X (G) from G
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by taking the D2-bundle B(v) over S2 with Euler number w(v) for each v ∈ V (G)

and plumbing B(v) and B(v′) if and only if v and v′ are adjacent in G.

Proposition 2.2.6. X := X (G) described above has free H2(X) generated by the

vertices of G and is simply connected if G is a tree. Moreover, there exists a basis of

H2(X, ∂X) such that QX is represented by the weighted adjacency matrix of G.

Proof. We proceed by induction on |V (G)|, beginning with the supposition that

V (G) = {v}. In this case, the claim is trivial since B(v) is contractible to S2,

meaning that H2(X) is free and generated by the homology class represented by the

zero-section S of B(v), denoted [S]. This also implies that π1(B(v)) = π1(S
2) = 0.

Taking two copies of S, one of them displaced slightly into the fibres, we see that

QX(PD[S],PD[S]) = S · S = w(v),

and we are done.

We now assume that the proposition holds for all graphs H ≤ G such that

|V (H)| = |V (G)| − 1. Let v be the extra vertex, so that X (G) = X (H) ∪ B(v),

and let B = X (H) ∩ B(v). Then the Mayer-Vietoris sequence tells us that

H2(B) −→ H2(X (H))⊕H2(B(v)) −→ H2(X (G)) −→ H1(B).

By construction, B is a disjoint union of copies of D2×D2, whence the above portion

of the sequence becomes an isomorphism

H2(X (H))⊕H2(B(v)) ≃ H2(X (G)),

proving the first claim. The second claim follows a similar argument using the van

Kampen theorem and the fundamental group. Lastly, just as we saw with B(v),

if Sv denotes the zero-section of B(v), then we claim {PD[Sv]}v∈V (G) provides the

required basis for H2(X, ∂X). Just as in the previous paragraph, self-intersections

are given by the Euler numbers w(v), and non-adjacent vertices v and v′ determine

disjoint spheres Sv and Sv′ . If, on the other hand, v and v′ are adjacent, then their
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intersection is, by construction, the intersection number of {∗} × D2 and D2 × {∗}

inside D2 ×D2, which is to say 1.

Aside from having a computable intersection form, just like the integral Kirby

diagrams of the previous example, one of the very pleasant properties of a plumbing

diagram is the fact that the boundary can be read off G if G is a tree. Explicitly, the

following theorem is true.

Definition 2.2.7. If G is a graph, define Y(G) to be the 3-manifold whose Kirby

diagram consists of unknots Uv for v ∈ V (G) such that:

1. Uv has coefficient w(v); and

2. Uv and Uv′ are linked if and only if v and v′ are adjacent in V (G), in which

case Uv is a meridian of Uv′.

Proposition 2.2.8. If G is a tree, ∂X (G) = Y(G).

Proof. Again, the proof is by induction. We show that if G is a tree, then X (G) is the

4-manifold obtained by attaching 2-handles H(v) to S3 = ∂D4 along each unknot Uv,

framed according to the integer w(v). Proposition 2.2.2 (on capping the S3 boundary

component) then yields the result.

We start the induction with a single vertex v with weight w(v) and consider the

trace X of w(v)-surgery on Uv. By construction, ∂X = Y(G), so we must check that

X = X (G) by showing that X is a D2-bundle over S2 with Euler number w(v). To

this end, notice that X \ IntH(v) ≃ D4 ≃ F × D2, where F ⊂ S3 is a spanning

disc for Uv. Consequently, if D is the core of H(v), then it is clear that X contracts

through D2-fibres to S := F ∪D; since we already know from Proposition 2.2.2 that

S · S = w(v), this must also be the Euler number of X.

Now let us suppose that H = G \ {v}, where v is a leaf of H connected only to

v′. Then by induction we can suppose that ∂X (H) = Y(H) and B(v′) ⊂ X (H) (with

properly embedded fibres). In order to plumb B(v) to B(v′), we let F be a spanning

disc for Uv′ and glue the local trivialisation D × D2 ⊂ B(v) described in Definition

2.2.5 to some neighbourhood D2 × F ⊂ B(v′) of F via a map h as in Figure 2.2.

Notice two things about this procedure:
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Figure 2.2: Plumbing B(v) onto X (H). The locally trivialising disc D ⊂ B(v) is
shown as the thick curved segment of the shaded region on the right, and its fibre
D2×{0} shown in red is glued via h to the spanning disc F of Uv′ also shown in red.
Notice the handle H(v) := B(v) \ Int(D ×D2).

1. The reversal in the position of the D2-fibre, as required for plumbing; and

2. The disc F is guaranteed to exist since all the coefficients in the Kirby diagram

of Y(H) are integers.

Phrased like this, it is not difficult to see that an equivalent procedure would instead

be to excise Int(D ×D2) from B(v) and regard the result as a 2-handle H(v) to be

attached via the map

h|(∂D)×D2 : (∂D)×D2 −→ (∂D2)× F

This, in turn, is equivalent to an integral Dehn surgery on the knot (∂D2) × {0},

which is a meridian of Uv′ (i.e. the unknot Uv in our theorem). To recover the Euler

number of B(v), the coefficient of this surgery must clearly be w(v).

Because we will usually be interested in negative-definite 4-manifolds, we will by

and large require w(v) < 0 for all v ∈ V (G). Bearing this in mind, we will employ the

convention that unlabelled vertices have weight −2. As an example, the graph shown

in Figure 2.3(a), whose vertices are labelled in an inward, clockwise spiral starting on
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- 3

- 7

- 5

(a)

- 3

- 5

- 7

(b)

Figure 2.3: (a) An example of a plumbing graph G; and (b) the Kirby diagram for
Y(G) = ∂X (G).

the left, has intersection form




−2 1

−2 1

−5 1

−7 1

1 1 1 1 −3




,

and a boundary 3-manifold given by the surgery presentation in Figure 2.3(b).

In a large number of cases when X (G) is negative-definite and G is a tree, the

Heegaard Floer homology of Y(G) = ∂X (G) can be computed algorithmically. Since

we have not yet discussed Heegaard Floer homology properly, we defer a discussion

of this algorithm until the next chapter. The specific reference is Section 3.5.

2.3 Spinc-Structures on 3- and 4-manifolds

In addition to the Dehn surgery and intersection form material presented so far, the

Heegaard Floer homology of the next chapter also requires an understanding of Spinc-

structures on both 3- and 4-manifolds. In fact, most of the content in Chapters 4 and

5 is essentially a combinatorial argument involving these structures. In view of this

fact, we now present the classical take on Spinc-structures, though an alternative due

to Turaev [68] will also be given in Chapter 3.

51



4-manifolds and Spinc-structures

2.3.1 Spin(n) and Spinc(n)

Recall that n-dimensional fibre bundles ξ over a connected base space M are well-

defined provided we have specified a fibre F of dimension n, a structure group G, and

a locally trivialising open cover U = {Uα}α for M equipped with transition functions

ϕα,β : Uα ∩ Uβ −→ G

that satisfy the cocycle condition

ϕα,β · ϕβ,γ · ϕγ,α = 1.

Here, the · indicates pointwise multiplication in G. The bundle ξ can be reconstituted

by patching together local trivialisations Uα × F and Uβ × F via ϕα,β. Two different

sets of transition functions {ϕα,β}α,β and {ϕ′
α,β}α,β determine the same bundle if and

only if there are maps fα : Uα → G such that

ϕ′
α,β = fα · ϕα,β · (fβ)

−1,

and if this occurs, we say that {ϕα,β}α,β and {ϕ′
α,β}α,β are equivalent. Note that

(fβ)
−1(u) = fβ(u)

−1 for u ∈ Uβ (i.e. that (fβ)
−1 is not the inverse map of fβ).

Suppose that G = GL(n). Then by reducing the structure group to H ≤ G, we

may impose extra structure on our bundle. For example, reduction to O(n) allows the

introduction of a metric and a further reduction to SO(n) allows the introduction of

an orientation. Analogously, the construction of Spin- and Spinc-structures requires

us to lift the structure group of an oriented n-plane bundle to the Spin(n) and Spinc(n)

groups. Since these are less familiar objects than SO(n), we describe them below.

Definition 2.3.1. The group Spin(n) is the unique double cover of SO(n).

It is a well-known fact that isomorphism classes of coverings of a connected space

M are classified by conjugacy classes of subgroups of π1(M). Since π1(SO(n)) = Z2

(when n > 2), it follows that there are only two coverings of SO(n): the trivial and

the universal. Spin(n) is defined as the latter. We let h : Spin(n) → Spin(n) be the
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covering automorphism.

Calculating for n = 3 and n = 4, we have:

Spin(3) = SU(2) Spin(4) = SU(2)× SU(2).

Definition 2.3.2. We define

Spinc(n) :=
Spin(n)× U(1)

(h,− id)
= Spin(n)×Z2

U(1),

which admits a map Spinc(n) → SO(n) which factors through Spin(n) by projection

onto the first factor.

The groups Spin(n) and Spinc(n) now dealt with, we are ready to give the defini-

tion of Spin- and Spinc-structures.

Definition 2.3.3 (Spin- and Spinc-structures). Let M be a manifold, and suppose

that ξ is an n-plane bundle over M with transition functions ϕα,β : Uα∩Uβ → SO(n).

Suppose moreover that we can construct a lift ϕ̃α,β such that the diagram

Spin(n)

Uα ∩ Uβ
ϕα,β

>

ϕ̃α,β

>

SO(n)
∨

commutes and such that the cocycle condition

ϕ̃α,β · ϕ̃β,γ · ϕ̃γ,α = 1

holds. Then the bundle determined by the equivalence class of {ϕ̃α,β}α,β is called a

Spin-structure on ξ. If ξ = TM , then the bundle determined by such an equivalence

class of lifts is called a Spin-structure on M . The set of Spin-structures on M is

denoted Spin(M).

If instead of Spin(n) we use Spinc(n), then we have also just defined Spinc-

structures on ξ and M . The set of Spinc-structures is denoted Spinc(M).
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Because the cocycle condition has already been imposed on {ϕα,β}α,β, it follows

that ϕ̃α,β · ϕ̃β,γ · ϕ̃γ,α = ±1, but we can be no more precise using only the diagram.

Thus, there is no guarantee that any {ϕ̃α,β}α,β satisfying only the diagram above will

define a legitimate bundle.

It is worth streamlining some notation at this point. We will usually be interested

in Spin- and Spinc-structures on 3-manifolds Y and 4-manifolds X (often related by

Y = ∂X). To avoid confusion, we will try to use the letter t exclusively for elements

of Spinc(Y ) and the letter s for elements of Spinc(X). If Y = ∂X, then we will

denote the restriction of s to Y by s|Y . Note the subtlety involved here: although s

consists of Spinc(4)-valued cocycles, t consists of Spinc(3)-valued cocycles. Hence, the

restriction is not a simple fibre bundle restriction. The actual construction requires

us to use the vector field of unit normals to ∂Y to include T∂Y as a sub-bundle of

TY (and thus to restrict double covers of TY to double covers of T∂Y ). We refer the

reader to Proposition 2.15 in Chapter II of [32].

2.3.2 C̆ech Cohomology

In order to make any deductions about the existence or classification of Spin- and

Spinc-structures, it is convenient to use some C̆ech cohomology. We remark that

much of what follows in this section can be done with continuous functions in lieu of

smooth ones.

Recall our cover U from before and let ϕ be a collection of smooth maps

ϕα0,...,αn : Uα0
∩ · · · ∩ Uαn −→ G,

for some n ≥ 0. Then we would ideally like to build a chain complex C̆∗(U , G) by

taking the Z-span of such collections and equipping it with a graded differential. If

G is abelian, this is certainly viable: we let C̆n(U , G) be the Z-span of the ϕ defined

on sets Uα0
∩ · · · ∩ Uαn and define the differential

∂ : C̆n(U , G) −→ C̆n+1(U , G)
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such that

(∂ϕ)α0,...,αn+1
=

n+1∑

i=0

(−1)iϕα0,...,α̂i,...,αn+1
.

The hat here indicates omission. Arguing as for singular cohomology, the terms in

∂2ϕ cancel in pairs, allowing us to define

H̆n(U , G) := ker ∂/ im ∂.

Since this definition depends on the covering, to obtain a proper definition of the

C̆ech cohomology for M we must finally take a direct limit.

Definition 2.3.4 (C̆ech cohomology, abelian case). If G is abelian, we define the

C̆ech cohomology of a topological space M in degree n by

H̆n(M,G) := lim
−→
U

H̆n(U , G),

where the direct limit is taken using refinement of coverings.

Now consider what changes if G is non-abelian. Most severely, we are no longer

able to take the Z-span, which renders it difficult to define the order in which the

“sum” in ∂ should be taken. Consequently, we will only define the C̆ech cohomology

in degrees 0 and 1. Let the 0-cochains be collections of maps f = {fα : Uα → G},

and define the differential ∂ by

(∂f)α,β := fα · (fβ)
−1.

We then define H̆0(M,G) as before. Notice that it is clearly the set of G-valued

sections on M .

In degree 1, however, more complexities arise. Although the 1-cochains are still

collections of maps ϕ = {ϕα,β : Uα ∩ Uβ → G}, the differential must take a different

form. It is defined instead by

(∂ϕ)α,β,γ := ϕα,β · ϕβ,γ · ϕγ,α,
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which allows us to construct H̆1(U , G) in the usual fashion. It is worth remarking,

however, that the cohomology so produced is just a set, not a group, though it still

possesses a distinguished element analogous to a unit (the trivial cocycle).

Definition 2.3.5 (C̆ech cohomology, non-abelian case). We define the first C̆ech

cohomology of a topological space M by

H̆1(M,G) := lim
−→
U

H̆1(U , G),

where the direct limit is taken using refinement of coverings.

Proposition 2.3.6. Let M be a manifold. Then H̆1(M,G) is the set of isomorphism

classes of n-plane bundles over M with structure group G.

Proof. This is nothing more than the observation that the base, fibre, and transition

functions satisfying the cocycle condition (i.e. ∂ϕ = 1) determine the bundle. (The

term cocycle in a bundle context is motivated by the fact that they are bona fide

1-cocycles in the C̆ech cohomological sense.) The quotient by the image of ∂ ensures

that we are looking at isomorphism classes of bundles.

Proposition 2.3.7. If M is a smooth manifold and G a discrete group, then

H̆n(M,G) = Hn(M ;G).

Sketch of Proof. Since M is smooth, it is triangulable. Triangulate M with vertices

vα, and let Uα be the open star of vα. Then, after refining the triangulation if

necessary, U = {Uα}α gives us a locally trivialising open covering. Observing that

the intersection Uα0
∩ · · · ∩ Uαn is non-empty if and only if vα0

, . . . , vαn span an n-

simplex, and observing that C∞(G) is the set of locally constant functions since G

is discrete, our C̆ech cochains now correspond with simplicial cochains. Since their

boundary maps also match, the proposition is proved.
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2.3.3 Existence of Spin-Structures

Just as the long exact sequences in singular cohomology provide useful information,

so too do those in C̆ech cohomology. We will use them in this section to provide a

criterion for the existence of Spin-structures on a smooth manifold M in terms of the

homology of M .

Theorem 2.3.8. An oriented n-plane bundle ξ on a smooth manifold M admits a

Spin-structure if and only if w2(ξ) = 0. That is, the second Stiefel-Whitney class is

an obstruction to “spinnability” of ξ.

Proof. By definition of Spin(n), there is a short exact sequence

0 −−−→ Z2 −−−→ Spin(n)
π

−−−→ SO(n) −−−→ 0

which gives rise to a long exact sequence in C̆ech cohomology:

. . . −−−→ H̆1(M, Spin(n))
π∗

−−−→ H̆1(M,SO(n))
w
−−−→ H̆2(M,Z2).

In this context, exactness is defined using the distinguished element (trivial cocycle)

in each set: the preimage of this distinguished element under the relevant map must

coincide with the image of the preceding map. Applying Proposition 2.3.7, this

sequence becomes:

. . . −−−→ H̆1(M, Spin(n))
π∗

−−−→ H̆1(M,SO(n))
w
−−−→ H2(M ;Z2).

By verifying that w satisfies the axioms of w2, the second Stiefel-Whitney class (see

[39]), it follows that w = w2. Thus, an element ξ ∈ H̆1(M,SO(n)) (i.e. an oriented

n-plane bundle over M) is in the image of π∗ (i.e. admits a Spin-structure) if and

only if w2(ξ) = 0, exactly as claimed in the theorem.

Proposition 2.3.9. Suppose that M is a smooth n-manifold. Then M admits a

Spin-structure if and only if w2(M) = 0. Moreover, should a Spin-structure exist and

H1(M ;Z2) = 0, then that Spin-structure is unique.
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Proof. This is a scholium of the previous theorem. Truncating the long exact se-

quence, we find that

H1(M ;Z2) −−−→ H̆1(M, Spin(n))
π∗

−−−→ H̆1(M,SO(n))
w2−−−→ H2(M ;Z2),

whence w2(ξ) = 0 if and only if ξ ∈ kerw2 = im π∗, or if and only if ξ lifts to Spin(n).

Under the hypothesis H1(M ;Z2) = 0, the map π∗ is an injection, meaning that there

is at most one lift for ξ. Applying these statements in the case ξ = TM , we recover

the proposition.

This proposition is particularly relevant to us for 3-manifolds (M = Y ) and 4-

manifolds (M = X). Since the situation is quite different depending on the dimension,

we outline the implications separately.

1. If Y is an oriented 3-manifold, then w2(Y ) = 0 since TY is trivial. Hence an

oriented 3-manifold Y always admits a Spin-structure, and this Spin-structure

is unique if Y is a rational homology 3-sphere with no 2-torsion (e.g. Σ(K)

for some knot K ⊂ S3). It can be shown in general (Proposition 1.4.25 in

[20]) that the number of Spin-structures for 3-manifolds Y are in bijection with

H1(Y ;Z2). Therefore, if we drop the 2-torsion hypothesis, rational homology

3-spheres admit 2k Spin-structures, where H1(Y ;Z2) = Zk
2.

2. If X is a simply connected smooth 4-manifold and ∂X is a rational homology

3-sphere, then Corollary 2.3.14 below tells us that w2(X) = 0 if and only if QX

is even. Thus, such X have precisely one Spin-structure.

We will soon see how to identify the related Spinc-structures on X which correspond

with these Spin-structures.

2.3.4 Spinc-Structures on Simply Connected Smooth 4-manifolds

If Spin-structures are to be thought of as lifts of SO(n) bundles to Spin(n) bundles,

then Spinc-structures can be thought of as “complexifications” of such lifts. Our main
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goals in this section are to provide a classification for the Spinc-structures on a 4-

manifold, and to point out which of these Spinc-structures are in fact Spin-structures.

Recall that Spinc(4) = Spin(4)×Z2
U(1). Hence, p : Spinc(4) −→ SO(4)×U(1) is

a double cover built up of the double covers π : Spin(4)→ SO(4) (already discussed)

and U(1)→ U(1). The latter cover is given by z 7→ z2 (in complex number notation).

Let det : Spinc(4) → U(1) be the composition of p and projection onto U(1) (so

that det(A, λ) = λ2). Then the cocycles ϕα,β determining a given Spinc-structure s

on X project via det to U(1), yielding a new set of cocycles detϕα,β which act on

C. Consequently, the new cocycles detϕα,β determine a complex line bundle Ls on

X called the canonical line bundle of s.

Definition 2.3.10. We define the first Chern class of s ∈ Spinc(X) by

c1(s) := c1(Ls).

Suppose we have an s ∈ Spinc(X) whose cocycles are the maps

u 7−→ (A(u), λ(u)) ∈ Spinc(4),

for u ∈ Uα,β. Then we can also define the conjugate Spinc-structure s as the Spinc-

structure with cocycles

u 7−→ (A(u), λ(u)−1) ∈ Spinc(4),

after we check that the cocycle condition is still satisfied. It follows that the deter-

minant line bundle of s is conjugate to that of s, and so clearly c1(s) = −c1(s).

Importantly, as c1 gives us a bijection between (complex) line bundles on X and

H2(X), there is, given x ∈ H2(X), always a line bundle Lx with c1(Lx) = x. It is

not necessarily true, however, that for any line bundle L there is a corresponding

Spinc-structure on X. In fact, as we will soon see, a great many line bundles do not

determine Spinc-structures.

Since X is simply connected, we know that H1(X;Z2) = 0. Thus, the short exact
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sequence

0 −−−→ Z2 −−−→ Spinc(4)
p

−−−→ SO(4)× U(1) −−−→ 0

yields a long exact sequence in C̆ech cohomology:

0 −−−→ H̆1(X, Spinc(4))
p∗

−−−→ H̆1(X,SO(4))⊕ H̆1(X,U(1))
w2−−−→ H2(X;Z2).

As before, injectivity of p∗ implies that for any pair (ξ,L) ∈ kerw2 there is ex-

actly one Spinc-structure. Therefore, let us fix ξ ∈ H̆1(X,SO(4)) and consider those

(ξ,L) ∈ kerw2. Such pairs must satisfy w2(ξ) + w2(L) = 0, since both ξ and L are

orientable. Thus the Spinc-structures for ξ are in bijection with those L such that

w2(L) = w2(ξ), or equivalently c1(L) ≡ w2(ξ) mod 2 (since c1(L) has image w2(L)

under the cohomological map induced by Z→ Z2). Since we have already discussed

the correspondence between line bundles on X and H2(X), the question about the

existence of a Spinc-structure for (ξ,L) then becomes a question about whether or

not w2(ξ) has an integral lift in H2(X) (that is, a preimage under the cohomological

map induced by Z→ Z2).

To determine the answer, we need consider the short exact sequence

0 −−−→ Z
×2
−−−→ Z −−−→ Z2 −−−→ 0.

which gives us a long exact sequence

. . . −−−→ H2(X)
q

−−−→ H2(X;Z2)
β

−−−→ H3(X)
×2
−−−→ H3(X) −−−→ . . ..

To ensure that w2(ξ) has an integral lift (i.e. a preimage under q), we require that q

be surjective. Stated differently, that the Bockstein map β vanish. This is guaranteed

if and only if the map ×2 on H3(X) is injective.

Corollary 2.3.11. Every orientable, simply connected smooth 4-manifold X admits

a Spinc-structure.

Proof. Poincaré duality and the relative homology sequence tell us that H3(X) =

60



4-manifolds and Spinc-structures

H1(X, ∂X) = 0. The map ×2 on H3(X) is therefore trivially injective. Applying the

above discussion to ξ = TX, we are done.

This result is very useful and a stark contrast to the existence of Spin-structures

on the same 4-manifolds. We have essentially seen that the extra freedom given to us

by the determinant line bundle enables us to “fix” SO(4) bundles which do not lift

to Spin(4) so that they lift to Spinc(4) instead. It would therefore be ideal to give a

classification of the Spinc-structures on X. The following propositions lead us in this

direction.

Proposition 2.3.12. If s ∈ Spinc(X) and s = s, then s ∈ Spin(X).

Proof. Observe that if s = s, then c1(s) = 0. Consequently, w2(TX) = 0, whence the

pair (TX,Ls) determines a cocycle lift from SO(4)×U(1) to Spinc(4) which is trivial

on the U(1) factor. In other words, a lift to Spin(4), or a Spin-structure.

Proposition 2.3.13. Suppose that X is an oriented, simply connected smooth 4-

manifold. Then

QX(w2(X), α) ≡ QX(α, α) mod 2,

for all α ∈ H2(X, ∂X), where on the left we have used the Z2-valued intersection form

QX and the image of α under the map H2(X, ∂X) →֒ H2(X, ∂X;Z2).

Proof. Let A be the corresponding embedded surface for PD(α). Then the left hand

side becomes

〈w2(X), [A]〉 = 〈w2(TX), [A]〉

= 〈w2(TA⊕ ν(A)), [A]〉

= 〈w2(TA), [A]〉+ 〈w2(ν(A)), [A]〉 ,

where ν(A) is the normal bundle to A. Since w2(TA) is the image in H2(X;Z2) of

the Euler class of TA (i.e. the Euler characteristic of A), which is even, this term

vanishes; similarly, the second term evaluates to the image of the Euler class of ν(A),

which is the self-intersection A · A. The claim follows.
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The following corollary of this result was used in the previous section to show that

not all simply connected smooth 4-manifolds admit Spin-structures.

Corollary 2.3.14. If X is a simply connected smooth 4-manifold and ∂X is a rational

homology 3-sphere, then QX is even if and only if w2(X) = 0.

Proof. By Proposition 2.3.13,

QX(w2(X), α) ≡ QX(α, α) mod 2,

for all α ∈ H2(X, ∂X). Consequently, the right hand side vanishes if and only if the

left hand side vanishes for all α, which occurs if and only if w2(X) = 0, since QX is

non-degenerate (see Proposition 2.1.3).

Proposition 2.3.15. Let X be simply connected smooth 4-manifold, and identify

H2(X) with Hom(H2(X),Z) via the universal coefficients theorem. Then the Spinc-

structures on X are in bijection, via c1, with the set

{
K ∈ H2(X) |〈K, v〉 ≡ v · v for all v ∈ H2(X)} .

Such K are referred to as the characteristic covectors of X. If QX is even, then the

Spin-structure on X corresponds with K = 0.

Proof. We observe that K ∈ H2(X) determines a Spinc-structure on X if and only if

its associated line bundle LK satisfies w2(TX) ≡ c1(LK) = K. Applying Proposition

2.3.13,

〈K, v〉 = QX(K,PD(v)) ≡ QX(PD(v),PD(v)) = v · v mod 2,

and we are done with our first claims. The statement about the Spin-structure,

is an immediate consequence of Corollary 2.3.14 (which establishes that it exists),

Proposition 2.3.9 (which establishes that it is unique), and Proposition 2.3.12.

Knowing what the Spinc-structures on X look like, it remains for us to remark

that Spinc(X) is an affine space over H2(X). Indeed, recall that for any x ∈ H2(X),

there is a line bundle Lx with c1(Lx) = x. Let its cocycles be λα,β : Uα ∩Uβ → U(1),
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and lift λα,β to Spinc(4)-valued cocycles λ′α,β in the obvious way (the identity on

SO(4)).

Definition 2.3.16. If s ∈ Spinc(X) has cocycle ϕα,β, we define s+x to be the Spinc-

structure with cocycle ϕα,β · λ
′
α,β.

In this way, we have an explicit affine H2(X) structure on Spinc(X). Notice that

the Chern class of s+ x is easy to determine since

Ls+x = Ls ⊗ L
⊗2
x ,

whence

c1(s+ x) = c1(s) + 2x.

It therefore makes sense to write s−s′ for s, s′ ∈ Spinc(X), since this difference defines

an element of H2(X). As an immediate corollary, we have the following.

Corollary 2.3.17. If s ∈ Spinc(X), then s− s = c1(s).

2.3.5 Spinc-Structures on Closed Rational Homology 3-spheres

If instead of simply connected 4-manifolds we are interested in closed, oriented rational

homology 3-spheres, the results of the previous section are somewhat different. The

crucial point of divergence concerns the map c1 : Spinc(Y ) → H2(Y ), which is no

longer bijective onto its image unless H2(Y ) is of odd order.

Having said this, much of our previous work still applies. We can still define the

determinant line bundle the same way, we still have an affine H2(Y ) structure on

Spinc(Y ), and, as before, a pair (TY,L) still determines a Spinc-structure if and only

if w2(TY ) = w2(L). The difference is that w2(TY ) = 0 for all Y , as mentioned at the

end of Section 2.3.3. Hence L determines a t ∈ Spinc(Y ) if and only if w2(L) = 0;

that is, if and only if the modulo 2 reduction of c1(L) vanishes. Hence c1(L) = 2y for

some y ∈ H2(Y ). If H2(Y ) is of odd order, we have the following.
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Proposition 2.3.18. Suppose that Y is a closed rational homology 3-sphere and that

H2(Y ) is of odd order. Then

1
2
c1 : Spin

c(Y ) −→ H2(Y )

is a canonical isomorphism.

Proof. Analogously to the latter part of Proposition 2.3.15, Y has a unique Spin-

structure t0 corresponding to the line bundle with zero Chern class. Fixing this as the

zero element of Spinc(Y ), the affine structure on Spinc(Y ) gives us the isomorphism

required, for if y is a generator of H2(Y ) and k ∈ Z, then

1
2
c1(t0 + ky) = 1

2
c1(t0) + ky = ky,

which enables us to define t1 + t2, for t1, t2 ∈ Spinc(Y ), to be the unique t ∈ Spinc(Y )

such that 1
2
c1(t) =

1
2
c1(t1) +

1
2
c1(t2).

In the case that H2(Y ) has 2-torsion, we no longer have a unique Spin-structure

with which to construct the isomorphism, but one can still show (using techniques

described in [20]) that there is a bijection

Spinc(Y )←→ 2H2(Y )⊕H2(Y ;Z2).

Since |2H2(Y )| = 1
2k
|H2(Y )|, where H1(Y ;Z2) = Zk

2, there must therefore also exist

a bijection

Spinc(Y )←→ H2(Y ),

but this bijection is not canonical. To summarise, we now know the following.

Proposition 2.3.19. Suppose that Y is a closed rational homology 3-sphere and that

H2(Y ) is of even order. Then there is a non-canonical bijection

Spinc(Y )←→ H2(Y ),

and the map c1 : Spin
c(Y )→ H2(Y ) is 2k-to-one onto 2H2(Y ), the kernel consisting
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of the 2k Spin-structures on Y .

It is worth noting that whenever H1(X) is torsion free and Y = ∂X is a rational

homology sphere, the restriction map Spinc(X)→ Spinc(Y ) is a surjection. That is,

for any t ∈ Spinc(Y ), there exists an s ∈ Spinc(X) such that s|Y = t. This can be

seen from the long exact sequence in relative cohomology:

. . . −−−→ H2(X) −−−→ H2(Y ) −−−→ H3(X, Y ) −−−→ . . ..

Since H2(Y ) = H1(Y ) is torsion and H3(X, Y ) = H1(X) is free, it follows that

the map H2(Y ) → H3(X, Y ) vanishes. Hence H2(X) → H2(Y ) surjects. Fixing

s0 ∈ Spinc(X) and setting t0 = s0|Y , we let y = t− t0 ∈ H
2(Y ) and x ∈ H2(X) map

to y. Then the s we desire is given by s = s0 + x. In particular, this applies if X is a

simply connected smooth 4-manifold and Y is a rational homology 3-sphere.

As a final remark, we warn the reader that many authors use different labellings

of Spinc-structures, even in the case when H2(Y ) is of odd order. Indeed, one of the

challenges in this area (as we will see in Chapter 5) is the task of relating one labelling

to another. We will endeavour to be as explicit as possible about all our labellings

from here on in.
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CHAPTER 3: HEEGAARD FLOER

HOMOLOGY

Around the turn of the millennium, Ozsváth and Szabó introduced a package of new

3-manifold invariants which revolutionised low-dimensional topology. These invari-

ants, known collectively as Heegaard Floer homology, have since been extended to

associated 4-manifold and knot invariants, the latter of which has had spectacular

success both as a categorification of the Alexander polynomial and in detecting the

genus, fibredness, and other topological properties of knots. The 3-manifold invari-

ants, when applied to Σ(K), have also enjoyed considerable success detecting knots

K with unknotting number one.

At the heart of the new theory is a familiar object that goes back to Lagrangian

Floer homology: a chain complex built out of intersection points between complemen-

tary dimensional submanifolds of a larger manifold, and a differential that counts holo-

morphic discs between these points. Where the Heegaard Floer theory differs, how-

ever, is that one can modify this construction to produce a knot invariant HFK(Y,K)

by letting the knot K ⊂ Y induce a filtration on the chain complex. It is the hope of

this chapter to illustrate sufficiently many details of both invariants that the reader

unfamiliar with Heegaard Floer homology will at least be able to follow the exposition

in later chapters. As such, almost nothing is proved here; indeed, many of the proofs

are the domain of a series of lengthy papers by Ozsváth and Szabó, to which we refer

the interested reader [50, 49, 53, 46, 48].

Although Heegaard Floer homology HF ◦(Y ) is defined for general closed, con-

nected, oriented 3-manifolds Y , the definitions are simpler when restricted to rational

homology spheres. In these cases, the homology also takes on a more refined struc-

ture. Since we will never need to compute HF ◦(Y ) for any other type of Y , we restrict

our attention to this type of 3-manifold. The reader is referred to [50] for the more

general case.
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3.1 Constructing Heegaard Floer Homology

3.1.1 Heegaard Diagrams

The main ingredient in the definition of HF ◦(Y ) is a Heegaard diagram for Y , an

object which encodes all the raw data used to assemble Y .

Definition 3.1.1 (Heegaard splitting). Suppose that Y is a closed, connected, ori-

ented 3-manifold. Then a Heegaard splitting for Y is a triple (U1, U2,Σ), where U1

and U2 are handlebodies of the same genus (i.e. boundary connect sums of copies of

S1 ×D2), Σ = ∂U1, and Y = U1 ∪Σ U2.

Critically, every closed, connected, oriented 3-manifold Y possesses a Heegaard

splitting. This is most easily seen by noting that all such 3-manifolds are triangu-

lable. By thickening up the 1-skeleton of any such triangulation, we obtain the first

handlebody U1; since its complement U2 is itself a thickening of the dual 1-skeleton, it

too is a handlebody of the same genus. An alternative perspective takes a self-indexing

Morse function f : Y → [0, 3] for Y and sets U1 = f−1([0, 3
2
]), U2 = f−1([3

2
, 3]), and

Σ = f−1(3
2
). Some effort is required to establish that all Heegaard splittings for Y

arise in this manner.

Whichever way one views the matter, the main piece of information required to

construct a 3-manifold from two handlebodies U1 and U2 is the map h : ∂U1 → ∂U2

performing the gluing. Since maps can be tricky things to play with directly, an easier

approach is to relate ∂U1, ∂U2, and h to a standard surface Σ of the same genus in

what is called a system of attaching circles.

Definition 3.1.2 (System of attaching circles). Let Σ be a genus g surface. Then a

system of attaching circles on Σ, denoted α, is a collection of pairwise disjoint simple

closed curves {α1, . . . , αg} such that the αi determine independent homology classes

in H1(Σ).

By attaching discs to the αi and capping the resulting 2-skeleton with a 3-ball,

we obtain a genus g handlebody Uα. It is clear that all handlebodies with boundary

Σ arise in this fashion. With this in mind, we can now define a Heegaard diagram.
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Definition 3.1.3 (Heegaard diagram). A (pointed) Heegaard diagram for a closed,

connected, oriented 3-manifold Y is a triple (Σ,α,β, z) where

1. Σ is a genus g surface with two systems of attaching circles α = {αi}
g
i=1 and

β = {βi}
g
i=1 determining handlebodies Uα and Uβ respectively which form a

Heegaard splitting (Uα, Uβ,Σ) for Y ; and

2. z is a point (called the basepoint) on Σ disjoint from α and β.

While it is possible to specify Heegaard diagrams without the basepoint, or indeed

with two or perhaps more basepoints, until we reach Section 3.6 we will only be dealing

with single pointed Heegaard diagrams.

Figures 3.1(a), 3.1(b), 3.1(c), and 3.1(d) provide some examples of genus one

Heegaard diagrams. Viewing Σ in each diagram as ∂N(C) for the knot C obtained

by closing-up the cores of the handles in our diagrams with straight lines, we can

write H1(Σ) = Zµ⊕ Zλ, and every curve K on Σ is specified by its homology class.

Equivalently, by integers p, q such that [K] = ±(pµ+ qλ). Our examples can then be

summarised as follows.

1. Setting α = λ and β = µ, one obtains a Heegaard diagram of S3;

2. Setting α = β = λ, one obtains S2 × S1;

3. Setting α = pµ+ qλ and β = λ, one obtains −L(p, q).

The intersection points xi labelled in the figures will be relevant in the next section.

They are the principal ingredients in the Heegaard Floer chain complex.

3.1.2 Symmetric Products and Whitney Discs

While the previous section should have provided ample justification for the appear-

ance of Heegaard’s name in the theory, this section should justify Floer’s. As men-

tioned in the preamble, Floer homology theories usually count intersection points

between k-dimensional submanifolds of a 2k-dimensional supermanifold and relate
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Figure 3.1: (a) The standard genus one Heegaard diagram for S3: the shaded circles
represent the handle, while the red and blue circles represent α and β respectively;
(b) an alternative Heegaard diagram for S3; (c) a Heegaard diagram for S2×S1; and
(d) a Heegaard diagram for L(3, 1).

these points via connecting holomorphic discs. Heegaard Floer homology is no dif-

ferent. In this case, the arena in which the action takes place is an appropriately

constructed symmetric product.

Definition 3.1.4 (Symmetric product). Let Σ be a genus g surface. Then the sym-

metric product Symg(Σ) of Σ is defined as the quotient

Symg(Σ) :=

g︷ ︸︸ ︷
Σ× · · · × Σ /Sym(g),

where the action of the symmetric group Sym(g) on g objects is given by permutation.

Since Σ is a closed surface, and thus also a complex curve (once given a complex

structure), the symmetric product Symg(Σ) can be viewed (at least locally) as an

unordered collection of g complex numbers. By the fundamental theorem of algebra,

it therefore resembles a collection of monic polynomials of degree g (whose roots are

the unordered complex numbers); the space of such polynomials being homeomorphic

to Cg, we see that Symg(Σ) is a g-dimensional complex manifold (i.e. a 2g-dimensional

real manifold). The two g-dimensional real submanifolds required for a Floer-based
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approach are the following.

Definition 3.1.5 (Heegaard torus). Let α = {α1, . . . , αg} be a system of attaching

circles on a genus g surface Σ. Then we define the Heegaard torus Tα to be the image

of α1 × · · · × αg inside Symg(Σ).

Although it is certainly true that α1 × · · · × αg is a g-dimensional torus (each αi

is homeomorphic to S1), it is not immediately obvious that Tα shares this property.

However, since the αi are pairwise disjoint, if x, y ∈ α1 × · · · × αg, then there does

not exist σ ∈ Sg such that y = σ · x unless x = y. Consequently, distinct points of

α1 × · · · × αg are in distinct orbits of Sg, and Tα is homeomorphic to the product

of g circles, proving our claim. Note, however, that Tα is only a real manifold; it is

entirely possible that g might be odd.

The points of x ∈ Tα ∩ Tβ are called the intersection points of the Heegaard

diagram. In general, these points are ordered g-tuples (x1, . . . , xg), where xi ∈ αi ∩

βσ(i) and σ ∈ Sg, and will form the generators of our eventual Heegaard Floer chain

complex. The differential will count holomorphic discs between them.

Definition 3.1.6. Let D be the unit disc in C and x,y ∈ Tα ∩ Tβ. A Whitney disc

from x to y is a map φ : D→ Symg(Σ) such that

1. φ(−i) = x and φ(i) = y;

2. φ(z) ∈ Tα for |z| = 1 and ℜ(z) ≥ 0; and

3. φ(z) ∈ Tβ for |z| = 1 and ℜ(z) ≤ 0.

We let π2(x,y) be the set of homotopy classes of Whitney discs from x to y. In

an abuse of notation, we will continue to write φ for both the Whitney disc and its

equivalence class in π2(x,y).

A Whitney disc is illustrated in Figure 3.2. Given any complex structure J on

Σ (and hence an induced almost complex structure on Symg(Σ)), we can also speak

about pseudoholomorphic representatives of φ ∈ π2(x,y). For suitable choices of J

and suitable perturbations of the induced almost complex structure on Symg(Σ), it
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Figure 3.2: The image of D under a Whitney disc.

turns out that the moduli space M(φ) of pseudoholomorphic representatives for φ is

a manifold, and that its associated Maslov index µ(φ) computes dimRM(φ). What

is more, we can define an R-action on M(φ) as follows. Given a pseudoholomorphic

representative φ′ for φ, the conformal equivalence

D \ {±i} −→ S := {z ∈ C |0 ≤ ℜ(z) ≤ 1}

allows us to think of φ′ as a map S ∪ {±∞} → Symg(Σ). Since the domain S ∪

{±∞} now has a clear R-action by vertical translation, and since this translation is

homotopic to the identity, any translate of φ′ yields a different pseudoholomorphic

representative of φ. Quotienting M(φ) by this action, we obtain

M(φ) :=M(φ)/R,

which, for suitable J , has (real) dimension µ(φ)− 1. It is a theorem that if µ(φ) = 1,

thenM(φ) is compact.

Armed with this reduced moduli space, there remains only one prerequisite for

Heegaard Floer homology left to discuss. It concerns the basepoint z ∈ Σ which has

so far gone unnoticed. Lifting any point z ∈ Σ to the symmetric product, we define

Vz ⊂ Symg(Σ) to be the image of the projection

{z} ×

g−1︷ ︸︸ ︷
(Σ× · · · × Σ) −→ Symg(Σ).

71



Heegaard Floer Homology

If φ ∈ π2(x,y), we also define the intersection number of φ and z by

nz(φ) := imφ′ · Vz,

where φ′ is any pseudoholomorphic representative of φ. Note that imφ′ and Vz have

complementary dimensions in Symg(Σ) and can therefore be isotoped to intersect

transversally in points. These points are finite in number due to the compactness of

imφ′ and Vz.

3.1.3 Spinc-Structures Revisited

Recall from Chapter 2 that every rational homology 3-sphere Y comes equipped with

Spinc-structures in bijection with H2(Y ), and that Spinc(Y ) is an affine space over

H2(Y ). Moreover, if X is a 4-manifold with Y as boundary, we can restrict Spinc-

structures from X to Y , and this restriction surjects if X is simply connected.

In most of the papers on Heegaard Floer homology, however, the Spinc-structures

on Y are not defined in the manner outlined in Chapter 2: while the formalism of that

chapter is certainly necessary to make sense of Spinc(X) and restrictions to Spinc(Y ),

it is often more convenient to use an equivalent 3-manifold formulation due to Turaev

[68] when dealing with Heegaard Floer-type questions.

Definition 3.1.7 (Spinc-structures, Turaev). Let v and v′ be nowhere vanishing vec-

tor fields on Y . We say that v is homologous to v′ (written v ∼ v′) if they are ho-

motopic through nowhere vanishing vector fields on Y \B for some 3-ball B ⊂ Y . It

can be shown that the equivalence classes defined by ∼ are in bijection with Spinc(Y );

consequently, they themselves are referred to as Spinc-structures. It can be shown that

if t ∈ Spinc(Y ) corresponds to the nowhere vanishing vector field v, then t corresponds

to −v.

The equivalence between this definition and our previous one is proved in the early

pages of [68]. As a quick sketch, observe that a nowhere vanishing unit-vector field

(which must exist on Y as χ(Y ) = 0) determines a splitting of the tangent bundle

TY into v⊥ ⊕ Rv. Consequently, the structure group of TY has been reduced to
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U(1) (that of v⊥), which embeds diagonally into U(2) = Spinc(3), thus giving us a

Spinc-structure. For the details in the other direction, and the relevance of the ball

B, we refer the reader to [68].

The main reason that we will be interested in Spinc-structures from a Heegaard

Floer point of view is because they induce a splitting of the Heegaard Floer homology

HF ◦(Y ) =
⊕

t∈Spinc(Y )

HF ◦(Y, t). (3.1)

This splitting, as we will shortly see, arises because the differential will involve a

count of appropriate elements of π2(x,y); x and y will be associated (in some sense)

with Spinc-structures, and when x and y are related to different Spinc-structures, we

will find that π2(x,y) = ∅.

Now to make this more precise. As it turns out (see Section 2.4 of [50]), the

emptiness of π2(x,y) depends on an element ǫ(x,y) ∈ H1(Y ) defined by taking two

paths a : [0, 1]→ Tα and b : [0, 1]→ Tβ from x to y and letting ǫ(x,y) be the image

of a ∗ b−1 under the isomorphism

H1(Sym
g(Σ))

H1(Tα)⊕H1(Tβ)
≃

H1(Σ)

[α1], . . . , [αg], [β1], . . . , [βg]
≃ H1(Y ).

Since this isomorphism factors through the middle group, another way to realise

ǫ(x,y) is as follows. Let x = (x1, . . . , xg) and y = (y1, . . . , yg). Starting at x1, follow

some curve in α until we reach a point of y, then follow some curve in β until we

reach a new point of x and repeat, alternating between α and β until we return to

x1. If all points xi and yj have been visited, then we are finished and let cx,y be the

loop so generated. If, however, there are unvisited points, we choose any one of them

and repeat the process; cx,y is then taken to be union of all these closed paths. Its

image in H1(Y ) is ǫ(x,y).

Generally speaking, although both the loop a ∗ b−1 and cx,y depend on a lot of

choices, their image ǫ(x,y) does not (again, see [50]).

Proposition 3.1.8. π2(x,y) = ∅ if ǫ(x,y) 6= 0.

Given x,y, z ∈ Tα ∩ Tβ, it is trivial to verify that cx,z = cx,y + cy,z, and hence
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that

ǫ(x, z) = ǫ(x,y) + ǫ(y, z).

Consequently, ǫ defines a relative H1(Y )-grading on Tα ∩ Tβ and partitions the in-

tersection points into equivalence classes by the relation x ∼ y if ǫ(x,y) = 0.

To apply this relative grading and realise the splitting in (3.1), we first need to

establish a map Tα ∩ Tβ → Spinc(Y ) which lifts ǫ(x,y). As in [50], the assignation

we will use depends on our choice of basepoint z, and is therefore written tz(x). It

is constructed as follows. Take any self-indexing Morse function f : Y → [0, 3] which

defines the Heegaard splitting of Y as discussed earlier. If x ∈ Tα∩Tβ is the ordered

g-tuple (x1, . . . , xg), then we can always arrange for xi to lie on the gradient flow of

f from an index 1 critical point to an index 2 critical point [50]. Taking pairwise

disjoint neighbourhoods of the flowlines for each xi, as well as a non-overlapping

neighbourhood of the flowline containing z from the index 0 critical point to the

index 3 critical point, we now have g+1 balls contained in Y whose union we denote

B. Since there are no critical points in Y0 := Y \ B, it follows that ∇f is nowhere

vanishing on Y0, and since each ball of B contains a pair of complementary-index

critical points, we can extend ∇f |Y0
to a nowhere vanishing vector field on Y . We

call the associated Spinc-structure tz(x).

It is proved in Section 2.6 of [50] that this assignation tz : Tα ∩ Tβ → Spinc(Y )

lifts ǫ(x,y) in the manner we desire.

Proposition 3.1.9. For any x,y ∈ Tα ∩ Tβ,

tz(x)− tz(y) = PD(ǫ(x,y)).

This means that tz(x) = tz(y) if and only if ǫ(x,y) = 0, a fact will be crucial in

the section ahead.

3.1.4 The Definition

We are finally ready to define Heegaard Floer homology for a rational homology

sphere Y . Though much of what we are about to state can be extended to the case
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b1(Y ) > 0, the zero-Betti number hypothesis is particularly amenable because of

the following proposition, proved in [50]. Its relevance will become clear once the

definition is given.

Proposition 3.1.10. Let Y be a rational homology sphere with Heegaard diagram

(Σ,α,β, z). Then between any two points x,y ∈ Tα ∩ Tβ, there is at most one

φ ∈ π2(x,y) satisfying µ(φ) = 1.

Let (Σ,α,β, z) be a Heegaard diagram for an oriented rational homology 3-sphere

Y with implied (almost) complex structures on Σ and Symg(Σ). Then we define

CF∞(Σ,α,β, z) to be the Z-span of pairs [x, i], where x ∈ Tα ∩ Tβ and i ∈ Z, and

define a differential ∂ on CF∞(Σ,α,β, z) by

∂[x, i] :=
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1

#M(φ)[y, i− nz(φ)].

Notice that the sum is finite by Proposition 3.1.10.

Constructing CF∞(Σ,α,β, z) in this fashion, there is a natural ∂-equivariant

automorphism

U : CF∞(Y ) −→ CF∞(Y )

[x, i] 7−→ [x, i− 1]

which turns CF∞(Σ,α,β, z) into a Z[U,U−1]-module with generators Tα∩Tβ. Since

it can be proved (Theorem 4.3 of [50]) that ∂2 = 0, it follows that there is a well

defined homology

HF∞(Y ) := ker ∂/ im ∂,

called the ∞-flavoured Heegaard Floer homology of Y . This homology is itself a

Z[U,U−1]-module, and, as proved over the second half of [50], is independent of both

the choice of Heegaard diagram and the complex structure on Σ. Therefore, where the

meaning is clear, we may write CF∞(Y ) for the chain complex, safe in the knowledge

that the chain complex is unique up to chain homotopy.
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Now, recall from Proposition 3.1.8 that π2(x,y) = ∅ if ǫ(x,y) 6= 0, which oc-

curs, by Proposition 3.1.9, if and only if tz(x) 6= tz(x). In the light of the definition

above, this tells us that [y, j] does not appear with non-zero coefficient in the expres-

sion for ∂[x, i] whenever the Spinc-structures associated with x and y are different.

Consequently, if we define

CF∞(Y, t) := 〈[x, i] |tz(x) = t〉Z ,

then ∂ is in fact an endomorphism on CF∞(Y, t), and

HF∞(Y ) =
⊕

t∈Spinc(Y )

HF∞(Y, t).

This is the first flavour of Heegaard Floer homology. From it, we are also able to

define three other flavours by applying various algebraic constructions to the complex

CF∞(Y, t).

1. ĈF (Y, t) is defined as the subcomplex of CF∞(Y, t) spanned by those generators

[x, i] with i = 0. It inherits a Z-module structure;

2. CF−(Y, t) is defined as the subcomplex of CF∞(Y, t) spanned by those gener-

ators [x, i] with i ≤ 0. It inherits a Z[U ]-module structure; and

3. CF+(Y, t) is defined as the quotient complex CF∞(Y, t)/CF−(Y, t). It inherits

both a Z[U,U−1]/U · Z[U ]-module structure and a Z[U ]-module structure.

Associated with each of these chain complexes is a homology, ĤF (Y, t), HF−(Y, t),

or HF+(Y, t). In fact, the U -equivariant short exact sequence

0 −−−→ CF−(Y, t)
i

−−−→ CF∞(Y, t)
π

−−−→ CF+(Y, t) −−−→ 0

induces a U -equivariant long exact sequence in homology

. . . −−−→ HF−(Y, t)
i∗−−−→ HF∞(Y, t)

π∗−−−→ HF+(Y, t) −−−→ . . .. (3.2)
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This long exact sequence will become relevant later on.

We conclude this section with the remark that if (Σ,α,β, z) is a Heegaard diagram

for Y , so too is (−Σ,β,α, z); both diagrams should compute the same homology.

However, if f is a self-indexing Morse function for the first diagram, then 3 − f is

a similar function for the second, and hence the Spinc-structure tz(x) determined

by the first diagram is in fact the Spinc-structure tz(x) in the second. Since all

t ∈ Spinc(Y ) with non-zero HF ◦(Y, t) arise in this fashion, we have the following

result (see Theorem 2.4 in [49]).

Proposition 3.1.11. If Y is a closed, connected, oriented 3-manifold, and t ∈

Spinc(Y ), then

HF ◦(Y, t) = HF ◦(Y, t).

3.2 Example Calculations

To illustrate these constructions, we return momentarily to our examples of Figures

3.1(a), 3.1(b), and 3.1(d). We will not treat Figure 3.1(c), which represents S2 × S1,

since b1(S
2 × S1) 6= 0 and we have have not covered the definition of HF ◦(Y ) in

this case. Our calculations are simplified by the fact that g = 1, implying that

Symg(Σ) = Σ.

Starting with Figure 3.1(a), observe that there is precisely one intersection point

x, and as the diagram reconstructs S3, there is only one Spinc-structure. We claim

that ∂[x, i] = 0 for all i. By Proposition 3.1.10, there is at most one φ relevant to the

differential. If there are none, the claim is trivial; otherwise, there is a unique φ and

we can define m := #M(φ). It follows that

∂2[x, i] = m2[x, i− 2nz(φ)].

On the other hand, ∂2 = 0, forcing m2 = 0, and thus m = 0. Hence ∂[x, i] = 0. This
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immediately tells us that

HF∞(S3) = Z[U,U−1] ĤF (S3) = Z

HF−(S3) = Z[U ] HF+(S3) =
Z[U,U−1]

U · Z[U ]
.

We should obtain the same results if we repeat this calculation using Figure 3.1(b)

instead. This time, there are unique discs φ from x1 to x2 and from x3 to x2 satisfying

µ(φ) = 1 (uniqueness follows from Proposition 3.1.10, and the orientation is pinned

down once we remember that ∂D must map to Tα or Tβ appropriately). Observe

that nz(φ) = 0 for both discs. One can also compute that ∂[x2, i] = 0 by a slight

modification of the previous argument (one observes that ∂2[x1, i] = 0, so ∂[x2, i] = 0).

Putting this together, we find that ker ∂ is generated by [x1 − x3, i] and [x2, i], while

im ∂ is generated by [x2, i]. Thus, we recover the same results as in the previous case.

Turning to the lens space example, Figure 3.1(d), observe that any choice of

cxi,xj
for i 6= j yields a non-zero homology class ǫ(xi,xj) (in general, the result is a

generator of H1(Y )). Consequently, the Heegaard Floer homology of L(3, 1) in each

Spinc-structure is isomorphic to that of S3, and

HF ◦(L(3, 1), t) = HF ◦(S3, t0),

where t ∈ Spinc(L(3, 1)) and t0 is the unique element of Spinc(S3). A little extra

effort establishes that this is a general fact for lens spaces. Phrased otherwise, the

Heegaard Floer homology of L(p, q) is as simple as possible.

Definition 3.2.1. A rational homology 3-sphere Y is called an L-space if

HF+(Y, t) ≃
Z[U,U−1]

U · Z[U ]

for all t ∈ Spinc(Y ).

Notice that our calculations here were greatly simplified by the fact that g = 1. If

instead g > 1, it can be very difficult to visualise the relevant Whitney discs, though

computational tricks do exist. We refer the interested reader to Section 2.4 of [50] for
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a discussion on domains. Since domains will never be mentioned again in this work,

we omit them for brevity.

3.3 Cobordisms and Gradings

The reader making comparison between Heegaard Floer homology and singular ho-

mology will notice one crucial difference: whereas singular homology comes with an

absolute Z-grading, our definition above so far does not. We will soon see that it is

still possible to produce such a grading on HF ◦(Y ), but only because we have chosen

to work within the restricted class of rational homology spheres. We will also see that

the grading must generally be Q-valued, unless Y is an integral homology sphere (in

which case it is Z-valued).

Given two intersection points x and y, and a Whitney disc φ ∈ π2(x,y), we define

their relative grading by

gr(x,y) := µ(φ)− 2nz(φ).

Proposition 2.15 and Lemma 3.3 in [50] then show that gr(x,y) is independent of our

choice of φ. We define the grading between [x, i] and [y, j] by the formula

gr([x, i], [y, j]) := gr(x,y) + 2i− 2j.

Thus, ∂ reduces the grading of [x, i] by 1, as one might expect, and the automorphism

U reduces the grading by 2. We therefore stipulate that U ∈ Z[U,U−1] has degree

−2.

Definition 3.3.1. We say ξ ∈ CF ◦(Y, t) is homogeneous if gr([x, i], [y, j]) = 0 for

all [x, i] and [y, j] appearing with non-zero coefficient in ξ. If gr([x, i], [y, j]) < 0 for

all [y, j] ∈ CF ◦(Y, t), then we say [x, i] has least grading.

Before lifting the relative Z-grading defined above to an absolute grading as

promised, it is important to mention one of the main results from [53]. In that

paper, Ozsváth and Szabó prove that if W : Y1 → Y2 is a certain type of cobordism

and s ∈ Spinc(W ), then there are maps F ◦
W,s : HF

◦(Y1, s|Y1
) → HF ◦(Y2, s|Y2

) which
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are invariants of W . To avoid going into details, we merely mention that all the han-

dle cobordisms discussed in the previous chapter satisfy the requirements. The maps

F ◦
W,s are also natural, in that we have the following commutative diagram (where

ti := s|Yi
):

. . .
δ

−−−→ HF−(Y1, t1)
i∗−−−→ HF∞(Y1, t1)

π∗−−−→ HF+(Y1, t1)
δ

−−−→ . . .

F−

W,s

y F∞

W,s

y F+

W,s

y

. . .
δ

−−−→ HF−(Y2, t2)
i∗−−−→ HF∞(Y2, t2)

π∗−−−→ HF+(Y2, t2)
δ

−−−→ . . .

(3.3)

With these maps in mind, we have Theorem 7.1 from [53].

Theorem 3.3.2. Suppose that Y is a rational homology sphere. Then the relative

grading gr on HF ◦(Y, t) lifts to a Q-valued absolute grading g̃r on homogeneous ele-

ments satisfying the following properties:

1. If ξ ∈ HF+(S3) is homogeneous with least grading, then g̃r(ξ) = 0;

2. The maps i∗ and π∗ preserve g̃r, while δ and U drop g̃r by 1 and 2 respectively;

3. If W : Y1 → Y2 is a cobordism as above and s ∈ Spinc(W ), then

g̃r(F+
W,s(ξ))− g̃r(ξ) =

c1(s)
2 − 2χ(W )− 3 sig(W )

4
.

Definition 3.3.3 (Correction term). Let Y be a rational homology sphere. Then the

correction term d(Y, t) of Y in Spinc-structure t is defined as the lowest grading of

any homogeneous element in im π∗ ⊂ HF+(Y, t).

Proofs of the following two properties are found in Section 4 of [46].

Proposition 3.3.4. Correction terms satisfy the following two properties.

1. Conjugation symmetry: d(Y, t) = d(Y, t); and

2. Orientation sensitivity: d(−Y, t) = −d(Y, t).
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Correction terms are particularly important when it comes to cobordisms. For

example, suppose that W is a cobordism W : Y1 → Y2 between rational homology 3-

spheres with Spinc-structure s restricting to ti on Yi. Then the third part of Theorem

3.3.2 tells us that if ξ ∈ HF+(Y1, t1) is homogeneous, then

g̃r(F+
W,s(ξ))− g̃r(ξ) =

c1(s)
2 − 2χ(W )− 3 sig(W )

4
.

Supposing also that b+2 (W ) = 0, it can be proved that F∞
W,s is an isomorphism

(see the proof of Theorem 9.1 of [46]). Hence, on looking at the second square

in (3.3), it follows that we can always choose some ξ ∈ π∗(HF
∞(Y1, t1)) so that

g̃r(F+
W,s(ξ)) = d(Y2, t2). Since g̃r(ξ) ≥ d(Y1, t1) by definition, we have essentially

proved the following.

Proposition 3.3.5. If W : Y1 → Y2 is a cobordism, b+2 (W ) = 0, and s ∈ Spinc(W )

restricts to ti on Yi, then

c1(s)
2 − 2χ(W )− 3 sig(W )

4
≤ d(Y2, t2)− d(Y1, t1).

Corollary 3.3.6. If Y bounds a negative-definite 4-manifold X, and t ∈ Spinc(Y )

lifts to s ∈ Spinc(X), then

c1(s)
2 + b2(X) ≤ 4d(Y, t). (3.4)

Proof. Apply Proposition 3.3.5 to the cobordism W : S3 → Y obtained by removing

a small 4-ball from X. In particular, notice that χ(W ) = b2(W ) = b2(X) (an easy

computation), sig(W ) = −b2(W ) (by the negative-definite hypothesis), and QW =

QX . Since S3 only has one Spinc-structure t0, it follows that s|S3 = t0, and by the

first part of Theorem 3.3.2, d(S3, t0) = 0. Putting all this information together, we

are done.

Definition 3.3.7 (Sharp 4-manifold). A negative-definite 4-manifold X with bound-

ary Y is sharp if every t ∈ Spinc(Y ) extends to some s ∈ Spinc(X) which gives

equality in (3.4).
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3.4 Structure of HF+(Y ) for Rational Homology Spheres

Having defined the absolutely graded Heegaard Floer homology HF+(Y ) of a closed,

connected, oriented rational homology 3-sphere Y , we are now in a position to make

some more detailed observations about the form taken by HF+(Y ). Indeed, the

structure of HF+(Y ) can often be reduced to a set of numerical data.

First off, we have the following theorem, which is established in [50].

Theorem 3.4.1. If Y is a closed, connected, oriented rational homology 3-sphere,

then HF∞(Y, t) ≃ Z[U,U−1] for all t ∈ Spinc(Y ).

As a result of this theorem, it is clear that the only interesting data to be extracted

from HF∞(Y, t) is the grading in [0, 2) of any homogeneous element whose grading

falls in that interval (all homogeneous elements ξ and η ∈ HF∞(Y, t) are related by

the equation ξ = Un · η for some n ∈ Z).

On the other hand, HF+(Y, t) possesses a more refined structure. Indeed, if the

reader were wondering why we defined multiple flavours of Heegaard Floer homology,

these next few comments should prove enlightening.

Definition 3.4.2. Let T + := HF+(S3, t0), where t0 is the unique Spinc-structure on

S3. Then we set T +
d := T +[d], where [d] denotes a Q-grading shift of d, and define

the reduced Heegaard Floer homology HF+
red(Y, t) by

HF+
red(Y, t) := HF+(Y, t)/ im π∗.

It can be shown without too much difficulty that HF+
red(Y, t) is finitely generated

as a Z-module. In fact, since HF+(Y, t) is finitely generated as a Z[U,U−1]/U ·Z[U ]-

module, Lemma 4.6 of [50] tells us that imUk = im π∗ for sufficiently large k, and

our claim follows. Putting this together with Theorem 3.4.1, we obtain the following

structural theorem (again, see [50]).

Theorem 3.4.3. Let Y be a rational homology 3-sphere. Then

HF+(Y, t) = T +
d(Y,t) ⊕HF

+
red(Y, t).
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Notice that the T +
d(Y,t) component is simply im π∗. Phrased like this, we can see

that an L-space Y is characterised by the property that HF+
red(Y, t) = 0 for all

t ∈ Spinc(Y ). Its Heegaard Floer homology is therefore entirely determined by the

correction terms d(Y, t), which in turn can be computed by calculating the Q-gradings

of the elements of kerU .

3.5 Computations for Plumbed 3-manifolds

We say that a 3-manifold is plumbed if it is the boundary of a 4-manifold X obtained

by plumbing (see Section 2.2.2). Since these sorts of manifolds occur often (for exam-

ple, all Seifert fibred spaces), it is worth having some understanding of their Heegaard

Floer homology. Luckily for us, this exact problem has been studied extensively, and

algorithms exist for computing HF+(−Y ) in various different circumstances. The

one we will use goes back to Ozsváth and Szabó in [51].

Let G be a tree, and let X be its associated 4-manifold (denoted X (G) in Section

2.2.2). We let Y = ∂X, and recall from Proposition 2.2.6 that H2(X) is freely

generated by [Sv], where v is a vertex of G, and H2(X, Y ) by PD[Sv]. For ease of

notation, we will write [v] and PD[v] for [Sv] and PD[Sv] respectively. Pushing this

through the short exact sequence underlying Proposition 2.1.3,

Spinc(X) −−−→ Spinc(Y )

c1

y c1

y

0 −−−→ H2(X, Y )
Q
−−−→ H2(X)

α
−−−→ H2(Y ) −−−→ 0,

(3.5)

we see that kerα is generated by the images of the PD[v], which in turn are visible

(in H2(X)) as the rows of Q. Remember also from that proposition that with our

chosen bases for H2(X, Y ) and H2(X), the map Q has the same matrix as QX . We

will think of H2(X) as Hom(H2(X),Z), since X is simply connected, and hence write

elements of H2(X) in the dual basis [v]∗.

To see how the Spinc-structures fit into this picture, we consider all the charac-
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teristic covectors Char(G) ⊂ H2(X). That is, those K which satisfy

〈K, [v]〉 ≡ v · v = w(v) mod 2 for all v ∈ V (G).

By Proposition 2.3.15, the map c1 : Spinc(X) → Char(G) is a bijection, so we will

think of these covectors as being the Spinc-structures of X themselves. We must be

more careful, however, in identifying Spinc-structures on Y with their Chern classes,

for according to Section 2.3.5, the map c1 : Spinc(Y ) → H2(Y ) has image 2H2(Y )

and may not be injective.

1. If H2(Y ) contains no 2-torsion (i.e. is of odd order), then c1 is bijective and so

any two characteristic K1, K2 determine the same Spinc-structure on ∂X if and

only if K1 −K2 ∈ kerα. Equivalently, if and only if (K1 −K2)Q
−1 ∈ Z|G|.

2. If H2(Y ) does contain 2-torsion (i.e. is of even order), then c1 is 2k-to-one,

where H1(Y ;Z2) = Zk
2. Consequently, if (K1−K2)Q

−1 ∈ Z|G|, then the best we

can conclude is that K1 and K2 determine Spinc-structures with the same first

Chern class.

In light of these remarks, instead of thinking of α(K), where K ∈ Char(G), as being

a Spinc-structure on ∂X, we partition Char(G) according to the following rule. Take

K ∈ Char(G) and let s ∈ Spinc(X) be such that c1(s) = K. We define [K] := s|Y ,

and say that K1 ∼ K2 if [K1] = [K2]. It is now safe to think of the equivalence classes

of ∼ as the elements of Spinc(Y ) since Spinc(X) → Spinc(Y ) surjects when G is a

tree.

Having set this framework up, the algorithm in Section 3 of Ozsváth and Szabó’s

paper [47] gives us an efficient method for identifying representatives of the equiva-

lence classes of ∼ when G is a disjoint union of trees, is negative-definite, and has at

most one overweight vertex (meaning that d(v) > −w(v), where d(v) is the degree of

vertex v). Their result says that kerU ⊂ HF+(Y ) is given by some subset of those

K ∈ Char(G) satisfying

w(v) + 2 ≤ 〈K, [v]〉 ≤ −w(v) for all v ∈ V (G). (3.6)
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To identify which subset is relevant, we begin by taking some K which satisfies (3.6)

and lettingK0 := K. Then if 〈Ki, [v]〉 = −w(v) for some v, we letKi+1 = Ki+2PD[v]

(which determines the same Spinc-structure on ∂X, as noted above). This operation

is called pushing down (the co-ordinate of) Ki at v. Continuing like this, we conclude

with either some L := Km such that

w(v) ≤ 〈L, [v]〉 ≤ −w(v)− 2 for all v ∈ V (G),

or else with an L such that there exists a v satisfying 〈L, [v]〉 > −w(v). If we conclude

in the first way, we say that K initiates a maximising path, while if we conclude in

the second we say that K initiates a non-maximising path. Theorem 3.2 of [47] tells

us that kerU is given by those K satisfying (3.6) which initiate maximising paths,

and Corollary 1.5 of the same tells us that the correction terms of Y are computed as

d(Y, t) = max
K:[K]=t

KQ−1Kt + |G|

4
. (3.7)

This equation proves immediately that X is sharp (provided there is at most one

overweight vertex in G).

In the special instance when Y is an L-space, we already know from our remarks

after Theorem 3.4.3 that kerU is in bijection with Spinc(Y ). Hence, if Y is an L-space,

the algorithm above outputs a complete set of representatives for the Spinc-structures

on Y without repetition.

3.6 Knot Floer Homology

The last concept we need to introduce before beginning our new work is the filtration

a knot K ⊂ Y induces on the complex CF∞(Y ) (again taking Y to be a rational

homology sphere). This extra filtration will allow us to define the knot Floer homology

of K, which has considerably more structure than the Heegaard Floer homology of

Y . Indeed, as mentioned at the start of this chapter, the resulting homology is a

categorification of the Alexander polynomial.

To introduce this filtration, we must first modify the type of Heegaard diagrams
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we are interested in. We say that a Heegaard diagram (Σ,α,β) is a Heegaard diagram

for K ⊂ Y if

1. (Σ,α,β0) is a Heegaard diagram for Y \ IntN(K), where β0 := β \ {βg}; and

2. βg is a meridian for K, and intersects precisely one curve in α (conventionally,

this is taken to be αg).

Such diagrams exist for all knots K ⊂ Y (see [48]), and in the case Y = S3 they can

be constructed explicitly using bridge presentations (see Section 3.2 of [55]). Due to

space constraints, we must unfortunately invite the interested reader to consult these

sources at his own leisure.

Once we are given a Heegaard diagram (Σ,α,β) for K ⊂ Y , together with a

choice of almost-complex structure J on Σ, we can associate with Y a double pointed

Heegaard diagram (Σ,α,β, w, z) defined by taking any longitude λ of K and letting

w and z be points on λ disjoint from α and β such that w and z lie at a small distance

either side of βg, and the interval joining them on λ and intersecting βg runs from

w to z. Recall that βg is a meridian for K, so we are assured that βg · λ = 1 and

that such a construction is possible. These two basepoints now allow us to make the

following definition.

Definition 3.6.1 (Knot Floer homology). Suppose that K ⊂ Y is a knot with an

associated double pointed Heegaard diagram (Σ,α,β, w, z). Then we define the knot

Floer complex CFK∞(Σ,α,β, w, z) to be the Z-span of [x, i, j] where x ∈ Tα ∩ Tβ

and i, j ∈ Z, and define its differential ∂ by the formula

∂[x, i, j] =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)
µ(φ)=1

#M(φ)[y, i− nw(φ), j − nz(φ)].

Since ∂2 = 0, it follows that there is a well-defined homology

HFK(Y,K) :=
ker ∂

im ∂
,

which is an invariant of the knot K independent of our choices of Heegaard diagram
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and complex structure on Σ.

We shall refer to CFK∞(Σ,α,β, w, z) as CFK∞(Y,K) for concision. One can

show, as per [50], that nw(φ) and nz(φ) are non-negative if φ admits holomorphic

representatives, so the indices i and j do indeed give us legitimate filtrations on

CFK∞(Y,K). The automorphism U is defined this time as the map

U : CFK∞(Y,K) −→ CFK∞(Y,K)

[x, i, j] 7−→ [x, i− 1, j − 1].

Although much more can be said on the structure of HFK(Y,K), in particular

that it can be split according to Spinc-structures on the 0-surgery of K (see Section

3.1 of [48]), this extra material is not necessary for our purposes. We will therefore

content ourselves with one final observation: by restricting to i = 0 and j = 0 in the

case Y = S3, one can define subcomplexes Ca,b(K) of the restricted chain complex

CFK{i=0},{j=0}(S3, K) consisting of those elements with so called Alexander grading

a (defined by an appropriate lift of the relative grading A(x,y) := nz(φ) − nw(φ)

using the unique φ ∈ π2(x,y) if it exists), and absolute S3-grading b (the Q-grading

previously discussed). Each Ca,b(K) then has an associated homology Ha,b(K), and

∆K(t) =
∑

a

∑

b

(−1)b rankHa,b(K)ta.

That is, HFK{i=0},{j=0}(S3, K) =
⊕

a,bHa,b(K) categorifies the Alexander polyno-

mial. Viewed this way, the well-known theorem that the degree of ∆K(t) is a lower

bound on the knot genus g(K) is strengthened into a theorem which tells us that

g(K) is the maximal grading a ∈ Z such that Ha,b(K) 6= 0 for some b ∈ Z. We invite

the reader to pursue these interesting avenues on his or her own in [48].

87



88

CHAPTER 4: DEFICIENCY

SYMMETRIES OF SURGERIES IN S3

We are now finally ready to discuss and prove the main theorem of this thesis (The-

orem 1 from the Introduction). At its core, this theorem relies on certain symmetries

in the correction terms of 3-manifolds Y obtained by Dehn surgery on knots in S3.

These symmetries, which first appeared in the half-integral case in [51], are generalised

here into similar symmetries on a much broader class of rational surgeries (Theorem

4.1.1).

While it is technically possible, as in [51], to use the symmetries described by

Theorem 4.1.1 to prove that a given Y does not arise by Dehn surgery on a knot, it

is typically extremely difficult to do so. This point is best illustrated in Chapter 5,

which furnishes us with an entire family of examples whose deficiencies are difficult

to calculate, even though the manifolds themselves are L-spaces. This difficulty is

the motivation for our second theorem, Theorem 4.1.3, which recasts Theorem 4.1.1

in a more accessible form provided certain other assumptions on the topology of the

4-manifolds bounded by Y are also satisfied.

The content of this chapter is taken from the author’s paper [19], currently await-

ing publication.

4.1 Statement of the Theorems

The key objects in this chapter are the deficiencies of a −p/q-surgery on a knot C in

S3 in the case when p, q > 0. These objects are constructed using the bijection

Spinc(S3
−p/q(C))←→ Spinc(S3

−p/q(U))
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outlined in the next section, and are defined as the differences

D
p/q
C (t) := d(S3

−p/q(C), t)− d(S
3
−p/q(U), t),

where U is the unknot, t is a Spinc-structure, and d(·, ·) denotes the appropriate

correction term. When it is clear what we mean, we may sometimes drop the C from

the notation D
p/q
C .

As suggested in the preamble, the first of our main theorems is a study of the

symmetries exhibited by D
p/q
C (t). We let n = ⌈p/q⌉ and define r by p = nq − r.

Theorem 4.1.1. Let C be a knot in S3, and let p, q be coprime, non-negative integers.

Then there is a function r : Spinc(S3
−p/q(C))→ Spinc(S3

−n(C)) such that the following

diagram commutes:

Spinc(S3
−p/q(C))

r
> Spinc(S3

−n(C))

Q

Dn

∨

Dp/q

>

and the fibres of r are of size q, with one exception over an element of Spinc(S3
−n(C))

which minimises the value of Dn. In particular, conjugation on Spinc(S3
−n(C)), under

which Dn is invariant, lifts to a function on Spinc(S3
−p/q(C)) under which Dp/q is

invariant.

Stated thus, the theorem is in fact not difficult to prove; what requires more

effort is the exhibition of such an r. We provide one example towards the middle

of the chapter, and use it explicitly to convert Theorem 4.1.1 into a computable

obstruction to negative rational surgeries. This obstruction is motivated by and

generalises Greene’s work in [26], [25], and [24]. As in the Introduction, we must use

the canonical Hirzebruch-Jung continued fraction p/q = [a1, a2, . . . , aℓ]
−, in which

n = a1; we let W be the trace described in Proposition 2.2.3.

Definition 4.1.2 (Changemaker set). A set of non-negative integers {σj}
r
j=1 is called

a changemaker set if the σj are non-decreasing and satisfy both σ1 ≤ 1 and the
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changemaking condition

σj ≤ σ1 + σ2 + ...+ σj−1 + 1

for all j = 2, . . . , r.

Theorem 4.1.3. Suppose that Y = S3
−p/q(C) for some knot C ⊂ S3 and coprime

p, q > 0, that W is the manifold above (with intersection form QW ), and that −Y

bounds a sharp, simply connected, negative-definite smooth 4-manifold X with inter-

section form QX . Then if

d(Y, t)− d(S3
−p/q(U), t) = 0

for either (a) one choice of t if n is odd; or (b) q − r + 1 choices of t if n is even,

there exists an integral matrix A such that

−AAt = QX ⊕QW .

Moreover, if q 6= 1, one can choose A so that the last ℓ rows are:




σr . . . σ1 1 0

−1 1 . . . 1
. . .

−1 1 . . . 1 0

−1 1 . . . 1




,

where there are exactly ai non-zero entries in rows i = 2, . . . , ℓ, all ±1 as above, and

{σj}
r
j=1 forms a changemaker set. If instead q = 1, one can choose A so that the last

row reads: (
σ′
r . . . σ′

1 σ′
0

)
,

and {σ′
j}

r
j=0 forms a changemaker set.

As a brief remark, the expansion p/q = [a1, . . . , aℓ]
− used above does not need
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to be the canonical one. It must, however, have an associated 4-manifold W from

Proposition 2.2.3 which is negative-definite and an associated plumbing graph with

at most one overweight vertex. Since this is quite a mouthful to state, we have opted

for the canonical choice (which satisfies both requirements).

4.2 Relative Spinc-Structures

Implicit in the very definition of a deficiency is a bijection

Spinc(S3
−p/q(C))←→ Spinc(S3

−p/q(U)).

Before proceeding any further, therefore, we should describe how this bijection works.

Let C be any oriented knot in S3 and consider its exterior M(C). Then the

relative Spinc-structures on M(C), denoted Spinc(S3, C) are enumerated as follows.

Following similar lines to the reasoning in Section 2.3.5, a t∗ ∈ Spinc(S3, C) determines

a relative Chern class c1(t
∗) ∈ H2(M(C), ∂M(C)) which evaluates to an even integer

2i on a Seifert surface for C (the homology class of such a surface generates the

relative homology). We label t∗ by i = 1
2
c1(t

∗). As this can be done independent of

the isotopy class of C, we now have a bijection

Spinc(S3, C)←→ Spinc(S3, U).

According to the interpretation given by Turaev [68] (see Section 3.1.3), t
∗ ∈

Spinc(S3, C) corresponds to an equivalence class of nowhere-vanishing vector fields

represented by a vector field Vt∗ on M(C) such that Vt∗ |∂M(C) = U , where U is the

vector field on ∂M(C) obtained by parallel translating any given vector in Tx∂M(C)

(for any x ∈ ∂M(C)). This choice of U is unique up to homotopy, and in this

formulation the conjugation map t
∗ 7→ t∗ gives us V

t∗
= −Vt∗ .

Now suppose that we have performed a p/q-Dehn surgery on C, stitching a solid

torus S1×D2 to M(C) along its boundary to obtain a closed 3-manifold Y ; we want

to extend relative Spinc-structures on M(C) to Y . There is an essentially unique

vector field V on S1 × D2 with V |∂(S1×D2) = U , obtained by isotoping U to the
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inward-pointing normal at a shallow depth inside S1 ×D2 and setting V in the rest

of the interior transverse to the D2 factor until it runs parallel to C along the core.

By gluing V to Vt∗ , we obtain a Spinc-structure on Y , and on the cohomological level

this realises

Spinc(Y ) =
Spinc(S3, C)

〈p · PD[µ]〉
= Zp,

where µ is the meridian of C. Thus, the integer 1
2
c1(t

∗) = i determines an element

of H2(Y ) by its image in the quotient map Z → Zp, and this gives us a labelling of

Spinc(Y ). In this labelling, we can see that the conjugate t∗ determines −i ∈ Zp,

and that the Spin-structures (as the self-conjugate Spinc-structures, see Proposition

2.3.12) are 0, p
2
∈ Zp if p is even, or just 0 ∈ Zp if p is odd. Again noting that this

was independent of C, we have our bijection

Spinc(S3
p/q(C))←→ Spinc(S3

p/q(U)).

In light of this, if we wish to enumerate the Spinc-structures on S3
−p/q(C), we need

only enumerate them on S3
−p/q(U).

4.3 An Application of Knot Floer Homology

In [54], Ozsváth and Szabó outline a variety of tools for computing the Heegaard

Floer homology of S3
−p/q(C) in terms of the knot Floer homology of C. This work has

since been extended by Ni and Wu in [44] to calculate D
p/q
C (t). One of their results

is important for us now.

If C ⊂ S3 is a knot, recall from Section 3.6 that there is an associated knot Floer

chain complex CFK := CFK∞(S3, C). Let S be a subset of Z ⊕ Z such that if

(i, j) ∈ S then (i+ 1, j), (i, j + 1) ∈ S, and define CFK{S} to be the quotient of the

knot Floer complex by the subcomplex generated by those [x, i, j] satisfying (i, j) ∈ S.

With this notation, we let k ∈ Z, and set

A+
k := CFK{i ≥ 0 or j ≥ k} and B+ := CFK{i ≥ 0}.
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As per [54], there exist canonical U -equivariant chain maps

v+k , h
+
k : A+

k −→ B+;

v+k is projection onto CFK{i ≥ 0}, while h+k is a composition of projection onto

CFK{j ≥ k}, identification with CFK{j ≥ 0}, and chain homotopy equivalence

with CFK{i ≥ 0}. At sufficiently high gradings, these two maps are isomorphisms

and hence behave as multiplication by UVk and UHk respectively, where Vk, Hk ≥ 0

are integers.

Using the labelling of Spinc-structures given in Section 7 of [54], we have the

following result due to Ni and Wu. It can be found in [44] under Proposition 2.11,

though as stated here we have applied it to C.

Proposition 4.3.1 (Ni-Wu). Let C be any knot in S3, and let p, q be coprime, positive

integers. Then

D
p/q
C (ti) = 2max

{
V⌊ i

q

⌋, H⌊
i−p
q

⌋

}
.

As it stands, the labelling ti used above is a difficult one to play with on general

rational surgeries. However, in the case of an integral n-surgery, it simplifies consid-

erably. In this instance, the Spinc-structure ti is the one that admits an extension s

on the cobordism S3 → S3
n(C) which satisfies

〈c1(s), [S]〉 ≡ n+ 2i mod 2n,

where S is the closed surface obtained by gluing a Seifert surface for C to the core of

the attached handle. This fact will be useful for us later in our proofs.

One extra comment: before applying Proposition 4.3.1, we will need certain extra

properties of the Vi and Hi. These are also proved in [44] and summarised here.

Lemma 4.3.2. The Vi and Hi satisfy the following properties:

1. V0 = H0; and

2. The Vi are a non-increasing sequence, while the Hi are a non-decreasing se-

quence.
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We are now in a position to prove the following result.

Lemma 4.3.3. Let C be a knot in S3. Then

∑

t∈Spinc(S3
−p/q

(C))

D
p/q
C (t) = q·

∑

t∈Spinc(S3
−n(C))

Dn
C(t)− r · min

t∈Spinc(S3
−n(C))

{Dn
C(t)} .

Proof. We consider the integral surgery first. By a direct application of Proposition

4.3.1 we obtain
∑

t∈Spinc(S3
−n(C))

Dn
C(t) = 2

n−1∑

i=0

max {Vi, Hi−n} . (4.1)

Our goal is to compare this with the rational surgery.

Labelling the Spinc-structures on the rational surgery as tiq+j , we have the follow-

ing bounds:

1. j ranges from 0 to q − 1;

2. i ranges from 0 to n− 1 if j < q − r, or from 0 to n− 2 if j ≥ q − r.

Rephrasing the second of these, i ranges from 0 to n− 1− δ(j), where δ(j) :=
⌊
j+r
q

⌋
.

Consequently, using Proposition 4.3.1,

q−1∑

j=0

n−1−δ(j)∑

i=0

D
p/q
C (tiq+j) = 2

q−1∑

j=0

n−1−δ(j)∑

i=0

max{Vi, Hi−n+δ(j)}. (4.2)

We fix j and observe that

n−1−δ(j)∑

i=0

max{Vi, Hi−n+δ(j)} =





∑n−1
i=0 max{Vi, Hi−n} if δ(j) = 0

∑n−2
i=0 max{Vi, Hi−n+1} if δ(j) = 1

. (4.3)

Clearly, if δ(j) = 0, then the RHS is the same as the RHS of (4.1). This happens

for the first q − r values of j, meaning that the situations of interest are the r larger

cases when δ(j) = 1. In effect, to obtain our result we need to establish that

n−2∑

i=0

max{Vi, Hi−n+1} =
n−1∑

i=0

max{Vi, Hi−n} −m,
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where 2m is the value of the minimum deficiency.

Suppose that i′ is chosen to be the largest integer such that the integral deficiency

in Spinc-structure ti′ is minimal. That is, that max{Vi′ , Hi′−n} is minimal. Then

there are two possibilities.

1. Suppose that Vi′ ≥ Hi′−n. As V∗ is non-increasing and H∗ is non-decreasing, it

follows that Vi ≥ Hi−n for all i ≤ i′, and hence that Vi ≥ Vi+1 ≥ Hi−n+1 for all

i < i′.

Going in the other direction, suppose that Vi′+1 > Hi′−n+1. Then our

choice of i′ implies that Vi′+1 = max{Vi′+1, Hi′−n+1} > max{Vi′ , Hi′−n} = Vi′ , a

contradiction to the non-increasing behaviour of V∗. Thus Hi′−n+1 ≥ Vi′+1, and

Hi−n+1 ≥ Hi−n ≥ Vi for all i > i′.

In the case i = i′, observe that

Vi′ = max{Vi′ , Hi′−n} < max{Vi′+1, Hi′−n+1} = Hi′−n+1.

Putting this together with the conclusions of the previous two paragraphs, we

deduce that

n−2∑

i=0

max{Vi, Hi−n+1} =
i′−1∑

i=0

Vi +
n−2∑

i=i′

Hi−n+1

=
n−1∑

i=0

max{Vi, Hi−n} − Vi′ .

Observe that Vi′ = m.

2. Suppose instead that Hi′−n ≥ Vi′ . This case is similar, though a little more

complicated; we define j′ to be the smallest integer such that max{Vk, Hk−n} is
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minimal for j′ ≤ k ≤ i′, and end with the conclusion

n−2∑

i=0

max{Vi, Hi−n+1} =

j′−1∑

i=0

Vi +
i′−1∑

i=j′

Hi′−n +
n−2∑

i=i′

Hi−n+1

=
n−1∑

i=0

max{Vi, Hi−n} −Hi′−n

and the observation that Hi′−n = m, by definition of i′.

To complete the proof, one puts the above information into (4.2) via (4.3) and com-

pares with (4.1).

If one reads this argument carefully, one will find that it can be modified slightly

to give a proof of Theorem 4.1.1. However, since this modified argument provides no

insight as to the nature of r without a deeper knowledge of the labelling ti, it is of

limited use to us.

In light of the above lemma, a natural question at this point is: Which Spinc-

structures on S3
−n(C) minimise the deficiency? We answer it below.

Lemma 4.3.4. According to the parity of n,

1. If n is even, then tn
2
realises the minimal deficiency; and

2. If instead n is odd, then tn±1
2

do the same.

Proof. Recall that ti evaluates, modulo 2n to n + 2i. Hence ti and tn−i are conju-

gates, and so by the conjugation symmetry of correction terms (see the first part of

Proposition 3.3.4), if i 6= 0 and ti realises the minimum, so does tn−i. Assuming that

i ≤ n − i, we claim that the same is true for all tj with i ≤ j ≤ n − i. Indeed, let

the minimum deficiency be 2m, so that max{Vi, Hi−n} = max{Vn−i, H−i} = m. We

know that m ≥ Vi ≥ Vj and m ≥ H−i ≥ Hj−n, so max{Vj , Hj−n} ≤ m, and as m is

minimal it follows that we have equality. Consequently, tj also realises the minimum.

Thus, if ti realises the minimum for i 6= 0, so do the tj for the centralmost values

of j, namely n
2
or n±1

2
, depending on parity. The other possibility, of course, is that

t0 realises the minimum. In this case, observe that Dn
C(t0) = 2max{V0, H−n}. By
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Lemma 4.3.2, V0 = H0 ≥ H−n, and we see that the deficiency is in fact 2V0. Since

Vi ≤ V0 and Hi−n ≤ H0 = V0,

Dn
C(ti) = 2max{Vi, Hi−n} ≤ 2V0 = Dn

C(t0),

and t0 is in fact the Spinc-structure with the maximal deficiency.

4.4 Preliminaries to the Proofs

Our goal now is to exhibit a function r : Spinc(S3
−p/q(C)) → Spinc(S3

−n(C)) that

satisfies Theorem 4.1.1. This will we require some enumeration of the Spinc-structures

on S3
−p/q(C), but as mentioned at the end of Section 4.2, this enumeration need only

consider the case C = U .

4.4.1 A Plumbing Diagram for S3
−p/q(U)

Recall from Section 3.5 that, given a negative-definite graph G which is a disjoint

union of trees with at most one overweight vertex, there is an algorithm for deter-

mining kerU ⊂ HF+(Y ), where Y = ∂X (G) (see Section 2.2.2). As per the remarks

following Theorem 3.4.3, if Y is an L-space, then this is enough to determine HF+(Y )

completely, and the elements of kerU enumerate the Spinc-structures on Y . Their

corresponding correction terms are obtained by computing their Q-gradings.

Consider the linear graph G in Figure 4.1, where p/q = [a1, . . . , aℓ]
− > 0 is

written in the canonical Hirzebruch-Jung continued fraction notation. We would

like to apply the aforementioned algorithm to the boundary of the associated 4-

manifoldW ′ := X (G). This requires us to check the various conditions of the previous

paragraph. To see that ∂W ′ = S3
−p/q(U), we repeatedly slam-dunk the Kirby diagram

from Proposition 2.2.8 until all that remains is a single unknot. The following lemma

covers the remaining hypotheses. (Observe also that W ′ is simply connected since G

is a tree, see Proposition 2.2.6.)

Lemma 4.4.1. Let G be the graph in Figure 4.1. Then W ′ = X (G) has a negative-

definite intersection form.
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. . .

- a 2 - a 3 - a   - 1- a 1 - a ll

Figure 4.1: A graph G determining the 4-manifold W ′ := X (G) by plumbing. The
integers ai are taken from the canonical Hirzebruch-Jung continued fraction expansion
p/q = [a1, . . . , aℓ]

−. Notice that ∂W ′ = S3
−p/q(U).

Proof. As [a1, . . . , aℓ]
− is the canonical Hirzebruch-Jung continued fraction for p/q,

the integers ai ≥ 0 must satisfy

p/q = a1 − r1 where 0 ≤ r1 < 1; and

r−1
i = ai+1 − ri+1 where 0 ≤ ri+1 < 1.

As p/q 6= 0, it follows that a1 ≥ 1; if p/q > 1, we can improve this to a1 ≥ 2.

Moreover, as r−1
i > 1, it follows that ai ≥ 2 for i ≥ 2.

Now, consider the intersection form of W ′, which, under some choice of basis, is

represented by the matrix

Q =




−a1 1

1 −a2 1

1
. . . 1

1 −aℓ



.

According to Sylvester’s criterion this matrix is negative-definite if sgnAi = (−1)i,

where Ai is the determinant of the upper left i × i submatrix. We claim two things

by induction:

1. sgnAi = (−1)i (i.e. that Ai = (−1)i |Ai|); and

2. |Ai| ≥ |Ai−1|.

To start the induction, we check these two claims for i = 1, 2. Notice that A1 =

−a1 < 0 and A2 = a1a2 − 1 > 0, verifying the first, and that

|A2| = (a2 − 1)a1 + (a1 − 1) ≥ a1 = |A1| ,
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verifying the second.

We now proceed to the inductive step. By expanding along the i-th row of the i-th

submatrix, Ai = −aiAi−1 − Ai−2. Using this recurrence relation and our inductive

hypotheses,

(−1)iAi = (−1)2iai |Ai−1| − (−1)2i−2 |Ai−2|

= (ai − 1) |Ai−1|+ |Ai−1| − |Ai−2|

≥ (ai − 1) |Ai−1| .

In particular, since ai ≥ 2 for i ≥ 2, it follows that (−1)iAi > 0, so sgn(Ai) = (−1)i,

and |Ai| ≥ |Ai−1|. This concludes our proof.

4.4.2 Combinatorics of the Plumbing Diagram

Because we are interested in obtaining a convenient enumeration of the elements of

Spinc(S3
−p/q(C)) ↔ Spinc(S3

−p/q(U)), the natural question at this point is: What do

the Spinc-structures of S3
−p/q(U) look like after working through the algorithm in

Section 3.5? Our answer will require a few more definitions.

Definition 4.4.2. Suppose that Y is a closed 3-manifold contained in X, a smooth

4-manifold. Then given some t ∈ Spinc(Y ), we say that c ∈ H2(X) is a maximiser

for t if c = c1(s) for some s ∈ Spinc(X) which satisfies s|Y = t and which maximises

c1(s)
2.

Definition 4.4.3. Let K be a characteristic covector for the linear graph G in Figure

4.1 which satisfies

w(v) ≤ 〈K, [v]〉 ≤ −w(v) for all v ∈ V (G).

Then we say that a vertex vi is a peak for K if 〈K, [vi]〉 = ai, and call K + 2PD[vi]

the push-down of K at vi (we also call any covector obtained by a sequence of such

moves a push-down of K). We say that K contains no full tanks if there do not exist

i < j such that vi and vj are peaks and 〈K, [vk]〉 = ak − 2 for all i < k < j. We say

99



Deficiency Symmetries of Surgeries in S3

that K is left-full if there exists a peak vi such that 〈K, [vk]〉 = ak − 2 for all k < i.

To make notation simpler we will write bk := 2− ak.

Lemma 4.4.4. The Spinc-structures on S3
−p/q(U) are represented by those character-

istic covectors K satisfying (3.6) that contain no full tanks. We call the collection of

such characteristic covectors K.

Proof. We first prove that if K has a full tank then it initiates a non-maximising

path. Indeed, observe the following path (presenting only the relevant section of K):

(ai,−bi+1,−bi+2, . . . ,−bj−1, aj) −→ (−ai, ai+1,−bi+2, . . . ,−bj−1, aj)

−→ (bi,−ai+1, ai+2, . . . ,−bj−1, aj)

−→ (bi, bi+1,−ai+2, . . . ,−bj−1, aj)

−→ . . .

−→ (bi, bi+1, bi+2, . . . , aj−1, aj)

−→ (bi, bi+1, bi+2, . . . ,−aj−1, aj + 2).

Here 〈L, [vj ]〉 > −w(vj), so the initiated path is non-maximising.

What remains to be shown is that if K does not have a full tank, then it initiates a

maximising path. We do this by inducting on the number of peaks in K and its push-

downs. If there are none, we have a (trivial) maximising path. Thus, we presume

there is at least one peak at vi. Now, push down at vi. Depending on whether

〈K, [vi±1]〉 = ai±1 − 2, there are three possibilities for the new K ′ = K + 2PD[vi]:

1. vi−1 and vi+1 are not peaks of K ′. Then K ′ has one peak fewer than K and

also contains no full tanks as 〈K ′, [vi]〉 = −ai 6= ai − 2 since ai ≥ 2 for i ≥ 2.

Hence, we apply the inductive hypothesis.

2. vi−1 is not a peak, vi+1 is (or the reverse situation). In this case, push down at

vi+1, and continue pushing down at any further peaks this generates, necessarily

heading to the right. As K had no full tanks, this process must stop without

initiating a non-maximising path. As in the previous case, the resulting covector

has one peak fewer than K and no full tanks, so apply the induction hypothesis.
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3. vi−1 and vi+1 are peaks. This situation is the same as the one above, pushing

down in both directions unilaterally until the process halts. If ai = 2, we will

have to repeat this whole procedure multiple times, but eventually it will halt.

In all situations we have a maximising path. This completes our proof.

Since S3
−p/q(U) is an L-space, we have now isolated a collection K ⊂ Char(G) in

bijection with Spinc(S3
−p/q(U)). Hence, we have the following proposition (the last

part of which is an application of (3.7)).

Proposition 4.4.5. Given t ∈ Spinc(S3
−p/q(U)), there is a unique K ∈ K such that

[K] = t and K is a maximiser for [K]. Moreover,

d(S3
−p/q(U), t) =

KQ−1Kt + b2(W
′)

4
.

4.4.3 Comparing the Rational and Integral Surgeries

We are now ready to make comparisons between the −p/q and −n surgeries on C

and U . In doing so, it is very important to keep track of which coefficients and which

knots we are considering. Thus, we observe the following:

1. Let W (C) : S3 → S3
−p/q(C) be the cobordism described by Proposition 2.2.2

using the reverse slam-dunked Kirby diagram with canonical Hirzebruch-Jung

continued fraction, and let W := W (C) ∪S3 D4 and W ′ := W (U) ∪S3 D4 (i.e.

these manifolds are the traces of the surgeries on C and U). As a scholium of

Proposition 2.2.8, this W ′ and the W ′ of the previous section are identical;

2. The intersection form of the cobordism W (C) is independent of C. Ergo, QW

and QW ′ have the same intersection form, represented in some bases by the

adjacency matrix Q of the graph G in Figure 4.1;

3. Courtesy of this fact, a K ∈ Char(G) is a maximiser for [K] ∈ Spinc(S3
−p/q(U))

if and only if K is also a maximiser for the corresponding Spinc-structure on

S3
−p/q(C), which we shall also denote by [K]. The crucial difference is that

K might not compute the correction term for S3
−p/q(C). Henceforth, we shall
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think of Char(G) as the Spinc-structures on either 4-manifold W or W ′, and

any complete collection F of representatives of equivalence classes of ∼ as the

Spinc-structures on either 3-manifold S3
−p/q(C) or S

3
−p/q(U);

4. W (C) splits naturally into two cobordisms,

S3 W1(C)
−−−−→ S3

−n(C)
W2(C)
−−−−→ S3

−p/q(C).

All three cobordisms are negative definite and have intersection forms indepen-

dent of C.

Now considerW2(C). Given a maximiserK which determines t ∈ Spinc(S3
−p/q(C)),

this K also determines a t
′ ∈ Spinc(S3

−n(C)) by considering the value of k := 〈K, [v1]〉

modulo 2n. Comparing this with the labelling used in Proposition 4.3.1, we see that

t
′ corresponds with tk+n

2

∈ Spinc(S3
−n(C)), unless k = n, in which case t′ corresponds

with t0 ∈ Spinc(S3
−n(C)).

Lemma 4.4.6. The map K → Char(v1) given by restriction to the first co-ordinate

satisfies the following two properties:

1. The fibre over (j) ∈ Char(v1) has size q if −n < j < n; and

2. The fibre over (n) ∈ Char(v1) has size q − r.

Proof. Let K ∈ K and consider the case when 〈K, [v1]〉 6= n. Then the number of

covectors K that restrict to 〈K, [v1]〉 is equal to the number of characteristic covectors

on the linear graph G − v1 which satisfy (3.6), initiate maximising paths, and have

no full tanks. This is just the number of Spinc-structures on the lens space given by

[a2, . . . , aℓ]
−-surgery on the unknot. As [a2, . . . , aℓ]

− = q/r, we are done.

For the second claim, observe that there are n − 1 values of 〈K, [v1]〉 covered by

the above case, together accounting for (n− 1)q of the elements of K. Therefore, the

remaining q − r must restrict to (n) ∈ Char(v1).
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4.4.4 Adjusting the Maximisers

As a special case of Proposition 3.3.5 (c.f. the proof of Proposition 3.3.6), we observe

that if W is a negative-definite cobordism from Y1 to Y2, both rational homology

spheres, then for any s ∈ Spinc(W ),

{
c1(s)

2 + b2(W )

4

}
≤ d(Y2, s|Y2

)− d(Y1, s|Y1
). (4.4)

To apply this, let K ∈ K satisfy K = c1(s) for some s ∈ Spinc(W ′). Then

by construction K is a maximiser for t = s|S3
−p/q

(U), and K|v1 is a maximiser for

t
′ = s|S3

−n(U). Thus, if we define

t0 := s|S3 s0 := s|W (U) si := s|Wi(U),

and if ξ ∈ HF+(S3, t0) has minimal grading (i.e. grading 0), then by the third part

of Theorem 3.3.2 and Proposition 4.4.5,

g̃r(F+
W (U),s0

(ξ)) =
c1(s0)

2 + b2(W (U))

4
=
c1(s)

2 + b2(W
′)

4
= d(S3

−p/q(U), t).

Similarly, noting that c1(s1) = K|v1 ,

g̃r(F+
W1(U),s1

(ξ)) =
c1(s1)

2 + b2(W1(U))

4
= d(S3

−n(U), t
′).

Putting these two facts together, we find that

c1(s2)
2 + b2(W2(U))

4
= g̃r(F+

W2(U),s2
◦ F+

W1(U),s1
(ξ))− g̃r(F+

W1(U),s1
(ξ))

= g̃r(F+
W (U),s0

(ξ))− g̃r(F+
W1(U),s1

(ξ))

= d(S3
−p/q(U), t)− d(S

3
−n(U), t

′).

Substituting this into (4.4) with W = W2(C) and noting that QW2(C) is independent
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of C, we conclude that if t′ and t are cobordant by an s such that c1(s) ∈ K, then

Dn
C(t

′) ≤ D
p/q
C (t). (4.5)

A very similar argument, applying (4.4) to W1(C), tells us that

0 ≤ Dn
C(t

′). (4.6)

This argument on K is just a special case of the following lemma.

Lemma 4.4.7. Suppose that F ⊂ Char(G) is a complete set of representatives of

equivalence classes of ∼, and that every Ki ∈ F is a maximiser for [Ki]. Then on

defining si by c1(si) = Ki and setting wi = si|S3
−p/q

(C) and vi = si|S3
−n(C), it follows

that

0 ≤ Dn
C(vi) ≤ D

p/q
C (wi).

Proof. This is a combination of (4.6) on the left and (4.5) on the right.

As it turns out, K is not the optimal choice of representatives for our purposes,

since it does not yield a function r satisfying Theorem 4.1.1. We therefore ask: If K

is a maximiser, are there any other K ′ ∼ K that are maximisers? The answer is yes.

Lemma 4.4.8. Let 〈K, [vi]〉 = ai, where K ∈ Char(G) (not necessarily in K). Then

K ′ := K + 2PD[vi] satisfies (K ′)2 = K2.

Proof. Recall that PD[vi], viewed as an element of H2(W ), is the i-th row of Q.

Hence, PD[vi]Q
−1 = ei, the i-th standard basis vector. Thus,

(K + 2PD[vi])
2 = (K + 2PD[vi])Q

−1(K + 2PD[vi])
t

= KQ−1Kt + 4PD[vi]Q
−1Kt + 4PD[vi]Q

−1 PD[vi]
t

= KQ−1Kt + 4eiK
t + 4ei PD[vi]

t

= KQ−1Kt + 4 〈K, [vi]〉 − 4ai,

and as 〈K, [vi]〉 = ai, we are done.
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Corollary 4.4.9. If K ′ is a push-down of K ∈ K, then K ′ is a maximiser of [K].

Corollary 4.4.10. LetM be the set of all maximisers in Char(G). Then if K ∈M,

so are all its push-downs.

4.5 Proofs of the Theorems

Now that all the machinery is in place, we can finally prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Construct a family K′ of characteristic covectors for use in

Lemma 4.4.7 as follows. If K ∈ K satisfies

1. 〈K, [v1]〉 = j for some −1 ≤ j < n; and

2. K|G−v1 is left full,

then let K ′ := K + 2
∑k

i=2 PD[vi] be a member of K′. Here k ≥ 2 is the smallest

integer such that vk is a peak for K (guaranteed to exist by the second condition

above). This clearly determines the same Spinc-structure on the boundary manifolds,

and is a maximiser by Corollary 4.4.9.

For all other K ∈ K, let K be a member of K′. The family K′ is now clearly

a complete set of representatives for the equivalence classes of ∼, each element of

which is a maximiser. We claim that the desired result is obtained by adding up all

inequalities in Lemma 4.4.7, using F = K′.

To prove this claim, let us consider what the pushing down does. Our first piece

of information is that 〈K ′, [v1]〉 = j + 2, so we are “nudging K up” the values in

the first co-ordinate. We claim that, for a given j, we have nudged up precisely r

different K. Indeed, recall from Lemma 4.4.6 that there are q− r elements of K with

〈K, [v1]〉 = n. Another way of computing this number is:

#K|G−v1 −#

{
left-full elements of

K|G−v1

}
.

Since the first term here is q (as a scholium of Lemma 4.4.6), the second term must

be r, as required.
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This calculation completed, we now observe by Lemma 4.4.6 thatK′ has q elements

which restrict to (j) ∈ Char(v1) for any −n+ 2 ≤ j ≤ n except j = −1 if n is odd or

j = 0 if n is even. In these cases, there are only q − r such elements. Adding up all

the right hand inequalities in Lemma 4.4.7, and noticing that the exceptional element

of Spinc(S3
−n(C)) is the one with minimal deficiency (see Lemma 4.3.4), we obtain

∑

t∈Spinc(S3
−p/q

(C))

D
p/q
C (t) ≥ q ·

∑

t∈Spinc(S3
−n(C))

Dn
C(t)− r · min

t∈Spinc(S3
−n(C))

{Dn
C(t)} ,

which we already know to be an equality by Lemma 4.3.3. Hence the right hand

inequalities in Lemma 4.4.7 were in fact equalities induced by the members of K′,

and the result follows.

As remarked after the proof of Lemma 4.3.3, we had actually already proved

Theorem 4.1.1 some time ago. However, this more recent proof has the advantage

that it gives us insights the previous one did not: it allows us to see how r behaves.

Indeed, take any t ∈ Spinc(S3
−p/q(C)) and some maximiser K for t. Then r(t) is

determined by finding the K ′ ∈ K′ such that K ∼ K ′; it is the Spinc-structure on

S3
−n(C) determined by the maximiser (〈K ′, [v1]〉).

Corollary 4.5.1. With notation as above, Dp/q(t) is minimal if 〈K ′, [v1]〉 = 0,±1.

If, additionally, n is even and there are q − r + 1 choices of t such that Dp/q(t) is

minimal, then this extends to 〈K ′, [v1]〉 = ±2.

In either case, if Dp/q(t) = 0 for some t, then the minimal deficiency is zero.

Proof. The first statement is an immediate consequence of Theorem 4.1.1 and Lemma

4.3.4. The second arises because there are only q − r such t with first co-ordinate 0,

and because those K ′ with 〈K ′, [v1]〉 = ±2 have the next smallest deficiencies (by an

argument very similar to the one in Lemma 4.3.4). The final comment is a trivial

by-product of Lemma 4.4.7 as the deficiencies are non-negative.

As mentioned in the preamble, this knowledge of r allows us to turn Theorem 4.1.1

into an obstruction, given Y , to Y = S3
−p/q(C) (under certain extra circumstances).

We have already stated this obstruction as Theorem 4.1.3, but to prove it we must
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establish some algebraic preliminaries. For greater detail on these preliminaries, we

refer the reader to Lemma 2.3 of [25] and Section 3.2 of [24]. We have summarised

the key results below.

Proposition 4.5.2. Let Y be a rational homology 3-sphere resulting from integral

surgery on an ℓ-component link L with negative-definite linking matrix Q and traceW ,

and let Y ′ be the result of the same surgery on a (possibly different) link L′, also with

linking matrix Q, but whose trace W ′ is sharp. Moreover, suppose that ∂X = −Y ,

where X is a sharp, simply connected, negative-definite smooth 4-manifold. Then

since c1 commutes with the restriction maps on Spinc(·) and H2(·) induced by inclusion

of a 3- or 4-manifold into a 4-manifold, there is a bijection

{s ∈ Spinc(X ∪Y W ) |s|Y = t} −→

{
(sX , sW ) ∈ Spinc(X)× Spinc(W )

∣∣∣∣∣
sX |Y = t

sW |Y = t

}

s 7−→ (s|X , s|W ) (4.7)

such that

c1(s)
2 = c1(s|X)

2 + c1(s|W )2.

Moreover, given t ∈ Spinc(Y ),

max
s∈Spinc(X∪Y W )

s|Y =t

c1(s)
2 + b2(X ∪Y W ) = 4d(Y ′, t)− 4d(Y, t). (4.8)

Note that in [24], the additional assumption was made that det(Q) is odd. This,

however, is not necessary: its only function was to ensure that Spinc(X)→ Spinc(Y )

and Spinc(W )→ Spinc(Y ) surject. This is assured by the fact thatH1(X) andH1(W )

are torsion-free (c.f. the discussion after Proposition 2.3.19, or [25]).

As a consequence of this proposition, a maximiser c1(s) decomposes into a pair of

maximisers (c1(s|X), c1(s|W )). To see what this decomposition looks like, at least on

W , we use the diagram

H2(X)⊕H2(W ) −−−→ H2(X ∪Y W ) ≃ H2(X ∪Y W ) −−−→ H2(X)⊕H2(W ).
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If we employ a basis {u1, . . . , uℓ} for H2(W ) with images {u1, . . . , uℓ} in H2(X∪Y W ),

a class α ∈ H2(X ∪Y W ) restricts to the class (〈α, u1〉 , . . . , 〈α, uℓ〉) ∈ H
2(W ) when

written in the dual basis {u∗1, . . . , u
∗
ℓ}. In particular this applies when α = c1(s): the

restriction c1(s|W ) has the form (〈c1(s), u1〉 , . . . , 〈c1(s), uℓ〉).

Now suppose that K ∈ H2(W ) is a maximiser for [K] and that K = c1(sW ) for

some sW ∈ Spinc(W ). Suppose moreover that if we put t = [K] in (4.8), the RHS

vanishes. Then there is some s
′ ∈ Spinc(X ∪Y W ) satisfying s

′|Y = t with α′ = c1(s
′)

such that

−b2(X ∪Y W ) = (α′)2 = c1(s
′|X)

2 + c1(s
′|W )2.

Since we know from Proposition 4.5.2 that c1(s
′|W ) is also a maximiser for t, it follows

that its square is K2. Thus, letting s ∈ Spinc(X∪Y W ) correspond to (s′|X , sW ) under

(4.7), and putting α = c1(s), we have

(α′)2 = c1(s
′|X)

2 + c1(s
′|W )2 = c1(s

′|X)
2 +K2 = c1(s

′|X)
2 + c1(sW )2 = α2.

Hence α2 + b2(X ∪Y W ) = 0.

Since X ∪Y W is a closed, negative-definite smooth 4-manifold, it follows from

Donaldson’s theorem (Theorem 2.1.8) that

(H2(X ∪Y W ), QX∪Y W ) ≃ (Zb2(X)+ℓ,− id)

as lattices. Hence, we fix the bases on H2(X ∪Y W ) and H2(X ∪Y W ) as the di-

agonalising bases. Since α is a characteristic covector of QX∪Y W , it follows that

α ≡ (1, 1, . . . , 1) mod 2, whence all entries of α are ±1. Summarised, we have the

following lemma.

Lemma 4.5.3. Let K be a maximiser for t = [K] such that

d(Y ′, t)− d(Y, t) = 0.

Then there is some α ∈ {±1}b2(X)+ℓ such that K = (〈α, u1〉 , . . . , 〈α, uℓ〉), written in

the dual basis {u∗1, . . . , u
∗
ℓ}.
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To apply this lemma, we let Y ′ = S3
−p/q(U) (whose trace W ′ is sharp), and Y =

S3
−p/q(C) (with trace W ). Theorem 4.1.3 is now finally within reach.

4.5.1 Proof of Theorem 4.1.3 when p > q > 1

Let our basis {u1, . . . , uℓ} for H2(W ) above be given by the vertices [vi] of our graph

G, and consider the diagram below:

. . . −−−→ H1(Y ) −−−→ H2(X, ∂X)⊕H2(W, ∂W ) −−−→ H2(X ∪Y W ) −−−→ . . .

PD

y PD

y PD

y

. . . −−−→ H2(Y ) −−−→ H2(X)⊕H2(W )
A
−−−→ H2(X ∪Y W ) −−−→ . . .

Here, the two groups on the left must vanish because the vertical maps are iso-

morphisms and H1(Y ) = Zb1(Y ) ⊕ Tors(H0(Y )) = 0. Hence, the lattice underlying

QX ⊕ QW embeds in the one underlying QX∪Y W , and on passing to the lower row

and fixing bases for H2(X) and H2(X), there must exist some matrix A with integral

entries such that −AAt = QX ⊕QW . When expressed like this, the last ℓ rows of A

are the images of the [vi] in H2(X ∪Y W ), and we shall use Lemma 4.5.3 to prove our

claims about their structure. It is helpful to keep in mind that the (i, j)-th entry of

QX ⊕QW is in fact the standard negative-definite inner product of the i-th and j-th

rows of A. We label the last ℓ rows of A by x, y2, . . . , yℓ.

Our first task is to establish the structure of yi for i = 2, . . . , ℓ. This has three

parts: first, we show that all the non-zero entries are unital; second, that non-adjacent

rows have no non-zero entries in the same spots; and third, that adjacent rows share

only one spot with non-zero entries and that these overlapping entries are opposite

in sign.

To achieve the first of these objectives, consider yi = (yi,j)j for 2 ≤ i ≤ ℓ. Recall

that bj := 2− aj and define K ∈ Char(G) by

K =




(0, b2, . . . , bi−1, ai, bi+1, . . . , bℓ) if n is even

(−1, b2, . . . , bi−1, ai, bi+1, . . . , bℓ) if n is odd
.

109



Deficiency Symmetries of Surgeries in S3

Since there are no full tanks in K it is clear that K ∈ K and hence it is a maximiser.

To determine the value of Dp/q([K]), we need to find the first co-ordinate of the

corresponding K ′ ∈ K′ such that K ′ ∼ K (by Theorem 4.1.1). If there is some aj 6= 2

for 2 ≤ j < i then K ∈ K′. Otherwise, consider K ′ = K +2
∑i

j=2 PD[vj] ∈ K
′, which

has first co-ordinate 2 or 1 depending on parity. By our hypothesis on the deficiencies,

it follows that Dp/q([K]) = 0 (via Corollary 4.5.1). Thus by Lemma 4.5.3, there is an

α ∈ {±1}b2(X)+ℓ such that 〈α, yi〉 = ai. Rephrased,

−
∑

j

αjyi,j = ai =
∑

j

y2i,j,

where the right hand side comes from the fact that y2i = ai. Consequently,

∑

j

(y2i,j + αjyi,j) = 0,

and since αj = ±1, each summand is non-negative and therefore must vanish. This

in turn requires yi,j ∈ {−1, 0, 1}. It is clear that for exactly ai values of j, yi,j 6= 0.

With this step done, we now need to establish how the rows line up with each

other. Thus, consider 2 ≤ i < j ≤ ℓ such that j− i ≥ 2, set m := ai, and permute the

basis of H2(X ∪Y W ), changing signs as necessary, so that yi = (1, . . . , 1, 0, . . . , 0).

As before, there must be an α = c1(s) such that c1(s|W ) = K where

K =




(0, b2, . . . , bi−1, ai,−ai+1, bi+2, . . . , bj−2, bj−1, aj , bj+1, . . . , bℓ) if n is even

(−1, b2, . . . , bi−1, ai,−ai+1, bi+2, . . . , bj−2, bj−1, aj , bj+1, . . . , bℓ) if n is odd
,

which is obtained by pushing down at vj−1 in

(∗, b2, . . . , bi−1, ai − 2,−bi+1,−bi+2, . . . ,−bj−2, aj−1, aj − 2, bj+1, . . . , bℓ) ∈ K

and repeating to the left. In either case, exactly as before we find that Dp/q([K]) = 0

by showing the first co-ordinate of the corresponding K ′ is one of 0,±1, 2. Then there

is an α such that 〈α, yi〉 = ai and 〈α, yj〉 = aj. The first of these statements tells us
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that αk = −1 for all k = 1, . . . ,m.

Now, let I = {k ≤ m|yj,k 6= 0}. We claim that I = ∅. Indeed, as

−aj = −〈α, yj〉 =
∑

k∈I

αkyj,k +
∑

k>m

αkyj,k,

each summand on the RHS must be −1 or 0. We know that αk = −1 for k ∈ I, so

yj,k = 1 for k ∈ I. Yet yi · yj = 0, so
∑

k∈I 1 = 0, and I = ∅.

We repeat a similar argument for j = i+1, though our goal is to show that there

is a unique element k ∈ I and that yi+1,k = −1. For 2 ≤ i ≤ ℓ we take

K =




(0, b2, . . . , bi−1, ai, ai+1 − 2, bi+2, . . . , bℓ) if n is even

(−1, b2, . . . , bi−1, ai, ai+1 − 2, bi+2, . . . , bℓ) if n is odd
,

and note again that Dp/q([K]) = 0. Permuting and changing signs as necessary, we

may assume that yi = (1, . . . , 1, 0, . . . , 0) and define I as before. This time, however,

−ai+1 + 2 = −〈α, yi+1〉 =
∑

k∈I

αkyi+1,k +
∑

k>m

αkyi+1,k,

and exactly one summand on the RHS is 1. If that summand is in the second sum

then all summands in the first are negative, so yi+1,k = 1 for all k ∈ I. But then

−1 = yi · yi+1 =
∑

k∈I 1, a contradiction. Therefore yi+1,k = −1 for precisely one

k ∈ I, and by an argument similar to the one just made, this k is the unique element

of I.

At this point, up to permuting the basis of H2(X ∪Y W ) and changing signs as

necessary, we have established the form of the last ℓ − 1 rows of A. What remains

is to establish x. With this in mind, our first goal is to prove that it has the shape

(∗, . . . , ∗, 1, 0, . . . , 0) as outlined in the statement of the theorem.

Fix i ∈ {3, . . . , ℓ}, let x1, . . . , xm be the entries of x in the same spots as the

non-zero entries of row yi, and let xm+1, . . . , xb2(X)+ℓ be the rest. Note that m = ai.

Again, change signs as necessary so that yi,k ≥ 0 for all k. Then as x · yi = 0, it
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follows that

x1 + · · ·+ xm−1 + xm = 0. (4.9)

Our goal is to show that xk = 0 for all k ≤ m.

Define a set

S =
{
K ∈M

∣∣〈K, [vi]〉 = m,Dp/q([K]) = 0
}
.

Then for any K ∈ S, we find an α according to Lemma 4.5.3 such that 〈α, yi〉 =

ai = m. Hence, α1 + · · · + αm = −m, whence αk = −1 for k ≤ m. Indeed, all

α ∈ {±1}b2(X)+ℓ satisfying these equations determine some K ∈ S (to check that

Dp/q([K]) = 0, observe that α2 = −b2(X) − ℓ and that this is the maximal square

possible). Let j = 〈K, [v1]〉 = 〈α, x〉. Then

j = x1 + · · ·+ xm −
∑

k>m

αkxk = −
∑

k>m

αkxk,

where we used (4.9) to obtain the last equality. Thus the maximum value for j as we

vary K ∈ S is ∑

k>m

|xk| . (4.10)

We now suppose without loss of generality that xm ≤ xk for all k < m. Define

S ′ =
{
K ∈M

∣∣〈K, [vi]〉 = m− 2, Dp/q([K]) = 0
}
.

Then similarly there is some β ∈ {±1}b2(X)+ℓ such that 〈β, yi〉 = m − 2, whence

βk = −1 for all values of k ≤ m except one. As before, all such β determine a

K ∈ S ′. Hence

j = −
m∑

k=1

βkxk −
∑

k>m

βkxk (4.11)

attains its maximal value when βk = −1 for all k < m and βm = 1 (by choice of xm).

This maximal value is ∑

k<m

xk − xm +
∑

k>m

|xk| . (4.12)
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We claim that the two maxima given by (4.10) and (4.12) are in fact identical.

Indeed, let jmax ≤ n be the maximal integer j such that Dn([j]) = 0 (note that

jmax ≥ 1 by assumption on the number of vanishing deficiencies). Then if jmax can

be attained by elements of S and S ′, the claim must be true (since larger values are

ruled out by the deficiency condition). Observe that

K = (jmax,−a2, b3, . . . , bi−2, bi−1,m, bi+1, . . . , bℓ)

satisfies Dp/q([K]) = 0, since K ∈ K′: it is obtained by pushing down

(jmax − 2,−b2,−b3, . . . ,−bi−2, ai−1,m− 2, bi+1, . . . , bℓ) ∈ K

at vi−1 and to the left. Similarly,

K ′ = (jmax, b2, . . . , bi−1,m− 2, bi+1, . . . , bℓ) ∈ S
′ ∩ K′.

Thus the maximal values of j are the same in both families. Hence,

∑

k<m

xk − xm = 0.

However, using (4.9) to rewrite the first term, we find that xm = 0. Therefore xk ≥ 0

for all k ≤ m, by choice of xm, and from (4.9) again we find that xk = 0.

Now consider row i = 2 and set m = a2. We wish to show that xk = 0 for all

k ≤ m except one, for which xk = −1. In this case, (4.9) becomes

x1 + · · ·+ xm−1 + xm = −1. (4.13)

Although we will keep the set S ′ as defined before, this time we use

S =
{
K ∈M

∣∣〈K, [v2]〉 = −m,Dp/q([K]) = 0
}
,
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so that the maximum (4.10) becomes

1 +
∑

k>m

|xk| .

while the second maximum (4.12) remains unchanged after we have defined xm to be

the smallest of the xk for k ≤ m. We claim that these two maxima are equal. Indeed,

(jmax,−m, b3 + 2, b4, . . . , bℓ) ∈ S ∩ K
′, and (jmax,m − 2, b3, . . . , bℓ) ∈ S

′ ∩ K′. Hence,

comparing the maxima, we obtain:

∑

k<m

xk − xm = 1.

Rearranging (4.13) as before, we find that xm = −1, and if m = 2, then (4.13) yields

the result. If, on the other hand, m > 2, then repeat this process with

S ′′ =
{
K ∈M

∣∣〈K, [v2]〉 = m− 4, Dp/q([K])
}

and xm−1 defined to be the next smallest after xm. We find that xm−1 + xm = −1,

from which xm−1 = 0. Hence xk ≥ 0 for all k ≤ m− 1, and it follows from (4.13) that

xk = 0 for k ≤ m− 1, as required.

By this point we are finally almost there. What remains to establish is the change-

maker condition on x. Using the labels σi established, and defining σ0 to be the other

unital entry, change signs as usual so that σi ≥ 0. Let

J :=
{
〈K, [v1]〉

∣∣K ∈M, 〈K, [v2]〉 = −a2, D
p/q([K]) = 0

}
,

and observe that J consists of all values j ≡ n from 2− jmax to jmax. The asymmetry

is a result of the fact that if K = (j,−a2, ∗, . . . , ∗) is a relevant maximiser with

appropriate values *, then K ∈ K′ if j ≥ 1, whereas K ∼ K ′ := (j − 2, a2, ∗, . . . , ∗) ∈

K′ if j < 1. Thus, in light of the evaluation on [v2],

j = σ0 −
∑

i≥1

αiσi = 1−
∑

i≥1

αiσi

114



Deficiency Symmetries of Surgeries in S3

attains these values too. By writing αi = −1 + 2χi (where χi ∈ {0, 1}), we obtain

j = 1 +
∑

i≥1

σi − 2
∑

i≥1

χiσi = jmax − 2
∑

i≥1

χiσi,

and thus
{∑

i≥1 χiσi
∣∣χi ∈ {0, 1}

}
consists of all integers from 0 to

∑
i≥1 σi. As in

[24], this is readily equivalent to the changemaker condition specified in the statement

of our theorem.

4.5.2 Proof of Theorem 4.1.3 when 0 < p < q

This proof is extremely similar to the previous one, so we only outline the differences.

Crucially, n = 1, so via Theorem 4.1.1 it follows that all the deficiencies Dp/q([K])

vanish for any maximiser K. This fact makes the proof much easier, as does the fact

that, by Lemma 4.4.1, we still have ai ≥ 2 for i ≥ 2.

To ensure that all non-zero entries in yi are ±1 for all i, we use the maximiser

K = (1, b2, . . . , bi−2,−ai−1, ai, bi+1, . . . , bℓ).

We know that this choice of K is in fact a maximiser since it is a push-down of

the maximiser (1,−b2, . . . ,−bi−2,−bi−1,−bi, bi+1, . . . , bℓ) ∈ K. The same argument as

above then yields our results.

To show that rows yi and yj where j − i ≥ 2 do not overlap (i.e. share non-zero

entries in the same spots), one must be a little more careful. Supposing that ai 6= 2

(i.e. that ai > 2), one uses the maximiser

K = (1, b2, . . . , bi−2,−ai−1, ai,−ai+1, bi+2, . . . , bj−2, bj−1, aj, bj+1, . . . , bℓ),

which, by pushing-down at v1 to the right and at vj−1 to the left, can be obtained from

(1,−b2, . . . ,−bi−2,−bi−1, ai−4,−bi+1,−bi−2, . . . ,−bj−2, aj−1, aj−2, bj+1, . . . , bℓ) ∈ K.

If instead ai = 2 and there is some k ∈ {2, . . . , i− 1} such that ak 6= 2, then we use

K = (1, b2, . . . , bi−1, ai,−ai+1, bi+2, . . . , bj−2, bj−1, aj, bj+1, . . . , bℓ),
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a push-down of

(1, b2, . . . , bi−1, ai − 2,−bi+1,−bi+2, . . . ,−bj−2, aj−1, aj − 2, bj+1, . . . , bℓ) ∈ K.

Finally, if ak = 2 for all k = 2, . . . , i, the fact that yi · yj = 0 implies that if yj and yi

overlap, then they overlap in two places. Consequently, since yi−1 · yi = −1, it follows

that yj also overlaps with yi−1, and similarly as yi−1 · yj = 0, that yj overlaps in two

places with yi−1. Iterating this, we find eventually that yj and x overlap, violating

the condition x · yj = 0, since x contains precisely one non-zero entry (as x2 = 1).

Hence, yi and yj cannot overlap.

To show that yi and yi+1 have only one overlap (in which they are opposite in

sign), one uses

K = (1, b2, . . . , bi−2,−ai−1, ai, ai+1 − 2, bi+2, . . . , bℓ),

which is a push-down of (1,−b2, . . . ,−bi−2,−bi−1, ai − 2, ai+1 − 2, bi+2, . . . , bℓ) ∈ K.

Because x2 = n = 1, the rest of the computation is trivial, and the theorem is

proved.

4.5.3 Proof of Theorem 4.1.3 when q = 1

This last proof is even easier than in the previous section. Since none of the rows yi

exist, we need only prove the statement about x; in the absence of the other rows,

the only adjustments we need make to the proof of the changemaker statement are

to define instead

J :=
{
〈K, [v1]〉

∣∣K ∈M, Dp/q([K]) = 0
}
,

and remove the assumption that σ0 = 1. Once this is done, the modified statement

follows easily.
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4.5.4 A Remark on Vanishing Deficiencies

In its current form, the reader will hopefully have noticed the asymmetry in Theorem

4.1.3 concerning the number of deficiencies which vanish. If n is odd, we only require

one to vanish, but if n is even, then we require q−r+1. It is possible that by choosing

a different function r we can remove this asymmetry, but as of the current writing we

have been unable to achieve this.

What we can say, however, is that in the special case when q = 2, some simplifi-

cations are possible. Since this case will be the one of most interest to us in the next

chapter, we have the following proposition. In practice, we will often apply it to the

case t = t0, the unique Spin-structure.

Proposition 4.5.4. In the case q = 2, Theorem 4.1.3 applies if we use a weaker

assumption on the number of vanishing deficiencies. Namely, even if n is even, we

require only that

d(Y, t)− d(S3
−p/q(U), t) = 0,

for some t ∈ Spinc(Y ).

Proof. When q = 2, notice that p/q = [n, 2]−. We relabel row y2 as y for convenience.

Since y2 = 2, we can set y = (1, 1, 0, . . . , 0) without loss of generality. Then x ·y = −1

tells us that

x1 + x2 = −1, (4.14)

and we let x2 ≤ x1, also without loss of generality. Observe that x1 ≥ 0, else

x1 + x2 ≤ −2.

Now define a set

S =
{
K ∈M

∣∣〈K, [v2]〉 = 0, Dp/q([K]) = 0
}
,

and observe that the maximal value jmax of 〈K, [v1]〉 obtained by letting K range over

S satisfies jmax ≥ 0, since we know that at least one deficiency vanishes. If jmax > 0,

however, then this means that at least q−r+1 deficiencies vanish, and Theorem 4.1.3

applies. Thus, suppose jmax = 0. By arguments similar to those in Section 4.5.1, we
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find that

jmax = x1 − x2 +
∑

i≥3

|xi| = 0,

and on substituting from (4.14),

2x1 + 1 +
∑

i≥3

|xi| = 0.

Since none of the terms on the LHS are negative, we have a contradiction. Hence

jmax 6= 0, and Theorem 4.1.3 applies.
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CHAPTER 5: PRETZEL KNOTS WITH

UNKNOTTING NUMBER ONE

The author’s original motivation for studying the symmetries of Theorem 4.1.1 came

from the half-integral case discussed in Theorem 4.1 of [51]. In that paper, Ozsváth

and Szabó were able to use their result to obstruct unknotting number one in al-

ternating knots with low crossing numbers. The author, at the time, was interested

in seeing to what extent those symmetries could be applied to an infinite family of

non-alternating knots; the results of these investigations are presented in this chapter.

Aside from the intrinsic value in our results, this chapter is also designed to il-

lustrate two things. First, that Theorem 4.1.3 provides an efficient, computable ob-

struction to rational surgeries when compared with Theorem 4.1.1; as we shall see,

the latter can be extremely difficult to apply, even to L-spaces. And second, that

there are instances when Theorem 4.1.3 is not applicable. We shall thus come to

understand both the benefits of our theorem and something of its limitations.

The majority of the results in this chapter can be found in [5], which was joint

work with Buck and Staron. However, since that paper was written before Theorems

4.1.1 and 4.1.3, our new technology allows us not only to simplify some of the proofs

from that paper, but also to extend its results into previously unresolved cases.

5.1 Introduction to Pretzel Knots

Our principal aim for this chapter is a partial classification of the 3-strand pretzels

K = P (p, q, r) with unknotting number one (where p, q, r ∈ Z). These knots, depicted

in Figure 5.1(a), are defined by

P (p, q, r) :=M
(
−1

p
,−1

q
,−1

r

)
.
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Figure 5.1: (a) A pretzel knot P (p, q, r) with p, r > 0, and q < 0; and (b) the Seifert
fibred space Σ(P (p, q, r)).

As a consequence of Proposition 1.5.9, we know that Σ(K) is presented by the Kirby

diagram in Figure 5.1(b).

Since general n-strand pretzels (defined similarly) can be drawn with n-gon sym-

metry, it follows that the 3-strand pretzels are unchanged by permutations of their

parameters (Sym(3) is isomorphic to the dihedral group of order 6). Their reflections

are given by

P (p, q, r) = P (−p,−q,−r).

It is worth remarking that for some values of p, q, r, the pretzel P (p, q, r) is in

fact a link. If we want K to be a bona fide knot, then we must require either that

all three parameters be odd, or that exactly one of them be even (say r = 2m). The

first of these cases (all odd) has been studied independently by Kobayashi [30] and

Scharlemann and Thompson [61], who give the criterion that

u(K) = 1 ⇐⇒ ±{1, 1} or ± {3,−1} ⊂ {p, q, r},

so our work concentrates on the case P (p, q, 2m). As u(K) = u(K), we assume that

2m is non-negative, and, as we can deal with the case m = 0 early on, we restrict our

attention primarily to m > 0.

Before beginning our serious analysis, it is worth observing that Kanenobu and

Murakami [28] and Torisu [67] have given a complete description of the 2-bridge knots
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with unknotting number one. If any of p, q, or r is ±1 in Figure 5.1(b), then we can

perform a ∓1-Dehn twist about the corresponding unknot, resulting in a linear chain

of unknots with integral coefficients. This, we already know, describes a lens space.

By Theorem 1.5.6 it follows that P (p, q, r) is a 2-bridge knot and therefore covered

by the work just cited. In recognition of this fact, we will focus on the case when

p, q, r 6= ±1. Since r is even, this reduces to p, q 6= ±1.

5.1.1 Motivation

As described in the Introduction, a large body of the work on unknotting number has

followed the trend of taking a particular family of knots and working out which of its

members satisfy u(K) = 1. Examples include the 2-bridge knots already discussed

[28, 67], the large algebraic knots [23], knots with genus one [10], and the alternating

3-braids [24]. Such decisions are usually motivated in part by acceptance of the fact

that u(K) is difficult to compute precisely, but also by a desire to provide examples

supporting the conjecture that if K satisfies u(K) = 1, then there is a minimal

diagram D of K such that u(D) = 1. Our results are no different in this regard:

all the subfamilies in which we are able to complete our classification have minimal

diagrams with u(K) = 1, and we conjecture the same for those subfamilies in which

we are not.

It bears mentioning that the pretzels P (p, q, r) are a particularly tough family

of knots. As is so often the case in 3-manifold topology, the fact that their double

covers are small Seifert fibred spaces causes all manner of complications, and the

knots themselves resist almost all the classical obstructions to unknotting number one.

What is more, though calculations with the Rasmussen s-invariant (which bounds the

slice genus [56], in turn a bound on the unknotting number [42]) have shown that

P (p, q, r) usually has quite a high unknotting number [66], in the four candidate

families we identify these trends do not apply. In fact, within these families, the

Rasmussen s-invariant often tells us only that u(K) ≥ 0 or u(K) ≥ 1, nothing more.

The pretzels are therefore extremely interesting for the pure challenge that they pose.

There is an additional biological motivation for this problem, but to avoid dis-
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Family Conditions for u(K) = 1 Conjecture

p+ q = −2 P (1,−3, 2m), P (−1,−1, 2m) −
p+ q = 0 P (3,−3, 2) −
p+ q = 2 undone by changing a P (3,−1, 2m), P (1, 1, 2m)

positive crossing, or
detK = 1, 5

p+ q = 4 detK = 3, 11 P (5,−1, 4), P (5,−1, 2), P (3, 1, 2)

Table 5.1: Summary of pretzels P (p, q, 2m), m > 0, with unknotting number one (up
to reflection).

tracting ourselves from the mathematical narrative, we refer the interested reader to

the Appendix.

5.1.2 Results and Conjectures

Since this chapter is a long one, it is well worth summarising its main results. Our

main theorem is the following.

Theorem 5.1.1. Suppose that K = P (p, q, 2m), m 6= 0, is a pretzel knot with un-

knotting number one. Then, up to reflection, p+ q = 0,±2, 4 and m > 0. Moreover:

1. If p+ q = −2, then K = P (1,−3, 2m), P (−1,−1, 2m) (all 2-bridge);

2. If p+ q = 0, then K = P (3,−3, 2) (which is not 2-bridge);

3. If p + q = 2, then either K is undone by changing a positive crossing (in an

arbitrary diagram), or detK = 1 or detK = 5; and

4. If p+ q = 4, then either detK = 3 or detK = 11.

Table 5.1 summarises the list of pretzels in each family that have unknotting

number one, together with our conjectures. On noting that most of the entries are

2-bridge knots (at least one parameter is ±1), we conjecture the following.

Conjecture 5.1.2. The only 3-strand pretzel knots P (p, q, r) with unknotting number

one that are not 2-bridge knots are P (3,−3, 2) and its reflection.
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5.2 Calculating the Signature

In this section, we identify the four families above by calculating the signature of

K = P (p, q, 2m). There are several ways to go about this. The computation we

present here differs from the one in [5] based on work by Gordon and Litherland [22]

in favour of an explicit calculation by Jabuka [27].

Suppose that we define a symmetric product D(p, q, r) by

D(p, q, r) := pq + qr + pr.

Then it is shown in [27], by explicit construction of a Seifert surface for K, that

detK = |D(p, q, 2m)|. The following proposition is a special case of Theorem 1.18 in

[27].

Proposition 5.2.1. The signature of K = P (p, q, 2m), where p and q are odd, is

given by

σ(K) = sgn(p)+sgn(q)−(p+q)−sgn(p) sgn(q) sgn(p+q)+sgn(p+q) sgn(D(p, q, 2m)).

Let K = P (p, q, 2m). Then since u(K) = u(K), it follows that we only need to

classify the P (p, q, 2m) with unknotting number one up to reflection. We can thus

assume that m > 0. Since p and q are interchangeable, it follows that we have three

cases to deal with: both negative, both positive, and the two opposite in sign.

If p > 0 and q > 0, then the above proposition tells us that

σ(K) = 2− (p+ q)− 1 + sgn(D(p, q, 2m)).

By Proposition 1.2.5, if u(K) = 1, we require σ(K) ∈ {0,±2}. So, supposing that

p+ q ≥ 6, we find that σ(K) ≤ −4, which is too low. But if p+ q = 2 or 4, then one

of p = 1 or q = 1, and K is a 2-bridge knot. Since this case is already dealt with in

[28] and [67], we find solutions P (1, 1, 2m) for p+ q = 2 and P (3, 1, 2) for p+ q = 4.

It is easy to see that by changing a crossing in the central columns of these examples,

we obtain the unknot. Similarly, if p < 0 and q < 0, we find solutions P (−1,−1, 2m)
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(again undone by changing the central crossing).

This leaves the case when p > 0 and q < 0. In this instance,

σ(K) = −(p+ q) + sgn(p+ q) + sgn(p+ q) sgn(D(p, q, 2m)),

from which we can make a variety of deductions.

1. If p+ q = 0, then σ(K) = 0;

2. If p + q = 2, we find that σ(K) = 0 when D(p, q, 2m) > 0, or σ(K) = −2

otherwise;

3. If p+ q = −2, then σ(K) = 2, since D(p, q, 2m) = −p2 − 2p− 4m < 0;

4. If p + q = 4, then σ(K) = −2 if D(p, q, 2m) > 0, and σ(K) = −4 otherwise,

which is too low;

5. If p+ q < −2, then D(p, q, 2m) < 0, whence σ(K) > 2, which is too high;

6. If p+ q > 4, then σ(K) < −2, which is too small.

This exhausts all cases, giving us the following lemma.

Lemma 5.2.2. If K = P (p, q, 2m) for p and q odd satisfies u(K) = 1, then, up to

reflection, p+ q = 0,±2, 4 and m > 0.

Once we have identified our particular families according to the value of N := p+q,

each of p and q are determined by the other. To reflect this, we make a notational

change. From now on, we set k := p, and the knot P (p, q, 2m) will be referred to as

the knot P (k,N − k, 2m), given our choice of N ∈ {0,±2, 4}. Notice that

D(k,N − k, 2m) = −k2 +Nk + 2Nm.

Despite this change of notation, the four families of interest will continue to be referred

to p+ q = 0,±2, 4. They are summarised in Table 5.2.

As a final remark in this section, although we mentioned that we will only be

considering m > 0, for completeness we can also resolve the case m = 0. This
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Case D(p, q, 2m) σ(K)
p+ q = −2 2
p+ q = 0 0
p+ q = 2 < 0 −2

> 0 0
p+ q = 4 > 0 −2

Table 5.2: The four candidate families for P (p, q, 2m), m > 0, identified according to
the signatures.

argument appears in [5]. In this instance, P (p, q, 0) = T (p, 2)#T (q, 2), and since

unknotting number one knots are prime (see Scharlemann [62] or Zhang [72]), it

follows that either p = ±1 or q = ±1. Since the signature of torus knots is a tight

bound on u(K) (see [31] and [56]), and σ(T (k, 2)) = 1
2
(k − 1) for k ≥ 1, we obtain

the result below.

Lemma 5.2.3. If K = P (p, q, 0) and u(K) = 1, for p, q odd, then pq = ±3.

5.3 The Cases p+ q = ±2, 4

In this section, we consider the knots K = P (k,N − k, 2m) for k > 1, m > 0, and

N = ±2, 4. Our main ingredient is the following theorem due to Montesinos [40].

Theorem 5.3.1 (Signed Montesinos theorem). Suppose that K ⊂ S3 is a knot which

can be undone by changing a negative crossing (so σ(K) = 0, 2). Then Σ(K) =

S3
−ǫD/2(C) for some other knot C ⊂ S3, where D = detK and ǫ = (−1)

1
2
σ(K). In

particular, −Σ(K) = S3
ǫD/2(C) bounds a simply connected smooth 4-manifold W with

ǫ-definite intersection form −ǫRn, where

Rn :=

(
−n 1

1 −2

)

and D = 2n− 1.

This theorem can be proved by careful application of Theorem 1.5.5. Using that

theorem, we know that Σ(K) is obtained by surgery on some knot C; care must be
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taken, however, since we do not know how to relate the λ of Theorem 1.5.5 to the

canonical longitude of C. The statements about the definite 4-manifold W follow

from Proposition 2.2.3.

Occasionally, it will be useful to know which Σ(K) are L-spaces. The following

answer is a direct application of the notes in Section 3.1 of [7] (alternatively, some of

this proposition can be deduced from their Theorem 3.2).

Proposition 5.3.2. If p + q = 0,−2, then Σ(K) is an L-space. If N = 2, 4, then

there are particular choices of p, q, and m such that Σ(K) is not an L-space.

5.3.1 Resolution of p+ q = −2

We now specialise to the case p+ q = −2. Our ultimate goal is to prove the following

theorem via Theorem 4.1.3. This argument is the one available in [5].

Theorem 5.3.3. Suppose that k,m > 0 and that k is odd. Then P (k,−2 − k, 2m)

has unknotting number one if and only if k = 1.

We already know that σ(K) = 2, so if u(K) = 1, then K must be undone

by changing a negative crossing (see Proposition 1.2.5). Applying Theorem 5.3.1,

−Σ(K) = S3
−D/2(C) for some knot C ⊂ S3, and therefore bounds a simply connected,

negative-definite smooth 4-manifold W with intersection form Rn. We will apply

Theorem 4.1.3 to Y = −Σ(K).

As per the conditions of Theorem 4.1.3, we must now check that −Y = Σ(K)

bounds a sharp, simply connected, negative-definite smooth 4-manifold X, and that

the correction term condition given in Proposition 4.5.4 is satisfied. The first of

these is easy: Figure 5.2(a) provides us with a Kirby diagram for Σ(K) which can

be converted into Figure 5.2(b) by −1-Dehn twists around the unknots with positive

coefficients. We also observe that

k

k − 1
=

k−1︷ ︸︸ ︷
[2, 2, . . . , 2] −

2m

2m− 1
=

2m−1︷ ︸︸ ︷
[2, 2, . . . , 2]−.

Hence, by Proposition 2.2.8, Σ(K) is the boundary of the plumbing X = X (G) given

in Figure 5.3. By (3.7), and since there is only one overweight vertex, this plumbing
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k 2m

- 2 - k

0

(a)

- 2 - k

- 2

   k

k - 1
--

   2m

2m - 1
--

(b)

Figure 5.2: (a) A Kirby diagram for Σ(P (k,−2 − k, 2m)); and (b) an alternative
Kirby diagram for the same manifold.

k - 1 2m - 1

- 2 - k

. . . . . .{ {
Figure 5.3: A plumbing graph G for a simply connected, negative-definite smooth
4-manifold X with Σ(P (k,−2 − k, 2m)) as boundary. The vertices are labelled
v1, . . . , vk+2m−1 along the horizontal segment, left to right; the top vertex is labelled
vk+2m.

is also sharp. Simple connectedness of X follows from Proposition 2.2.6 (since G is a

tree).

To check that QX is negative-definite, the easiest way is via Sylvester’s criterion,

as we did in Section 4.4.1. The determinants of the upper left (i × i)-submatrices

of QX , with the exception of QX itself, are easily computed by induction. They

are (−1)i(i + 1), and therefore manifestly alternate in sign. Once we observe that

detQX = D(k,−2− k, 2m) < 0, and that the rank of QX is odd, we are finished.

The remaining condition, concerning correction terms, is more difficult to check.

Recall from Section 3.5 that we have an exact sequence

0 −−−→ H2(X, Y )
QX−−−→ H2(X)

α
−−−→ H2(Y ) −−−→ 0,

and that since H2(Y ) is of odd order, a K ∈ Char(G) determines the unique Spin-

structure on Y if and only if K ∈ kerα = imQX . Hence, if and only if K is a sum of
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rows of QX . We set

K = −
m∑

i=1

2iPD[vi]− 2m
k∑

i=m+1

PD[vi]−
k+2m−1∑

i=k+1

(k + 2m− i) PD[vi]− PD[vk+2m]

= (0, . . . , 0, 2(m), 0, . . . , 0, k − 2m+ 2)

if k ≥ m, or

K = −
k∑

i=1

2iPD[vi]−
m∑

i=k+1

(k + i) PD[vi]−
k+2m−1∑

i=m+1

(k + 2m− i) PD[vi]− PD[vk+2m]

= (0, . . . , 0, 2(m), 0, . . . , 0,−k + 2)

if k ≤ m, and check that these choices initiate maximising paths. Since Σ(K) is

an L-space by Proposition 5.3.2, these K must be the unique representatives of the

Spin-structure with this property, and we know from (3.7) that

d(Σ(K), t0) =
KQ−1

X Kt + (k + 2m)

4
.

To calculate KQ−1
X Kt without computing Q−1

X , observe that K =
∑k+2m

i=1 ki PD[vi],

where PD[vi] is the i-th row of QX , from which it follows that KQ−1
X =

∑k+2m
i=1 kiei,

where ei is the i-th standard basis vector for H2(X). Thus K2 =
∑k+2m

i=1 ki 〈K, [vi]〉,

and hence d(Σ(K), t0) = −1
2
. By the second part of Proposition 3.3.4, it follows

that d(Y, t0) = 1
2
. Similarly, we can repeat this sort of calculation for the plumb-

ing of S3
−D/2(U) shown in Figure 4.1, and as detK ≡ 3 mod 4, we deduce that

d(S3
−D/2(U), 0) =

1
2
, verifying the deficiency condition of Proposition 4.5.4.

Proof of Theorem 5.3.3. We apply Theorem 4.1.3 by showing that if k ≥ 3 then there
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is no matrix A of the prescribed form satisfying

−AAt =




−2 1

1 −2
. . .

. . . . . . 1

1 −2 1 1

1
. . . . . .

. . . −2 1

1 −2

1 −k − 2

−n 1

1 −2




.

In the matrix above, the (k + 2m, k) and (k, k + 2m) entries are both 1. Disproving

the existence of such an A will then tell us that u(K) ≥ 2 if k ≥ 3.

Observe, as we did during the proof of Theorem 4.1.3, that the (i, j)-th entry on

the RHS is the dot product −v′i · v
′
j, where v

′
i is the i-th row of A. Since the diagonal

entries are all of magnitude 2, except the (k + 2m − 2)-th and (k + 2m − 1)-th, it

follows that the corresponding rows of A have precisely two entries, each of magnitude

1. Without loss of generality, we take v′1 = (1,−1, 0, . . . , 0), so that, up to a basis

permutation of H2(X ∪W ), we can arrange for A to have the form:

A =




1 −1

1 −1
. . . . . .

1 −1

∗ ∗ . . . . . . ∗ ∗ ∗ ∗

∗ ∗ . . . . . . ∗ ∗ 1

−1 1




.

Implicitly, we are using the fact that k+2m− 1 ≥ 4 by virtue of our assumptions on
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k and m. This inequality implies that the top k + 2m− 1 rows overlap as shown.

Next let Ak+2m+1,1 = α. Since v′i · v
′
k+2m+1 = 0 for i = 1, 2, . . . , k + 2m − 1, the

leading k + 2m entries of v′k+2m+1 are also α.

A =




1 −1

1 −1
. . . . . .

1 −1

∗ ∗ . . . . . . ∗ ∗ ∗ ∗

α α . . . . . . α α 1

−1 1




.

According to Theorem 4.1.3, then, either |α| = 0, 1.

1. If α = 0, then 1 = (v′k+2m+1)
2 = n = 1

2
(detK+1), whence detK = 1. However,

we already know that detK = k2 + 2k + 4m, so clearly detK > 1.

2. If α = ±1, then k+2m+1 = (v′k+2m+1)
2 = n = 1

2
(detK +1), but this can only

occur if k2 = 1, which contradicts our assumption that k ≥ 3.

Since we obtain contradictions in either situation, the assumption that k ≥ 3 is wrong.

If k = 1, then it is clear that P (1,−3, 2m) has unknotting number one; by changing

any crossing in the central column, we obtain the unknot P (1,−1, 2m). Our proof is

thus complete.

5.3.2 Partial Resolution of p+ q = 4

We now consider the case p+ q = 4. For reasons we will explain shortly, our result is

slightly weaker.

Theorem 5.3.4. Suppose that k,m > 0 and that k is odd. Then P (k, 4− k, 2m) has

unknotting number one only if detK = 3 or 11.
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Notice that, unlike the previous case, this result is an “only if” rather than an

“if and only if”. We are unfortunately unable to make further progress as, for both

choices of detK implied in the above theorem, there is always an A satisfying Theorem

4.1.3.

To prove Theorem 5.3.4, we proceed in much the same manner as before: this time,

σ(K) = −2, so σ(K) = 2, and thus by Theorem 5.3.1, Σ(K) = S3
D/2(C) for some

knot C ⊂ S3. Additionally, Σ(K) = −Σ(K) bounds a negative-definite 4-manifold

with intersection form Rn. We will apply Theorem 4.1.3 to Y = Σ(K).

As before, we need a sharp, simply connected, negative-definite smooth 4-manifold

X with −Σ(K) = Σ(K) as boundary. Using the same methods as in the previous

case, we can verify that the 4-manifold X = X (G) corresponding to the graph G in

Figure 5.4 fulfils these conditions. The only substantial difference is the verification

of Proposition 4.5.4. This time, we use

K = −
k−3∑

i=1

2iPD[vi]− PD[vk−2]

= (0, . . . , 0, 1, 7− k, 8− 2k),

which both initiates a maximising path and represents the Spin-structure t0. Using

(3.7), we see that d(Σ(K), t0) ≥ −
1
2
, and by the second part of Proposition 3.3.4, it

follows that d(Y, t0) ≤
1
2
. Since detK = −k2+4k+8m ≡ 3 mod 4, we already know

that d(S3
−D/2(U), t0) =

1
2
, so

0 ≤ d(Y, t0)− d(S
3
−D/2(U), t0) ≤ 0,

where the left hand inequality comes from Lemma 4.4.7. Hence, Proposition 4.5.4 is

satisfied.

Proof of Theorem 5.3.4. We must show that if an A exists satisfying Theorem 4.1.3,
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k - 5

- k - 1

. . . {

- 1

- 2
�

Figure 5.4: A plumbing graph G for a simply connected, negative-definite smooth
4-manifold X with −Σ(P (k, 4 − k, 2m)) as boundary. The vertices are labelled
v1, . . . , vk−4 along the horizontal segment starting at the left and continuing until
the central node; the vertex with weight −1 is labelled vk−3, the top vertex vk−2, and
the rightmost vertex vk−1.

then detK has the required form. Using the 4-manifold from Figure 5.4, we want

−AAt =




−2 1

1 −2 1

1 −2
. . .

−2 1 1

1 −1 1

1 −k − 1

1 −2m

−n 1

1 −2




.
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This implies that

A =




1 −1

1 −1
. . . . . .

1 −1

1

∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

∗ ∗ . . . ∗ ∗ ∗ ∗ ∗

γ γ . . . γ γ α β 1

−1 1




.

The relation v′k−3 · v
′
k = 0 then tells us that γ = 0. Consequently, the changemaker

condition tells us that either α = 0, 1 and β ≤ α + 1, or vice versa. Either way, once

we have enumerated the various possibilities for α and β, the relation (v′k)
2 = n =

1
2
(detK + 1) informs us that detK ∈ {1, 3, 5, 11}. Since detK = −k2 + 4k+ 8m ≡ 3

mod 4, the result follows.

Before concluding this section, we should discuss the extent to which Theorem

5.3.4 could be improved. If one reads the proof of Theorem 4.1.3 carefully, one

will notice that the full symmetries of Theorem 4.1.1 were not required, only the

symmetries that exist among the deficiency-minimising Spinc-structures. Thus, one

might rightly conclude that Theorem 4.1.1 has more to say than Theorem 4.1.3, and

indeed we shall see this to be the case over the next couple of sections as we tackle

p+ q = 0.

On the other hand, since Σ(K) is not always an L-space (see Proposition 5.3.2),

Theorem 4.1.1 throws up several difficulties of its own. The most grievous of these is

the fact that the covectors K produced by the algorithm in Section 3.5 are no longer

the unique representatives of the corresponding Spinc-structures [K], rendering a

calculus of the correction terms a formidable undertaking indeed: an undertaking

which, as of the time of this writing, we have been unable to complete. For the

reader with doubts about this claim, the case p + q = 0 should hopefully provide
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a convincing demonstration of the subtleties and complexities involved in Theorem

4.1.1, even if Y is an L-space.

That being said, we are confident that when detK = 11, a sufficiently clever or

stubborn application of Theorem 4.1.1 will eventually show that u(K) = 1 if and

only if k = 3 or 5 (i.e. K = P (5,−1, 4), P (5,−1, 2), or P (3, 1, 2)). Sadly, though,

we believe it unlikely that the case detK = 3 can be resolved in this manner, for if

detK ≤ 3, Theorem 4.1.1 yields no more information than the conjugation symmetry

which is true of every 3-manifold Y .

5.3.3 Difficulties with p+ q = 2

As with the previous case, there is room for some progress when p + q = 2, though

not much. The method of proof is almost exactly the same as the one used in the

p + q = 4 case, and suffers from the same sort of limitations. As such, we will not

give the full proofs, only sketches.

Lemma 5.3.5. Suppose that k,m > 0 and that k is odd. Then if K = P (k, 2−k, 2m)

has unknotting number one and σ(K) = 0, either

1. K is undone by changing a positive crossing; or

2. detK = 1 or 5.

Proof. Under the hypotheses stated, notice that D(k, 2− k, 2m) > 0. If K is undone

by changing a negative crossing, then Σ(K) = S3
−D/2(C) by Theorem 5.3.1. Using

the manifold X = X (G) where G is a similar graph to Figure 5.4 (except that the left

hand arm has k − 3 vertices), we apply Theorem 4.1.3 and derive similar results as

in the p+ q = 4 case. Notice this time that detK = −k2 + 2k + 4m ≡ 1 mod 4.

In the other situation, when σ(K) = −2, it follows from Proposition 1.2.5 that

K is undone by changing a positive crossing. The problem this time is in finding an

appropriate negative-definite 4-manifold X whose orientation is compatible with W ,

something we have not yet been able to do.

134



Pretzel Knots with Unknotting Number One

We believe that just as with p + q = 4, a sufficiently sustained application of

Theorem 4.1.1 to all the leftover cases here will prove our conjectured result that

u(K) = 1 if and only if K = P (1, 1, 2m) or P (3,−1, 2m), regardless of whether or

not σ(K) = 0 or −2. The only exception is when detK = 1; in this case, as noted at

the end of the previous section, there are not enough Spinc-structures for Theorem

4.1.1 to be meaningful.

5.4 The Case p+ q = 0: First Results

We now tackle the knots K = P (k,−k, 2m) for k > 1 and m > 0, a family which

illustrates very well both the usefulness and limitations of Theorem 4.1.3. The process

involves two steps. First, we pin down the value of m using the Alexander module,

concluding that m = 1. Second, we employ Theorem 4.1.1 to deduce the values of k

which give u(K) = 1. One naturally wonders if the methods of the previous section

will help us in this endeavour, but unfortunately Theorem 4.1.3 only allows us to

identify the sign of the crossing change involved.

Our ultimate goal over the next two sections is the following theorem.

Theorem 5.4.1. Suppose that k,m > 0 and that k is odd. Then P (k,−k, 2m) has

unknotting number one if and only if k = 3 and m = 1.

The arguments that follow on the p+ q = 0 case are taken from [5]. Observe that

detP (k,−k, 2m) = k2. Hence, in Theorem 5.3.1, we set D = k2, so that n = k2+1
2

.

5.4.1 The Alexander Module

Recall from Chapter 1 that we can construct the infinite cyclic cover X∞(K) of a

knot K. This has a deck transformation group Z, generated by some element t,

and H1(X∞(K)) is a Z[t, t−1]-module A, called the Alexander module, from which a

considerable amount of topological information can be mined. This is done via the

r-th elementary ideal, denoted Ar, which we defined in Section 1.3 as the ideal in

Z[t, t−1] spanned by the (n − r + 1) × (n − r + 1)-minors of any n × n presentation

matrix for A.
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k k..
.

..
.

Figure 5.5: A Seifert surface for P (k,−k, 2m). All curves are oriented clockwise
except for the big curve around the hole. The normal to the surface is also indicated
(out of the page in red sections, into the page in blue ones).

From Nakanishi [43], in the form cited in Lickorish [35], we also know that the

Alexander module can be used to bound the unknotting number (see Theorem 1.3.4).

Specifically, if A/Ar 6= 0, then u(K) ≥ r. Using this theorem, we can now prove the

following lemma.

Lemma 5.4.2. Suppose that k ≥ 3, m > 0, and k is odd. Then if P (k,−k, 2m) has

unknotting number one, m = 1.

Proof. We take the Seifert surface F for P (k,−k, 2m) shown in Figure 5.5. The curves

are indexed starting with the central column of loops, largest to smallest, followed by

the same labelling on the first column, then the big loop around the hole and finally

the loop crossing the “bridge”.

Using this surface F , we construct the bilinear form VF described in Section 1.2.

With our chosen basis, it has matrix

VF =




Xk 0 1t 0

0 −Xk −1
t 0

0 0 0 0

0 0 1 m



,
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where Xk is the (k − 1) × (k − 1) lower triangular matrix of 1’s, and 1 is a suitably

sized row of 1’s.

Consequently, the Alexander module is presented by

A =




Mk 0 tt 0

0 −Mk −t
t 0

−1 1 0 −1

0 0 t m(t− 1)



,

from which we can compute the relevant minors. Here, Mk = tXk − X
t
k, and t is a

row with all entries t.

We claim that when k ≥ 3, the second elementary ideal A2 generated by the

principal minors of A, is precisely given by

A2 = 〈Pk(t),m(t− 1)〉 ,

where Pk(t) =
∑k−1

i=0 (−1)
itk−1−i. For the moment, we take this as given and show

that A2 = Z[t, t−1] if and only if m = 1. Indeed, the quotient Z[t, t−1]/ 〈Pk(t)〉 is the

Z-module consisting of all Laurent polynomials

ak−2t
k−2 + ak−3t

k−3 + · · ·+ a1t+ a0,

together with their unit multiples (recall that the units are elements of the form tn

for n an integer). These Laurent polynomials vanish in A/A2 if and only if they fall

in the ideal 〈m(t− 1)〉. In particular, if and only if ai is divisible by m for all i. This

statement then implies m = 1.

When m = 1, observe that

Pk(t) = tk−1 − tk−3(t− 1)− tk−5(t− 1)− · · · − (t− 1),

which means that in the quotient Z[t, t−1]/ 〈m(t− 1)〉, the polynomial Pk(t) is a

unit. Hence, Z[t, t−1]/A2 = 0, and there is no obstruction to unknotting number one:
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Theorem 1.3.4 guarantees only that u(K) ≥ 1.

We must therefore check our claim about A2. As a first step, we compute detMk

as follows, using the notation v∗ to indicate a square matrix whose every row is v.

detMk = det




t− 1 −1 −1 . . . −1

t t− 1 −1 . . . −1

t t t− 1 . . . −1
...

...
...

. . .
...

t t t . . . t− 1




= t−1 det




t2 0 0 . . . −1

t t− 1 −1 . . . −1

t t t− 1 . . . −1
...

...
...

. . .
...

t t t . . . t− 1




= t detMk−1 + (−1)k−1t−1 det

(
tt Mk−2

t t

)

= t detMk−1 + (−1)k−1 det

(
0 Mk−2 − t∗

1 1

)

= t detMk−1 + det(Mk−2 − t∗).

Using the fact that Mk−1 − t∗ is an upper-triangular (k − 2) × (k − 2) matrix, each

diagonal entry of which is −1, we obtain the recurrence relation

detMk = t detMk−1 + (−1)k−1.

This recurrence, when solved, shows that detMk = Pk(t).

Now, let us suppose we wish to compute detAi,j when i, j < 2k. Expanding

down the final column or row, we obtain two terms, one of which is a multiple of

m(t − 1), and the other of which is the determinant of a block diagonal matrix

featuring eitherMk or −Mk (both of whose determinants are Pk(t) up to sign). Hence

detAi,j ∈ 〈Pk(t),m(t− 1)〉. The other determinants detAi,j when either i = 2k or
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j = 2k are calculations very much like the one presented below, and therefore are

multiples of Pk(t). Hence, in order to prove that A2 is spanned by these two key

polynomials, all we must do now is ensure that they are both actually in the ideal.

This is proved by the following two example minors.

First, we delete the first row and final column:

detA1,2k = det




tt Mk−1 0 tt

0 0 −Mk −t
t

−1 −1 1 0

0 0 0 t




= t det




tt Mk−1 0

0 0 −Mk

−1 −1 1




= t det

(
Mk−1 − t∗ t∗

0 −Mk

)

= (−1)k−1t det(Mk−1 − t∗) detMk

= −tPk(t).

The last equality uses our previous calculation. Since −t is a unit, we know that

Pk(t) ∈ A2.
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Now delete the first row and k-th column:

detA1,k = det




tt Mk−1 0 tt 0

0 0 1 −t 0

0 0 −Mk−1 −t
t 0

−1 −1 1 0 −1

0 0 0 t m(t− 1)




= m(t− 1) det




tt Mk−1 0 tt

0 0 1 −t

0 0 −Mk−1 −t
t

−1 −1 1 0




= m(t− 1) det




tt Mk−1 0 −1t

0 0 1 1

0 0 −Mk−1 1t

t t −t 0




= m(t− 1) det




0 Mk−1 − t∗ t∗ −1t

0 0 1 1

0 0 −Mk−1 1t

t t −t 0



.

This last determinant evaluates as

−t det(Mk−1 − t∗) det

(
1 1

−Mk−1 1t

)
= (−1)k−1 det

(
Mk−1 −1

t

t t

)
,

which in turn is almost Mk. Up to sign, it is

detMk − (t− 1) detMk−1 + t detMk−1 = detMk + detMk−1 = tk−1.

It follows that m(t− 1) ∈ A2, and our proof is at last complete.
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5.4.2 Theorem 4.1.3 and Σ(P (k,−k, 2))

The previous section is unusual in that it is the only time that the Alexander module

(or any other classical invariant besides the signature, for that matter), gives any use-

ful information. Having exhausted the classical avenues, then, it is natural to wonder

if Theorem 4.1.3 yields anything. We will see, however, that since the signature of K

vanishes in this case, the only progress we can make with the theorem is to pin down

the sign of the unknotting crossing (a piece of information which, while far from ideal,

still cuts down our workload in the next section by half). This is due to orientation

incompatibilities when it comes to gluing W and X together.

Lemma 5.4.3. Suppose k ≥ 3 is odd. Then if K = P (k,−k, 2) has unknotting

number one, it is undone by changing a negative crossing.

Suppose thatK is undone with a positive crossing. Then,K is undone by changing

a negative crossing. Hence, by Theorem 5.3.1, Σ(K) = S3
−D/2(C), where C is a knot

in S3 and D = detK = detK. So, −Σ(K) bounds a negative-definite 4-manifold W

with intersection form Rn. We apply Theorem 4.1.3 to the case Y = −Σ(K).

As in Section 5.3, we construct X = X (G) using the graph G in Figure 5.6; this

X is negative-definite and sharp. Proposition 4.5.4 is checked using the covector

K = −2
k∑

i=1

PD[vi]− PD[vk+1]− PD[vk+2]

= (2, 0, . . . , 0, k − 2),

which initiates a maximising path and is the unique representative of t0 with this

property (since Σ(K) is an L-space, see Proposition 5.3.2). This tells us that d(Y, t0) =

0, and since detK = k2 ≡ 1 mod 4, we also find d(S3
−D/2(U), t0) = 0.

Proof of Lemma 5.4.3. Knowing that Theorem 4.1.3 is applicable, the matrix A has
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k - 1

. . . {

- k

Figure 5.6: A plumbing graph G for a simply connected, negative-definite smooth
4-manifold X with Σ(P (k,−k, 2)) as boundary. The vertices are labelled v1, . . . , vk+1

along the horizontal segment, left to right; the top vertex is labelled vk+2.

the form 


1 −1

1 −1

1 −1
. . . . . .

1 −1

1 −1

a a a . . . a b b c c

d d d . . . d d d 1

−1 1




.

Denote the k+4 different rows v′i. Then v
′
k · v

′
k+2 = −1, so b = a+1, and (v′k+2)

2 = k

implies

ka2 + 2(a+ 1)2 + 2c2 = k, (5.1)

whence we must have a = 0,−1 (else the LHS is too big). We split the cases:

1. If a = 0, then from (5.1), 2 + 2c2 = k. This is nonsense for parity reasons.

2. If a = −1, then from (5.1), c = 0. Hence v′k+2 ·v
′
k+3 = 0 tells us that kd = 0, and

so d = 0. The fact that (v′k+3)
2 = n yields up n = 1, so k2 = 1, contradicting

k ≥ 3.

This completes the proof.
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5.5 Heegaard Floer Homology of Σ(P (k,−k, 2))

To complete the work started in the previous section we now employ Theorem 4.1.1.

As mentioned in the Introduction, this result is a direct generalisation of Theorem

4.1 in [51]. If we compare the function r : Spinc(S3
−D/2(C)) → Spinc(S3

−n(C)) from

Theorem 4.1.1 with the corresponding restriction in Section 4 of [51], we find that

they coincide (though our formulation has noticeably fewer conditions that need to

be checked). For convenience, we summarise the relevant details below, having set

Σ := Σ(P (k,−k, 2)) and L := S3
−D/2(U). Since D ≡ 1 mod 4 and D = 2n − 1, it

follows that n is odd, and we write n = 2s+ 1.

Theorem 5.5.1. If C is a knot in S3 and D ≡ 1 mod 4, then

d(S3
−D/2(C), i)− d(L, i) = d(S3

−D/2(C), 2s− i)− d(L, 2s− i), (5.2)

for i = 0, 1, . . . , s, where the labelling on the Spinc-structures is by 1
2
c1.

To apply this, observe that we know from Lemma 5.4.3 that K = P (k,−k, 2)

must be undone by changing a negative crossing; Theorem 5.3.1 then tells us that

Σ(K) = S3
−D/2(C) for some knot C ⊂ S3. Our goal is to show that at least one of the

equations (5.2) must fail if k ≥ 5. Once that is done, we can conclude that u(K) ≥ 2

for k ≥ 5.

If the reader is making a comparison with Theorem 1.1 of [51], the reason we do

not bother with the conditions on positive and even matchings is that they are not

strong enough to obstruct our pretzels. The symmetry condition, however, is, and

this is essentially just Theorem 5.5.1.

As mentioned earlier, all work in this section is taken from [5].

5.5.1 Correction Terms of Σ(P (k,−k, 2))

Recall the algorithm for computing Heegaard Floer homology of plumbed 3-manifolds

from Section 3.5. We shall apply this to the graph G in Figure 5.6; the associated

manifold X = X (G), as has already been discussed, has Σ as boundary. Because Σ is
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an L-space (Proposition 5.3.2), it necessarily follows that the algorithm will output a

complete set of representatives for the Spinc-structures on Σ without repetition, and

because H2(Σ) is of odd order, given K1, K2 ∈ Char(G), we know that K1 ∼ K2 if

and only if (K1 −K2)Q
−1 ∈ Zk+2, where Q := QX .

Proposition 5.5.2. The following are the only elements of Char(G) which initiate

maximising paths:

1. (0, 0, . . . , 0, 2(i), 0, . . . , 0, j), where j is an odd integer satisfying 2−k ≤ j ≤ k−4;

2. (2, 0, . . . , 0, 0, k − 2) and (0, . . . , 0, 2, k − 2); and

3. (0, . . . , 0, j) where j is an odd integer satisfying 2− k ≤ j ≤ k.

Proof. Let K ∈ Char(G) satisfy (3.6). We show that if K satisfies either of two

conditions below then it must initiate a non-maximising path.

First suppose that there are two v ∈ V (G) such that 〈K, [v]〉 = −w(v). Then,

pushing down at vk+2 if necessary, there must be a substring of K that resembles

(2, 0, . . . , 0, 2). On pushing down the 2’s at either end of this substring and iterating

with the 2’s so created, we eventually obtain a value 4 in the substring. Thus, K

initiates a non-maximising path.

We now consider K = (0, . . . , 0, 2(i), 0, . . . , 0, k−2) for i = 2, . . . , k. Pushing down

the 2 to create two more 2’s on either side, and continuing to push down these newly

created 2’s down in either direction, we end up with (−2, 0, . . . , 0, 2(i), 0, . . . ,−2, k).

On repeating this procedure, we end up with k + 2 in the final co-ordinate. As this

is too large, K initiates a non-maximising path.

After eliminating these two possibilities, the remainingK are precisely those listed

in the proposition. Since there are (k+1)(k−2) = k2−k−2 covectors of the first kind,

2 of the second, and k of the last, we have k2 in total. That being the order of H2(Σ),

these must initiate maximising paths and enumerate the different Spinc-structures on

Σ.

We call the set of these specific maximisers Char∗(G), and observe that we have an

isomorphism Spinc(Σ) ≃ Char∗(G) (see Proposition 2.3.18 for the group structure on
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Spinc(Σ)). Indeed, given K1, K2 ∈ Char∗(G), we know that [K1] + [K2] = [K] if and

only if 1
2
c1(K1)+

1
2
c1(K2) =

1
2
c1(K). Phrased in the notation of (3.5), this condition is

satisfied if and only if α(K1+K2−K) = 0, or, equivalently, (K1+K2−K)Q−1 ∈ Zk+2.

We emphasise that this is only possible as H2(Σ) is of odd order.

We now label the elements of Char∗(G) as follows:

K1
i,j := (0, . . . , 2(i), . . . , 0, j) for j odd, 2− k ≤ j ≤ k − 4

K2
1 := (2, 0, . . . , 0, 0, k − 2) K2

2 := (0, . . . , 0, 2, k − 2)

K3
j := (0, . . . , 0, j) for j odd, 2− k ≤ j ≤ k

It will sometimes be convenient to write K1
i,j for the same type of covector as above,

but with a value for j outside the range and parity specified. In this case we empha-

sise that it does not represent a maximiser useful for calculating the corresponding

correction term. In a similar vein, we set

K1
0,j := K3

j .

To compute the correction terms, then, we need Q−1. This calculation is surpris-

ingly tractable so we present the result directly: Q−1 = 1
k2
(cij), where

cij =





−i(k2 − jk + 2j) if i ≤ j ≤ k − 1

−2jk if i = k, j ≤ k

−jk if i = k + 1, j ≤ k

−k2 if i = j = k + 1

−2j if i = k + 2, j ≤ k

−k if i = k + 2, j = k + 1

−(k + 2) if i = j = k + 2

cji for all i, j

.
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This in turn permits an explicit calculus of K2 = KQ−1Kt:

(K1
i,j)

2 =




− 1

k2
(4i(k2 − ik + 2i) + (k + 2)j2 + 8ij) for i = 0, . . . , k

− 1
k2
(4k2 + (k + 2)j2 + 4kj) for i = k + 1

(K2
i )

2 =




−(k + 2) for i = 1

− 1
k2
(k3 + 6k2 − 12k + 8) for i = 2

.

The computation of d(Σ, [K]) is then trivial. From now on, we will write d(·, K) in

place of d(·, [K]) as the meaning is clear.

5.5.2 Correction Terms of S3
−D/2(U)

In order to compute the deficiencies we wish to investigate, we need to repeat this

procedure for the corresponding lens space L, which has an associated plumbing given

by the linear graph H on two vertices, weighted −n and −2 (recall k2 = 2n − 1 =

4s+1). The plumbing therefore has intersection form with matrix Rn, whose inverse

is trivially

R−1
n = −

1

k2

(
2 1

1 n

)
.

We have already identified the relevant maximisers; their correspondence with H2(L)

is given in Section 4 of [51].

Lemma 5.5.3. The lens space L has characteristic covectors given by the map ψ :

ZD −→ Char∗(H), defined below.

ψ(i) =





(2i− 1, 2) 0 ≤ i ≤ s

(2i− 4s− 1, 0) s+ 1 ≤ i ≤ 3s+ 1

(2i− 8s− 3, 2) 3s+ 2 ≤ i ≤ 4s

. (5.3)
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Applying this lemma, the correction terms are

d(L, ψ(i)) =





− 1
k2
(2i2) 0 ≤ i ≤ s

− 1
2k2

((2i− k2)2 − k2) s+ 1 ≤ i ≤ 3s+ 1

− 1
k2
(2(k2 − i)2) 3s+ 2 ≤ i ≤ 4s

.

5.5.3 First Application of Theorem 5.5.1

To compare our correction terms for Σ and L we will need the isomorphism ϕ : ZD →

Char∗(G) implicit in Theorem 5.5.1. Since ϕ was only implicit in our statement of

the theorem, let us be clear what we are doing. Assuming that we have identified the

labelling ϕ of Spinc(Σ) required for Theorem 5.5.1, we will then have two labellings

of Spinc-structures: one, ψ, for Spinc(L), the other, ϕ, for Spinc(Σ). Theorem 5.5.1

tells us that

d(Σ, ϕ(i))− d(Σ, ϕ(2s− i)) = d(L, ψ(i))− d(L, ψ(2s− i)) (5.4)

for i = 0, 1, . . . , s. We want to show, by way of contradiction, that such a ϕ cannot

exist when k ≥ 5: if ϕ did exist, then we could pre-compose any other isomorphism

φ : ZD → Char∗(G) with some automorphism of ZD such that the equations (5.4) are

satisfied. This automorphism must be multiplication by some ℓ coprime to k2. That

is, there must exist some ℓ such that

d(Σ, φ(iℓ))− d(Σ, φ(2sℓ− iℓ)) = d(L, ψ(i))− d(L, ψ(2s− i)). (5.5)

To prove that u(K) ≥ 2 when k ≥ 5, we claim that no such ℓ exists, and it is in this

direction that we proceed over the course of the following pages. As a first step, we

must specify some φ by choosing a unit K ∈ Char∗(G) and setting φ(1) = K. Since

φ is an isomorphism, this choice will determine φ completely.
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As we saw in (3.5), the kernel of α is generated by PD[v]. Thus, on observing that

K2
1 = −2

k∑

i=1

PD[vi]− PD[vk+1]− PD[vk+2], (5.6)

we see that K2
1 is the zero element of Char∗(G). In order to find a unit in Char∗(G),

we must find a K such that m[K] = [K2
1 ] if and only k2|m. Equivalently, a K such

that (mK −K2
1)Q

−1 ∈ Zk+2 if and only k2|m. Setting K = K1
1,−1, we have

mK −K2
1 = (2(m− 1), 0, . . . , 0,−m− (k − 2)),

and on computing the (k + 2)-th co-ordinate of (mK −K2
1)Q

−1 we find

((mK −K2
1)Q

−1)k+2 =
1
k2
(k2 −m(k − 2)) ∈ Z.

It follows that k2|m since k2 and k − 2 are coprime. Hence K1
1,−1 is a unit.

Our choice of φ, which we now fix, is thus determined by

φ(0) = K2
1 φ(1) = K1

1,−1.

We are now ready to make our first applications of Theorem 5.5.1.

Proposition 5.5.4. Suppose P (k,−k, 2) has unknotting number one. Then there

exists an ℓ coprime to k2 such that ℓ2(3k− 2) ≡ −8 mod k2. Equivalently, the same

ℓ satisfies

ℓ2 ≡ 6k + 4 mod k2. (5.7)

Proof. We observe that if φ(i) = [K], then φ(iℓ) = ℓφ(i) = ℓ[K] = [ℓK]. Thus

φ(iℓ)Q−1 ≡ ℓφ(i)Q−1 mod Z, and so φ(iℓ)2 ≡ ℓ2φ(i)2 mod Z. Consequently,

d(Σ, φ(iℓ))− d(Σ, φ(2sℓ− iℓ)) ≡ ℓ2(d(Σ, φ(i))− d(Σ, φ(2s− i))) mod Z. (5.8)

It is now routine, using our previous calculation of L’s correction terms, to com-
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pute the difference

d(L, ψ(0))− d(L, ψ(2s)) = − 1
2k2

(k2 − 1).

and equally routine to find

φ(2s) =





K1

k+1,−
1
2
(k+1)

k ≡ 1 mod 4

K3
1
2
(k−1)

k ≡ 3 mod 4
,

from which we deduce that

d(Σ, φ(0))− d(Σ, φ(2s)) =





1
16k2

(5k3 − 3k + 2) k ≡ 1 mod 4

1
16k2

(−3k3 + 4k2 − 3k + 2) k ≡ 3 mod 4
.

Applying (5.8) to (5.5) in the case when i = 0 and substituting in the above calcula-

tions, we find that we must have

−8(k2 − 1) ≡




ℓ2(5k3 − 3k + 2) mod k2 if k ≡ 1 mod 4

ℓ2(−3k3 + 4k2 − 3k + 2) mod k2 if k ≡ 3 mod 4
,

which transforms into the equivalent statement (5.7) after a simple rearrangement

(to make ℓ2 the subject).

One might think that by considering (5.5) modulo Z for any other value of i we

could obtain a different congruence. Sadly, however, this is not true, and no further

information is to be gained along these lines. However, even on its own, (5.7) cuts

down the number of possible ℓ considerably. In the case that k is a prime power, for

instance, it determines k up to sign (see next section).

5.5.4 Precise Applications of Theorem 5.5.1

The rest of the proof that u(K) ≥ 2 for k ≥ 5 follows the following line of reasoning.

We show that no ℓ satisfying (5.7) can simultaneously satisfy (5.5) for i = 0 and r,
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where r is the residue of ℓ modulo k. This requires us to do the following:

1. Pinpoint the values of φ(2sℓ), φ(rℓ), and φ(2sℓ−rℓ), and compute their squares;

2. Compute the differences

Z(i) := d(Σ, φ(iℓ))− d(Σ, φ(2sℓ− iℓ))− d(L, ψ(i)) + d(L, ψ(2s− i))

for i = 0, r;

3. Obtain a good reason why Z(0) and Z(r) cannot simultaneously be zero for

k ≥ 5.

For the reader who does not like results plucked out of thin air, the following

formulae are the tools used to compute the values of φ called for in the first step

above.

Lemma 5.5.5. We have the following equivalences:

(A): K3
J+kB ∼ K1

−B,J+2B (B): K1
I,J ∼ K1

I+1,J+k−2 (C): K1
I,J ∼ K1

I,J+k2 .

where B ≤ 0 and J are arbitrary integers.

Proof. This is an easy calculation: simply verify that (K −K ′)Q−1 ∈ Zk+2, for the

above K,K ′.

As mentioned before, if k is a prime power then there is an essentially unique choice

of ℓ, but the situation becomes much more complicated if k has several different prime

factors. To deal with this complexity, we introduce some auxiliary notation.

Proposition 5.5.6. Let ℓ = ak + r, where 0 ≤ a < k and 0 < r < k. Then we can

choose r even and set r2 = Ak + 4, where

A+ 2ar ≡ 6 mod k, (5.9)

and 0 ≤ r − A < k
4
+ 1.
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Proof. Since ±ℓ have the same effect on the correction terms, and k is odd, one of

±ℓ will have even r and we make this choice. Notice that as ℓ is coprime to k, we

cannot have r = 0.

From (5.7), ℓ2 ≡ 6k + 4 mod k2. However, it is also clear that ℓ2 ≡ 2ark + r2

mod k2. Comparing these expressions, we obtain the desired congruence (5.9).

For the inequality, we have r − A = r − r2−4
k

. By considering this quadratic in

the range from 0 to k, we find it is always positive, maximises when r = k
2
, and has

maximum k
4
+ 4

k
. Since r−A is an integer, and as k ≥ 5, the upper bound follows.

Proposition 5.5.7. In the case that k is a prime power, then r = 2, A = 0, and

a = k+3
2
.

Proof. This is a direct calculation using (5.7) and the observation that when k is

prime power, square roots modulo k are unique up to sign.

In order to carry out our prescribed programme, we now have to branch into

several different cases. Because the condition that r be even implies nothing about a,

and because the parity of a becomes important in what follows, we divide the rest of

our proof into two sections: a even and a odd. Before we do so, however, we remark

that one value of φ called for in Step 1 is independent of a.

Proposition 5.5.8. For k ≥ 5,

φ(rℓ) = −K1
A
2
,k−4−A

.

Proof. By direct verification. Check that (−rℓK1
1,−1 −K

1
A
2
,k−4−A

)Q−1 ∈ Zk+2, which

is easy.

Strictly speaking, we want to compute d(Σ, φ(i)), but because of the conjugation

symmetry d(Y, φ(i)) = d(Y, φ(−i)) (see the first part of Proposition 3.3.4), we will

sometimes in fact compute φ(−i) instead of φ(i). In order to streamline our notation,

we will write φ(i) = −K to mean φ(−i) = K, just as we have done above.
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The Case a Even

According to Step 1, we must now compute the values of φ(2sℓ) and φ(2sℓ−rℓ). This

is done in the following two propositions. For the interested reader, these calculations

were performed originally by assuming that K had the form K3
j , and then applying

Lemma 5.5.5 until the subscripts fitted the required conditions.

Proposition 5.5.9 (r ≡ 2 mod 4). If r ≡ 2 mod 4 and a is even, then we define

parameters B := 1 + r
2
− a

2
− A

2
∈ (−k

2
, k
2
) and J := − r

2
−4 < 0. These give

φ(2sℓ− rℓ) =





K1
−B,J+2B if B ≤ 0, J + 2B > −k

K1
2−B,J+2B+2k−4 if B ≤ 0, J + 2B ≤ −k

−K1
B,−J−2B if B ≥ 0

,

and also

φ(2sℓ) =





K1
a−r
2

,
r
2
−a

if a ≥ r

−K1
r−a
2

,a−
r
2

if a ≤ r
.

Proposition 5.5.10 (r ≡ 0 mod 4). If, on the other hand, r ≡ 0 mod 4, then we

instead define B := r
2
− a

2
− A

2
∈ (−k

2
, k
2
) and J := k − r

2
− 4 > 0, giving

φ(2sℓ− rℓ) =





K1
−B,J+2B if B ≤ 0

−K1
B,−J−2B if B ≥ 0, J + 2B < k

−K1
B+2,−J−2B+2k−4 if B ≥ 0, J + 2B ≥ k

,

and also

φ(2sℓ) =





K1
a−r+2

2
,
r
2
−a+k−2

if a ≥ r − 2

−K1
r−a−2

2
,a−

r
2
−k+2

if r
2
≤ a ≤ r − 2

−K1
r−a+2

2
,a−

r
2
+k−2

if a < r
2

.

Proof (of both propositions). This is a straightforward verification. To perform it,

one need only check that (mK1
1,−1 − K)Q−1 ∈ Zk+2 for the right choices of m and
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Case r Conditions 16k2Z(r)
(mod 4)

A 2 B ≤ 0 (4kr + 8k2)A+ (2− 3k)r2 + ((4a− 24)k − 8k2)r
J + 2B > −k − 4k3 + (8a+ 16)k2 + 32ak − 8

B 2 B ≤ 0 (4kr − 8k2)A+ (2− 3k)r2 + (4a− 24)kr
J + 2B ≤ −k + 12k3 + (−8a− 16)k2 + 32ak − 8

C 2 B ≥ 0 (4kr − 8k2)A+ (2− 3k)r2 + ((4a− 24)k + 8k2)r
− 4k3 + (−8a+ 48)k2 + 32ak − 8

D 0 B ≤ 0 4Akr + (2− 3k)r2 + ((4a− 24)k − 4k2)r
+ 8k2 + 32ak − 8

E 0 B ≥ 0 (4kr − 16k2)A+ (2− 3k)r2 + ((4a− 24)k + 12k2)r
J + 2B < k + (−16a+ 8)k2 + 32ak − 8

F 0 B ≥ 0 4Akr + (2− 3k)r2 + ((4a− 24)k + 4k2)r
J + 2B ≥ k + 72k2 + 32ak − 8

Table 5.3: Computation of Z(r) when a is even.

Case r Conditions 16k2Z(0)
(mod 4)

1 2 a ≥ r (2− 3k)r2 + (4ak − 8k2)r − 4k3 + 8ak2 − 8
2 2 a ≤ r (2− 3k)r2 + (4ak + 8k2)r − 4k3 − 8ak2 − 8
3 0 a ≥ r − 2 (2− 3k)r2 + (4ak − 4k2)r + 8k2 − 8
4 0 r

2
≤ a ≤ r − 2 (2− 3k)r2 + (4ak + 12k2)r − (16a+ 24)k2 − 8

5 0 a < r
2

(2− 3k)r2 + (4ak + 4k2)r + 8k2 − 8

Table 5.4: Computation of Z(0) when a is even.

K listed above, using (5.9). The numerous cases occur to fit the various constraints

imposed on i, j in K1
i,j; the parity of r

2
is relevant because j must be odd.

This completes Step 1. The next step is to compute Z(i) for i = 0, r. As this is

straightforward, if tedious, we present the results in Tables 5.3 and 5.4.

Proposition 5.5.11. If a is even, then no ℓ exists which ensures that Z(r) = Z(0) =

0.

Proof. The idea is to show that the Z(r) = 0 equation in case α is incompatible with

the Z(0) = 0 equation in case β (for appropriate choices of α and β). If both the α

and β equations are satisfied, then we should have

Z(r)± Z(0) = 0.

We compare cases α = A,B,C with cases β = 1, 2 (six combinations), and cases

153



Pretzel Knots with Unknotting Number One

α = D,E, F with cases β = 3, 4, 5 (nine more combinations). In each of these

combinations, both of the new equations generally involve A, a, and r, so obtaining

contradictions can be difficult. The following method, however, is generally useful:

1. Cancel sufficient common factors from all the terms;

2. Substitute A = r2−4
k

;

3. Solve the Z(r) + Z(0) = 0 equation for a and substitute the solution into the

Z(r) − Z(0) = 0 equation. Since the “+” equation is generally linear in a,

and the coefficient of a is generally non-vanishing, this task is not difficult, and

yields a new equation fα,β(r) = 0 which we must satisfy;

4. Find an argument establishing that fα,β(r) is positive or negative over the range

2, 4 ≤ r < k. The choice of 2 or 4 depends on the minimum value of r allowed

by α and β;

5. Hence, conclude that α, β are not compatible.

We illustrate the procedure once, then summarise the relevant fα,β in different

cases. Take α = A and β = 1. Cancelling terms, we obtain:

Z(r) + Z(0) = 0 = (2r + k + 2)(r2 − 4)− (8k + 12)kr − 4k3

+ 8k2 − 12k + 4ak(r + 2k + 4)

Z(r)− Z(0) = 0 = (r + 2k)(r2 − 4)− 6rk + 4k2 + 8ak.

Since the coefficient of a in the “+” equation is non-zero, we solve it for a and

substitute into the “−” equation, giving

fA,1(r) = r4 + 4kr3 + (4k2 − 8)r2 + (8k2 − 16k)r + 16k3 − 16k2 + 16 = 0.

Since k ≥ 5, the coefficients of r are all positive, whence fA,1(r) > 0 on 0 < r < k.

This is the contradiction we require.

In a similar vein, Table 5.5 summarises the data for the other cases. We attack

them one by one.
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α, β fα,β(r)

A, 1 r4 + 4kr3 + (4k2 − 8)r2 + (8k2 − 16k)r + 16k3 − 16k2 + 16
B, 1 r4 − (5k2 − 2k + 8)r2 + 4k4 + 16k2 − 8k + 16
C, 1 r4 − (3k2 − 2k + 8)r2 + 16k2r − 4k4 + 32k3 + 16k2 − 8k + 16
A, 2 r4 − (5k2 + 2k + 8)r2 + 4k4 + 16k2 + 8k + 16
B, 2 r4 − 4kr3 + (2k2 − 8)r2 + (8k3 − 8k2 + 16k)r − 8k4 + 16k3 − 16k2 + 16
C, 2 r4 − 4kr3 + (4k2 − 8)r2 + (8k2 + 16k)r − 16k3 − 16k2 + 16

D, 3 r4 − 8r2 + 8k2r − 16k2 + 16
E, 3 r4 − 4kr3 + (k2 + 2k − 8)r2 − (4k3 − 8k2 − 16k)r + 8k3 − 16k2 − 8k + 16
F, 3 r4 + (2k2 − 8)r2 + 24k2r − 16k2 + 16
D, 4 r4 − 4kr3 − (k2 + 2k + 8)r2 + (4k3 + 8k2 + 16k)r − 8k3 + 48k2 + 8k + 16
E, 4 r4 − 8kr3 + (16k2 − 8)r2 + (8k2 + 32k)r − 32k3 − 16k2 + 16
F, 4 r4 − 4kr3 + (k2 − 2k − 8)r2 − (4k3 − 24k2 − 16k)r − 72k3 + 48k2 + 8k + 16
D, 5 r4 − (2k2 + 8)r2 − 8k2r − 16k2 + 16
E, 5 r4 − 4kr3 − (k2 − 2k + 8)r2 + (4k3 − 8k2 + 16k)r + 8k3 − 16k2 − 8k + 16
F, 5 r4 − 8r2 + 8k2r − 16k2 + 16

Table 5.5: The functions fα,β when a is even.

A1 Already done.

B1, A2 In both situations, fα,β(r) = r4 − Nr2 + M . The turning points of this

quartic occur when r = 0 or r2 = N
2
, so provided that N

2
≥ k2, we know that

fα,β(r) is decreasing on 0 < r < k. As it happens, N
2
is indeed greater than k2;

since also

fα,β(k − 1) =




8k3 + 5k2 + 6k + 9 if α = B, β = 1

4k3 + 13k2 + 18k + 9 if α = A, β = 2
,

we see that fα,β(r) > 0 on 0 < r < k, as required.

C1 fC,1 is not obviously useful, but since 1+ r
2
− a

2
− A

2
≥ 0 (by case C) and a ≥ r (by

case 1), we are forced to conclude that A = 0. However, then r = 2 and a = k+3
2

by direct computation, and the condition from case C fails. Contradiction.

B2 We aim to show that f(r) := fB,2(r) < 0 on 0 < r < k when k ≥ 7. We begin
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with its derivatives:

df

dr
(r) = 4r3 − 12kr2 + (4k2 − 16)r + (8k3 − 8k2 + 16k)

d2f

dr2
(r) = 12r2 − 24kr + (4k2 − 16)

d3f

dr3
(r) = 24r − 24k.

As we can see, d3f
dr3

(r) < 0, whence d2f
dr2

is decreasing. Noticing that d2f
dr2

(0) =

4k2 − 16 > 0 while d2f
dr2

(k) = −8k2 − 16 < 0, we see that d2f
dr2

has precisely one

zero in the range 0 < r < k. Hence, df
dr

has precisely one turning point in that

range, a maximum by the negativity of d3f
dr3

. Checking at both extremes of the

range, we find that df
dr
(r) > 0, and so f is increasing. However,

f(k) = −k4 + 8k3 − 8k2 + 16

is negative for k ≥ 7, so fB,2(r) = f(r) < 0 on the range prescribed. If k = 5,

then r = 2 by Proposition 5.5.7, and direct computation finds fB,2(2) < 0.

C2 We play around with the “−” equation:

2k = r + 8a
A−6

.

Since r
2
is odd, we know that A

4
k + 1 = r2

4
≡ 1 mod 4, and so A ≡ 0 mod 16.

Thus, if A ≥ 16, then 2k ≤ r + 4
5
a < 2k, which is nonsense. If instead A = 0,

then we find that 2k = r − 4
3
a < 2k, which is also nonsense.

D3, F5 Write

fD,3(r) = (r4 − 8r2) + (8k2r − 16k2 + 16).

The two bracketed expressions are both positive once r ≥ 4, and since r ≡ 0

mod 4, it is clear that r = 4 is the smallest value for r allowed. Hence we have

our contradiction.

E3, F3 From condition 3 we know that B = r
2
− a

2
− A

2
≤ 1 − A

2
< 0 unless A = 0.
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This contradicts conditions E and F. However, if A = 0, then r = 2, and we

violate the condition that r ≡ 0 mod 4.

D4 Write

fD,4(r) = (r4 − 4kr3 − k2r2 + 4k3r − 8k3)︸ ︷︷ ︸
g(r)

+(8k2r − 2kr2)

+ (48k2 − 8r2) + 16kr + 8k + 16,

and observe that except possibly g(r), all the terms are positive. We aim to

show that g(r) > 0 on the range 2 < r < k provided k ≥ 7. Indeed, consider its

derivatives:

dg

dr
(r) = 4r3 − 12kr2 − 2k2r + 4k3

d2g

dr2
(r) = 12r2 − 24kr − 2k2.

The second derivative is clearly negative on 0 < r < k, and so dg
dr

is decreasing

on our range of interest. From dg
dr
(0) = 4k3 > 0 and dg

dr
(k) = −6k3 < 0, we

deduce that there is precisely one zero to dg
dr
(r) on 0 < r < k. That is, that g

has precisely one turning point; since d2g
dr2

(r) < 0, it is a local maximum. We

compute:

g(4) = 8k3 − 16k2 − 256k + 256 g(k − 2) = 4k3 − 28k2 + 16.

When k ≥ 7, both values are positive, so g(r) is positive over the range 4 ≤ r ≤

k − 2. Thus, because the requirements that r ≡ 0 mod 4 and r2 ≡ 4 mod k

imply that we need not consider r = 2, k − 1, this range is sufficient to obtain

our contradiction. If, on the other hand, k = 5, then Proposition 5.5.7 tells us

that r = 2, A = 0, and a = 4, violating condition 4.

E4 Rearrange the “−” equation to obtain

4k = r − 4
A−2

(r − 2a).
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We already know from condition 4 that a ≤ r− 2, whence 4k ≤ r+ 4k
A−2

< 3k if

A 6= 0, since A ≡ 0 mod 4. If A = 0, then a = k+3
2
> 0 = r−2, a contradiction.

F4 Write

fF,4(r) = (r4 + k2r2 − 2k3r)− 4kr3 − (2k + 8)r2

− (2k3 − 24k2 − 16k)r − (72k3 − 48k2 − 8k − 16).

Once k ≥ 13, all the bracketed terms are negative. For k < 13, we obtain

contradictions to conditions F and 4 by way of Proposition 5.5.7 (since k must

be prime power).

D5 Write

fD,5(r) = (r4 − 2k2r2 − 8r2)− 8k2r − (16k2 − 16),

and note that all bracketed terms are negative.

E5 Write

fE,5(r) = g(r) + (2k − 8)r2 + (8k3 − 8k2r + 16kr) + (8k3 − 16k2 − 8k + 16),

where g(r) is as in case D4, and all bracketed terms are positive if k ≥ 7. If

k = 5, we are not in this case by Proposition 5.5.7.

Now that all possible combinations have been exhausted, we have finished our proof.

The Case a Odd

We now repeat all the work of the previous section when a is an odd integer. As this

is naturally a very similar process, we omit those proofs which are virtually identical,

beginning with the proofs of the following two results.

Proposition 5.5.12 (r ≡ 2 mod 4). If r ≡ 2 mod 4 and a is odd, then we define
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Case r Conditions 16k2Z(r)
(mod 4)

A 2 J + 2B < k (4kr − 8k2)A+ (2− 3k)r2 + ((4a− 24)k + 4k2)r
+ 4k3 + (−8a+ 16)k2 + 32ak − 8

B 2 J + 2B ≥ k (4kr + 8k2)A+ (2− 3k)r2 + ((4a− 24)k − 4k2)r
+ 4k3 + (8a+ 48)k2 + 32ak − 8

C 0 J + 2B < k (4kr − 16k2)A+ (2− 3k)r2 + ((4a− 24)k + 8k2)r
+ 16k3 + (−16a− 24)k2 + 32ak − 8

D 0 J + 2B ≥ k 4Akr + (2− 3k)r2 + (4a− 24)kr + 40k2 + 32ak − 8

Table 5.6: Computation of Z(r) when a is odd.

parameters B := 1 + r
2
− a−k

2
− A

2
∈ [0, k − 1) and J := − r

2
−4 < 0, giving

φ(2sℓ− rℓ) =




−K1

B,−J−2B if J + 2B < k

−K1
B+2,−J−2B+2k−4 if J + 2B ≥ k

,

and also

φ(2sℓ) =





K1
a−r+k

2
,
r
2
−a−k

if r > 2a

K1
a−r+k

2
+2,

r
2
−a+k−4

if r ≤ 2a
.

Proposition 5.5.13 (r ≡ 0 mod 4). If, on the other hand, r ≡ 0 mod 4, then we

instead define B := r
2
− a−k

2
− A

2
∈ [0, k − 1) and J := k − r

2
− 4 > 0, giving

φ(2sℓ− rℓ) =




−K1

B,−J−2B if J + 2B < k

−K1
B+2,−J−2B+2k−4 if J + 2B ≥ k

,

and lastly

φ(2sℓ) = K1
a−r+k

2
+1,

r
2
−a−2

.

With these computed, we next construct the same tables as before. Table 5.6

shows the values of Z(r), while Table 5.7 shows the values of Z(0). We use this data

to obtain the following proposition.

Proposition 5.5.14. If a is odd, then no ℓ exists which ensures that Z(r) = Z(0) = 0.

Proof. Exactly as before, we construct functions fα,β; they are summarised in Table

5.8. The consequent case-by-case analysis is outlined below.
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Case r Conditions 16k2Z(0)
(mod 4)

1 2 r > 2a (2− 3k)r2 + (4ak − 4k2)r + 4k3 + 8ak2 − 8
2 2 r ≤ 2a (2− 3k)r2 + (4ak + 4k2)r + 4k3 − 8ak2 − 8
3 0 − (2− 3k)r2 + 4akr + 8k2 − 8

Table 5.7: Computation of Z(0) when a is odd.

α, β fα,β(r)

A, 1 r4 − (5k2 − 2k + 8)r2 + 4k4 + 16k2 − 8k + 16
B, 1 r4 + 4kr3 + (4k2 − 8)r2 + (8k2 − 16k)r + 16k3 − 16k2 + 16
A, 2 r4 − 4kr3 + (4k2 − 8)r2 + (8k2 + 16k)r − 16k3 − 16k2 + 16
B, 2 r4 − (3k2 + 2k + 8)r2 + 16k2r − 4k4 − 32k3 + 16k2 + 8k + 16

C, 3 r4 − 4kr3 − (k2 − 2k + 8)r2 + (4k3 − 8k2 + 16k)r + 8k3 − 16k2 − 8k + 16
D, 3 r4 − 8r2 + 8k2r − 16k2 + 16

Table 5.8: The functions fα,β when a is odd.

A1 Since fA,1 has the same structure as cases A2 and B1 from the previous section,

and since fA,1(k − 1) = 8k3 + 5k2 + 6k + 9 > 0, we are done.

B1 All the coefficients of r in fB,1(r) are clearly positive.

A2 The “−” equation tells us that

k = 4a−2r
A−2

+ r
2
,

and since A ≡ 0 mod 16 (c.f. case C2 in the previous section), we discover,

with the exception of the case when A = 0, that k < 1
7
(2a − r) + r

2
< 11

14
k,

a contradiction. If instead A = 0, we see k = r − 2a + r
2
, which is also a

contradiction since r ≤ 2a by condition 2.

B2 Condition B implies that J + 2B ≥ k, so r
2
− a − A − 2 ≥ 0. However, from

condition 2, we know that r ≤ 2a. Contradiction.

C3 Write

fC,3(r) = g(r) + (2k − 8)r3 + (8k3 − 8k2r + 16kr) + (8k3 − 16k2 − 8k + 16),

where g(r) is the same function as in case D4 from the previous section. It
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is then clear that all the terms are positive for k ≥ 7, and if k = 5 we use

Proposition 5.5.7 to obtain the usual contradiction (namely, that one of the

conditions is violated).

D3 Identical to cases D3 and F5 from the previous section.

With all cases resolved, the proof is complete.

The Proof of Theorem 5.4.1

For any m, it is clear that k = 1 yields the unknot. Otherwise, Lemma 5.4.2 tells

us that m = 1, and from the previous two sections we know that k ≥ 5 implies that

u(P (k,−k, 2)) 6= 1. Since u(P (3,−3, 2)) = 1, realised by changing any crossing in

the central column of twists, the theorem is proved.

5.5.5 Examples

To illustrate the above working, we focus on the case when k is prime power. Recall

from Proposition 5.5.7 that there is an essentially unique ℓ, and that a is even or odd

according to the congruence of k modulo 4 (cases A1 and A2 respectively). Explicitly,

we have:

φ(2ℓ) = K3
k−4 φ((2s− 2)ℓ) =





−K3
k k = 5

K1
1
4
(k−5),−

1
2
(k+5)

k > 5 and k ≡ 1 mod 4

−K1
1
4
(k+5),−

1
2
(k−5)

k ≡ 3 mod 4

,

which implies that

d(Σ, φ(2ℓ)) = − 1
k2
(−2k2 + 8) d(Σ, φ((2s− 2)ℓ)) = − 1

2k2
(−k2 + 25).

Grinding all this into (5.5), we should find Z(2) = 0, but instead obtain

Z(2) = 1
2k2

(3k2 + 9) + 1
2k2

(k2 − 9) = 2.
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This tells us that P (k,−k, 2) does not have unknotting number one when k ≥ 5.

We can see this even more concretely if we set k = 5. The correction terms for L

in this case are:

d(L, ψ(i)) = (0,− 2
25
,− 8

25
,−18

25
,−32

25
,−2,−72

25
,−48

25
,−28

25
,−12

25
, 0, 8

25
, 12
25
, . . . ).

We have only presented the first half since d(·, ψ(i)) = d(·, ψ(−i)). On the other hand,

labelling Spinc-structures according to our isomorphism φ, the correction terms of Σ

are:

d(Σ, φ(i′)) = (0, 22
25
,−12

25
,− 2

25
, 2
25
, 0, 42

25
, 28
25
, 8
25
,−18

25
, 0, 12

25
, 18
25
, . . . ).

On solving (5.7), we find that ℓ = ±3. As per the approach above, we let ℓ = 22, and

check that we indeed have r = 2, A = 0, and a = k+3
2

= 4.

d(Σ, φ(22i′)) = (0,− 2
25
, 42
25
,−18

25
, 18
25
, 0, 28

25
, 2
25
, 22
25
,−12

25
, 0, 8

25
, 12
25
, . . . ).

Multiplying these numbers by 25, we can tabulate the corresponding sides of (5.5):

i Σ(k,−k, 2) −L(k2, 2)

0 −12 −12

1 −10 −10

2 42 −8

3 −6 −6

4 −4 −4

5 −2 −2

6 0 0

Notice that the two columns are congruent modulo 25, but not equal, implying that

u(P (5,−5, 2)) 6= 1. Notice also the explicit failure of Z(2) = 0, and that the correct

value is indeed Z(2) = 2.

For those who wish to compare this with Theorem 1.1 of [51], our choice of ℓ

produces a positive, even matching. This matching, however, fails to be symmetric.

162



Pretzel Knots with Unknotting Number One

5.6 Concluding Remarks

Over the course of this lengthy chapter, we should hopefully have illustrated the point

that Theorem 4.1.3 provides a clean and efficient obstruction to rational surgeries in

S3. Even a superficial comparison based on page numbers should show that it is

faster than its competitors, the Alexander module and Theorem 4.1.1. However,

given the fact that it involves gluing two 4-manifolds together, we have also seen that

incompatibilities on their boundaries may render it inapplicable. In these instances,

we have seen that the natural fallback, Theorem 4.1.1, though at times difficult to

apply, may yield additional results, especially when dealing with L-spaces.

In addition to these points, we have also seen that the classification of pretzel

knots with unknotting number one remains incomplete. Specifically, some entirely

new method will be required to make any further progress on the cases when p+q = 4

and detK = 3, and p+q = 2 and detK = 1; in these circumstances, neither Theorem

4.1.3 nor Theorem 4.1.1 provide us with any useful information. Other tools, including

the classical invariants (such as Lickorish’s linking form and the Alexander module),

bounds on the 4-ball genus (such as the Rasmussen s- and Ozsváth and Szabó τ -

invariants), and mutation (which leaves the property u(K) = 1 invariant, see [23])

have proved equally unhelpful in the author’s personal investigations. It remains yet

to be seen if the ideas outlined in the next chapter, specifically Section 6.3, will prove

fruitful.
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CHAPTER 6: FURTHER

APPLICATIONS

In this final chapter, we present a summary of some future applications for Theorem

4.1.3. Since this is largely speculative, we will omit most of the proofs in favour of

describing the general ideas.

6.1 The Seifert Fibred Space Realisation Problem

As mentioned in the Introduction, Theorem 4.1.3 is a generalisation of Theorem

1.6 from [26], used by Greene in the same paper to solve the lens space realisation

problem. That is, the problem of determining which lens spaces can be obtained by

p/q-Dehn surgery on non-trivial knots C ⊂ S3. In his approach, he benefited from

the cyclic surgery theorem, which allowed him to assume that q = 1.

Now that we have generalised this technology away from the assumption q = 1,

and to spaces much more general than lens spaces or even L-spaces, we are well poised

to take on a similar problem concerning small Seifert fibred spaces. The following are

reasons for encouragement:

1. We no longer have to worry about whether or not our small Seifert fibred space

is an L-space. Indeed, the vast majority are not;

2. A large number of small Seifert fibred spaces are negative-definite. Of these,

most have associated plumbing diagrams with at most one overweight vertex

(the central node). This gives us not only an appropriate 4-manifold X with our

small Seifert fibred space as boundary, but also a good algorithm for determining

if any Spin-deficiencies vanish; and
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3. We have already investigated a class (albeit a small class) of small Seifert fibred

spaces arising as the double covers of 3-strand pretzel knots and found Theorem

4.1.3 quite successful at proving that they cannot be obtained by half-integral

surgeries.

In light of the above, we propose Theorem 4.1.3 (and Theorem 4.1.1 if absolutely

necessary) as a tool for tackling the following problem.

Question 2. Which of the small Seifert fibred spaces that bound negative-definite

smooth 4-manifolds can be obtained by p/q-surgery on a knot C ⊂ S3, where p/q > 0?

Is it necessarily true that if C is a hyperbolic knot, then q = 1?

The latter question here is a special case of a general conjecture (see Conjecture

4.8 in [21]) that any non-integral surgery that yields a small Seifert fibred space must

be performed on a non-hyperbolic knot.

It is also possible that Theorem 4.1.3 could be modified to provide information on

HFK(S3, C), where C is a knot with small Seifert fibred surgeries. This is another

of the remarkable achievements in Greene’s paper [26]: he was able to prove that

the knot Floer homologies of lens space knots match precisely with the knot Floer

homologies of the Berge knots. However, as we have not yet generalised the theorems

underlying this part of his paper, any analogous undertaking in the small Seifert fibred

case would likely prove considerably more difficult than a straightforward resolution

to Question 2.

6.2 Generalised Unknotting Operations

The notion of an unknotting operation is somewhat arbitrary. Why, for instance, are

we only allowed to change crossings? Why can we not perform more complicated

manoeuvres? One answer, which until recently has been amply borne out in a lot

of examples, is that the standard unknotting operation is difficult enough. However,

now that we have a computable obstruction to more general rational surgeries, there

is no reason not to consider applying it to more general operations.
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Definition 6.2.1 (Rational tangle replacement). Let T1 and T2 be rational tangles

with associated extended rational numbers r1 and r2, and let K be a knot. Then we

define a (r1, r2)-(rational tangle) replacement on K as the operation which locates a

copy of T1 in K and replaces it with T2.

Comparing this with the standard unknotting operations, it is not too hard to

convince oneself that the standard unknotting operations are not only (+1,−1)-

and (−1,+1)-replacements, but also (0,±2)- and (±2, 0)-replacements. Indeed, it

has been proved in [13] that any (r1, r2)-replacement is equivalent to some (0, r)-

replacement, which we shall from now on refer to as an r-replacement. We define

ur(K) to be the minimal number of r-replacements required to turn K into the un-

knot.

Now, suppose that we define the distance ∆(·, ·) between elements of Q∗ by

∆
(

p1
q1
, p2
q2

)
:= |p1q2 − p2q1| .

By analogy with the Montesinos theorem, it can be shown that if K ′ is obtained from

K by an (r1, r2)-replacement, then Σ(K) = Σ(K ′)±D/∆(r1,r2)(C) for some knot C ⊂

Σ(K) and some D ∈ Z coprime to ∆(r1, r2). Applying this in the case when K can

be unknotted by a p′/q′-replacement, we find Σ(K) = S3
±D/p′(C), where D = detK.

The significance of this is the following. When K is alternating, there is a

well-established method for constructing a sharp, simply connected, negative-definite

smooth 4-manifold X with Σ(K) as boundary (see Section 3 of [51], which references

proofs in [52], as well as the latter half of Section 2 in [24]); moreover, the mirror

image K is also alternating, and thus shares the same property. It is shown in Section

4.2 of [24] (via Theorem 1.2 of [38]) that Proposition 4.5.4 is always satisfied. Hence,

if we wish to prove that ur(K) > 1, where r = p′/q′, then we can apply Theorem 4.1.3

twice, the first time to Y = Σ(K) and the second time to Y = Σ(K); if the matrix

A fails to exist in either situation, then we will have obstructed Σ(K) = S3
±D/p′(C),

and thus ur(K) = 1.

This obstruction, while certainly interesting and useful mathematically, is of par-

ticular interest in biology. We refer the interested reader to the Appendix.
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6.3 A New Obstruction to Unknotting Number One

As has already been remarked, the Montesinos theorem underlies a huge number of

the existing obstructions to unknotting number one, so it is worth considering whether

it has any generalisations to higher unknotting numbers. Indeed, applying Theorem

1.5.5 multiple times, it seems credible that if u(K) = r, then Σ(K) can be obtained

by half-integral surgeries on an r-component link L ⊂ S3. The subtlety and difficulty

in this argument arises in determining the linking numbers of L’s components.

As it turns out, this idea has already been pursued quite extensively by Owens in

[45]. In that paper, he manages to compute the unknotting numbers of a large number

of nine and ten-crossing knots. His theorem, however, comes with the requirement

that if K is undone by changing p positive and n negative crossings, where p+n = 2,

then n = 1
2
σ(K). That is, he requires that sufficiently many negative crossings be

changed in order to unknot K.

A general scan of the literature shows that this sort of requirement is not uncom-

mon, and the main result of this section is no different. We provide an obstruction to

u(K) = p; that is, an obstruction to the property that K can be undone by changing

positive crossings only. It is based on the following theorem of Bao [1], who defines

the set Ω ⊂ Q as being the set of rational numbers p/q possessing a Hirzebruch-Jung

continued fraction expansion p/q = [a1, . . . , aℓ]
− in which ai ≥ 2 for all 1 ≤ i ≤ ℓ and

equality occurs at most twice.

Theorem 6.3.1. Suppose that the unknotting number u(K) of K ⊂ S3 can be realised

by changing only positive crossings. Then D
p/q
K (t) = 0 for all t ∈ Spinc(S3

−p/q(K))

and all p/q ∈ Ω.

In view of this result, we let W be the 4-manifold described in Proposition 2.2.3

when applied to −p/q-surgery on K for p/q ∈ Ω (choosing the ai so that satisfy the

conditions described above), and recast Theorem 4.1.3 as follows.

Theorem 6.3.2. Suppose that K is a knot which can be undone by changing only

positive crossings, that W is the 4-manifold above (so that p/q ∈ Ω), and that S3
p/q(K)
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bounds a sharp, simply connected, negative-definite smooth 4-manifold X with inter-

section form QX . Then there exists a matrix A satisfying

−AAt = QX ⊕QW ,

whose last ℓ rows have the form




1 . . . 1 1 0

−1 1 . . . 1
. . .

−1 1 . . . 1 0

−1 1 . . . 1




,

where there are exactly ai non-zero entries in each row, all ±1 as above.

Proof. This is a straightforward application of Theorem 4.1.3, on noting that p/q ∈ Ω

implies n ≥ 2. The changemaker condition has vanished because Theorem 6.3.1

guarantees that all the deficiencies vanish; hence jmax = n, and

1 +
∑

i

σi = n = 1 +
∑

i

σ2
i .

This in turn, by comparison with similar statements about yi, means that σi = 1.

Despite the apparent similarities with the approach used in Chapter 5, this the-

orem is fundamentally different: it has nothing to do with the Montesinos theorem,

nothing to do with half-integral surgeries (indeed, our choice of p/q is not even pre-

scribed), and at no point requires us to compute any deficiencies. Instead, its main

requirement is a decent understanding of the surgeries on the knot K whose unknot-

ting number we wish to test.

Given the difficulties encountered in the various “loose end” cases of Chapter 5

(in particular when p+ q = 4 and detK = 3 or p+ q = 2 and detK = 1), we believe

that Theorem 6.3.2 will allow us to finish off the pretzel question once and for all. At

the time of this writing, we are still investigating its potential, but have as yet not
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been able to make much progress in isolating the correct choices of p/q.
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[49] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and three-manifold invari-

ants: Properties and applications. Annals of Mathematics, 159(3):1159 – 1245,

2004.

[50] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and topological invariants

for closed three-manifolds. Annals of Mathematics, 159(3):1027 – 1158, 2004.
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ica, 60:147 – 238, 1933.

[65] Michael D. Stone, Zev Bryant, Nancy J. Crisona, Steven B. Smith, Alexander V.

Vologodskii, Carlos Bustamante, and Nicholas R. Cozzarelli. Chirality sensing by

Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases.

Proceedings of the National Academy of Sciences, 100(15):8654 – 8659, 2003.

[66] Ryohei Suzuki. Khovanov homology and Rasmussen’s s-invariants for pretzel

knots. Journal of Knot Theory and its Ramifications, 19(9):1183 – 1204, 2010.



176

[67] Ichiro Torisu. The determination of the pairs of two-bridge knots or links

with Gordian distance one. Proceedings of the American Mathematical Society,

126:1565 – 1571, 1998.

[68] Vladimir Turaev. Torsion invariants of Spinc-structures on 3-manifolds. Mathe-

matical Research Letters, 4:679 – 695, 1997.

[69] Alexander V. Vologodskii. Theoretical models of DNA topology simplification

by type IIa DNA topoisomerases. Nucleic Acids Research, 37(10):3125 – 3133,

2009.

[70] Alexander V. Vologodskii, Wentao Zhang, Valentin V. Rybenkov, Alexei A.

Podtelezhnikov, Deepa Subramanian, Jack D. Griffith, and Nicholas R. Coz-

zarelli. Mechanism of topology simplification by type II DNA topoisomerases.

Proceedings of the National Academy of Sciences of the United States of America,

98(6):3045 – 3049, 2001.

[71] Andrew H. Wallace. Modifications and cobounding manifolds. Canadian Journal

of Mathematics, 12:503 – 528, 1960.

[72] Xingru Zhang. Unknotting number one knots are prime: A new proof. Proceed-

ings of the American Mathematical Society, 113(2):611 – 612, 1991.



177

APPENDIX: BIOLOGICAL IMPLICATIONS

In this appendix, we provide a very brief introduction to the sort of biological ques-

tions for which Theorem 4.1.3 is likely to be helpful. We stress that this introduction

is biased heavily towards mathematical terminology, and is not intended to be a

survey of DNA topology. The reader interested in a more comprehensive survey is

advised to consult [2] or [4].

It is now well known that DNA possesses a beautiful double-helical structure first

discovered by Crick, Watson, and Franklin [11]. As illustrated diagrammatically in

Figure 1, the double-helix has a ladder-like structure, each rung of which consists

of a pair of nucleobases together referred to as basepairs. These nucleobases, known

individually as adenine A, cytosine C, guanine G, and thymine T , are paired canon-

ically so that an A on one backbone corresponds with a T on the other, and similarly

with C and G. Replication of this code is usually achieved by unzipping the DNA

down the central axis; the canonical correspondence allows the cell to construct two

identical copies of the original DNA.

While the central axis of the DNA is often linear, in certain cells, such as bacterial

cells, the central axis forms a closed loop, thus allowing for the possibility of knots in

the central axis. If these knots are non-trivial, they can cause considerable problems

for a variety of cellular processes. One such example is replication. Phrased mathe-

matically, if K represents the DNA axis, then after replication, the copied DNA will

Figure 1: The double-helical structure of DNA. The basepairs, shown in blue, consist
of canonically paired nucleobases, one on each of the thick, black backbones. The
central axis, shown in red, may be open-ended and linear, or closed and knotted.
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have an axis represented by a longitude Kn of K which satisfies lk(K,Kn) = n for

some n ∈ Z (i.e. the integer n is determined by the number of twists involved in the

double helix). While it is certainly conceivable that certain enzymes exist (indeed,

they are called Type I topoisomerases) to adjust the linking number of the DNA

molecules, the fundamental problem still remains that even K and K0 are linked

unless K is the unknot. This physical constraint prevents the replicated DNA from

being passed on to daughter cells, and eventually kills the cell [14].

Given this information, it is natural to ask how DNA knots form in the first place:

presumably, if DNA is successfully passed on from a parent cell to its daughter cells,

this new DNA is untangled. However, it is now well understood that a lot of the

observed DNA knotting occurs as an unwanted by-product of enzymatic action. In

fact, many enzymes, whose primary purpose is to rearrange the A − C − G − T

sequence, either by reordering the basepairs, splicing in new sections, or excising

unwanted ones, have been found to alter the topology of the DNA.

Type IIα Topoisomerase

As opposed to the infinitely stretchable, infinitely flexible knots K we have been

considering until now, DNA is more rigid: it comes with limits on its flexibility, and

has a prescribed length in basepairs. These geometric constraints therefore impose

certain limitations on the complexity of the knots one finds. As a rough guide, Table

1 provides a decent sized sample of the knots that have been observed (see [4]).

In particular, we draw attention to the pretzel family, which occurs with unusual

frequency.

Because of the potentially lethal impact these knots might have on the cell con-

taining them, it should come as no surprise that nature has evolved a specific type of

enzyme, known as Type IIα topoisomerase (TopoIIα), whose purpose is to perform

crossing changes on the DNA before it is replicated (or various other cellular pro-

cesses take place) [60]. On the mathematical side, this means that the most relevant

invariant from the point of view of TopoIIα is the unknotting number, and when

viewed in this way, Chapter 5 can be seen as the first part of a bigger biological
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Family Notation Specialisation
Torus knots T (p+ q, 2) s = 0
Clasp knots C(r, s) p = 0, q = ±1
Pretzel knots P (p, q, r ± 1) s = ±1

Connected sum 1 T (p, 2)#T (r ± 1, 2) q = 0, s = ±1
Connected sum 2 T (p, 2)#C(r, s) q = 0

Table 1: Common DNA knots. All these knots are special cases of the Montesinos

knot M
(

1
p
, 1
q
, s
rs+1

)
, once the choices listed in the column headed “specialisation”

have been made.

project which asks for a classification of those pretzels which are adjacent under the

action of TopoIIα. What is more, since all the knots in Table 1 can be written as

Montesinos knots of the form M
(

1
p
, 1
q
, s
rs+1

)
, the project described in Section 6.1,

were it to succeed, would mean that Theorem 4.1.3 would have genuinely enhanced

our understanding of the unknotting numbers of all the knots in Table 1 (indeed, of

even more knots than are presented in the table).

To delve a little deeper into the biology behind all this, the following question

is perhaps the greatest unsolved mystery about TopoIIα: How, given that TopoIIα

must latch on to the DNA in order to perform a local crossing change, does the

enzyme know which crossing to change? Although experiments have shown that

TopoIIα almost invariably favours crossing changes which simplify the DNA in the

most efficient way possible [60] (we are able to confirm that they are the most efficient

thanks to results such as those in Chapter 5), the details of how TopoIIα identifies

these crossings remain hotly debated (see [6], [70], and [65] for different theories, and

[69] for a review). It is ultimately hoped that a better understanding of the effects

of TopoIIα, on both a biological and a mathematical level, will lead us to greater

insight as to how TopoIIα solves this problem. Indeed, should we finally manage to

understand the mechanism properly, then the current set of antibiotic, anti-tumor,

and anti-cancer drugs which inhibit the action of TopoIIα in harmful cells to prevent

them from replicating may just be improved another step further [8, 37, 15].
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Site-Specific Recombination

One of the commonly accepted models for the type of enzyme activity known as site-

specific recombination is the tangle model given by Ernst and Sumners [17]. In this

model, the original DNA sample K, called the substrate, is transformed into a product

sample K ′ via rational tangle replacement (the term “recombination” is used because

the DNA is cleaved at the endpoints of T , rearranged, and then reglued). That is, if

we write

K = N(O + T ),

where T is a rational tangle and O is some general tangle, then

K ′ = N(O +R),

for some other rational tangle R. The enzymes responsible for this replacement are

usually classified by two properties:

1. They require a certain “constrained” structure in the unchanged outer tangle

O, typically by specifying that O = Of + Oc for some prerequisite tangle Oc

and some other “free” tangle Of ; and

2. They latch onto a particular tangle T and replace it with another tangle R.

Thus, for example, the enzyme Tn3 resolvase (see [17]) requires that Oc be the −1
3
-

tangle. In fact, the requirement that Oc be a −
1
k
-tangle for k ∈ N+ is not uncommon.

Putting this first requirement to the side, Theorem 4.1.3 is particularly relevant to

these systems. Given any biological enzyme E, and ignoring any prerequisite struc-

ture in O, we can associate with E an abstract (t, r)-“enzyme” which performs a

(t, r)-tangle replacement (where t, r ∈ Q∗ correspond with T and R). At least math-

ematically, then, E is equivalent to a p/q-“enzyme” which performs the equivalent

p/q-tangle replacement. If we wish to know, conversely to our desires with TopoIIα,

whether or not an unknotted substrate can be converted into a non-trivial knot K

by our p/q-enzyme (and which knots may result), this statement then translates into
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the equation

Σ(K) = S3
± detK/p(C),

where C ⊂ S3. Thus, if K is alternating (as are many low-crossing knots, and

therefore many biologically observed knots), we can use Theorem 4.1.3 in the manner

discussed in Section 6.2 to obstruct the above equation and hence answer questions

about site-specific recombination. Indeed, the theorem is even more powerful than

this specific example might suggest: by letting p vary, we could even prove that

certain products can never be obtained in one go by the action of any enzyme on

an unknotted substrate (or, conversely, that certain knotted substrates can never be

unknotted in one go).

In the case that E acts more than once, there are two alternative models. The

first, called distributive recombination, asserts that E, having identified its prerequisite

structure in O, then latches onto the substrate K, recombines it, and releases it. In

order to act a second time, E must then isolate a second copy of T inside the product.

Mathematically stated, if our enzyme converts K := K0 into K1, and thereafter

converts Ki into Ki+1, then we must satisfy the following equations for tangles Oi:

Ki = N(Oi + T )

Ki+1 = N(Oi +R) = N(Oi+1 + T )

Ki+2 = N(Oi+1 +R).

In the second model, called processive recombination, E instead latches on to T once,

and adds an extra copy of R each time it acts. Thus, mathematically,

K0 = N(O + T )

Ki = N(O +R + · · ·+R︸ ︷︷ ︸
i times

).

This latter model, as noted in [17], is easier to analyse mathematically.

We believe that either of these models, as per the instructions outlined in Section

6.2, is amenable to analysis with Theorem 4.1.3, provided that the sequence (Ki)i≥0
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features unknots along the way. We are hopeful that such analysis, when applied to

real biological systems, will provide us with valuable new insights into what is and is

not possible in the enzymatic world.


