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Abst ract 

Electrowetting, the manipulation of surface wettability with an electric field, is an emerging 

technology used in next generation displays and cameras. This has been made possible by the 

development of ‘electrowetting-on-dielectric’ by Berge in 1993. However, such a system 

operates on large voltages poorly suited to portable devices.  

In recent years, theoretical and experimental results have suggested that electrowetting using 

the interface between two immiscible electrolyte solutions (ITIES) may provide a solution to 

this problem. By applying less than 1 V to such a system, it is possible to induce substantial 

changes in the wettability—and hence the shape—of liquid droplets. However, there is a large 

degree of hysteresis in such a system meaning that there is a poor correlation between droplet 

shape and applied potential. Furthermore, the stability of the ITIES over long periods is of 

concern. 

This thesis attempts to address the current problems with ITIES electrowetting highlighted 

above. By moving to smoother and more lubricated surfaces, a substantial reduction in 

hysteresis was seen. These surfaces were produced by template stripping. In addition, several 

other surfaces were prepared as potential electrowetting substrates. These involved surface 

functionalisation by plasma treatment or the reduction of diazonium compounds; preparation 

of ultra smooth glassy carbon and preparation of a hydrophobic conducting polymer. The 

potential range over which an ITIES is stable was also improved with the use of a novel 

mixed organic solvent phase. 

By optimising the electrode and electrolyte compositions, an electrowetting system operating 

on less than 1 V with a contact angle range of 53o and a gap of only 100 mV between forward 

and reverse scans was possible. Other electrowetting systems with no hysteresis were also 

developed, although these did not operate within the potential limits defined by the onset of 

Faradaic processes. 
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Chapter 1: Introduction 

 

 

The structure of this thesis is such that Chapter 1 will introduce electrowetting. It begins with 

a description of simple wetting phenomena before moving on to how electric charge can 

affect the wetting of a surface. The rest of the chapter will cover the history of electrowetting 

from its inception in 1875 by Gabriel Lippmann right through to cutting edge applications in 

microfluidics and display technologies. It will also look at the theory and first experimental 

demonstrations of electrowetting with two electrolytes which were the direct inspiration for 

this thesis. Chapters 2, 3 and 4 will then describe efforts directed at solving many of the issues 

associated with electrowetting at low voltages. These issues include stabilisation of the 

liquid|liquid interface and the preparation of very smooth, fluorinated surfaces to create a 

‘lubricated’ electrode. Finally, Chapter 5 will bring all of these foundations together to provide 

a systematic study of electrowetting at exceptionally low voltages. 

 

1.1 Wetting 

Wetting is the phenomenon by which a liquid spreads across a surface. While some liquids 

may completely wet a solid, others repel the surface and form droplets. The extent of wetting 

or surface coverage is characterised by the contact angle a droplet makes at the three-phase 

line (designated by alpha in Figure 1). This line is the point at which the solid surface, liquid 

droplet and surrounding medium meet.  

 

1.1.1 The Young equation 

The contact angle of a liquid droplet on a solid surface surrounded by air is related to the 

surface energies of its three interfaces by the Young equation:1 

 

 
      

       

   

 (Equation 1) 
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where Y is the Young contact angle as shown in Figure 1. These interfaces, measured in units 

of energy per unit areai, are ds the droplet|solid surface energy, da the droplet|air surface 

energy and sa the solid|air surface energy. The vertical bar symbol is used throughout this 

thesis to designate an interface between two phases. If the droplet|solid surface energy is 

smaller than the solid|air surface energy the contact angle will be less than 90o, as is the case 

for metals, such as gold. For water droplets such materials are termed hydrophilic. If, on the 

other hand, the situation is reversed and the droplet|solid surface energy is larger than the 

solid|air surface energy, the contact angle will be greater than 90o. Such materials are termed 

hydrophobic and are often made from organic polymers with fluorinated chains, such as the 

polymer polytetrafluoroethylene (PTFE) which is the most hydrophobic. This phenomenon is 

illustrated in Figure 1. The Young equation is of course applicable to any three phase system 

and the following chapters will be predominantly concerned with aqueous droplets 

surrounded by an immiscible organic liquid phase.  

 

 

Figure 1|The Young equation relates the contact angle, α, to the surface energies of the 
droplet|solid (γds), droplet|air (γda) and solid|air (γsa) interfaces. Pictured are a water droplet on 
a very hydrophobic PTFE surface and on a hydrophilic gold surface. The three-phase line, in 
this case, is the point at which solid, droplet and air all meet. 

 

                                                 
i Units of force per unit length are equivalent and are commonly used for surface tension, which refers 
exclusively to the liquid|air surface energy. Surface energy is a generic term covering all interfaces such as 
solid|liquid or liquid|liquid interfaces as well as liquid|air. 
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1.1.2 Heterogeneous surfaces 

Beyond simple homogeneous surfaces, the patterning or nano-structure of a surface will also 

affect its wettability. 

Wetting on surfaces composed of two different materials is described by the Cassie equation:1 

 

                      (Equation 2) 

 

where f1 and f2 are the fractions of surfaces with contact angles α1 and α2 respectively.  

A special application of the Cassie equation occurs for nano-structured surfaces with a very 

large roughness or real surface area.2 In such a situation, rather than wet the entire surface it 

becomes favourable to trap air pockets under the droplet as illustrated in Figure 2. This 

trapping of air results is an unusual application of (Equation 2, where 1 is the droplet|solid 

contact angle and 2 the droplet|air contact angle. 

 

1.1.3 Surface roughness 

As mentioned above, surface roughness also has an effect on the macroscopic contact angle. 

Surface roughness exaggerates the contact angle of the perfectly flat surface according to the 

following relation:1 

                     (Equation 3) 

 

where rough is the contact angle of the rough surface, flat is the contact angle of the perfectly 

flat surface and r is the roughness factor which is the ratio of the real surface area to the 

projected surface area. Hence hydrophobic surfaces appear more hydrophobic and 

hydrophilic surfaces appear more hydrophilic as they get rougher. 
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Figure 2|(Left) A water droplet on a flat hydrophobic polymer surface exhibits the natural 
equilibrium contact angle. (Middle) A rougher surface exaggerates the macroscopic contact 
angle. (Right) When the surface is very rough air pockets are trapped under the droplet, as this 
is a lower energy configuration. This is known as the Cassie-Baxter state. 

 

1.2 Contact angle hysteresis 

A concept essential to this thesis is that of contact angle hysteresis, which is also closely 

related to pinning of the three-phase line. 

Contact angle hysteresis is generally considered to result from a combination of surface 

roughness; surface heterogeneity; rearrangement of the surface under the droplet; or surface 

adsorption of solutes or impurities in the droplet.1 Surface roughness or heterogeneity results 

in pinning when the droplet becomes trapped in a local energy minimum, from which it 

cannot easily escape. This trapping of the droplet means that as it spreads or contracts across a 

surface it will not reach the contact angle predicted by the Cassie or Young equations, which 

corresponds to its true minimum energy state (Figure 3). It has been shown that this type of 

pinning can be overcome  by agitating the droplet with an external force such as a lateral 

vibration.3 The agitation gives the droplet an energy ‘kick’, helping it break free of its trapped 

state. 
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Figure 3|This droplet is pinned on a rough surface. It exhibits a larger contact angle than the 
predicted Young contact angle (black outline) because the intermediate contact angle (red 
outline) through which the droplet must pass is higher in energy. 

 

If the surface is able to reorganise itself, perhaps due to the presence of mobile adsorbates, a 

much more complicated situation arises. If a reproducible contact angle is desired this scenario 

must be avoided. In essence, the pinning in this situation is due to the spontaneous formation 

of an inhomogeneous surface. An extreme example of this is known as ‘autophobicity’. When 

a surfactant containing water droplet spreads across a clean hydrophilic surface, the 

surfactants adsorb onto the surface with the hydrophobic half of the molecule left pointing 

into the droplet. The surfactants then turn the surface into a hydrophobic one and the water 

droplet subsequently contracts irreversibly.4,5 

Similarly, if the droplet contains a high salt concentration, the salt may be deposited onto the 

underlying surface, particularly at the three-phase line if the droplet slowly evaporates. This 

process will pin the droplet. 

Therefore, because the aim is to reduce hysteresis in an electrowetting system, these sources of 

pinning should be removed as far as is possible. 

 

1.3 Electrowetting 

When an electrolyte solution comes into contact with a charged surface, ions in the solution 

migrate to the interface, screening the charge. These interfacial charges, separated by a small 
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distance, behave as a capacitor and store electrostatic potential energy. The separated charges 

are known as an electrochemical double layer capacitor. It is localised at the interface and 

therefore contributes to the total surface energy, still measured in energy per unit area. If the 

surface charge can be varied, it becomes possible to vary the total surface energy. This process 

can result in a change in the shape of a droplet, as dictated by the Young equation. It is this 

change in shape, resulting from an electrically induced change in surface wettability, which is 

known as electrowetting. 

 

1.3.1 Early electrowetting studies 

Electrowetting was first described by Gabriel Lippmann in 1875 when he noticed that the 

addition of electrostatic charge could modify capillary forces at an interface.6 Then in the 

1930s Frumkin et al. used the same principle to study oil droplets on mercury surrounded by 

an aqueous electrolyte.7 The experimental geometry used by Frumkin is described in Figure 4. 

As a potential is applied to the mercury electrode, an electrochemical double layer forms at the 

interface between the electrode and the aqueous phase. The migration of charge to the 

interface is spontaneous and therefore must lead to a reduction in the surface energy. 

Consequently, the electrode|aqueous phase interface grows at the expense of the 

electrode|droplet interface. 
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Figure 4|Geometry of the early electrowetting experiments performed by Frumkin. A toluene 
droplet sits on a mercury electrode surrounded by an ionic solution. When a potential is 
applied an electrochemical double layer forms at the electrode|aqueous phase interface. This 
lowers the surface energy and the contact angle changes in accordance with the Young 
equation.  

 

The contact angle shows a parabolic dependence on the applied potential with a minimum at 

the point of zero charge (PZC), where the PZC is the potential at which the electrical surface 

charge density is zero and therefore the point at which there is no electrostatic contribution to 

surface energy. The parabolic dependence stems from the relationship between the applied 

potential and the energy stored in the double layer capacitor: 

   
 

 
         

  (Equation 4) 

 

where E is the energy stored in the capacitor, C is the double layer capacitance, U is the 

applied potential and UPZC is the potential at the point of zero charge.  

Thus, the electrode|aqueous phase surface energy in the presence of an external potential can 

be divided into two separate components: 

        
    

 

 
         

  (Equation 5) 
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where     is the total aqueous phase|electrode surface energy and    
    is the aqueous 

phase|electrode surface energy at the PZC.    
   can be thought of as the surface energy 

arising from potential independent intermolecular interactions such as Van der Waals forces 

and dipole interactions. This simple model assumes that the double layer capacitance is 

independent of potential. While this is not the case, this added complication does not alter the 

outcome of this line of argument. 

If we insert this new term for the aqueous phase|electrode surface energy into the Young 

equation, the dependence of the contact angle on potential is revealed:8 

 
             

         
 

    

 (Equation 6) 

 

where      is the contact angle at the PZC and     is the droplet|aqueous phase surface 

energy. If physically reasonable values for these parameters are used (let     =30o, 

C=20 μF cm–2,    =10 mJ m–2), the decrease in cos α is five times the square of the applied 

potential (measured in Volts). These values would mean the contact angle would have 

increased to 56o at 0.25 V versus PZC and would have attained a maximum 180o at 0.93 V. 

Therefore, as Frumkin found experimentally, small potentials induce substantial changes in the 

contact angle. 

There are two main limitations to this approach to electrowetting. Firstly, the range of 

accessible contact angles is largely determined by the range of accessible potentials. In turn, 

this is limited by the onset of Faradaic processes which are irreversible electrochemical 

reactions at the electrode. Secondly, a reproducible variation in contact angle has only been 

seen on mercury. Mercury is unique in that it is atomically smooth and homogeneous and 

thereby unsusceptible to pinning. However, as mercury is a liquid, there is little possibility to 

use this method for the portable applications of electrowetting discussed later. 
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Figure 5|[Taken from Cousens9] A recreation of Frumkin’s experiment from 1932. A 
1,2-dichloroethane droplet sits on a mercury electrode surround by 0.1 mol dm–3 LiCl solution. 
Potentials are versus an Ag/AgCl reference electrode. 

 

1.3.2 Further developments in electrowetting 

After Frumkin, it appears that very little work was done on electrowetting for the next four 

decades. Eventually, however, interest slowly began to return. In 1981, Beni and Hackwood 

devised an electrowetting display and optical switch based on the flow of liquids driven by 

changes in surface wettability.10-12 Their first device designs used gold or indium tin oxide 

electrodes although later devices used mercury. Not very much is known about the limitations 

or successes of this system and there is no analysis of the electrowetting response. In 1992, 

Sondag-Huethorst and Fokkink demonstrated electrowetting on gold coated with an 

insulating alkane-thiol layer.13,14 The thiols were terminated with a ferrocene group which 

could be reversibly oxidised. On doing so, there was a change in the wettability of the surface 

with a maximum contact angle variation of about 25o. However, this showed a very large 

hysteresis owing to reorganisation of the thiol layer as discussed in Section 1.2. The largest 

reproducible change in contact angle was only 10o. Whitesides et al. also used a thiol modified 

gold surface to design an electrowetting system.15 By electrochemically adsorbing/desorbing 

an alkane terminated thiol, the contact angle of an oil droplet on the electrode was varied.  

These methods of electrowetting are fundamentally different to those presented thus far 

because the surface energy is changed by altering the chemical nature of the surface rather 

than an increase in electrostatic potential energy. Nonetheless, the Whitesides method enables 

a change in contact angle of 91o at a rate of approximately 2 Hz, the disadvantage being that 

only two different contact angles are accessible while conventional electrowetting can access 

any contact angle (in principle). 
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1.3.3 Electrowetting on dielectric 

The biggest leap forward for electrowetting came with the development of electrowetting on 

dielectric, commonly known as EWOD. This technology, pioneered by Berge in the 1990s, is 

currently used in many electrowetting devices.16,17 However, despite its maturity and wide 

application, EWOD has several limitations, opening the door for new types of electrowetting.  

The basic geometry for EWOD is shown in Figure 6. It shows an immiscible oil droplet 

surrounded by water containing a simple salt, much as before. Crucially however, the oil and 

water are separated from the electrode by a thin layer of dielectric material which prevents 

Faradaic processes occurring. When a potential is applied, ions migrate to the 

dielectric|aqueous phase interface storing energy in a capacitor. This process lowers the 

surface energy resulting in electrowetting. Again the energy stored in the capacitor is described 

by (Equation 4) shown earlier. When (Equation 4) is combined with the Young equation, the 

result is the Lippmann-Young equation relating applied potential to contact angle for EWOD 

systems:17 

 
           

   

    

 (Equation 7) 

 

where Y is the Young contact angle and dw is the surface energy of the droplet|aqueous 

phase. This is very similar to (Equation 6 except that the PZC is usually neglected in this 

instance as the required voltages are much larger than the PZC. 

The capacitance of the interface is now much smaller because of the larger separation of the 

charges either side of the dielectric layer. While the Lippmann-Young equation states that this 

reduces the magnitude of the electrowetting response, this is compensated for by the large 

potentials which can be applied. Furthermore, because the energy stored increases with the 

square of the potential, a large change in contact angle can still be achieved. 
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Figure 6|EWOD is similar to conventional electrowetting with the addition of a dielectric 
layer on top of the electrode, where the electrode is now solid rather than liquid mercury. The 
dielectric layer prevents Faradaic processes at the electrode, allowing large potentials to be 
applied.  

 

The nature and thickness of the dielectric layer are very important. At very large potential 

gradients the dielectric material will breakdown. This problem means that while thin layers 

increase the capacitance of the interface they are also less robust. Usually, the dielectric layer is 

a combination of an oxide coated with a hydrophobic polymer. The oxide is robust with a 

larger relative permittivity while the polymer can be used to tailor the wetting properties of the 

interface. Wetting properties are essential for two reasons. Firstly, as can be seen from the 

Lippmann-Young equation, the minimum attainable contact angle is the Young angle, or the 

angle in the absence of an applied bias. Thus, a small Young angle increases the range of 

attainable contact angles. Secondly, Berge et al. have shown that a small Young angle and low 

surface polarity reduce contact angle hysteresis, an important result inspiring much of the 

work in Chapter 4 of this thesis.18 

As well as being limited by breakdown of the dielectric layer, a phenomenon known as 

‘contact angle saturation’ limits the contact angles accessible to EWOD. While the Lippmann-

Young equation suggests that a contact angle of 180o is attainable (this corresponds to de-

wetting of the droplet from the surface), instead the contact angle becomes constant at large 

potentials. The reason behind this is still the subject of debate but probably results from the 
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large electric fields in the vicinity of the three phase line which can ionise the surroundings 

and inject charge carriers into the dielectric layer.8 

Similar to EWOD is dielectrophoresis. This phenomenon is identical to EWOD except that 

an AC potential is needed and there are no electrolytes present in either phase. Despite being a 

fundamentally different phenomenon, dielectrophoresis has almost identical capabilities and 

limitations to EWOD and therefore has similar potential applications.8 

The one obvious set back of EWOD is the large operating potential. While Berry has reported 

a 100o contact angle change with only a 3 V bias, portable devices using electrowetting 

continue to operate at 15-120 V.19-21 Given that lithium-ion batteries used in the majority of 

today’s portable technologies have a nominal cell potential of only 3.6 V, an electrowetting 

system operating below 3.6 V might greatly reduce the energy consumption, size and 

complexity of these devices. The ‘two electrolyte’ electrowetting system discussed in the next 

section is a possible way to achieve this. 

 

1.4 Electrowetting with two electrolytes 

Electrowetting with two electrolytes was first proposed by Monroe, Daikhin, Urbakh and 

Kornyshev in 2006.22 By putting an electrolyte in the droplet as well as the surrounding phase 

they devised a model of electrowetting which predicted a change in contact angle at very low 

potentials. 

Firstly, this section will describe the nature of the interface between two immiscible electrolyte 

solutions—commonly referred to by the acronym ITIES—which is of importance to the 

model. Then it will give a brief description of this model before finally looking at the first 

experimental results of electrowetting with two electrolytes. 
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1.4.1 The interface between two immiscible electrolytes 

An ITIES consists of two immiscible liquids—one liquid is usually water; the other an oil such 

as 1,2-dichloroethane (DCE) or nitrobenzene.23 The water or aqueous phase of an ITIES 

contains an inorganic electrolyte such as LiCl, which consists of small ions with a high charge 

density. The organic phase contains a bulky organic electrolyte of opposite nature like 

tetrabutylammonium tetraphenylborate (TBATPB). Crucially, the electrolytes are selected such 

that they are soluble in only one of the phases. Therefore, not only are the two solvents 

immiscible, the electrolytes dissolved in them are restricted to their respective halves of the 

interface. 

The main consequence of an ITIES is that when a potential is applied across the liquid|liquid 

interface, a back-to-back ionic double layer forms. This double layer means that the 

liquid|liquid interface now behaves as a capacitor where before it didn’t. This concept is 

shown in more detail in Figure 7. Also shown is the potential distribution. The potential drop 

is distributed exclusively across the four double layers where the local electric fields can be as 

high as 107 V cm–1.24 This is not the case for EWOD or conventional electrowetting because 

not all liquids in contact with the electrode contain an electrolyte. As a result the electric field 

distribution for EWOD is much more complicated. This is partly why EWOD modelling is so 

difficult and contact angle saturation phenomena are currently poorly understood. 
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Figure 7|Illustration of the formation of a back-to-back electrical double layer when an ITIES 
is polarised. The top half contains an inorganic salt dissolved in water while the bottom half 
contains a bulky organic salt in an organic solvent. When a bias is applied (1 V) the ions 
migrate to the electrodes. The ions are restricted to their respective phases resulting in the 
formation of a back-to-back electrochemical double layer. (Far right) The electric field 
distribution shows how the potential decays in the double layers and not in the bulk. 

An ITIES is possible because the Gibbs energy of transfer of ions from one phase to the 

other is prohibitively high. However, as the potential across the droplet increases, the potential 

drop, or Galvani potential difference, across the ITIES also increases. Eventually it becomes 

energetically favourable for the ion to cross the interface and the ITIES begins to break down. 

The potential at which this occurs is defined by the Gibbs energy of transfer of the ion.25 

When working with an ITIES it is essential to know beyond which potentials ion transfer will 

occur and cyclic voltammetry of the liquid|liquid interface is the best tool for determining 

this.  It is useful to see at which potentials significant currents, resulting from ion transfer, 

arise. About the PZC there is no ion transfer across the interface and only a small current is 

seen as a result of the double layer charging. As seen in Figure 8, when the potential moves 

away from the PZC, eventually there is a sharp rise in current. Whether this current is a result 

of inorganic ions moving into the organic phase or organic ions moving to the aqueous phase 

depends on which process is more energetically costly. Of course, if both ion transfers are of 

similar energy, both will contribute to the current simultaneously. 
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Figure 8|[Taken from Vanýsek26] Cyclic voltammogram of the ITIES formed from LiCl in 
water and TBATPB in nitrobenzene. About the PZC (at approximately 300 mV) there is a 
small double layer charging current. At each end of the voltammogram ion transfer currents 
arise. 

 

 

1.4.2 Electrowetting with ITIES 

The geometry for electrowetting with an ITIES is essentially the same as for conventional 

electrowetting but with the addition of electrolyte to the droplet. In conventional 

electrowetting or EWOD only the electrode|aqueous phase surface energy changes. However, 

when there is electrolyte in the droplet, ions migrate to all three interfaces (Figure 9) and all 

three surface energies become potential dependant. The next section will cover how the 

consequences of this have been modelled in detail by Monroe et al., however, a quick 

inspection of the Young equation gives an idea of what might happen. The difference between 

the electrode|aqueous phase and electrode|droplet surface energies is divided by the 

droplet|aqueous phase surface energy. Therefore, the contact angle becomes very sensitive to 

changes in the droplet|aqueous phase surface energy. It was hoped that as a result, there 

would be a larger driving force for shape change. This would make low voltage shape change 

on non-ideal surfaces possible. An added consequence of electrowetting with ITIES is a 
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smothering of the tendency of electric fields to diverge at the three-phase boundary. In 

EWOD this distorts the truncated spherical shape of the droplet but this effect is negligible 

with ITIES.8 This means that if the densities of both liquids are similar, or if the droplet is 

small—negating buoyancy effects—the droplet will be a perfect truncated sphere. This makes 

it an ideal lens, as discussed further in Section 1.5. 

 

Figure 9|Electrowetting with ITIES. The addition of electrolyte to the droplet means that all 
three droplet surface energies are now potential dependant, where previously only the aqueous 
phase|electrode surface energy was affected. The Young equation shows that the contact angle 
is particularly sensitive to the liquid|liquid energy. Therefore, changing this surface energy may 
result in a significant contact angle change.  

 

1.4.3 Theoretical model 

The model devised by Monroe, Daikhin, Urbakh and Kornyshev calculates the droplet 

geometry which minimises the Gibbs energy of the droplet at a given potential. The full 

equation is given below27-30: 

    [          ̅    ̅ ]   

 [      ̅ ]         
(Equation 8) 

 

where d, e and w are the droplet, electrode and aqueous phase respectively,  is the surface 

energy due to intermolecular interactions,   ̅ is the capacitive energy (based on the potential 
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dependant capacitance and potential drop), A is the area, Vd is the droplet volume and Δp the 

Laplace pressure. The surface energy terms are assumed to be independent of potential. The 

capacitances of the double layers are estimated using standard electrochemical double layer 

theory. The best description of the double layers are Verway-Niessen theory and Gouy-

Chapman (GC) diffuse-layer theory combined with the elementary Mott and Watts–Tobin 

(MWT) approximation for the inner-layer part.31 These models have been justified by 

experiment: the structure of the ITIES has been probed by surface energy measurements, 

cyclic voltammetry, electrochemical impedance spectroscopy and optical second harmonic 

generation (SHG).32-36 SHG actually provides direct optical measurement of the accumulation 

of electrolyte in the interfacial region. Due to the screening of the electric field at each 

interface the potential distribution can be calculated analytically. Obviously, the electric field 

distribution is needed to calculate the potential drop across the double layers and thus 

calculate the energy stored therein. This essential element is why the model cannot be applied 

to EWOD: the complex electric field distribution is unknown.  

Using experimental data for surface energies and capacitances, the resulting curves of potential 

against contact angle predict that low potentials induce large changes in droplet shape, with 

the contact angle eventually reaching 180o. They also predict that increasing the electrolyte 

concentration, whilst keeping the electrolyte concentrations inside and outside of the droplet 

equal, should increase the electrowetting response. 
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Figure 10|[Taken from Monroe30] Theoretically derived graphs of the electrowetting response 

of a droplet with a Young contact angle of 77o. The different lines correspond to different 

models of the double layer capacitance. 

 

1.4.4 Experimental results 

1.4.4.1 First experimental results 

The first experimental tests of ITIES electrowetting were performed by Kucernak and 

Sleightholme.37 Using a droplet of nitrobenzene containing TBATPB, surrounded by aqueous 

LiCl on a sputtered gold electrode, they were able to achieve a reversible change in contact 

angle from approximately 100o to 130o for less than 1 V. However, while this is a very 

promising result, there is a very large hysteresis between the forward and reverse scans. That is 

to say that the relationship between the contact angle and potential is dependent on the 

contact angle prior to a change in potential. Furthermore, the change in angle, 30o, is relatively 

small.  
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Figure 11|[Taken from Kornyshev et al.37] Low voltage driven contact angle variation for a 
0.1 µL nitrobenzene droplet containing 0.01 mol dm–3 TBATPB surrounded by 0.5 mol dm–3 
aqueous LiCl on a sputtered gold electrode. A large hysteresis can be seen between forward 
and reverse scans. 

 

So critically, electrowetting with ITIES solves the issue of a high operating voltage but several 

other issues, essential to the performance of an electrowetting device, need to be resolved. For 

example, this technology would not be suitable for electro-variable lenses where the desired 

contact angle must be achieved quickly and precisely to obtain sharply focused images.  

Like the Lippmann-Young equation for EWOD, the theory also predicts a maximum contact 

angle of 180o at large potentials. For unknown reasons this was not been seen experimentally. 

Instead, contact angle saturation is seen and the largest contact angles achieved were less than 

140o. In this instance however, breakdown of the dielectric layer (used in EWOD) cannot be 

invoked to explain the phenomenon. Also the model predicts a symmetric electrowetting 

response about the PZC. However, ITIES electrowetting was only seen at potentials negative 

of the PZC, with no response seen at positive potentials. 

 

 

 



  Introduction 
 
 

44 
 

1.4.4.2 Pulsing 

In order to reduce hysteresis in the system described above, Kornyshev et al. applied a 

sequence of short (50 μs), high voltage (2-3 V) pulses on top of the applied bias potential.37 As 

mentioned earlier, small vibrations can be used to ‘de-pin’ droplets by giving them a small kick 

of energy to escape their trapped state. This pulsing method uses the same principle but is 

much more convenient for an electrowetting system. The pulses last only 50 µs to ensure that 

no Faradaic processes have time to occur. As seen in Figure 12, the pulses seem to drive the 

droplet towards an equilibrium contact angle. 

 

 

Figure 12|[Taken from Kornyshev et al.37] Illustration of how contact angle pinning is 
reduced by a pulsed-potential control technique. (a) Electrowetting dynamics for a 0.1 μL 
droplet of 0.1 mol dm–3 TBATPB in nitrobenzene surrounded by aqueous 0.5 mol dm–3 LiCl 

on a sputtered-gold substrate. Pinning is reduced by potential pulses of ±2.0 V over the 
constant bias of –0.65 or 0.00 V versus Ag/AgCl. The lower part of the diagram shows the 

applied potential profile. During the periods 0-4.5 s and 24-32 s, the electrode was 
disconnected and so the potential is uncontrolled. (b) Absolute difference between the cosine 

of the angle in the ith pinned state and the ‘final’ value of this cosine, which is essentially 
established after the tenth pulse. It can be seen that the droplet approaches an equilibrium 
shape. 
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This pulsing method has been dealt with theoretically by Marinescu et al.38,39 There are two 

forces assumed to be acting on the droplet when a potential is applied. A driving force, which 

tends to bring the droplet to its equilibrium shape for the applied potential, and a friction 

force opposing this motion. As the displacement of the three-phase contact line after each 

pulse is much larger than the characteristic dimension of the roughness of the studied gold 

surface, the resistance to the motion of the contact line can be described in a first 

approximation by a position independent mean friction force. A good fit with experimental 

data is achieved (Figure 13). 

Figure 13 also illustrates how a small percentage change in the frictional force can have a large 

effect on the observed contact angle. The frictional force can be seen to affect both the 

maximum and minimum contact angles, where large frictional forces limit the contact angle 

range. There is also a dramatic difference in the contact angle change after the first pulse: with 

a frictional force of 1.80×10–5 N the angle changes by only 13o while for a frictional force of 

1.50×10–5 N the angle changes by 25o. 

Such a model is useful because it can provide valuable insight into the importance of particular 

parameters such as surface friction and PZC. This in turn allows better informed decisions to 

be made on how to improve an electrowetting system. 

   

Figure 13|[Taken from M. Marinescu39] (Left) Model of electrowetting dynamics facilitated by 
pulsing. Experimental results presented in Figure 12 with modelled fit. Cycle Steps: (–1) 
position after Up = 1 V on Ub = 0, (0) Ub = –0.65 V, (1-10) Up = –1 V, (11) Ub = 0, (12-21) Up 
= 1 V. (Right) Predicted effect of friction force F0 on final contact angle. Experimental 
parameters: –0.65/0 V biases, –1/1 V pulses, TBATPB conc. = 0.1 mol dm–3, 
LiCl conc. = 0.5 mol dm–3. Other parameters: droplet mass = 1.2×10–10 kg, 
water/nitrobenzene viscosity difference = 0.3×10–5 kg s–1, Young’s angle = 1o, Upzc = 0.3 V, 
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friction force = 1.65×10–5 N. Up, Ub and Upzc are the pulse potential, bias potential and point 
of zero charge respectively. 

1.4.4.3 Challenges 

Clearly, there are still several hurdles to overcome before two electrolyte electrowetting can 

realistically compete with EWOD. Pulsing reduces pinning but does not eliminate the 

problem while also complicating the system. It also has a much slower response time than 

EWOD. Therefore, an electrode/electrolyte combination which is unyielding to the effects of 

pinning would be a better solution. Furthermore, owing to its cost, gold is not an ideal 

electrode material. 

The quality of fit of the theoretical model for two electrolyte electrowetting is also yet to be 

confirmed. This would need to be done on an electrode which exhibited no or very little 

pinning. 

 

1.5 Applications of electrowetting 

Based on EWOD, various electrovariable optical devices have been designed. These designs 

should work equally well with EWOD and ITIES electrowetting. Electrowetting has also 

found use in microfluidic devices. 

 

1.5.1 Lenses 

Electrovariable lenses, pioneered by Varioptic, are already on the market and can be used in 

mobile phones, webcams and barcode readers to name but a few applications.40,41 If, as is 

usually the case, the oil and water phases of an electrowetting system have different refractive 

indices, light entering the droplet will be refracted. Furthermore, if the densities of the two 

phases are similar and if the droplet is kept small, the droplet naturally takes on the shape of a 

spherical cap, which is the shape of a lens. The key difference in an electrovariable system is 

that rather than moving the lens mechanically to bring objects into focus, the shape of the 

droplet is controlled by the applied potential to vary its focal length. This reduces both 
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susceptibility to mechanical failure and the volume the lens occupies. Of course, opaque 

electrodes such as the ones described above cannot be used without a design modification. 

Instead, the droplet sits inside an open annulus made from two different electrodes. The 

concept is shown in Figure 14. 

 

 

Figure 14|(Left and middle) Cross section of an electrowetting lens. The droplet (shown in 
red) rests on the sides of an annular electrode. It acts as a lens as it has a different refractive 
index to the surrounding aqueous phase. Its curvature can be varied incrementally from 
convex to concave by changing the potential applied. (Right) [Taken from www.varioptic.com, 
May 2012] Electrowetting variable focus liquid lens made by Varioptic. The metal case 
diameter is 7.75 mm. Suitable for 30 fps video. Operating temperature range of –20 to 60 °C. 
The lens contains no mechanical components. 

 

One potential limitation is the distortion of the lens by gravity. The extent of the distortion is 

determined by the difference in densities of the two fluids and the surface energy between 

them. Using water and oil the limit of the lens diameter is about 10 mm.  Large lenses are 

possible if the density of the surrounding medium is equal to that of the droplet and this can 

be achieved using water and specially engineered silicone oils. 

 

1.5.2 Displays 

Another promising application of electrowetting is for display technologies. If the droplet 

contains a dissolved dye, electrowetting can be used to cause the droplet to fill or vacate a 

small cell, thus altering the cell’s colour. Using this principle displays which are similar in 
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appearance to liquid crystal displays can be made. Crucially however, these displays are much 

more energy efficient (with energy savings in the range of 50-80 per cent compared to liquid 

crystal displays).42 The high energy efficiency arises from the fact that no energy is consumed 

while the picture is static. This approach is also a competitor for use in electronic paper. For a 

review of EWOD pixel design see Andelman et al.40  

                          

                          

Figure 15|[Photograph taken from Feenstra43] Cartoon and photograph of an electrowetting 
pixel. When a potential is applied the droplet covers the bottom of the cell. The droplet 
contains a dye to colour the pixel. When the potential is turned off the cell returns to its 
original configuration.  

 

1.5.3 Digital microfluidics 

The fastest growing application of electrowetting is in the field of microfluidics. Using 

EWOD, discrete droplets can be moved onto individually addressable electrodes, so called 

‘digital microfluidics’. A series of electrodes are designed so that by turning one electrode off 

and its neighbour on, a droplet will hop between them. It is possible to create, cut, transport 

30 V 



  Introduction 
 
 

49 
 

and merge droplets in this way (Figure 16).Uses include all current applications of lab-on-a-

chip based microfluidics such as the polymerase chain reaction and other bioassays.44,45   

Droplets can also be moved by dielectrophoresis, the manipulation of a pure electrolyte free 

liquid using an AC field, and this is often preferred as whatever is contained within the 

droplets (perhaps chemical reactants or biological material) is not contaminated by the 

presence of an electrolyte. 

 

 

Figure 16|[Taken from Kim46] Illustration of the four fundamental droplet operations needed 
in microfluidics. The operations are controlled by the switching on or off of the discrete 
electrodes. 

 

1.5.4 Other applications 

Unusual uses of electrowetting include: the use of high frequency AC electrowetting of an air 

bubble as a means of underwater propulsion;47,48 an electrowetting beam deflector which, 

through the use of multiple electrodes, can control the angle of a flat meniscus;49 miniaturized 

ultrasound scanners;50 and liquid-state field-effect transistors which work by electrowetting 

between competitive insulating and conducting fluids to control the on/off current.51 
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Figure 17|[Taken from Kang24] Streamlines and oscillation patterns for oscillating bubbles at 
different frequencies. Bubble volume = 1 µL and VRMS = 80 V. 

 

 

Figure 18|[Taken from Kim51] Illustration of the principle behind a liquid-state field-effect 
transistor, or LiquiFET. It operates with a 2.5-3 V drain voltage with on/off current ratios 
greater than 10000:1. 

 

1.6 Conclusions 

While electrowetting has a long history starting with Lippmann in 1875, it is only fairly 

recently that it has made the transition from being a phenomenon of purely fundamental 

interest to becoming a practical technology. This is done by companies such as Liquavista who 
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now produce electrowetting displays. These displays, along with other current applications, are 

based on EWOD, which enables the fast and reliable manipulation of liquid droplets. 

Nonetheless, EWOD requires a large voltage to work, increasing the power consumption of 

these devices. 

Recently, electrowetting with ITIES has been shown to enable droplet manipulation on solid 

surfaces using much lower voltages. However, this is not without issue as the droplets are 

‘pinned’, limiting the control over droplet shape. Despite efforts to alleviate this issue using a 

‘voltage pulsing’ technique; fast, reproducible droplet shapes are still not possible. 

The hope of this thesis is that the ITIES electrowetting phenomenon might be better 

understood both at a practical and fundamental level. The primary obstacle to IITES 

electrowetting is pinning, and the following chapters describe methods to try to reduce this. 

These methods range from producing ultra-flat surfaces, to creating fluorinated, yet 

conductive, electrodes. Furthermore, as ITIES electrowetting is still a relatively unstudied 

phenomenon, the effect of the aqueous phase electrolyte and droplet composition is also 

studied, with some unexpected results. Another issue, the stability of the liquid|liquid 

interface, is also resolved. All of these effects are finally brought together to create an 

optimised low voltage electrowetting system. 
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Chapter 2: Liquid|Liquid Inte rface s 

 

At the end of Chapter 1 the first experimental results of electrowetting with an interface 

between two immiscible electrolytes (ITIES) were discussed. In Chapter 2, a major practical 

concern with this system is addressed: the stability of the ITIES over the range of potentials 

used for electrowetting. In order to nullify this potential complication, the ITIES electrolytes 

and solvents were optimised, resulting in a polarisation window in excess of 1.2 V. This ITIES 

polarisation window optimisation leads into the development of a new type of ITIES, the 

interface between an ionic liquid and an organic solvent.  

 

2.1 Extending the ITIES polarisation window 

2.1.1 Motives 

As will be discussed in more detail below, at large potentials an ITIES breaks down as ions 

begin to cross from one phase to the other. However, for ITIES electrowetting, the value of 

the potential applied across the liquid|liquid interface is not known. This is because the 

potential applied to the whole system is shared between the liquid|liquid and solid|liquid 

interfaces. The Galvani potential difference across the ITIES will be less than the total applied 

bias, but this may still be a substantial potential. For example, when 1 V is applied to the entire 

system versus PZC, even if only 10 per cent of this potential is dropped across the 

liquid|liquid interface, 100 mV can be enough to drive ions across the interface (this can be 

seen from Figure 8, page 39). 

The stability of the ITIES is a concern for at least three reasons. Firstly, the long term stability 

of the system is paramount: there is no value in an electrowetting system that will cease to 

function after several hours. Secondly, the transfer of ions between two phases creates a 

pseudo-capacitance which may cause electrowetting, but not for the putative reasons given in 

Chapter 1.1 It is also assumed in the theoretical model of Monroe et al. that the ITIES behaves 

ideally at all potentials. Finally, transferring ions can precipitate in the opposite phase; this 

leads to ‘hazing’ of the interface which interferes with the surface’s optical properties. 
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The potential drop can be estimated theoretically, which, based on the model of Monroe et al., 

has been done by Marinescu.2 As illustrated in Figure 19, the potential drop over the ITIES is 

indeed only a small percentage of the total potential drop between the electrodes. It predicts 

that by using 0.001 mol dm–3 electrolyte in the droplet and 0.5 mol dm–3 electrolyte in the 

aqueous phase, there is a maximum potential drop across the interface of approximately 

±150 mV. Therefore, assuming that there are no detrimental effects to the electrowetting 

response, as large a polarisation window as possible would seemingly be important. 

 

Figure 19|[Taken from Marinescu2] Potential across a nonspecific ITIES with monovalent 
ions as a function of applied system potential where Δ Φds is the potential drop between the 
droplet and surrounding, cd is the concentration in the droplet and the concentration in the 
surrounding phase is 0.5 mol dm–3. It can be seen that the potential across the liquid|liquid 
interface decreases with increasing droplet electrolyte concentration. 

 

2.1.2 Ion transfer 

When a potential is applied across the liquid|liquid interface a back-to-back ionic double layer 

forms. This is possible because the Gibbs energy of transfer of ions from one phase to the 

other is prohibitively high. However, as the potential across the interface increases, the 

Galvani potential difference across the ITIES increases.3 This potential is defined as: 

   
         (Equation 9) 

 



  The Liquid|Liquid Interface 

57 
 

where the superscripts w and o indicate the water and oil phases, respectively, and ϕ is the 

Galvani potential. With increasing potential difference, it becomes energetically favourable for 

ions to cross the interface, and the ITIES begins to break down. The Gibbs energy of transfer, 

      
     

,
 
of the ions defines the potential at which ion transfer occurs because equilibrium 

across the interface requires that: 

 
  
     

      
  

  

   
  (

  
 

  
 ) (Equation 10) 

   

 
  
      

  
      

     

   
 

  
      

   

   
 (Equation 11) 

 

here μ i is the chemical potential of ion i in the respective phase under reference conditions.4 

Consequently, the Gibbs energy of transfer is an essential parameter to consider when 

choosing electrolytes. The term   
      

   
 is roughly equal to the difference in solvation 

energies of species i between the oil and water phases. 

Cyclic voltammetry of the liquid|liquid interface is commonly used for determining the size of 

a polarisation window as it can efficiently detect ion transfer currents arising as a consequence 

of the applied potential. Close to the PZC, there is no net ion transfer across the interface and 

only a small current is seen as a result of the charging of the double layers. As the potential 

moves away from the PZC, eventually a sharp rise in current is seen. This current is a result of 

inorganic ions moving into the organic phase or organic ions moving into the aqueous phase 

depending on which is more energetically favourable. Figure 20 below shows a typical cell for 

this type of work.  
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Figure 20|[Taken from Vanýsek5] Diagram of a four electrode cell used to study the cyclic 
voltammetry of an ITIES. The adjusting plunger is used to position the interface between the 
two reference electrodes. The diameter of the cell where the interface is positioned is kept 
small (approximately 5 mm) to reduce the total ionic current and minimise resistive losses.6,7 

 

The ion transfer currents are governed by the same principles as conventional redox processes 

at the electrode|solution interface. Usually this is in the mass transport limited domain where 

electron transfer is fast and the current limiting step is diffusion. The half-wave potential, 

   ⁄ , of a transferring ion, as measured by cyclic voltammetry, is therefore related to the 

formal transfer potential of an ion i,   
  

, by the mass transfer coefficients, mi, of ion i in each 

phase: 

 
   ⁄    

   
  

   
  

  
 

  
  (Equation 12) 

   

It is usually taken that  
  

 

  
  is equal to the reciprocal of the ratio of the viscosities of the 

respective solvents because these values are difficult and time consuming to measure.8,9 This 

way the standard Gibbs energy of transfer of an ion, i, can be calculated:8 
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             (Equation 13) 

 

This method is convenient when the concentration of the ion of interest is low and hence the 

peak currents are also low. This is generally the case only when the ion of interest is not the 

supporting electrolyte, which is required to be more concentrated in order to instil the 

conductivity of the electrolyte solutions and also prevent migration of ions of the species of 

interest. The potentials at which the supporting electrolyte transfers are described as the limits 

of the ITIES polarisation window. Due to the precipitation of ion pairs at the interface when 

large ion transfer currents are seen, along with the large resulting resistive losses, it is difficult 

to accurately measure the half-wave potential of supporting electrolyte ions. A non-trivial 

solution to this, relating the forward and return peak currents to the half-wave potential, has 

been formulated by Shao et al.9 

As seen in (Equation 11, the Gibbs energy of transfer depends upon the relative chemical 

potential of an ion in the aqueous phase and oil phase. The chemical potential is closely 

related to the solvation energy of the ion as solvation of the ion by other molecules is the 

primary component of its Gibbs energy. Solvation energies are a net result of a complex 

interplay between solute and solvent. Nonetheless, three fundamental aspects provide a 

structured approach to alter the Gibbs energy of solvation and, thus, the polarisation window: 

the interaction between the ions and water, namely hydrophobicity of the ions in the organic 

phase and hydrophilicity of the ions in the aqueous phase; interaction between the ions and 

the organic solvent (that is, the solvation strength of the organic solvent); and many-body 

interactions such as the salting out effect.7 

 

2.1.3 Electrolyte effects 

The properties of the electrolytes used in the ITIES are essential in expanding the potential 

range over which the ITIES is stable. This section discusses what electrolyte properties result 

in a large window. 

The more hydrophobic an ion is, the more it will want to reside in the oil phase and the larger 

its Gibbs energy of transfer between water and oil will be. Without needing to know what the 
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actual energy of transfer is, ions that are hydrophobic by intuition can be chosen to try to find 

an electrolyte with a large polarisation window. Hydrophobicity of organic ions should 

increase with the ion size and with the inclusion of hydrophobic atoms such as fluorine.10 This 

can be seen in a study by Lhotský et al. where the ITIES polarisation window increases as the 

length of the alkyl chains of a quaternary ammonium ion are increased.11 Similarly Kontturi et 

al. have demonstrated this effect using the p-[4-chlorotetrakis]tetraphenylborate anion rather 

than the more common yet related tetraphenylborate anion. The former salt simply substitutes 

a hydrogen atom on the phenyl ring for a chlorine atom, yet this small change results in a 

200 mV or 50 per cent increase in the size of the polarisation window.12  

The aqueous phase is as important as the organic phase in determining the polarisation 

window. Aqueous ions should have a very high charge density and solvation energy in water. 

These include ions such as Li+, Mg2+, F– and SO4
2–. 

The salting out effect can also be used to increase the polarisation window. This can be 

understood as the competition for water molecules in the aqueous phase resulting in the 

exclusion of other ions. For example, in a concentrated solution (2 mol dm–3) of MgSO4 in 

water there is strong demand for water molecules to solvate and stabilise the highly charged 

ions. If another ion is introduced, this must be solvated at the expense of MgSO4 ions raising 

the phase’s internal energy. This higher internal energy increases the Gibbs energy of transfer 

into the aqueous phase, as shown by Schiffrin et al.7,13 This effect does not show a linear 

increase in Gibbs energy of transfer with concentration, but begins to have a dramatic effect at 

a critical concentration. As with traditional salting out phenomena, the effect is more prolific 

with electrolytes higher in the Hofmeister series.7,13 

Based on the above criteria, the organic electrolyte studied was 

bis(triphenylphosphoranylidene) ammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. 

This electrolyte, shown in Figure 21, is similar to the electrolyte 

bis(triphenylphosphoranylidene) ammonium tetrakis(pentafluorophenyl) borate commonly 

used by the group of Girault which has been shown to give large polarisation windows.14,15 

This was compared to tetrabutylammonium tetraphenylborate (TBATPB), the electrolyte 

which was used for the first electrowetting experiments by Kornyshev et al.16 A broad range of 

electrolytes in the aqueous phase were also studied. 
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Figure 21|(Left to right) Chemical structure of tetrabutylammonium, tetraphenylborate, 
bis(triphenylphosphoranylidene)ammonium and tetrakis[3,5-bis(trifluoromethyl)phenyl]borate 
ions. The two ions on the left, used for the first electrowetting experiments, are clearly smaller 
than the ions on the right, suggesting they would be less soluble in water and therefore less 
likely to cross the ITIES.16 

 

2.1.4 Solvent effects 

It has also been suggested that changing the solvent could be an effective way of increasing 

the polarisation window.17 The effect of solvent derives from the fact that ions have different 

solvation energies in different solvents. For instance, the standard Gibbs energy of transfer of 

Mg2+ from water to nitrobenzene is 64 kJ mol–1, while its transfer from water to 

1,2-dichloroethane (DCE) is 114 kJ mol–1.18 This is why DCE has superseded nitrobenzene 

(relative permittivities of 10.7 and 34.8 respectively) as the most common ITIES solvent.19 

When choosing an organic solvent there are two constraints: the solvent must be almost 

totally immiscible with water and must also be able to dissolve organic salts. The solvent 

1,6-dibromohexane (DBH) was found to satisfy these criteria while also being very non polar 

(relative permittivity of only 5.0), potentially restricting transfer of ions from the aqueous 

phase.19 Furthermore, cyclohexane (CH) was mixed with DCE to create a ‘tailored’ solvent. 

Specifically, pure CH is unsuitable as it will not dissolve organic salts. However, it was found 

that when it is combined with a better solvent such as DCE, this mixture is able dissolve the 

desired salt while remaining relatively non-polar, creating a solvent with an ideal blend of 

properties. 
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2.1.5 Experimental 

The organic electrolyte BTPPATFPB was precipitated from two solutions of BTPPACl 

(≥98%, Fluka) and NaTFPB (kindly supplied by Prof. T. Kakiuchi, Kyoto University) 

dissolved in a 1:2 mixture of methanol and water and then recrystallised from hot acetone. 

TBATPB (≥99%, Sigma), NaCl (≥99.8%, Sigma-Aldrich), LiCl (99.0%, Aldrich), MgCl2 

(99.0%, Aldrich), KCl (≥99.5%, Sigma-Aldrich), 37% HCl (reagent grade, Sigma-Aldrich), LiF 

(≥99.995%, Aldrich), NaF (99.5%, Sigma-Aldrich), MgSO4.7H2O (analytical grade, VWR), 

TMACl (≥99.0%, Fluka), DCE (≥99.0%, Sigma-Aldrich), DBH (98% Acros Organics) and 

CH (≥99%, Sigma-Aldrich) were used as supplied. Aqueous solutions were prepared with 

ultrapure water (resistivity 18.2 MΩ cm) from a Millipore Elix 5 water purification system. 

The temperature of all experiments was 20±2 oC. 

The electrochemical cell was a four electrode cell similar in principle to that used by Samec et 

al. and illustrated in Figure 22.6 The surface area of the interface was 0.28 cm2. An oil/water 

junction (5 mmol dm–3 aqueous BTPPACl) with Ag/AgCl wire was used as the reference 

electrode for the organic phase and an Ag/AgCl wire was used for the aqueous phase. The 

aqueous phase was doped with tetramethylammonium chloride (TMACl) as a reference for 

the potential scale of the Galvani potential difference (Δo
w φ [TMA+] = 160 mV).20 

A Gamry Reference 600 potentiostat was used to study the cyclic voltammetry of the 

liquid|liquid interface. The scan rate was 10 mV s–1. The positive and negative potential limits 

of the scans were determined by the potential at which a current of 1 µA cm–2 was measured. 

The cyclic voltammograms (CVs) reported here are the tenth scan. Following initial variations 

in current, after about five scans the CVs would remain constant.  

The relative permittivity of the mixed solvent was measured using a homemade capacitance 

cell and a Solartron 1260 Impedance Analyser. The cell consisted of two parallel glass slides 

(75mm×25 mm) sputtered with gold, separated by two glass coverslips (approximately 

340 μm). A range of solvents with relative permittivities similar to that of the mixed solvent 

were used to calibrate the cell. 
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Figure 22|Experimental cell for characterising the electrochemical window of an ITIES. 

 

2.1.6 Results and discussion 

2.1.6.1 Hydrophobicity of the organic ions 

First the effectiveness of BTPPATFPB compared to TBATPB was established. The use of 

this very bulky organic electrolyte had the desired effect in that the polarisation window was 

increased from about 200 mV to 700 mV (Figure 23). The potential limits throughout were 

arbitrarily defined as the potential at which the current rises to ±1 µA cm–2. This suggests that 

the ITIES between TBATPB and NaCl is limited by the transfer of TBA+ and TPB– ions. 

This was confirmed when the salt in the aqueous phase (NaCl) was changed to a more 

hydrophilic salt (such as LiF) and there was no effect on the potential limits. Conversely, 
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varying the organic salt does vary the potential limits. As is seen in the next section, when 

BTPPATFPB is used, the window becomes dependant of the salt in the aqueous phase.  

 

 

Figure 23|Illustration of the effect of using 1 mmol dm–3 BTPPATFPB in the DCE organic 
phase rather than TBATPB, also 1 mmol dm–3, which contains much smaller ions. The 
electrolyte in the aqueous phase is 5 mmol dm–3 NaCl. Scan rate = 10 mV s–1. The flat regions 
of the cyclic voltammograms indicate where the ITIES is stable. 

 

2.1.6.2 Hydrophilicity of the aqueous ions 

When the extremely hydrophobic BTPPATFPB is in the organic phase, it can be seen that the 

potential limits change as the aqueous electrolyte is varied (Figure 24, Table 1). This suggests 

that the potential limits are defined by the inorganic salt rather than the organic salt.i Figure 24 

shows the windows for NaCl, LiF and MgSO4. Unsurprisingly, at negative potentials Mg2+ 

transfers after Na+ and Li+ because it is bivalent and therefore has a higher charge density. At 

positive potentials, the monovalency of F– seems to be balanced by its small radius while the 

bivalency of SO4
2– is counteracted by its larger radius and both transfer at the same potential. 

It follows that the larger monovalent chloride ion transfers at a lower potential.  

                                                 
i It is still possible that the transfer of MgSO4 ions (MgSO4 shows the largest polarisation window) is limited by 
the organic electrolyte. However, as will be seen later, results from salting out using MgSO4 seem to imply that 
this is not the case. 
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As well as illustrating the trend in hydrophilicity of these ions and showing that the aqueous 

electrolyte does indeed have a significant effect on the polarisation window, these particular 

salts are highlighted because they were found to give the largest windows for a chloride salt, a 

monovalent salt and a bivalent salt. The chloride salt, although it has the smallest window, is 

useful because it can be used with a small and convenient Ag/AgCl wire reference electrode. 

LiF provides the largest window for a monovalent electrolyte, for which the ITIES 

electrowetting model has been derived. Furthermore, fluoride is preferable to chloride because 

it does not specifically adsorb onto gold, a potential complication when using chloride (for 

electrowetting in particular). MgSO4 provides the largest window although an ITIES 

electrowetting system with bivalent ions has not yet been modelled. 

 

 

Figure 24|CVs of 5 mmol dm–3 NaCl, LiF or MgSO4 in water with 1 mmol dm–3 

BTPPATFPB in DCE. Scan rate = 10 mV s–1. The Galvani potential differences (o
w ) have 

been calculated by using the standard transfer potential of the TMA+ ion (o
w =160 mV) as a 

reference. 

 

If the window is limited by inorganic ions as seems to be the case, this puts a fundamental 

limit on the window size. This is because there are no suitable ions with a greater charge 

density than the likes of Li+, Mg2+, F– and SO4
2–. While ions such as Al3+ or Be2+ do have a 
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higher charge density, they strongly affect the solution pH (for example AlCl3 forms HCl in 

water) meaning that H3O
+ and OH– ions start to limit the window instead. In the next section, 

to further increase the window, the organic solvent is changed to raise the energy of these ions 

in the phase they transfer to. 

 

2.1.6.3 Organic solvent 

In order to further extend the polarisation window beyond the limits seen above, rather than 

changing the ions, the organic phase was changed. As has already been noted, solvent has a 

very significant effect on the standard Gibbs energy of transfer of an ion. The two solvents 

chosen to replace DCE were DBH and a 1:1 mixture of DCE and CH. DBH has a relative 

permittivity of 8.5 and the relative permittivity of the mixture was measured to be 5.1 ±0.1.21 

These values are lower than the relative permittivity of DCE, yet crucially, they also dissolve 

BTPPATFPB (concentrations >10 mmol dm–3 at room temperature are possible in the mixed 

solvent). 

Figure 25 shows the polarisation windows resulting from the mixed DCE:CH solvent. There 

is a substantial increase in the size of the windows for all electrolytes tested. Taking MgSO4 as 

an example, compared to DCE the window increases from 911 mV to 1208 mV, an increase 

of over 30 per cent. Furthermore, this window is believed to be largest window reported in 

the published literature.22 
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Figure 25|CVs of the same system used in Figure 24 but with an organic phase consisting of a 
1:1 volume mixture of DCE and cyclohexane. Scan rate = 10 mV s–1. The maximum currents 
result from the same ion transfers shown in Figure 24. 

 

From the CVs in Figure 26, the actual free energies of transfer,     
      

, of Mg2+ and SO4
2– 

were calculated. These CVs, rather than the ones in Figure 25, were used because the currents 

are larger, making the curve fitting method of Shao et al. more reliable.9 This method involves 

the fitting of working curves relating the quotient of the end-of-scan and return peak currents 

to the quotient of the return peak potential and half-wave potential. The half-wave potential 

can then be used to calculate the Gibbs energy of transfer (Equation 12). Upon moving from 

DCE to mixed DCE:CH,     
      

[Mg2+] rose from 114 kJ mol−1 to 116 kJ mol–1 (less than 

the estimated error and therefore not statistically significant) while     
      

[SO4
2–] rose from 

98 kJ mol–1 to 113 kJ mol–1. This implies that the solvation energy of SO4
2– is affected by the 

solvent much more than the solvation energy of Mg2+. This corresponds to a total increase of 

17 kJ mol–1, although the error in each value is estimated at ±2 kJ mol–1 due to the error in the 

position of the PZC. These values are in agreement with current literature values.23 

The PZC itself is located using the interfacial capacitance data, also shown in Figure 26, as 

measured by impedance spectroscopy. According to Debye-Hückel theory, the PZC is at the 

capacitance minimum, providing a different method for finding the PZC (the other method 
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being the use of an ion with an established transfer potential, in this case TMA+).8 The 

capacitance minimum as determined by both methods were within 10 mV of each other. 

Using the PZC as determined by impedance spectroscopy, the TMA+ transfer potential in 

mixed DCE:CH,     
      

[TMA+], was calculated as 232±10 mV. The error arises from the 

broad capacitance minimum which does not allow precise determination of the PZC. For 

future experiments, this value—which, as expected, is larger than the value for pure DCE—

can now be used to locate the PZC in DCE:CH without having to use impedance 

spectroscopy, a substantially more time consuming and complex method. 

The capacitance at the PZC decreases from 3.57 μF cm–2 for pure DCE to 3.25 μF cm–2 for 

mixed DCE:CH. The capacitance about the PZC is also substantially lower for the mixed 

solvent. In accordance with double layer theory, this decrease would be expected due to the 

lower relative permittivity of the mixed solvent relative to pure DCE.  
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Figure 26|CVs of the same system used in Figure 24 for MgSO4 in DCE and mixed 
DCE:CH. The scans are over a broader potential range and hence the transfer currents are 
larger. These large peaks are better suited to the curve fitting method of Shao et al. used to 
measure the Gibbs energy of transfer of the related ions. At these large currents the fine 
structure of the double layer current is not seen. The sharp features of the return peaks for the 
mixed solvent are characteristic of solvent transferring back across the interface along with the 
ions.9 The capacitance of the interface about the PZC is also shown. 

 

On the other hand, the DBH decreases the size of the window when compared with DCE, 

despite having a much lower relative permittivity. This is fairly surprising as a lower relative 

permittivity solvent is often a poorer solvent for highly charge ions.24,25 Furthermore, from 

Table 1 (which shows the polarisation windows of all solvent/electrolyte combinations 

studied) it can be seen that with a DBH organic phase, LiF has a substantially larger 

polarisation window than MgSO4. This is the opposite of what is seen for a DCE or mixed 

solvent organic phase, perhaps suggesting that there is a different mechanism of solvation in 

DBH compared to the other solvents. 

 

2.1.6.4 Salting out effect 

Finally, the salting out effect was investigated. This has previously been used to increase the 

size of the polarisation window.7,13 However, the polarisation window needs to be limited by 
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the transfer of organic ions (such as when TBATPB is used) for salting out to have an effect. 

Therefore, salting out should not be possible for the system under study which has been 

shown to be limited by the transfer of aqueous ions. 

At first Figure 27 confirms that the window limits are defined by the inorganic rather than the 

organic ions. This is because increasing the MgSO4 concentration from 5 mmol dm–3 to 50 

mmol dm–3 decreases the size of the polarisation window (increases the current at smaller 

potentials in accordance with the Butler-Volmer equation). However, the window for 

2 mol dm-3 MgSO4 is larger than for 5 mmol dm–3 MgSO4. This is unexpected because 

previous results indicate that the inorganic ions are transferring into the organic phase, so 

increasing the aqueous phase concentration cannot ‘salt out’. Therefore, the origin of this 

effect is currently not known. 

 

Figure 27|CVs illustrating the effect of varying the concentration of MgSO4 with an organic 
phase of 1:1 volume mixture of DCE and cyclohexane. Scan rate = 10 mV s–1. 

 



  The Liquid|Liquid Interface 

71 
 

 

 

 

 

 

 

Aqueous 
electrolyte 

Concentration 
/mmol dm–3 

Organic 
solvent 

Electrochemical 
window/mV 

HCl 5 DCE 664 

KCl 5 DCE 648 

LiCl 5 DCE 728 

LiF 5 DCE 858 

MgCl2 5 DCE 771 

MgSO4 5 DCE 911 

NaCl 5 DCE 754 

NaF 5 DCE 853 

LiF 5 1:1 DCE:CH 1172 

MgSO4 5 1:1 DCE:CH 1208 

MgSO4
 50 1:1 DCE:CH 1091 

MgSO4
 500 1:1 DCE:CH 1134 

MgSO4
 2000 1:1 DCE:CH 1256 

NaCl 5 1:1 DCE:CH 1044 

LiF 5 DBH 775 

MgSO4 5 DBH 684 

NaCl 5 DBH 561 

 
 
Table 1|Size of polarisation window for different electrolytes. In all cases the organic 
electrolyte was 1 mmol dm–3 BTPPATFPB. The limits are arbitrarily defined as the potential at 
which the current rises to ±1 μA cm–2. 
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2.1.7 Other applications 

The relevance of this work to electrowetting will be further explored in Chapter 5. However, it 

also has application for other uses of ITIES where the size of the polarisation window is of 

importance such as for the reversible adsorption of nanoparticles at an ITIES. The larger the 

window the larger the potential that can be applied to the system creating a stronger driving 

force for adsorption/desorption of the nanoparticles. More details can be found in [26] and [27]. 



  The Liquid|Liquid Interface 

73 
 

 

2.2 The ionic liquid | oil interface 

2.2.1 Background 

Interest in ionic liquids (ILs) stems from their unique combination of properties. These 

include very low vapour pressure, high polarity, electrochemical and thermal stability, and 

reasonable electrical conductivity. In particular, low melting point ionic liquids—so called 

room temperature ILs—are of interest for practical applications such as solvents for 

electroplating of base metals and as electrolytes for batteries, capacitors and electrochromic 

devices.28 Furthermore, their polarity means that they are often ‘greener’ alternatives to 

organic solvents for chemical synthesis.29 

Most ILs, being very polar, are hydrophilic and will absorb large amounts of water if exposed 

to the atmosphere. However, if the ionic liquids contain large ions, often with fluorinated side 

chains and functional groups, they become immiscible with water. By studying the transfer of 

the ions in such ionic liquids, Quinn et al. were able to quantify the hydrophobicity of these 

ions.30 This in turn is useful for the ‘task specific design’ of ILs, particularly as extraction 

solvents for synthesis where hydrophobic ILs are particularly useful. 

As discussed above, an ITIES consists of two immiscible liquids which are traditionally water 

and an organic solvent such as DCE or nitrobenzene.31 Using these hydrophobic ILs, 

Kakiuchi has been able to make a polarisable water|IL interface, analogous to a conventional 

ITIES with the organic phase replaced by an IL. The largest window for such an ITIES 

appears to be around 300 mV for tetraoctylammonium 

nonafluorobutylsulfonyltrifuluromethylsulfonylimide at room temperature while at 60 oC, 

tetraheptylammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate exhibits a window of 

1.1 V at a micro interface.32-34 With a window of at least 200 mV, it is possible to study the 

transfer of ions from the aqueous phase into the IL phase and to measure their free energies 

of transfer. 
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The size of the polarisable window can be used to quantify the hydrophobicity of the IL, 

where large windows indicate a high degree of hydrophobicity. The size of the window is 

related to the solubility of the IL in water:35  
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  (Equation 15) 

 

where    
  is the solubility product in water,    

    is the standard ion transfer potential,    is 

the aqueous concentration and subscript   and    are the anion and cation respectively. 

Therefore, this is a convenient method to accurately measure the miscibility of the two phases 

and assess the suitability of certain ILs as biphasic solvents. 

In this section, it is shown for the first time that a hydrophilic ionic liquid can be used to 

replace the aqueous phase if a suitable organic solvent is used. 

  

2.2.2 Choosing the solvent and ionic liquid 

As discussed above, the aqueous phase of a polarisable ITIES contains an inorganic 

electrolyte, such as NaCl, which consists of small ions with a high charge density while the 

organic phase contains an electrolyte comprising larger ions with less localized charge such as 

tetrabutylammonium tetraphenylborate. Hydrophobic ILs themselves are similar in that they 

often consist of ions such as those in the organic phase because these large asymmetric ions 

pack together poorly giving them their characteristically low melting points. This means that 

hydrophobic ionic liquids are a good substitute for the organic phase as they are immiscible 

with water and their constituent ions have high free energies of transfer into water, resulting in 

a polarisable ITIES. Their large size also means that many of them conveniently form low 

melting points ILs.  
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On the other hand, when replacing the aqueous phase with an IL, it might seem sensible to 

use an IL that contains the ions used in a conventional ITIES aqueous phase. However, these 

ions are small and form high melting point solids. Therefore, a compromise must be made: 

the IL must be molten at room temperature but the ions must still be as small and highly 

charged as possible. Three RTILs that fit these criteria were chosen. These were 

ethylammonium nitrate (EAN), 1-butyl-3-H-imidazolium nitrate (BHImNO3) and 

1-hexyl-3-methylimidazolium chloride (HeMImCl) which melt at 12 oC, 26 oC and 5 oC 

respectively.36-38 Their chemical structures are shown in Figure 28. For an IL, EAN contains 

very small, high charge density ions. It is known as a ‘protic’ IL as it is prepared by 

protonation of a pure Brønsted base by a pure Brønsted acid.39 The imidazolium ions in 

BHImNO3  and HeMImCl are somewhat larger and might not be expected to have high free 

energies of transfer; however, they form ILs with low melting points. This means there is 

more flexibility when choosing the counter ions—in this case chloride and nitrate—which 

should have high transfer energies. Nonetheless, as will be seen below, the careful choice of 

these ILs was not sufficient to make a polarised ITIES. Using DCE, currently the most 

common ITIES organic phase solvent, large currents were seen at all potentials and the 

interface could not be polarised. 

 

Figure 28|(Left) Ethylammonium nitrate, EAN. (Middle) 1-butyl-3-H-imidazolium nitrate. 
(Right) 1-hexyl-3-methylimidazolium chloride. 

 

In Section 2.1.4, it was shown that careful selection of the organic solvent of a conventional 

ITIES has a significant effect on the transfer potential of aqueous phase ions.22 This is because 

the Gibbs energy of transfer depends upon the solvation energies of the ions in the opposite 
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phase. By using this same mixed solvent, as well as the solvent DBH, the Gibbs energy of 

transfer of the ions in the ionic liquid could be raised, making a polarised ITIES possible. 

Cyclic voltammetry of the liquid|liquid interface was again used to determine the size of the 

polarisation window. The PZC was also located by impedance spectroscopy.40 

 

2.2.3 Experimental 

Electrochemical measurements were performed with a Gamry Reference 600 potentiostat 

with impedance analyser. Liquid|liquid experiments were performed in a custom built glass 

cell with a similar design to that used by Samec et al. which had been modified to allow 

reference electrodes to be placed near the interface in order to reduce their impedance.6 The 

surface area of the liquid|liquid interface was 28 mm2. The complete cell was: 

Ag|AgCl|IL|BTPPATFPB(oil) 10 mmol dm–3|AgTFPB|Ag 

where the oil phase was either DCE, DBH or a 1:1 mixture of DCE and cyclohexane and 

BTPPATFPB  is the organic electrolyte bis(triphenylphosphoranylidene)ammonium 

tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. In the case of EAN and HBImNO3, 

10 mmol dm–3 ethylammonium chloride was added to provide a stable reference potential. 

The low chloride concentration means that its transfer is diffusion limited and so it should not 

affect the polarisation window. 

Preparation of BTPPATFPB is reported elsewhere.22 HeMImCl (≥97%, Sigma-Aldrich), DBH 

(98%, Acros Organics), DCE (≥99.0%, Sigma-Aldrich) and CH (≥99%, Sigma-Aldrich) were 

used as supplied. EAN and HBImNO3 were prepared by equimolar addition at 0 oC of 65% 

nitric acid (Suprapur, Merck) to 2 mol dm–3 ethylamine in tetrahydrofuran (Acros Organics) 

and 2 mol dm-3 1-butylimidazole (98%, Sigma-Aldrich) in tetrahydrofuran, respectively. All 

ionic liquids were dried overnight under vacuum at 110 oC to remove water and 

tetrahydrofuran. The AgTFPB|Ag reference electrode was prepared by anodising a silver wire 

in a 10 mmol dm–3 solution of BTPPATFPB at +1 V for 30 min. All experiments were 

conducted at 20±2 oC. BHImNO3 was found to be liquid at this temperature despite the 

literature value of its melting point of 26 oC, possibly due to super cooling of the liquid or 

incorrect literature melting point.37 
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The impedance at 10 Hz (10 mV amplitude) was measured at 5 mV intervals in order to locate 

the PZC. At selected potentials, the frequency response from 0.1 Hz to 500 Hz was measured. 

Higher frequencies resulted in experimental artefacts as reported elsewhere.41 In order to 

minimise these artefacts, the impedance of the reference electrodes must be kept as low as 

possible, meaning that the reference electrode on the organic side must be placed as close as 

possible to the interface due to the high resistivity of the organic phase. 

 

2.2.4 Results and discussion 

2.2.4.1 Cyclic voltammetry 

All ITIES using HBImNO3 and HeMImCl could not be polarised and instead showed purely 

resistive behaviour. However, using EAN with either DBH or mixed DCE:CH, a polarisable 

ITIES was possible. Figure 29 shows the increase in polarisation window moving from DCE 

(Figure 29 a) to DBH (Figure 29 b) to mixed DCE/CH (Figure 29 c). 
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Figure 29|Cyclic voltammograms of the interface between EAN and 10 mmol dm–3 
BTPPATFPB in various solvents: a) DCE, b) DBH and c) a mixture of DCE and CH. Scan 
rate 10 mV s–1

. Corrected for resistive losses. The imaginary component of the impedance at 
10 Hz is also plotted, with the minimum assumed to be the PZC. 

a) 

b) 

c) 
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With DCE, while there is a small potential range within which the current levels off, the 

currents are still very large (>500 µA cm–2) and thus cannot be attributed to double layer 

charging which is usually at least an order of magnitude smaller. Using DBH—which has a 

relative permittivity of 5.0 as opposed to 10.4 for DCE—clearly broadens the polarisation 

window and the currents in the middle of the window have dropped to approximately 

20 µA cm–2. The Gibbs energy of transfer of the ions has clearly increased. Finally, using the 

mixed DCE:CH solvent a polarisable window of over 150 mV can be achieved. This is very 

similar in size to the largest windows between IL and water at 25 oC (although much larger 

windows have been reported at higher temperatures with high melting point ILs).32,33,42 It is 

also large enough to potentially study ion transfer of less hydrophilic ions within the window. 

The window extends further on the positive side suggesting that the ethylammonium ion has a 

larger transfer potential than the nitrate ion. 

Two conclusions can be drawn from these results. Firstly, the choice of IL is crucial in 

achieving a polarisable window as out of the three ILs tested, only one of them (EAN) was 

successful. This is perhaps unsurprising as the imidazolium ion is much larger than the 

ethylammonium ion and therefore likely to be more soluble in the organic phase. Secondly, 

the organic solvent is an essential component of this new type of ITIES. It seems that a 

polarisable ITIES is simply not possible with conventional solvents such as DCE, which is too 

polar and is able to efficiently solvate the transferring ions. 

 

2.2.4.2 Transfer of doped ions 

An ITIES can be doped with extra ions which transfer within the potential limits set by the 

supporting electrolytes.4 The ion of interest must have a smaller Gibbs energy of transfer than 

the supporting electrolyte ions and is usually not very concentrated so that peak currents are 

kept low. This results in a small peak within the window, even though the supporting 

electrolyte is higher in concentration.  

Many ions were tested to see if they would transfer within the potential limits of the IL ITIES, 

however, none could be found. The salts tested in the IL phase were tetramethylammonium 

chloride, tetraoctylammonium chloride and ethylammonium tetraphenylborate at 10 

mmol dm–3 concentration. The large organic ions in these compounds were expected to have 
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relatively small energies of transfer into the organic phase; however, no change in the cyclic 

voltammetry was seen. This is understandable as the transfer potential of 

tetramethylammonium (an even smaller ion) from water to DCE/CH has previously been 

calculated as +232 mV, well outside the available window.22 Similarly, the addition of 

0.5 mmol dm–3 BTPPACl, BTPPABF4, BTPPATPB to the oil phase had no effect on the 

voltammetry within the polarisation window, suggesting that the constituent ions of these salts 

transfer outside of the polarisation window. On the other hand, the addition of 0.5 mmol dm-3 

TBAPF6, TBABr, BTPPACl and BTPPABF4 meant that the interface could no longer be 

polarised, as shown in Figure 30. This suggests that the anions in these salts transfer at all 

potential within the ITIES polarisation window. 

 

 

Figure 30|Cyclic voltammogram of the ITIES between EAN and 10 mmol dm–3 

BTPPATPFB in DCE/CH (solid line). The addition of 0.5 mmol dm–3 tetraoctylammonium 

bromide shifts the cyclic voltammogram of the EAN|mixed solvent ITIES upwards (dashed 
line). This is the result of the addition of a mass transfer limited current (approximately 20 
µA cm–2) due to the transfer of Br– across the interface. The offset of the voltammogram as a 
function of Br- ion concentration is also shown (inset). 

 



  The Liquid|Liquid Interface 

81 
 

2.2.4.3 Impedance measurements 

Impedance measurements were used to locate the position of the PZC and study the 

capacitance of the interface. It was found that there was a minimum in the imaginary 

component of the impedance in the middle of the polarisable window (Figure 29). A 

minimum in the imaginary component corresponds to a maximum in the interfacial 

capacitance. This is unusual as for simple electrolyte solutions, a minimum in interfacial 

capacitance is seen (as described by Guoy-Chapman theory). This minimum in the imaginary 

component of the impedance, which presumably coincides with the PZC, can be explained by 

the ionic liquid double layer model of Bazant et al. and has also recently been reported 

experimentally.43,44 Figure 31 shows Nyquist and Bode plots for the EAN|mixed solvent 

ITIES at PZC. The data is fit to a standard Randles circuit (inset).  

 

        

Figure 31|Impedance spectrum of EtNH3NO3|DCE/CH interface at PZC with an interfacial 
area of 0.28 cm2. Scan from 500-0.1 Hz. Fit for Randles circuit shown on graph (grey line). 
Solution resistance RS=8.8±0.2 kΩ, charge transfer resistance RCT=5.6±1.7 kΩ, constant phase 
element ZCPE=9.9±4.1 µS sn, n=0.71±0.8 and Warburg impedance ZW=54.9±3.1 µS s0.5. This 
CPE corresponds to an interfacial capacitance of 137±64 µF cm–2.45 

 

The interfacial capacitance is calculated to be 137±64 µF cm–2, while fitting a simple capacitor, 

as is commonly seen in the literature, yields a capacitance of 7.4±3.7 µF cm–2.40 These values 

are less than the value calculated using the double layer region from the cyclic voltammetry 

(400-500 µF cm–2) which suggests that there may still be a small ion transfer current in what 

would be considered the double layer region. This conclusion is supported by the fairly small 
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charge transfer resistance of 20.0 kΩ cm–2 and the presence of a 45o line on the Nyquist plot 

indicative of a Warburg element resulting from diffusion of transferring ions.8  

The Randles circuit with Warburg element also seem to be a good fit for the EAN|DBH 

ITIES. Figure 32 shows how the Warburg element becomes prominent further from the PZC 

where there is a large ion transfer current. 

 

       

Figure 32|Impedance spectrum of EtNH3NO3|DBH interface at PZC and +125 mV with an 
interfacial area of 0.28 cm2. Scan from 10-0.1 Hz. 
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2.3 Conclusions 

In order to try to increase the polarisable potential window of an ITIES, a range of 

electrolytes and solvents were studied. It was shown that by using a more polar organic phase 

(a mixture of DCE and cyclohexane rather than pure DCE), the polarisation window could be 

increased by over 30%. An aqueous phase containing MgSO4 combined with a mixed solvent 

organic phase resulted in a polarisable potential window of over 1.2 V. 

It is likely that further tailoring of the organic phase, by using other solvents in or different 

solvent ratios, would lead to even larger potential windows. However, this will be counter 

balanced by a decrease in electrolyte solubility in the organic phase. 

 

Using this mixed solvent, it was shown for the first time that a polarisable water-free ITIES is 

possible. A 150 mV polarisation window was achieved which is similar in size to the 

water|RTIL window at 25 oC of Kakiuchi.32 This was made possible by the use of the protic 

ionic liquid ethylammonium nitrate, while other imidazolium based ionic liquid interfaces 

could not be polarised. Impedance spectroscopy results were fitted to a Randles circuit in 

order to successfully measure the capacitance of the interface and locate the PZC. 

In  the future, larger windows may well be possible using similar protic room temperature ILs, 

such as choline nitrate; by using ILs with higher melting points or by moving to a less polar 

solvent mixture.46  
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Chapter 3: Ult ra-Flat S urfaces 

 

Previous work has shown that while low voltage electrowetting with very low contact angle 

hysteresis is simple to achieve on mercury, this is not the same on other electrode materials.1-3 

For example, electrodes made by sputtering gold onto quartz exhibited a large amount of 

hysteresis in the contact angle/voltage response. 

Electrowetting on mercury is driven by a change in surface energy due to charging of the 

electrochemical double layer. The double layer capacitance of mercury is very similar to the 

double layer capacitance on other metals such as gold, so capacitance does not seem to be a 

plausible reason as to why electrowetting works on mercury rather than gold.4,5 If the 

differences between mercury and other metals are considered, the most obvious dissimilarity is 

that mercury is a liquid at room temperature. As a consequence, the mercury surface is 

atomically smooth.6 It is also self-healing: it cannot be scratched or damaged by physical 

means. Therefore, it was reasoned that if gold too could be made atomically flat, the hysteresis 

might be reduced and unrestricted electrowetting could be achieved on gold.  

This view point has been supported by the work of Marinescu, whose work is discussed in 

Chapter 1.3,7 In short, the theoretical model for an electrowetting system with pulsing 

suggested that reducing the frictional force on the droplet would allow the equilibrium contact 

angle to be achieved with fewer pulses. One of the origins of this frictional force could be 

surface roughness. As a result, substantial effort has been put into the preparation of such 

surfaces, with template stripping being the method of choice. As well as preparation of metal 

surfaces by conventional template stripping, the technique was extended to the preparation of 

ultra-flat glassy carbon surfaces. 

 

3.1 Template stripping 

3.1.1 Overview 

Template stripping is a process used to transfer the smoothness of a template material to a 

metal surface. Today, it is commonly used to prepare atomically flat surfaces for imaging 

techniques such as AFM and scanning tunnelling microscopy (STM).8 It is the principal 
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method chosen to produce flat surfaces for the electrowetting experiments described in 

Chapter 5.  

In 1993, Hegner et al. were the first to use template stripping to produce large atomically flat 

gold surfaces intended for scanning probe microscopy.9 The process was experimentally very 

simple. The first step involved epitaxial growth of a gold film on mica.  The gold surface was 

then adhered to a silicon wafer with epoxy. Finally, the mica was either chemically or 

physically removed from the underside of the gold to leave an atomically flat surface, reported 

to have a root mean square (RMS) roughness of 3 Å over 25 μm2. Priest et al. later suggested 

using gypsum to grow the gold on.10 The benefits of this were that the gypsum was much 

easier to remove than the mica and larger flat domains (>2500 μm2) could be achieved. Figure 

33 shows the difference between the topside of a gold surface, and the underside of that 

surface once it has been stripped. 

Recently, Chai and Klein have extended the original Hegner method to even larger areas by 

growing the gold on 3-6 μm thick single crystallographic plane facets of mica that are 

molecularly smooth on both sides.11 As a result atomically flat domains (RMS roughness 

<3 Å) are seen over areas on the scale of 1 cm2. This is the scale of area needed to test low 

voltage electrowetting as droplets are roughly 1 mm in diameter and ideally, the electrode 

surface should be homogeneously smooth under the entire droplet. 

The stability of the surface in contact with salt solutions and organic solvents is also important 

to consider. The literature suggests that immersion in water has no negative effect on the 

roughness. However, the downside of the template stripping method is that it requires the use 

of an epoxy. It has been found that the epoxy, if not carefully selected, can swell as it absorbs 

organic solvents, damaging the metal surface.12,13 
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Figure 33|[Taken from Woodard14] The topside of a conventional evaporated gold surface 
(left) and its counterpart underside formed by template stripping (right). 

 

Interestingly, it has been reported that the topside of a deposited gold surface effects the  

roughness of the surface below it.10 This means that different gold deposition methods, such 

as sputtering and evaporation, can produce different degrees of roughness from the same 

template. For sputtered gold surfaces, the area which is in the plasma flame where the atoms 

are most energetic creates a significantly rougher surface.15  

As noted in Chapter 1, the roughness of the surface will affect the equilibrium contact angle as 

increasing roughness increases the real surface area relative to the geometric area.16 An 

additional effect on gold is the adsorption of organic species from the ambient atmosphere. 

These organics have a dramatic effect the contact angle of the surface. Upon exposure of a 

newly created gold surface, the contact angle of a sessile water droplet on the surface gradually 

changes from 20o to almost 80o (Figure 34).11 Chai speculates that this is the result of 

hydrophobic organic molecules in the air adsorbing to an otherwise hydrophilic surface, 

although other possibilities include a moderately slow reorganisation of the gold or an 

interaction between the water and the gold. Chai’s opinion is shared by Bewig and Zisman 

who state that any hydrophilic surface, when exposed to any atmosphere other than a purified 

gas, will develop a more hydrophobic surface as a result of organic contamination.17 

 



  Ultra-Flat Surfaces 

90 
 

 

Figure 34|[Taken from Chai11] Variation of contact angle of a water droplet on a freshly 
exposed gold surface with time. The increase in the contact angle shows a change in the gold 
surface energy over time, supposedly as a result of adsorption of atmospheric organics. 

 

3.1.2 Alternative methods 

3.1.2.1 Annealing 

Annealing—a high temperature surface treatment conducted in an inert atmosphere—is a 

commonly used technique for preparing smooth metal surfaces as it significantly reduces RMS 

roughness.18 However, it also causes the surface to form microdomains known as clusters 

(Figure 35).10 Whilst the RMS roughness may decrease (reducing frictional forces in an 

electrowetting experiment) the clusters may create local energy minima for the droplet to 

become stuck in. Therefore, annealing was not used as it was decided that regularity of the 

surface should be a priority. 
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Figure 35|[Taken from Masens18] Scanning probe micrographs of template stripped gold 
films on mica. The annealing process results in the formation of large microdomains. 

3.1.2.2 PDMS surface adhered gold 

Gold can be adhered to polydimethylsiloxane (PDMS) functionalised with a thiol surface 

termination (Figure 36). The top layer is either directly deposited onto the thiol coated surface 

or transferred via a template to improve the surface roughness.12,15 Simple direct deposition 

methods yield RMS roughnesses of 6-7 Å with a 15-20 nm grain size while more involved 

templating methods yield 2-4 Å RMS roughness with a 500 nm grain size. Despite the fact that 

this method avoids the use of an epoxy interlayer, which may not be stable in the presence of 

organic solvents, the relatively small grain size coupled with the additional complexity of this 

method meant that template stripping was preferred. 

 

Figure 36|[Taken from Pattier15] Schematic route for the formation of a silicon-PDMS-thiol-
gold array. 
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3.2 Ultra-flat metal surfaces 

3.2.1 Experimental 

A 100 nm layer of gold, copper or platinum was sputtered onto 2 cm × 7.5 cm VWR 

International Super Premium glass microscope slides. Immediately prior to sputtering, the 

glass was cleaned as follows: 

1. Soaked in a solution of 0.1 mol dm–3 potassium permanganate + 0.18 mol dm–3 

sulphuric acid for 1-2 h to oxidise any organics 

2. Rinsed with acidified hydrogen peroxide solution (0.36 mol dm–3 H2SO4 + 0.18 

mol dm-3 H2O2) 

3. Rinsed with ultrapure water six times 

4. Dried under a stream of nitrogen 

5. Dried upright at 110 oC for 5 min 

All sputtering was performed using an Emitech K575X sputterer; Emitech TK8859 gold 

targets, Emitech TK8879 titanium targets and Emitech TK8845 copper targets. Surface 

morphologies were characterised with an Agilent Technologies 5500 AFM using Windsor 

Scientific PPP-NCH probes. Image processing involved surface levelling and was performed 

using Agilent PicoView version 1.8 software. 

Glass rectangles (approximately 1 cm × 2 cm) were then stuck to the gold coated microscope 

slide with one half of the glass rectangle hanging over the edge of the microscope slide. The 

glass was stuck down with a variety of epoxies including Buehler Epo-Thin Low Viscosity 

Epoxy Resin; Duralco 4525 All Purpose Room Temperature Curing Epoxy; Duralco 4703 

Adhesive, Coating and Potting Epoxy; RS Quickset Epoxy; Araldite 2011 Multi Purpose 

Epoxy and Epo-Tek 377 High Temperature Epoxy. Following curing of the epoxies 

according to manufacturer guidelines, the glass rectangles were pulled off the microscope slide 

when needed, revealing a smooth clean metal surface. 

Contact angles were measured from photographs taken with a CCD (from a Phillips 

SPC900NC webcam) through a video zoom microscope (Edmund Optics Infinity K2/S Long 

Distance Video Lens) at 20× magnification. Contact angles were subsequently measured using 

Fta32 2.0 contact angle software (First Ten Ångstroms). All reported contact angles are 

advancing contact angles averaged over five measurements. 
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3.2.2 Results and discussion 

3.2.2.1 Roughness 

Template striping was used to produce smooth electrode surfaces. The roughness of the 

resulting surfaces was characterised by AFM. Figure 37 shows a typical micrograph of a 

template stripped gold surface prepared using Buehler Epo-Thin epoxy and a glass 

microscope slide template. The features are on the order of only several nanometres, with an 

RMS roughness of 3.9 Ǻ and peak height of 2.9 nm. The peak corresponds to roughly 12 gold 

atoms stacked on top of each other, and so it can be said that the roughness is on the atomic 

scale.19 This surface is much smoother than the sputtered gold surfaces used for previous 

electrowetting experiments, which were at least an order of magnitude rougher.14 Oddly, the 

roughness of the template stripped surface was less than that of the template (RMS roughness 

of VWR International Super Premium glass microscope slide 15.1 Ǻ). This suggests that the 

gold may not exactly mate with the surface or take on its exact configuration. 

 

Figure 37|AFM image (Area: 4.3 μm × 4.3 μm; RMS roughness: 3.9 Å; Peak height: 2.9 nm). 

 

However, as electrowetting occurs over macroscopic areas, the roughness over much larger 

distances is perhaps more important, as the length scale effecting pinning may be important. 

Figure 38 shows template stripped gold and sputtered gold surfaces over 80 μm2. As well as an 

order of magnitude difference in roughness, there is a much more striking difference between 

the surfaces: the presence of large dust particles. While the template stripped surface has only 
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a few large peaks over the entire area (maximum height 28.4 nm) the sputtered surface has 

many peaks which are substantially larger (maximum height 184 nm).  

 

       

Figure 38|AFM images of template stripped gold (left) and sputtered gold (right) surfaces 
over a large area. template stripped gold area: 80 μm × 80 μm; RMS roughness: 4.5 Å; Peak 
height: 28.4 nm. Sputtered Gold Area: 80 μm × 80 μm; RMS roughness: 40.3 Å; Peak height: 
184 nm. The sputtered surface is clearly contaminated with large dust particles while the 
template stripped gold surface only has a few small peaks. 

 

These dust particles are not a result of prolonged exposure to the ambient atmosphere, but 

deposit over short time periods. Figure 39 shows a photograph of a sputtered electrode 

immediately after sputtering. It should be noted that while the electrode looks very dusty in 

the photograph, the surface appears very clean to the naked eye if not deliberately lit in such a 

way as to highlight the dust on the surface. The fact that the sputtered surfaces attract dust 

more quickly than freshly stripped surfaces suggests they may be left with a weak electrostatic 

charge after sputtering. 
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Figure 39|(Left) Photograph of template stripped gold immediately after stripping. The 
backlight is reflected in the right-hand corner. (Right) Photograph of sputtered gold 
immediately after removal from sputter machine. The images are both back lit at a shallow 
angle to highlight any surface contaminants. Only a few specks of dust can be seen on the 
freshly stripped surface while the entirety of the sputtered surface is covered with dust. 

 

These results are an excellent illustration of one of the less obvious benefits of template 

stripping: the surfaces are protected from atmospheric contamination until immediately prior 

to use. It may also be the case that the pinning seen on template stripped surface is not so 

much a result of average roughness but rather because of the presence of large dust particles 

on the surface. This theme is discussed further in Chapter 5. 

 

3.2.2.2 Contact angle 

As mentioned in Chapter 1, surface roughness affects the contact angle of a droplet on the 

surface. Increasing roughness lowers the water contact angle if the surface is hydrophilic and 

increases it if the surface is hydrophobic. As the metal surfaces produced in this study were 

hydrophilic, and they were less rough than common gold surfaces, the contact angle was 

expected to be greater than 60-65o, the common range of contact angles for water on gold.20 

Freshly stripped gold had a very small contact angle (measured as 25±5o). However, the 

contact angle slowly increased with time (as explained in Section 3.1.1) and after 24 hours the 

contact angle was 67o which is relatively high for gold, as expected for a smooth surface. This 

was presumably due to the adsorption of organics onto the surface rather than a roughening 

of the surface which would have the effect of reducing the contact angle. 
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3.2.2.3 Stability 

Template stripped gold surfaces, made using the various epoxies listed in Section 3.2.1, were 

left in water for four hours and then dried at room temperature. AFM was then used to assess 

the change, if any, in surface roughness and morphology. The smoothest and most stable 

surfaces were made using Buehler Epo-Thin, although Epo-Tek 377 surfaces were very 

similar, as can be seen from Table 2. 

 

 RMS Roughness / Å 

 
Freshly 
stripped 

72 h in air 4 h in water 

Buehler Epo-Thin 3.9 6.9 8.3 

Epo-Tek 377 4.6 6.7 8.9 

Duralco 4525 8.7 12.7 14.6 

Duralco 4703 8.2 11.0 29.1 

RS Quickset Failed Failed Failed 

Araldite Failed Failed Failed 

 

Table 2|Variation in RMS roughness of template stripped gold with the epoxy used in the 
surface fabrication. Also shown is how roughness slowly increases after the gold has been 
exposed to the atmosphere and how the roughness increases more quickly after the gold has 
been submerged in water. The ‘failed’ surfaces were very rough immediately after being 
removed from their templates. They exhibited large cracks which could easily be made out by 
the naked eye. 

 

As well as these microscopic changes, in many cases macroscopic blemishes and a ‘rippled’ 

texture, visible to the naked eye, also appeared on the surface following exposure to water 

(Figure 40). Eventually, the water would creep in between the gold and the epoxy, seriously 

damaging the entire surface. 
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Figure 40|Template stripped gold after long-term exposure to water. Clearly this surface is 
very different to the one shown in Figure 39. 

 

One possible explanation for these defects is a reorganisation of the surface due to a 

difference in the gold|air and gold|water surface energies. Alternatively, there may have been 

small pinholes in the gold surface through which the water entered. 

This result demonstrates that the epoxy used for template stripping has a dramatic effect on 

the quality and stability of the resulting gold surface, especially if the surface is exposed to 

water as is the case for electrowetting. Buehler Epo-Thin appears to make the most water 

stable surfaces. This epoxy is designed to be stable at high temperatures and also has a very 

low viscosity. Epo-Tek 377 is also a high temperature, low viscosity epoxy and appears to 

produce the second most stables surfaces, behind the Buehler Epo-Thin. This suggests that 

these are important properties for stability and any future work should test similar products 

from other manufactures for the possibility of an even better epoxy. 

These results are in direct contrast to the common claim that template stripped gold is stable 

in water.21 While it is possible that a difference in the method of surface preparation could be 

responsible, this is unlikely due to the simplicity of the process. Moreover, it seems that the 

surface is inherently unstable and the nature of the epoxy is critical in determining the stability. 
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3.3 Glassy carbon 

Carbon, often in the form of glassy carbon, is a commonly used electrode material.22 It has 

many desirable properties such as its excellent chemical stability, electrochemical window, 

mechanical strength and hydrophobicity. As will be seen in Chapter 4, it can also be effectively 

functionalised by diazonium compounds. For these reasons, preparation of ultra-flat glassy 

carbon for use as a substrate for electrowetting was attempted. 

Glassy carbons are prepared by pyrolysis of an organic precursor material at 1000-3000 oC in 

an inert atmosphere. Many mesoporous glassy carbons have been prepared from porous 

templates such as zeolites and silica.23 The precursor is polymerised inside the template, which 

is then etched away leaving a polymer skeleton. The skeleton will retain this structure, even 

after pyrolysis. The template stripping of glassy carbon described here is analogous to this 

process. The general method proposed was to mate a carbon polymer with a flat template and 

then pyrolyse the polymer. On removal of the template a flat glassy carbon surface should be 

left. Any previous attempts at such a process in the literature are unknown to the author 

 

3.3.1 Properties 

Glassy carbon was first made in 1962 by Yamada and Sato by the high temperature pyrolysis 

of a phenolic resin in an inert atmosphere.24 Its structure was first thought to be essentially 

graphitic; however, recent studies using transmission electron microscopy have suggested a 

fullerene type structure (Figure 41).25  
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Figure 41|[Taken from Harris25] Illustration of the proposed structure of a non-graphitised 
glassy carbon based on fullerene type elements. 

 

Owing to this unique structure, glassy carbon has a very low porosity and a very low 

permeability to gases, unlike graphitic carbons. This can be seen from Table 3, which contains 

the properties of a typical glassy carbon. Template stripped glassy carbon would have many 

benefits over template stripped gold (or other template stripped metals). It has a larger 

electrochemical window than gold, while retaining similar wetting properties, double layer 

capacitance and mechanical strength. Although its bulk resistivity is higher than that of gold, 

template stripped gold is very thin and therefore has a comparable resistance to thicker glassy 

carbon electrodes. Glassy carbon is also much cheaper than gold. The biggest potential 

advantage of template stripped glassy carbon would be its resistance to organic solvents. Due 

to the epoxy used, template stripped gold is not stable in certain solvents; the surface 

spontaneously roughens.13 This means it may not be suitable as a substrate for electrowetting. 

On the other hand, template stripped glassy carbon is not expected not to have this problem 

as no epoxy is needed and it is itself resistant to most solvents. 
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Glassy 
carbon 

Graphitic 
carbon 

Gold26 

Bulk density/g cm–3 1.3-1.55 1.6 19.3 

Gas permeability/cm2 s–1 10–6-10–12 10–2 N/A 

Tensile strength/kg cm–2 400-1000 420 1150 

Thermal expansion 
/oC–1 × 106 

2-3.5 1-3 14.3 27 

Thermal conductivity 
/W cm–1 K–1 

0.24-1.43 × 
10–2 

7.2-9.5  × 10–2 2.96 

Contact angle/o 64±2 28 65 66±3 28 

Resistivity/Ω cm 1-5 × 10–3 7 × 10–4 2.19 × 10–6 

Anodic limit, pH ~6 
/V vs. SCE 

1.4 1.26 0.6 a,29 

Cathodic limit, pH ~14 
/V vs. SCE 

–1.6 –1.4 –1.58 30 

Double layer capacitance, 
0.9 mol dm–3 

 NaF/μF cm–2 
~13 16 ~12 b,5 

 
 
Table 3|Properties of high temperature glassy carbon compared with graphitic carbon. Data 
taken from Kinoshita unless otherwise stated.31 Values are purely illustrative as glassy carbon 
properties are dependent upon precursor material and pyrolysis conditions. aGold 111, defined 
as onset of oxide growth. bMeasured with coumarin present in solution. 
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3.3.2 Precursors 

Glassy carbon is produced by pyrolysis of a carbon containing precursor material at elevated 

temperatures. Phenolic resins (Figure 42), along with many other organic polymers such as 

poly(furfuryl alcohol), poly(vinyl chloride), cellulose and poly(acrylonitrile) can be used to 

make glassy carbon.32,33  

 

Figure 42|Phenol formaldehyde, formed by co-polymerisation of phenol and formaldehyde. 
The alternating phenol/methylene units form chains which are cross-linked via tri-substituted 
phenol units. 

 

Pyrolysis is usually performed at temperatures between 1000-3000 oC; however, Callstrom et 

al. have produced high quality glassy carbons at temperatures of only 600 oC.34 This is 

achieved by using precursors with a high carbon to hydrogen ratio; molecules with a high 

double and triple bond content. This means that less atomic rearrangement and elimination is 

required to form the glassy carbon structure. Therefore, glassy carbon forms at a lower than 

usual temperature. Template stripping uses a template to form the ultra-flat surface. At high 

temperatures, the glass or quartz template is liable to deform and so a low temperature 

pyrolysis was preferable.  

In order to make template stripped glassy carbon, the precursor needs to take on the shape of 

the template. This means that the precursor cannot be hard but instead must flow. Yet, at the 

same time it must not be too liquid or else it will run off the surface of the template. In order 
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to achieve this, a number of precursors were tested including a low molecular weight phenol 

formaldehyde resin. This had a putty-like consistency which became syrup-like at 90 oC. It 

would then solidify as the polymer chains cross-linked or pyrolysed at higher temperatures. 

The molecule 9,10-bis(phenylethynyl)anthracene, which is shown in Figure 43, was also 

chosen because it melts at 240 oC but pyrolyses before evaporating. It also has a high double 

and triple bond content and may therefore form glassy carbon at a lower temperature. Other 

precursors tested were: phenol formaldehyde, poly(furfuryl alcohol) and 

poly(phenyldiacetylene), however, only phenol formaldehyde and 9,10-

bis(phenylethynyl)anthracene were successfully template stripped. 

 

 

Figure 43|9,10-bis(phenylethynyl)anthracene. This molecule melts at 240 oC, allowing it to 
take on the shape of the template it sits on. At higher temperatures it decomposes forming a 
solid which can then be pyrolysed. It contains only carbon and hydrogen and has a high 
proportion of single and double bonds, meaning less rearrangement or mass loss is needed to 
form glassy carbon. 

 

3.3.3 Sample preparation 

As explained above, the precursor materials were melted onto the flat templates and then 

pyrolysed to form a flat glassy carbon surface. Glass and quartz microscope slides and freshly 

cleaved mica were tested as templates. They all have similar roughnesses however the quartz 

and mica can tolerate the high temperatures required for pyrolysis. The different materials also 

have different wetting properties, which is an important consideration when mating precursor 

and template. 

The pyrolysis process itself can be broken down into two distinct regions. Phenol 

formaldehyde will be used as an example. As can be seen from Figure 44, there is a large 
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decrease in sample volume between 350 oC and 650 oC. This coincides with a significant 

reduction in mass as molecules such as water, methane, carbon monoxide and hydrogen are 

eliminated.35,36 By the time the sample has been heated to 650 oC, it already conducts 

electricity; with a resistivity on the order of 100 mΩ cm. Beyond this temperature mostly 

hydrogen is lost and the gains in conductivity begin to diminish.22 At 1000 oC the reduction in 

mass becomes almost insignificant and the resistivity is around 10 mΩ cm. Upon heating to 

3000 oC, small defects are annealed and the resistivity peaks at around 5 mΩ cm.37 

      

Figure 44|[Data taken from Bhatia35] Linear shrinkage (■) and variation of electrical resistivity 
(▲) of phenol formaldehyde resin with increasing pyrolysis temperature. 

 

Due the volume reduction during pyrolysis, the sample can crack or form an inhomogeneous 

surface. This means that a very specific sample preparation and heating cycle are often 

required. Below is an example of a typical heating sequence:38 

1. Heat to 200 oC 

2. Hold for 3 hours to ensure sample is fully cured and to evaporate off any volatile 

species 

3. Heat to 600 oC (1 oC per minute) 

4. Hold for 24 hours to slowly remove hydrogen and oxygen 

5. Heat to 1000 oC 

6. Hold for 3 hours to improve conductivity 



  Ultra-Flat Surfaces 

104 
 

 

3.4 Ultra-flat carbon surfaces 

3.4.1 Experimental 

3.4.1.1 Phenol formaldehyde synthesis 

All chemical were used as received from Sigma-Aldrich. 15.1 g phenol (161 mmol), 49 ml 

37 % formaldehyde solution (53.4 g, 658 mmol formaldehyde) and 9 ml 28 % ammonia 

solution were mixed together. The solution was heated at 80 oC until opaque with a white 

suspension.38 The mixture was allowed to settle and the top surface layer decanted off. The 

remaining solid was then dried under vacuum. Once dry, a pale yellow/green solid was left, 

which was very soft and could easily be easily shaped. This was placed onto circular quartz 

coverslips (Agar Scientific, 10 mm diameter, 1 mm thickness) and heated to 90 oC under 

vacuum for 1 h, forming semi-transparent amber domes on top of the coverslips ready for 

pyrolysis. 

 

3.4.1.2 9,10-bis(phenylethynyl)anthracene preparation 

Approximately 30 μg 9,10-bis(phenylethynyl)anthracene (Alfa-Aesar) was deposited onto a 

circular quartz coverslip (Agar Scientific, 10 mm diameter, 1 mm thickness). This was heated 

from 150 oC to 250 oC over 2 h. It was then held at 250 oC for 1h, before being cooled to 

room temperature over 2 h. This produced hard shiny black domes of polymerised 

9,10-bis(phenylethynyl)anthracene on top of the quartz coverslip ready for pyrolysis. 
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3.4.1.3 Pyrolysis procedure 

The carbon precursors were placed in an atmosphere of 5% hydrogen in nitrogen and 

subjected to the following heat ramp:  

1. 25 oC to 600 oC  

2. 600 oC for 12 h 

3. 600 oC to target temperature 

4. Target temperature for 12 h 

5. Target temperature to 25 oC 

The target temperature was 600, 700, 800, 900 or 1000 oC. The heating/cooling rate was 1 oC 

min–1. 

 

3.4.1.4 Conductivity measurements 

Conductivity was measured using a homemade four point conductivity probe (2 mm probe 

spacing) and a Gamry Reference 600 potentiostat. In a four point probe measurement, current 

flows between the outer probes and the potential drop across the inner probes is measured. It 

assumes a semi-infinite, continuous film. (Equation 16 or (Equation 17 was used to calculate 

the resistivity:39 
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(Equation 17) 

 

where ρ is the resistivity, t is the sample thickness, s is the probe spacing, U is the potential 

drop across the inner probes and I the current between the outer probes. (Equation 16 applies 

when the sample thickness is less than half the probe spacing (t < s/2), otherwise (Equation 

17 was used. 
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3.4.2 Results and discussion 

3.4.2.1 Preparation and pyrolysis 

The photographs in Figure 45 and Figure 46 show the three stages of glassy carbon 

preparation for the two precursor materials used. Template stripped surfaces could only be 

produced using quartz substrates. When mica substrates were used, the precursor materials 

would wet and spread over the entire surface and not form bulk glassy carbon. As can be seen 

from the images below, the surface in contact with the template formed islands roughly 1 mm2 

in area during pyrolysis. While the surfaces appears rough and distorted, the islands 

themselves are in fact very smooth as will be seen below. 

                                     

 

Figure 45|(Left) Phenol formaldehyde precursor on quartz disk. (Middle) After heating to 
90 oC, the precursor melts and mates with the surface of the flat template. It then begins to 
cross link forming a hard solid. (Right) After pyrolysis glassy carbon forms. 

 

1 cm 

90 oC pyrolysis 
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                                  x 

 

Figure 46|(Left) 9,10-bis(phenylethynyl)anthracene precursor material on quartz disk. 
(Middle) Upon heating to 250 oC the precursor melts and appears to polymerise, forming a 
hard, black and shiny solid. (Right) After pyrolysis glassy carbon forms. 

 

3.4.2.2 Surface roughness 

AFM images of the pyrolysed phenol formaldehyde and 9,10-bis(phenylethynyl)anthracene 

indicate smooth but wavy surfaces. The waviness is most probably a consequence of the 

shrinking of the glassy carbon during pyrolysis. However, the waviness is quite subtle: for the 

phenol formaldehyde carbon the peak-to-peak amplitude is <20 nm and the peak separation is 

20 μm. For the 9,10-bis(phenylethynyl)anthracene carbon these values are <70 nm and 80 μm 

respectively. Therefore, this waviness is not considered as ‘roughness’ on the nanoscale. 

If this waviness is removed from the image by the fitting of a third order polynomial, the 

nanoscale roughness can be seen. Figure 47 below shows the phenol formaldehyde glassy 

carbon surface. This is in fact incredibly smooth, with RMS roughness of 6.5 Ǻ which is close 

to the roughness of template stripped gold (3.9 Å).  

pyrolysis 250 oC 

1 cm 
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Figure 47|AFM image of template stripped phenol formaldehyde derived glassy carbon. Area 
5 μm × 5 μm; RMS roughness: 6.5 Å; Peak height: 10.8 nm. 

 

The 9,10-bis(phenylethynyl)anthracene glassy carbon surface is shown in Figure 48. Much like 

the phenol formaldehyde carbon surface, it too is very smooth, with an RMS roughness of 

2.6 Å over 5 μm2. The surface also appears to have fewer features than the phenol 

formaldehyde surface, which has regular pits on it.  

 

 

Figure 48|AFM image of template stripped 9,10-bis(phenylethynyl)anthracene derived glassy 
carbon. Area 5 μm × 5 μm; RMS roughness: 2.6 Å; Peak height: 8.7 nm. 
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Furthermore, these surfaces did not roughen over a period of several months and were also 

unaffected by water or acetone, which was not the case for conventional template stripped 

metal surfaces. This is because glassy carbon is a very stable material, as discussed above, 

which is clearly a huge benefit of using template stripped glassy carbon, allowing experiments 

on very flat surfaces to be conducted in liquids over long periods of time. The glassy carbon 

surfaces are also much smoother than commercially available glassy carbons. Diamond 

polished glassy carbon from HTW GmbH, Germany had an RMS roughness of 56.5 Å with a 

peak height of 54.3 nm over 10 μm2. It should be noted that basal planes of highly oriented 

pyrolytic graphite (HOPG) are smoother, however, HOPG is not glassy carbon and has 

different chemical and physical properties as well as different electrochemistry.40 It is also 

difficult to cleave over large areas and will typically have many steps. HOPG is also a very 

expensive material while the template stripped glassy carbon reported here can be prepared 

relatively cheaply. 

 

3.4.2.3 Conductivity 

Conductivity is an important property of glassy carbon, particularly if it is to be used for 

electrowetting. Phenol formaldehyde and 9,10-bis(phenylethynyl)anthracene glassy carbons 

were pyrolysed at different temperatures and their conductivities measured (Table 4). As 

expected, the conductivity increased with increasing pyrolysis temperature. The critical 

temperature at which there was a dramatic increase in conductivity was 800 oC for the phenol 

formaldehyde (five orders of magnitude increase) and 700 oC for 9,10-

bis(phenylethynyl)anthracene (three orders of magnitude increase). Therefore, these are the 

temperatures at which cross linking between molecules must begin. Heating to higher 

temperatures results is a much smaller but nonetheless significant increase in conductivity.  

The final conductivity after a 1000 oC pyrolysis temperature  for phenol formaldehyde derived 

glassy carbon was 5.1 S cm–1, while the conductivity of 9,10-bis(phenylethynyl)anthracene 

derived glassy carbon (1000 oC pyrolysis) was 36 S cm–1. The greater fraction of double and 

triple bonds in the 9,10-bis(phenylethynyl)anthracene may account for this. These 

conductivities are slightly lower than the average glassy carbon conductivities of approximately 

100 S cm–1 reported in the literature.35,37 These results suggest that 9,10-
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bis(phenylethynyl)anthracene is a superior template stripped glassy carbon precursor to phenol 

formaldehyde as it produces a more conductive sample at lower pyrolysis temperatures. 

 

Pyrolysis 
temperature 

/ oC 

Phenol 
formaldehyde 

carbon 
conductivity 

/ S cm–1 

9,10-
bis(phenylethynyl) 
anthracene carbon 

conductivity 
/ S cm–1 

500 Insulator Insulator 

600 1.5 × 10–5 5.3 × 10–4 

700 9.9 × 10–5 0.38 

800 3.2 12 

900 5 34 

1000 5.1 36 

 

Table 4|Conductivity of phenol formaldehyde and 9,10-bis(phenylethynyl)anthracene derived 
glassy carbons based on final pyrolysis temperature. There is an error of ±20% due to the 
difficulty in measuring the sample thickness. 

 

3.5 Conclusions 

3.5.1 Metal surfaces 

Ultra-flat template stripped metal surfaces were successfully prepared as previously seen in the 

literature. However, it was shown that this could be achieved with much cheaper, more 

common-place materials such as glass microscope slides rather than freshly cleaved mica. 

Despite the increased roughness of such materials when compared to atomically smooth mica, 

the resulting surfaces have an RMS roughness of less than 4 Å, close to ‘atomic roughness’. 

The very low RMS roughness occurred over a macroscopic area, which has only previously 

been reported for mica templates.11 These provide very convenient metal surfaces which can 
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be prepared in advance and freshly exposed prior to use, ensuring cleanliness of the surface. 

As they are simple and cheap to prepare, they provide an attractive alternative to simple 

sputtered or evaporated metal surfaces. 

The stability of template stripped surfaces in water and air was also tested. It was shown that 

they are not stable in water, especially over long periods of time. This is in disagreement with 

what is commonly stated in the literature. Similarly, albeit more slowly, the surfaces seem to 

degrade in air. Furthermore, it was shown that the epoxy which is used for the template 

stripping is critical in creating a smooth and stable template stripped surface.  

Future work in this area could further explore the origin of the instability of these surfaces and 

search for other epoxies or adhesives which may improve the stability. 

 

3.5.2 Carbon surfaces 

Smooth glassy carbon surfaces were prepared with a modified template stripping process for 

the first time. This involved mating the glassy carbon precursor with a flat quartz template. 

The precursor was then pyrolysed while still in contact with the quartz, resulting in the 

formation of a very smooth glassy carbon surface. 

Two different glassy carbon precursors were used: phenol formaldehyde which has been used 

previously and 9,10-bis(phenylethynyl)anthracene which has not. These produced surfaces 

with nanoscale roughnesses of 6.5 Å and 2.6 Å respectively. However, the surfaces were wavy 

on the microscale. Nonetheless the surfaces should still be suitable as substrates for studying 

nanoscale assemblies for which ultra-flat surfaces are required, and thus provides a new 

material (glassy carbon) for such experiments.8 Of particular merit was the surface stability in 

water and organic solvents. The carbon itself had good conductivity, close to literature 

conductivity values (36 S cm-1 after heating to 1000 oC for the 9,10-

bis(phenylethynyl)anthracene).The surfaces were also cheap and simple to prepare and may 

provide a good alternative to HOPG. 

Future research should focus on the development of other precursors which may yield higher 

conductivities or pyrolyse at lower temperatures. The lower pyrolysis temperature may result 

in a smaller degree of surface waviness.   
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Chapter 4: Fluorinate d Electrodes 

 

Studies on EWOD systems have shown that hydrophobic dielectric materials are important 

for reducing hysteresis.1 Furthermore, organic solvent droplets on hydrophobic surfaces have 

low Young angles, thus lowering the minimum attainable electrowetting contact angle. For 

these reasons, various methods for creating fluorinated electrodes were investigated. 

A common method of increasing surface hydrophobicity is the inclusion of fluorine atoms. 

This is because a fluorine atom bonded to an sp3 carbon greatly disrupts the hydrogen 

bonding network in water increasing the surface energy.2 However, these fluorine containing 

materials are usually insulating solids, such as PTFE. Any surface for electrowetting purposes 

must be conductive and so this chapter concerns the production of fluorine containing 

hydrophobic surfaces with a high degree of conductivity for use as electrowetting electrodes. 

Three distinct methods are used: electrochemical functionalisation, plasma fluorination and 

chemical fluorination of a conducting polymer. 

 

4.1 Electrochemical functionalisation 

Electrochemical functionalisation of surfaces, often known as electrografting, is a method of 

attaching small organic molecules to solid conducting surfaces. The reaction generally 

proceeds via a reactive intermediate generated by electrochemical oxidation or reduction 

which then attacks the surface and forms a covalent bond.3 The strength of the bond is critical 

as it is important to permanently adhere the fluoro species to the surface to ensure that the 

surface cannot change in composition underneath the droplet (a source of hysteresis discussed 

in Chapter 1, as happens with chemisorbed thiols for example).4 
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4.1.1 Electrografting 

4.1.1.1 Overview 

Many methods for electrochemical surface functionalisation have been developed, with the 

generation of a radical intermediate common to all of them.3 

The one electron oxidation of many functional groups—such as primary amines, phosphates, 

alcohols and carboxylates—generates a free radical and a proton. These reactions occur at 

moderate potentials, for example the oxidation of the amino group in 

4-aminobenzylphosphonic acid is an irreversible process occurring at 0.75 V (versus the 

normal hydrogen electrode) while the oxidation of the phosphate group occurs at 0.90 V 

(Figure 49).5 The free radical species generated then proceeds to attack the electrode, forming 

a covalent bond. 

 

 

Figure 49|[Taken from Yang5] Illustration of the mechanism of surface functionalisation of a 
glassy carbon electrode (GCE) via amine or phosphate oxidation. 
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Similarly, other functional groups can be electrochemically reduced. These include alkyl 

halides, which can also be photografted with electromagnetic radiation, and vinylic 

compounds which subsequently undergo electropolymerisation at the double bond.6-8 

Surfaces functionalised by the above methods have been successfully used as sensors for a 

plethora of molecules—such as hydrogen peroxide, nitric oxide, dopamine and alanine—and 

can also effectively measure pH.9-13 However, the surfaces are of highly variable quality and 

examples are generally limited to solitary cases in the literature. 

The precise nature of the film, including its structure and electrochemistry, is often not fully 

characterised. Preliminary experiments that were performed as part of this project resulted in 

macroscopically patchy surfaces (feature size greater than 0.1 mm). By far the most common 

method of electrografting is via reduction of diazonium compounds. This is covered in the 

next section and was the preferred method for surface functionalisation in this thesis. 

 

4.1.1.2 Diazonium grafting 

Following some preliminary experiments covering many of the above methods, diazonium 

chemistry was found to be the most efficient and effective surface functionalisation method. It 

involves the one electron reduction of an aromatic diazonium compound which creates an aryl 

free radical and generates molecular nitrogen in the process (Figure 50).14  
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Figure 50|Mechanism of surface functionalisation by a generic diazonium compound. The 
one electron reduction of the diazonium species produces an aryl free radical and molecular 
nitrogen which diffuses away. The radical then attacks the surface forming a covalent bond. 

 

Figure 51 shows the voltammetry of the electrochemical reduction of a typical diazonium 

compound, 4-nitrobenzenediazonium. It shows how after the first reductive scan, the 

electrochemical current disappears almost entirely. The organic layer that forms on the surface 

blocks the diazonium compound from diffusing to the electrode, preventing more molecules 

from being reduced. This layer, usually around 20 nm in thickness, cannot be removed by 

ultrasonication, indicating that it is securely attached. It is also commonly reported (without 

experimental justification) that the organic layer is a monolayer.3 This is almost certainly not 

the case and, as will be seen below, special methods are required to generate a monolayer. It is 

clear from the thickness of the layer that it is more than one molecule thick. In fact, after the 

first layer has been deposited, radicals continue to be produced (the electrode surface is not 

blocked). However, as the electrode surface is now completely covered, the radicals proceed 

to attack the molecules already on the surface and a multilayer begins to grow. This process 

continues until the multilayer blocks the electrochemical reduction and no more radicals are 

formed. 
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Figure 51|[Taken and modified from Belanger3] Voltammetry of the electrochemical 
reduction of 4-nitrobenzenediazonium (5 mmol dm–3 in 0.1 mol dm–3 H2SO4, scan rate = 100 
mV s–1). The first scan, scan a, shows a broad reduction peak centred on –60 mV. In the 
second scan, scan b, the peak has disappeared. This is explained by the formation of an organic 
layer which blocks access of the 4-nitrobenzenediazonium to the electrode. 

 

The aryl group is essential to the stability of the radical and the ability of the molecule to 

functionalise the surface. Alkyl radicals have much shorter lifetimes, to the extent that they 

decompose or react with the solvent before being able to attack the electrode surface and very 

few aliphatic salts have been successfully grafted.15 The functional groups attached to the aryl 

ring seem to have little effect on the viability of the functionalisation. As a result, almost all 

simple aryl diazonium species have been successfully adhered to a variety of substrates such as 

gold, copper, iron and the various forms of carbon.3 

 

4.1.1.3 Monolayer formation 

For electrowetting purposes, the formation of a surface monolayer may be important because 

a multilayer might be expected to be very rough while also reducing the capacitance of the 

metal surface. In turn, this could reduce the electrowetting response. As mentioned above, 

despite initial suppositions, diazonium grafting will ordinarily produce a multilayer. Therefore, 

several methods, which will be described below, have been developed to overcome this. 

The ‘formation-degradation’ procedure has been reported by the group of Daasbjerg.16,17 This 

method involves the grafting of aromatic diazonium compounds containing either disulphide 
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or hydrazone functionalities, shown in Figure 52. Following grafting of the molecules by the 

conventional method (resulting in multilayer formation), the first molecular layer itself is 

cleaved in half. This is done either electrochemically in the case disulphide or by acid 

hydrolysis in the case of hydrazone. The result is that the outer layers, which are attached to 

the outer half of the first layer, are removed entirely from the surface and a monolayer is 

formed. 

 

 

Figure 52|Illustration of the ‘formation-degradation’ method for surface monolayer 
preparation. The disulphide functionality can be oxidised to a thiol, detaching all but the first 
aromatic ring from the electrode surface. Similarly, the hydrazone group can be chemically 
cleaved, leaving behind an aldehyde. 

 

Leroux et al. have produced monolayers by depositing diazonium compounds with 

triisopropylsilyl protecting groups.18 These are very large, bulky groups and prevent radicals 

from attacking the aryl ring, thus preventing multilayer growth. The silyl group can then be 

removed chemically leaving an alkyne functionality. 

The problem with the methods presented thus far, is that they don’t leave molecules 

containing the hydrophobic functional groups needed. This means that post functionalisation 

is necessary. Whilst this is possible, it requires lengthy and expensive characterisation by XPS 
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and Raman spectroscopy to confirm the presence of the desired functional group. 

Furthermore, the conversion of all surface molecules is unlikely to be complete. 

Two methods of monolayer formation remain which don’t require any post functionalisation, 

allowing a single layer of hydrophobic molecules to be attached to the surface in one step. The 

first, oxidation of phenyl hydrazines (formed by chemical reduction of the relevant diazonium 

compound), has been reported by Malmos et al.19,20 Surface physisorption of other molecules 

(which must later be removed by sonication) is postulated to explain the termination of 

growth at a monolayer. Nonetheless, it is still somewhat unclear as to why such thin layers 

form as the same aryl free radical intermediates seen in multilayer growth are believed to be 

created. The other method is similar in principle to the triisopropylsilyl protecting group 

method described above: it uses sterics to prevent the phenyl ring being attacked by radicals. 

Combellas et al. have used 3,5-di-tert-isobutylbenzenediazonium, to successfully produce 

monolayers, as shown in Figure 53.21 The large tert-isobutyl groups prevent free radicals from 

getting near the aromatic ring which is the part of the molecule most susceptible to attack. 

Therefore, multilayer growth becomes very slow: after 300 seconds at a reducing potential, the 

thickness of the surface layer grown on gold is reported to be only 1 nm, as measured by 

ellipsometry. This thickness corresponds to a monolayer. Furthermore, this monolayer is 

reported to raise the water contact angle of copper from 49o to 74o. 
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Figure 53|[Taken from Combellas et al.21] Illustration of how kinetically hindering the phenyl 
ring of the diazo compound prevents the growth of a multilayer. 

 

Owing to the simplicity of the steric blocking method of Combellas et al., along with the fact 

that no in situ functionalisation is needed afterwards, this was the method chosen to try to 

create a surface monolayer. While 3,5-di-tert-butylaniline, as used by Combellas et al., is 

commercially available, it is currently very expensive. Moreover, the hydrophobicity of the 

monolayer could be further increased by swapping the tertiary butyl groups for their 

fluorinated analogues. The diazonium salt 3,5-bis(2-ethoxyhexafluoroisopropyl) 

benzenediazonium tetrafluoroborate (Figure 54) was synthesised to achieve exactly this. 

Rather than having tert-butyl groups, this molecule has two trifluoromethyl groups and an 

ethoxy group instead. This should help to make the molecule more hydrophobic. This is based 

on Zisman’s finding that CF3 groups have a lower surface energy than CH3 groups (15 J cm–2 

rather than 30 J cm–2, respectively).22  

 

4.1.2 Experimental 

1H NMR spectra were recorded with a Bruker 400 MHz spectrometer; δ values are given in 

ppm relative to TMS. 1,3-Bis(2-hydroxyhexafluoroisopropyl)benzene (Fluorochem) and all 
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other materials (Sigma-Aldrich) were used as supplied. Contact angles were measured from 

photographs taken with a CCD camera (Phillips SPC900NC webcam) through a video zoom 

microscope (Edmund Optics Infinity K2/S Long Distance Video Lens) at 20× magnification. 

Contact angles were subsequently measured using Fta32 2.0 contact angle software (First Ten 

Ångstroms). All reported contact angles are advancing contact angles averaged over five 

measurements. 

 

 

4.1.2.1 Synthesis of sterically hindered, fluorinated diazonium salt 

10g (24.4 mmol) 1,3-Bis(2-hydroxyhexafluoroisopropyl)benzene were dissolved in 50 ml 

dimethylformamide. 7.9 g potassium carbonate (57 mmol) and 3 ml ethyl iodide (5.82 g, 37.3 

mmol) were added. The mixture was stirred for 24 h under argon at room temperature and 

then quenched with saturated ammonium chloride solution and extracted three times with 

ethyl acetate. The combined organic extracts were washed with water and brine, dried with 

magnesium sulphate and concentrated. The remaining residue was filtered through silica using 

hexane. This gave 7.50 g of compound B, a yellow solid, yield 66 %.23 1H NMR (400 MHz, d6-

DMSO): δ=1.32 (m, CH3, 6H), 3.59 (m, CH2, 4H), 7.66-7.96 (m, 3H), 8.09 (s, 1H). 

 

2 g compound B (4.28 mmol) were added to 50 ml 1:1 HNO3:H2SO4 at 80 oC. The mixture 

was stirred for 1 h, quenched with saturated sodium bicarbonate solution and then extracted 

with dichloromethane three times.24 The combined organic extracts were washed with water 

and brine, dried with magnesium sulphate and concentrated. This gave 1.41 g of compound C, 

a bright orange solid, yield 66 %. 1H NMR (400 MHz, CDCl3): δ=1.28 (m, CH3, 6H), 3.75 (m, 

CH2, 4H), 8.1-8.3 (m, 3H). 

 

1 g compound C (2.00 mmol) was dissolved in 20 ml ethanol with 1 g 10% Pd/C. The 

mixture was stirred under a H2 atmosphere for 6 h and then filtered under gravity.24 The 
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ethanol was removed in vacuo to yield 0.91 g of compound D, a yellow oil, yield 97%. 1H NMR 

(400 MHz, CDCl3): δ=1.28 (m, CH3, 6H), 3.75 (m, CH2, 4H), 7.6-7.9 (m, 3H). 

 

A 100 ml flask in an acetonitrile/dry ice bath was charged with nitrosonium tetrafluoroborate 

(0.23 g, 1.94 mmol) under argon. Dry acetonitrile (10 ml) was then added. After the solution 

had cooled to –30 oC, compound D (0.97 g, 1.94 mmol) in acetonitrile (10 ml) was added over 

30 min. The yellow reaction mixture was stirred for 1 h at –30oC, treated with dry 

dichloromethane (50 ml) and filtered under vacuum. The white crystalline precipitate was 

washed with dry dichloromethane, and recrystallised from dry acetonitrile/dichloromethane. 

This gave 0.45 g of compound E, a white crystalline solid, yield 47%.25 
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Figure 54|Reaction for the synthesis of the sterically hindered, fluorine containing diazonium 
salt 3,5-bis(2-ethoxyhexafluoroisopropyl)benzenediazonium tetrafluoroborate. 

 

4.1.2.2 Electrochemical reduction of diazonium salts 

Electrochemical experiments were performed with a Gamry Reference 600 potentiostat. The 

diazonium salts were dissolved in dry acetonitrile at 4 oC prior to electrochemical reduction. 

All potentials were measured against an Ag/Ag+ reference electrode made from a silver wire 

in a capillary with frit filled with 0.01 mol dm-3 AgClO4/0.1 mol dm-3 TBAClO4 in acetonitrile. 

Diamond polished glassy carbon (HTW GmbH, Germany), template stripped gold and 

template stripped copper surfaces were utilised as surfaces for functionalisation. 
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4.1.3 Results 

4.1.3.1 Electrochemical reduction 

A broad irreversible reduction peak was seen at -800 mV versus Ag/Ag+ on all electrode 

materials (copper, gold and glassy carbon). The peak disappeared after one scan, presumably 

due to passivation of the surface due to film growth, as is commonly seen (see Figure 51). 

 

4.1.3.2 Contact angle 

The water surface contact angle was measured before and after surface functionalisation. On 

glassy carbon (see Figure 55) and copper there was a substantial increase in contact angle 

while on gold there was no increase beyond the statistical error in the contact angle 

measurement. The largest contact angle increase was seen on copper, where the contact angle 

increased to 74o (from 49o). A comparison of changes in contact angle can be seen in Table 5. 

The copper contact angle is 1o larger than the contact angle reported by Combellas et al. after 

functionalisation of copper with the similar molecule 3,5-di-tert-butylbenzene.21 This suggests 

that the surface has been successfully functionalised. It also suggests that the substitution of 

the tertiary methyl groups used by Combellas for trifluoromethyl groups only has a minor 

effect on the hydrophobicity of the surface. 

 

    

Figure 55|Contact angle of water on glassy carbon before and after 3,5-bis(2-
ethoxyhexafluoroisopropyl)benzenediazonium tetrafluoroborate functionalisation. 
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The change in contact angle suggests that the surface has been functionalised with a 

hydrophobic species. Initial AFM micrographs could not detect any change in the surface 

structure although further characterisation with ellipsometry is still needed to confirm the 

presence of a monolayer.26 

 

 Contact angle / degrees 

 
Before 

functionalisation 
After 

functionalisation 

Gold 66±5 67±4 

Glassy carbon 85±3 103±3 

Copper 49±3 74±3 

 

Table 5|Contact angle of water on gold, glassy carbon and copper before and after 
functionalisation with 3,5-bis(2-ethoxyhexafluoroisopropyl)benzene. Errors indicate ±1 
standard deviation. 

 

The small change in contact angle on gold suggests that there is a much lower surface 

coverage on gold, perhaps due to weaker bonding between the gold and phenyl ring. This 

effect may not usually be so pronounced when multilayer growth is possible. This is because 

the multilayer can branch out from a few molecules which have been attached to the surface, 

eventually covering the whole surface. There may also be some mechanical ‘keying’ of the film 

onto the surface. The contact angle on gold functionalised with 3,5-di-tert-butylbenzene is not 

reported by Combellas et al. and so no comparison can be made with this work in order to 

support this result. 
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4.1.3.3 Electrochemical surface area 

In order to characterise the loss in electrochemical surface area after functionalisation with 

3,5-bis(2-ethoxyhexafluoroisopropyl)benzene, the blocking of the one electron 

reduction/oxidation of potassium ferricyanide was studied. Figure 56 shows the voltammetry 

of a functionalised glassy carbon electrode. There is a 19% decrease in the redox peak current. 

 

 

Figure 56|Reduction in redox current of [Fe(CN)6]4-/[Fe(CN)6]3− couple due to blocking of 
surface of glassy carbon electrode functionalised by 3,5-Bis(2-
ethoxyhexafluoroisopropyl)benzene. K3[Fe(CN)6] concentration 5 mmol dm−3, 0.1 mol dm−3 
KCl, scan rate 100 mV s−1. 

 

Work  by Bélanger et al. has indicated that deposition of (multilayer) 4-carboxybenzene and 

4-nitrophenylbenzene blocks the [Fe(CN)6]
2–/[Fe(CN)6]

3− redox couple.14 Therefore, this 

suggests that a multilayer of 3,5-bis(2-ethoxyhexafluoroisopropyl)benzene has not been 

deposited. 
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4.2 Plasma fluorination 

Many examples exist of the plasma mediated surface modification of polymer surfaces.27 

Simple gases such as O2, N2, Br2 and SO2 are fragmented in an oscillating magnetic field, 

creating a sea of electrons, ions and free radicals. The free radicals react with the polymer 

surface leaving a variety of functional groups such as –OH, –NH2, –Br and –SO3H (example 

shown in Figure 57). These functional groups are strongly adhered to the carbon backbone of 

the organic polymer via covalent bonds. The surface can also be coated with a thin polymer 

layer via free radical polymerisation of unsaturated precursors. This method can be used to 

coat any material although there must be sufficient adhesion between polymer and substrate if 

the coating is to remain attached. 

 

 

Figure 57|The exposure of common organic polymers such as polyethylene to oxygen plasma 
adds a variety of oxygen containing functional groups to the surface. A similar result can be 
achieved via the free radical (plasma) induced polymerisation of an allyl-containing monomer 
with the desired functionality. In this instance allyl alcohol is polymerised to produce a thin 
surface layer which adheres strongly to the underlying surface through Van der Waals 
interactions. 

 

It was proposed that exposure of a metal surface to a plasma may functionalise the surface of 

the metal. Two different gases were tested: chlorodifluoromethane (ClCF3, commonly known 

as CFC-22) and perfluoropropane (C3F8). CFC-22 plasma consists of fluorine, chlorine and 

ClxCFy (x=0 or 1, y=0 to 3) free radicals. The perfluoropropane plasma consists of free 

radicals with a broad range of carbon to fluorine ratios. The gold-fluorine bond is generally 
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very unstable and very few pure gold-fluorine compounds exist. For example the enthalpy of 

formation of AuF3 is –363.3 kJ mol–1 compared to –933.5 kJ mol–1 for CF4.
28 Furthermore, the 

calculated enthalpy of reaction of AuF3 with water (to hydrogen fluoride and Au2O3) is –887.4 

kJ mol–1.29 Therefore, a fluorine terminated gold surface would almost certainly be unstable 

under ambient conditions. This is consistent with X-ray photoelectron spectroscopy studies 

on gold surfaces exposed to CF4 plasma.30 On the other hand, gold-carbon bonds are more 

common, and—as can be seen from the stability of diazonium functionalised surfaces 

described in Section 4.1.1—they are more stable. It was envisaged that these plasmas may 

therefore create Au-CF3 or similar terminated surfaces. 

 

 

4.2.1 Experimental 

4.2.1.1 Fluorination 

A Diener Electronic PICO Plasma System was used to generate plasmas. Template stripped 

gold surfaces (see 3.2.1 for preparation details) were stripped immediately prior to being 

placed in the plasma system. The chamber was pumped down to a pressure of approximately 

0.1 mbar and then flushed with argon to ensure there was no oxygen, nitrogen or water 

vapour in the chamber, all to which would make hydrophilising plasmas. The power was set to 

30 W which was found to be the minimum power at which a plasma could be sustained. A 

lower power was desirable as it allowed a slower deposition rate resulting in more control over 

the deposition. The optimum flow rate for a stable plasma for both gases was found to be 15 

cm3 min–1. This resulted in a bright mauve plasma for CFC-22 and a slighter whiter plasma for 

perfluoropropane. The freshly exposed gold was then exposed to plasma for 6, 12, 18, 30, 60 

or 300 seconds (with only tenths of a minute possible).  
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4.2.1.2 Contact angle measurements 

Photographs of water on the fluorinated surfaces were taken with a CCD camera (Phillips 

SPC900NC webcam) through a video zoom microscope (Edmund Optics Infinity K2/S Long 

Distance Video Lens) at 20× magnification. Contact angles were subsequently measured using 

Fta32 2.0 contact angle software (First Ten Ångstroms). All reported contact angle are 

advancing contact angles. Four droplets were measured on each of three separate electrodes. 

 

4.2.1.3 Electrochemical characterisation 

Electrochemical measurements were performed with a Gamry Reference 600 potentiostat.  

Cyclic voltammetry and impedance measurements were performed in 0.1 mol dm–3 NaF 

solution (NaF from Sigma-Aldrich, 99.5%) which is a non-specifically adsorbing electrolyte. 

Impedance measurements were made at 400 mV versus SCE (where no Faradaic processes 

occur). The frequency was scanned from 10 to 1000 Hz and the results fitted to a Randles 

circuit in order to extract the interfacial capacitance. 

Underpotential deposition of Pb was performed in 0.1 mol dm–3 HNO3 + 12 mmol dm–3 

PbNO3 + 10 mmol dm–3 NaCl.31,32  

The ferricyanide/ferrocyanide redox couple (0.1 mol dm–3 H2SO4 + 1 mmol dm–3 K3Fe(CN)6) 

was used to study the blocking effect of the fluoro coating on electron transfer. 
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4.2.2 Contact angle 

Contact angle measurements clearly show that that there is a large increase in hydrophobicity 

of the gold surface following exposure to the fluoro compound plasma. In the case of 

perfluoropropane, the contact angle increases from 66o on plain template stripped gold to 107o 

after 300 seconds of exposure to the plasma. Furthermore, there is a strong trend of 

increasing hydrophobicity with plasma exposure time as seen in Figure 58. Of the two gases 

used, at long exposure times the perfluoropropane produces the most hydrophobic surfaces, 

which is perhaps unsurprising as it has a higher fluorine content than CFC-22. 

 

 

Figure 58|Contact angle of water on template stripped gold after exposure to CFC-22 and 
perfluoropropane plasmas. Exposure times varied from 6 s to 300 s. Contact angle measured 
10 times on each of three separate gold surfaces. Error bars are ±1 standard deviation. 

 

Rinsing the surfaces with water had no effect on the contact angles. Sonication in acetone for 

60 seconds changed the contact angle of the 300 second perfluoropropane plasma surface 

from 108o to 103o, suggesting that the surfaces are fairly robust and well bound to the surface. 
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4.2.3 AFM 

AFM was used to study the gold surface after fluorination in order to discern if the surface 

structure had changed, whether there was polymerisation of the plasma on the surface and 

whether there was a substantial increase in the roughness of the surface. Figure 59 shows 

CFC-22 coated surfaces after different plasma exposure times. Given the nanometre feature 

size, it is clear that there was bulk growth of a polymer on the surface rather than monolayer 

formation. There is a clear correlation between the thickness of the layer and the exposure 

time. 

The surfaces are actually very smooth, and the RMS roughness of the roughest surface is 

1.7 nm over 500 nm2. This should be compared with the RMS roughness of a typical polymer 

surface, which is in excess of 20 nm.33 

 

 

Figure 59|AFM images of template stripped gold after various CFC-22 plasma exposure 
times. Surface area 500×500 nm2. 

 

 



  Fluorinated Electrodes 

134 
 

4.2.4 Electrochemistry 

Cyclic voltammetry, electrochemical impedance spectroscopy and underpotential deposition 

were used to characterise the resulting surfaces in order to find out whether the 

electrochemical properties of gold were retained by the modified surfaces. These 

measurements also help to indicate whether the surface film is chemically bonded to the gold 

or if the film is simply coating the surface. 

 

4.2.4.1 Cyclic voltammetry 

The cyclic voltammetry of plasma fluorinated surfaces in 0.1 mol dm-3 NaF solution (Figure 

60) showed no additional redox peaks when compared with plain template stripped gold 

surfaces. Instead there was a slight reduction in the observed current at all potentials. 

Nonetheless, below -0.9 V and above 1.4 V versus RHE, large currents resulting from the 

reduction and oxidation of water were still seen on the fluorinated surfaces. This suggests that 

the film does not completely block the gold surface and that the film itself shows no redox 

activity between -0.9 V and 1.4 V versus RHE. The unfunctionalised gold voltammograms are 

similar to those found in the literature.34,35  

 

Figure 60Cyclic voltammograms of plain template stripped gold (...) and template stripped 
gold after 6 s exposure to PFP plasma (_) in 0.1 mol dm–3 NaF solution. Scan rate 100 mV s–1. 
Peak 1 is the result of reduction of oxygen in the solution and disappears as the solution is 

1 
2 

3 



  Fluorinated Electrodes 

135 
 

degasssed. It should be noted that peak 2 increases while peak 3 decreases with subsequent 
scans. This is possibly due to a rearrangement of the template stripped surface. 

However, if the electrode was polarised to either –0.9 V or 1.4 V, it began to lose its 

hydrophobicity and its water contact angle eventually returned to that of plain gold. This 

suggests that the hydrophobic layer had been removed by the physical agitation of the surface 

polymer caused by the evolution of gas bubbles. 

 

4.2.4.2 Capacitance 

Interfacial capacitance is the fundamental driving force for shape change in electrowetting. 

Therefore, it is crucial that any modified electrode used for electrowetting should have a large 

interfacial capacitance. Except in the case of perfluoropropane after a 300 second plasma 

exposure time, it was found that the capacitance of the gold surface was unaffected by the 

presence of the fluoro-film, as shown below in Table 6.  

 

 Capacitance / μF cm–2 

Fluorination 
time / s 

CFC-22 Perfluoropropane 

0 10.7 10.7 
6 10.6 11.5 
12 10.7 11.7 
18 11.5 12.5 
30 10.8 11.4 
60 11.0 10.8 
300 11.2 4.8 
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Table 6|Electrochemical capacitance as a function of gold exposure time to CFC-22 and 
perfluoropropane plasmas. The error in the measurements is approximately ±10% due to 
estimation of the surface area of the electrodes. 

 

As the variation in the capacitance is less than the experimental error (except in one case), and 

these is no trend in increase or decrease of capacitance for either plasma, this suggests that 

there is no change in the surface capacitance. The only significant change is for 300 seconds of 

exposure to perfluoropropane plasma, for which the capacitance is more than halved. It is 

possible, therefore, that at very long plasma exposure times, a thick enough layer builds up 

blocking the surface. As discussed above, this layer can be removed by polarising the surface 

at large potentials, after which the capacitance returns to that of plain template stripped gold. 

 

4.2.4.3 Underpotential deposition 

Underpotential deposition is a common method for determination of the real surface area of a 

metal. The underpotential deposition of lead on polycrystalline gold is well established for this 

purpose.31,36 Therefore, this method was attempted in order to quantify the loss—if any—of 

gold surface area as a result of the plasma fluorination process. However, as can be seen from 

Figure 61, it was found that the first and third deposition peaks were very poorly defined, even 

for freshly stripped gold surfaces (without any surface treatment). As the peaks were so small 

in comparison to the double layer charging current, attempts to correlate peak area with gold 

surface area produced radically variable results and it was not possible to use this technique to 

reliably measure gold surface areas. 

This result is surprising as freshly stripped gold surfaces should be very clean and hence be 

excellent surfaces for under potential deposition. It is unclear as to why this is not the case. 

The electrochemistry of template stripped surfaces have not been studied in detail. Unrelated 

work conducted by other members of our group has indicated that the cyclic voltammetry of 

template stripped platinum in sulphuric acid also has poorly defined peaks, which gradually 

become sharper over subsequent cycles. These observations suggest that more work needs to 

be done on the electrochemistry of template stripped surfaces. 
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Figure 61Underpotential deposition of 12 mmol dm–3 Pb(NO3)2 in 10 mmol dm–3 NaCl and 
100 mmol dm–3 HNO3 on a) etched gold wire, b) template stripped gold and c) template 
stripped gold after exposure to PFP plasma for 60 s. Scan rate 20 mV s–1. When comparing a) 
with b) and c), there is a change in ratio of the peak areas. One possible explanation for this is 
a change in the ratios of different crystal facets on the different polycrystalline gold surfaces. 

 

4.2.4.4 Electron transfer 

The surfaces were also not blocking to the ferricyanide/ferrocyanide redox couple. The only 

case for when there was a loss is redox current was for the 300 second exposure 

perfluoropropane, where there was a 42±5% loss. This result is in agreement with the 

capacitance data. 

 

4.2.5 CFC-22 versus perfluoropropane 

It should be noted that while neither compound is damaging to human health, both 

compounds are strong greenhouse gases and CFC-22 is also an ozone depleter. As a result, 

CFC-22 has been recently been banned in Europe and is slowly being phased out 

internationally. This means that perfluoropropane is definitely the preferred gas for surface 

fluorination because of its superior surface modification properties and lower environmental 

impact. 
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4.2.6 Discussion 

These results clearly show that the exposure of gold to CFC-22 and perfluoropropane plasmas 

increases the surface hydrophobicity. AFM micrographs indicate that this is as a result of the 

build-up of a polymer layer, several nanometres thick, on the surface. Presumably this polymer 

layer is rich in fluorine atoms making it hydrophobic. 

Nonetheless, this layer does not substantially alter the electrochemical properties of the 

underlying gold surface. The electrode maintains its electrochemical capacitance and does not 

block the one electron reduction of the ferricyanide ion.  

However, the layer is eventually removed when hydrogen is evolved at –0.9 V or an oxide 

layer is grown on the surface at 1.4 V. This suggests that the polymer may be removed by 

physical agitation. The surface cannot be rinsed off with water but sonication in acetone does 

begin to reduce the hydrophobicity. 

All of these observations seem to indicate that the polymer is not strongly adhered to the 

surface suggesting that there are no chemical bonds between the surface and the polymer. 

AFM images also suggest poor coverage of the surface by the polymer. Nonetheless, there is 

no loss at all in the capacitance of the gold. Therefore, it might be that electrolyte solution can 

wet underneath the polymer surface. It is only at very long plasma exposure times (300 

seconds PFP plasma) that enough polymer forms and parts of the gold surface are no longer 

in contact with the solution. 

The question remains as to why the polymer has not bonded to the gold surface when phenyl 

free radicals formed by the reduction of diazonium ions do bond to gold. One explanation is 

that the aryl carbon-gold bond is between gold and an sp2 hybridised carbon rather than an sp3 

hybridised carbon as would be the case for a trifluoromethyl group. The latter may be a less 

stable bond. Another possible reason is the presence of fluorine radicals; these are incredibly 

reactive and mobile making them liable to bond with any carbon atoms nearby, even if this 

means breaking a gold-carbon bond first. Returning to the diazonium derived aryl free radical, 

this species, when generated, will readily displace a hydrogen atom on a nearby phenyl ring. 

This is the mechanism by which multilayer formation occurs during diazonium grafting 

(Figure 53). Therefore, it is plausible that fluorine free radicals will ‘undo’ any carbon-gold 

bonds which form. 
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4.3 Derivatised conducting polymer coatings 

Conductive polymers are organic materials able to conduct electricity. Being carbon-based 

materials, they can be designed to exhibit specific properties by the considered selection of 

polymer backbone and side groups. Of particular interest to electrowetting substrates is 

control of the surface wettability. It has been shown by Schwendeman et al. that the addition 

of a perfluorinated carbon chain to the monomer precursor of poly(3,4-

ethylenedioxythiophene), or PEDOT, created a polymer with a water contact angle of 110o.37 

This fluorinated version of PEDOT, shown in Figure 62 and referred to as PEDOT-F from 

here on, had a conductivity of 65 S cm–1, which is similar to the conductivity of glassy carbon. 

 

 

Figure 62|Pentadecafluoro-octanoic acid 2,3-dihydro-thieno(3,4-b)(1,4)dioxin-2-ylmethylester, 
or EDOT-F can be electropolymerised to form the conductive hydrophobic polymer 
PEDOT-F.37 

 

4.3.1 Experimental 

4.3.1.1 EDOT-F synthesis 

The preparation of  pentadecafluoro-octanoic acid 2,3-dihydro-thieno(3,4-b)(1,4)dioxin-2-

ylmethylester (EDOT-F) is described elsewhere.37 The yield was 67 %. 1H NMR (400 MHz, 
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CDCl3): δ=4.09 (dd, 1H), 4.25 (dd, 1H), 4.48 (m, 1H), 4.62 (m, 2H), 6.39 (s, 2H). NMR shifts 

were in accordance with the literature. 

 

4.3.1.2 Electropolymerisation 

EDOT-F was coated onto both sputtered gold electrodes and template stripped gold 

electrodes (see Sections 5.1.3 and 3.2.1 respectively). In order to make electrical contact to the 

gold, a wire was attached to the electrode with conductive epoxy (Circuit Works) which was 

itself covered with an insulating epoxy layer. The supporting electrolyte was 0.05 mol dm-3 

tetrabutylammonium perchlorate (TBAP) and the EDOT-F concentration was 0.01 mol dm-3 

in dry propylene carbonate (PC). Solutions were de-gassed with 99.9992% nitrogen (BOC 

gases). The electropolymerisation potential was 0.7 V versus 0.01 mol dm–3 Ag/Ag+. A charge 

of 0.1 or 1.5 C cm–2 was allowed to pass.  

The choice of PC as a solvent was based on work by Poverenov et al. who showed that PC 

produces much smoother PEDOT surfaces than acetonitrile.38 

Afterwards the electrodes were rinsed in pure PC followed by de-ionised water and dried 

under vacuum. 

Annealing of the electrodes was performed in an inert nitrogen atmosphere at 230 oC for 1 h. 

 

4.3.1.3 Template stripping 

A detailed overview of template stripping is given in 3.1.1. This technique was used to try to 

create flat PEDOT-F surface. After electropolymerisation of the PEDOT-F on a template 

stripped gold slide followed by annealing, the deposited film was attached to glass with 

Buehler Epo-Thin epoxy. After the epoxy had cured, the PEDOT-F film could be removed 

from the gold surface. AFM was used to characterise the roughness of the resulting surface. 
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4.3.2 Contact angle 

The water contact angle on the PEDOT-F surface varied dramatically depending on the 

electrodeposition and whether the surface was annealed or not, as shown in Table 7. 

 

 Electropolymerisation charge passed 

 
0.1 C cm-2 

(not annealed) 
0.1 C cm-2 
(annealed) 

1.5 C cm-2 
(not annealed) 

Contact angle/ degrees 75±5 94±2 146±9 

 

Table 7|Contact angle of water on PEDOT-F surfaces of varying thicknesses. Films were 
deposited from 0.05 mol dm-3 TBAClO4 and 0.01 mol dm-3 EDOT-F in PC. The 
electropolymerisation potential was 0.7 V versus Ag/Ag+

 reference. Errors indicate ±1 
standard deviation. 

 

The superhydrophobic surface (contact angle 146±9o) results from the high surface area due 

to the extreme roughness of the electrode shown by the SEM image in Figure 63. This is 

explained by the Cassie equation (Equation 2), page 27). The microscale feature size of the 

polymer domains is typical of a superhydrophobic surface.39 Almost identical results have 

recently been reported by Darmanin and Guittard.40 
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Figure 63|(Top) Photograph of a water droplet on a superhydrophobic PEDOT-F surface 
with a 156o contact angle. (Bottom) Scanning electron micrograph of the same surface. The 
high surface area and porosity of the surface dramatically increase the hydrophobicity. 

 

4.3.3 Surface roughness 

The RMS roughness of the thin (0.1 C cm–2) films was 31.1 nm after annealing, as measured 

by AFM. Template stripping of the thicker (1.5 C cm–2) films was possible. The surface is 

shown in Figure 64, and has an RMS roughness of 5.3 nm, suggesting that the polymer does 

not mate well with the underlying template. Alternatively, it may deform after being removed 

from the template or the surface may become damaged during the stripping, with some of the 

polymer remaining on the gold. 
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Figure 64|Template stripped PEDOT-F. 5.3 nm RMS roughness. 17.6 nm peak height.  

 

 

4.3.4 Conductivity 

The bulk conductivity of PEDOT-F could not be reliably measured due to the gold layer 

underneath the deposited film. However, the films were electrically conductive. Evidence for 

this includes redox activity of the film, which became sky blue when oxidised; the fact that the 

surface did not need to be coated with a conductive metal in order to take an SEM image and 

also the fact that thick polymer films could be grown. 

 

 

4.4 Conclusions 

A variety of methods have been used to create hydrophobic conducting surfaces. The 

compound 3,5-bis(2-ethoxyhexafluoroisopropyl)benzenediazonium tetrafluoroborate, which is 

similar to the compound 3,5-di-tert-butylbenzenediazonium tetrafluoroborate made by 

Combellas et al., was synthesised.21 It was deposited on gold, glassy carbon and copper 

forming a hydrophobic monolayer. The properties of the functionalised surfaces were similar 

to the 3,5-di-tert-butylbenzenediazonium surfaces of Combellas et al. despite the fact that they 
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contain hydrophobic trifluoromethyl groups. The surface layer increased the water contact 

angle of glassy carbon by 18o and copper by 25o however the contact angle on gold was 

unaffected. The functionalised surfaces were only slightly blocking to the one electron 

reduction of the ferricyanide ion. Further measurements with AFM and ellipsometry are still 

required to confirm that a monolayer has indeed been produced. 

The plasma polymerisation of the gases CFC-22 and perfluoropropane was performed on 

gold surfaces. The resulting surfaces were characterised with AFM; cyclic voltammetry; 

electrochemical impedance measurements of the capacitance; and underpotential deposition 

of lead. The plasma appears to form a thin polymer layer which is fairly weakly attracted to the 

underlying surface. Nonetheless the surface is stable in water and electrolyte solutions but is 

removed by the evolution of oxygen or hydrogen. The polymer layer substantially increases 

the hydrophobicity of the gold surface, with 60 seconds of exposure to perfluoropropane gas 

resulting in a water contact angle of 109o. Remarkably, at this exposure time the electrode 

retains its capacitance and does not block the reduction of ferricyanide. Underpotential 

deposition of lead could not accurately determine the surface coverage as the characteristic 

lead deposition peaks could not be resolved on template stripped gold—a potential subject for 

future investigation. At longer exposure times the surface becomes more hydrophobic but 

begins to block electrochemical processes. The thin polymer layer is very smooth when 

compared with typical polymer surfaces. The RMS roughness of the surfaces never exceeds 

1.7 nm over 500 nm2.  

The final method of hydrophobic electrode fabrication was synthesis of PEDOT-F as 

originally performed by Schwendeman et al.37 This produces a very rough hydrophobic 

surface. It was found that by varying the polymerisation conditions, a superhydrophobic 

surface could be made. Depending on the intended application, this may be desirable. In order 

to make a smooth surface, template stripping of the polymer was attempted. Whilst there was 

a substantial reduction in the roughness of the resulting surface (RMS roughness of 5.3 nm), it 

was not as smooth as typical template stripped surfaces. 

These methods all have their respective benefits and disadvantages. Therefore, the individual 

requirements of a given task should be considered when deciding which type of hydrophobic 

conducting surface should be used.  
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Chapter 5: Electrowetting  

 

The previous chapters have covered various ideas related to the development of a specific 

goal: a stable and reproducible low voltage electrowetting system. This chapter now assesses 

these approaches for their electrowetting effectiveness. Furthermore, other variables such as 

the liquids and electrolytes used in the electrowetting system are studied as these have not 

been looked at in detail previously. 

To begin with, the generic experimental setup used to study electrowetting is described in 

detail. Then the effect of the different electrodes described in Chapter 3 and Chapter 4 is 

covered, with ultra-flat electrodes proving to greatly reduce hysteresis. Next the effect of 

changing electrolyte and electrolyte concentration is dealt with. This includes the effect of 

using a bulkier electrolyte to stabilise the interface between two immiscible electrolyte 

solutions (ITIES) as described in Chapter 2. Finally, different liquid compositions for the 

droplet are explored. Somewhat unexpectedly, this was found to have a profound effect on 

the electrowetting response. 

 

5.1 Experimental 

5.1.1 General experimental setup  

The geometry of the cell used for all electrowetting experiments is shown in Figure 65. A 

working electrode was mounted on a mobile PTFE stand designed to sit inside a 5 cm × 5 cm 

× 5 cm glass cuvette. Also mounted in the stand was an Ag/AgCl wire used as the reference 

electrode and a gold counter electrode. The cuvette was fitted with a PTFE lid to reduce 

particulate contamination from the atmosphere. The lid contained access for a glass nitrogen 

bubbler. 

The cuvette was filled with an aqueous electrolyte solution and a droplet was placed on the 

working electrode using a micropipette with plasticiser free Gilson tips. The droplet was 

approximately 0.5 μL and 0.5-1 mm wide. As the potential of the working electrode was 

varied, a photograph of the droplet (640 × 480 pixels) was automatically taken with a CCD 

camera (from a Phillips SPC900NC webcam) through a video zoom microscope (Edmund 
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Optics Infinity K2/S Long Distance Video Lens) at 20× magnification. Contact angles at each 

potential were subsequently measured using Fta32 2.0 contact angle software (First Ten 

Ångstroms). At least five points were fitted at the droplet|aqueous phase interface. 

 

 

Figure 65|Experimental geometry for varying the potential across a liquid droplet. The glass 
cuvette is approximately 5 cm in each dimension. A CCD camera with microscope lens then 
records a video of the droplet through the cuvette wall and First Ten Ångstroms analysis 
software is used to measure the contact angle. 

 

A Gamry Reference 600 potentiostat was used to control the applied potential. The potential 

was varied in 0.1 V steps with 10 s gaps between steps. The potentiostat simultaneously gave 

an indication of background currents, which were kept consistently low (approximately ± 20 

μA cm–2) to ensure that no Faradaic reactions were occurring. Experiments were completed 

within 15 min of submerging the electrode to minimise concerns over electrode surface 

stability when exposed to water (see Section 3.2.2.3). 

The ambient temperature was 22±2 oC. 
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5.1.2 Chemicals and glassware  

Ultrapure water (resistivity 18.2 MΩ cm) from a Millipore Elix 5 water purification system was 

used for all aqueous electrolyte solutions and soaking solutions for glassware. All solutions 

were only ever in contact with glass or PTFE, never other plastics, to prevent solution 

contamination from surfactants and plasticisers. All electrochemical cells and glassware were 

cleaned in the following manner: 

1. Soaked in a solution of 0.1 mol dm–3 KMnO4 + 0.18 mol dm–3 H2SO4 for 24 h to 

oxidise any organics 

2. Rinsed with acidified hydrogen peroxide solution (0.36 mol dm–3 H2SO4 + 0.18 

mol dm-3 H2O2) for 1 h 

3. Rinsed 6 times with ultrapure water 

All electrolytes and solvents were purchased from Sigma-Aldrich and used as received. 

Electrolytes were of greater than 99% purity and solvents were of greater than 98% purity. 

Purging of oxygen from aqueous solutions with nitrogen had no noticeable effect on 

electrowetting and so this practice was considered unnecessary.  

Even two ‘immiscible’ liquids have some mutual solubility. Therefore, all aqueous solutions 

and organic solutions were equilibrated with one another to prevent the small organic droplet 

from dissolving in the surrounding phase. 

 

5.1.3 Sputtered electrodes 

To make sputtered electrodes, a 100 nm layer of gold and a 20 nm titanium interlayer were 

sputtered onto 1 cm × 2 cm glass rectangles cut from VWR International Super Premium 

microscope slides. The titanium interlayer served to facilitate adhesion of gold to glass. The 

cleaning procedure for the glass was as follows: 

1. Soaked in a solution of 0.1 mol dm–3 potassium permanganate + 0.18 mol dm–3 

sulphuric acid for 1-2 h to oxidise any organics 

2. Rinsed with acidified hydrogen peroxide solution (0.36 mol dm–3 H2SO4 + 0.18 

mol dm-3 H2O2) 

3. Rinsed with ultrapure water six times 

4. Dried under a stream of nitrogen 
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5. Dried upright at 110 oC for 5 min 

All sputtering was performed using an Emitech K575X sputterer; Emitech TK8859 gold 

targets and Emitech TK8879 titanium targets. 

 

5.1.4 Surface tension measurements 

Liquid|liquid surface tension measurements were made using the pendant drop method.1 

Fitting of the drop shapes was made with Fta32 2.0 contact angle software (First Ten 

Ångstroms). 

 

5.2 Ultra-flat surfaces 

5.2.1 Metal surfaces 

In order to understand the effect of electrode roughness on low voltage electrowetting, a 

comparison was made between sputtered gold surfaces (similar to those used by Kornyshev et 

al.)  and specially prepared template stripped gold surfaces (Section 3.2).2 An ITIES 

electrowetting system, again in the style of Kornyshev et al. was used. This consisted of a 

droplet containing 0.1 mol dm–3 tetrabutylammonium tetraphenylborate (TBATPB) in 

1,2-dichloroethane (DCE) surrounded by 0.01 mol dm–3 LiCl in water. 

The potential was cycled from –1 V to 0 V versus an Ag/AgCl reference electrode and back 

again with 0.1 V steps, and the contact angle after each step was measured. The results can be 

seen in Figure 66. There are several interesting features. The Young contact angles of the two 

template stripped and sputtered surfaces were substantially different. This is because one 

surface was produced by template stripping and the other by sputtering and so they had very 

different roughnesses and perhaps even different surface morphologies. Also, the freshly 

exposed template stripped surface did not have the layer of organics on its surface which 

adsorbs onto gold over a period of several hours.3,4 The consequence of this is that they had 

different surface energies and, as expected, the organic-coated sputtered electrode was more 

hydrophobic. However, the most important feature is the greatly reduced hysteresis. The 
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separation between corresponding contact angles on the forward and reverse scans decreased 

from roughly 500 mV on a sputtered surface to 200 mV on the template stripped surface. The 

difference in contact angle at the start of the scan compared to at the end of the return scan is 

also reduced on the template stripped surface. This difference in hysteresis was seen for all 

electrodes tested, with the scans in Figure 66 representing the lowest hysteresis scans 

measured for the two different surfaces. As noted above, there was a ten second pause 

between steps. After this time period the droplet had stopped changing shape. This ensured 

that the hysteresis was not affected by the ‘scan rate’ (although at much faster scan rates the 

hysteresis would be different). 

 

 

Figure 66|Typical electrowetting responses of a 0.1 µL droplet of 0.1 mol dm–3 TBATPB in 
DCE surrounded by 0.01 mol dm–3 LiCl solution. Comparison between sputtered (rough 
surface) and template stripped (smooth surface) electrodes illustrating the effect of surface 
roughness on hysteresis. The droplets started at –1 V and every 10 s the potential was reduced 
by 0.1 V until it reached 0 V, at which point the scan was reversed. The error on each point is 
±2 degrees. 

 

These results clearly suggest that hysteresis is very strongly affected by surface roughness. 

What is not clear is whether this is ‘nanoscale roughness’ (template stripped surfaces have an 
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RMS roughness of 4.5 Ǻ over 80 μm2 compared to 40.3 Ǻ for sputtered surfaces) or if it is in 

fact due to ‘microscale roughness’, from dust contamination. Figure 38 on page 94 clearly 

shows that the sputtered electrodes are covered in dust even after minimal exposure to the 

ambient atmosphere. Most probably the primary contribution to the hysteresis on a sputtered 

electrode is the dust, as this is at least two orders of magnitude larger than any inherent feature 

of the uncontaminated sputtered electrode. The negative effect of dust on the electrowetting 

response is also briefly noted by Beni and Hackwood.5 

These results also support the idea that hysteresis is at least partly due to a physical effect and 

is not purely the result of some kind of chemical adsorption/desorption of ions on the 

electrode surface. This is important for ITIES electrowetting as a chemical effect is potentially 

much more difficult to address than a roughness effect, which might require a complete 

upheaval of the system. The results also suggest that the re-healing and atomically smooth 

surface of mercury is, at least in part, responsible for its low hysteresis electrowetting 

response.6-8 

Despite this promising result, a perfectly flat or clean electrode is not expected to show zero 

hysteresis as there will always be a resistance to change in droplet shape. Examples of such a 

resistance include inertial effects, viscosity effects and various attractive forces between the 

liquid and electrode. This means that complete elimination of hysteresis is not possible. 

Nonetheless, template stripped surfaces were used for all subsequent electrowetting 

experiments so as minimise the contribution of roughness or dust on hysteresis. 

 

5.2.2 Carbon surfaces 

As detailed in Section 3.4, ultra-flat glassy carbon surfaces were prepared. They were tested as 

electrowetting substrates and compared against diamond polished glassy carbon from HTW 

GmbH, Germany. The diamond polished glassy carbon was already very smooth, and was 

measured by AFM to have an RMS roughness of 56.5 Å.  

However, using the ITIES electrowetting system detailed above, as well as other electrolytes 

and concentrations, no reversible electrowetting response was seen on either template stripped 

carbon or the commercially prepared carbon. No Faradaic currents were seen at the potentials 
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tested (0.2 V to –1.3 V vs. Ag/AgCl in 0.1 mol dm-3 LiCl). As the potential was made more 

negative, the droplet would slowly contract, however, on the reverse scan the contact angle 

would not change at all (as if the droplet were completely pinned). 

This is the first indication that electrowetting is more complicated than initially expected. As 

will be seen later, electrowetting is in fact very sensitive to changes in liquid|solid surface 

energies. The theory behind electrowetting (see (Equation 6, page 32) suggests that any 

combination of surface energies and surface capacitances will produce a reversible 

electrowetting system. However, as was already known with gold and mercury, not all systems 

work in this way. This work with carbon supports this result, as conditions which work for 

gold surfaces do not work for a glassy carbon surface which has a similar roughness and 

capacitance. This is an indication that, while roughness appears to be important, a low 

hysteresis electrowetting response is dependent on others factors as well. 

 

5.3 Fluorinated electrodes 

Fluorinated, hydrophobic electrodes were prepared in the hope that they would reduce 

hysteresis in low voltage electrowetting. This was inspired by work done by Maillard, Legrand 

and Berge which indicated that a hydrophobic surface was conducive to a low hysteresis 

EWOD system.9 

 

5.3.1 Plasma fluorinated surfaces 

The hydrophobicity of gold electrodes was successfully increased by exposure to plasmas of 

CFC-22 and perfluoropropane. These surfaces retained their hydrophobicity within the 

potentials at which an electrowetting response is seen on plain gold and also retained their 

electrochemical capacitance. As can be seen from Figure 67, the contact angle of a DCE 

droplet on the surface is lower than for a non-functionalised surface, as expected for a more 

hydrophobic surface. As the potential becomes more negative, there is a very large variation in 

the contact angle (76o). However, on the reverse scan, there is no return to the original angle.  
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One possible explanation for this is that the surface is not stable underneath the DCE droplet. 

While this may or may not be the case, this behaviour is also seen on unfunctionalised carbon 

surfaces, as described previously. Furthermore, as will be seen later, at certain electrolyte 

concentrations similar behaviour is seen even on unfunctionalised template stripped gold 

surfaces. Therefore, this complete pinning may in fact be the result of a change in the balance 

of surface energies; an idea which will be explored in more detail later. 

 

 

Figure 67|Typical electrowetting response for fluoroplasma functionalised gold surface. A 
very large change in contact angle is seen initially, with a quick response time. However, the 
droplet is completely pinned on the return scan. This may be caused by an unstable surface 
which rearranges underneath the moving droplet. 

 

 

5.3.2 PEDOT-F coated surfaces 

None of the PEDOT-F conducting polymer coated surfaces (reported in Section 4.3) showed 

any type of electrowetting behaviour. This may be because they are very rough (31.1 nm RMS 
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roughness). The surfaces also appeared to be permeable to DCE and other organic solvents, 

meaning that the droplet would only remain on the electrode surface for a short time. 

Therefore, these surfaces are clearly not suitable for electrowetting. 

 

 

5.3.3 Diazonium functionalised surfaces 

Functionalisation of gold with bulky diazonium species did not have any effect on the surface 

hydrophobicity. It is therefore unsurprising that these surfaces behaved similarly to normal 

template stripped gold surfaces. 

Functionalised carbon surfaces were not effective electrowetting substrates, much like un-

functionalised carbon while copper is not suitable for electrowetting as it is it not 

electrochemically inert. 

 

5.3.4 Summary 

While it is disappointing that these fluorinated electrodes (and ultra-flat carbon electrodes) did 

not reduce pinning as hoped, this in itself is an interesting result. It shows that some of the 

principles which apply to EWOD do not apply to this type of electrowetting system. 

Furthermore, as these surfaces have very similar capacitances, it suggests that  there may be an 

important chemical contribution to the surface energies of the electrodedroplet and 

electrodeaqueous phase which is of fundamental importance to the electrowetting response. 

This is not evident from a theoretical perspective and was therefore somewhat unexpected. 
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5.4 Electrolyte effects 

5.4.1 Organic electrolyte ions 

Due to concerns regarding the stability of the ITIES during ITIES electrowetting, an ITIES 

with a larger polarisation potential window was used. The tetrabutylammonium 

tetraphenylborate (TBATPB) used by Kornyshev et al. was replaced with 

bis(triphenylphosphoranylidene)ammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate 

(BTPPATFPB).2 The aqueous electrolyte, LiCl, was kept unchanged. The resulting 

polarisation window was over 700 mV compared to approximately 200 mV for the TBATPB 

system, as demonstrated in Section 2.1. 

It was found that there was no significant effect in moving from one electrolyte to another. 

Within the variation between experiments, there was no difference between the electrowetting 

responses of the two systems. This indicates that if the ITIES is indeed unstable when 

TBATPB is used, this does not affect the electrowetting response over the timescale of the 

electrowetting experiment. Simultaneously, it also shows that the use of BTPPATFPB does 

not hinder the electrowetting response. This makes it a good ITIES electrowetting electrolyte 

as it reduces concerns over ITIES stability. 

The most important conclusion of this result is that ion transfer across the ITIES is not 

driving the electrowetting response, as this would be an unstable system over longer time 

periods.  

Instead, it was found that if the organic electrolyte was removed entirely, there was less 

hysteresis than with electrolyte in the droplet. This means that electrowetting with an ITIES is 

not essential to the electrowetting response (as suggested by the electrowetting experiments of 

Frumkin with mercury surfaces outlined in Section 1.3.1). This was only found to be true on 

template stripped surfaces and not on sputtered surfaces. The effect of organic electrolyte 

concentration is covered in more detail in Section 5.5.1. 

 



  Electrowetting 

158 
 

5.4.2 Aqueous electrolyte ions 

From a theoretical viewpoint based on the common Gouy-Chapman-Stern model, changing 

the aqueous electrolyte is not expected to have significant impact on the electrowetting 

response. For example, the capacitance of gold in a NaCl solution should have almost exactly 

the same capacitance as an equally concentrated LiCl solution.10 However, this simple change 

of electrolyte had an astonishing effect on the electrowetting response. In moving from 

0.1 mol dm–3 LiCl with a pure DCE droplet (Figure 69) to 0.1 mol dm–3 NaCl with a pure 

DCE droplet, there was a change from a very low hysteresis system to one which is 

completely pinned on the return scan (qualitatively similar to that shown in Figure 67). 

This was a common result and was seen with several other electrolytes including MgCl2, NaF 

and NH4Cl. KCl was the only exception at this concentration; it showed very large hysteresis 

but did return to its initial contact angle. If the concentration of these electrolytes was reduced 

below 0.1 mol dm–3, the droplet would return to its original contact angle, albeit with a large 

amount of hysteresis. As will be seen next, this is consistent with how LiCl concentration 

affects the electrowetting response as a large LiCl concentration stops the droplet returning to 

its initial contact angle. 

There is growing evidence that electrolyte structure at interfaces can vary dramatically even 

between apparently similar electrolytes (such as LiCl and NaCl).11-13 Even if different 

electrolytes do not change the interfacial capacitance substantially, these varying interfacial 

structures may introduce hysteresis; although at the moment there is no detailed explanation 

as to why. An idea which is illustrated in Figure 68 and entertained further in Sections 5.5.2 

and 5.6.1 is that a thin layer of water may be adsorbed onto the electrode at high potentials 

such that when the potential is relaxed, this film remains trapped and the droplet cannot ‘re-

wet’ the surface. It is not unreasonable to think that the electrolyte ions, which have differing 

hydration shells for example, could influence such a phenomenon. 
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Figure 68Cartoon illustrating a possible cause of hysteresis. When a potential is applied, the 
electrode is screened by an electrochemical double layer. Water molecules become aligned to 
the strong electric field and also screen the surface charge by adsorbing to the surface. This 
coincides with contraction of the droplet. Even after the potential has been relaxed, a layer of 
water molecules remain trapped at the surface, preventing the hydrophobic droplet from 
spreading back across the electrode. 

 

Once the desired characteristics for small hysteresis electrowetting are known, the use of other 

electrolytes may prove beneficial; however, this thesis was predominantly limited to the use of 

LiCl as it was known to show a good electrowetting response. 

 

5.5 Concentration effects 

5.5.1 Organic electrolyte concentration 

As has already been mentioned briefly, it was found that removing the organic electrolyte 

from the droplet reduced hysteresis of the electrowetting response. Four concentrations of 

TBATPB were tested: 0.1, 0.01, 0.001 and 0 mol dm–3. When the droplet contained electrolyte, 

the best response was seen with 0.1 mol dm–3 TBATPB. As the concentration was reduced, 

there was a slight increase in hysteresis. However, when the electrolyte was removed entirely, 

the opposite was seen and there was a reduction in the hysteresis, as shown in Figure 69. 

This shows that the change in surface energy at the droplet|aqueous phase interface—due to 

double layer charging of the ITIES—is not essential to the electrowetting response. This is an 

important result for two reasons: there is reduction in hysteresis and, in particular, it is the first 

demonstration of reversible electrowetting due to capacitive charging on a solid surface 
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without an ITIES (to the best of the author’s knowledge). This second result, in many ways, is 

not surprising as electrowetting without an ITIES has been known since the time of 

Lippmann and Frumkin and theoretically should also occur on solids.6,14 However, this has 

always required a liquid metal (namely mercury, gallium or a liquid amalgam).5,7,15 

Electrowetting systems on solids have had to employ a different mechanism such as the 

oxidation of surface thiols or organic polymers.16-19 Furthermore, such methods must switch 

between two extreme contact angles; intermediate contact angles cannot be accessed. 

Perhaps the extension of this Frumkin-type electrowetting onto solid surfaces has not been 

seen previously because of the sensitivity of the electrowetting response to electrode 

composition and morphology. Furthermore, as will be seen in the remainder of the chapter, 

electrowetting is even more dependent on the inorganic electrolyte and its concentration and 

also on the droplet composition. 

 

 

Figure 69|Electrowetting response for 0.1 mol dm–3 LiCl aqueous phase with DCE droplet. 
There is a reduction in hysteresis when TBATPB is removed from the droplet. 
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5.5.2 Aqueous electrolyte concentration 

When compared to the organic electrolyte, the aqueous electrolyte had a much more 

substantial effect on the electrowetting response. It was found that the electrowetting 

response was noticeably affected by small variations in concentration. Figure 70 shows how as 

the LiCl concentration (with a pure DCE droplet) is varied in 0.01 mol dm–3 steps, there is a 

clear minimum in hysteresis at 0.10 mol dm–3, with an extra 200 mV of hysteresis at 0.09 and 

0.11 mol dm–3. This coincides with a maximum of 42o variation between the maximum and 

minimum attainable contact angles. The points represent the smallest amount of hysteresis 

and largest change in contact angle seen for each concentration over three repeats. This 

representation was chosen because occasionally the system was heavily pinned, perhaps due to 

dust contamination, dramatically affecting the average value. Instead it was assumed that the 

least pinned response was a more representative measure of the system. Error bars represent 

the error due to the finite 100 mV step size and error associated with measuring the contact 

angle. 

This behaviour is perhaps contrary to what would be expected. Interfacial capacitance 

increases with electrolyte concentration, and as energy stored in the capacitor is the driving 

force for electrowetting, surely increasing the capacitance should increase the electrowetting 

response? To a certain degree this is what was seen: the maximum angle variation increases 

from 10o at 0.05 mol dm–3 LiCl to 43o at 0.10 mol dm–3 LiCl. However, beyond this 

concentration the angle variation drops off sharply as the hysteresis increases. Again, one 

theory for why this happens is that the increasing electrolyte concentration may promote 

adhesion of a thin layer of water to the electrode surface. This hydrophilic layer remains 

trapped on the surface during the return scan, preventing the droplet from returning to its 

original shape. 

 



  Electrowetting 

162 
 

 

Figure 70|Change in electrowetting response of a pure DCE droplet as aqueous electrolyte 
concentration is varied. Template stripped gold was used as the electrode. At 0.10 mol dm–3 
LiCl there is a minimum in the hysteresis between forward and reverse scans. This coincides 
with a maximum in the difference between the lowest and highest attainable contact angles. 

 

 

5.5.3 Jumping droplet 

Using the optimum parameters for electrowetting discussed thus far (template stripped gold, 

0.10 mol dm–3 LiCl, 0 mol dm–3 TBATPB, DCE droplet) a ‘jumping droplet’ was studied. As 

shown in Figure 71, this involved stepping the potential between –0.1 V and –0.9 V versus 

Ag/AgCl, allowing ten seconds between steps. Upon changing the potential from –0.1 V to   

–0.9 V, the droplet changed shape much faster than when stepping from –0.9 V to –0.1 V. In 

other words, the droplet was found to contract much faster than it would ‘relax’ to a lower 

contact angle. The droplet jumped between a contact angle of 93o and 120o within the ±1o 

error limit associated with measuring the contact angle. This lasted for over one hundred 

pulses, which was the duration of the experiment.  
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This demonstrates that a significant change in contact angle (27o), for only a 0.8 V change in 

potential, is possible. It also shows the reversibility and stability of the system. 

 

 

Figure 71Electrowetting response of a DCE droplet on template stripped gold surrounded by 
0.10 mol dm–3 LiCl solution. As the potential is switched between –0.1 V and –0.9 V, the 
contact angle jumps between two different values. After over 100 potential pulses the same 
contact angle variation is seen. The ‘equilibration period’ represents the first cycle before the 
droplet begins to reproducibly cycle between two values. 

 

5.6 Solvent effects 

5.6.1 Different solvents 

Inspection of the modified Young equation for electrowetting (Equation 6) shows that there 

are two potential independent terms which define the equilibrium contact angle. These are the 

Young angle at the PZC and the droplet|aqueous phase surface energy.  
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 ((Equation 6) 

 

The Young angle at PZC defines the minimum achievable contact angle while the 

droplet|aqueous phase surface energy defines how dramatically the droplet will respond to a 

change in potential. That is to say that a low γdw means the droplet responds more to changes 

in potential and vice-versa for high γdw. The former case is desirable so that large changes in 

contact angle are achievable with small applied potentials. Nonetheless, (Equation 6 gives no 

hard and fast indication that certain surface energies will stop the electrowetting response 

altogether. Therefore, it was very surprising to find that the choice of solvent for the droplet, 

which affects the Young angle and droplet|aqueous phase surface energy, had a dramatic 

effect on the electrowetting response. 

Using 0.10 mol dm–3 LiCl as the aqueous phase with template stripped gold—the optimised 

system for a pure DCE droplet—the effect of droplet composition was tested. In all cases 

there was no organic electrolyte in the droplet. It was found that very hydrophobic liquids, 

which were highly immiscible with water, were very strongly pinned. These included 

cyclohexane and the perfluorinated solvent FC40. Partially water miscible solvents such as 

butyl acetate (water solubility: 10 g dm–3) and nitrobenzene (1.9 g dm–3) were less pinned while 

n-butanol (73 g dm–3) had a response close to that of DCE, which itself has a water solubility 

of 8.7 g dm–3.20 There is clearly a loose trend here that as solvents become more water 

miscible, they show less pinning. The trend is not perfect as the most water miscible solvent, 

n-butanol, does not exhibit the least pinning; but it must be noted that these systems were not 

optimised for the LiCl concentration, something which was shown to have a dramatic effect 

on hysteresis. Furthermore, n-butanol is less dense than water and its buoyancy may 

exacerbate pinning as there is an additional force pulling the droplet off the surface. 

More specifically, the pinning seen with the very hydrophobic droplets was not pinning in the 

forward direction (from small to large contact angle) but rather pinning on the return scan, 

showing that the droplet was reluctant to spread back across the surface which it had just 

previously wetted. This, along with the electrolyte and concentration dependence on 

hysteresis, further supports the suggestion that the increased pinning may in fact result from a 
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thin hydrophilic layer of water which remains adsorbed to the electrode surface even after the 

potential has been relaxed. 

Alternatively, it is reasonable to assume that the more water miscible solvents have lower 

droplet|aqueous phase surface energies owing to more favourable interactions between the 

component molecules and this may affect the electrowetting response. However, if we assume 

that the change in capacitive energy for a given potential step is independent of droplet 

composition, changes in droplet|aqueous phase surface energy should only serve to increase 

the change in contact angle between given steps (based on (Equation 6). This in itself would 

not reduce the hysteresis seen between forward and reverse scans. Even for the heavily pinned 

droplets, there was always a substantial change in contact angle on the forward scan. 

These observations initiated the search for a solvent which might reduce pinning. The desired 

solvent characteristics were high water miscibility (although, of course, not complete 

miscibility), a density greater than that of water and a low viscosity. Density is important for 

two reasons. Firstly, although low density solvent droplets are able to adhere to the electrode 

surface—as surface tension forces can overcome the buoyancy—it was often found to be 

problematic to do this. Secondly, as has already been mentioned, the buoyancy pushes the 

droplet upwards which may increase hysteresis. This is because a decrease in the droplet 

contact angle coincides with a lowering of the droplet’s centre of mass which must work 

against gravity. Similarly, viscosity is also believed to increase hysteresis as a result of inertial 

resistance to shape change.21 

One of the first solvents tested was 3-chloro-1-propanol. It showed a remarkable 

electrowetting response, with no hysteresis within the error of the contact angle measurement. 

However, this came with one very significant problem: the response was not within the 

potential window imposed by the onset of Faradaic reactions. The electrowetting of 

3-chloro-1-propanol is discussed in detail in the next section. 
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5.6.2 Electrowetting of 3-chloro-1-propanol 

A search of the literature suggests that 3-chloro-1-propanol is mainly used as a reactant in 

organic synthesis: almost one thousand different reactions of 3-chloro-1-propanol can be 

found on the chemical search engine Reaxys. Conversely, there is very little reliable data on its 

physical properties beyond its density and boiling point. In fact, 3-chloro-1-propanol was 

chosen based in its predicted water solubility of 147 g L–1.22 In reality, it was found that it was 

completely miscible with water in all proportions. However, these mixtures exhibited fairly 

unusual salting-out behaviour. The addition of 0.10 mol dm–3 LiCl (or NaCl) would cause >20 

volume per cent mixtures to separate into two phases. This behaviour is reported for some 

other solvents such as isopropyl alcohol, 1,4-dioxane and glycerol.23,24 However, for these 

solvents this phase separation only occurs at very high salt concentrations (>1 mol dm–3). 

Figure 72 shows the electrowetting response of a water:3-chloro-1-propanol 70:30 volume per 

cent system. The aqueous phase contains 0.16 mol dm–3 LiCl which was the optimum 

concentration for this system. 

It is worth noting that even for this system, which shows no hysteresis with 0.16 mol dm–3 

LiCl, the response is very sensitive to the electrolyte concentration as is the case for a DCE 

droplet. Remarkably, this is true to the extent that at 0.12 mol dm–3 LiCl and at 0.20 mol dm–3 

LiCl there is a gap of over 700 mV between forward and reverse scans (Figure 72). 
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Figure 72|Electrowetting response of 3-chloro-1-propanol with an aqueous phase of LiCl of 
varying concentrations. At 0.12 mol dm–3 and 0.20 mol dm–3 LiCl the system is heavily pinned. 
Remarkably, however, at 0.16 mol dm–3 LiCl the pinning disappears. The contact angles at low 
values can only be read to an accuracy of ±2 degrees. Therefore, at 0.16 mol dm–3 LiCl there is 
almost no hysteresis within the error of the contact angle measurements. 

 

However, as has been mentioned, there is a very significant problem with this system, which is 

the onset of a Faradaic reaction at -600 mV. This is the result of hydrogen evolution, which 

has been shifted to higher potentials. This is because the 3-chloro-1-propanol solution was 

mildly acidic, something which is not immediately apparent from its molecular structure. In 

fact, the electronegativity of the chlorine atom significantly increases the dissociation constant 

of the hydroxyl group in water. This is confirmed by the nuclear magnetic resonance study of 

various alcohols by Lee and Demchuck.25 The pH of the solution was measured to be between 

3 and 4 (pKa of 3-chloro-1-propanol between 3.45 and 4.45). As shown in Figure 73, this 

reaction was stopped by the addition of 0.05 mol dm–3 NaOH, resulting in a shift to pH >11. 

This suggested that the reaction was indeed proton reduction and not reduction of the 

3-chloro-1-propanol itself.  
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Figure 73|Cyclic voltammetry of 0.1 mol dm–3 LiCl saturated with 3-chloro-1-propanol. The 
addition of 0.05 mol dm–3 NaOH delays the onset of a Faradaic reaction, suggesting that the 
current is due to the high proton concentration in solution brought about by the Brønsted 
acidity of 3-chloro-1-propanol. 

 

This provokes the obvious question of whether the low hysteresis is a result of the Faradaic 

processes, perhaps though agitation of the surface or through some additional pseudo-

capacitance. The first attempt to try to answer this was to use LiOH or NaOH together with 

LiCl as the aqueous phase electrolyte. Figure 74 shows the electrowetting response for the 

3-chloro-1-propanol system with an aqueous phase of 0.05 mol dm–3 NaOH and 0.10 mol 

dm–3 LiCl. The response is comparable with that for DCE with 0.10 mol dm–3 LiCl in that 

there is a 200 mV gap between forward and reverse scans. Similar or worse results are seen 

with LiOH. Of course, this is much more pinned than the system with no NaOH. While this 

is a disappointing result—ideally there would be no hysteresis—it still doesn’t show that the 

low hysteresis is a result of the Faradaic reaction. This is because in adding the NaOH we 

have radically changed the system. The clearest indication of this is that the Young contact 

angle has changed from 20o to 67o and so a fair comparison between the two experiments 
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cannot be made. Thus, it cannot be said that the increase in hysteresis is because there is no 

longer a Faradaic reaction at the electrode surface. 

It is also important to make the point that, as far as the author is aware, there are no reports in 

the literature of low voltage electrowetting systems, with no hysteresis, which do operate 

outside of the limits imposed by Faradaic processes (except on mercury). The electrowetting 

systems discussed in Chapter 1, are not designed to be methods of electrowetting within the 

potential window. Rather, they are simply methods of electrowetting on solid surfaces and are 

not designed in response to electrowetting systems which only work outside of a potential 

window. 

 

Figure 74|Electrowetting response for the 3-chloro-1-propanol system with an aqueous phase 
of 0.05 mol dm–3 NaOH and 0.01 mol dm–3 LiCl on template stripped gold. 

 

A somewhat different experiment to see whether the pH and the Faradaic reactions are 

responsible for the low hysteresis was done: the DCE system was acidified with HCl to see 

whether this reduced hysteresis. A DCE droplet with surrounding 0.10 mol dm–3 LiCl phase 
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was used. At pH 4 to 2 the droplet was completely pinned and showed no electrowetting 

response whatsoever, despite the presence of a background Faradaic current. This would 

suggest that Faradaic processes do not necessarily promote electrowetting. 

Finally, another noteworthy result involving 3-chloro-1-propanol is shown in Figure 75. It 

shows the electrowetting response when the droplet is composed of a mixture of DCE and 

3-chloro-1-propanol. It is noteworthy because it is the only example of electrowetting on a 

solid surface at potentials positive of the PZC. Usually there is no electrowetting seen in this 

region, despite the fact that the electrowetting equation suggests that there should be. This is 

perhaps a further indication that there is something special about the interfacial properties of 

3-chloro-1-propanol. As nothing is usually seen at these potentials, the electrowetting 

response must therefore be weaker; however, properties of 3-chloro-1-propanol/DCE are so 

conducive to electrowetting that a response is still seen in this instance. This would also 

support the idea that the low hysteresis response of 3-chloro-1-propanol is not due to 

Faradaic processes, which only occur below –600 mV. Another interesting observation is that 

at low 3-chloro-1-propanol concentrations, with a DCE droplet, the electrowetting response is 

very poor even though there is a background Faradaic current, which also suggests the 

Faradaic current is not a driving force for electrowetting. 

 

Figure 75|Electrowetting response of a mixed DCE:3-chloro-1-propanol 1:3 droplet, with 
0.15 dm–3 LiCl in the aqueous phase. This is the only known example of low voltage 
electrowetting at positive potentials on a solid (rather than mercury) surface. 
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The next sections attempt to create a system with similar properties to the 3-chloro-1-

propanol system. Namely, similar Young contact angle, water miscibility and droplet|aqueous 

phase surface energy but without the acidity of 3-chloro-1-propanol. 

 

5.6.3 Salting out with other solvents 

As discussed above, 3-chloro-1-propanol mixed with water requires the addition of a salt to 

cause phase separation. This indicates that there is a strong enthalpic interaction between the 

two liquids. This, in turn, may help the droplet spread across the water-coated electrode. 

However, it was not possible to find another solvent which salted out at similar salt 

concentrations. For instance, isopropyl alcohol salted out only when the aqueous phase was 

close to saturation with NaCl.23,24 

An electrowetting system with isopropyl alcohol and NaCl saturated water was tested. The 

normal electrowetting geometry had to be inverted due to the buoyancy of the isopropyl 

alcohol, which constituted the surrounding phase while the droplet consisted of NaCl 

saturated water. It was found that upon equilibrating the system, enough NaCl dissolved in the 

isopropyl alcohol to enable it to conduct a small current. However, the system showed a large 

amount of pinning as expected for such high salt concentrations. On gold the droplet Young 

angle was 33o and would completely wet the surface at -1 V. On carbon the droplet angle 

decreased from 55o to 27o. 

 

5.6.4 Mixed solvents 

It was not possible to find another pure solvent which salted out at low salt concentrations, 

the way 3-chloro-1-propanol does. Density is an essential parameter for the solvent and pure 

hydrocarbons are all less dense than water. To be denser than water, they must contain 

different atoms, such as a halide or oxygen. However, the physical properties of these halide 

containing molecules are generally poorly classified because, excluding a select few, they are 

not used as solvents. This also makes them expensive to use in the quantities needed for 

electrowetting (10-100 ml per experiment). Therefore, mixtures of dense solvents with 
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hydrophilic solvents were prepared in the hope that they would mimic the properties of 3-

chloro-1-propanol. 

The three solvent combinations tested were 1:1 mixtures of DCE/propanol, 1-butanol/ 

1,3-butanediol and 1-butanol/propylene carbonate. These were all equilibrated with an 

aqueous solution of 0.10 mol dm–3 LiCl. DCE/propanol had a very large Young contact angle 

of 116o and was heavily pinned. It had a very low liquid|liquid surface energy of 11±2 mJ m–2. 

This is much lower than the liquid|liquid surface energy of pure DCE with water (28.7 

mJ m-2) indicating that the presence of 1-propanol did reduce the liquid|liquid surface energy 

as intended.26 Although this is still not as low as the liquid|liquid surface energy of the 3-

chloro-1-propanol system (measured to be 6.0±0.5 mJ m-2) this suggests that low liquid|liquid 

surface energy is not the sole reason for the remarkable electrowetting properties of 3-chloro-

1-propanol. The next solvent mixture, 1-butanol/1,3-butanediol had a very low Young contact 

angle. In fact, it completely wet the gold electrode surface. After the initial scan, it cycled 

between a contact angle of 30o and 88o with a lot of hysteresis. This seems to suggest that a 

low Young angle is also not the sole reason for the low hysteresis seen with 3-chloro-1-

propanol. Finally, 1-butanol/propylene carbonate had a Young angle of 70o and was also 

heavily pinned. 

These mixtures were unable to capture the electrowetting performance of 3-chloro-1-propanol 

despite sharing some of its properties such as its low Young contact angle or low liquid|liquid 

surface energy. Nonetheless, this seems to be a sensible method for trying to mimic 3-chloro-

1-propanol more closely in the future, perhaps resulting in the discovery of a low hysteresis 

electrowetting system. It is also important to note that these systems were not necessarily 

optimised for LiCl concentration, which may have greatly affected the electrowetting. 

 

5.7 Conclusions 

The first part of this chapter covered the effects of using specially designed electrodes for 

electrowetting. These electrodes were ultra-flat template stripped gold, ultra-flat glassy carbon, 

fluoro-plasma treated gold, diazonium functionalised gold and PEDOT-F. Of these methods, 

only template stripped gold was found to reduce hysteresis in electrowetting, while the other 
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surfaces increased it. This suggests that a low surface energy electrode will not necessarily 

reduce pinning, as has been found for EWOD. Nonetheless, the unexpected finding that 

concentration and droplet composition have a dramatic effect on pinning means that each 

electrowetting system must be optimised for electrolyte concentration. When a deeper 

understanding of concentration and surface energy effects has been developed, these methods 

for tuning the hydrophobicity of a conducting surface may yet prove to be useful. 

On the other hand, template stripped electrodes proved to be a valuable development. They 

clearly reduce the pinning of a DCE droplet when compared with sputtered gold electrodes as 

used previously by Kornyshev et al.2 This is a simple and convenient method for electrode 

preparation which reduces concern over electrode cleanliness and roughness, allowing the 

effect of other variables to be studied more independently. 

Of these other variables, the nature of the electrolytes used for electrowetting proved to have 

an unpredictable effect. The use of a more bulky electrolyte in the droplet, to stabilise the 

aqueous phase|droplet interface, had no effect on the electrowetting response; making it a 

good choice of organic electrolyte as it ensures that there is no ion transfer from the droplet 

to the surrounding solution. In contrast, changing the inorganic electrolyte was found to 

significantly increase pinning. There is currently no explanation for this, making it an 

interesting avenue for future investigation. 

Also of significance was the concentration of the electrolytes used. This proved to be very 

important in reducing pinning and increasing the maximum achievable contact angle change. 

It was shown that the electrolyte could be made both too dilute and too concentrated, with 

the ideal concentration for LiCl with DCE being 0.10 mol dm–3. Furthermore, it was shown 

that if a hydrophobic solvent was used as the droplet, the contact angle would not decrease on 

the return scan, while more water miscible solvents did return. These results led to speculation 

that one origin of hysteresis is the adsorption of a film of water at the electrode surface as the 

droplet contracts. As it tries to spread on the return scan, it cannot as this hydrophilic layer 

does not want to come off the surface even when the potential scan is reversed. This would 

explain why more hydrophobic droplets are reluctant to return to their original configurations. 

It is also feasible that with certain electrolytes, and in particular at high electrolyte 

concentrations, this layer of water is more strongly adhered to the surface, explaining the 
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concentration and electrolyte dependence. At this stage this is pure speculation and might 

form the basis of future investigations. 

Given the hypothesis which has just been outlined, it was proposed that less hydrophobic 

solvents would not be so strongly repelled by this water film. As a result the highly water 

miscible solvent 3-chloro-1-propanol was used. This was found to be immiscible with water 

only in the presence of an electrolyte. It also showed no hysteresis when used in the droplet. 

Unfortunately, it is mildly acidic meaning that the Faradaic reduction of protons in the 

solution was shifted to higher potentials such that the potential of the reaction coincided with 

the potential of electrowetting. This means the system was unsustainable over long time 

periods. Other solvents or solvent mixtures were unable to recreate the electrowetting 

response of 3-chloro-1-propanol. This means that there is still a question as to whether the 

low hysteresis response of the 3-chloro-1-propanol is due to the Faradaic reactions or not, 

although acidification of DCE systems to a similar pH did not reduce hysteresis. 

The one thing that is clear is that electrowetting is far more complicated than the relatively 

simple Young-Laplace equation suggests. Although some ambiguity remains, it seems that the 

relative surface energies of the three interfaces in an electrowetting system play a role in the 

hysteresis and reproducibility of an electrowetting system. On top of this there are additional 

factors influencing droplet relaxation which have not been previously reported or considered. 

Despite these complications, substantial progress has been made both in establishing which 

parameters are important for an electrowetting system and in finding a system with such 

parameters. The most effective electrowetting system, using the solvent 3-chloro-1-propanol 

offered fantastic performance; however, it is not a viable solution due to Faradaic processes. 

Whether the Faradaic processes and excellent performance are in fact related could not be 

determined; nevertheless, this result justifies further investigation into low voltage 

electrowetting, providing hope that a low voltage, hysteresis-free system is possible.  
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Chapter 6: Conclusions 

6.1 General conclusions 

This thesis has shown that one of the difficulties in studying low voltage electrowetting 

systems is the systematic isolation of individual variables. In trying to change just the electrode 

material, the capacitance, surface tensions and morphology all change at the same time. In 

changing the electrolyte again the capacitance and surface energies change together. In 

changing the composition of the droplet, three surface energies change at once while the 

density also changes and so on and so forth. This makes it exceedingly difficult, if not 

impossible, to systematically isolate individual variables—one of the tenets of good scientific 

practice. On top of this there is the unpredictability of studying pinned systems, which 

inherently introduce substantial variation between experiments. Even so, now that there is a 

better understanding of the important factors in low voltage electrowetting, coupled with an 

appreciation of its previously unexpected complexity, future work should attempt a more 

vigorous analysis of the effect of factors such as liquid|liquid surface energy which were only 

touched upon in the final stages of this thesis. This way, it will be possible to elucidate which 

properties of a system are responsible for both a good and not-so-good electrowetting 

response. 

 

6.2 Electrowetting devices 

A hysteresis-free electrowetting system using 3-chloro-1-propanol was shown. This had the 

performance required for a low voltage electrowetting lens. However, this did not operate 

within the potential limits imposed by the onset of Faradaic reactions, meaning that the 

system cannot be stable in the long term. Nonetheless, this suggests that a low voltage 

electrowetting system, suitable for an electrowetting lens, may still be possible. 

However, a hysteresis free system is not essential to other devices such as certain displays and 

switches. These only require an on/off response corresponding to two extreme contact angles. 

Such a system was demonstrated in Section 5.5.3, where the contact angle was cycled between 

93o and 120o continuously. Nonetheless, a similar system would need to be shown on a greater 

variety of electrode surfaces as template stripped gold is both impractical for a device and not 
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stable in water for long periods. Therefore, an improved understanding of why materials such 

as glassy carbon do not show an electrowetting response would be an important step in the 

development of a stable electrowetting device. 

 

6.3 Future work 

While almost every topic covered in this thesis has potential for expansion and more detailed 

investigation, one area is clearly the most interesting and important with regard to 

electrowetting—droplet composition. Future work would almost certainly continue the search 

for a solvent with similar properties to 3-chloro-1-propanol, such as density and surface 

energy, but which is not electrochemically active above –1 V versus Ag/AgCl. This would 

answer the question as to whether the effectiveness of 3-chloro-1-propanol is a result of 

Faradaic processes. If this is not the case, then a hysteresis free electrowetting system would 

have been found. 

No attempt was made in this thesis to fit electrowetting results to the predictions of the 

electrowetting model of Monroe, Urbakh and Kornyshev. This is because this model does not 

accommodate for the effects of pinning and dynamics. As pinning and dynamics currently 

dominate, the theory is not applicable, however, if a non-pinning system were found, then the 

model could be applied. Alternatively, the model could be applied to a mercury system or the 

3-chloro-1-propanol system although this is not at equilibrium due to Faradaic processes. 

Investigation of mercury electrowetting systems may also be interesting as the absolute values 

of the surface energies may provide clues as to why mercury is hysteresis-free. It would also be 

interesting to see whether pinning could be induced on mercury with certain solvent and 

electrolyte combinations, thus showing that effects of concentration, electrolyte and droplet 

solvent are a general result not limited to gold surfaces. This in turn could help explain the 

origin of these effects. 


