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Abstract 
 
 
This thesis addresses the impact of quadriceps wasting and physical inactivity across 

disease severity (GOLD stages I-IV) in Chronic Obstructive Pulmonary Disease (COPD) and 

assesses the influence of angiotensin-converting enzyme (ACE)-inhibition on quadriceps 

dysfunction in these patients.  

 

In a cross-sectional study of 161 COPD patients, ultrasound measurement of rectus 

femoris cross-sectional area was reduced in mild as well as advanced disease when 

compared to controls. Daily physical activity, measured using an armband accelerometer, 

was reduced in COPD subjects across all GOLD stages compared to controls. Physical 

activity was independently associated with quadriceps wasting in GOLD stage I, but not 

stage II-IV disease where residual volume to total lung capacity ratio was the only 

independent predictor of activity level. This data suggests that quadriceps wasting is not 

an end-stage phenomenon in COPD and highlights the need for early identification of 

these patients to guide lifestyle and therapeutic interventions. 

 

The effect of the ACE-inhibitor, fosinopril on quadriceps dysfunction in COPD was then 

investigated in a double-blind randomised controlled trial of 80 COPD patients with 

quadriceps weakness. Despite a significant reduction in systolic blood pressure and serum 

ACE activity in the treatment group compared to placebo, no significant differences were 

observed at 3 months in the primary outcome of non-volitional quadriceps endurance. 

Quadriceps strength improved in both groups, but there was a greater increase in the 

placebo arm. No significant changes were observed in mid-thigh cross-sectional area or 
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incremental shuttle walk distance. The trial also assessed the effect of ACE-inhibition on 

vastus lateralis atrogene expression in COPD, with no significant differences observed 

between groups.  

 

In conclusion, although evidence from observational cohorts suggest a role for the renin-

angiotensin system in the control of muscle phenotype, data from this thesis found that 

ACE-inhibition did not improve quadriceps function in a COPD population with quadriceps 

weakness.  
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1.1 Definition of COPD 

 
 
The term ‘Chronic Obstructive Pulmonary Disease’ (COPD) was first introduced in the 

1960s describing patients with incompletely reversible airflow limitation due to the 

combined effects of airways disease, chronic bronchitis and emphysema (Briscoe 1965). It 

was the seminal work of a French clinician and pathologist, Laennec, who in 1821 originally 

described emphysema at dissection (Laennec 1821). On opening the chest, he noted: 

 

‘it is not unusual to find that the lungs do not collapse, but they fill up the cavity on each 

side of the heart. When experienced, this will appear full of air’  

 

Laennec went on to describe an accumulation of bronchial mucous in his dissection 

findings, so linking emphysema to the sputum production associated with chronic 

bronchitis (Petty 2006). Emphysema is now defined as abnormal, permanently enlarged 

airspaces distal to terminal bronchioles, with destruction of airspace walls.  Small airways 

disease (obstructive bronchiolitis) is caused by inflammation and squamous metaplasia in 

airways less than 2mm in diameter and can be among the first changes to appear from 

inhalation of noxious materials such as cigarette smoke (MacNee 2008). 

 

Today, the term COPD encompasses a range of pathologies including chronic bronchitis, 

obstructive bronchiolitis and emphysema and is characterised by airflow limitation 

associated with an abnormal inflammatory response in the lungs to inhalation of noxious 

substances, including tobacco smoke and, in the developing world, biomass smoke. The 

airflow obstruction is not fully reversible and is usually progressive causing breathlessness 
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and limitation of daily activities. It is estimated that currently over 210 million people 

worldwide suffer from COPD and World Health Organisation (WHO) projections suggest 

that COPD will be the 5th leading cause of disability (Murray 1996) and 3rd most common 

cause of death worldwide by 2020 (Lopez 1998).  

 

Although COPD has been considered primarily in terms of its effects on lung parenchyma 

and airways, attention is now being focused on its systemic effects (American Thoracic 

Society/European Respiratory Society 1999; Celli 2004a). Increasing evidence suggests a 

multisystem disorder encompassing skeletal muscle dysfunction, cardiac disease, 

osteoporosis, metabolic disturbance, neurological impairment and systemic inflammation 

(Bolton 2004; Hopkinson 2004a; Sin 2006; Baker 2009; Barnes 2009). An important 

illustration of this is the role of pulmonary rehabilitation, which improves health status 

and exercise capacity without influencing lung function in COPD patients (Lacasse 2006; 

Dodd 2011).  

 

Skeletal muscle impairment in particular, represents a key component of the systemic co-

morbidities in COPD with loss of skeletal muscle bulk and strength now recognised as 

important predictors of mortality in this patient group (Marquis 2002; Swallow 2007a). 

The mechanisms involved in the development of muscle weakness are likely to be multi-

factorial with systemic factors including inflammation and oxidative stress (Shrikrishna 

2009) thought to interact with local factors such as muscle inactivity (Hopkinson 2010).  A 

greater understanding of the key mechanisms involved in skeletal muscle dysfunction may 

provide a target area for novel interventions, as an adjunct to pulmonary rehabilitation, 

which remains the mainstay of current therapy.   
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1.2  Hypotheses  

 
 
The work contained in this thesis aims to address the following questions of significance to 

patients with COPD: 

 

(1)  Does quadriceps wasting occur in patients with mild as well as advanced COPD, 

when compared to healthy age-matched controls, and is this associated with their level of 

daily physical activity? 

 

(2) Does angiotensin-converting enzyme (ACE) inhibition have a beneficial effect on 

quadriceps endurance, strength and cross-sectional area in COPD patients with quadriceps 

weakness? 

 

(3) Does ACE-inhibition influence the atrogene mediated pathway of muscle atrophy 

in the quadriceps of patients with COPD and is there an effect on serum inflammatory 

markers? 
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1.3 Skeletal muscle anatomy and physiology 

 
 
1.3.1 Muscle structure and fibre classification  

 
 
Striated muscle cells are found in two tissues in vertebrates - skeletal and cardiac muscle. 

Skeletal muscles, under the control of the somatic nervous system, are able to perform 

voluntary movements and have varying slow twitch and fast twitch contractile properties. 

Three skeletal muscle fibre types exist in humans – Type I, Type IIa and Type IIx - based on 

expression of the predominant myosin heavy chain (MHC) isoforms. Type I are slow-

twitch, aerobic fibres with increased oxidative enzyme expression, mitochondrial content 

and capillary supply. Type IIa are fast-twitch fibres but with a similar oxidative profile to 

the type I fibres. Type IIx are fast-twitch, anaerobic fibres with a high glycolytic enzyme 

expression (Prince 1981). 

 

Skeletal muscle fibres are large multinucleated cells surrounded by an electrically polarised 

membrane – the sarcolemma. The muscle fibres are grouped in a connective tissue sheath 

(perimysium) and arranged in bundles known as fascicles. These fascicles are grouped in 

further connective tissue (epimysium) to form the whole muscle. An individual muscle 

fibre contains thousands of myofibrils or ‘muscle threads’ arranged in parallel, each of 

which contain a series of sarcomeres which are the functional unit of contraction. 

Importantly, in a mature muscle, the number of these sarcomeres can alter with the 

appropriate stimulus thereby allowing muscles to adapt (Lieber 2000).  

 

A sarcomere is made up of two types of contractile protein filaments - thick filaments 

composed largely of the protein myosin and thin filaments containing three proteins - 
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actin as the predominant one, tropomyosin and troponin. The thick filaments correspond 

to the A band of the myofibril, overlapped on either end with the thin filaments that form 

the I band. A sheet of alpha-actinin in the centre of the I band, known as the Z-disc, 

anchors the thin filaments and the region between two adjacent Z-discs represents an 

individual sarcomere. Cytoskeletal crosslinking proteins including myomesin and titin 

contribute to elasticity and complete the highly ordered structure as shown in figure 1.1. 

 
 

 
 
Figure 1.1: Striated muscle structure  

Adapted from (Braun 2011) 
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1.3.2 Muscle contractile mechanism 

 
 
There are three key events in skeletal muscle contraction. The first is electrical excitation 

of the muscle fibre, followed by excitation-contraction coupling and finally fibre 

contraction based on the sliding filament mechanism originally described by Huxley in 

1971 (Huxley 1971). The fibres are arranged into motor units each innervated by a single 

motor neuron. Stimulation from the motor neuron results in depolarisation of the 

sarcolemma and after reaching a threshold, an action potential is generated. This electrical 

excitation causes calcium ions to be released from the terminal cisternae of the 

sarcoplasmic reticulum. These calcium ions cause a conformational change in troponin 

subunits attached to the actin filament. At rest, tropomyosin wraps around the actin 

filaments, blocking myosin binding sites, however with this change in shape, the 

tropomyosin complex moves deeper into a groove of the actin molecule thereby exposing 

the myosin-binding sites. This allows the process of muscle fibre contraction to begin 

where actin filaments slide past the myosin filaments shortening the sarcomere length. 

The hydrolysis of ATP to ADP and inorganic phosphate energises the myosin heads 

allowing them to bind to actin forming cross-bridges. This formation then releases 

inorganic phosphate and triggers the power stroke where the myosin head rotates and 

pulls the actin filament towards the centre of the sarcomere. ATP then binds to the myosin 

head releasing it from actin and the contraction cycle can start again. When intracellular 

calcium levels fall, the myosin-binding sites on actin are blocked by the tropomyosin 

complex and the muscle fibre returns to its relaxed state. The force produced is defined by 

sarcomere length (i.e. myofilament overlap). At an optimal length when crossbridge 

interactions are maximal, the muscle produces a maximum force. 



 
31 

 
 

1.4 Importance of Skeletal Muscle Impairment in COPD 

 
 
Skeletal muscle impairment can be considered in terms of muscle bulk and muscle 

function though these are of course related. Weight loss has long been recognised as a 

feature of COPD (Fowler 1898) occurring in 15% of mild and 25% of moderate to severe 

COPD patients (Wilson 1989; Schols 1993; Engelen 1994) and is associated with a poor 

prognosis (Boushy 1964; Vandenbergh 1967; Gray-Donald 1996; Schols 1998; Landbo 

1999; Prescott 2002; Chailleux 2003; Cano 2004; Celli 2004b; Marti 2006).  

 

Different patterns of weight loss occur depending on whether there is a loss of fat mass, 

fat free mass (FFM) or both (Schols 1993). It is clear that preservation of FFM is more 

important than body weight, as normal weight patients with nutritional depletion (fat free 

mass index <15kgm-2 for women or <16kgm-2 for men (Baarends 1997)) are more disabled 

than underweight patients with a preserved FFM (Shoup 1997; Mostert 2000). Skeletal 

muscle is a major component of FFM and FFM depletion in COPD is associated with 

reduced exercise performance, increased dyspnoea and impaired health related quality of 

life (Hamilton 1995; Gosselink 1996; Bernard 1998).  Leg discomfort makes a significant 

contribution to exercise limitation in patients with COPD (Killian 1992; Man 2003a) and 

where low frequency quadriceps fatigue occurs after exercise, bronchodilation has been 

found not to increase exercise capacity (Saey 2003). 

 

Skeletal muscle weakness does not occur equally in the upper versus lower limbs. The 

same is also true when comparing limb and respiratory muscles with different muscle 

compartments responding to the particular demands placed on them (Gea 2001a). The 
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quadriceps is one of the main muscles of ambulation and has been the focus of much of 

the work around skeletal muscle impairment in COPD. In moderate to severe COPD the 

mean reduction in quadriceps strength is approximately 30% (Bernard 1998; Man 2003b; 

Hopkinson 2004b; Man 2005) with significant weakness present in about 30% of patients 

(Swallow 2007a). Quadriceps weakness has been shown to be related to impaired quality 

of life (Simpson 1992), exercise limitation (Gosselink 1996) and increased health care 

utilisation (Decramer 1997), and predicts survival more powerfully than FFM or forced 

expiratory volume in 1 second (FEV1) (Swallow 2007a). A reduction in quadriceps 

endurance has also been demonstrated in COPD using both volitional and non-volitional 

techniques of assessment (Coronell 2004; Swallow 2007b).  
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1.5  Mechanisms of Skeletal Muscle Dysfunction in COPD 

 
 
Skeletal muscle atrophy and hypertrophy can be influenced by a number of processes that 

are relevant to patients with COPD. A complex interplay of factors including systemic 

inflammation, oxidative stress and muscle disuse are thought to have a role. Some of the 

medications used to treat COPD, particularly corticosteroids, may also have a deleterious 

effect. In addition, genetic susceptibility (Hopkinson 2004b; Hopkinson 2006; Hopkinson 

2008) might explain why some COPD patients demonstrate greater peripheral weakness 

than others.   

 
 

1.5.1 Disuse 

 
 
Patients with COPD are breathless when they exercise and this is reflected in a reduction 

in physical activity which may be very pronounced (Pitta 2005). Quadriceps weakness can 

occur with relatively brief periods of bed rest (10 days) in healthy elderly subjects 

(Kortebein 2007) or indeed other medical conditions (Harris 2001) and has been described 

within a week of  hospital admissions with COPD (Spruit 2003). Following hospitalisation 

for an acute exacerbation, COPD patients have been shown to have reduced physical 

activity which can continue for several weeks (Pitta 2006). Furthermore, early pulmonary 

rehabilitation in the recovery period after discharge, following admission with an acute 

exacerbation of COPD, leads to significant improvements in functional capacity at 3 

months (Man 2004).  Weakness in patients with stable COPD is most pronounced in the 

locomotor muscles (Man 2003b; Man 2005) and at biopsy a  classic disuse pattern of 

change is observed in the quadriceps with a shift towards a preponderance of ‘fast’ Type II 

fibres (Jakobsson 1990; Gosker 2003; Gosker 2007), reduced capillarity (Jobin 1998) and a 
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reduced oxidative capacity (Jakobsson 1990). This pattern is not seen in the deltoid muscle 

(Gea 2001b) and the reverse effect, a shift towards a preponderance of slow fibres, is seen 

in the diaphragm which exhibits increased activity in COPD patients (Levine 1997).  

 
 

1.5.2 Systemic Inflammation and Oxidative Stress 

 
 
Systemic inflammation is present in patients with COPD as evidenced by increased levels 

of tumour necrosis factor-α (TNF-α) and C-reactive protein (CRP) (Gan 2004). However, 

although early data supported a role for increased serum levels of cytokines such as TNF-α 

in muscle wasting in severe COPD (Di Francia 1994), a review incorporating the more 

recent studies of circulating TNF-α levels has concluded that there is no difference in TNF- 

α between cachectic and non-cachectic COPD patient groups (Wagner 2008). The 

diminished role for TNF-α in COPD peripheral muscle dysfunction has been supported by a 

study identifying that levels of quadriceps muscle TNF-α actually fall with decreasing 

strength (Barreiro 2008).  This study also found no difference in IL-6, interferon-gamma or 

TGF-β protein expression in muscle between COPD patients and controls suggesting that 

the quadriceps muscle does not exhibit a pro-inflammatory environment in patients with 

severe COPD. The latter study did however, identify markers of quadriceps muscle 

oxidative stress in this patient group and in support of this, depletion of the reduced form 

of glutathione levels has also been observed in COPD patients when compared to controls 

(Rabinovich 2006). It is well established that free radicals produced by oxidative stress are 

capable of causing tissue damage and such radicals may well have a role in the muscle 

atrophy seen in COPD (Couillard 2005). In addition, it has been demonstrated that chronic 

endurance exercise leads to nitrosative stress in the quadriceps of severe COPD patients 
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(Barreiro 2009). Interestingly, recent work indicates that COPD patients exhibit different 

quadriceps muscle gene expression patterns in response to training when compared to 

controls (Radom-Aizik 2007), although this study had relatively few participants. 

Nevertheless, it was reported that oxidative stress gene pathways were more highly 

expressed in COPD patients than controls after training. Further work is needed to 

establish the role of oxidative stress in COPD and to investigate if attenuation of these 

pathways can enhance training responses in this patient group.  

 
 

1.5.3 Corticosteroids 

 
 
Steroid induced myopathy classically affects the proximal muscles with atrophy of fast 

twitch fibres and frank myopathy has been described as a complication of corticosteroid 

use in COPD (Decramer 1996). However, interpretation is confounded by the effects of 

frequent exacerbations which are the classical indication for steroid therapy in this patient 

group. It has been shown that a two week course of prednisolone in stable COPD patients 

had no effect on skeletal muscle parameters (Hopkinson 2004c) and cross-sectional 

studies have not demonstrated a link between muscle depletion and steroid use in COPD 

(Schols 1993; Hopkinson 2004b) although there are other reasons to avoid chronic steroid 

therapy (Schols 2001). 

 
 

1.5.4 Role of acute exacerbations 

 
 
In addition to the emphysematous or airways predominant groups, frequent exacerbators 

are a key clinical phenotype in COPD (Hogg 2004; Han 2010; de Oca 2012). When COPD 
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patients are hospitalised for an exacerbation, quadriceps strength falls by a further 5%, 

and recovery of baseline strength is not seen in all patients (Jakobsson 1990).  

Consequently, reduced FFM is associated with exacerbation frequency both in a cross-

sectional study (Hopkinson 2004b) and with decline in FFM prospectively (Hopkinson 

2007).  The mechanism for this is likely to be multifactorial as acute exacerbations 

integrate many of the factors that are thought to contribute to muscle weakness including 

inflammation, immobility, negative nitrogen balance, and the administration of 

corticosteroids.  

 
 

1.5.5 Molecular mechanisms 

 
 
The molecular biology underlying the skeletal muscle dysfunction observed in COPD 

remains to be determined. A key catabolic pathway involved in skeletal muscle atrophy is 

mediated through two ubiquitin ligases, the atrogenes atrogin-1 and muscle RING finger 

protein-1 (MuRF-1). These ligases are muscle specific enzymes which have been shown in 

murine models to mediate protein degradation and hence muscle wasting as part of the 

ubiquitin proteasome pathway (Ottenheijm 2008). There is evidence of increased 

expression of MuRF-1 and atrogin-1 in the quadriceps muscle of COPD patients in 

comparison to healthy age-matched controls (Doucet 2007).  In addition, this study 

showed that the Forkhead box class O (FoxO) of transcription factors, which induce MuRF-

1 and atrogin-1, were present at an increased protein concentration in the quadriceps of 

COPD patients compared to the healthy subjects.  
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The anabolic hormone, insulin-like growth factor-1 (IGF-1), acts through the 

phosphoinositide 3-kinase (PI3K)/AKT pathway with IGF-1 receptor activation leading to 

AKT phosphorylation. This disables FoxO transcription factors and prevents expression of 

the atrogenes, thereby inhibiting muscle catabolism (Sandri 2006). In addition, AKT 

phosphorylation activates the mammalian target of rapamycin pathway (mTOR) which  

upregulates p70S6K (70kDa ribosomal S6 protein kinase) (Rommel 2001) and inhibits 4EBP-1 

(eukaryotic initiation factor 4E binding protein-1) (Hara 1997), thereby promoting protein 

synthesis. Phosphorylated AKT can also act independently of mTOR to inhibit GSK-3β 

(glycogen synthase kinase-3β), a repressor of protein synthesis (Cross 1995; Vyas 2002). 

 

It has been shown that IGF-1 levels are reduced in COPD patients in the stable state 

compared to healthy controls (Crul 2007).  Furthermore, in COPD patients undergoing 

pulmonary rehabilitation, increases in exercise capacity and fibre size are associated with 

upregulation of IGF-1 and a splice variant of IGF-1 (mechano growth factor, MGF) 

(Vogiatzis 2007).  Interestingly, MGF is specifically produced in response to mechanical 

stretch and leads to muscle hypertrophy and satellite cell activation (Goldspink 2003).  

 

Local IGF-1 expression also down regulates NF-κB and  pro-inflammatory cytokines 

including TNF- α, IL1-B, high mobility group protein-1 (HMGB1) and macrophage migration 

inhibitory factor (MIF) (Pelosi 2007).  NF-κB acts as a key downstream mediator of the 

inflammatory cytokine cascade, as well as being activated by other triggers including 

inactivity (Hunter 2002). NF-κB is controlled via the IKK (inhibitor of NF-κB kinase) complex 

and in murine studies, targeted deletion of this complex suppressed NF-κB activation and 

led to a shift in muscle fibre distribution towards a Type I phenotype and improved muscle 
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force (Mourkioti 2006).  In addition, NF-κB expression has been shown in transgenic mice 

to be associated with over expression of MuRF-1 leading to muscle atrophy (Cai 2004). As 

NF-κB activation occurs in the skeletal muscle of COPD patients with low body weight 

(Agusti 2004)  this transcription factor may have an influence in the muscle atrophy 

observed in this patient group.  

 

Interestingly NF-κB has also been shown to inhibit a key myogenic regulatory factor, MyoD 

(Langen 2004).  MyoD is involved in the control of myogenic satellite cells which mediate 

muscle repair and regeneration (Megeney 1996; Hawke 2001)  and hence its inhibition can 

prevent a response to muscle injury. Myostatin, a member of the TGF-β superfamily, is 

also a negative regulatory factor of myogenic satellite cells. Through inhibition of MyoD, 

myostatin suppresses satellite cell differentiation and muscle repair (Joulia 2003). A role 

for myostatin in the skeletal muscle dysfunction observed in COPD comes from a cross-

sectional study by Plant et al, who found increased expression of myostatin mRNA in the 

quadriceps of cachectic COPD patients compared to healthy controls (Plant 2010). In 

addition, levels of quadriceps myostatin mRNA expression have been shown to negatively 

correlate with quadriceps strength, six minute walk distance (6MWD), locomotion time as 

a measure of daily physical activity and quadriceps endurance assessed by repetitive 

magnetic stimulation in 18 COPD patients (Man 2010). Further work is needed to establish 

if myostatin has a key role in driving the reduction in strength, exercise capacity and 

activity seen in these patients.  

 

Peroxisome proliferator-activated receptors (PPARs) may have an important role in the 

maintenance of muscle mass in COPD (Sathyapala 2007). These transcriptional co-factors 
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have a key regulatory role in skeletal muscle phenotype and angiogenesis (Arany 2008).  

PPARs mediate Type II (fast twitch, anaerobic) to Type I (slow twitch, aerobic) fibre shift 

and regulate mitochondrial activity as well as muscle oxidative status (Luquet 2003). PPAR 

gamma coactivator 1α (PGC-1α) expression in transgenic mice has been shown to promote 

a type I oxidative phenotype possibly through co-activation of myocyte enhancer factor-2 

(MEF-2) (Lin 2002). PGC-1α suppresses the activity of FoxO to reduce the expression of the 

ubiquitin ligases involved in muscle atrophy (Sandri 2006).  In addition it has been shown 

that PGC-1α knockout mice have reduced skeletal muscle vascular endothelial growth 

factor (VEGF) levels and reduced capillary/fibre ratio (Arany 2008; Leick 2009). Remels et 

al have shown that PPAR-delta protein content is decreased in the skeletal muscle of COPD 

patients with a cachectic COPD subgroup also found to have decreased PPAR-alpha mRNA 

expression (Remels 2007). Further work is needed to establish the importance of reduced 

levels of PPAR expression in the skeletal muscle abnormalities in COPD. Figure 1.2 shows 

some of the key molecular pathways of muscle wasting outlined above. 
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Figure 1.2: Molecular pathways of skeletal muscle wasting  

Adapted from (Glass 2005) & (Man 2009). (IGF-1, insulin-like growth factor 1; IGF1R, insulin-

like growth factor 1 receptor; PI3K, phosphoinositide 3-kinase; GSK3β, glycogen synthase 

kinase 3β; mTOR, mammalian target of rapamycin; eIF2B, eukaryotic initiation factor 2B; 

p70S6K, 70kDa ribosomal S6 protein kinase; E4-BP1, eukaryotic initiation factor 4E-binding 

protein-1; FoxO, forkhead box O; PPAR, peroxisome-proliferator-activated receptor; PGC-1α, 

PPAR-y coactivator-1α; TNF-α, tumour necrosis factor-α; IL-1, interleukin-1; IL-6, interleukin-6; 

IKK, inhibitor of NF-κB kinase; NF-κB, nuclear factor kappa B; MuRF-1, muscle ring finger 

protein-1)  
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1.6 The Renin-Angiotensin System  

 
 
1.6.1 The Role of the Angiotensin-Converting Enzyme 

 
 
A local renin-angiotensin system (RAS) exists in many human tissues including lung and 

skeletal muscle. Angiotensin-converting enzyme (ACE) is a zinc metallo-peptidase present 

in the circulating plasma and highly expressed in lung capillary blood vessels (Studdy 

1983). Angiotensin II receptors are expressed in the lungs (Kakar 1992) and, importantly, 

ACE expression is also evident on the membrane of vascular endothelial cells in muscle 

(Schaufelberger 1998). The RAS, as illustrated in figure 1.3, is mediated initially by renin 

which cleaves angiotensinogen to produce angiotensin I. ACE then catalyses the 

conversion of angiotensin I to angiotensin II, as well as the breakdown of vasoactive kinins. 

Angiotensin II is a potent vasoconstrictor acting directly on smooth muscle cells but it also 

stimulates sympathetic nerve terminals to release the vasoconstrictor norepinephrine and 

facilitates aldosterone secretion from the adrenal cortex, via angiotensin II type 1 (AT1) 

receptors. This enables ACE to exert an influence on salt/water retention and vascular 

tone. In addition, these effects are enhanced by the ACE dependent degradation of 

bradykinin, which when active, can mediate the release of the vasodilator, nitric oxide and 

prostaglandins (Carter 2005).  Angiotensin II type 2 (AT2) receptors oppose some of the 

type I receptor mediated vasoconstrictor effects, through local vasodilation. The human 

lung expresses both angiotensin II receptor subtypes, whereas only the type 1 receptor is 

expressed in adult human skeletal muscle (Malendowicz 2000).  
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Figure 1.3: The Renin-Angiotensin system 

Adapted from (Carter 2005) (AT1 receptor, angiotensin II type 1 receptor; AT2 receptor, 

angiotensin II type 2 receptor; BK2 receptor, bradykinin type 2 receptor; ROS, reactive oxygen 

species)  
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1.6.2 The History of ACE-inhibitors 

 
 
ACE inhibitors were initially developed from investigation of the venom of a Brazilian pit 

viper (Bothrops Jararaca) in the late 1960’s (figure 1.4) (Patlak 2004). The Nobel Laureate 

Sir John Vane found that the venom’s effects, including extensive bleeding and a sudden 

fall in blood pressure, occurred through inhibition of ACE activity. This initial source of 

ACE-inhibition highlights the actions of angiotensin II as a vasoconstrictor and growth 

factor to counteract bleeding and initiate vessel wall repair (Ferrari 2009). However, 

although the RAS plays a key role in the stress response, chronic activation of this system 

in humans is thought to influence cardiopulmonary disease and from the initial discovery, 

an oral form of ACE-inhibitor - captopril - was developed for the treatment of 

hypertension. In particular, evidence of an increase in cardiac and peripheral sympathetic 

activation in COPD patients (Volterrani 1994; Heindl 2001) and the interaction between 

this impaired autonomic control and the renin-angiotensin system, termed ‘neurohumoral 

activation’, has led to its implication in the pathogenesis of COPD (Andreas 2005). 
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Figure 1.4: The Brazilian Pit Viper (Bothrops Jaracaca) 

http://upload.wikimedia.org/wikipedia/commons/6/6e/Crotalus_horridus_(1).jpg
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1.6.3 Renin-angiotensin system and COPD 

 
 
Chronic inflammation of the central and peripheral airways is recognised as a central 

feature of COPD associated with lung remodelling, parenchymal destruction and the 

development of emphysema (Stockley 2009). The RAS is thought to be implicated in the 

pathogenesis of COPD through its involvement in inducing pro-inflammatory mediators in 

the lung (Marshall 2003) (figure 1.5). 

 

 

 

Figure 1.5: Effects of angiotensin II following pulmonary insult 

Adapted from (Marshall 2003) 
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Angiotensin II stimulates the release of cytokines including interleukin 6 (IL-6), monocyte 

chemotactic protein-1 (MCP-1) and TNF- α (Hanif 2010). In particular, alveolar macrophage 

derived MCP-1 has been shown to activate tissue mast cells in response to acute alveolar 

hypoxia thereby triggering systemic inflammation (Chao 2011). Angiotensin II also has an 

immunomodulatory effect on T cell responses which mediate the lung tissue injury 

associated with COPD (Kaparianos 2011). Wong et al have recently shown that alveolar 

type I cells produce pro-inflammatory cytokines and express components of the RAS as 

part of an innate immune response to lung injury (Wong 2012). The study found that this 

cytokine response was mediated by angiotensin II and was inhibited by losartan, an AT1 

receptor antagonist. Interestingly, in COPD patients, Bullock et al found a five to sixfold 

increase in the ratio of AT1 to AT2 receptors in regions of marked fibrosis surrounding 

bronchioles which correlated with the reduction in FEV1 (Bullock 2001). This data supports 

a role for angiotensin II in inducing bronchial constriction via the AT1 receptor (Brown 

2001). The RAS can also generate reactive oxygen species, via the AT1 receptor, promoting 

mitochondrial dysfunction (Benigni 2010) and contributing to the impaired redox signalling 

observed in COPD (Rahman 2006).  
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1.6.4 Renin-angiotensin system and muscle biology 

 
 
Angiotensin II influences the insulin like growth factor system, the ubiquitin-proteasome 

proteolytic pathway and induces the production of pro-inflammatory cytokines in skeletal 

muscle (Cabello-Verrugio 2012) (see figure 1.6). Evidence to suggest influence of the RAS 

on the PI3K/AKT/atrogene pathway comes from animal models where angiotensin II 

administration causes cachexia and muscle specific expression of IGF-1 blocks this 

angiotensin II dependent muscle wasting (Song 2005). Interestingly, the authors of this 

study also postulated that angiotensin II may partially exert its inhibitory action on IGF-1, 

independent of the AT1 receptor, via a glucocorticoid mediated effect. Recent work in 

mice gastrocnemius muscle has also shown angiotensin II transcriptional regulation of 

MuRF-1 and atrogin-1 (Yoshida 2010). This study confirmed that IGF-1 overexpression 

prevented skeletal muscle atrophy and atrogin-1 expression. In addition, dominant 

negative AKT and active FoxO inhibited this IGF-1 mediated effect on angiotensin II action. 

This work highlights the involvement of the ubiquitin degradation pathway in mediating 

the negative effects of angiotensin on skeletal muscle and identifies potential targets for 

intervention. 

 

Insulin-like growth factor-1 receptor (IGF-1R) phosphorylation in human skeletal muscle 

cells has been studied following incubation with telmisartan, valsartan and lisinopril 

(Storka 2008). There was a 2 fold increase in phosphorylation with the ATII receptor 

blockers and a 1.7 fold increase with ACE-inhibition. Phosphorylated AKT levels were also 

increased following incubation with telmisartan, valsartan and lisinopril. The effects 

observed by ATII receptor blockade may be mediated via activation of peroxisome 
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proliferator-activated receptor gamma (PPARy) as IGF-1R phosphorylation was attenuated 

in the presence of a PPARy antagonist.   

 

 

 

Figure 1.6: Postulated actions of the Renin-Angiotensin system in skeletal muscle in COPD 

Adapted from (Hanif 2010). (Ang I, angiotensin I; Ang II, angiotensin II; AT1R, angiotensin II 

type 1 receptor; IGF-1, insulin-like growth factor-1; GLUT 4, glucose transporter 4; NO, nitric 

oxide; TGF-β, transforming growth factor-beta; MAPK, mitogen-activated protein kinase; ROS, 

reactive oxygen species; IL-6, interleukin-6; TNFα, tumour necrosis factor alpha; MCP-1, 

monocyte chemotactic protein-1). Lines ending with a perpendicular segment represent 

inhibitory pathways. 
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Diamond-Stanic et al have recently shown that angiotensin II also inhibits the insulin 

dependent glucose transporter 4 (GLUT4) and decreases phosphorylation of AKT in rat 

soleus skeletal muscle (Diamond-Stanic 2010). The free radical scavenger, superoxide 

dismutase partially reversed the angiotensin II-induced inhibition of glucose transport 

suggesting that reactive oxygen species may have a role in mediating the effect of 

angiotensin on insulin signalling. Further work in this area again using a rat skeletal muscle 

model has shown that angiotensin II induces tyrosine nitration dependent inhibition of 

AKT phosphorylation (Csibi 2010).  Angiotensin II was found to activate the MAP kinases 

(ERK 1 and 2) through a nitration dependent mechanism. In addition this study showed 

that both scavenging of free radicals with myricetin and inhibition of nitric oxide synthase 

restored insulin stimulated AKT phosphorylation and GLUT4 translocation in the presence 

of angiotensin.  This data suggests that oxidative and nitrative stress play a role in 

mediating the angiotensin-induced insulin resistance and atrophy in skeletal muscle.   

 

Bradykinin, via the actions of NO and prostacyclin, can counteract angiotensin II mediated 

effects in skeletal muscle (Hanif 2010). Bradykinin promotes GLUT-4 translocation in 

skeletal muscle, through the actions of nitric oxide (Henriksen 2003). Furthermore, 

absence of the bradykinin receptor 2 gene is associated with insulin resistance in mice 

(Duka 2001). Interestingly, a recent study has found that insulin can stimulate skeletal 

muscle protein synthesis in humans through an indirect mechanism involving endothelium 

dependent NO vasodilation and consequent increased blood flow, capillary recruitment 

and mTOR complex 1 signalling, rather than AKT signalling (Timmerman 2010). Nitric oxide 

also has a key role in inhibiting reactive oxygen species, with fibre type-specific nitric oxide 

shown to protect oxidative myofibres against cachectic stimuli through antioxidant gene 
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expression (Yu 2008). Importantly, enalapril treatment has been shown to reduce 

angiotensin II dependent inflammation and oxidative stress related muscle damage in a 

dystrophic mouse model (Cozzoli 2011). 

 

A key study by Cohn et al has also identified another important target for muscle wasting 

that may be influenced by the RAS (Cohn 2007). The authors found that increased TGF-β 

activity led to a failure of muscle regeneration in fibrillin-1-deficient and dystrophin-

deficient mice. In addition, this study identified that systemic antagonism of TGF-β using 

losartan or a TGF-β neutralising antibody, restored muscle structure and function in both 

mouse models. This highlights a potential role for TGF-β signalling in mediating angiotensin 

II receptor effects in skeletal muscle. Of note, myostatin is both a negative regulator of 

muscle growth, as described previously, and a member of the TGF-β superfamily. In 

cultured rat neonatal cardiomyocytes it has been shown that angiotensin II activates 

myostatin expression via p38 MAP kinase (Wang 2008) and therefore this may also 

represent a target for angiotensin related muscle atrophy.  
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1.6.5 The ACE I/D polymorphism and muscle function 

 
 
The human ACE gene contains a functional polymorphism based on the presence 

(insertion, I) or absence (deletion, D) of a 287 base pair sequence in intron 16 on 

chromosome 17. Therefore three genotypes exist: II, ID, DD and these have an 

approximate distribution of 25, 50 and 25% respectively in a Caucasian population (Jones 

2003). ACE activity is highest in the subjects homozygous for the D allele (DD), is 

intermediate in the ID group and lowest in subjects homozygous for the I allele (II).  

 

A number of clinical studies have investigated a role for ACE expression in COPD by 

stratifying patients by ACE polymorphism. Busquets et al, studied the distribution of the 

ACE polymorphism in 151 male smokers and found that the DD genotype was more 

prevalent in smokers who developed COPD, being associated with a 2-fold increase in the 

risk for COPD (Busquets 2007).  This data provides a genetic link to support the existing 

evidence that ACE activity is both elevated in COPD (Brice 1995) and is associated with 

lung function impairment (Ucar 1997). Kanazawa et al performed right heart 

catheterisation to assess the pulmonary vascular response to exercise challenge in COPD 

patients stratified by ACE genotype (Kanazawa 2000). They found that the DD genotype 

was associated with increased pulmonary artery pressure and pulmonary vascular 

resistance when compared to the II group. In a separate study, COPD patients with a DD 

genotype had a reduced ratio of the change in oxygen delivery to increase in oxygen 

consumption during exercise (Kanazawa 2002), suggesting an impairment in peripheral 

tissue oxygenation. The ACE polymorphism may also be related to low grade systemic 

inflammation in COPD; a study of 72 stable COPD patients observed an increase in serum 

high sensitivity CRP across genotypes DD>ID>II (Tkacova 2007), suggesting that the RAS 
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system may also contribute to the inflammatory response observed in COPD, as previously 

discussed.  

 

The ACE polymorphism also influences muscle phenotype with greater endurance 

observed in patients homozygous for the insertion allele (II) (Myerson 1999; Williams 

2000) and a higher proportion of type I fibres associated with this group (Zhang 2003). In 

contrast, a power-oriented muscle phenotype is seen in subjects with a DD genotype 

(Nazarov 2001; Woods 2001), who interestingly also exhibit greater bradykinin 

degradation in comparison to the II genotype (Brown 1998). Variations in the human ACE 

genotype have been found to influence quadriceps strength in a COPD population 

(Hopkinson 2004b). In a study of 103 stable COPD outpatients, presence of the deletion 

allele (D) of the ACE gene polymorphism was associated with increased quadriceps 

strength, which was not observed in the control group. Bradykinin type 2 receptor (BK(2)R) 

polymorphisms also influence quadriceps muscle strength in COPD patients. It has been 

shown that those patients exhibiting the +9/+9 homozygous genotype, associated with 

lower BK(2)R receptor expression, have a reduced fat free mass and reduced strength 

(Hopkinson 2006). Of note, the ACE polymorphisms have also been shown to interact with 

the effect of vitamin D receptor genotypes on quadriceps strength in COPD (Hopkinson 

2008) highlighting the potential complexity of the influence of genetic susceptibility in the 

muscle phenotype of these patients. 
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1.6.6 Epidemiological studies of ACE-inhibition and muscle function  

 
 
Cross-sectional data from 2,431 hypertensive subjects participating in the Health, Aging 

and Body Composition (Health ABC) study has been used to evaluate if ACE-inhibitor 

treatment is associated with a larger lower extremity muscle mass compared to the use of 

other antihypertensive medications (Di Bari 2004). This analysis found that lower 

extremity muscle mass assessed by DEXA was larger in the ACE-inhibitor group, with a 

trend towards being greater in those ACE-inhibitor users with a longer duration of 

exposure compared to a shorter exposure (as defined by a median split of 2 years).   

 

A key observational study by Onder et al also assessed the relationship between ACE 

inhibitor use and muscle strength in 641 elderly hypertensive women participating in the 

Women’s Health and Aging Study (Onder 2002). They found that at 3 year follow up, 

participants taking an ACE-inhibitor continuously had a lower mean decline in both knee 

extensor muscle strength and walking speed to those using other antihypertensives and 

those not on antihypertensive medication. Intermittent use of ACE-inhibitors was 

associated with a significantly larger decline in walking speed compared to continuous use.  

The study group had poor mobility and no concomitant heart failure at baseline. Of note, 

the group taking an ACE-inhibitor continuously had lower physical activity levels, as 

assessed during a baseline interview, compared to the other groups.   

 

Interestingly, prospective findings from the Women’s Health Initiative Observational Study 

with over 25, 000 participants found that ACE-inhibitors were not significantly associated 

with risk of frailty after 3 years follow-up (Gray 2009). However, if selecting a sub-
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population who were hypertensive on only one or less antihypertensive medication, a 

reduced risk of frailty was observed for those on low and medium equivalent doses of ACE-

inhibitors. 

 

The InCHIANTI study investigated the relationship between ACE-inhibitor treatment and 

IGF-1 serum levels in a large cohort of older subjects (>65 years of age) (Maggio 2006).  

Serum total IGF-1 was significantly higher in participants receiving an ACE-inhibitor (<3 

years duration) having adjusted for confounders in a linear regression analysis. Those 

participants with 3-9 years duration of use of an ACE-inhibitor also had an increase in 

serum IGF-1 but this did not reach statistical significance. A limitation of this study was 

that information on IGF-1 binding proteins was not available and hence details of the IGF-1 

fraction that was biologically active was not known. This study did however highlight IGF-1 

as a potential mechanism through which ACE-inhibition may exert the muscle effects seen 

in observational studies and suggested that clinical doses of ACE-inhibitor could influence 

IGF-1 levels. 
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1.7 Current Treatment Strategies 

 
 
1.7.1 Pulmonary Rehabilitation 

 
 
Exercise training as an essential aspect of multidisciplinary pulmonary rehabilitation has 

been shown to improve exercise capacity (Griffiths 2000; Man 2004) and muscle function 

(Troosters 2000; Casaburi 2001) in COPD patients. Recently, a randomised controlled trial 

has shown that outpatient pulmonary rehabilitation immediately following hospitalisation 

for an acute exacerbation of COPD improves both quadriceps strength and maximal 

walking capacity (ISWT) and reduces the risk of a re-exacerbation requiring hospital 

attendance over a 3 month period (Seymour 2010a). The Grade ‘A’ evidence base for 

exercise as an established therapeutic strategy in these patients has been summarised in 

the American Thoracic Society/European Respiratory Society Statement on Pulmonary 

Rehabilitation (Nici 2006). 

 
 

1.7.2 Nutritional Supplementation 

 
 
Although nutritional depletion is a common feature in COPD there is a limited evidence 

base for nutritional interventions. Creutzberg et al studied the use of oral liquid nutritional 

supplements during an eight week pulmonary rehabilitation course in nutritionally 

depleted patients with COPD (Creutzberg 2003a). They found an increase in FFM, muscle 

strength and exercise performance, with a reduced response observed in patients on oral 

corticosteroid therapy. However it is important to note that other studies have not shown 

similar effects and a Cochrane review concluded that two weeks of calorie 
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supplementation did not significantly affect exercise capacity, lung function or 

anthropometric measures (Ferreira 2005). Creatine supplementation has also been tried 

as an adjunct to rehabilitation and although effective in restoring muscle creatine levels, it 

does not improve function, probably because this is not a factor limiting exercise in COPD 

patients (Deacon 2008). Further work is needed to explore the potential benefits of 

nutrition in COPD which may be confined to particular patient subgroups. 

 
 

1.7.3 Hormonal Treatments 

 
 
Casaburi et al conducted a placebo-controlled trial showing an increase in leg strength and 

leg lean mass in a study using a ten week course of testosterone combined with leg 

resistance training, in male patients with COPD (Casaburi 2004). Further muscle biopsy 

studies in this cohort have suggested that the muscle IGF system may play a role in the 

mechanism underlying this response (Lewis 2007). Other work in this area has shown more 

varied outcomes. A placebo controlled trial using growth hormone in COPD, found an 

increase in lean body mass, but did not show a change in peripheral muscle strength or 

exercise capacity (Burdet 1997). In addition, the use of anabolic steroids like nandrolone, 

was not found to improve skeletal muscle strength in COPD patients (Creutzberg 2003b).  
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1.7.4 Electrical Stimulation 

 
 
The use of electrical stimulation of skeletal muscle is under evaluation as a potential 

training technique for patients who cannot exercise conventionally due to breathlessness. 

A study assessing the effects of six weeks of electrical stimulation on the quadriceps 

muscle of nine COPD patients found an increase in strength and shuttle walk distance, 

when compared to controls (Bourjeily-Habr 2002). In addition, a small randomised 

controlled trial has compared quadriceps electrical stimulation and rehabilitation, with 

rehabilitation alone, in severe COPD patients following ITU admission (Vivodtzev 2006). A 

significant increase in muscle strength and six minute walk distance was observed in the 

electrical stimulation intervention group. A recent systematic review of the evidence on 

the effects neuromuscular electrical stimulation in patients with chronic heart failure or 

COPD (Sillen 2009), has identified improvements in muscle strength and exercise capacity 

in a number of studies using this technique. Larger prospective randomised controlled 

trials are therefore needed to establish the role of electrical stimulation as a potential 

training strategy.   

 
 

1.7.5 Antioxidant Medication 

 
 
Koechlin et al, have studied the potential therapeutic benefits of the antioxidant, N-

acetylcysteine (NAC), in severe COPD patients. They found that NAC improved quadriceps 

endurance and prevented exercise induced oxidative stress (Koechlin 2004). More 

recently, the antioxidant properties of pressurised whey have been investigated in a 

randomised double-blind placebo controlled trial of 22 COPD patients (Laviolette 2010). 
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This study found an improvement in work rate on a cycle endurance test in the whey 

group compared to placebo suggesting a potential effect of increased glutathione levels, 

although systemic levels were not significantly changed from the placebo group. Further 

work is required in larger study populations to establish the full potential of these 

therapies in the muscle dysfunction observed in COPD patients. 
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1.8 Research questions 

 
 
This thesis aims to investigate skeletal muscle dysfunction in patients with COPD. A cross-

sectional study is undertaken to assess whether quadriceps wasting, measured using 

ultrasound measurement of rectus femoris, exists in mild as well as advanced disease 

compared to healthy age-matched controls. The influence of factors such as physical 

inactivity on quadriceps muscle wasting in these patients is also discussed.  

 

A double-blind randomised placebo controlled trial is then conducted to investigate 

whether targeting the renin-angiotensin system through angiotensin converting enzyme 

(ACE) inhibition could play a role in counteracting muscle dysfunction observed in COPD 

patients. This trial assesses the physiological and molecular effects of the ACE-inhibitor 

fosinopril, on quadriceps dysfunction in 80 COPD patients with quadriceps weakness. The 

effects of ACE-inhibition on non-volitional quadriceps endurance, quadriceps maximal 

voluntary contraction and mid-thigh computed tomography (CT) cross-sectional area are 

also determined.  

 

Vastus lateralis muscle biopsies taken as part of the ACE-inhibitor trial are then analysed 

for changes in expression of components of the IGF-1/atrogene pathway. The effects on 

serum ACE and systemic inflammation are also assessed, and a post-hoc analysis used to 

investigate stratification by ACE genotype. By establishing the influence of physical 

inactivity and the potential role of ACE inhibition on skeletal muscle impairment in COPD, 

it may be possible to target future therapeutic strategies in this patient group. 
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Chapter 2: Description of Methods 
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2.1 Ethical approval 

 
 
The studies in this thesis were approved by the Ethics Committee of the Royal Brompton 

and Harefield NHS Foundation Trust (07/Q0404/17) and the Joint University College 

London Committees on the Ethics of Human Research (08/H0715/90). All participants 

provided written informed consent and the research was conducted in accordance with 

the declaration of Helsinki.  

 
 

2.2 Subjects studied  

 
 
The patients recruited to studies in this thesis had a COPD diagnosis based on NICE 

guidelines (NICE 2010) (see table 2.1) with severity defined using Global initiative for 

Obstructive Lung Disease (GOLD) stage classification (Rabe 2007). Subjects with a 

significant co-morbidity that limited muscle function or physical activity level were 

excluded. The healthy age-matched control subjects were recruited through local 

advertisements. 
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Table 2.1: GOLD stage classification  
 

   GOLD stage criteria                         
(2008)  

NICE clinical 
guideline (2010) 

 

Post-bronchodilator 
FEV1/FVC 

 

FEV1% 
predicted 

 

Post-                  
bronchodilator 

 

Post-       
bronchodilator 

 

<0.7 

 

≤80% 

 

Stage 1 - Mild 

 

Stage 1 –Mild* 

 

<0.7 50-79% Stage 2 - Moderate Stage 2 - Moderate 

<0.7 30-49% Stage 3 - Severe Stage 3 - Severe 

<0.7 <30% Stage 4 - Very Severe Stage 4 – Very 
Severe 

    

* Symptoms should be present to diagnose COPD in patients with mild airflow obstruction 
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2.3 Body Composition 

 
 
2.3.1 Fat-free mass measurement using single-frequency bio-electrical impedance  

 
 
Body composition was determined by bioelectrical impedance analysis (BodyStat 

QuadScan 4000; BodyStat, Douglas, United Kingdom). This technique uses the electrical 

impedance of body tissues to determine an estimate of total body water, as electricity is 

conducted by dissolved ions. A two-compartment model was used which assumes that 

adipose tissue contains no water and that FFM has a constant hydration of 73% water. 

Single frequency, 50kHz, bioelectrical impedance values were then incorporated into 

regression equations which include height, weight and gender to calculate fat free mass 

(FFM) (Steiner 2002). These disease-specific equations have been validated against other 

techniques for assessing body composition, including deuterium dilution and dual energy 

x-ray absorptiometry (DEXA) (Schols 1991).  

 

Fat free mass equations: 

 

Males: FFM (kg) = 8.383 + [0.465*height2 (cm) / resistance (ohms)] + [0.213*weight (kg)] 

Females: FFM (kg) = 7.61 + [0.474*height2 (cm) / resistance (ohms)] + [0.184*weight (kg)] 

Fat Free Mass Index (FFMI) was calculated by dividing FFM by height in metres squared 

(kg/m2). 
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2.3.2 Multiple-frequency bio-electrical impedance analysis  

 
 
Measurements of multiple-frequency bioelectrical impedance at 5, 50, 100 and 200kHz 

were also made using a BodyStat QuadScan 4000 device. At low frequencies (5kHz) current 

does not penetrate cell membranes however at high frequencies (200kHz) both 

intracellular and extracellular spaces are penetrated. Therefore, the ratio of the 

bioelectrical impedance at these frequencies is thought to give an index of extracellular 

and total body water (Z200/Z5).  

 
 

2.4 Pulmonary Function Testing 

 
 
Pulmonary function testing was undertaken by the Royal Brompton Hospital Lung Function 

Department. Spirometry, plethysmographic lung volumes, carbon monoxide diffusing 

capacity (TLco) (CompactLab system; Jaeger, Wurzburg, Germany) and arterial blood gases 

were determined in accordance with European Respiratory Society (ERS) /American 

Thoracic Society (ATS) recommendations (Macintyre 2005; Miller 2005; Wanger 2005). 

Standardised lung function testing reference equations were based on the European Coal 

and Steel Community (ECSC) reference values (Gibson 1993). 



 
65 

 
 

2.5 Blood pressure measurement 

 
 
Blood pressure was recorded using an automated blood pressure monitor (Omron M6, 

Omron Healthcare Europe, Hoofddorp, The Netherlands). The subject was rested for at 

least 10 minutes prior to blood pressure measurement. An appropriate cuff size was used 

and the measurement was made in a seated position with the subject’s arm supported at 

the level of the heart. An average of three readings was recorded. Mean arterial pressure 

(MAP) was calculated using the following equation; [MAP ~ diastolic pressure + 

1/3(systolic-diastolic)]. 

 
 

2.6 Quadriceps Muscle Strength 

 
 
The capacity of the muscle to develop maximal force (i.e. muscle strength) can be 

measured by either volitional or non-volitional techniques, using isometric or isokinetic 

methods. Isometric methods involve the static contraction of a muscle without any visible 

movement in the angle of the joint, whereas an isokinetic method involves muscle 

contraction and limb movement through a range of motion at a constant speed. The 

capacity of the muscle to maintain a certain force and to resist fatigue (i.e. muscle 

endurance) can also be measured by volitional or non-volitional techniques. 
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2.6.1 Volitional-Quadriceps Maximal Voluntary Contraction 

 
 
A volitional measurement of quadriceps maximum voluntary contraction (QMVC) was 

made using an isometric technique (Edwards 1977). Subjects sat on a modified chair with 

their knee fixed at 90 degrees. An inextensible strap connected the ankle of their 

dominant leg to a strain gauge (see figure 2.1). The signal from the strain gauge was 

amplified and passed to a computer running CHART software (Labchart version 7.1, 

PowerLab Analogue-Digital Converter, AD instruments, Oxfordshire, UK). The subjects 

performed at least 3 sustained maximal isometric quadriceps contractions of between 5 

and 10 seconds duration. Consistent traces within 5% of maximum were obtained. A gap 

of approximately 30 seconds was given between each contraction to allow time to 

recover. Vigorous encouragement was given and the force generated was visible online 

using the CHART software. The QMVC was taken as highest tension sustained for 1 second. 

Quadriceps weakness was defined as QMVC <120% of body mass index (Swallow 2007a). 
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Figure 2.1: Quadriceps maximal isometric voluntary contraction measured using a strain 
gauge. 
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2.6.2 Non-volitional-Supramaximal Magnetic Femoral Nerve Stimulation 

 
 
Twitch response was measured using the technique of supramaximal magnetic stimulation 

of the femoral nerve (Polkey 1996). With this method, after 20 minutes of quadriceps rest, 

unpotentiated twitch quadriceps force (TwQu) was determined using magnetic femoral 

nerve stimulation. Two Magstim 200 monopulse units were discharged using a 70mm 

figure-of-eight coil (figure 2.2) and the mean of at least 5 stimulations at 100% stimulator 

output was taken. A stimulus response curve incorporating a range of stimulator output 

responses (twitch ramp) was used to confirm supramaximality.  

 

 
 

 
Figure 2.2: Quadriceps twitch response measured using magnetic femoral nerve stimulation 
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2.7 Repetitive Magnetic Stimulation 

 
 
2.7.1 Quadriceps Endurance Testing 

 
 
Volitional measures have shown a reduction in muscle endurance in patients with COPD 

(Coronell 2004) but these techniques are dependent on subject motivation and 

coordination. By using a repetitive magnetic nerve stimulator with a flexible mat coil 

wrapped around the quadriceps, it has been possible to show that quadriceps endurance 

assessed non-volitionally is reduced in COPD patients compared to controls (Swallow 

2007b). Subjects received 60 trains of magnetic stimulation, using a Magstim Rapid 2 

stimulator, at a frequency of 30Hz, 2 seconds on, 3 seconds off (see figure 2.3). The % 

stimulator output was determined as that able to produce 20% of the subject’s maximal 

voluntary contraction at baseline. The exponential decay in force produced by consecutive 

stimuli was used to measure endurance half-time. 
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Figure 2.3: Quadriceps endurance measured by repetitive magnetic stimulation with a mat 
coil. 
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2.8 Field Walking Tests 

 
 
2.8.1 Incremental Shuttle Walk Test 

 
 
The incremental shuttle walk test (ISWT) is a standardised field test requiring subjects to 

walk back and forth along a 10m course (Singh 1992). The course is identified by 2 cones, 

9m apart with space to turn (0.5m) at each end. A CD player is used to provide 

standardised incremental audio beeps which dictate the speed at which the subject should 

complete each 10m shuttle during the test. This externally paced incremental format is 

similar to the laboratory incremental exercise test (Palange 2000) and the minimum 

clinically important difference for the ISWT is 47.5m (Singh 2008). The test provides a 

symptom limited assessment of maximal performance and therefore can be used as a 

realistic, objective measurement of disability.  
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2.9 Quadriceps Imaging 

 
 
2.9.1 Ultrasound Rectus Femoris Cross-sectional area  

 
 
Measurement of quadriceps rectus femoris cross-sectional area was made by ultrasound 

(Seymour 2009) (see figure 2.4), based on a method originally devised by de Bruin (de 

Bruin 1997). B-mode ultrasonography was used with an 8MHz 7cm linear signal transducer 

array (PLF 805 ST, Toshiba Medical Systems, Crawley, UK). The patient was positioned 

supine with their rested leg supported in passive extension. An anatomical landmark was 

found at three-fifths distance along a line from the anterior superior iliac spine to the 

superior patella border. Ultrasound contact gel was applied to provide an adequate 

interface between the transducer probe and the skin to minimise any soft tissue pressure 

distortion. The transducer was positioned in the transverse plane and orientated so that 

the entire rectus femoris cross-sectional area could be visualised onscreen. Scanning depth 

was set to where the femur could also be viewed for orientation. Slow contraction-

relaxation manoeuvres were used to aid delineation of the muscle septa. The image was 

then frozen and the inner echogenic line representing the fascia around the rectus femoris 

was outlined manually by the operator. Rectus femoris cross-sectional area was calculated 

using a planimetric technique (Nemio, Toshiba Medical Systems) and the average of three 

consecutive measurements was taken.  
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Figure 2.4: Ultrasound of the quadriceps  

(RF, rectus femoris; VL, vastus lateralis; VM, vastus medialis; VI, vastus intermedius). 
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2.8.2 Mid-thigh Computed Tomography Cross-sectional area 

 
 
Measurement of mid-thigh cross-sectional area was made by CT scan (see figure 2.5), 

based on a previously developed protocol (Marquis 2002). CT was performed on a 64-slice 

CT scanner (Siemens SOMATOM Sensation 64, Erlangen, Germany) with the patient in a 

supine position. A single section of the mid-thigh at a predefined level was obtained using 

the following acquisition parameters: 50mAs, 120kVp. The protocol was modified to 

deliver a reduced amount of radiation per scan. The total radiation dose of two thigh CT 

scans is equivalent to 0.6mSv which is equivalent to 30 chest X-rays (0.02mSv per chest X-

ray) or approximately 3 months of natural background radiation. Images were viewed and 

CT cross-sectional areas calculated using Digital Imaging Communications in Medicine 

viewing software (DicomWorks, version 1.3;http://dicom.online.fr) at standard window 

settings for visualisation of soft tissues (centre 40 HU, window width 380 HU).  
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Figure 2.5: Mid-thigh Computed Tomography image  

(Left image: Rectus femoris CSA;  Rt image: Mid-thigh outline, from which femur CSA is 

subtracted to give mid-thigh CSA).   
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2.10 Physical Activity Monitoring 

 
 
2.10.1  Sensewear ProArmband 

 
 
Daily physical activity was recorded using a multisensor biaxial accelerometer armband 

(SenseWear, BodyMedia; Pittsburgh, PA) as previously described by Watz et al (Watz 

2008). Subjects were asked to wear the activity monitor on the upper arm, over the 

triceps, (see figure 2.6) and to only remove the device when bathing or showering. The 

armband incorporates physiological sensors that quantify galvanic skin response, heat flux 

and skin temperature to estimate energy expenditure and has been previously validated 

against indirect calorimetry in COPD patients (Patel 2007; Hill 2010) and against the doubly 

labelled water technique in healthy subjects (St-Onge 2007). The physical activity level 

(PAL) was calculated using total energy expenditure (TEE) and sleep energy expenditure as 

a surrogate for resting energy expenditure (REE) (PAL=TEE/REE). Daily step count and PAL 

were downloaded and analysed using Sensewear professional software version 6.1. 
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Figure 2.6: Sensewear Pro Armband 
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2.11 Patient Questionnaires 

 
 
2.11.1  St George’s Respiratory Questionnaire 

 
 
This standardised 76-item self-complete questionnaire (Jones 1992) allows a total score to 

be calculated based on three component scores; symptoms, activity and impacts on daily 

life. The scores all range from 0-100 with a higher number indicating a worse health 

related quality of life. A change of 4 points is considered clinically significant. The 

questionnaire provides a validated measurement of impaired health, in conditions of 

chronic airflow limitation including COPD.  

 

 

2.11.2  COPD Assessment Test  

 
 
This short, self-complete questionnaire has been recently developed as a standardised 

measure of COPD health status (Jones 2009). The questionnaire contains 8 items, each 

with a score ranging from 0-5, which are then added to give a score from 0-40 (figure 2.7). 

A higher score represents worse health and a change of 2.5 points is considered likely to 

represent a clinically important difference. The questionnaire is simple to complete and 

provides a user-friendly assessment of health related quality of life in COPD.  
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Figure 2.7: COPD Assessment Test (CAT)  
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2.12 Quadriceps Muscle Biopsy  

 
 
2.12.1  Bergstrom Technique 

 
 
Muscle biopsies were taken from the vastus lateralis muscle using a Bergstrom needle 

biopsy technique (see figure 2.8) (Bergstrom 1975). The subject reclined on a couch in a 

lateral position with the knee supported by a pillow. The correct anatomical position was 

identified at the midpoint between the anterior superior iliac spine and the patella. The 

biopsy site was cleaned with a chloroprep solution and then the skin anaesthetised with 

10ml of Lignocaine 2%. After suitable anaesthesia, an incision of approximately 1cm was 

made in the skin and a Bergstrom biopsy needle used to take small samples of muscle. A 

second operator attached a 50ml syringe to the needle to provide suction during the 

biopsy. Following the procedure, steristrips were applied to the incision site. This muscle 

biopsy technique is minimally invasive and subjects can mobilise freely following the 

procedure.  A pea sized (approximately 60mg) muscle biopsy sample was snap frozen in 

liquid nitrogen and then stored at -80 OC prior to mRNA and protein analysis.  
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Figure 2.8: Bergstrom vastus lateralis muscle biopsy 
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2.12.2  RNA extraction and cDNA synthesis  

 
 
For RNA extraction, muscle samples were homogenised in TRIzol reagent (Sigma, UK) using 

1.4mm ceramic beaded tubes (Stretton Scientific, UK) and a Precellys 24 homogeniser 

(Peqlab, Erlangen, Germany). The protocol was 2x10 second cycles at 5500rpm with a 5 

second pause. The samples were then centrifuged at 8000rpm for 3 minutes, with the 

resulting supernatant transferred to 1.5ml microcentrifuge tubes for extraction. 100µl of 

chloroform was added and the mixture vortexed before being left to settle at room 

temperature for 3 minutes. The sample was centrifuged at 13,000rpm for 15 minutes at 

4˚C so as to separate the mixture into 3 phases with the top transparent phase containing 

the RNA. This top layer was transferred to a separate 1.5ml microcentrifuge tube and 

250µl isopropanol was added to precipitate the RNA. This mixture was left at room 

temperature for 10minutes and then centrifuged at 10,000 x g for 10minutes at 4˚C. The 

resulting RNA pellet was washed twice with 500µl of 75% ethanol. The remaining ethanol 

was removed by re-centrifuging the sample before removing any liquid, and the pellet left 

to dry before finally being re-suspended in 30µl RNase free H20 prior to quantification. 

RNA concentration was quantified by measuring absorption at 260nm with a 

spectrophotometer (Nanodrop ND1000, Wilmington, USA). 

 

First strand cDNA was synthesised using an Omniscript Reverse Transcriptase 200 kit 

(Qiagen). For each sample, 150ng of RNA was added to 11µl of RNase-free water and 

heated to 65˚C for 5 minutes. After 2 minutes on ice, 9µl of a mixture containing 2µl 10x 

Buffer RT, 1µl 5mM dNTPs, 0.5µl random primers, 0.5µl RNase inhibitor, 1µl (0.1M) DTT, 

0.5µl Omniscript reverse transcriptase (Qiagen) and 3.5µl of RNase-free water was added 
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and the samples were incubated at 42˚C for 2 hours.  The samples were then diluted to 

200µl with distilled H2O and stored at -20˚C for subsequent analysis.  

 
 

2.12.3  Primer validation 

 
 
Primers for target genes were validated by Polymerase Chain Reaction (PCR) so as to 

ensure that only the regions of interest were amplified. The reaction mixture contained 

3µl of sample cDNA, 2µl of a forward and reverse primer mix (2pmol/µl), 10µl of 2x SYBR 

green Taq Jump Start mix and 5µl of distilled H2O. The PCR products were analysed by 

electrophoresis on a 2% (w/v) agarose gel containing ethidium bromide to confirm product 

size and exclude primer dimers. 

 
 

2.12.4  Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) 

 
 
Real-time quantitative PCR (RT-qPCR) was performed in duplicate on each sample, testing 

for MuRF-1, atrogin-1, IGF-1, TGF-β and the reference housekeeping gene, human RPLPO. 

A 20µl reaction containing 10µl Fast SYBR Green Master Mix (Applied Biosystems, UK), 5µl 

distilled H20, 2µl of the forward and reverse primer mix (2pmol/µl) and 3µl of the sample, 

was used in 96 well plates (MicroAmp, Fast optical 96 well reaction plate, 0.1 ml, Applied 

Biosystems, UK) with an adhesive plate cover (MicroAmp, Optical adhesive film, Applied 

Biosystems, UK). RT-qPCR reactions were run using a 7500 Fast Real-time PCR System 

(Applied Biosystems, UK), with the following cycle program: 95°C for 5 minutes, then 40 

cycles of 95°C for 10 seconds & 60°C for 30 seconds for annealing and extension. RT-qPCR 

data were analysed using cycle threshold (Ct) values which relate to the number of cycles 
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at which the fluorescence reaches a threshold above a baseline value. The data were then 

normalised to human RPLPO expression as previously described (Ellis 2004), with the 

values log transformed to obtain a normal distribution. 

 
 

2.12.5  Protein extraction and enzyme linked immunosorbent assay (ELISA) 

 
 
For protein extraction, muscle samples were homogenised in lysis buffer (Tris pH 7.4 

(50mM), NaCl (250mM), EDTA (5mM), 1% Nonidet P40 (Roche Applied Science)) 

containing protease and phosphatase inhibitors (Sigma, UK).  Ceramic beaded tubes were 

used with a homogeniser protocol as described above.  A Bradford assay was then used to 

measure protein concentration against BSA standards as per the manufacturer’s 

recommendations. A BioRad microtiter plate reader was used to measure absorbance at 

595nm using Luminex analysis software. To determine levels of phosphorylated 4EBP-1, 

the protein lysate was analysed using an enzyme linked immunosorbent assay (ELISA) kit, 

(Invitrogen) containing a specific 4EBP-1 detection antibody.  The absorbance at 450nm 

was measured using a Bio-Tek plate reader. 

 

 

2.13 Blood Sampling  

 
 
Approximately 20mls of venous blood was taken from subjects and divided into whole 

blood, serum and plasma samples. The whole blood samples were stored at -80˚C for 

subsequent ACE and bradykinin genotyping. Serum and plasma samples were centrifuged 
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and also stored at -80˚C prior to batch analysis for inflammatory cytokines and biological 

markers related to muscle atrophy.  
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2.13.1  ACE and bradykinin genotyping 

 
 
ACE and bradykinin genotyping was conducted by the Department of Cardiovascular 

Genetics, Rayne Institute, University College London. Genomic leukocyte DNA was 

extracted from whole blood by salting out and ACE genotype was determined by PCR with 

amplification using a 3-primer method which included an I-specific oligonucleotide (O'Dell 

1995). The original 2-primer method, where each primer flanked the insertion sequence, 

often preferentially amplified the shorter D allele leading to mistyping of heterozygous 

genotypes as DD. By annealing to the insertion sequence itself, the third primer avoids this 

problem by creating a shorter fragment for the I allele (65 base pairs) compared to the D 

allele (84 base pairs). Primer ratios were 10pmol ACE1 (deletion-specific oligonucleotide), 

2pmol ACE2 (insertion-specific oligonucleotide) and 8pmol ACE3 (common 

oligonucleotide). Each 20µl PCR reaction contained the ACE primers, with 50nM KCl, 

10mM Tris HCl pH 8.3, 1.5mM MgCl2 , 0.2 units of Taq polymerase, overlaid with 20µl 

mineral oil.  Thirty PCR cycles of 95°C for 1 minute, 50°C for 1 minute and 72°C for 5 

minutes were used and the products resolved on a 7.5% polyacrylamide gel stained with 

ethidium bromide. Genotypes were confirmed independently by 2 operators and 

discrepancies resolved through repeat genotyping.  Bradykinin type II receptor genotype 

was determined by PCR using a 2-primer method (forward 5’-TCTGGCTTCTGGGCTCCGAG-

3’ and reverse 5’AGCGGCATGGGCACTTCAGT-3’) with the products resolved on a long gel.  
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2.13.2   Serum analysis 

 
 
Serum analysis was conducted by the King’s Pathology Department, King’s College London. 

A serum cytokine multiplex array was performed by chemiluminescent immunoassay using 

an Evidence Investigator BioChip Analyser (Randox Laboratories, UK) for the quantitative 

detection of interleukin-6, 8, 18 and monocyte chemotactic protein-1. Serum IGF-1, NT-

pro-BNP and hs-CRP were measured by enzyme-linked immunosorbent assay (ELISA) 

(Siemens Healthcare Diagnostics, UK) and serum ACE-activity measured by a kinetic 

enzyme assay (Buhlmann Laboratories AG, Switzerland). 
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Chapter 3: Quadriceps Wasting and 

Physical Inactivity in COPD       
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3.1 Introduction 

 
 
3.1.1 Background 

 
 
Skeletal muscle dysfunction is a well recognised extrapulmonary complication of chronic 

obstructive pulmonary disease (COPD) with loss of lean body mass identified as a key 

determinant of disability and an independent predictor of mortality (Schols 2005). In 

particular, reduced quadriceps strength is associated with reduced exercise capacity 

(Gosselink 1996), impaired quality of life (Simpson 1992), increased healthcare use 

(Decramer 1997) and mortality independent of airflow obstruction (Swallow 2007a).  

 

The mechanisms involved in the development of skeletal muscle weakness in COPD are 

likely to be multi-factorial with systemic factors, such as oxidative stress (Barreiro 2010), 

thought to interact with the key local factor of muscle inactivity (Pitta 2005; Watz 2008) 

particularly in the lower limbs (Man 2003b). Objectively measured physical activity has 

been identified as a strong predictor of all-cause mortality in COPD (Waschki 2011), 

highlighting its importance in a ‘downward disease spiral’ where progressive dyspnoea 

leads to reduced exercise capacity with subsequent muscle deconditioning and further 

inactivity (Polkey 2006).  
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3.1.2 Rationale and hypothesis 

 
 
Quadriceps weakness has recently been observed in the absence of severe airflow 

obstruction in COPD (Seymour 2010b), and in addition there is data to suggest a reduction 

in physical activity in GOLD stage I patients (Watz 2009). Despite the potential rationale for 

muscle wasting in mild disease, little data exists on reduced quadriceps bulk in this patient 

group. Mid-thigh cross-sectional area measured by computed tomography (CT) has been 

shown to predict mortality in moderate-severe COPD (Marquis 2002), however the 

ionising radiation exposure makes this method of imaging undesirable particularly in mild 

disease. Magnetic resonance imaging (MRI) has also been used as a thigh muscle imaging 

modality in COPD (Mathur 2008) but the accessibility and expense of this tool prohibit its 

adoption in the wider COPD population.  

 

Ultrasound measurement of rectus femoris cross-sectional area (USRFCSA) is a radiation-

free measure of muscle bulk that relates to quadriceps strength in COPD but is effort 

independent (Seymour 2009). We hypothesised that quadriceps wasting, measured by 

USRFCSA, would be observed in mild as well as advanced COPD compared to healthy age-

matched subjects and that this would correlate with daily physical activity levels. 
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3.2 Methods 

 
 
3.2.1 Study design and participants 

 
 
This cross-sectional study recruited COPD patients from outpatient clinics at the Royal 

Brompton Hospital, King’s College and St Thomas’ Hospitals as well as through public 

spirometry events conducted on World COPD and No-Smoking days. COPD diagnosis was 

consistent with NICE and GOLD criteria as previously described. Subjects within one month 

of an exacerbation or with a significant co-morbidity including cardiac failure, neurological 

disease, malignancy or rheumatoid arthritis were excluded. The healthy age-matched 

controls were recruited by advertisement in local newspapers. 

 
 

3.2.2 Study measurements 

 
 
A clinical history was taken, followed by baseline anthropometric measurements and 

determination of fat-free mass index (FFMI). Heath-related quality of life was assessed 

using the St. George’s Respiratory Questionnaire. Breathlessness was recorded using the 

Medical Research Council (MRC) dyspnoea score. Subjects had full pulmonary function 

tests including measurement of lung volumes and gas transfer. Quadriceps size was 

assessed by ultrasound measurement of rectus femoris cross-sectional area and 

quadriceps strength assessed by maximum voluntary contraction. Daily physical activity 

was recorded using a multisensor armband with step count and physical activity level (PAL) 

measured over six consecutive days incorporating one weekend and four weekdays. A 

valid physical activity assessment was defined as ≥21.5 hours (90%) wearing time a day on 

at least 5 days.  
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3.2.3 Data and statistical analysis 

 
 
Data are presented as mean ± SD, with accompanying p value, and analysis was performed 

using StatView 5.0 (Abacus concepts, Inc., Berkeley, CA, USA). Between group comparisons 

used analysis of variance (ANOVA), with post-hoc correction for more than 2-groups. 

Relationships between USRFCSA, quadriceps strength, FFMI, impedance ratio, daily physical 

activity and pulmonary function were analysed using univariate and multivariate linear 

regression models. Figure construction was performed with GraphPad Prism Version 5.0 

(GraphPad Software, San Diego, California, USA). 

 

 

3.3 Results 

 
 
3.3.1 Participants 

 
 
Two hundred and one subjects, comprising 161 stable COPD patients and 40 healthy age-

matched volunteers, participated in the study.  Baseline characteristics are shown in table 

3.1. Of these, 154 subjects (123 COPD patients and 31 healthy participants) completed a 

valid physical activity assessment. Out of the remaining 47 subjects, 14 did not complete a 

valid period of assessment, 4 subjects declined to participate in this part of the study and 

the remainder were not given an armband for logistical reasons (e.g. armband availability 

and subject’s distance from hospital). In those subjects participating in activity monitoring, 

a valid period of assessment was reached in 92% (154/168). Average wearing time per day 

was 98% and did not significantly differ across groups (see table 3.2).   
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Table 3.1: Baseline characteristics of COPD and control subjects  
 

  
Controls 
(n=40) 

mean (SD) 

 
COPD 

 I 
(n=38) 

 
COPD 

 II 
(n=45) 

 
COPD 

 III 
(n=41) 

 
COPD 

 IV 
(n=37) 

 

 
p 

value 

 
Age (years) 

 
65  
(8) 

 
67  
(9) 

 
67  
(9) 

 
67  
(9) 

 
63  
(8) 

 
0.17 

 
Gender (M/F) 

 
20/20 

 
19/19 

 
22/23 

 
22/19 

 
25/12 

 
0.45 

 
BMI (kg/m2) 

 
25.9  
(3.6) 

 
26.5  
(4.8) 

 
26.6  
(5.9) 

 
25.2  
(4.5) 

 
22.4  
(3.8) 

 
0.0006 

 
FFMI (kg/m2) 

 
17.8  
(2.1) 

 
17.9  
(2) 

 
17.7  
(2.7) 

 
17.6  
(2.2) 

 
16.2  
(1.9) 

 
0.004 

 
Smoking (pack 

years) 

 
9.1  

(14.3) 

 
28.1 

(22.2) 

 
42    

(29.2) 

 
50    

(26.2) 

 
55.5  

(29.3) 

 
<0.0001 

 
Current smokers 

(%) 

 
- 

 
11 

 

 
29 

 
27 

 
14 

 
 

 
0.09 

Outpatients (%) - 47 
 

60 66 89 0.001 

 
Long-acting beta 

agonist (%) 
   

 
- 

 
58 

 
80 

 
85 

 
100 

 
<0.0001 

Long-acting 
anticholinergic 

(%) 
 

- 
 

42 
 

71 
 

83 
 

97 
 

<0.0001 
 

Inhaled 
corticosteroid 

(%) 
 

- 58 78 83 100 <0.0001 

Oral 
corticosteroid   
(% ≥5mg/day) 

- 0 0 0 8 0.02 

 
FEV1 % pred 

 
103.1  
(11.7) 

 
90.8  
(8.8) 

 
63.2  
(8.8) 

 
39.4  
(5.5) 

 
24  

(3.8) 

 
<0.0001 

 
TLco% pred 

 
89.3  

(17.1) 

 
67.5 

(17.8) 

 
58.1  

(14.7) 

 
39.9  

(13.9) 

 
26.6  
(9) 

 
<0.0001 

 
RV%TLC ratio 

 
34  

(4.6) 

 
40.6  
(6.6) 

 
46.6  
(8) 

 
57.9  
(7.5) 

 
64.7  
(6.9) 

 
<0.0001 



 
94 

 
 

  
Controls 
(n=40) 

mean (SD) 

 
COPD 

 I 
(n=38) 

 
COPD 

 II 
(n=45) 

 
COPD 

 III 
(n=41) 

 
COPD 

 IV 
(n=37) 

 

 
p 

value 

 
IC 

(litres) 

 
2.8 

(0.7) 

 
2.7 

(0.8) 

 
2.3 

(0.8) 

 
1.9 

(0.6) 

 
1.8 

(0.4) 

 
<0.0001 

 
PaO2 

(kPa) 

 
11.2  
(1.1) 

 
10.6  
(1.5) 

 
10.2  
(1.2) 

 
9.1  

(1.2) 

 
9.1  

(1.3) 

 
<0.0001 

 
PaCO2 

(kPa) 

 
5  

(0.6) 

 
4.7  

(0.5) 

 
5  

(0.4) 

 
5.1  

(0.5) 

 
5.4  

(0.6) 

 
<0.0001 

 
MRC score  

(1-5) 

 
1.1  

(0.3) 

 
1.8 

(0.4) 

 
2.5  

(0.9) 

 
3.1 

(0.9) 

 
3.6  

(0.9) 

 
<0.0001 

 
SGRQ 

(Symptoms) 

 
- 

 
29.4 

(24.8) 

 
49.6 

(22.8) 

 
50 

(23.7) 

 
61.6 

(19.1) 

 
<0.0001 

 
SGRQ  

(Activity) 
 

 
- 

 
34.7  
(25) 

 
58.1 

(23.9) 
 

 
70.1  

(19.4) 

 
84.5 

(11.5) 

 
<0.0001 

SGRQ  
(Impacts) 

- 15.5 
(15.1) 

29.9 
(17.4) 

33.8 
(17.4) 

48.4 
(18.1) 

<0.0001 

 
SGRQ  
(Total) 

 
- 

 
23.1 

(16.8) 

 
41.1  

(17.9) 
 

 
47.6  

(16.4) 
 

 
61.5  

(13.8) 
 

 
<0.0001 

 

 
Abbreviations: BMI - body mass index; FFMI – fat free mass index; FEV1 - forced expiratory 

volume in 1 second; TLco – carbon monoxide diffusing capacity; RV – residual volume; TLC – 

total lung capacity; IC – inspiratory capacity; PaO2 - arterial partial pressure of oxygen; PaCO2 - 

arterial partial pressure of carbon dioxide; SGRQ – St George’s respiratory questionnaire; 

Outpatients – defined as any previous hospital clinic attendance. 



 
95 

 
 

Table 3.2: Quadriceps and physical activity measurements in COPD and control subjects 

 

  
Controls 

mean  
(SD) 

 
COPD 

I 

 
COPD 

II 

 
COPD 

III 

 
COPD 

IV 

 
p 

Value 
 

 
USRFCSA 
(mm2) 

 
640 

(136) 

 
530 

(116) 

 
511 

(135) 

 
504 

(122) 

 
509 

(122) 

 
<0.0001 

 
QMVC 

(kg) 

 
34.3      
(8.8) 

 
29.6           
(7.2) 

 
27.9            
(7.3) 

 
27.3           
(8.8) 

 
25.3        
(6.8) 

 
<0.0001 

Daily Step 
count 

11735 
(4399) 

7960  
(3430) 

6606   
(3328) 

4010 
(2316) 

2219 
(1157) 

<0.0001 

 
Daily Physical 
Activity Level 

 
1.69 

(0.25) 

 
1.56 

(0.16) 

 
1.47 

(0.16) 

 
1.4 

(0.12) 

 
1.38 

(0.19) 

 
<0.0001 

 
 Armband  

wearing time 
 (hours/day)  

 
 

23.57  
(0.28) 

 
 

23.60  
(0.26) 

 
 

23.64 
 (0.37) 

 
 

23.57 
 (0.52) 

 
 

23.61 
 (0.39) 

 
 

0.95 

 
Z200/Z5 

Impedance 
ratio 

 
0.789 
(0.03) 

 
0.791 
(0.03) 

 
0.806 
(0.03) 

 
0.816 
(0.03) 

 
0.814 
(0.03) 

 
0.0002 

 

Abbreviations: USRFCSA – ultrasound rectus femoris cross-sectional area; QMVC – quadriceps 

maximal voluntary contraction.  
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3.3.2 USRFCSA and quadriceps strength in COPD (Stage I-IV) and healthy subjects 

 
 
USRFCSA and quadriceps strength (QMVC) were reduced in all GOLD stages compared to 

controls (table 3.2, figure 3.1 and figure 3.2). There were no significant differences in 

USRFCSA or QMVC across GOLD stages, except between QMVC in stage I and IV (p<0.02). 

 

 
Figure 3.1: Ultrasound rectus femoris cross-sectional area (USRFCSA) versus GOLD stage in 

COPD patients and healthy controls (ANOVA - no significant difference between I-IV). Cross 

bars represent the standard error of the mean (SEM). 
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Figure 3.2: Quadriceps maximal voluntary contraction (QMVC) versus GOLD stage in COPD 

and healthy controls (ANOVA - no significant difference between GOLD stages, except I and IV; 

p<0.02). Cross bars represent SEM. 
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In COPD patients, FEV1% predicted showed no association with USRFCSA and a weak 

association with QMVC (r=0.2, p=0.03). USRFCSA had a linear relationship with QMVC in 

COPD subjects (r=0.6, p<0.0001) (figure 3.3). QMVC was also significantly associated with 

FFMI (r=0.54, p<0.0001) and the impedance ratio (Z200/Z5) (r=−0.54, p<0.0001) in COPD 

(figure 3.4).  

 

 

 

Figure 3.3: Quadriceps strength (QMVC) versus ultrasound rectus femoris cross-sectional 

area (USRFCSA) in COPD patients (Pearson correlation; r=0.6, p<0.0001). 
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Figure 3.4: Quadriceps strength (QMVC) versus Impedance ratio in COPD patients (Pearson 

correlation; r=−0.54, p<0.0001). 

 

 

A multiple regression model was used to predict USRFCSA in all COPD subjects incorporating 

the significant independent variables from the univariate analysis (see table 3.3). Gender 

(r=0.27, p=0.003), QMVC (r=0.24, p=0.01), residual volume to total lung capacity (RV/TLC) 

ratio (r=−0.28, p=0.01), inspiratory capacity (IC) (r=0.20, p=0.04) and FFMI (r=0.19, p=0.04) 

were retained as independent predictors of USRFCSA (r=0.75, p<0.0001). In a similar 

multiple regression model with QMVC as the dependent variable, only USRFCSA (r=0.24, 

p=0.02) and FFMI (r=0.25, p=0.01) were retained as independent predictors of quadriceps 

strength in COPD (r=0.74, p<0.0001). 
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Table 3.3: Univariate correlates of USRFCSA in all COPD subjects 

 

    USRFCSA (r) p value 

Age −0.20 0.01 

Gender   0.48 <0.0001 

FFMI   0.49 <0.0001 

FEV1 % pred   0.08 0.32 

TLco% pred   0.26 0.001 

RV/TLC ratio −0.22 0.006 

IC   0.44 <0.0001 

QMVC   0.60 <0.0001 

Impedance ratio −0.53 <0.0001 

PAL   0.20 <0.05 

Steps    0.30 0.002 

   

 

Abbreviations:  QMVC - quadriceps maximum voluntary contraction; USRFCSA - ultrasound 

rectus femoris cross-sectional area; FEV1 - forced expiratory volume in 1 second; RV – residual 

volume; TLC – total lung capacity; IC – inspiratory capacity; TLco – carbon monoxide diffusing 

capacity; FFMI - fat free mass index; PAL – physical activity level (r and p values derived from 

Pearson’s correlation coefficient).  
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As gender was identified as an independent variable to predict USRFCSA, the COPD and 

healthy subjects were separated into males and females (figure 3.5). In both genders, 

USRFCSA was reduced in all GOLD stages compared to controls and there were no 

significant differences in USRFCSA across GOLD stages. Males (n=108) had a significantly 

greater USRFCSA, compared to females (n=93), 597mm2 vs 470mm2, (p<0.0001).  

 

 

 

Figure 3.5: Ultrasound rectus femoris cross-sectional area (USRFCSA) in COPD patients and 

healthy controls separated by gender (males - A and females - B; ANOVA - no significant 

difference between stages I-IV. Cross bars represent SEM). 
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3.3.3 Relationship of daily physical activity with GOLD stage and USRFCSA  

 
 
Daily physical activity was significantly reduced in all GOLD stages compared to healthy 

controls (figure 3.6 and figure 3.7).  Mean group differences are shown in table 3.2.  

 

 

Figure 3.6: Daily physical activity (steps) versus GOLD stage in COPD patients and healthy 

controls (ANOVA - significant differences also observed between stages 1,3 & 1,4 p<0.0001; 

2,3 p=0.002; 2,4 p<0.0001 & 3,4 p=0.03). Cross bars represent SEM. 
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Figure 3.7: Physical activity level (PAL) versus GOLD stage in COPD subjects and healthy 

controls (ANOVA - significant differences also observed between stages 1,3 p=0.0006; 1,4 

p=0.0002 & 2,4 p=0.04). Cross bars represent SEM. 
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Daily physical activity showed a linear relationship with FEV1% predicted (steps, r=0.6; PAL, 

r=0.4, p<0.0001) and USRFCSA (steps, r=0.3, p=0.002; PAL, r=0.2 p<0.05) in all COPD 

patients. In stage I disease, a multiple linear regression model to predict USRFCSA was used 

incorporating the significant independent variables from the univariate analysis (table 3.4). 

Physical activity level was the only variable retained as an independent predictor of 

USRFCSA in stage I disease (r=0.76, p=0.01). The univariate association between physical 

activity and USRFCSA in stage I disease is shown in fig 3.8. Using a similar regression analysis 

in stage II-IV disease, gender (r=0.29, p=0.01), RV/TLC ratio (r=−0.28, p=0.01) and IC 

(r=0.29, p=0.02) but not physical activity, were retained as independent predictors of 

USRFCSA (r=0.78, p<0.0001). 

 

In a separate multiple linear regression model to predict physical activity in stages II-IV 

COPD, when incorporating the univariate correlates (table 3.5), RV/TLC ratio was retained 

over FEV1% predicted as the only independent variable associated with physical activity 

level (r=−0.23, p=0.03). Using this model in stage I COPD, USRFCSA but not QMVC was 

retained as the only independent correlate with physical activity level (r=0.64, p=0.005).  
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Table 3.4: Univariate correlates of USRFCSA in stage I COPD subjects 

 
 

    USRFCSA (r)  p value 

Age −0.33 0.04 

Gender   0.50   0.001 

FFMI   0.43   0.007 

FEV1 % pred   0.07 0.70 

TLco% pred   0.38 0.03 

RV/TLC ratio −0.42 0.01 

IC   0.41 0.02 

QMVC   0.63   <0.0001 

Impedance ratio −0.64   <0.0001 

PAL   0.70   <0.0001 

Steps    0.53   0.002 

 
 

Abbreviations:  QMVC - quadriceps maximum voluntary contraction; USRFCSA - ultrasound 

rectus femoris cross-sectional area; FEV1 - forced expiratory volume in 1 second; RV – residual 

volume; TLC – total lung capacity; IC – inspiratory capacity; TLco – carbon monoxide diffusing 

capacity; FFMI - fat free mass index; PAL – physical activity level. (r and p values derived from 

Pearson’s correlation coefficient).    
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Figure 3.8: Physical activity versus USRFCSA in GOLD stage I COPD subjects  

(Black squares – physical activity level, white squares – step count). 
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Table 3.5: Univariate correlates of physical activity in stages II-IV COPD 

 

  Steps (r) p value  PAL (r) p value 

Age  −0.12 0.25 −0.08  0.46 

Gender   0.18 0.10   0.14  0.18 

FFMI   0.19 0.07   0.10  0.40 

USRFCSA   0.24 0.02   0.05  0.70 

FEV1% pred   0.57   <0.0001   0.21 <0.05 

TLco% pred   0.54   <0.0001   0.07   0.50 

RV/TLC ratio −0.53   <0.0001 −0.23   0.03 

IC   0.27 0.01   0.01   0.92 

QMVC   0.22 0.04   0.02   0.82 

Impedance ratio −0.27 0.01 −0.12   0.30 

 

Abbreviations:  QMVC - quadriceps maximum voluntary contraction; USRFCSA - ultrasound 

rectus femoris cross-sectional area; FEV1 - forced expiratory volume in 1 second; RV - residual 

volume; TLC - total lung capacity; IC - inspiratory capacity; TLco - carbon monoxide diffusing 

capacity; FFMI - fat free mass index; PAL - physical activity level. (RV/TLC ratio was the only 

independent predictor of PAL (p=0.03) in stage II-IV COPD; FEV1% pred and TLco% pred were 

independent predictors of step count (p<0.0001). r and p values derived from Pearson’s 

correlation coefficient.) 
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3.3.4 Quadriceps dysfunction and health status in COPD 

 
 
Health status was also assessed using the COPD assessment test (CAT) score in a subset of 

COPD patients (n=91, mean (SD), 66(8) years, FEV1 46(22)% predicted, 56% male). A 

reduced quadriceps strength (QMVC) was associated with a worse health status (CAT score 

>20, n=44: QMVC 23.6 (5.7) kg vs. 27.4 (6.8) kg (p=0.005) (see figure 3.9). In addition, 

reduced quadriceps bulk measured by USRFCSA was also associated with a worse health 

status (USRFCSA 482 (126) mm2 vs. 539 (120) mm2 (p=0.03) (see figure 3.10) in these 

patients. 

  
 

 
 
Figure 3.9: CAT versus QMVC in COPD subjects 
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Figure 3.10: CAT versus USRFCSA in COPD subjects 
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3.3.5 Ultrasound validity and reproducibility 

 
 
For validation, 80 COPD patients had a mid-thigh CT scan with ultrasound rectus femoris 

cross-sectional area correlating significantly with mid-thigh CTCSA (r=0.7, p<0.0001) and 

rectus femoris CTCSA (r=0.7, p<0.0001). In addition, data on inter-occasion and observer 

variability of the ultrasound measurement is detailed below (see figure 3.11).  

 

 
 
 
 
Figure 3.11: Bland-Altman analysis comparing the rectus femoris cross-sectional area (RFCSA) 

measured by ultrasound on two separate occasions   

(n=21, mean (SD) bias - 0.06 (0.21)cm2 : coefficient of repeatability 0.41cm2), dotted line 

represents 95% limits of agreement -0.47 to +0.36cm2 , index of reliability 0.97. A similar 

analysis was conducted for inter-observer variability (n=10): mean (SD) bias 0.11 (0.29)cm2 : 

coefficient of repeatability 0.57cm2, 95% limits of agreement -0.46 to +0.68cm2, index of 

reliability 0.97. 
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3.4 Discussion 

 
 
3.4.1 Summary of results 

 
 
Using USRFCSA we found quadriceps wasting in mild, as well as advanced COPD judged by 

GOLD stage. A 17% reduction in mean USRFCSA was observed in stage I patients compared 

to a healthy age matched group with a similar whole-body FFMI. The study also identified 

an independent association between physical activity level and USRFCSA in stage I disease, 

with this group significantly less active when compared to healthy subjects. 

 
 

3.4.2 Significance of the findings 

 
 
A recent study incorporating a large UK and Dutch COPD cohort (Seymour 2010b) 

identified a 28% prevalence of quadriceps weakness in Stage I patients and supports our 

contention that reduced quadriceps muscle bulk is present in early disease. The simple and 

effort independent nature of ultrasound makes it an attractive test for detecting patients 

who may benefit from early intervention and avoids the need for strength measurements 

using research based equipment or less reliable portable handheld devices, both of which 

are inherently subject to volitional influence.  Interestingly, in our study, USRFCSA rather 

than quadriceps strength was independently associated with physical activity in stage I 

COPD, implying that this effort independent measure of quadriceps size may be a more 

sensitive parameter for investigating the relationship between lower limb muscle 

dysfunction and physical activity in patients with mild disease. This is particularly 
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important as new COPD phenotypes are established requiring evaluation and as 

therapeutic interventions focus on physical activity promotion (Casaburi 2011). 

 

The finding of reduced daily physical activity in GOLD Stage I COPD when compared to 

healthy subjects is supported by previous data (Watz 2009) showing a reduction in activity 

in Stage I patients compared to a chronic bronchitis (formerly GOLD stage 0) cohort. 

Although their observed reduction did not reach statistical significance the comparison 

was not made with a healthy control group as in our current study. There have been very 

few other studies investigating physical activity in mild to moderate COPD patients.  A 

multi-centre study recently found a reduction in activity in early disease from stage II 

COPD onwards compared to healthy controls, however this study had only a small number 

of patients (n=9) with GOLD stage I disease (Troosters 2010a). There is evidence to suggest 

that symptomatic GOLD stage I patients experience dynamic hyperinflation associated 

with dyspnoea during exercise compared to control subjects (Ofir 2008). GOLD stage I 

patients in our study had a significantly higher MRC dyspnoea score compared to healthy 

controls and this may therefore provide a mechanism for the initial reduction in physical 

activity seen early in the disease process. 

 

The reduction in physical activity in stage I COPD and its association with USRFCSA allows 

discussion of a potential mechanism for reduced quadriceps bulk in mild disease. Stage II-

IV patients also demonstrated a reduction in quadriceps bulk compared to control subjects 

but this was not significantly different from the stage I group suggesting that a threshold 

level of physical inactivity, reached early in the disease process, triggers the depletion in 

muscle bulk. There is evidence from the Copenhagen City Heart Study (Garcia-Aymerich 
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2007) and elsewhere (Hopkinson 2010) that physical inactivity may in fact precede the 

occurrence of airflow obstruction and that it is a significant aetiological factor for the 

development of COPD. In addition, recent data has highlighted physical activity to be a 

strong predictor of all-cause mortality in COPD (Waschki 2011) emphasising its importance 

in this patient group, although that study compared activity to measures of whole body 

FFM and BMI, rather than quadriceps muscle bulk or strength.  In keeping with previous 

work (Garcia-Rio 2009; Watz 2009), we found that lung function is associated with the 

level of physical activity in COPD, with RV/TLC ratio rather than FEV1% predicted found to 

be an independent predictor of physical activity level in stage II-IV disease. USRFCSA was 

also independently associated with RV/TLC ratio and IC, but not FEV1% predicted, 

highlighting that although FEV1 can be used for classifying the severity of airflow 

obstruction (Pellegrino 2005) it does not reflect the true severity of the disease. There is 

increasing evidence to support measures of gas trapping and thoracic distension as better 

indicators of disease severity than airflow obstruction in COPD (Hannink 2010; O'Donnell 

2012). Our finding that USRFCSA has a stronger association with physical activity in the mild 

compared to more advanced group, suggests that these pulmonary factors are more 

limiting to activity in moderate-severe patients, compared to those with mild COPD where 

the association between muscle wasting and inactivity is more pronounced.  

 

Importantly, in our study whole-body measurement of FFMI was similar in controls and 

patients with mild disease, although USRFCSA was reduced, supporting local disuse as a key 

factor. Disuse may also increase susceptibility to systemic factors, particularly the effects 

of smoking which is in itself known to be associated with skeletal muscle oxidative stress 

(Montes de Oca 2008) and quadriceps weakness (van den Borst 2011). It should be noted 
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however that inactivity may act as a significant confounder when observing quadriceps 

dysfunction as an effect of smoking. Further studies are needed to explore whether the 

fibre type switch from oxidative type I fibres to anaerobic type II fibres reported in 

advanced COPD (Gosker 2007), occurs earlier in the disease process as a consequence of 

physical inactivity interacting with systemic effects.  

 

Of note from this study, quadriceps strength and USRFCSA were shown to be associated 

with health status in COPD patients, measured using the COPD assessment test (CAT). This 

finding highlights the importance of these outcome measures as markers of quality of life 

in this patient population and indicates their likely influence on activities of daily living. A 

recent multicentre trial has identified an improvement in CAT score with pulmonary 

rehabilitation (Dodd 2011) and the association with quadriceps dysfunction may well 

relate to this positive finding. 

 

In addition, the bioelectrical impedance ratio (Z200/Z5) was found to show strong 

associations with USRFCSA and quadriceps strength in COPD patients. As previously 

described, this ratio is thought to give an index of separation of the extracellular and total 

body water compartments. In contrast to the use of bioelectrical impedance analysis to 

calculate fat free mass using regression equations which may include height, weight and 

gender, the impedance ratio is based on direct measurements. Interestingly, a higher ratio 

has been associated with greater disease severity in patients with heart failure (Castillo 

Martinez 2007). The impedance ratio therefore warrants further investigation as a non-

invasive biomarker in COPD.  
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3.4.3 Critique of the method 

 
  
Although this study cannot establish causation, the association between physical inactivity 

and depletion in muscle bulk in mild disease is strongly suggestive of a mechanistic link. 

The patients recruited in this cross-sectional study are a combination of those seen in 

hospital outpatients as well as those from the community setting who are not seen in 

secondary care (table 3.1). Importantly, the patients with mild disease had very similar 

physical activity levels to another published GOLD stage I cohort (Watz 2009), suggesting 

that our group is representative of the general COPD population.  

 

The strong correlation of ultrasound RFCSA with both mid-thigh and rectus femoris CT 

measurements supports the use of rectus femoris as a representation of quadriceps bulk 

and confirms our initial findings in a small cohort of COPD patients (Seymour 2009). 

Furthermore, inter-observer and inter-occasion agreement for USRFCSA measurement in 

this study were similar to that for other muscle ultrasound imaging (O'Sullivan 2007). The 

key areas for measurement error in our experience result from operator accuracy of probe 

position in relation to surface anatomy and inaccurate cursor outline of the acquired 

rectus femoris image, both of which may be related to operator training and experience. 

CT and MR imaging modalities have been shown to have an advantage over ultrasound in 

serial measurements which is likely to relate to use of bony landmarks for measurement 

position in comparison to the use of surface anatomy. However, a randomised controlled 

trial using electrical muscle stimulation to reduce muscle wasting in the intensive care unit 

(ICU) setting has shown that ultrasound measurement of the quadriceps can be used as a 

bedside imaging modality for identifying changes in muscle bulk following intervention 

(Gerovasili 2009). In addition, a more recent pilot study in COPD patients has found that 
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serial ultrasound measurements of the quadriceps can also detect changes in muscle mass 

in response to resistance training (Menon 2012).  

 

In relation to the objective measurements of activity in this study, both daily step count 

and PAL were used as measures of daily physical activity, although the Sensewear 

armband monitor has been shown to underestimate step count at slow walking speeds 

(Hill 2010). This may account for differences in the statistical strength of these activity 

variables when incorporated into the regression analyses. Importantly, the study 

participants showed good compliance with the Sensewear armband in keeping with recent 

data on the wearing time of this device in COPD and healthy subjects (Waschki 2012). 

 

 
 

3.4.4 Conclusion 

 
 
In summary, this study has shown that quadriceps wasting identified by USRFCSA exists in 

patients with mild, as well as advanced, COPD. Quadriceps bulk was associated with daily 

physical activity, independent of airflow limitation, in GOLD stage I disease. Our data 

suggest that, rather than being an end-stage phenomenon, quadriceps wasting occurs in a 

substantial minority of COPD patients including those with early disease. Ultrasound 

measurement of rectus femoris cross-sectional area has potential as a physiological 

biomarker in COPD and the identification of these patients may guide early lifestyle and 

therapeutic interventions. 
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Chapter 4: Randomised Controlled 

Trial of Effects of ACE-inhibition on 

Skeletal Muscle Dysfunction in COPD 
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4.1 Introduction 

 
 
4.1.1 Background  

 
 
Skeletal muscle impairment is a key complication of chronic obstructive pulmonary disease 

(COPD), affecting approximately a third of patients independent of the degree of airflow 

obstruction (Seymour 2010b). Quadriceps weakness in COPD has been associated with 

reduced exercise capacity (Gosselink 1996), impaired health status (Shrikrishna 2012a), 

and mortality in patients with moderate to severe disease (Swallow 2007a). Importantly 

pulmonary rehabilitation, which improves exercise performance and reduces healthcare 

utilisation, also increases quadriceps strength (Troosters 2000; Seymour 2010a).  

 
 

4.1.2 Rationale and hypothesis  

 
 
The mechanisms responsible for skeletal muscle dysfunction in COPD are likely to be 

multifactorial, however there are compelling data to suggest that chronic activation of the 

renin angiotensin system (RAS) may represent a key pathophysiological pathway 

(Shrikrishna 2012b). Although best known for its role in salt/water homeostasis, the RAS 

occurs in many tissues, including skeletal muscle (Schaufelberger 1998), regulating a 

diverse range of local inflammatory and metabolic processes (Carter 2005). Angiotensin-

converting enzyme (ACE) is a key RAS component catalysing the synthesis of angiotensin II 

and the breakdown of vasoactive kinins (Hanif 2010). Data supporting an influence of ACE 

on muscle phenotype come from the impact of genetic polymorphisms (Williams 2000; 

Hopkinson 2004b; Hopkinson 2006), epidemiological data from patient cohorts on ACE-
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inhibitors (Onder 2002; Di Bari 2004; Maggio 2006) and from interventional studies 

(Andreas 2006; Sumukadas 2007; Di Marco 2010).   

 

Endogenous variation in ACE levels as a result of polymorphism of the ACE gene influences 

the endurance versus strength muscle phenotype in COPD, with the presence of the 

deletion allele (D) associated with greater quadriceps strength in COPD (Hopkinson 

2004b). In addition, a polymorphism determining a reduction in bradykinin receptor 

expression has been associated with a reduced fat free mass and quadriceps strength in 

COPD patients (Hopkinson 2006).  Epidemiological evidence for a role of the renin-

angiotensin system in muscle wasting comes from observations in hypertensive cohorts in 

which treatment with ACE-inhibition has been associated with increased locomotor muscle 

size (Di Bari 2004) and strength (Onder 2002). Furthermore, previous randomised 

controlled trials have reported clinical benefits of ACE inhibition; a trial in elderly people 

with limited mobility found that the ACE inhibitor, perindopril, increased six minute 

walking distance (Sumukadas 2007). In COPD patients, a pilot study found enalapril to 

increase peak work rate (Di Marco 2010) while in a randomised controlled trial of an 

angiotensin II receptor blocker,  a numerical increase in quadriceps strength was found in 

the treatment group although, not being powered for this end-point, this difference failed 

to achieve statistical significance (Andreas 2006). 

  

Given this strong evidence base, we hypothesised that ACE-inhibition would have a 

beneficial effect on skeletal muscle dysfunction in COPD patients.  To strengthen the 

design of the trial we used a stratified medicine approach, selecting patients with 
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quadriceps weakness and using primary endpoints consistent with the proposed mode of 

action. 

 
 

4.2 Methods 

 
 
4.2.1 Trial design  

 
 
The study was a double-blind, randomised, placebo-controlled, parallel-group trial.  

Patients were randomly allocated to either ACE-inhibitor (fosinopril 10-20mg) or placebo 

(lactose). A pharmacy controlled 1:1 randomisation in blocks of 4 using consecutive 

numbers was performed, by the Clinical Trials Department, Royal Free Hampstead NHS 

Trust, UK. The trial was registered prospectively on a publically accessible database 

(www.controlled-trials.com/ISRCTN05581879). 

 
 

4.2.2 Inclusion and exclusion criteria 

 
 
Study inclusion criteria were patients diagnosed with COPD based on NICE and GOLD 

criteria and the presence of quadriceps weakness defined as a quadriceps maximum 

voluntary contraction (QMVC) in kilograms less than 120% of the patient’s body mass 

index (Swallow 2007a). Exclusion criteria were patients within three months of pulmonary 

rehabilitation or within one month of an exacerbation, and those with a co-morbidity 

including cardiac failure, diabetes, renal disease or rheumatoid arthritis. Patients on ACE-

inhibitors, angiotensin II receptor blockers or warfarin were also excluded. 
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4.2.3 Trial protocol 

 
 
Visit 1 Screening (day -7) - Informed consent was obtained and at this initial screening visit 

patients had a baseline assessment including – 

 Review of medical history and measurements of BMI, resting blood pressure and fat 

free mass index 

 MRC dyspnoea score, St George’s Respiratory Questionnaire and CAT score 

 Spirometry, gas transfer, lung volumes by body plethysmography and arterial 

blood gases 

 Incremental Shuttle Walk test 

 Quadriceps maximal voluntary contraction and quadriceps twitch force 

 Quadriceps endurance assessed using repetitive magnetic stimulation 

 Mid-thigh cross-sectional area measured by CT 

 Blood drawn for renal function, inflammatory markers, serum ACE and ACE 

genotype. 

 Quadriceps muscle biopsy  

 Physical activity recorded for 1 week at baseline using a multisensory armband 

accelerometer 

 

Visit 2 (day 0) Treatment start – Patients were randomised to either fosinopril 10mg once a 

day (encapsulated tablets) or matched placebo starting the first dose that evening. Written 

information was given concerning potential side effects. 
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Phone call (day 1) – Patients were contacted the day after starting the study medication to 

ensure they had not experienced side effects. 

 

Visit 3 (Day 7) Treatment escalation – Resting blood pressure and renal function were 

reviewed by an independent assessor and if satisfactory the dose was increased to two 

capsules once per day of either placebo or fosinopril 10mg (i.e maximum dose 20mg). Dose 

was not escalated if systolic BP<110mmHg. QMVC was re-measured and blood drawn for 

renal function. If there was an increase in creatinine of >30%, the patient was withdrawn 

from the study and referred for renal investigation. 

 

Phone Call (Day 9) – patients were contacted to ensure that they had tolerated the dose 

change. If not they were told to go back down to one capsule per day. 

 

Phone Call (Day 28) – patients were contacted for compliance and to report any problems. 

 

Phone Call (Day 49) – patients were contacted for compliance and to report any problems. 

 

Visit 4 Follow up visit (Day 90) – Baseline measurements (excluding activity monitoring) 

were repeated – a summary of the trial schedule is outlined in table 4.1.  
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Table 4.1: Protocol for randomised controlled trial of effects of ACE-inhibition on muscle 
weakness in COPD  

 

 

 

Day           
7 

Screening 

Day           
0 

Treatment 
start 

Day       
1 

Day           
7 

Dose 
titration  

Day  
9 

Day 
28 

Day 
49 

Day 
90 

End 
visit 

History X   X    X 

Quadriceps 
function - 

Endurance 
and QMVC 

X   X    X 

FFMI X       X 

Bloods for 
genotype & 

inflammatory 
markers 

X   X    X 

U&E’s to 
assess renal 

function/FBC 
X   X    X 

SGRQ/CAT X       X 

PFT’s X       X 

Mid-thigh CT X       X 

ISWT X       X 

Quadriceps 
biopsy X       X 

Phone call   X X X X X  
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4.2.4 Primary and secondary physiological outcome measures 

 
 

(1) Effect of ACE-I on quadriceps endurance assessed non-volitionally (Primary) 

(2) Effect of ACE-I on quadriceps maximum voluntary contraction force 

(3) Effect of ACE-I on mid-thigh CT cross-sectional area 

 
 

4.2.5 Data analysis and statistics 

 
 
Pilot work using repetitive magnetic stimulation in COPD patients identified the time taken 

to fatigue to a force of 50% of baseline (endurance half-time) as a mean(SD) of 80 (30) 

seconds. To detect a 20 seconds (25%) increase in time to fatigue using non-volitional 

quadriceps endurance in the fosinopril versus placebo groups, with an 80% power at the 

5% significance level, would require 54 patients randomised on a 1:1 basis.  To allow for a 

30% drop out rate, 80 patients were targeted for recruitment. Data are presented as mean 

± standard deviation, with accompanying p value, and were analysed using paired or 

independent t-tests. Analysis was performed using StatView 5.0 (Abacus concepts, Inc., 

Berkeley, CA, USA) with p<0.05 considered statistically significant. Figure construction was 

performed using GraphPad Prism Version 5.0 (GraphPad Software, San Diego, California, 

USA). 
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4.3 Results 

 
 
One hundred and seventeen patients were screened for study participation and 80 

patients underwent randomisation. There were 8 withdrawals from the treatment group 

and 5 from the placebo group. Further details are shown in the CONSORT diagram (figure 

4.1).  

 
 

4.3.1 Consort diagram  

 
 

 

Figure 4.1: Consort recruitment diagram for enrolment and follow up.  
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4.3.2 Baseline characteristics of placebo and treatment groups 

 
 
The placebo and treatment groups were well matched for age, gender, and lung function 

parameters (table 4.2) and there were no statistically significant baseline differences in 

body composition and quadriceps muscle function (table 4.3).  

 
Table 4.2: Baseline characteristics of placebo and treatment groups 

 

 
Placebo group 

(n=41) 
mean (SD) 

Treatment group 
(n=39) 

mean (SD) 

p 
value 

Age (years) 64.6 (7.3) 66.3 (8.2) 0.33 

Gender (M/F) 23/18 19/20 0.51 

BMI (kg/m2) 24.3 (4.0) 25.0 (5.8) 0.51 

FFMI (kg/m2) 17.0 (2.1) 17.3 (2.6) 0.60 

Smoking (pack years) 53.3 (25.1) 49.8 (33.1) 0.59 

Current smokers (%) 24 28 0.70 

Outpatients (%) 66 67 0.94 

Long-acting beta agonist (%) 93 82 0.15 

Long-acting anticholinergic (%) 88 87 0.93 

Inhaled corticosteroid (%) 90 82 0.15 

Oral corticosteroid (% ≥5mg/day) 2 5 0.53 

FEV1% predicted 40.1 (20.6) 45.8 (20.5) 0.22 

TLco% predicted 41.8 (20.9) 44.0 (19.2) 0.64 

RV%TLC ratio 58.2 (9.9) 55.8 (10.7) 0.29 

PaO2 (kPa) 9.7 (1.4) 9.6 (1.4) 0.82 

PaCO2 (kPa) 5.2 (0.6) 5.1 (0.4) 0.18 
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Placebo group 

(n=41) 
mean (SD) 

Treatment group 
(n=39) 

mean (SD) 

p 
value 

SGRQ (Symptoms) 56.5 (23.7) 49.6 (21.3) 0.17 

SGRQ (Activity) 70.8 (25.8) 71.1 (17.2) 0.96 

SGRQ (Impacts) 40.8 (22.8) 31.3 (16.2) 0.04 

SGRQ (Total) 52.5 (22.0) 46.4 (14.9) 0.15 

CAT score 22.8 (8.5) 20.8 (8.1) 0.34 

Daily step count 4499 (3462) 4504 (3109) 0.99 

Physical activity level (PAL) 1.4 (0.18) 1.4 (0.16) 0.66 

Systolic BP (mmHg) 134 (15) 138 (19) 0.35 

Diastolic BP (mmHg) 85 (10) 85 (11) 0.84 

Beta-blocker (%) 2 0 0.33 

Calcium channel blocker (%) 7 10 0.65 

Diuretic (%) 0 2 0.31 

Serum NT-pro BNP (pg/ml) 109.0 (99.8) 105.0 (64.0) 0.85 

ACE genotype (DD,ID,II) % 39,44,17 38,46,16 0.94 

 

Abbreviations: BMI - body mass index; FFMI – fat free mass index; FEV1 - forced expiratory 

volume in 1 second; TLco – carbon monoxide diffusing capacity; RV – residual volume; TLC – 

total lung capacity; SGRQ – St George’s respiratory questionnaire; CAT – COPD assessment 

test; BP – blood pressure; NT-proBNP – N-terminal pro-B-type natriuretic peptide; ACE – 

angiotensin-converting enzyme; Outpatients – defined as any previous hospital clinic 

attendance. 
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Table 4.3: Baseline quadriceps and exercise measurements in placebo and treatment groups 

 

 
Placebo group 

mean (SD) 
Treatment group 

mean (SD) 
p 

value 

QMVC (kg) 24.9 (4.9) 25.0 (7.4) 0.98 

TwQ (kg) 10.7 (3.0) 9.7 (3.4) 0.21 

MTCSA (cm2) 93.3 (22.4) 93.0 (26.1) 0.96 

Endurance half-time (s) 61.2 (35.5) 70.6 (31.9) 0.30 

ISWT (m) 247 (132) 242 (128) 0.87 

 

Abbreviations: QMVC – quadriceps maximum voluntary contraction; TwQ – quadriceps twitch 

force; MTCSA – mid-thigh cross-sectional area; ISWT – incremental shuttle walk test.  
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4.3.3 Effect of ACE-inhibition on quadriceps endurance and exercise capacity 

 
 
At 3 months, there was no significant difference in quadriceps endurance half-time 

assessed non-volitionally by repetitive magnetic stimulation (fosinopril ∆+5.1s, 95%CI -4.3 

to 14.5, p=0.27 vs. placebo ∆+4.6s, 95%CI -5.8 to 15.1, p=0.37; between group difference 

0.5s 95%CI -13.3 to 14.3, p=0.94) (figure 4.2). There was also no significant change in 

incremental shuttle walk distance at 3 months in the two groups (fosinopril ∆+7.1m, 95%CI 

-5.5 to 19.7, p=0.26 vs. placebo ∆+17.1m, 95%CI -10.6 to 44.8, p=0.22; between group 

difference -10m 95%CI -39.8 to 19.8, p=0.51) (figure 4.3).   

 

 

 

Figure 4.2: Quadriceps endurance following 3 months ACE-inhibition vs. placebo              

(Data shown as mean with cross bars representing the standard error of the mean - SEM, 

between group p=0.94; not significant - NS).  
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Figure 4.3: Incremental shuttle walk distance following 3 months of ACE-inhibition vs. 

placebo (Placebo group – top; Treatment group – bottom). 
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4.3.4 Effect of ACE-inhibition on quadriceps strength and cross-sectional area 

 
 
Quadriceps maximal voluntary contraction improved in both groups (fosinopril ∆+1.1kg, 

95%CI 0.03-2.2, p=0.045 vs. placebo ∆+3.6kg, 95%CI 2.1-5.0, p<0.0001) with a greater 

increase in the placebo arm (between group difference 2.5kg, 95%CI 0.7 to 4.3, p=0.009) 

(figure 4.4). There was also a trend towards an increase in quadriceps twitch force in the 

placebo versus treatment group (fosinopril ∆-0.28kg, 95%CI -1.0 to 0.45, p=0.43 vs. 

placebo ∆+0.57kg, 95%CI 0.01 to 1.1, p=0.046; between group difference -0.85kg 95%CI -

1.7 to 0.03, p=0.06) (figure 4.5). Mid-thigh cross-sectional area showed no significant 

differences at 3 months, but trended to an increase in the placebo group (fosinopril ∆-

0.60cm2, 95%CI -2.1 to 0.91, p=0.42 vs. placebo ∆+1.0cm2, 95%CI -0.21 to 2.2, p=0.10; 

between group difference -1.6cm2 95%CI -3.5 to 0.27, p=0.09) (figure 4.6).   

 

 
Figure 4.4: Quadriceps strength after 3 months ACE-inhibition vs. placebo   

(Data shown as mean with cross bars representing SEM; not significant - NS). 
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Figure 4.5: Quadriceps twitch force following 3 months ACE-inhibition vs. placebo  

(Data shown as mean with cross bars representing SEM; not significant - NS). 

 

Figure 4.6: Quadriceps MTCSA following 3 months ACE-inhibition vs. placebo 

(Data shown as mean with cross bars representing SEM; not significant - NS). 
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4.3.5 Effect of ACE-inhibition on blood pressure, lung function and health status 

 
 
A significant reduction was demonstrated in systolic blood pressure in the treatment arm 

compared to placebo (fosinopril ∆-12.7mmHg, 95%CI -20.3 to -5.1, p=0.002 vs. placebo ∆-

2.2mmHg, 95%CI -8.1 to 3.7, p=0.46; between group difference -10.5mmHg, 95%CI -19.9 

to -1.1, p=0.03) (figure 4.7). Diastolic blood pressure was also reduced in the treatment 

group (fosinopril ∆-7.0mmHg, 95%CI -11.5 to -2.4, p=0.004 vs. placebo ∆-1.2mmHg, 95%CI 

-5.2 to 2.9, p=0.56; between group difference -5.8mmHg, 95%CI -11.7 to 0.11, p=0.05) 

(figure 4.8). Lung function parameters including FEV1% predicted, DLco% predicted, 

RV/TLC ratio and arterial blood gases showed no significant change between groups at 3 

months. Health-related quality of life measures which included SGRQ and CAT score, also 

did not vary significantly between groups (see table 4.4). 

 

 
 
Figure 4.7: Systolic blood pressure following 3 months ACE-inhibition vs. placebo  

(Data shown as mean with cross bars representing SEM; not significant - NS). 
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Figure 4.8: Diastolic blood pressure following 3 months ACE-inhibition vs. placebo  

(Data shown as mean with cross bars representing SEM; not significant - NS). 
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Table 4.4: Change in physiological and HRQOL outcomes following 3 months of ACE-
inhibition 
 

 
Placebo group 

mean (SD) 
Treatment group 

mean (SD) 
p 

value 

Endurance half-time (s) 4.6 (28.0) 5.1 (24.2) 0.94 

QMVC (kg) 3.6 (4.3) 1.1 (2.9) 0.009 

TwQ (kg) 0.6 (1.5) -0.3 (1.8) 0.06 

MTCSA (cm2) 1.0 (3.7) -0.6 (4.1) 0.09 

ISWT (m) 17.1 (75.6) 7.1 (34.5) 0.51 

Systolic BP (mmHg) -2.2 (16.4) -12.7 (20.8) 0.03 

Diastolic BP (mmHg) -1.2 (11.1) -7.0 (12.4) 0.05 

FEV1% pred 2.7 (5.6) 1.7 (6.8) 0.50 

TLco% pred 1.2 (4.7) -0.23 (4.3) 0.20 

RV%TLC ratio -3.7 (14.0) -1.2 (4.3) 0.35 

PaO2 (kPa) -0.12 (0.8) -0.05 (1.1) 0.77 

PaCO2 (kPa) -0.02 (0.5) -0.05 (0.4) 0.79 

SGRQ (Symptoms) -1.8 (19.4) 4.0 (21.0) 0.25 

SGRQ (Activity) -1.5 (9.9) -1.5 (11.9) 0.99 

SGRQ (Impacts) -0.7 (12.2) 2.3 (9.4) 0.28 

SGRQ (Total) -1.1 (10.1) 1.5 (7.9) 0.25 

CAT score -2.6 (5.7) -0.3 (6.2) 0.18 
 

Abbreviations: QMVC – quadriceps maximum voluntary contraction; TwQ – quadriceps twitch 

force; MTCSA – mid-thigh cross-sectional area; ISWT – incremental shuttle walk test; BP – blood 

pressure; FEV1 - forced expiratory volume in 1 second; TLco – carbon monoxide diffusing 

capacity; RV – residual volume; TLC – total lung capacity; PaO2 / CO2 - arterial partial pressure 

of oxygen / carbon dioxide; SGRQ – St George’s respiratory questionnaire; CAT – COPD 

assessment test. 
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4.3.6 Influence of ACE/Bradykinin polymorphisms  

 
 
Patients were also stratified by ACE and bradykinin genotype (table 4.5 and table 4.6). 

Across ACE genotype, the patients were well matched except for a lower FEV1% predicted 

in those homozygous for the insertion (I) allele. There were no significant baseline 

differences across bradykinin receptor genotype. 

 

Table 4.5: Baseline physiological data when stratified by ACE genotype  
 

   
DD (n=31) 
Mean (SD) 

 
ID (n=36) 

Mean (SD) 

 
II (n=13) 

Mean (SD) 

 
p value 

     
Age  66.4 (8.3) 64.8 (7.7) 65 (6.9) 0.69 

Gender 15/16   19/17 8/5   0.74  

BMI (kg/m2) 24.6 (5)   24.9 (5.2) 23.8 (4.6)   0.80  

FFMI (kg/m2) 17.4 (2.6)   17.2 (2.3) 16.6 (2)   0.63  

FEV1% pred 48.9 (18.8)   42.7 (22.7)   29.3 (10.6)   0.01 

QMVC (kg) 25.7 (6.3)   25 (6.1)   23.2 (6.7)   0.49   

USRFCSA (mm2) 498 (127) 522 (123)   487 (133) 0.62 
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Table 4.6: Baseline physiological data when stratified by bradykinin receptor polymorphism 
 
 

   
+9/+9 (n=27) 

Mean (SD) 

 
+9/-9 (n=35) 
Mean (SD) 

 
-9/-9 (n=18) 
Mean (SD) 

 
p  

value 

     
Age  67.2 (7.2) 64.7 (7.3) 64.2 (9.3) 0.33 

Gender 12/15   21/14 9/9   0.47  

BMI (kg/m2) 23.9 (5.1)   25.4 (5.1) 24.3 (4.5)   0.46  

FFMI (kg/m2) 16.8 (2.5)   17.5 (2.3) 17 (2.3)    0.48 

FEV1% pred 42.4 (21.8)   45.2 (22.1)   39.1 (15.5)   0.60 

QMVC (kg) 23.5 (6.1)   26.2 (6.1)   24.6 (6.4)   0.20   

USRFCSA (mm2) 482 (121) 530 (136)   501 (112) 0.30 
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The response to ACE-inhibition vs. placebo was also assessed by ACE and bradykinin 

receptor genotype as shown in table 4.7. When divided by ACE genotype, patients 

homozygous for the insertion allele (II) showed an increase in ISWT following treatment 

(fosinopril ∆+37.5m vs. placebo ∆-20m) compared to those homozygous for the D allele 

who showed a reduced effect with treatment (fosinopril ∆+3m vs. placebo ∆+56m) 

(ANOVA p=0.02). Twitch force also increased in patients with the II genotype following 

treatment (fosinopril ∆+2.01kg vs. placebo ∆-0.03kg) when compared to other genotypes; 

DD genotype (fosinopril ∆-0.44kg vs. placebo ∆+0.68kg), ID genotype (fosinopril ∆-0.67kg 

vs. placebo ∆+0.80kg) (ANOVA p=0.02). In a separate analysis for treatment response by 

presence of an I allele (ID and II vs. DD), using ANOVA, ISWT remained significant (p=0.01), 

but no significant difference was found for twitch force (p=0.67). 

 

When analysing bradykinin receptor genotypes, only TLco% predicted showed a difference 

in treatment response (-9/-9 genotype; fosinopril ∆+1% pred vs. placebo ∆-0.5% pred) vs 

(+9/-9 genotype; fosinopril ∆-2% pred vs. placebo ∆+3% pred) vs (+9/+9 genotype; 

fosinopril ∆+1.6% pred vs. placebo ∆+0.4% pred) (ANOVA p=0.03). In a separate analysis 

for TLco% predicted treatment response by presence vs. absence of the -9 allele, (-9/-9 

and +9/-9 vs. +9/+9) no significant difference was found (p=0.11). 
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Table 4.7: Change in physiological and HRQOL outcomes following 3 months ACE-inhibition 
when stratified by ACE and bradykinin genotypes. 
 
 

 

Change in treatment vs. 
placebo 

stratified by ACE genotype  
(DD vs. ID vs. II) 

p value (ANOVA) 

Change in treatment vs. placebo 
 stratified by bradykinin 

polymorphism 
(+9/+9, -9/+9, -9/-9) 

p value (ANOVA) 

Endurance half-time (s) 0.68 0.50 

QMVC (kg) 0.62 0.79 

TwQ (kg) 0.02  0.86 

MTCSA (cm2) 0.43 0.97 

ISWT (m) 0.02 0.40 

Systolic BP (mmHg) 0.96 0.53 

Diastolic BP (mmHg) 0.20 0.12 

FEV1% pred 0.11 0.67 

TLco% pred 0.31 0.03 

RV%TLC ratio 0.23 0.32 

PaO2 (kPa) 0.54 0.44 

PaCO2 (kPa) 0.64 0.91 

SGRQ (Symptoms) 0.12 0.20 

SGRQ (Activity) 0.36 0.20 

SGRQ (Impacts) 0.23 0.82 

SGRQ (Total) 0.09 0.31 

CAT score 0.68  0.30 
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4.4 Discussion 

 
 
4.4.1 Summary of results 

 
 
Fosinopril did not have a beneficial effect on quadriceps muscle function in moderate to 

severe COPD patients selected for quadriceps weakness, although blood pressure 

measurements confirmed adherence and biological activity of the drug.  The present data 

do not support the use of ACE inhibitors to augment muscle phenotype in patients with 

COPD.    

 
 

4.4.2 Significance of the findings 

 
 
These findings are unexpected given previous data supporting a beneficial effect of ACE- 

inhibition on skeletal muscle function, and reinforce the importance of conducting 

prospective blinded trials. An observational study assessed the relationship between ACE- 

inhibitor use and muscle strength in 641 elderly hypertensive women participating in the 

Women’s Health and Aging Study (Onder 2002). They found that at 3 years’ follow up, 

participants taking an ACE-inhibitor continuously had a lower mean decline in both knee 

extensor muscle strength and walking speed than those using other antihypertensives and 

those not on antihypertensive medications. In addition, cross-sectional data from 2,431 

hypertensive subjects participating in the Health, Aging and Body Composition (Health 

ABC) study was used to evaluate whether ACE-inhibitor treatment was associated with a 

larger lower extremity muscle mass compared to the use of other antihypertensive 

medications (Di Bari 2004), and found that lower extremity muscle mass (assessed by 
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DEXA) was larger in the ACE-inhibitor group.  They also showed that duration of exposure 

to ACE-inhibitors was associated with greater muscle mass.  

 

Interventional studies of ACE-inhibition have also suggested a treatment effect. A 

randomised controlled trial in an elderly population (n=95, mean age 77 years) with self-

reported difficulties in mobility, showed that 5 months of perindopril treatment 

significantly improved 6 minute walk distance (31.4m, 95% CI 10.8-51.9m, p=0.003) 

compared to placebo (Sumukadas 2007). Health-related quality of life deteriorated in the 

placebo group but was maintained in the perindopril group. Interestingly this cohort 

included current and ex-smokers and the improvement was observed in the absence of 

heart failure in the participants.  

 

A small double blind, placebo controlled study has evaluated the effects of 4 weeks 

treatment with enalapril on exercise performance in 21 COPD patients with no evidence of 

cardiovascular co-morbidities (Di Marco 2010). Enalapril did not have an effect on the 

ventilatory response to exercise (VE/VCO2 slope) or on peak O2 consumption. However, 

enalapril did significantly improve O2 pulse and peak work rate compared to placebo. ACE 

genotype did not significantly affect patient response to treatment. The improved 

cardiovascular response to exercise may be attributable to a combination of greater 

cardiac efficiency, a reduced pulmonary arterial pressure and reduced neurohumoral 

activation influencing systemic effects on skeletal muscle function.  
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There are a number of possible factors that may explain why fosinopril was not effective in 

the present study given previous data. These are discussed below and include the patient 

population studied, the choice of ACE-inhibitor, the treatment duration and the influence 

of physical inactivity. A further possibility is that ACE-inhibitors in fact create a more 

“benign” intramuscular environment effectively removing a training stimulus. 

 
 
Patient selection 

 
 
We adopted a stratified medicine approach, based on a quadriceps weakness patient 

phenotype, so as to focus on those COPD patients with a level of skeletal muscle 

dysfunction known to be associated with worse survival (Swallow 2007a). It may however, 

be the case that at this stage the weakest patients have a limited ability to respond to 

treatment and the low physical activity level found at baseline may reflect this. The level of 

inactivity could explain the discrepancy between the present data and the effect of ACE-

inhibitors in relatively healthy populations being treated for hypertension (Onder 2002). 

There is also evidence that an exercise stimulus may be needed for ACE-inhibition to 

promote adaptive changes in skeletal muscle including an increase in capillary density 

(Guo 2010) and enhancement of insulin-stimulated muscle glucose transport (Steen 1999). 

Therefore the current data do not preclude the possibility that the use of ACE-inhibition in 

the context of pulmonary rehabilitation may yield benefit. 

 

This trial was not prospectively stratified and powered on ACE genotype, and therefore the 

value of the post-hoc analysis of a genotype specific response is limited. Although patients 

homozygous for the insertion allele (II) did show an improved treatment response for 

ISWT and twitch force with treatment compared to the DD group, the numbers of II 
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subjects was very small and therefore requires investigation in a larger cohort. 

Interestingly a previous study did show a trend towards an increase in the treatment effect 

of ACE-inhibition on O2 pulse in COPD patients homozygous for the II allele (Di Marco 

2010). As this ACE genotype is associated with increased endurance in normal populations, 

this potential enhanced treatment response in COPD does warrant further evaluation.  

In addition, the difference observed in this trial in transfer factor treatment response with 

bradykinin receptor genotype although small and not maintained when analysed by 

presence of a single allele, again highlights the need for specific studies in this area.  

 
 
Choice of ACE-inhibitor 

 
 
The beneficial effects seen with perindopril and enalapril in previous studies (Sumukadas 

2007; Di Marco 2010) highlight that type of ACE-inhibitor used may influence outcome. 

Fosinopril was chosen as the ACE-inhibitor for this study due to its high lipophilicity and its 

hepatic as well as renal elimination. However, although a class effect is seen for ACE-

inhibitors in the context of hypertension, any potential anti-inflammatory and muscle-

specific effects may be specific to individual compounds with differing phosphinyl or 

carboxyl containing groups; enalapril, perindopril, ramipril and lisinopril all contain a 

carboxyl group, whereas fosinopril contains a phosphinyl group. Interestingly, a recent 

randomised placebo controlled trial of ACE-inhibition and novel cardiovascular risk factors 

(TRAIN) study investigated the influence of fosinopril in 290 subjects (>55 years old) with a 

high cardiovascular disease risk profile and showed no effect on serum inflammatory 

biomarkers, haemostasis or endothelial function (Cesari 2009). A large substudy of 257 of 

the participants in this trial (mean age 66 years)  had a short physical battery score 
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assessment (encompassing 4 metre walking speed, balance and chair-stand tests) and 

measurement of handgrip strength at baseline and 6 months after the fosinopril/placebo 

intervention (Cesari 2010). This sub-study did not show a significant effect on strength or 

physical performance. This finding may also relate to the heterogeneity of the group 

studied particularly in relation to co-morbidities such as cancer, stroke and diabetes.  

 

ACE-inhibition was chosen over ATII receptor blockade due to the additional effect on 

prevention of bradykinin degradation, however a randomised placebo controlled trial of 4 

months treatment with irbesartan in 60 COPD patients (Andreas 2006), did show a 10% 

increase in quadriceps strength in the treatment group. Although this result did not reach 

statistical significance, the study was not powered on locomotor muscle strength and 

patients were not stratified by ACE genotype.  

 
 
Effect of ACE-inhibition on intramuscular environment  

 
 
The improvements observed in quadriceps strength in the current trial warrant further 

discussion. The COPD subjects were included based on the presence of quadriceps 

weakness, and therefore it is not completely unexpected that a placebo effect was found 

in relation to volitional quadriceps strength over the 3 months study period. Indeed the 

existence of a placebo effect has been well documented in the context of functional 

exercise capacity in clinical trials of ACE-inhibition in heart failure (Olsson 2005) and in 

other studies of physical performance (Beedie 2009). However, the finding that this effect 

was greater in the placebo arm of the trial was unexpected.  While this could potentially 

be a chance effect it was accompanied by trends in the same direction for mid-thigh cross 

sectional area and quadriceps twitch force (both of which are independent of patient 
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effort). A possible reduction in skeletal muscle blood flow secondary to a reduced systemic 

blood pressure may explain the attenuated response observed with treatment. Evidence 

for this comes from animal models where captopril has been shown to increase maximal 

blood lactate during exercise and reduce exercise capacity in normotensive, sedentary rats 

(Minami 2004). A decrease in arteriole vasodilator function has also been identified in rat 

skeletal muscle following ACE-inhibition (Frisbee 1999) and in a chronic heart failure 

model, perindopril was not found to protect against alterations in skeletal muscle energy 

metabolism (Momken 2003).  

 
 

4.4.3 Critique of the method 

 
 
A strength of this study was that the quadriceps assessment was comprehensive including 

both volitional and non-volitional physiological outcomes. The study included COPD 

patients with quadriceps weakness defined as a quadriceps strength less than 120% of 

BMI. Although this cut-off was associated with greater mortality in moderate-severe COPD 

patients (Swallow 2007a), the possibility exists that the inclusion of COPD patients with 

varying degrees of skeletal muscle impairment may have enabled a wider assessment of 

potential responders.  

 

The influence of treatment on physical activity level was not assessed although the study 

did incorporate a baseline objective physical activity assessment, and confirmed a similar 

level of baseline activity in both groups. In addition, the incremental shuttle walk test was 

chosen as a field test for the trial, although patients performing this test may have been 

more limited by walking speed when compared to a self-paced six minute walk test. 
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Finally, the duration of this study was 3 months however the time needed for skeletal 

muscle adaptation following pharmacotherapy in these patients remains unclear, with 

ACE-inhibitor treatment duration ranging from 10 weeks to 12 months for studies of 

improved six minute walk distance in heart failure (Olsson 2005) and treatment for longer 

than 2 years in observational studies of hypertensive individuals (Di Bari 2004).  

 
 

4.4.4 Conclusion 

 
 
In summary, despite a strong theoretical basis for the study, this randomised controlled 

trial found that ACE-inhibition, in the form of fosinopril, did not improve quadriceps 

function in a COPD population with quadriceps weakness.  A placebo effect was observed 

on quadriceps strength which unexpectedly was greater than that observed in patients on 

an ACE-inhibitor. This study does not support a role for ACE-inhibitors alone in the 

treatment of skeletal muscle dysfunction in patients with COPD.  
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Chapter 5: Effects of ACE-inhibition on 

Skeletal Muscle Atrophy/Hypertrophy 

Signalling in COPD  
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5.1 Introduction  

 
 
5.1.1 Background 

 
 
The molecular mechanisms underlying the skeletal muscle dysfunction observed in COPD 

patients remain to be fully elucidated; however increasing evidence suggests a key role for 

the insulin-like growth factor-1 (IGF-1), produced in response to growth hormone, 

testosterone and mechanical stretch. IGF-1 acts through the PI3K/AKT pathway to 

inactivate FoxO transcription factors, thereby inhibiting expression of the atrogenes 

atrogin-1 and MuRF-1 to prevent muscle catabolism (Sandri 2006). IGF-1 also activates the 

mammalian target of rapamycin (mTOR) via PI3K/AKT signalling to promote muscle 

anabolism. It has been shown that IGF-1 levels are reduced in COPD patients in the stable 

state compared to healthy controls (Crul 2007).  Furthermore, in COPD patients 

undergoing pulmonary rehabilitation, increases in exercise capacity and fibre size are 

associated with upregulation of IGF-1 (Vogiatzis 2007; Vogiatzis 2010).    

 
 

5.1.2 Rationale and hypothesis 

 
 
Angiotensin II has relevance in the pathogenesis of muscle impairment in COPD, through 

modulation of the IGF-1 pathway as well as induction of pro-inflammatory cytokines and 

reactive oxygen species. The evidence for an influence of RAS comes from animal models 

(Song 2005; Cohn 2007; Yoshida 2010) where infusion of angiotensin II promotes muscle 

loss via an inhibitory effect on the IGF-1 system and stimulation of a catabolic pathway 

mediated by the ubiquitin ligases, MuRF-1 and atrogin-1 (Song 2005). These atrogenes 
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have been shown to be upregulated in the quadriceps of patients with COPD (Doucet 

2007), with ubiquitin-proteasome degradation thought to play a key role in the muscle 

atrophy observed (Debigare 2010; Doucet 2010). In addition, recent work by Rezk et al in a 

mouse model has shown an increase in IGF-1 expression seven days after angiotensin II 

induced diaphragm muscle atrophy, suggesting a potential involvement of IGF-1 in skeletal 

muscle regeneration following RAS related injury (Rezk 2012). Based on this evidence, we 

hypothesised that ACE-inhibition would have a beneficial effect on vastus lateralis 

atrogene expression in COPD patients with quadriceps weakness.  

 
 
 

5.2 Methods 

 
 
5.2.1 Participants and measurements 

 
 
Muscle biopsies were taken from the vastus lateralis at baseline and three months, as part 

of the double-blind randomised controlled trial described in chapter 4. Real-time 

quantitative PCR (RT-qPCR) was performed testing for atrophy/hypertrophy target genes 

and MHC isoforms (primer sequences shown in table 5.1) with normalisation to a 

reference housekeeping gene, RPLPO. Expression of phosphorylated 4EBP-1 was 

determined by enzyme-linked immunosorbent assay (ELISA). Blood samples were also 

taken at baseline and 3 months and analysed for inflammatory cytokines (IL-6, IL-8, IL-18 

and MCP-1), serum ACE activity, IGF-1, NT-pro-BNP, hs-CRP and fibrinogen, as previously 

described.  
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Table 5.1: Primer sequences 
 
 

 
 

 Forward sequence Reverse sequence  

RPLPO 
5’-TCTACAACCCTGA 
AGTGCTTGATATC-3’ 

5’-GCAGACAGAC 
ACTGGCAACAT-3’ 

 

Atrogin-1 
5’-GCAGCTGAACAA 
CATTCAGATCAC-3’ 

5’-CAGCCTCTGCA 
TGATGTTCAGT-3’ 

 

MuRF-1 
5’-CCTGAGAGCC 
ATTGACTTTGG-3’ 

5’-CTTCCCTTCTGT 
GGACTCTTCC-3’ 

 

IGF-1 
5’-CCACGATGC 

CTGTCTGAGG-3’ 
5’-TTTCAACAAG 
CCCACAGGGT-3’ 

 

MyoD 
5’-GACGGCATGA        
TGGACTACAG-3’ 

5’AGGCAGTCTA                     
G GCTCGACAC 

 

TGF-β 
5’-CCTGGCGAT                                  
ACCTCAGCAA 

5’-CCGGTGACATC                 
AAAGATAACCA-3’ 

 

MHC I 
5’CCCTGGAGACTT                       
TGTCTCATTAGG-3’ 

5’-AGCTGATGAC                 
CAACTTGCGC-3’ 

 

MHC IIA 
5’TCACTTATGACTT   
TTGTGTGAACCT-3’ 

5’CAATCTACCTAA  
ATTCCGCAAGC-3’ 

 

MHC IIX 
5’TGACCTGGGAC           

TCAGCAATG-3’ 
5’GGAGGAACAAT 
CCAACGTCAA-3’ 
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5.2.2 Primary and secondary molecular outcome measures 

 
 

(1) Effect of ACE-I on MuRF-1 and Atrogin-1 mRNA expression (Primary) 
 

(2) Effect of ACE-I on serum inflammatory markers and IGF-1 

 
 

5.2.3 Data and statistical analysis 

 
 
To detect a 70% decrease in MURF-1 mRNA expression in the fosinopril versus placebo 

groups, with an 80% power at the 5% significance level, would require 20 patients in each 

group (Doucet 2007).  Data are presented as mean ± standard deviation, with 

accompanying p value, and were analysed using paired or independent t-tests. Analysis 

was performed using StatView 5.0 (Abacus concepts, Inc., Berkeley, CA, USA) with p<0.05 

considered statistically significant. Figure construction was performed using GraphPad 

Prism Version 5.0 (GraphPad Software, San Diego, California, USA). 

 
 

5.3 Results  

 
 
5.3.1 Baseline muscle and serum measurements in placebo and treatment groups 

 
 
There were no significant baseline differences in vastus lateralis expression of the genes 

analysed or serum measurements between the groups (table 5.2). 
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Table 5.2: Baseline muscle biopsy and serum measurements 
 
 

 Placebo group 
mean (SD) 

Treatment group 
mean (SD) 

p 
value 

Vastus lateralis    

Atrogin-1 mRNA (AU) 2.6 (0.5) 2.4 (0.5) 0.16 

MuRF-1 mRNA (AU) 2.2 (0.7) 2.0 (0.8) 0.30 

IGF-1 mRNA (AU) 0.9 (0.5) 1.0 (0.3) 0.56 

MyoD mRNA (AU)  2.6 (0.6) 2.4 (0.7) 0.43 

TGF-β mRNA (AU) 1.3 (0.7) 1.4 (0.6) 0.74 

MHC I mRNA (AU) 3.9 (0.7) 4.2 (0.5) 0.11 

MHC IIA mRNA (AU) 4.6 (0.5) 4.7 (0.6) 0.88 

MHC IIX mRNA (AU) 4.0 (0.7) 4.1 (0.6) 0.78 

Phosphorylated 4EBP-1 protein (AU) 2.2 (0.5) 2.0 (0.6) 0.56 

Serum  
 
 

 

ACE activity (IU/L) 48.0 (28.0) 43.5 (15.3) 0.43 

HS-CRP (mg/L) 9.8 (21.0) 4.6 (4.6) 0.18 

Fibrinogen (g/L) 2.6 (0.69) 2.8 (0.67) 0.20 

IGF-1 (ug/L) 124.6 (61.5) 145.0 (103.8) 0.32 

IL-6 (ng/L) 4.6 (15.2) 1.9 (2.5) 0.34 

IL-8 (ng/L) 3.7 (3.5) 4.0 (2.8) 0.69 

IL-18 (ng/L) 494.9 (332.7) 421.0 (174.7) 0.27 

MCP-1 (ng/L) 66.2 (43.3) 77.7 (37.0) 0.26 

 

Abbreviations: MuRF-1 – muscle RING finger protein-1; IGF-1 – insulin-like growth factor-1; 

ACE – angiotensin-converting enzyme; HS-CRP – high-sensitivity C-reactive protein; IL – 

interleukin; MCP-1 – monocyte chemotactic protein-1.  
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5.3.2 Effect of ACE-inhibition on vastus lateralis atrophy/hypertrophy signalling 

 
 
At 3 months, no significant differences were observed in vastus lateralis atrogin-1 mRNA 

expression (fosinopril ∆-0.18AU, 95%CI -0.41 to 0.04, p=0.11 vs. placebo ∆-0.15AU, 95%CI -

0.35 to 0.04, p=0.12; between group difference, -0.03AU, 95%CI -0.32 to 0.26, p=0.84) 

(figure 5.1) or MuRF-1 mRNA expression (fosinopril ∆0.09AU, 95%CI -0.21 to 0.39, p=0.55 

vs. placebo ∆-0.13AU, 95%CI -0.32 to 0.05, p=0.14; between group  difference, 0.22AU, 

95%CI -0.11 to 0.55, p=0.18) (figure 5.2). Vastus lateralis IGF-1 mRNA expression also 

showed no significant difference between groups (0.04AU, 95%CI -0.38 to 0.46, p=0.84) at 

3 months. In addition, no significant differences were found in MyoD, TGF-β and MHC 

isoform mRNA expression between the groups at 3 months (see table 5.3), although MHC 

type I mRNA did show a trend towards a reduction in the treatment group (p=0.06) (figure 

5.3). 

 
 

5.3.3 Effect of ACE-inhibition on serum ACE activity, IGF-1 and inflammatory markers 

 
 
The treatment group demonstrated a significant reduction in serum ACE activity compared 

to placebo (fosinopril ∆-17.4IU/L, 95%CI -28.1 to -6.8, p=0.002 vs. placebo ∆3.0IU/L, 95%CI 

-1.2 to 7.1, p=0.15; between group difference, -20.4IU/L, 95%CI -31.0 to -9.8, p=0.0003) 

(figure 5.4). No significant differences were found in serum IGF-1, HS-CRP, NT-pro BNP, 

fibrinogen or serum inflammatory cytokines between the groups at 3 months (see table 

5.3).  
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Table 5.3: Change in muscle biopsy and serum measurements after 3 months of ACE-
inhibition 
 

 

 
 

Placebo group 
mean (SD) 

Treatment group 
mean (SD) 

p 
value 

Vastus lateralis    

Atrogin-1 mRNA (AU) -0.16 (0.5) -0.19 (0.5) 0.84 

MuRF-1 mRNA (AU) -0.13 (0.5) 0.09 (0.7) 0.18 

IGF-1 mRNA (AU) 0.34 (0.5) 0.43 (0.9) 0.65 

MyoD mRNA (AU) -0.08 (0.5) -0.4 (1.2) 0.23 

TGF-β mRNA (AU) 0.21 (0.9) 0.12 (1.1) 0.77 

MHC I mRNA (AU) -0.13 (0.6) -0.59 (1.0) 0.06 

MHC IIA mRNA (AU) -0.16 (0.6) -0.39 (1.2) 0.36 

MHC IIX mRNA (AU) 0.004 (0.9) -0.13 (0.8) 0.64 

Phosphorylated 4EBP-1 protein (AU) -0.18 (0.6) 0.18 (0.6) 0.08 

Serum    

ACE activity (IU/L) 3.0 (12.0) -17.4 (28.5) 0.0003 

HS-CRP (mg/L) -0.52 (31.2) 4.1 (13.0) 0.45 

NT-proBNP (ng/L) -3.7 (55.6) -9.1 (42.0) 0.66 

Fibrinogen (g/L) 0.17 (0.9) 0.03 (0.6) 0.49 

IGF-1 (ug/L) 8.9 (34.8) -9.5 (64.3) 0.14 

IL-6 (ng/L) 1.7 (9.8) 1.3 (6.1) 0.84 

IL-8 (ng/L) 0.65 (3.0) 0.65 (1.8) 0.99 

Il-18 (ng/L) 46.4 (134.4) 62.2 (164.9) 0.67 

MCP-1 (ng/L) -2.5 (30.0) -5.9 (26.4) 0.63 

 

Abbreviations: MuRF-1 – muscle RING finger protein-1; IGF-1 – insulin-like growth factor-1; ACE – 

angiotensin-converting enzyme; HS-CRP – high-sensitivity C-reactive protein; NT-proBNP – N-terminal 

pro-B-type natriuretic peptide; IL – interleukin; MCP-1 – monocyte chemotactic protein-1. 
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Figure 5.1: Atrogin-1 vastus lateralis mRNA expression following 3 months ACE-inhibition 

(Data shown as mean with cross bars representing SEM; not significant - NS). 

 
 

Figure 5.2: MuRF-1 vastus lateralis mRNA expression following 3 months ACE-inhibition  

(Data shown as mean with cross bars representing SEM; not significant - NS). 
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Figure 5.3: MHC I vastus lateralis mRNA expression following 3 months ACE-inhibition 

(Data shown as mean with cross bars representing SEM; not significant - NS). 

 

 

Figure 5.4: Serum ACE activity following 3 months ACE-inhibition  

(Data shown as mean with cross bars representing SEM; not significant - NS).  
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5.3.4 Influence of ACE/bradykinin polymorphisms  

 
 
The response to ACE-inhibition vs. placebo was also assessed by ACE and bradykinin 

receptor genotype as shown in table 5.4. When divided by ACE genotype, no significant 

differences were seen in vastus lateralis mRNA expression for the genes analysed. Patients 

homozygous for the insertion allele (II) showed a significant reduction in serum MCP-1 

following treatment (fosinopril ∆-45.1ng/L vs. placebo ∆+3.3ng/L) when compared to 

other genotypes; DD genotype (fosinopril ∆+1.3ng/L vs. placebo ∆+2.9ng/L), ID genotype 

(fosinopril ∆-0.7ng/L vs. placebo ∆-11.2ng/L) (ANOVA p=0.01). In a separate analysis for 

treatment response by presence of an I allele (ID and II vs DD), no significant difference 

was found for serum MCP-1 (p=0.91). 

 

When analysing bradykinin receptor genotypes, only serum IGF-1 showed a difference in 

treatment response (-9/-9 genotype; fosinopril ∆+23.7ug/L vs. placebo ∆-13.8ug/L) vs (+9/-

9 genotype; fosinopril ∆-2.8ug/L vs. placebo ∆+18.2ug/L) vs. (+9/+9 genotype; fosinopril ∆-

46.6ug/L vs. placebo ∆+12.0ug/L) (ANOVA p=0.02). In a separate analysis for treatment 

response by presence vs. absence of the -9 allele, (-9/-9 and +9/-9 vs. +9/+9) a significant 

difference in serum IGF-1 was also found (-9/-9 and +9/-9 genotype; fosinopril ∆+6.0ug/L 

vs. placebo ∆+7.0ug/L) vs. (+9/+9 genotype; fosinopril ∆-46.6ug/L vs. placebo ∆+12.0ug/L) 

(p=0.03). 
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Table 5.4: Change in mRNA expression and serum measurements following 3 months ACE-
inhibition when stratified by ACE genotype. 
 

 

 

Change in treatment vs. 
placebo 

stratified by ACE genotype  
(DD vs. ID vs. II) 

p value (ANOVA) 

Change in treatment vs. placebo 
 stratified by bradykinin 

polymorphism 
(+9/+9, -9/+9, -9/-9) 

p value (ANOVA) 

Vastus Lateralis   

Atrogin-1 mRNA 0.37 0.63 

MuRF-1 mRNA 0.95 0.99 

IGF-1 mRNA 0.99 0.28 

MyoD mRNA (AU) 0.49 0.97 

TGF-β mRNA (AU) 0.93 0.38 

MHC I mRNA (AU) 0.38 0.70 

MHC IIA mRNA (AU) 0.18 0.98 

MHC IIX mRNA (AU) 0.24 0.84 

Phosphorylated 4EBP-1 (AU) 0.57 0.34 

Serum   

ACE activity (IU/L) 0.78 0.81 

HS-CRP (mg/L) 0.78 0.93 

NT-proBNP (ng/L) 0.99 0.93 

Fibrinogen (g/L) 0.29 0.12 

IGF-1 (ug/L) 0.98 0.02 

IL-6 (ng/L) 0.22 0.27 

IL-8 (ng/L) 0.30 0.36 

Il-18 (ng/L) 0.80 0.52 

MCP-1 (ng/L) 0.01 0.07 
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5.3.5 Vastus lateralis atrophy/hypertrophy signalling in COPD vs. healthy subjects 

 
 
A sub-study was conducted to investigate baseline atrophy/hypertrophy signalling in the 

COPD patients participating in the trial when compared to healthy subjects. Demographics 

are shown in table 5.5; the two groups were well-matched for age, gender, BMI and FFMI. 

Quadriceps strength (QMVC) and ultrasound measurement of rectus femoris cross-

sectional area (USRFCSA) were significantly lower in COPD patients compared to the healthy 

controls.  

 

Table 5.5: Baseline demographics COPD vs. healthy controls sub-study 
 

 
COPD (n=50) 

mean (SD) 
Controls (n=11) 

mean (SD) 
p 

value 

Age 65.9 (7.2) 64.5 (6.3) 0.54 

Gender (M/F) 33/17 7/4 0.88 

BMI (kg/m2) 25.3 (4.9) 26.6 (3.2) 0.42 

FFMI (kg/m2) 17.7 (2.3) 18.4 (2.1) 0.37 

FEV1% predicted 43.1 (21.1) 96.3 (9.8) <0.0001 

QMVC (kg) 26.9 (6.1) 38.1 (11.2) <0.0001 

USRFCSA (mm2) 537 (121) 704 (107) 0.0006 
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Following vastus lateralis muscle biopsy analysis using RT-qPCR, IGF-1 mRNA expression 

was significantly reduced in the COPD subjects compared to healthy age matched controls 

(p=0.03) (figure 5.5). No significant differences were found between COPD subjects and 

healthy controls for Atrogin-1 (p=0.44) and MuRF-1 (p=0.92) mRNA expression (figures 5.6 

and 5.7). MyoD mRNA expression was reduced in COPD patients compared to healthy 

controls (p=0.006) (figure 5.8).  

 

Analysis of MHC isoforms showed MHC type I mRNA expression was reduced in COPD 

patients compared to healthy controls (p=0.01) (figure 5.9). No significant differences were 

found in MHC type IIA (p=0.54) and IIX (p=0.45) expression (figures 5.10 and 5.11). 

Phosphorylated 4EBP-1, measured by ELISA, was increased in COPD patients compared to 

healthy subjects (p=0.04) (figure 5.12). 
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Figure 5.5: IGF-1 vastus lateralis mRNA expression in COPD subjects vs. controls  

(Cross bars represent standard error of the mean - SEM).  

 

 

Figure 5.6: Atrogin-1 vastus lateralis mRNA expression in COPD subjects vs. controls  

(Cross bars represent standard error of the mean - SEM).  
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Figure 5.7: MuRF-1 vastus lateralis mRNA expression in COPD subjects vs. controls  

(Cross bars represent standard error of the mean - SEM).  

 

Figure 5.8: MyoD vastus lateralis mRNA expression in COPD subjects vs. controls  

(Cross bars represent standard error of the mean - SEM).  
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Figure 5.9: MHC I vastus lateralis mRNA expression in COPD subjects vs. controls  

(Cross bars represent standard error of the mean - SEM).  

 

 
Figure 5.10: MHC IIA vastus lateralis mRNA expression in COPD subjects vs. controls  

(Cross bars represent standard error of the mean - SEM).  
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Figure 5.11: MHC IIX vastus lateralis mRNA expression in COPD subjects vs. controls  

(Cross bars represent standard error of the mean - SEM).  

 

Figure 5.12: 4EBP-1 vastus lateralis protein expression in COPD subjects vs. controls  

(Cross bars represent standard error of the mean - SEM).  
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5.4 Discussion  

 
 
5.4.1 Summary of results 

 
 
Fosinopril did not have an effect on vastus lateralis atrophy/hypertrophy signalling or 

serum inflammatory markers in COPD patients selected for quadriceps weakness, although 

measurement of serum ACE activity confirmed both adherence and biological activity of 

the drug. This data does not support the use of ACE inhibitors as a therapy for muscle 

wasting in patients with COPD.    

 
 

5.4.2 Significance of the findings 

 
 
Despite evidence from animal models of the ability to prevent angiotensin II induced 

cachexia via IGF-1 overexpression and atrogene downregulation (Yoshida 2010), ACE-

inhibition was not shown to have any translational effect on the quadriceps in COPD 

patients.  In particular, the molecular data from the trial demonstrates that, at least over a 

3 month period, fosinopril did not alter atrophy signalling at a tissue level, despite a clear 

systemic effect on serum ACE activity. There is evidence to suggest this systemic effect 

would have inhibited tissue ACE (Erman 1991), however it is important to note that local 

tissue renin-angiotensin systems can generate angiotensin II, independent of ACE activity, 

through serine proteases such as cathepsins and chymase (Lorenz 2010). In particular, 

intracellular angiotensin II generation is mediated via these enzymes with cathepsin D 

utilised in place of renin for tissue conversion of angiotensinogen, and chymase rather 

than ACE catalysing the subsequent production of angiotensin II (Kumar 2008). This may 
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explain the lack of influence of ACE-inhibition on skeletal muscle observed in this trial and 

account for the potential benefits seen with angiotensin receptor blockade in other 

studies. Recent evidence has also highlighted the complexity of molecular targets 

mediating response to RAS modulation in skeletal muscle. In particular, preventing the 

activation of TGF-β using a losartan derivative to inhibit AT1 receptor activation has been 

recently shown to restore skeletal muscle regeneration in a congenital muscular dystrophy 

mouse model (Meinen 2012). This supports previous work identifying losartan in restoring 

muscle structure and function in a dystrophin deficient mouse model again through 

inhibiting the activation of TGF-β (Cohn 2007). Therefore, although ACE-inhibition did not 

influence vastus lateralis gene expression in this trial, the evidence in relation to 

modulation of TGF-β signalling using AT1 receptor blockade highlights the potential 

importance of this pathway over the IGF-1/atrogene axis in COPD. The relative influence of 

these key signalling targets has recently been investigated in a study by Burks et al, who 

found that while losartan improved skeletal muscle repair in response to injury via a 

inhibition of TGF-β in a sarcopenic mouse model, its ability to protect against loss of 

muscle mass in a mouse disuse atrophy model was mediated via modulation of the        

IGF-1/mTOR cascade (Burks 2011). This highlights the complexity of the 

atrophy/hypertrophy signalling in skeletal muscle, particularly in response to differing 

insults. The dominant influence of physical inactivity on the IGF-1 axis in the trial patients 

may well have confounded any effect from RAS blockade. 

 

In addition, recent work using RAS inhibition in an emphysema mouse model and in lung 

biopsies from COPD patients (Podowski 2012) has found that cigarette smoking induced 

alveolar emphysematous injury and airway epithelial hyperplasia were associated with 
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enhanced signalling of TGF-β. Losartan normalised oxidative stress markers, 

metalloprotease activation and elastin remodelling through TGF-β inhibition. These data 

support work by Raupach et al who found benefits in histological emphysema severity, 

lung compliance and exercise capacity following treatment with irbesartan in an 

emphysema mouse model (Raupach 2011). The use of ACE-inhibition rather than AT1 

receptor blockade may account for the absence of an effect on serum inflammatory 

markers as well as lung function parameters in the COPD patients in this trial.  

 

Skeletal muscle impairment in COPD involves both fibre atrophy and fibre shift away from 

an oxidative, fatigue resistant phenotype (Gosker 2007). When assessing MHC isoform 

expression in the vastus lateralis, a trend towards a reduction in MHC type I expression 

was observed in patients in the treatment arm. This supports the possibility of an effect of 

ACE-inhibition on the intramuscular environment with a potentially reduced skeletal 

muscle blood flow influencing muscle phenotype. However it is important to note that the 

observed trend may also represent a regression to the mean given the trend towards 

higher MHC type I mRNA expression in the treatment group at baseline. In addition, this 

trend goes against a previous small study of 16 patients with congestive cardiac failure 

which assessed the effects of 6 months treatment with enalapril (n=8) or losartan (n=8) on 

maximal cardiopulmonary exercise capacity and myosin heavy chain composition of the 

gastrocnemius (Vescovo 1998). They found an improvement in exercise capacity in both 

groups and a significant shift from MHC type IIa to MHC type I composition following 

treatment. In particular in this small sample size, the magnitude of MHC type I change 

correlated significantly with net peak V(O2) gain.   
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Interestingly, the D allele of the ACE (I/D) polymorphism which is associated with higher 

ACE activity, has been previously associated with greater quadriceps strength in COPD 

patients (Hopkinson 2004b). In this trial stratification by genotype did not reveal any 

differences in vastus lateralis gene expression; however patients homozygous for the 

insertion allele (II) did have a significant reduction in serum MCP-1 with treatment 

compared to placebo. As the trial was not prospectively designed to stratify patients by 

genotype, the numbers of homozygous (II) patients was small and this finding was not 

maintained when analysing patients by presence of a single I allele. Further work is 

therefore needed to establish if any true variation in response exists with genotype. In 

addition when stratifying by bradykinin receptor genotype, serum IGF-1 was significantly 

reduced following treatment in patients who did not exhibit the -9 allele. The absence of 

this allele is associated with lower BK(2)R receptor expression, and in patients with COPD 

has been associated with a reduced fat free mass and reduced quadriceps strength 

(Hopkinson 2006). It may be the case that these patients respond differently to ACE-

inhibition and further interventional studies prospectively designed to stratify by genotype 

are needed to investigate this.  

 
 
Vastus lateralis signalling in COPD patients vs. controls 

 
 
When considering the recent evidence comparing quadriceps atrophy/hypertrophy 

signalling in COPD subjects with healthy controls there is a suggestion of an equivocal role 

for IGF-1 dysregulation in the pathogenesis of skeletal muscle atrophy in COPD. Our sub-

study finding of a reduction in IGF-1 expression in COPD patients with quadriceps 

weakness compared to healthy subjects, is supported by data in patients hospitalised with 
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an acute exacerbation of COPD (n=14) vs. controls (Crul 2007). However, an elevation in 

IGF-1 expression has been observed in other COPD cohorts (Debigare 2008; Lewis 2012) 

suggesting that IGF-1 signalling may be highly dependent on patient phenotype and the 

context of sampling. A polypeptide repressor downstream of IGF-1/mTOR signalling, 

known as eukaryotic translation initiation factor 4E binding protein (4EBP-1) (see figure 

1.2), was also investigated in the sub-study. 4EBP-1 is inhibited by mTOR through 

phosphorylation so as to promote protein synthesis (Fingar 2002). We found that 

phosphorylated 4EBP-1 was significantly greater in COPD patients with quadriceps 

weakness compared to healthy controls, consistent with previous evidence (Doucet 2007). 

When considered in the context of reduced IGF-1 expression, this highlights the possibility 

of IGF-1 independent mechanisms acting to signal an increase in protein synthesis and also 

indicates an element of synthetic resistance in the quadriceps in COPD.  

 

Our finding of no difference in MuRF-1 and atrogin-1 expression in COPD patients with 

quadriceps weakness versus healthy controls also suggests that the role for these ubiquitin 

ligases in mediating skeletal muscle dysfunction in COPD may in fact be less pivotal than 

was previously thought. It has been shown that MuRF-1 and atrogin-1 signalling in 

response to rehabilitation can vary depending on COPD patient body composition with a 

reduced expression observed following rehabilitation in non-cachectic patients compared 

to an elevated expression in a cachectic group (Vogiatzis 2010). As our COPD population 

was already weak it may be the case that elevation of the atrogenes at this late stage of 

muscle atrophy was no longer necessary explaining the similarity in expression to controls. 

Interestingly, MyoD expression was found to be reduced in COPD patients with quadriceps 

weakness compared to controls highlighting that there may be an ongoing attenuated 
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response from myogenic satellite cells to muscle injury in these patients (i.e. a reduced 

ability for regeneration). In support of this, resistance training in COPD patients 

hospitalised for an acute exacerbation has been shown to be associated with increased 

MyoD expression and improved quadriceps force compared to usual care (Troosters 

2010b). MyoD may therefore represent an important future target for novel therapies 

including AT1 receptor blockade in COPD. 

 
 

5.4.3 Critique of the method 

 
 
A strength of this study was the inclusion of molecular outcomes derived from the vastus 

lateralis muscle biopsies and serum samples, in addition to the physiological outcomes 

discussed in the previous chapter. The number of patients studied was limited however 

due to some declining the muscle biopsy and others where the sample obtained was 

insufficient for q-PCR analysis. Despite this, an adequate number of paired samples were 

obtained for statistical power in the study findings.  

 

It is important to note that the mechanisms of intracellular angiotensin II generation, 

detailed above, would suggest that therapy using an AT1 receptor blocker may have 

enabled better testing of the effect of RAS modulation on skeletal muscle. In addition the 

molecular targets for this trial were based on the role of MuRF-1 and atrogin-1 atrophy 

signalling in the skeletal muscle dysfunction observed in COPD and the dysregulation of 

IGF-1/mTOR signalling in these patients. However it is increasingly clear from the literature 

that skeletal muscle impairment in COPD involves a number of signalling cascades which 

have an influence on the balance of protein synthesis and breakdown. Identifying the 
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targets likely to have a central role in muscle dysfunction and which can be effectively 

modulated remains a focus for future studies. Importantly, key factors including physical 

inactivity, nutritional status, underlying COPD phenotype, and the patients stage in the 

muscle wasting process (i.e. cachectic – end-stage vs. early wasting) may all have a more 

profound effect on the expression of these signalling targets than any one pharmacological 

intervention alone. The participants from this trial were weak and well advanced in the 

wasting process, thereby potentially limiting the response to a single intervention.  

 
 

5.4.4 Conclusion 

 
 
In summary, this double-blinded randomised controlled trial found that ACE-inhibition, in 

the form of fosinopril, did not reduce atrogene expression in a COPD population with 

quadriceps weakness. This study does not support a beneficial role for ACE-inhibitors in 

skeletal muscle atrophy/hypertrophy signalling in patients with COPD.  
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Chapter 6: General Discussion and 

Future Work 



 
173 

 
 

6.1 Quadriceps wasting and physical inactivity in mild COPD  

 
 
6.1.1 Implications and future work 

 
 
Previous studies investigating quadriceps mass and strength in COPD have reported 

skeletal muscle dysfunction as a feature of patients with end-stage disease, judged by their 

degree of airflow obstruction (Bernard 1998). However, the findings from this thesis that 

quadriceps wasting exists in COPD patients with mild, as well as more advanced, disease 

support recent retrospective data where quadriceps weakness was identified in 

approximately one third of COPD outpatients ranging across all stages of disease severity 

(Seymour 2010b). In addition, quadriceps endurance has been shown to be impaired in 

mild to moderate COPD patients compared to healthy subjects (Coronell 2004) and very 

recently a loss of vastus lateralis oxidative phenotype has been identified in the early 

stages of the disease (van den Borst 2012).  

 

The onset and progression of skeletal muscle loss in COPD patients requires further 

research in the form of large longitudinal studies and it is likely that the natural history of 

muscle dysfunction in these patients will be linked to the underlying aetiology, as well as 

COPD phenotype. A number of potential factors are thought to contribute to muscle 

dysfunction in these patients including genetic predisposition, malnutrition, systemic 

inflammation and in particular, physical inactivity. The findings in this thesis of a reduction 

in physical activity in COPD patients with mild disease compared to healthy age-matched 

controls and its association with a reduced quadriceps rectus femoris cross-sectional area 

and quadriceps strength highlight the potential influence of this factor early in the disease 

process.  The cause or effect aspect of this relationship remains to be determined however 
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the evidence suggests a disease spiral incorporating breathlessness, inactivity and muscle 

dysfunction (Figure 6.1) (Polkey 2011). Importantly, the association between reduced 

health status and muscle dysfunction shown in this thesis highlights the likely influence of 

this disease spiral on quality of life for these patients.   

 

 

 

Figure 6.1: The disease spiral in COPD  

adapted from (Polkey 2011) 

 

It may be the case that loss of muscle mass and reduced physical activity represent an 

accelerated ageing process in the muscle of COPD patients, as has been postulated in the 

lung through cigarette smoking and inflammation (Ito 2009). Many of the mechanisms 

related to sarcopenia including disuse atrophy, oxidative stress and modulation of the IGF-

1-PI3K/AKT pathway (Giovannini 2008), are thought to influence the muscle dysfunction 

observed in COPD patients. In addition to an underlying accelerated aging process in the 
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muscle, specific insults relating to COPD phenotype can further compromise muscle 

function in these patients over time. Patients with an exacerbator phenotype may have 

recurrent episodes of hypoxia, inflammation and immobilisation as part of an acute 

exacerbation of their COPD, which can lead to progressive stepwise deteriorations in 

muscle function. In this context, recent evidence has shown that early exercise 

intervention both as an outpatient after an acute exacerbation (Seymour 2010a) or whilst 

an inpatient (Troosters 2010b), results in improvements in quadriceps strength in this 

patient group. Another important phenotype are COPD patients who, during the course of 

their disease, develop a severe systemic inflammatory response leading to a cachexia 

syndrome with rapid loss of function (Steiner 2012). These patients often have a poor 

prognosis and, due to the severity of their condition, interventions such as exercise 

programs are often not possible.  

 

Therefore, the identification of patients with quadriceps wasting particularly in the early 

stages of COPD is paramount to enable early interventions to alter this disease spiral. In 

particular, this thesis has identified ultrasound of the rectus femoris as a potential non-

invasive, radiation-free tool to assess quadriceps size in COPD patients. Interestingly, a 

current randomised controlled trial of early rehabilitation in critical care is utilising 

ultrasound of the rectus femoris to detect response to functional electrical stimulation 

(Parry 2012). Further trials are needed in large COPD populations to establish the ability of 

ultrasound to detect peripheral muscle response to interventions. 

 

This thesis has also highlighted a potential use for multiple frequency bio-electrical 

impedance analysis as another non-invasive technique that could be used to identify GOLD 
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stage I and II patients with quadriceps weakness in the community. This measurement 

provides an impedance ratio (Z200/Z5), as a marker of extracellular to total body water and 

cell membrane integrity, and this ratio is associated with reduced quadriceps strength and 

size in COPD patients. Interestingly, as neurohormonal activation and actions of the renin-

angiotensin system (RAS) lead to sodium and water retention, there is likely to be an 

influence on body water distribution in COPD. This, in combination with the effect of RAS 

on body composition through muscle atrophy, may explain the relationship between the 

impedance ratio and quadriceps strength.  In subjects with heart failure, who have 

reduced muscle mass and a reduced level of physical activity similar to COPD, the 

impedance ratio has been shown to be associated with handgrip strength and New York 

Heart Association (NYHA) functional class severity (Castillo Martinez 2007). The impedance 

ratio may provide a valuable marker in the clinical setting to stratify weakness in COPD 

patients. Further work however is needed with regards to analysing its use in a 

longitudinal setting and in response to interventions such as pulmonary rehabilitation. 

 

The role of pulmonary rehabilitation as an evidence-based treatment for improving 

exercise tolerance in COPD patients is well-documented (Lacasse 2006; Troosters 2010c) 

however the relationship between daily physical activity and exercise capacity has been 

shown to be moderate to weak in COPD patients (Zwerink 2013). This is in keeping with 

baseline cross-sectional data from this thesis showing a similar degree of association 

between incremental shuttle walk distance and daily step count in COPD patients (r2=0.25, 

p<0.0001). Importantly, recent evidence assessing the short and long term effects of a 7-

week pulmonary rehabilitation program has found that increases in exercise capacity do 

not translate to increases in daily physical activity (Egan 2012). These findings highlight 
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that effecting behavioural change with regards to physical activity remains a key challenge 

(Probst 2011) and this has particular relevance in early disease as moderate to high levels 

of physical activity have been associated with reduced lung function decline and risk of 

developing COPD in smokers (Garcia-Aymerich 2007). An increased focus on interventions 

that combine the targeting of physical inactivity with muscle dysfunction in mild disease 

remains a central aim for future studies in this research field.   
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6.2  Renin-angiotensin system blockade and muscle dysfunction in COPD 

 
 
6.2.1 Implications and future work 

 
 
Although pulmonary rehabilitation remains the mainstay of therapy for muscle 

dysfunction in COPD, inherent difficulties with accessibility and availability of these 

exercise programs limit their uptake and adherence for many patients. Therefore there 

may be a role for an ‘exercise pill’ through the development of novel pharmacological 

therapies targeting the skeletal muscles in COPD (Goodyear 2008). In particular, work by 

Narkar et al has identified that the use of a PPAR beta/delta agonist with exercise 

synergistically increased oxidative myofibres and running endurance in adult mice (Narkar 

2008). In addition, the authors investigated the energy sensor AMP-activated protein 

kinase (AMPK) known to be activated during training and found that 4 weeks treatment 

with the AMPK agonist - AICAR, improved running endurance by 44% in sedentary mice. 

Importantly, elevated phosphorylated AMPK levels have recently been associated with an 

increase in non-volitional quadriceps endurance in COPD patients (Natanek 2012) and 

therefore the AICAR data highlights the potential role of pharmacotherapy both in the 

augmentation of rehabilitation programs or in some cases as an alternative treatment.  

 

When assessing ACE-inhibition as one such therapy, this thesis did not find fosinopril to 

improve skeletal muscle dysfunction in COPD patients with quadriceps weakness. As 

previously discussed, a number of factors may have influenced the outcome of the trial 

and future studies should include a wider cohort of COPD patients with muscle 

dysfunction, test other therapies for RAS blockade and prospectively stratify patients by 

ACE genotype. In particular, there is also evidence to suggest that RAS blockade may have 
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benefit during exercise therapy in augmenting the effects on exercise capacity. Bradykinin 

is synthesised in skeletal muscle during exercise (Langberg 2002) and therefore may exert 

an enhanced effect during training. The potential adjunctive effect of ACE-inhibition with 

exercise was highlighted in a recent study in which old female rats were treated with 

exercise training, perindopril or both interventions together over a 6 month period. The 

study found that the combination treatment increased type I fibre percentage in the 

gastrocnemius muscle when compared with exercise training alone (Guo 2010).  An 

increase in capillary density in the soleus and gastrocnemius muscles was also shown with 

the addition of ACE-inhibition to exercise training, suggesting that perindopril may help 

promote the adaptive changes in response to exercise. Furthermore, a recent study has 

shown that angiotensin II induced oxidative stress can inhibit mitochondrial respiration in 

skeletal muscle and limit exercise capacity suggesting a potential mechanism for the 

effects of ACE-inhibition with exercise (Inoue 2012). To further explore this hypothesis at a 

translational level, an MRC funded trial is currently underway in COPD patients 

investigating the effect of enalapril in improving exercise capacity during a pulmonary 

rehabilitation program, using peak workload from cycle ergometry as the primary outcome 

measure.  

 

Recent work has also postulated RAS blockade as a potential strategy to slow the ageing 

process, via its protective effects on mitochondria (de Cavanagh 2011). Mitochondria are a 

key cellular source of ROS as well as being a target for ROS-dependent injury. Angiotensin 

II can depress mitochondrial energy metabolism through the stimulation of free radicals 

and can downregulate PPAR’s which have been identified in models of calorific restriction 

to have a role in delaying the ageing process, through regulation of mitochondria. The 
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actions of RAS blockade in preventing oxidative stress and activating PPAR’s may therefore 

play a role in promoting anti-ageing effects in skeletal muscle mitochondria. Of note, 

telmisartan enhances skeletal muscle endurance through activation of the PPAR delta 

pathway (Feng 2011) and has recently been proposed as a metabolic modulator in the 

context of performance enhancing drugs in sport (Sanchis-Gomar 2012).  

 

Another potentially important target for future investigation is the interaction of sirtuins 

with the renin-angiotensin system. Sirtuins are protein deacetylases implicated in the 

regulation of metabolism, stress responses and aging. Evidence for this link comes from 

the observed prolongation of lifespan in mice following targeted disruption of the 

angiotensin II type 1 receptor gene (Benigni 2009). This was found to be associated with an 

upregulation of renal sirtuin 3 and reduction in oxidative injury when compared to wild-

type mice. Furthermore the investigators found that in cultured tubular epithelial cells, 

angiotensin II downregulated sirtuin 3 mRNA, with AT1 antagonists shown to inhibit this 

effect. Resevatrol, a polyphenol found in red wine, has been shown to downregulate AT1 

receptor expression in vascular smooth muscle cells through activation of sirtuin 1 

(Miyazaki 2008) highlighting a potential longevity effect mediated thorough RAS blockade. 

Furthermore angiotensin II has also been shown to induce muscle protein degradation via 

NF-κB (Russell 2006). Increased NF-κB signalling is thought to contribute to accelerated 

ageing and importantly, sirtuin 6 has been shown to inhibit this effect through histone (H3 

lysine 9) deacetylation (Kawahara 2009; Natoli 2009). The role of sirtuin and RAS 

interaction in skeletal muscle dysfunction in COPD therefore holds potential as a key area 

of research interest in the context of accelerated aging in this patient group. 
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One other potential area of future research relates to the emergence of non-coding RNA 

molecules – microRNAs.  The modulation of TGF-β  by RAS blockade highlights this 

potential link given the recently identified interaction between TGF-β signalling and 

microRNAs in the lung tissue of patients with COPD (Ezzie 2012). These microRNAs reduce 

mRNA half-life and translation and may therefore influence both pulmonary and 

extrapulmonary manifestations of COPD. Recent evidence has  identified microRNA-1 

expression to be associated with smoking history, FEV1, fat-free mass index and 6-minute 

walk distance in COPD patients (Lewis 2012). Further research is required to understand 

the role of these microRNA’s and their possible interaction with RAS in the pathogenesis of 

the disease. 
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6.3  RAS blockade and cardiovascular comorbidity in COPD 

 
 
6.3.1 Future directions  

 
 
RAS blockade may have a role in other aspects of the treatment of COPD. In particular, 

cardiovascular disease is now recognised as a key co-morbidity in these patients with a 

significant impact on mortality (Sin 2006). Epidemiological evidence suggests that more 

than 40% of COPD patients have concomitant cardiac disease - chronic heart failure being 

the most common (Chatila 2008). The increased risk of ischaemic heart disease (Soriano 

2005), subclinical left ventricular dysfunction (Flu 2010), and elevated right ventricular 

pressures (Sabit 2010) in COPD have led to the suggestion that a more aggressive 

approach to the cardiovascular assessment and treatment of these patients may be 

justified (Fabbri 2011; Nussbaumer-Ochsner 2011; Rabe 2011). The importance of cardiac 

involvement has recently been highlighted by the identification of troponin T (Hoiseth 

2011) and N-terminal pro-B-type natriuretic peptide (NT-BNP) (Chang 2011) as biomarkers 

in predicting risk of death for patients hospitalised with an exacerbation of COPD. In 

addition, low grade systemic inflammation in the form of elevated CRP has been 

associated with an increased risk of cardiac ischaemia based on electrocardiogram (ECG) 

scoring in moderate-severe COPD (Sin 2003). In this context, the potential mortality 

benefit of ACE-inhibition has been assessed in a large retrospective study in elderly 

patients hospitalised for a COPD exacerbation (Mortensen 2009). The study identified that 

ACE-inhibitor or ATII receptor blocker use, when controlling for demographics, co-

morbidities and other medications, was significantly associated with a decreased 90-day 

mortality following their COPD hospital presentation (odds ratio 0.55, 95% confidence 

interval 0.45-0.66). This data supports previous work by Mancini et al, who performed a 
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nested case-control study incorporating 946 COPD patients divided into two retrospective 

cohorts based on cardiac risk profile. They found that a combination of statin and ACE-

inhibitor or angiotensin receptor blocker was associated with a reduction in COPD 

hospitalisation and mortality in both high and low cardiovascular risk groups (Mancini 

2006). A greater understanding of the potential dual cardiopulmonary actions behind this 

effect will help to evaluate the role of these interventions in COPD disease modification.  

 

The depth of the field of ACE-inhibition and its potential benefits in the COPD population 

has also been highlighted by a recent meta-analysis published in the British Medical 

Journal on the potential protective role of ACE-inhibitors in the context of pneumonia 

(Caldeira 2012). The analysis found that treatment with ACE-inhibitors was associated with 

a one-third reduction in risk of pneumonia compared with control treatment and 

angiotensin receptor blockers. In addition, ACE-inhibitors were found to reduce the risk of 

pneumonia-related mortality although the evidence was less robust.  Nevertheless, this 

highlights the intriguing possibility of a protective effect from the enhanced cough reflex in 

patients on ACE-inhibitors. Although the populations studied were only those with high 

cardiovascular risk requiring an ACE-inhibitor, this represents an important area for future 

randomised controlled trials of ACE-inhibition in patients with COPD.  

 

Overall, further work is needed to establish the impact of RAS blockade as a novel 

treatment strategy in COPD and given the variation in phenotypes, it is likely that only 

large randomised clinical trials, similar to those seen in cardiac populations, will enable us 

to elucidate the true therapeutic and survival benefits of this intervention. 



 
184 

 
 

References 

 
 
Agusti, A., M. Morla, J. Sauleda, C. Saus and X. Busquets (2004). "NF-kappaB activation and 

iNOS upregulation in skeletal muscle of patients with COPD and low body weight." 

Thorax 59(6): 483-487. 

American Thoracic Society/European Respiratory Society (1999). "Skeletal muscle dysfunction 

in chronic obstructive pulmonary disease. A statement of the American Thoracic Society 

and European Respiratory Society." Am J Respir Crit Care Med 159(4 Pt 2): S1-40. 

Andreas, S., S. D. Anker, P. D. Scanlon and V. K. Somers (2005). "Neurohumoral activation as a 

link to systemic manifestations of chronic lung disease." Chest 128(5): 3618-3624. 

Andreas, S., C. Herrmann-Lingen, T. Raupach, L. Luthje, J. A. Fabricius, N. Hruska, W. Korber, B. 

Buchner, C. P. Criee, G. Hasenfuss and P. Calverley (2006). "Angiotensin II blockers in 

obstructive pulmonary disease: a randomised controlled trial." Eur Respir J 27(5): 972-

979. 

Arany, Z., S. Y. Foo, Y. Ma, J. L. Ruas, A. Bommi-Reddy, G. Girnun, M. Cooper, D. Laznik, J. 

Chinsomboon, S. M. Rangwala, K. H. Baek, A. Rosenzweig and B. M. Spiegelman (2008). 

"HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator 

PGC-1alpha." Nature 451(7181): 1008-1012. 

Baarends, E. M., A. M. Schols, R. Mostert and E. F. Wouters (1997). "Peak exercise response in 

relation to tissue depletion in patients with chronic obstructive pulmonary disease." Eur 

Respir J 10(12): 2807-2813. 

Baker, E. H. and D. Bell (2009). "Blood glucose: of emerging importance in COPD 

exacerbations." Thorax 64(10): 830-832. 

Barnes, P. J. and B. R. Celli (2009). "Systemic manifestations and comorbidities of COPD." Eur 

Respir J 33(5): 1165-1185. 



 
185 

 
 

Barreiro, E., A. M. W. J. Schols, M. I. Polkey, J. B. Galdiz, H. R. Gosker, E. B. Swallow, C. Coronell, 

J. Gea and E. i. C. p. on behalf of the (2008). "Cytokine profile in quadriceps muscles of 

patients with severe COPD." Thorax 63(2): 100-107. 

Barreiro, E., R. Rabinovich, J. Marin-Corral, J. A. Barbera, J. Gea and J. Roca (2009). "Chronic 

endurance exercise induces quadriceps nitrosative stress in patients with severe COPD." 

Thorax 64(1): 13-19. 

Barreiro, E., V. I. Peinado, J. B. Galdiz, E. Ferrer, J. Marin-Corral, F. Sanchez, J. Gea and J. A. 

Barbera (2010). "Cigarette smoke-induced oxidative stress: A role in chronic obstructive 

pulmonary disease skeletal muscle dysfunction." Am J Respir Crit Care Med 182(4): 477-

488. 

Beedie, C. J. and A. J. Foad (2009). "The placebo effect in sports performance: a brief review." 

Sports Med 39(4): 313-329. 

Benigni, A., D. Corna, C. Zoja, A. Sonzogni, R. Latini, M. Salio, S. Conti, D. Rottoli, L. Longaretti, 

P. Cassis, M. Morigi, T. M. Coffman and G. Remuzzi (2009). "Disruption of the Ang II type 

1 receptor promotes longevity in mice." J Clin Invest 119(3): 524-530. 

Benigni, A., P. Cassis and G. Remuzzi (2010). "Angiotensin II revisited: new roles in 

inflammation, immunology and aging." EMBO Mol Med 2(7): 247-257. 

Bergstrom, J. (1975). "Percutaneous needle biopsy of skeletal muscle in physiological and 

clinical research." Scand J Clin Lab Invest 35(7): 609-616. 

Bernard, S., P. LeBlanc, F. Whittom, G. Carrier, J. Jobin, R. Belleau and F. Maltais (1998). 

"Peripheral muscle weakness in patients with chronic obstructive pulmonary disease." 

Am J Respir Crit Care Med 158(2): 629-634. 

 

 



 
186 

 
 

Bolton, C. E., A. A. Ionescu, K. M. Shiels, R. J. Pettit, P. H. Edwards, M. D. Stone, L. S. Nixon, W. 

D. Evans, T. L. Griffiths and D. J. Shale (2004). "Associated loss of fat-free mass and bone 

mineral density in chronic obstructive pulmonary disease." Am J Respir Crit Care Med 

170(12): 1286-1293. 

Bourjeily-Habr, G., C. L. Rochester, F. Palermo, P. Snyder and V. Mohsenin (2002). 

"Randomised controlled trial of transcutaneous electrical muscle stimulation of the 

lower extremities in patients with chronic obstructive pulmonary disease." Thorax 

57(12): 1045-1049. 

Boushy, S. F., P. K. Adhikari, A. Sakamoto and B. M. Lewis (1964). "Factors Affecting Prognosis 

in Emphysema." Dis Chest 45: 402-411. 

Braun, T. and M. Gautel (2011). "Transcriptional mechanisms regulating skeletal muscle 

differentiation, growth and homeostasis." Nat Rev Mol Cell Biol 12(6): 349-361. 

Brice, E. A., W. Friedlander, E. D. Bateman and R. E. Kirsch (1995). "Serum angiotensin-

converting enzyme activity, concentration, and specific activity in granulomatous 

interstitial lung disease, tuberculosis, and COPD." Chest 107(3): 706-710. 

Briscoe, W. A. and E. S. Nash (1965). "The Slow Space in Chronic Obstructive Pulmonary 

Diseases." Ann N Y Acad Sci 121: 706-722. 

Brown, A. J. and J. E. Nally (2001). "Hydrocortisone abolishes the angiotensin II-mediated 

potentiation of endothelin-1 in bovine bronchi." Clin Sci (Lond) 100(1): 19-23. 

Brown, N. J., C. Blais, Jr., S. K. Gandhi and A. Adam (1998). "ACE insertion/deletion genotype 

affects bradykinin metabolism." J Cardiovasc Pharmacol 32(3): 373-377. 

Bullock, G. R., I. Steyaert, G. Bilbe, R. M. Carey, J. Kips, B. De Paepe, R. Pauwels, M. Praet, H. M. 

Siragy and M. de Gasparo (2001). "Distribution of type-1 and type-2 angiotensin 

receptors in the normal human lung and in lungs from patients with chronic obstructive 

pulmonary disease." Histochem Cell Biol 115(2): 117-124. 



 
187 

 
 

Burdet, L., B. de Muralt, Y. Schutz, C. Pichard and J. W. Fitting (1997). "Administration of 

growth hormone to underweight patients with chronic obstructive pulmonary disease. A 

prospective, randomized, controlled study." Am J Respir Crit Care Med 156(6): 1800-

1806. 

Burks, T. N., E. Andres-Mateos, R. Marx, R. Mejias, C. Van Erp, J. L. Simmers, J. D. Walston, C. 

W. Ward and R. D. Cohn (2011). "Losartan restores skeletal muscle remodeling and 

protects against disuse atrophy in sarcopenia." Sci Transl Med 3(82): 82ra37. 

Busquets, X., N. G. MacFarlane, D. Heine-Suner, M. Morla, L. Torres-Juan, A. Iglesias, J. Llado, J. 

Sauleda and A. G. Agusti (2007). "Angiotensin-converting-enzyme gene polymorphisms, 

smoking and chronic obstructive pulmonary disease." Int J Chron Obstruct Pulmon Dis 

2(3): 329-334. 

Cabello-Verrugio, C., G. Cordova and J. D. Salas (2012). "Angiotensin II: Role in Skeletal Muscle 

Atrophy." Curr Protein Pept Sci 13(6): 560-569. 

Cai, D., J. D. Frantz, N. E. Tawa, Jr., P. A. Melendez, B. C. Oh, H. G. Lidov, P. O. Hasselgren, W. R. 

Frontera, J. Lee, D. J. Glass and S. E. Shoelson (2004). "IKKbeta/NF-kappaB activation 

causes severe muscle wasting in mice." Cell 119(2): 285-298. 

Caldeira, D., J. Alarcao, A. Vaz-Carneiro and J. Costa (2012). "Risk of pneumonia associated with 

use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: 

systematic review and meta-analysis." BMJ 345: e4260. 

Cano, N. J. M., C. Pichard, H. Roth, I. Court-Fortune, L. Cynober, M. Gerard-Boncompain, A. 

Cuvelier, J.-P. Laaban, J.-C. Melchior, J.-C. Raphael and C. M. Pison (2004). "C-Reactive 

Protein and Body Mass Index Predict Outcome in End-Stage Respiratory Failure." Chest 

126(2): 540-546. 



 
188 

 
 

Carter, C. S., G. Onder, S. B. Kritchevsky and M. Pahor (2005). "Angiotensin-converting enzyme 

inhibition intervention in elderly persons: effects on body composition and physical 

performance." J Gerontol A Biol Sci Med Sci 60(11): 1437-1446. 

Casaburi, R. (2001). "Skeletal muscle dysfunction in chronic obstructive pulmonary disease." 

Med Sci Sports Exerc 33(7 Suppl): S662-670. 

Casaburi, R., S. Bhasin, L. Cosentino, J. Porszasz, A. Somfay, M. I. Lewis, M. Fournier and T. W. 

Storer (2004). "Effects of Testosterone and Resistance Training in Men with Chronic 

Obstructive Pulmonary Disease." Am. J. Respir. Crit. Care Med. 170(8): 870-878. 

Casaburi, R. (2011). "Activity promotion: a paradigm shift for chronic obstructive pulmonary 

disease therapeutics." Proc Am Thorac Soc 8(4): 334-337. 

Castillo Martinez, L., E. Colin Ramirez, A. Orea Tejeda, E. Asensio Lafuente, L. P. Bernal Rosales, 

V. Rebollar Gonzalez, R. Narvaez David and J. Dorantes Garcia (2007). "Bioelectrical 

impedance and strength measurements in patients with heart failure: comparison with 

functional class." Nutrition 23(5): 412-418. 

Celli, B. R., W. MacNee, A. Agusti, A. Anzueto, B. Berg, A. S. Buist, P. M. A. Calverley, N. 

Chavannes, T. Dillard, B. Fahy, A. Fein, J. Heffner, S. Lareau, P. Meek, F. Martinez, W. 

McNicholas, J. Muris, E. Austegard, R. Pauwels, S. Rennard, A. Rossi, N. Siafakas, B. Tiep, 

J. Vestbo, E. Wouters and R. ZuWallack (2004a). "Standards for the diagnosis and 

treatment of patients with COPD: a summary of the ATS/ERS position paper." Eur Respir 

J 23(6): 932-946. 

Celli, B. R., C. G. Cote, J. M. Marin, C. Casanova, M. Montes de Oca, R. A. Mendez, V. Pinto Plata 

and H. J. Cabral (2004b). "The Body-Mass Index, Airflow Obstruction, Dyspnea, and 

Exercise Capacity Index in Chronic Obstructive Pulmonary Disease." N Engl J Med 

350(10): 1005-1012. 



 
189 

 
 

Cesari, M., S. B. Kritchevsky, H. H. Atkinson, B. W. Penninx, M. Di Bari, R. P. Tracy and M. Pahor 

(2009). "Angiotensin-converting enzyme inhibition and novel cardiovascular risk 

biomarkers: results from the Trial of Angiotensin Converting Enzyme Inhibition and 

Novel Cardiovascular Risk Factors (TRAIN) study." Am Heart J 157(2): 334 e331-338. 

Cesari, M., C. Pedone, R. A. Incalzi and M. Pahor (2010). "ACE-inhibition and physical function: 

results from the Trial of Angiotensin-Converting Enzyme Inhibition and Novel 

Cardiovascular Risk Factors (TRAIN) study." J Am Med Dir Assoc 11(1): 26-32. 

Chailleux, E., J.-P. Laaban and D. Veale (2003). "Prognostic Value of Nutritional Depletion in 

Patients With COPD Treated by Long-term Oxygen Therapy: Data From the ANTADIR 

Observatory." Chest 123(5): 1460-1466. 

Chang, C. L., S. C. Robinson, G. D. Mills, G. D. Sullivan, N. C. Karalus, J. D. McLachlan and R. J. 

Hancox (2011). "Biochemical markers of cardiac dysfunction predict mortality in acute 

exacerbations of COPD." Thorax 66(9): 764-768. 

Chao, J., P. Donham, N. van Rooijen, J. G. Wood and N. C. Gonzalez (2011). "Monocyte 

chemoattractant protein-1 released from alveolar macrophages mediates the systemic 

inflammation of acute alveolar hypoxia." Am J Respir Cell Mol Biol 45(1): 53-61. 

Chatila, W. M., B. M. Thomashow, O. A. Minai, G. J. Criner and B. J. Make (2008). 

"Comorbidities in chronic obstructive pulmonary disease." Proc Am Thorac Soc 5(4): 

549-555. 

Cohn, R. D., C. van Erp, J. P. Habashi, A. A. Soleimani, E. C. Klein, M. T. Lisi, M. Gamradt, C. M. 

ap Rhys, T. M. Holm, B. L. Loeys, F. Ramirez, D. P. Judge, C. W. Ward and H. C. Dietz 

(2007). "Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of 

muscle regeneration in multiple myopathic states." Nat Med 13(2): 204-210. 



 
190 

 
 

Coronell, C., M. Orozco-Levi, R. Mendez, A. Ramirez-Sarmiento, J. B. Galdiz and J. Gea (2004). 

"Relevance of assessing quadriceps endurance in patients with COPD." Eur Respir J 

24(1): 129-136. 

Couillard, A. and C. Prefaut (2005). "From muscle disuse to myopathy in COPD: potential 

contribution of oxidative stress." Eur Respir J 26(4): 703-719. 

Cozzoli, A., B. Nico, V. T. Sblendorio, R. F. Capogrosso, M. M. Dinardo, V. Longo, S. Gagliardi, M. 

Montagnani and A. De Luca (2011). "Enalapril treatment discloses an early role of 

angiotensin II in inflammation- and oxidative stress-related muscle damage in dystrophic 

mdx mice." Pharmacol Res 64(5): 482-492. 

Creutzberg, E. C., E. F. M. Wouters, R. Mostert, C. A. P. M. Weling-Scheepers and A. M. W. J. 

Schols (2003a). "Efficacy of nutritional supplementation therapy in depleted patients 

with chronic obstructive pulmonary disease." Nutrition 19(2): 120-127. 

Creutzberg, E. C., E. F. M. Wouters, R. Mostert, R. J. Pluymers and A. M. W. J. Schols (2003b). 

"A Role for Anabolic Steroids in the Rehabilitation of Patients With COPD?: A Double-

Blind, Placebo-Controlled, Randomized Trial." Chest 124(5): 1733-1742. 

Cross, D. A., D. R. Alessi, P. Cohen, M. Andjelkovich and B. A. Hemmings (1995). "Inhibition of 

glycogen synthase kinase-3 by insulin mediated by protein kinase B." Nature 378(6559): 

785-789. 

Crul, T., M. A. Spruit, G. Gayan-Ramirez, R. Quarck, R. Gosselink, T. Troosters, F. Pitta and M. 

Decramer (2007). "Markers of inflammation and disuse in vastus lateralis of chronic 

obstructive pulmonary disease patients." Eur J Clin Invest 37(11): 897-904. 

Csibi, A., D. Communi, N. Muller and S. P. Bottari (2010). "Angiotensin II inhibits insulin-

stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent 

mechanisms." PLoS One 5(4): e10070. 



 
191 

 
 

de Bruin, P. F., J. Ueki, A. Watson and N. B. Pride (1997). "Size and strength of the respiratory 

and quadriceps muscles in patients with chronic asthma." Eur Respir J 10(1): 59-64. 

de Cavanagh, E. M., F. Inserra and L. Ferder (2011). "Angiotensin II blockade: a strategy to slow 

ageing by protecting mitochondria?" Cardiovasc Res 89(1): 31-40. 

de Oca, M. M., R. J. Halbert, M. V. Lopez, R. Perez-Padilla, C. Talamo, D. Moreno, A. Muino, J. R. 

Jardim, G. Valdivia, J. Pertuze and A. M. Menezes (2012). "The chronic bronchitis 

phenotype in subjects with and without COPD: the PLATINO study." Eur Respir J 40(1): 

28-36. 

Deacon, S. J., E. E. Vincent, P. L. Greenhaff, J. Fox, M. C. Steiner, S. J. Singh and M. D. Morgan 

(2008). "Randomized Controlled Trial of Dietary Creatine as an Adjunct Therapy to 

Physical Training in Chronic Obstructive Pulmonary Disease." Am. J. Respir. Crit. Care 

Med. 178(3): 233-239. 

Debigare, R., F. Maltais, C. H. Cote, A. Michaud, M. A. Caron, M. Mofarrahi, P. Leblanc and S. N. 

Hussain (2008). "Profiling of mRNA expression in quadriceps of patients with COPD and 

muscle wasting." COPD 5(2): 75-84. 

Debigare, R., C. H. Cote and F. Maltais (2010). "Ubiquitination and proteolysis in limb and 

respiratory muscles of patients with chronic obstructive pulmonary disease." Proc Am 

Thorac Soc 7(1): 84-90. 

Decramer, M., V. de Bock and R. Dom (1996). "Functional and histologic picture of steroid-

induced myopathy in Chronic Obstructive Pulmonary Disease." Am J Respir Crit Care 

Med 153: 1958-1964. 

Decramer, M., R. Gosselink, T. Troosters, M. Verschueren and G. Evers (1997). "Muscle 

weakness is related to utilization of health care resources in COPD patients." Eur Respir J 

10(2): 417-423. 



 
192 

 
 

Di Bari, M., L. V. van de Poll-Franse, G. Onder, S. B. Kritchevsky, A. Newman, T. B. Harris, J. D. 

Williamson, N. Marchionni and M. Pahor (2004). "Antihypertensive medications and 

differences in muscle mass in older persons: the Health, Aging and Body Composition 

Study." J Am Geriatr Soc 52(6): 961-966. 

Di Francia, M., D. Barbier, J. L. Mege and J. Orehek (1994). "Tumor necrosis factor-alpha levels 

and weight loss in chronic obstructive pulmonary disease." Am J Respir Crit Care Med 

150(5 Pt 1): 1453-1455. 

Di Marco, F., M. Guazzi, M. Vicenzi, P. Santus, M. Cazzola, M. Pappalettera, P. Castellotti and S. 

Centanni (2010). "Effect of enalapril on exercise cardiopulmonary performance in 

chronic obstructive pulmonary disease: A pilot study." Pulm Pharmacol Ther 23(3): 159-

164. 

Diamond-Stanic, M. K. and E. J. Henriksen (2010). "Direct inhibition by angiotensin II of insulin-

dependent glucose transport activity in mammalian skeletal muscle involves a ROS-

dependent mechanism." Arch Physiol Biochem 116(2): 88-95. 

Dodd, J. W., L. Hogg, J. Nolan, H. Jefford, A. Grant, V. M. Lord, C. Falzon, R. Garrod, C. Lee, M. I. 

Polkey, P. W. Jones, W. D. Man and N. S. Hopkinson (2011). "The COPD assessment test 

(CAT): response to pulmonary rehabilitation. A multicentre, prospective study." Thorax 

66(5): 425-429. 

Doucet, M., A. P. Russell, B. Leger, R. Debigare, D. R. Joanisse, M. A. Caron, P. LeBlanc and F. 

Maltais (2007). "Muscle atrophy and hypertrophy signaling in patients with chronic 

obstructive pulmonary disease." Am J Respir Crit Care Med 176(3): 261-269. 

Doucet, M., A. Dube, D. R. Joanisse, R. Debigare, A. Michaud, M. E. Pare, R. Vaillancourt, E. 

Frechette and F. Maltais (2010). "Atrophy and hypertrophy signalling of the quadriceps 

and diaphragm in COPD." Thorax 65(11): 963-970. 



 
193 

 
 

Duka, I., S. Shenouda, C. Johns, E. Kintsurashvili, I. Gavras and H. Gavras (2001). "Role of the B2 

Receptor of Bradykinin in Insulin Sensitivity." Hypertension 38(6): 1355-1360. 

Edwards, R. H., A. Young, G. P. Hosking and D. A. Jones (1977). "Human skeletal muscle 

function: description of tests and normal values." Clin Sci Mol Med 52(3): 283-290. 

Egan, C., B. M. Deering, C. Blake, B. M. Fullen, N. M. McCormack, M. A. Spruit and R. W. 

Costello (2012). "Short term and long term effects of pulmonary rehabilitation on 

physical activity in COPD." Respir Med 106(12): 1671-1679. 

Ellis, P. D., C. W. Smith and P. Kemp (2004). "Regulated tissue-specific alternative splicing of 

enhanced green fluorescent protein transgenes conferred by alpha-tropomyosin 

regulatory elements in transgenic mice." J Biol Chem 279(35): 36660-36669. 

Engelen, M. P., A. M. Schols, W. C. Baken, G. J. Wesseling and E. F. Wouters (1994). "Nutritional 

depletion in relation to respiratory and peripheral skeletal muscle function in out-

patients with COPD." Eur Respir J 7(10): 1793-1797. 

Erman, A., J. Winkler, B. Chen-Gal, M. Rabinov, A. Zelykovski, S. Tadjer, J. Shmueli, E. Levi, A. 

Akbary and J. B. Rosenfeld (1991). "Inhibition of angiotensin converting enzyme by 

ramipril in serum and tissue of man." J Hypertens 9(11): 1057-1062. 

Ezzie, M. E., M. Crawford, J. H. Cho, R. Orellana, S. Zhang, R. Gelinas, K. Batte, L. Yu, G. Nuovo, 

D. Galas, P. Diaz, K. Wang and S. P. Nana-Sinkam (2012). "Gene expression networks in 

COPD: microRNA and mRNA regulation." Thorax 67(2): 122-131. 

Fabbri, L. M., B. Beghe and A. Agusti (2011). "Cardiovascular mechanisms of death in severe 

COPD exacerbation: time to think and act beyond guidelines." Thorax 66(9): 745-747. 

Feng, X., Z. Luo, L. Ma, S. Ma, D. Yang, Z. Zhao, Z. Yan, H. He, T. Cao, D. Liu and Z. Zhu (2011). 

"Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal 

muscle through activation of the PPAR-delta/AMPK pathway." J Cell Mol Med 15(7): 

1572-1581. 



 
194 

 
 

Ferrari, R. (2009). "Cardiovascular protection by angiotensin-converting enzyme inhibition." 

European Heart Journal 11(Supplement (E)): E1-E3. 

Ferreira, I. M., D. Brooks, Y. Lacasse, R. S. Goldstein and J. White (2005). "Nutritional 

supplementation for stable chronic obstructive pulmonary disease." Cochrane Database 

Syst Rev(2): CD000998. 

Fingar, D. C., S. Salama, C. Tsou, E. Harlow and J. Blenis (2002). "Mammalian cell size is 

controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E." Genes Dev 

16(12): 1472-1487. 

Flu, W. J., Y. R. van Gestel, J. P. van Kuijk, S. E. Hoeks, R. Kuiper, H. J. Verhagen, J. J. Bax, D. D. 

Sin and D. Poldermans (2010). "Co-existence of COPD and left ventricular dysfunction in 

vascular surgery patients." Respir Med 104(5): 690-696. 

Fowler, J. and R. Godlee (1898). "Diseases of the Lungs." London, Longmans, Green and Co. 

Frisbee, J. C., D. S. Weber and J. H. Lombard (1999). "Chronic captopril administration 

decreases vasodilator responses in skeletal muscle arterioles." Am J Hypertens 12(7): 

705-715. 

Gan, W. Q., S. F. P. Man, A. Senthilselvan and D. D. Sin (2004). "Association between chronic 

obstructive pulmonary disease and systemic inflammation: a systematic review and a 

meta-analysis." Thorax 59(7): 574-580. 

Garcia-Aymerich, J., P. Lange, M. Benet, P. Schnohr and J. M. Anto (2007). "Regular physical 

activity modifies smoking-related lung function decline and reduces risk of chronic 

obstructive pulmonary disease: a population-based cohort study." Am J Respir Crit Care 

Med 175(5): 458-463. 

 

 



 
195 

 
 

Garcia-Rio, F., V. Lores, O. Mediano, B. Rojo, A. Hernanz, E. Lopez-Collazo and R. Alvarez-Sala 

(2009). "Daily physical activity in patients with chronic obstructive pulmonary disease is 

mainly associated with dynamic hyperinflation." Am J Respir Crit Care Med 180(6): 506-

512. 

Gea, J., M. Orozco-Levi, E. Barreiro, A. Ferrer and J. Broquetas (2001a). "Structural and 

functional changes in the skeletal muscles of COPD patients: the "compartments" 

theory." Monaldi Arch Chest Dis 56(3): 214-224. 

Gea, J. G., M. Pasto, M. A. Carmona, M. Orozco-Levi, J. Palomeque and J. Broquetas (2001b). 

"Metabolic characteristics of the deltoid muscle in patients with chronic obstructive 

pulmonary disease." Eur Respir J 17(5): 939-945. 

Gerovasili, V., K. Stefanidis, K. Vitzilaios, E. Karatzanos, P. Politis, A. Koroneos, A. Chatzimichail, 

C. Routsi, C. Roussos and S. Nanas (2009). "Electrical muscle stimulation preserves the 

muscle mass of critically ill patients: a randomized study." Crit Care 13(5): R161. 

Gibson, G. J. (1993). "Standardised lung function testing." Eur Respir J 6(2): 155-157. 

Giovannini, S., E. Marzetti, S. E. Borst and C. Leeuwenburgh (2008). "Modulation of GH/IGF-1 

axis: potential strategies to counteract sarcopenia in older adults." Mech Ageing Dev 

129(10): 593-601. 

Glass, D. J. (2005). "Skeletal muscle hypertrophy and atrophy signaling pathways." Int J 

Biochem Cell Biol 37(10): 1974-1984. 

Goldspink, G. (2003). "Gene expression in muscle in response to exercise." J Muscle Res Cell 

Motil 24(2-3): 121-126. 

Goodyear, L. J. (2008). "The exercise pill--too good to be true?" N Engl J Med 359(17): 1842-

1844. 



 
196 

 
 

Gosker, H. R., B. Kubat, G. Schaart, G. J. van der Vusse, E. F. Wouters and A. M. Schols (2003). 

"Myopathological features in skeletal muscle of patients with chronic obstructive 

pulmonary disease." Eur Respir J 22(2): 280-285. 

Gosker, H. R., M. P. Zeegers, E. F. Wouters and A. M. Schols (2007). "Muscle fibre type shifting 

in the vastus lateralis of patients with COPD is associated with disease severity: a 

systematic review and meta-analysis." Thorax 62(11): 944-949. 

Gosselink, R., T. Troosters and M. Decramer (1996). "Peripheral muscle weakness contributes 

to exercise limitation in COPD." Am J Respir Crit Care Med 153(3): 976-980. 

Gray-Donald, K., L. Gibbons, S. H. Shapiro, P. T. Macklem and J. G. Martin (1996). "Nutritional 

status and mortality in chronic obstructive pulmonary disease." Am J Respir Crit Care 

Med 153(3): 961-966. 

Gray, S. L., A. Z. LaCroix, A. K. Aragaki, M. McDermott, B. B. Cochrane, C. L. Kooperberg, A. M. 

Murray, B. Rodriguez, H. Black and N. F. Woods (2009). "Angiotensin-converting enzyme 

inhibitor use and incident frailty in women aged 65 and older: prospective findings from 

the Women's Health Initiative Observational Study." J Am Geriatr Soc 57(2): 297-303. 

Griffiths, T. L., M. L. Burr, I. A. Campbell, V. Lewis-Jenkins, J. Mullins, K. Shiels, P. J. Turner-

Lawlor, N. Payne, R. G. Newcombe, A. A. Ionescu, J. Thomas and J. Tunbridge (2000). 

"Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomised 

controlled trial." Lancet 355(9201): 362-368. 

Guo, Q., N. Minami, N. Mori, M. Nagasaka, O. Ito, H. Kurosawa, M. Kanazawa and M. Kohzuki 

(2010). "Effects of estradiol, angiotensin-converting enzyme inhibitor and exercise 

training on exercise capacity and skeletal muscle in old female rats." Clin Exp Hypertens 

32(2): 76-83. 



 
197 

 
 

Hamilton, A. L., K. J. Killian, E. Summers and N. L. Jones (1995). "Muscle strength, symptom 

intensity, and exercise capacity in patients with cardiorespiratory disorders." Am J Respir 

Crit Care Med 152(6 Pt 1): 2021-2031. 

Han, M. K., A. Agusti, P. M. Calverley, B. R. Celli, G. Criner, J. L. Curtis, L. M. Fabbri, J. G. Goldin, 

P. W. Jones, W. Macnee, B. J. Make, K. F. Rabe, S. I. Rennard, F. C. Sciurba, E. K. 

Silverman, J. Vestbo, G. R. Washko, E. F. Wouters and F. J. Martinez (2010). "Chronic 

obstructive pulmonary disease phenotypes: the future of COPD." Am J Respir Crit Care 

Med 182(5): 598-604. 

Hanif, K., H. K. Bid and R. Konwar (2010). "Reinventing the ACE inhibitors: some old and new 

implications of ACE inhibition." Hypertens Res 33(1): 11-21. 

Hannink, J. D., H. A. van Helvoort, P. N. Dekhuijzen and Y. F. Heijdra (2010). "Dynamic 

hyperinflation during daily activities: does COPD global initiative for chronic obstructive 

lung disease stage matter?" Chest 137(5): 1116-1121. 

Hara, K., K. Yonezawa, M. T. Kozlowski, T. Sugimoto, K. Andrabi, Q. P. Weng, M. Kasuga, I. 

Nishimoto and J. Avruch (1997). "Regulation of eIF-4E BP1 phosphorylation by mTOR." J 

Biol Chem 272(42): 26457-26463. 

Harris, M. L., M. I. Polkey, P. M. Bath and J. Moxham (2001). "Quadriceps muscle weakness 

following acute hemiplegic stroke." Clin Rehabil 15(3): 274-281. 

Hawke, T. J. and D. J. Garry (2001). "Myogenic satellite cells: physiology to molecular biology." 

J Appl Physiol 91(2): 534-551. 

Heindl, S., M. Lehnert, C. P. Criee, G. Hasenfuss and S. Andreas (2001). "Marked sympathetic 

activation in patients with chronic respiratory failure." Am J Respir Crit Care Med 164(4): 

597-601. 

Henriksen, E. J. and S. Jacob (2003). "Modulation of metabolic control by angiotensin 

converting enzyme (ACE) inhibition." J Cell Physiol 196(1): 171-179. 



 
198 

 
 

Hill, K., T. E. Dolmage, L. Woon, R. Goldstein and D. Brooks (2010). "Measurement properties 

of the SenseWear armband in adults with chronic obstructive pulmonary disease." 

Thorax 65(6): 486-491. 

Hogg, J. C. (2004). "Pathophysiology of airflow limitation in chronic obstructive pulmonary 

disease." Lancet 364(9435): 709-721. 

Hoiseth, A. D., A. Neukamm, B. D. Karlsson, T. Omland, P. H. Brekke and V. Soyseth (2011). 

"Elevated high-sensitivity cardiac troponin T is associated with increased mortality after 

acute exacerbation of chronic obstructive pulmonary disease." Thorax 66(9): 775-781. 

Hopkinson, N. S., T. Sharshar, E. T. Ross, A. H. Nickol, M. J. Dayer, R. Porcher, S. Jonville, J. 

Moxham and M. I. Polkey (2004a). "Corticospinal control of respiratory muscles in 

chronic obstructive pulmonary disease." Respir Physiol Neurobiol 141(1): 1-12. 

Hopkinson, N. S., A. H. Nickol, J. Payne, E. Hawe, W. D. Man, J. Moxham, H. Montgomery and 

M. I. Polkey (2004b). "Angiotensin converting enzyme genotype and strength in chronic 

obstructive pulmonary disease." Am J Respir Crit Care Med 170(4): 395-399. 

Hopkinson, N. S., W. D. Man, M. J. Dayer, E. T. Ross, A. H. Nickol, N. Hart, J. Moxham and M. I. 

Polkey (2004c). "Acute effect of oral steroids on muscle function in chronic obstructive 

pulmonary disease." Eur Respir J 24(1): 137-142. 

Hopkinson, N. S., K. I. Eleftheriou, J. Payne, A. H. Nickol, E. Hawe, J. Moxham, H. Montgomery 

and M. I. Polkey (2006). "+9/+9 Homozygosity of the bradykinin receptor gene 

polymorphism is associated with reduced fat-free mass in chronic obstructive pulmonary 

disease." Am J Clin Nutr 83(4): 912-917. 

Hopkinson, N. S., R. C. Tennant, M. J. Dayer, E. B. Swallow, T. T. Hansel, J. Moxham and M. I. 

Polkey (2007). "A prospective study of decline in fat free mass and skeletal muscle 

strength in chronic obstructive pulmonary disease." Respir Res 8(1): 25. 



 
199 

 
 

Hopkinson, N. S., K. W. Li, A. Kehoe, S. E. Humphries, M. Roughton, J. Moxham, H. 

Montgomery and M. I. Polkey (2008). "Vitamin D receptor genotypes influence 

quadriceps strength in chronic obstructive pulmonary disease." Am J Clin Nutr 87(2): 

385-390. 

Hopkinson, N. S. and M. I. Polkey (2010). "Does physical inactivity cause chronic obstructive 

pulmonary disease?" Clin Sci (Lond) 118(9): 565-572. 

Hunter, R. B., E. Stevenson, A. Koncarevic, H. Mitchell-Felton, D. A. Essig and S. C. Kandarian 

(2002). "Activation of an alternative NF-kappaB pathway in skeletal muscle during disuse 

atrophy." FASEB J 16(6): 529-538. 

Huxley, A. F. and R. M. Simmons (1971). "Proposed mechanism of force generation in striated 

muscle." Nature 233(5321): 533-538. 

Inoue, N., S. Kinugawa, T. Suga, T. Yokota, K. Hirabayashi, S. Kuroda, K. Okita and H. Tsutsui 

(2012). "Angiotensin II-induced reduction in exercise capacity is associated with 

increased oxidative stress in skeletal muscle." Am J Physiol Heart Circ Physiol 302(5): 

H1202-1210. 

Ito, K. and P. J. Barnes (2009). "COPD as a disease of accelerated lung aging." Chest 135(1): 

173-180. 

Jakobsson, P., L. Jorfeldt and A. Brundin (1990). "Skeletal muscle metabolites and fibre types in 

patients with advanced chronic obstructive pulmonary disease (COPD), with and without 

chronic respiratory failure." Eur Respir J 3(2): 192-196. 

Jobin, J., F. Maltais, J. F. Doyon, P. LeBlanc, P. M. Simard, A. A. Simard and C. Simard (1998). 

"Chronic obstructive pulmonary disease: capillarity and fiber-type characteristics of 

skeletal muscle." J Cardiopulm Rehabil 18(6): 432-437. 

Jones, A. and D. R. Woods (2003). "Skeletal muscle RAS and exercise performance." Int J 

Biochem Cell Biol 35(6): 855-866. 



 
200 

 
 

Jones, P. W., F. H. Quirk, C. M. Baveystock and P. Littlejohns (1992). "A self-complete measure 

of health status for chronic airflow limitation. The St. George's Respiratory 

Questionnaire." Am Rev Respir Dis 145(6): 1321-1327. 

Jones, P. W., G. Harding, P. Berry, I. Wiklund, W. H. Chen and N. Kline Leidy (2009). 

"Development and first validation of the COPD Assessment Test." Eur Respir J 34(3): 648-

654. 

Joulia, D., H. Bernardi, V. Garandel, F. Rabenoelina, B. Vernus and G. Cabello (2003). 

"Mechanisms involved in the inhibition of myoblast proliferation and differentiation by 

myostatin." Exp Cell Res 286(2): 263-275. 

Kakar, S. S., J. C. Sellers, D. C. Devor, L. C. Musgrove and J. D. Neill (1992). "Angiotensin II type-

1 receptor subtype cDNAs: differential tissue expression and hormonal regulation." 

Biochem Biophys Res Commun 183(3): 1090-1096. 

Kanazawa, H., T. Okamoto, K. Hirata and J. Yoshikawa (2000). "Deletion polymorphisms in the 

angiotensin converting enzyme gene are associated with pulmonary hypertension 

evoked by exercise challenge in patients with chronic obstructive pulmonary disease." 

Am J Respir Crit Care Med 162(4 Pt 1): 1235-1238. 

Kanazawa, H., T. Otsuka, K. Hirata and J. Yoshikawa (2002). "Association between the 

angiotensin-converting enzyme gene polymorphisms and tissue oxygenation during 

exercise in patients with COPD." Chest 121(3): 697-701. 

Kaparianos, A. and E. Argyropoulou (2011). "Local renin-angiotensin II systems, angiotensin-

converting enzyme and its homologue ACE2: their potential role in the pathogenesis of 

chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory 

distress syndrome." Curr Med Chem 18(23): 3506-3515. 

 



 
201 

 
 

Kawahara, T. L., E. Michishita, A. S. Adler, M. Damian, E. Berber, M. Lin, R. A. McCord, K. C. 

Ongaigui, L. D. Boxer, H. Y. Chang and K. F. Chua (2009). "SIRT6 links histone H3 lysine 9 

deacetylation to NF-kappaB-dependent gene expression and organismal life span." Cell 

136(1): 62-74. 

Killian, K. J., P. Leblanc, D. H. Martin, E. Summers, N. L. Jones and E. J. Campbell (1992). 

"Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with 

chronic airflow limitation." Am Rev Respir Dis 146(4): 935-940. 

Koechlin, C., A. Couillard, D. Simar, J. P. Cristol, H. Bellet, M. Hayot and C. Prefaut (2004). "Does 

Oxidative Stress Alter Quadriceps Endurance in Chronic Obstructive Pulmonary 

Disease?" Am. J. Respir. Crit. Care Med. 169(9): 1022-1027. 

Kortebein, P., A. Ferrando, J. Lombeida, R. Wolfe and W. J. Evans (2007). "Effect of 10 Days of 

Bed Rest on Skeletal Muscle in Healthy Older Adults." JAMA 297(16): 1772-a-1774. 

Kumar, R., V. P. Singh and K. M. Baker (2008). "The intracellular renin-angiotensin system: 

implications in cardiovascular remodeling." Curr Opin Nephrol Hypertens 17(2): 168-173. 

Lacasse, Y., R. Goldstein, T. J. Lasserson and S. Martin (2006). "Pulmonary rehabilitation for 

chronic obstructive pulmonary disease." Cochrane Database Syst Rev(4): CD003793. 

Laennec, R. (1821). In: A treatise on the diseases of the chest (English translation from the 

French). . Forbes. London, T and G Underwood. 

Landbo, C., E. Prescott, P. Lange, J. Vestbo and T. P. Almdal (1999). "Prognostic value of 

nutritional status in chronic obstructive pulmonary disease." Am J Respir Crit Care Med 

160(6): 1856-1861. 

Langberg, H., C. Bjorn, R. Boushel, Y. Hellsten and M. Kjaer (2002). "Exercise-induced increase 

in interstitial bradykinin and adenosine concentrations in skeletal muscle and 

peritendinous tissue in humans." J Physiol 542(Pt 3): 977-983. 



 
202 

 
 

Langen, R. C., J. L. Van Der Velden, A. M. Schols, M. C. Kelders, E. F. Wouters and Y. M. Janssen-

Heininger (2004). "Tumor necrosis factor-alpha inhibits myogenic differentiation through 

MyoD protein destabilization." FASEB J 18(2): 227-237. 

Laviolette, L., L. C. Lands, N. Dauletbaev, D. Saey, J. Milot, S. Provencher, P. LeBlanc and F. 

Maltais (2010). "Combined effect of dietary supplementation with pressurized whey and 

exercise training in chronic obstructive pulmonary disease: a randomized, controlled, 

double-blind pilot study." J Med Food 13(3): 589-598. 

Leick, L., Y. Hellsten, J. Fentz, S. S. Lyngby, J. F. Wojtaszewski, J. Hidalgo and H. Pilegaard 

(2009). "PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in 

mice." Am J Physiol Endocrinol Metab 297(1): E92-103. 

Levine, S., L. Kaiser, J. Leferovich and B. Tikunov (1997). "Cellular adaptations in the diaphragm 

in chronic obstructive pulmonary disease." N Engl J Med 337: 1799-1806. 

Lewis, A., J. Riddoch-Contreras, S. A. Natanek, A. Donaldson, W. D. Man, J. Moxham, N. S. 

Hopkinson, M. I. Polkey and P. R. Kemp (2012). "Downregulation of the serum response 

factor/miR-1 axis in the quadriceps of patients with COPD." Thorax 67(1): 26-34. 

Lewis, M. I., M. Fournier, T. W. Storer, S. Bhasin, J. Porszasz, S.-G. Ren, X. Da and R. Casaburi 

(2007). "Skeletal muscle adaptations to testosterone and resistance training in men with 

COPD." J Appl Physiol 103(4): 1299-1310. 

Lieber, R. L. and J. Friden (2000). "Functional and clinical significance of skeletal muscle 

architecture." Muscle Nerve 23(11): 1647-1666. 

Lin, J., H. Wu, P. T. Tarr, C. Y. Zhang, Z. Wu, O. Boss, L. F. Michael, P. Puigserver, E. Isotani, E. N. 

Olson, B. B. Lowell, R. Bassel-Duby and B. M. Spiegelman (2002). "Transcriptional co-

activator PGC-1 alpha drives the formation of slow-twitch muscle fibres." Nature 

418(6899): 797-801. 



 
203 

 
 

Lopez, A. D. and C. C. Murray (1998). "The global burden of disease, 1990-2020." Nat Med 

4(11): 1241-1243. 

Lorenz, J. N. (2010). "Chymase: the other ACE?" Am J Physiol Renal Physiol 298(1): F35-36. 

Luquet, S., J. Lopez-Soriano, D. Holst, A. Fredenrich, J. Melki, M. Rassoulzadegan and P. A. 

Grimaldi (2003). "Peroxisome proliferator-activated receptor delta controls muscle 

development and oxidative capability." FASEB J 17(15): 2299-2301. 

Macintyre, N., R. O. Crapo, G. Viegi, D. C. Johnson, C. P. van der Grinten, V. Brusasco, F. Burgos, 

R. Casaburi, A. Coates, P. Enright, P. Gustafsson, J. Hankinson, R. Jensen, R. McKay, M. R. 

Miller, D. Navajas, O. F. Pedersen, R. Pellegrino and J. Wanger (2005). "Standardisation 

of the single-breath determination of carbon monoxide uptake in the lung." Eur Respir J 

26(4): 720-735. 

MacNee, W. (2008). Chronic Obstructive Pulmonary Disease. Clinical Respiratory Medicine. S. 

G. S. Richard K Albert, James R Jett, Mosby. 

Maggio, M., G. P. Ceda, F. Lauretani, M. Pahor, S. Bandinelli, S. S. Najjar, S. M. Ling, S. Basaria, 

C. Ruggiero, G. Valenti and L. Ferrucci (2006). "Relation of angiotensin-converting 

enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects >65 

years of age (the InCHIANTI study)." Am J Cardiol 97(10): 1525-1529. 

Malendowicz, S. L., P. V. Ennezat, M. Testa, L. Murray, E. H. Sonnenblick, T. Evans and T. H. 

LeJemtel (2000). "Angiotensin II receptor subtypes in the skeletal muscle vasculature of 

patients with severe congestive heart failure." Circulation 102(18): 2210-2213. 

Man, W. D.-C., M. G. G. Soliman, J. Gearing, S. G. Radford, G. F. Rafferty, B. J. Gray, M. I. Polkey 

and J. Moxham (2003a). "Symptoms and Quadriceps Fatigability after Walking and 

Cycling in Chronic Obstructive Pulmonary Disease." Am. J. Respir. Crit. Care Med. 168(5): 

562-567. 



 
204 

 
 

Man, W. D., M. G. Soliman, D. Nikoletou, M. L. Harris, G. F. Rafferty, N. Mustfa, M. I. Polkey 

and J. Moxham (2003b). "Non-volitional assessment of skeletal muscle strength in 

patients with chronic obstructive pulmonary disease." Thorax 58(8): 665-669. 

Man, W. D., M. I. Polkey, N. Donaldson, B. J. Gray and J. Moxham (2004). "Community 

pulmonary rehabilitation after hospitalisation for acute exacerbations of chronic 

obstructive pulmonary disease: randomised controlled study." BMJ 329(7476): 1209. 

Man, W. D., N. S. Hopkinson, F. Harraf, D. Nikoletou, M. I. Polkey and J. Moxham (2005). 

"Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease." 

Thorax 60(9): 718-722. 

Man, W. D., P. Kemp, J. Moxham and M. I. Polkey (2009). "Skeletal muscle dysfunction in 

COPD: clinical and laboratory observations." Clin Sci (Lond) 117(7): 251-264. 

Man, W. D. N., S. A. Riddoch-Contreras, J. Lewis, A. Marsh, G. S. Kemp, P.R. Polkey, M.I. (2010). 

"Quadriceps myostatin expression in COPD." Eur Respir J 36: 682-683. 

Mancini, G. B., M. Etminan, B. Zhang, L. E. Levesque, J. M. FitzGerald and J. M. Brophy (2006). 

"Reduction of morbidity and mortality by statins, angiotensin-converting enzyme 

inhibitors, and angiotensin receptor blockers in patients with chronic obstructive 

pulmonary disease." J Am Coll Cardiol 47(12): 2554-2560. 

Marquis, K., R. Debigare, Y. Lacasse, P. LeBlanc, J. Jobin, G. Carrier and F. Maltais (2002). 

"Midthigh muscle cross-sectional area is a better predictor of mortality than body mass 

index in patients with chronic obstructive pulmonary disease." Am J Respir Crit Care 

Med 166(6): 809-813. 

Marshall, R. P. (2003). "The pulmonary renin-angiotensin system." Curr Pharm Des 9(9): 715-

722. 



 
205 

 
 

Marti, S., X. Munoz, J. Rios, F. Morell and J. Ferrer (2006). "Body weight and comorbidity 

predict mortality in COPD patients treated with oxygen therapy." Eur Respir J 27(4): 689-

696. 

Mathur, S., K. P. Takai, D. L. Macintyre and D. Reid (2008). "Estimation of thigh muscle mass 

with magnetic resonance imaging in older adults and people with chronic obstructive 

pulmonary disease." Phys Ther 88(2): 219-230. 

Megeney, L. A., B. Kablar, K. Garrett, J. E. Anderson and M. A. Rudnicki (1996). "MyoD is 

required for myogenic stem cell function in adult skeletal muscle." Genes Dev 10(10): 

1173-1183. 

Meinen, S., S. Lin and M. A. Ruegg (2012). "Angiotensin II type 1 receptor antagonists alleviate 

muscle pathology in the mouse model for laminin-alpha2-deficient congenital muscular 

dystrophy (MDC1A)." Skelet Muscle 2(1): 18. 

Menon, M. K., L. Houchen, S. Harrison, S. J. Singh, M. D. Morgan and M. C. Steiner (2012). 

"Ultrasound assessment of lower limb muscle mass in response to resistance training in 

COPD." Respir Res 13(1): 119. 

Miller, M. R., J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, 

C. P. van der Grinten, P. Gustafsson, R. Jensen, D. C. Johnson, N. MacIntyre, R. McKay, D. 

Navajas, O. F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger (2005). "Standardisation of 

spirometry." Eur Respir J 26(2): 319-338. 

Minami, N., N. Mori, M. Nagasaka, T. Harada, H. Kurosawa, M. Kanazawa and M. Kohzuki 

(2004). "Effect of high-salt diet or chronic captopril treatment on exercise capacity in 

normotensive rats." Clin Exp Pharmacol Physiol 31(4): 197-201. 

 

 



 
206 

 
 

Miyazaki, R., T. Ichiki, T. Hashimoto, K. Inanaga, I. Imayama, J. Sadoshima and K. Sunagawa 

(2008). "SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor 

expression in vascular smooth muscle cells." Arterioscler Thromb Vasc Biol 28(7): 1263-

1269. 

Momken, I., J. Kahapip, L. Bahi, T. Badoual, L. Hittinger, R. Ventura-Clapier and V. Veksler 

(2003). "Does angiotensin-converting enzyme inhibition improve the energetic status of 

cardiac and skeletal muscles in heart failure induced by aortic stenosis in rats?" J Mol 

Cell Cardiol 35(4): 399-407. 

Montes de Oca, M., E. Loeb, S. H. Torres, J. De Sanctis, N. Hernandez and C. Talamo (2008). 

"Peripheral muscle alterations in non-COPD smokers." Chest 133(1): 13-18. 

Mortensen, E. M., L. A. Copeland, M. J. Pugh, M. I. Restrepo, R. M. de Molina, B. Nakashima 

and A. Anzueto (2009). "Impact of statins and ACE inhibitors on mortality after COPD 

exacerbations." Respir Res 10: 45. 

Mostert, R., A. Goris, C. Weling-Scheepers, E. F. Wouters and A. M. Schols (2000). "Tissue 

depletion and health related quality of life in patients with chronic obstructive 

pulmonary disease." Respir Med 94(9): 859-867. 

Mourkioti, F., P. Kratsios, T. Luedde, Y. H. Song, P. Delafontaine, R. Adami, V. Parente, R. 

Bottinelli, M. Pasparakis and N. Rosenthal (2006). "Targeted ablation of IKK2 improves 

skeletal muscle strength, maintains mass, and promotes regeneration." J Clin Invest 

116(11): 2945-2954. 

Murray, C. J. and A. D. Lopez (1996). "Evidence-based health policy--lessons from the Global 

Burden of Disease Study." Science 274(5288): 740-743. 

Myerson, S., H. Hemingway, R. Budget, J. Martin, S. Humphries and H. Montgomery (1999). 

"Human angiotensin I-converting enzyme gene and endurance performance." J Appl 

Physiol 87(4): 1313-1316. 



 
207 

 
 

Narkar, V. A., M. Downes, R. T. Yu, E. Embler, Y. X. Wang, E. Banayo, M. M. Mihaylova, M. C. 

Nelson, Y. Zou, H. Juguilon, H. Kang, R. J. Shaw and R. M. Evans (2008). "AMPK and 

PPARdelta agonists are exercise mimetics." Cell 134(3): 405-415. 

Natanek, S. A., H. R. Gosker, I. G. Slot, G. S. Marsh, N. S. Hopkinson, J. Moxham, P. R. Kemp, A. 

M. Schols and M. I. Polkey (2012). "Pathways associated with reduced quadriceps 

oxidative fibres and endurance in COPD." Eur Respir J.doi 10.1183/09031936.00098412 

Natoli, G. (2009). "When sirtuins and NF-kappaB collide." Cell 136(1): 19-21. 

Nazarov, I. B., D. R. Woods, H. E. Montgomery, O. V. Shneider, V. I. Kazakov, N. V. Tomilin and 

V. A. Rogozkin (2001). "The angiotensin converting enzyme I/D polymorphism in Russian 

athletes." Eur J Hum Genet 9(10): 797-801. 

NICE. (2010). "Management of chronic obstructive pulmonary disease in adults in primary and 

secondary care", from http://guidance.nice.org.uk/CG101/Guidance. 

Nici, L., C. Donner, E. Wouters, R. Zuwallack, N. Ambrosino, J. Bourbeau, M. Carone, B. Celli, M. 

Engelen, B. Fahy, C. Garvey, R. Goldstein, R. Gosselink, S. Lareau, N. MacIntyre, F. 

Maltais, M. Morgan, D. O'Donnell, C. Prefault, J. Reardon, C. Rochester, A. Schols, S. 

Singh, T. Troosters and on behalf of the ATS/ERS Pulmonary Rehabilitation Writing 

Committee (2006). "American Thoracic Society/European Respiratory Society Statement 

on Pulmonary Rehabilitation." Am. J. Respir. Crit. Care Med. 173(12): 1390-1413. 

Nussbaumer-Ochsner, Y. and K. F. Rabe (2011). "Systemic manifestations of COPD." Chest 

139(1): 165-173. 

O'Dell, S. D., S. E. Humphries and I. N. Day (1995). "Rapid methods for population-scale analysis 

for gene polymorphisms: the ACE gene as an example." Br Heart J 73(4): 368-371. 

O'Donnell, D. E., J. A. Guenette, F. Maltais and K. A. Webb (2012). "Decline of resting 

inspiratory capacity in COPD: the impact on breathing pattern, dyspnea, and ventilatory 

capacity during exercise." Chest 141(3): 753-762. 

http://guidance.nice.org.uk/CG101/Guidance


 
208 

 
 

O'Sullivan, C., S. Bentman, K. Bennett and M. Stokes (2007). "Rehabilitative ultrasound imaging 

of the lower trapezius muscle: technical description and reliability." J Orthop Sports Phys 

Ther 37(10): 620-626. 

Ofir, D., P. Laveneziana, K. A. Webb, Y. M. Lam and D. E. O'Donnell (2008). "Mechanisms of 

dyspnea during cycle exercise in symptomatic patients with GOLD stage I chronic 

obstructive pulmonary disease." Am J Respir Crit Care Med 177(6): 622-629. 

Olsson, L. G., K. Swedberg, A. L. Clark, K. K. Witte and J. G. Cleland (2005). "Six minute corridor 

walk test as an outcome measure for the assessment of treatment in randomized, 

blinded intervention trials of chronic heart failure: a systematic review." Eur Heart J 

26(8): 778-793. 

Onder, G., B. W. Penninx, R. Balkrishnan, L. P. Fried, P. H. Chaves, J. Williamson, C. Carter, M. Di 

Bari, J. M. Guralnik and M. Pahor (2002). "Relation between use of angiotensin-

converting enzyme inhibitors and muscle strength and physical function in older women: 

an observational study." Lancet 359(9310): 926-930. 

Ottenheijm, C. A., L. M. Heunks and R. P. Dekhuijzen (2008). "Diaphragm adaptations in 

patients with COPD." Respir Res 9: 12. 

Palange, P., S. Forte, P. Onorati, F. Manfredi, P. Serra and S. Carlone (2000). "Ventilatory and 

metabolic adaptations to walking and cycling in patients with COPD." J Appl Physiol 

88(5): 1715-1720. 

Parry, S. M., S. Berney, R. Koopman, A. Bryant, D. El-Ansary, Z. Puthucheary, N. Hart, S. 

Warrillow and L. Denehy (2012). "Early rehabilitation in critical care (eRiCC): functional 

electrical stimulation with cycling protocol for a randomised controlled trial." BMJ Open 

2(5). 

Patel, S. A., R. P. Benzo, W. A. Slivka and F. C. Sciurba (2007). "Activity monitoring and energy 

expenditure in COPD patients: a validation study." COPD 4(2): 107-112. 



 
209 

 
 

Patlak, M. (2004). "From viper's venom to drug design: treating hypertension." FASEB J 18(3): 

421. 

Pellegrino, R., G. Viegi, V. Brusasco, R. O. Crapo, F. Burgos, R. Casaburi, A. Coates, C. P. van der 

Grinten, P. Gustafsson, J. Hankinson, R. Jensen, D. C. Johnson, N. MacIntyre, R. McKay, 

M. R. Miller, D. Navajas, O. F. Pedersen and J. Wanger (2005). "Interpretative strategies 

for lung function tests." Eur Respir J 26(5): 948-968. 

Pelosi, L., C. Giacinti, C. Nardis, G. Borsellino, E. Rizzuto, C. Nicoletti, F. Wannenes, L. Battistini, 

N. Rosenthal, M. Molinaro and A. Musaro (2007). "Local expression of IGF-1 accelerates 

muscle regeneration by rapidly modulating inflammatory cytokines and chemokines." 

FASEB J 21(7): 1393-1402. 

Petty, T. L. (2006). "The history of COPD." Int J Chron Obstruct Pulmon Dis 1(1): 3-14. 

Pitta, F., T. Troosters, M. A. Spruit, V. S. Probst, M. Decramer and R. Gosselink (2005). 

"Characteristics of physical activities in daily life in chronic obstructive pulmonary 

disease." Am J Respir Crit Care Med 171(9): 972-977. 

Pitta, F., T. Troosters, V. S. Probst, M. A. Spruit, M. Decramer and R. Gosselink (2006). "Physical 

activity and hospitalization for exacerbation of COPD." Chest 129(3): 536-544. 

Plant, P. J., D. Brooks, M. Faughnan, T. Bayley, J. Bain, L. Singer, J. Correa, D. Pearce, M. Binnie 

and J. Batt (2010). "Cellular markers of muscle atrophy in chronic obstructive pulmonary 

disease." Am J Respir Cell Mol Biol 42(4): 461-471. 

Podowski, M., C. Calvi, S. Metzger, K. Misono, H. Poonyagariyagorn, A. Lopez-Mercado, T. Ku, 

T. Lauer, S. McGrath-Morrow, A. Berger, C. Cheadle, R. Tuder, H. C. Dietz, W. Mitzner, R. 

Wise and E. Neptune (2012). "Angiotensin receptor blockade attenuates cigarette 

smoke-induced lung injury and rescues lung architecture in mice." J Clin Invest 122(1): 

229-240. 



 
210 

 
 

Polkey, M. I., D. Kyroussis, C. H. Hamnegard, G. H. Mills, M. Green and J. Moxham (1996). 

"Quadriceps strength and fatigue assessed by magnetic stimulation of the femoral nerve 

in man." Muscle Nerve 19(5): 549-555. 

Polkey, M. I. and J. Moxham (2006). "Attacking the disease spiral in chronic obstructive 

pulmonary disease." Clin Med 6(2): 190-196. 

Polkey, M. I. and J. Moxham (2011). "Attacking the disease spiral in chronic obstructive 

pulmonary disease: an update." Clin Med 11(5): 461-464. 

Prescott, E., T. Almdal, K. L. Mikkelsen, C. L. Tofteng, J. Vestbo and P. Lange (2002). "Prognostic 

value of weight change in chronic obstructive pulmonary disease: results from the 

Copenhagen City Heart Study." Eur Respir J 20(3): 539-544. 

Prince, F. P., R. S. Hikida, F. C. Hagerman, R. S. Staron and W. H. Allen (1981). "A morphometric 

analysis of human muscle fibers with relation to fiber types and adaptations to exercise." 

J Neurol Sci 49(2): 165-179. 

Probst, V. S., D. Kovelis, N. A. Hernandes, C. A. Camillo, V. Cavalheri and F. Pitta (2011). "Effects 

of 2 exercise training programs on physical activity in daily life in patients with COPD." 

Respir Care 56(11): 1799-1807. 

Rabe, K. F., S. Hurd, A. Anzueto, P. J. Barnes, S. A. Buist, P. Calverley, Y. Fukuchi, C. Jenkins, R. 

Rodriguez-Roisin, C. van Weel and J. Zielinski (2007). "Global strategy for the diagnosis, 

management, and prevention of chronic obstructive pulmonary disease: GOLD executive 

summary." Am J Respir Crit Care Med 176(6): 532-555. 

Rabe, K. F. and J. A. Wedzicha (2011). "Controversies in treatment of chronic obstructive 

pulmonary disease." Lancet 378(9795): 1038-1047. 

Rabinovich, R. A., E. Ardite, A. M. Mayer, M. F. Polo, J. Vilaro, J. M. Argiles and J. Roca (2006). 

"Training depletes muscle glutathione in patients with chronic obstructive pulmonary 

disease and low body mass index." Respiration 73(6): 757-761. 



 
211 

 
 

Radom-Aizik, S., N. Kaminski, S. Hayek, H. Halkin, D. M. Cooper and I. Ben-Dov (2007). "Effects 

of exercise training on quadriceps muscle gene expression in chronic obstructive 

pulmonary disease." J Appl Physiol 102(5): 1976-1984. 

Rahman, I. and I. M. Adcock (2006). "Oxidative stress and redox regulation of lung 

inflammation in COPD." Eur Respir J 28(1): 219-242. 

Raupach, T., L. Luthje, H. Kogler, C. Duve, F. Schweda, G. Hasenfuss and S. Andreas (2011). 

"Local and systemic effects of angiotensin receptor blockade in an emphysema mouse 

model." Pulm Pharmacol Ther 24(2): 215-220. 

Remels, A. H., P. Schrauwen, R. Broekhuizen, J. Willems, S. Kersten, H. R. Gosker and A. M. 

Schols (2007). "Peroxisome proliferator-activated receptor expression is reduced in 

skeletal muscle in COPD." Eur Respir J 30(2): 245-252. 

Rezk, B. M., T. Yoshida, L. Semprun-Prieto, Y. Higashi, S. Sukhanov and P. Delafontaine (2012). 

"Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy." PLoS 

One 7(1): e30276. 

Rommel, C., S. C. Bodine, B. A. Clarke, R. Rossman, L. Nunez, T. N. Stitt, G. D. Yancopoulos and 

D. J. Glass (2001). "Mediation of IGF-1-induced skeletal myotube hypertrophy by 

PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways." Nat Cell Biol 3(11): 1009-1013. 

Russell, S. T., S. M. Wyke and M. J. Tisdale (2006). "Mechanism of induction of muscle protein 

degradation by angiotensin II." Cell Signal 18(7): 1087-1096. 

Sabit, R., C. E. Bolton, A. G. Fraser, J. M. Edwards, P. H. Edwards, A. A. Ionescu, J. R. Cockcroft 

and D. J. Shale (2010). "Sub-clinical left and right ventricular dysfunction in patients with 

COPD." Respir Med 104(8): 1171-1178. 

Saey, D., R. Debigare, P. LeBlanc, M. J. Mador, C. H. Cote, J. Jobin and F. Maltais (2003). 

"Contractile Leg Fatigue after Cycle Exercise: A Factor Limiting Exercise in Patients with 

Chronic Obstructive Pulmonary Disease." Am. J. Respir. Crit. Care Med. 168(4): 425-430. 



 
212 

 
 

Sanchis-Gomar, F. and G. Lippi (2012). "Telmisartan as metabolic modulator: a new perspective 

in sports doping?" J Strength Cond Res 26(3): 608-610. 

Sandri, M., J. Lin, C. Handschin, W. Yang, Z. P. Arany, S. H. Lecker, A. L. Goldberg and B. M. 

Spiegelman (2006). "PGC-1alpha protects skeletal muscle from atrophy by suppressing 

FoxO3 action and atrophy-specific gene transcription." Proc Natl Acad Sci U S A 103(44): 

16260-16265. 

Sathyapala, S. A., P. Kemp and M. I. Polkey (2007). "Decreased muscle PPAR concentrations: a 

mechanism underlying skeletal muscle abnormalities in COPD?" Eur Respir J 30(2): 191-

193. 

Schaufelberger, M., H. Drexler, E. Schieffer and K. Swedberg (1998). "Angiotensin-converting 

enzyme gene expression in skeletal muscle in patients with chronic heart failure." J Card 

Fail 4(3): 185-191. 

Schols, A. M., E. F. Wouters, P. B. Soeters and K. R. Westerterp (1991). "Body composition by 

bioelectrical-impedance analysis compared with deuterium dilution and skinfold 

anthropometry in patients with chronic obstructive pulmonary disease." Am J Clin Nutr 

53(2): 421-424. 

Schols, A. M., P. B. Soeters, A. M. Dingemans, R. Mostert, P. J. Frantzen and E. F. Wouters 

(1993). "Prevalence and characteristics of nutritional depletion in patients with stable 

COPD eligible for pulmonary rehabilitation." Am Rev Respir Dis 147(5): 1151-1156. 

Schols, A. M., J. Slangen, L. Volovics and E. F. Wouters (1998). "Weight loss is a reversible 

factor in the prognosis of chronic obstructive pulmonary disease." Am J Respir Crit Care 

Med 157(6 Pt 1): 1791-1797. 

 



 
213 

 
 

Schols, A. M., G. Wesseling, A. D. Kester, G. de Vries, R. Mostert, J. Slangen and E. F. Wouters 

(2001). "Dose dependent increased mortality risk in COPD patients treated with oral 

glucocorticoids." Eur Respir J 17(3): 337-342. 

Schols, A. M., R. Broekhuizen, C. A. Weling-Scheepers and E. F. Wouters (2005). "Body 

composition and mortality in chronic obstructive pulmonary disease." Am J Clin Nutr 

82(1): 53-59. 

Seymour, J. M., K. Ward, P. S. Sidhu, Z. Puthucheary, J. Steier, C. J. Jolley, G. Rafferty, M. I. 

Polkey and J. Moxham (2009). "Ultrasound measurement of rectus femoris cross-

sectional area and the relationship with quadriceps strength in COPD." Thorax 64(5): 

418-423. 

Seymour, J. M., L. Moore, C. J. Jolley, K. Ward, J. Creasey, J. S. Steier, B. Yung, W. D. Man, N. 

Hart, M. I. Polkey and J. Moxham (2010a). "Outpatient pulmonary rehabilitation 

following acute exacerbations of COPD." Thorax 65(5): 423-428. 

Seymour, J. M., M. A. Spruit, N. S. Hopkinson, S. A. Natanek, W. D. Man, A. Jackson, H. R. 

Gosker, A. M. Schols, J. Moxham, M. I. Polkey and E. F. Wouters (2010b). "The 

prevalence of quadriceps weakness in COPD and the relationship with disease severity." 

Eur Respir J 36(1): 81-88. 

Shoup, R., G. Dalsky, S. Warner, M. Davies, M. Connors, M. Khan, F. Khan and R. ZuWallack 

(1997). "Body composition and health-related quality of life in patients with obstructive 

airways disease." Eur Respir J 10(7): 1576-1580. 

Shrikrishna, D. and N. S. Hopkinson (2009). "Skeletal muscle dysfunction in chronic obstructive 

pulmonary disease." Respiratory Medicine: COPD Update 5(1): 7-13. 

Shrikrishna, D. and N. S. Hopkinson (2012a). "Chronic obstructive pulmonary disease: 

consequences beyond the lung." Clin Med 12(1): 71-74. 



 
214 

 
 

Shrikrishna, D., R. Astin, P. R. Kemp and N. S. Hopkinson (2012b). "Renin-angiotensin system 

blockade: a novel therapeutic approach in chronic obstructive pulmonary disease." Clin 

Sci (Lond) 123(8): 487-498. 

Sillen, M. J., C. M. Speksnijder, R. M. Eterman, P. P. Janssen, S. S. Wagers, E. F. Wouters, N. H. 

Uszko-Lencer and M. A. Spruit (2009). "Effects of neuromuscular electrical stimulation of 

muscles of ambulation in patients with chronic heart failure or COPD: a systematic 

review of the English-language literature." Chest 136(1): 44-61. 

Simpson, K., K. Killian, N. McCartney, D. G. Stubbing and N. L. Jones (1992). "Randomised 

controlled trial of weightlifting exercise in patients with chronic airflow limitation." 

Thorax 47(2): 70-75. 

Sin, D. D. and S. F. Man (2003). "Why are patients with chronic obstructive pulmonary disease 

at increased risk of cardiovascular diseases? The potential role of systemic inflammation 

in chronic obstructive pulmonary disease." Circulation 107(11): 1514-1519. 

Sin, D. D., N. R. Anthonisen, J. B. Soriano and A. G. Agusti (2006). "Mortality in COPD: Role of 

comorbidities." Eur Respir J 28(6): 1245-1257. 

Singh, S. J., M. D. Morgan, S. Scott, D. Walters and A. E. Hardman (1992). "Development of a 

shuttle walking test of disability in patients with chronic airways obstruction." Thorax 

47(12): 1019-1024. 

Singh, S. J., P. W. Jones, R. Evans and M. D. Morgan (2008). "Minimum clinically important 

improvement for the incremental shuttle walking test." Thorax 63(9): 775-777. 

Song, Y. H., Y. Li, J. Du, W. E. Mitch, N. Rosenthal and P. Delafontaine (2005). "Muscle-specific 

expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting." J Clin Invest 

115(2): 451-458. 



 
215 

 
 

Soriano, J. B., G. T. Visick, H. Muellerova, N. Payvandi and A. L. Hansell (2005). "Patterns of 

comorbidities in newly diagnosed COPD and asthma in primary care." Chest 128(4): 

2099-2107. 

Spruit, M. A., R. Gosselink, T. Troosters, A. Kasran, G. Gayan-Ramirez, P. Bogaerts, R. Bouillon 

and M. Decramer (2003). "Muscle force during an acute exacerbation in hospitalised 

patients with COPD and its relationship with CXCL8 and IGF-I." Thorax 58(9): 752-756. 

St-Onge, M., D. Mignault, D. B. Allison and R. Rabasa-Lhoret (2007). "Evaluation of a portable 

device to measure daily energy expenditure in free-living adults." Am J Clin Nutr 85(3): 

742-749. 

Steen, M. S., K. R. Foianini, E. B. Youngblood, T. R. Kinnick, S. Jacob and E. J. Henriksen (1999). 

"Interactions of exercise training and ACE inhibition on insulin action in obese Zucker 

rats." J Appl Physiol 86(6): 2044-2051. 

Steiner, M. C., R. L. Barton, S. J. Singh and M. D. Morgan (2002). "Bedside methods versus dual 

energy X-ray absorptiometry for body composition measurement in COPD." Eur Respir J 

19(4): 626-631. 

Steiner, M. C., R. Roubenoff, R. Tal-Singer and M. I. Polkey (2012). "Prospects for the 

development of effective pharmacotherapy targeted at the skeletal muscles in chronic 

obstructive pulmonary disease: a translational review." Thorax 67(12): 1102-1109. 

Stockley, R. A. (2009). "Progression of chronic obstructive pulmonary disease: impact of 

inflammation, comorbidities and therapeutic intervention." Curr Med Res Opin 25(5): 

1235-1245. 

Storka, A., E. Vojtassakova, M. Mueller, S. Kapiotis, D. G. Haider, A. Jungbauer and M. Wolzt 

(2008). "Angiotensin inhibition stimulates PPARgamma and the release of visfatin." Eur J 

Clin Invest 38(11): 820-826. 



 
216 

 
 

Studdy, P. R., R. Lapworth and R. Bird (1983). "Angiotensin-converting enzyme and its clinical 

significance--a review." J Clin Pathol 36(8): 938-947. 

Sumukadas, D., M. D. Witham, A. D. Struthers and M. E. McMurdo (2007). "Effect of 

perindopril on physical function in elderly people with functional impairment: a 

randomized controlled trial." CMAJ 177(8): 867-874. 

Swallow, E. B., D. Reyes, N. S. Hopkinson, W. D. Man, R. Porcher, E. J. Cetti, A. J. Moore, J. 

Moxham and M. I. Polkey (2007a). "Quadriceps strength predicts mortality in patients 

with moderate to severe chronic obstructive pulmonary disease." Thorax 62(2): 115-120. 

Swallow, E. B., H. R. Gosker, K. A. Ward, A. J. Moore, M. J. Dayer, N. S. Hopkinson, A. M. W. J. 

Schols, J. Moxham and M. I. Polkey (2007b). "A novel technique for nonvolitional 

assessment of quadriceps muscle endurance in humans." J Appl Physiol 103(3): 739-746. 

Timmerman, K. L., J. L. Lee, H. C. Dreyer, S. Dhanani, E. L. Glynn, C. S. Fry, M. J. Drummond, M. 

Sheffield-Moore, B. B. Rasmussen and E. Volpi (2010). "Insulin stimulates human skeletal 

muscle protein synthesis via an indirect mechanism involving endothelial-dependent 

vasodilation and mammalian target of rapamycin complex 1 signaling." J Clin Endocrinol 

Metab 95(8): 3848-3857. 

Tkacova, R. and P. Joppa (2007). "Angiotensin-converting enzyme genotype and C-reactive 

protein in patients with COPD." Eur Respir J 29(4): 816-817. 

Troosters, T., R. Gosselink and M. Decramer (2000). "Short- and long-term effects of outpatient 

rehabilitation in patients with chronic obstructive pulmonary disease: a randomized 

trial." Am J Med 109(3): 207-212. 

Troosters, T., F. Sciurba, S. Battaglia, D. Langer, S. R. Valluri, L. Martino, R. Benzo, D. Andre, I. 

Weisman and M. Decramer (2010a). "Physical inactivity in patients with COPD, a 

controlled multi-center pilot-study." Respir Med 104(7): 1005-1011. 



 
217 

 
 

Troosters, T., V. S. Probst, T. Crul, F. Pitta, G. Gayan-Ramirez, M. Decramer and R. Gosselink 

(2010b). "Resistance training prevents deterioration in quadriceps muscle function 

during acute exacerbations of chronic obstructive pulmonary disease." Am J Respir Crit 

Care Med 181(10): 1072-1077. 

Troosters, T., R. Gosselink, W. Janssens and M. Decramer (2010c). "Exercise training and 

pulmonary rehabilitation: new insights and remaining challenges." Eur Respir Rev 

19(115): 24-29. 

Ucar, G., Z. Yildirim, E. Ataol, Y. Erdogan and C. Biber (1997). "Serum angiotensin converting 

enzyme activity in pulmonary diseases: correlation with lung function parameters." Life 

Sci 61(11): 1075-1082. 

van den Borst, B., A. Koster, B. Yu, H. R. Gosker, B. Meibohm, D. C. Bauer, S. B. Kritchevsky, Y. 

Liu, A. B. Newman, T. B. Harris and A. M. Schols (2011). "Is age-related decline in lean 

mass and physical function accelerated by obstructive lung disease or smoking?" Thorax 

66(11): 961-969. 

van den Borst, B., I. G. Slot, V. A. Hellwig, B. A. Vosse, M. C. Kelders, E. Barreiro, A. M. Schols 

and H. R. Gosker (2012). "Loss of quadriceps muscle oxidative phenotype and decreased 

endurance in patients with mild-to-moderate COPD." J Appl Physiol. doi 

10.1152/japplphysiol.00508.2012 

Vandenbergh, E., K. P. Van de Woestijne and A. Gyselen (1967). "Weight changes in the 

terminal stages of chronic obstructive pulmonary disease. Relation to respiratory 

function and prognosis." Am Rev Respir Dis 95(4): 556-566. 

Vescovo, G., L. Dalla Libera, F. Serafini, C. Leprotti, L. Facchin, M. Volterrani, C. Ceconi and G. B. 

Ambrosio (1998). "Improved exercise tolerance after losartan and enalapril in heart 

failure: correlation with changes in skeletal muscle myosin heavy chain composition." 

Circulation 98(17): 1742-1749. 



 
218 

 
 

Vivodtzev, I., J.-L. Pepin, G. Vottero, V. Mayer, B. Porsin, P. Levy and B. Wuyam (2006). 

"Improvement in Quadriceps Strength and Dyspnea in Daily Tasks After 1 Month of 

Electrical Stimulation in Severely Deconditioned and Malnourished COPD." Chest 129(6): 

1540-1548. 

Vogiatzis, I., G. Stratakos, D. C. Simoes, G. Terzis, O. Georgiadou, C. Roussos and S. Zakynthinos 

(2007). "Effects of rehabilitative exercise on peripheral muscle TNFalpha, IL-6, IGF-I and 

MyoD expression in patients with COPD." Thorax 62(11): 950-956. 

Vogiatzis, I., D. C. Simoes, G. Stratakos, E. Kourepini, G. Terzis, P. Manta, D. Athanasopoulos, C. 

Roussos, P. D. Wagner and S. Zakynthinos (2010). "Effect of pulmonary rehabilitation on 

muscle remodelling in cachectic patients with COPD." Eur Respir J 36(2): 301-310. 

Volterrani, M., S. Scalvini, G. Mazzuero, P. Lanfranchi, R. Colombo, A. L. Clark and G. Levi 

(1994). "Decreased heart rate variability in patients with chronic obstructive pulmonary 

disease." Chest 106(5): 1432-1437. 

Vyas, D. R., E. E. Spangenburg, T. W. Abraha, T. E. Childs and F. W. Booth (2002). "GSK-3beta 

negatively regulates skeletal myotube hypertrophy." Am J Physiol Cell Physiol 283(2): 

C545-551. 

Wagner, P. D. (2008). "Possible mechanisms underlying the development of cachexia in COPD." 

Eur Respir J 31(3): 492-501. 

Wang, B. W., H. Chang, P. Kuan and K. G. Shyu (2008). "Angiotensin II activates myostatin 

expression in cultured rat neonatal cardiomyocytes via p38 MAP kinase and myocyte 

enhance factor 2 pathway." J Endocrinol 197(1): 85-93. 

 

 

 



 
219 

 
 

Wanger, J., J. L. Clausen, A. Coates, O. F. Pedersen, V. Brusasco, F. Burgos, R. Casaburi, R. 

Crapo, P. Enright, C. P. van der Grinten, P. Gustafsson, J. Hankinson, R. Jensen, D. 

Johnson, N. Macintyre, R. McKay, M. R. Miller, D. Navajas, R. Pellegrino and G. Viegi 

(2005). "Standardisation of the measurement of lung volumes." Eur Respir J 26(3): 511-

522. 

Waschki, B., A. Kirsten, O. Holz, K. C. Muller, T. Meyer, H. Watz and H. Magnussen (2011). 

"Physical activity is the strongest predictor of all-cause mortality in patients with COPD: 

a prospective cohort study." Chest 140(2): 331-342. 

Waschki, B., M. A. Spruit, H. Watz, P. S. Albert, D. Shrikrishna, M. Groenen, C. Smith, W. D. 

Man, R. Tal-Singer, L. D. Edwards, P. M. Calverley, H. Magnussen, M. I. Polkey and E. F. 

Wouters (2012). "Physical activity monitoring in COPD: compliance and associations with 

clinical characteristics in a multicenter study." Respir Med 106(4): 522-530. 

Watz, H., B. Waschki, C. Boehme, M. Claussen, T. Meyer and H. Magnussen (2008). 

"Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity: a 

cross-sectional study." Am J Respir Crit Care Med 177(7): 743-751. 

Watz, H., B. Waschki, T. Meyer and H. Magnussen (2009). "Physical activity in patients with 

COPD." Eur Respir J 33(2): 262-272. 

Williams, A. G., M. P. Rayson, M. Jubb, M. World, D. R. Woods, M. Hayward, J. Martin, S. E. 

Humphries and H. E. Montgomery (2000). "The ACE gene and muscle performance." 

Nature 403(6770): 614. 

Wilson, D. O., R. M. Rogers, E. C. Wright and N. R. Anthonisen (1989). "Body weight in chronic 

obstructive pulmonary disease. The National Institutes of Health Intermittent Positive-

Pressure Breathing Trial." Am Rev Respir Dis 139(6): 1435-1438. 



 
220 

 
 

Wong, M. H., O. C. Chapin and M. D. Johnson (2012). "LPS-stimulated cytokine production in 

type I cells is modulated by the renin-angiotensin system." Am J Respir Cell Mol Biol 

46(5): 641-650. 

Woods, D., M. Hickman, Y. Jamshidi, D. Brull, V. Vassiliou, A. Jones, S. Humphries and H. 

Montgomery (2001). "Elite swimmers and the D allele of the ACE I/D polymorphism." 

Hum Genet 108(3): 230-232. 

Yoshida, T., L. Semprun-Prieto, S. Sukhanov and P. Delafontaine (2010). "IGF-1 prevents ANG II-

induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin 

ligase atrogin-1 expression." Am J Physiol Heart Circ Physiol 298(5): H1565-1570. 

Yu, Z., P. Li, M. Zhang, M. Hannink, J. S. Stamler and Z. Yan (2008). "Fiber type-specific nitric 

oxide protects oxidative myofibers against cachectic stimuli." PLoS One 3(5): e2086. 

Zhang, B., H. Tanaka, N. Shono, S. Miura, A. Kiyonaga, M. Shindo and K. Saku (2003). "The I 

allele of the angiotensin-converting enzyme gene is associated with an increased 

percentage of slow-twitch type I fibers in human skeletal muscle." Clin Genet 63(2): 139-

144. 

Zwerink, M., J. van der Palen, P. van der Valk, M. Brusse-Keizer and T. Effing (2013). 

"Relationship between daily physical activity and exercise capacity in patients with 

COPD." Respir Med 107(2): 242-248. 

 


