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Continuous patient monitoring systems acquire enormous amounts of data that is either manually analysed by doctors or automatically
processed using intelligent algorithms. Sections of data acquired over long period of time can be corrupted with artefacts due to patient
movement, sensor placement and interference from other sources. Because of the large volume of data these artefacts need to be automatically
identified so that the analysis systems and doctors are aware of them while making medical diagnosis. This paper explores three important
factors that must be considered and quantified for the design and evaluation of automatic artefact identification algorithms: signal quality,
interpretation quality and computational complexity. The first two are useful to determine the effectiveness of an algorithm while the third is
particularly vital in mHealth systems where computational resources are heavily constrained. A series of artefact identification and filtering
algorithms are then presented focusing on the electrocardiography data. These algorithms are quantified using the three metrics to demonstrate
how different algorithms can be evaluated and compared to select the best ones for a given wireless sensor network.

1. Introduction: The mainstream use of smartphones and the
miniaturization of electronics has led to widespread availability
of various smart and wireless sensors for continuous healthcare
monitoring. These sensors acquire relevant signals and transmit
them wirelessly to a smartphone or a base station that can run
some diagnostic algorithms or transmit them via internet for further
analysis. Although this trend is highly useful allowing patients to
have multiple wearable sensors enabling different physiological
measurements simultaneously, the abundance of these monitoring
sensors has led to significant problems in data acquisition and
management. The large quantity of data acquired by multiple
sensors places substantial demands on the medical profession
as well as the receiving infrastructure. Traditional methods for
mitigating this problem include intermittent recording, compression
and manual analysis. However, with a plethora of data sources
continuously acquiring data, these methods are no longer suitable.
Therefore automatic analysis algorithms are used to sift through this
large quantity of data which would otherwise take several hours or
days for manual analysis.

Algorithms for automated analysis of signals are heavily
dependent on the quality of signals that are recorded. Hence,
providing reliable data to the analysis system is pivotal for
meaningful alerts and diagnoses to occur. This data may be affected
by several sources of noise and movement artefacts. These artefacts
are even more likely to be present when signals are continuously
acquired over long periods of time using wearable sensors, that
allow patient mobility, compared to the in-hospital acqusition
systems that are very well controlled.

This paper attempts to solve some of the issues associated
with the quality of data acquired using wearable sensors. It looks
at identification of problems that could impact the data quality,
affecting the automated analysis of these physiological signals. As
a result, corrupted signals can be marked automatically informing
the physicians of their unreliability.

Although this problem is true for all healthcare devices that are
used for long-term monitoring, the work presented in this paper
is part of a larger project for smart diabetes management [1]. It
is well known that patients with diabetes, in particular, devote a
large amount of their time to the management and acquisition of
data [2]. A smart diabetes management system can thus notify
medical professionals of its findings and assist them in providing
care to diabetic patients. Fundamental to the entire system working
is the recording of several physiological signals from the wearable
sensors used by the patient. In recent years there has been a large
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number of such wearable body monitoring sensors available that
can be used for the diabetes management system. However, the
data recorded by these devices can be corrupted with artefacts and
difficult to manage because of its large volume. Further, the system
itself should remain sensor-agnostic, and be independent of the
exact model or make of the sensor used. For the aforementioned
diabetes management system, the Zephyr BioHarness 3 [3] was
used for data collection. The suitability of the BioHarness 3 for
the continuous monitoring of clinical trial patients was determined
by its small size, weight, ease of application and robust wireless
transmission of electrocardiography, respiratory and movement
sensor data. However, the physiological waveforms transmitted by
the BioHarness 3, and other, wireless sensors are not without their
faults. Various noise artefacts can significantly alter the data and
provide the medical professionals, and other automated systems,
with incomplete or potentially misleading data. To mitigate this
problem, algorithms are needed to continuously monitor this large
volume of data, detect artefacts, and inform medical professionals
of their reliability.

Section 2 discusses the BioHarness 3 sensor system in more
detail followed by an explanation of the various artefact sources.
A set of criteria are developed in Section 3 to evaluate different
artefact detection algorithms, and help developers and researchers
compare various sensor systems with the aim of automatically
accumulating physiological data for both automated analysis. In
the next secion, a series of artefact identification and filtering
algorithms are then examined, tested and evaluated using these
selection criteria. These help to ensure that the data collected is
both consistent and reliable to provide a practical medical diagnosis
value.

2. Sensor Characteristics: The BioHarness 3 provides three
sensors: an accelerometer, electrocardiography (ECG) sensor and
respiration sensor. Each sensor is recorded independently and
transmitted to the patient’s smartphone in distinct packets using
Bluetooth. Within the smartphone (base station), the data is filtered
and collated before being sent onwards through the system. The
combined data rate is approximately 5 kb/s and is recorded in two
minute bursts every ten minutes to provide sufficient battery life for
continuous wear.

The tri-axial accelerometer provides three channels at 50 Hz
corresponding to the Cartesian coordinates from the belt. The
respiration sensor is a single-band rib cage capacitive pressure
plethysmography device, which can only provide a waveform



illustrating the expansion of the thoracic cavity but cannot quantify
the size of the chest expansion. The ECG sensor provides a 250 Hz
signal similar to second modified lead on a traditional non-portable
ECG device. This signal is a downsampled recording of the 1 kHz
sample rate achieved by the sensor. Access to all of these data
signals can be unreliable at times due to the artefacts, discussed
in the next section.

3. Artefacts:

3.1. Selection Criteria: To identify the algorithms required for
eliminating ECG artefacts, their potential causes are investigated.
Table 1 outlines five possible artefacts that have been explored [4],
including the style of noise introduced by these artefacts.

Table 1 Frequency ranges of common ECG artefacts.

Artefact Noise Introduced  Cause

Drift 0.5 Hz Sine wave  Breathing

Motion 5 Hz Sine wave Body motion

Mains 50 Hz Sine wave  Electrical interference
Electromyography =~ Random noise Muscle movement

Attenuation Low SNR Poor sensor placement

A naive artefact filtering algorithm may discard any signals that
fall out of the frequencies of interest. However one purpose of
the system proposed here, to monitor patients with diabetes, is
to help medical professionals diagnose potential heart problems.
Diagnosing an abnormal ECG signal may require the entire
unmodified waveform for analysis. As an example, a standard high-
pass filter applied to the electrocardiogram waveform can cause
phase shifts which distort the ST segment of the waveform [5].
Therefore careful selection of the algorithms used to enhance the
legibility of the waveforms is critical.

The frequencies of interest for ECG waveforms can be seen in
the power spectral density (PSD) plot of an ideal synthetic ECG
waveform [6] in Fig. 1. The energy within the signal is contained
mostly between the 5-40 Hz range, however other details that can
assist with diagnosis may be hidden amongst the aliasing artefacts
shown within this plot. Therefore this frequency range can be
taken as a comparative metric, but care must be taken because the
QRS complex within the ECG can be composed of some higher
frequencies up to 100 Hz [7].

4. Comparison Methodology: In order to compare different
algorithms for artefact detection, the following metrics are used to
assess their usefulness, performance and computation requirements.

4.1. Signal Quality: This is used to establish the useful power
within the signal in order to investigate whether a filter algorithm
has successfully removed the energy from artefacts. It is important
to see whether the frequencies of most interest have been enhanced
or attenuated by the artefact filter under test. Adapted from existing
research [9] and applied to mHealth, two signal quality metrics are
investigated to analyse the power of the ECG data produced by a
sensor in certain frequency bands.

The baseline power metric, shown in Eq. (1) compares the power
in the main area of interest (0—40 Hz) to the power primarily
associated with baseline noise, frequently caused by breathing
artefacts that occur around 0.5 Hz [4]. Its result is a number between
zero and one that corresponds to the useful power in the signal. A
high value indicates that the signal contains data of interest, whereas
a low value corresponds to faulty or incomplete data.
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Another important aspect of the ECG waveform is the QRS
complex which has power contained within a certain frequency
band. The relative power in this part of the waveform needs to be
examined as well to ensure the reliability of the ECG waveform.
This is computed using the relative power ratio shown in Eq. (2).
As before, a high value of pSQI indicates that data of interest is
present, while a low value corresponds to erroneous data. Artefacts
such as the baseline noise caused by breathing, muscle contractions
and general body motion all occur below 5 Hz [10]. Therefore this
equation aims to test the successfulness of any filtering algorithm.
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4.2. Interpretation Quality: A key use of the ECG waveform is to
analyse the intervals between the main peaks within the signal to
establish the heart rate of the patient in beats per minute. Therefore,
the interpretation quality metric investigates whether the resulting
waveform is corrupted by the algorithm under test, and whether this
may lead to a misdiagnosis. To assess this, 16 records from the MIT-
BIH Arrhythmia Database [11] were adapted for analysis. These
records were from normal patients using standard hospital ECG
recording apparatus. Only records with complete MLII (second
modified lead) waveforms were considered for use, as this closely
replicates the waveform recorded by the BioHarness 3 with its
single lead. A cardiologist hand inspected each waveform, counting
the number of QRS complexes within it. This was compared to a
count produced using the Open Source ECG Analyser (OSEA) [8]
which is known to perform well with portable dry electrodes [12].
Records where the OSEA QRS complex count was not within
99.5% of the cardiologist’s count were discarded, leaving 16
records.

Algorithms that impede the automatic interpretation of
conditions, such as Arrhythmias, should not be used in mHealth
systems. Therefore the interpretation quality metric defined here
provides a basic method of comparison to select filtering algorithms
that impede interpretation the least.

4.3. Computational Complexity: Due to the constrictive
programming environment within most smartphone application
platforms and sensor nodes, the ability to determine the
computational complexity is not precise. Therefore the standard
big-O notation will be utilised to examine each algorithm, as this
metric remains consistent between most programming languages
and is a suitable way of comparing algorithms. Big-O explains
the complexity associated with an algorithm by defining the
mathematical function that limits it.

5. Identification and Filtering Algorithms: Performing the
artefact identification and filtering on the base station itself
permits both patients and developers to utilise the sensors of
their choice without the hospital side of the system requiring
modification. Therefore reducing the computational complexity of
the identification algorithms is important. Another aspect of the
filtering is the necessity to not alter the resulting waveforms that
are transmitted through the system. The potential for misdiagnosis,
particularly when detecting heart abnormalities is critical in an
unsupervised mHealth environment.

Consequently, a series of low-complexity algorithms are
designed and implemented to consume as few resources as
possible to enhance battery life and performance within a resource
constrained device. These are further investigated and tested
against the three metrics previously described for signal quality,
interpretation quality and computational complexity.

Each algorithm targets a particular kind of artefact. Hence, in
order to better evaluate the efficiency of each technique a synthetic
ECG signal is firstly used with one specific artefact superimposed
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Figure 1 (a)An arbitrary five second segment of an synthetic ECG waveform with no artefacts. The red diamonds indicate R-peaks detected using the OSEA
algorithm [8]; (b) The power spectral density of a synthetic ECG waveform with no added artefacts
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Figure 2. An ECG signal obtained using the BioHarness 3.

on to it. A real signal such as the one shown in Fig. 2, obtained
using the BioHarness 3 sensor, simultaneously has more than one
artefact added to it. However, illustrative values for the different
metrics are nonetheless also calculated for real ECG acquired using
the BioHarness 3 sensor in bursts of 120 seconds.

5.1. Saturation Artefacts: There can be a number of reasons for
saturation artefacts e.g. large body movements. These are ultimately
the result of improper gain selection on the sensor. Since the gain is
not user configurable on most domestic ECG sensors such as the
BioHarness 3, the possibility of such artefacts occurring is high
enough to warrant identification. The corruption to the waveform
caused by these artefacts cannot be filtered, and therefore the signal
must be identified as containing an artefact.

A standard packet-based threshold algorithm for identifying
saturation is explored, where the thresholds were observed by
manual inspection of the device. If any one sample within a packet
of 63 samples crossed either of these thresholds, the entire packet
was marked as saturated to encapsulate the gradual rise or fall to
one of the limits. The results of this algorithm are demonstrated
in Fig. 3 in a similar manner to the interface provided to medical
professionals as part of the entire patient monitoring system.

Two further saturation identification algorithms were explored:
the rail contact mask [13] and Analogue-to-Digital Converter
(ADC) clipping [14]. The rail contact mask [13] identifies a whole
second of samples if they exist within 1% of the limits of the ADC
resolution. The ADC clipping algorithm [14] identifies a second of
data (e.g. a single R-peak interval at a common heart rate of 60
beats per minute) as an artefact should two consecutive samples lie
beyond 95% of the average signal amplitude.

Both of these algorithms identify artefacts without filtering data,
therefore the comparison criteria are not suited for this class of
artefact. The complexity of these algorithms is O(n), as they only
operate on the input waveform to conduct static comparisons.

5.2. Mains Artefacts: Occasionally ungrounded sensors can
receive mains wiring noise through their inputs. This form of
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Figure 3 An example ECG waveform recorded by the BioHarness 3 showing
the output of the original saturation identification algorithm.

artefact does not affect the accelerometer or respiration sensors
because the common mains frequencies of 50 Hz and 60 Hz occur
beyond their range of interest. However, it does affect ECG signals
since they contain important information around these frequencies.
This artefact is difficult to observe on the real ECG obtained from
the BioHarness 3 (Fig. 2) due to the presence of other artefacts.
To emphasize the effect of this artefact alone, Fig. 4(a) shows a
synthetic ECG waveform at 60 beats per minute, with a 14 dB 50 Hz
sinusoidal signal added. Removing this would significantly increase
the legibility of the QRS complex, although the OSEA algorithm [8]
can still extract the R-peak interval despite this noise.

In the European Union, all mains electrical supplies are
standardised at a frequency of 50 Hz permitted to vary by
200 mHz [15]. As shown in Fig. 4(b), the PSD of a synthetic
ECG waveform with 20% mains noise causes a very large spike
at 50 Hz. A common method of removing this power spike is
to use a notch filter [16] with a second order IIR filter being
a frequent implementation [7], [13]. Such a filter on the ECG
waveform is known not to produce appreciable distortion [17], and
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Figure 4 (a)An arbitrary five second segment of an synthetic ECG waveform with an added mains artefact at a typical 14 dB. The red diamonds indicate
R-peaks detected using the OSEA algorithm [8]; (b) The power spectral density of a synthetic ECG waveform with an added mains artefact.
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Figure 5 (a) An arbitrary five second segment of an synthetic ECG waveform with an added movement artefact. The red diamonds indicate R-peaks detected
using the OSEA algorithm [8]; (b) The power spectral density of a synthetic ECG waveform with an added movement artefact.

this is reflected in the signal quality indices, which do not alter
regardless of the percentage of mains noise added, and regardless of
the average heart rate of the synthetic ECG. For an ECG recorded
by the BioHarness 3 with a heart rate of 72 beats per minute, the
baseline power is improved by over 9%. For a synthetic ECG signal
with 120 beats per minute, the potential improvement is 10%. There
is no alteration in the relative power for both real or synthetic
signals in the QRS complex, because the noise from the mains
does not occur in the range under question. With the interpretation
quality metric, no interference was observed with the identification
of R-peaks by the OSEA algorithm regardless of heart rate or mains
noise amplitude. However, this finding is due to algorithm’s ability
to compensate for this type of noise [8]. Finally, the computational
complexity of the mains filter is O(n?) because of the type of
array indexing required by the digital filter. Such a filter can be
computationally expensive, however the floating-point performance
of most modern smartphones is sufficient for such processing.

5.3. Involuntary Movement Artefacts: These are usually caused
by the involuntary muscle contractions and can be observed as
high amplitude spikes in the 0-5 Hz range [12]. Typical advice
for professional non-ambulatory ECG recording include raising
the room temperature to reduce shivering and other muscular
movements. The effect of these movements can be seen on real
ECG signals around 5-second and 38-second mark on Fig. 2.
Although it appears to be small corruption of the signal the effect
of the movement artefact is significant in interpreting the ECG.
Fig. 5(a) highlights this on a synthetic ECG waveform where the
the QRS complex is not legible as a result of adding movement
artefacts. This distortion is evident by the peak in the PSD at
5 Hz as shown in Fig. 5(b). Ghasemzadeh et al. [18] evaluated
several motion artefact filters, however there is no clear conclusion
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available due to the noise being too similar to the ECG signal.
Further, such algorithms frequently remove useful data which is
critical for medical professionals.

5.4. Drift Artefacts: Baseline drift artefacts on the ECG waveform
are frequently caused by breathing, however a correlation cannot be
assumed because such artefacts are also associated with poor sensor
placement thus invalidating both signals [19].

Fig. 2 shows the effect of baseline drift artefact on ECG signal
acquired using the BioHarness 3 between 20 and 30 seconds
on time axis. While there are amplitude changes, the details of
the waveform still appear legible. This is further shown using a
synthetic ECG signal in Fig. 6(a). A filtering method, such as
the Discrete Wavelet Transform [20], can be used to produce a
corrected waveform, however this can corrupt the original signal
which is important for the detection of heart abnormalities [18],
[21]. The PSD of the synthetic ECG signal, in Fig. 6(b), shows
that the spectrum is broadly unchanged from the unaltered synthetic
waveform, highlighting the difficulties in removing low frequency
components of the signal which is similar to the noise distribution.

Two algorithms for removing baseline drift artefacts, based upon
median filtering, are explored to avoid any potential distortions and
keeping the computational complexity low. The first one is a simple
median filter [18] that applies a median operator to a window of
half the sample rate. The second one is a mean-median filter [21]
which combines both a mean and a median operator to the same
sized window to better remove the non-linear artefacts.

The two algorithms result in no corruption to the relative power in
the QRS complex of the unfiltered ECG. Further, the interpretation
quality is not compromised since all the R-peaks, in both synthetic
and real ECG signals, were identified after applying the two
filters. The results were consistent at differing amounts of added

Healthcare Technoloay Letters. op. 4—6



5Y v v v v v
4
— 3
S
£ 2
()
j=}
g 1
o
0
-1
-2
0 1 2 3 4
Time (s)
— ECG Signal W Normal R-Peak

(a)

Power/Frequency (dB/Hz)

-20
-30
-40
-50
-60
-70
-80
-90
0 25 50 75
Frequency (Hz)

(b)

100 125

Figure 6 (a) An arbitrary five second segment of an synthetic ECG waveform with an added baseline drift artefact at a typical 14 dB. The red diamonds indicate
R-peaks detected using the OSEA algorithm [8]; (b) The power spectral density of a synthetic ECG waveform with an added baseline drift artefact.

baseline drift noise suggesting no significant alterations to the ECG
waveform. Improvements of up to 24% in the relative power of
the baseline were observed when using the mean-median filter,
compared to 13% for the median filter with an ECG signal acquired
using the BioHarness 3. These improvements were even higher for
a synthetic ECG signal at 29% and 16% for the mean-median and
median filters respectively. The baseband power index (basSQI),
using the real ECG signal, increased from an average of 0.217 to
0.979, indicating a much more useful signal when the two filters
were used. The computational complexity of both filters is also
relatively simple at O(logn).

5.5. Low Signal-to-Noise Ratio (SNR): Low SNR artefacts
commonly occur due to breathing or poor sensor placement. They
disrupt the incoming waveform and therefore no filtering is possible
to rectify the signal. A common implementation of an identification
algorithm to remove this noise uses hugely complex series of filters
such as the low power mask algorithm [13]. However, this is
not suitable for low-power implementation due to its complexity
and may also distort the ECG waveform. A simpler solution is
to maintain the current low SNR criterion which utilises a static
threshold to determine whether the amplitude of a sample window
was sufficient to be interpreted as a valid signal.

For ECG signals, a minimum SNR of 20 dB is the clinically
accepted standard [22] for the analysis of the QRS complex.
Therefore a range of 10% of the input resolution should be used
as the criteria for detecting unacceptable levels of noise and hence
flag this to the medical professional to indicate that the data they
are observing might be unreliable. An example of this artefact
identification flag can be seen in Fig. 7, where an ECG waveform
recorded by the BioHarness 3 has been artificially attenuated for a
set duration to demonstrate the algorithm.

The computational complexity of such an algorithm is O(n) in
the time domain, because of the static comparison.

6. Discussion: To continue providing consistent and reliable
sensor data to medical professionals, there is a need to identify
artefacts automatically and clean this data before transmitting.
Further, in cases where it is not possible to filter data properly
the doctors should have access to the raw data. The dataflow
from the sensors to the transmitted data with inermediate artefact
identification is depicted in Fig. 8. The physiological sensor data
is parsed through the previously mentioned artefact identification
and filters to produce filtered data. In addition, should any artefacts
identification or filter algorithm detect that the SNR of the
waveform is less than 20 dB, then the relevant noise flags will
be recorded and the unfiltered data will be sent from the patient’s
smartphone to the database server and automated analysis engine.
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Figure 7 An ECG waveform recorded by the BioHarness 3 showing the
output of the original low signal-to-noise ratio identification algorithm.

The artefact filter algorithms to remove baseline drift and mains
interference are only executed if the noise is less than 10% of the
signal amplitude. The baseline drift, low SNR, mains interference
and saturation identification algorithms are combined so that if any
one algorithm identifies an artefact, the relevant packets transmitted
by the BioHarness 3 are flagged as such, and the unfiltered data
is transmitted to the server. This dataflow provides the doctors
with reliable data in the best case scenario, where the artefacts are
minimal, and some noisy data in the worst case scenario.

Filtered Data

Input
Sensor
Data

Noise

Artefact Flag

Algorithms

Unfiltered Data

Figure 8. Dataflow for continous long-term recording of sensor data.

The signal quality metrics described in this paper can be
used to interpret the effectiveness of certain artefact removing
algorithms both in terms of the quality of the signal as well as the
computational efficiency of the algorithm. Other methods proposed
in literature to assess ECG signal quality include algorithms to
detect flatness, impulses and Gaussian noise within the signal [23].
Since the ECG signal is bounded, its dynamic range can also be
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used to interpret its signal quality [24]. Additionally, the signal
may also be quantified by estimating the average beat quality [25].
Orphanidou ef al. [26] proposed checking for heart rate and RR
interval to determine if they fall within a normal range. They also
performed template matching to ensure most properties of the ECG
signal were preserved. Apart from those covered in this paper, there
are many other artefacts as well that can degrade the quality of
an ECG signal. More metrics and algorithms to address them are
needed, particularly for sensors used in the context of mHealth.

7. Conclusion: Continuous monitoring of patients is a pivotal
part of mHealth, and one which still warrants further research.
While the artefact detection and filtering algorithms described here
are not the best available, they do satisfy the metrics described
previously to determine the suitability for an algorithm in a mHealth
environment. Signal quality, interpretation quality and computation
complexity each reflect the requirements placed on ubiquitous
sensor networks when used in a healthcare scenario. The aim of the
artefact identification algorithms described is to make the absolute
best use of the sensor data, and to assist both medical professionals
in their interpretation of the data and the patients themselves—to
ensure that unsupervised recording is working sufficiently well. It
is hoped that the metrics and algorithms described in this paper can
be useful for designers of mHealth systems and help them to collect
reliable data with true diagnostic value.
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