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Abstract 

 

FOXO3a and FOXM1 are two forkhead transcription factors with antagonistic roles in cancer 

and DNA damage response. FOXO3a functions like a typical tumour suppressor, whereas 

FOXM1 is a potent oncogene aberrantly overexpressed in genotoxic resistant cancers. FOXO3a 

not only represses FOXM1 expression but also its transcriptional output. Recent research has 

provided novel insights into a central role for FOXO3a and FOXM1 in DNA damage response. 

The FOXO3a-FOXM1 axis plays a pivotal role in DNA damage repair and the accompanied 

cellular response through regulating the expression of genes essential for DNA damage sensing, 

mediating, signalling and repair as well as for senescence, cell cycle and cell death control. In 

this manner, the FOXO3a-FOXM1 axis also holds the key to cell fate decision in response to 

genotoxic therapeutic agents and controls the equilibrium between DNA repair and cell 

termination by cell death or senescence. As a consequence, inhibition of FOXM1 or reactivation 

of FOXO3a in cancer cells could enhance the efficacy of DNA damaging cancer therapies by 

decreasing the rate of DNA repair and cell survival while increasing senescence and cell death. 

Conceptually, targeting FOXO3a and FOXM1 may represent a promising molecular therapeutic 

option for improving the efficacy and selectivity of DNA damage agents, particularly in 

genotoxic agent resistant cancer. In addition, FOXO3a, FOXM1 and their downstream 

transcriptional targets may also be reliable diagnostic biomarkers for predicting outcome, for 

selecting therapeutic options, and for monitoring treatments in DNA-damaging agent therapy. 
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Introduction 

The genetic information of a living organism is encrypted within its DNA. Preserving this 

genetic information is essential for the correct functioning of the organism and the long-term 

survival of the species 1, 2. Failure to conserve the genetic code can lead to instability of the 

genome, a prominent feature of cancer and degenerative diseases 3. During the lifespan of an 

organism, its DNA is subject to constant assaults from endogenous and exogenous genotoxic 

stresses. The endogenous DNA damaging agents comprise of products of metabolism and 

reactive oxygen species (ROS), which cause oxidative damage to DNA 4, while the exogenous 

environmental agents include ultraviolet (UV) light, ionizing radiation, toxins, DNA damaging 

chemicals and genotoxic therapeutic agents 5. In addition, DNA lesions can also arise through 

poorly regulated or faulty cellular metabolic processes, such as abortive topoisomerase activity 

and base mismatch during DNA replication 5, 6. As a result of DNA damage, cells are unable to 

pair bases and DNA cannot be replicated properly 5. This will lead to stalled DNA replication or 

the incorporation of erroneous genetic information. It is therefore imperative that the damaged 

DNA is repaired promptly and accurately.  

DNA lesions come in various forms, which include nucleotide modifications, single stranded 

breaks (SSBs) and double stranded breaks (DSBs) 5. DSBs occur when both of the 

complementary DNA strands are damaged simultaneously in close proximity 7. DSBs are 

thought to be one of the most lethal forms of damage and, if left unrepaired, will increase the risk 

of chromosome breakages/rearrangement, mutagenesis and losing genetic information 8. In 

response to DNA damage, cells trigger a complex molecular reaction mechanism called the DNA 

Damage Response (DDR). This detects DNA damage, arrests cell cycle proliferation for DNA 

repair to take place and signals for its repair or cell termination 9. More specifically, it monitors 

chromatin integrity, and triggers a cascade of signals and reactions upon the detection of 

damaged DNA 10. This mechanism also further propagates and amplifies the damage signals and 

ultimately coordinates DNA repair with cell cycle arrest and cell termination 9, 11. To induce cell 

cycle arrest, the cells must activate cell cycle checkpoints in the G1-S or G2-M phases 12, 13. The 

induction of cell cycle arrest prevents the transmission of faulty genomic information and allows 

more time for cells to repair the damage 1, 5. 
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Once DDR is activated, there are three potential outcomes. First, the repair mechanism is able to 

completely repair the damaged DNA and so cell proliferation can resume as normal 5. Secondly, 

if the lesion is irreparable, the cell can either enter apoptosis, programmed cell death, mitotic 

catastrophe, or senescence, a state of permanent cell proliferative arrest 11. In this way, the cell is 

removed from the population and so the passage of erroneous genetic information to the next 

generation is avoided. Finally, DDR can fail and the damaged DNA is not repaired. The 

accumulation of DNA lesions will result in genetic instability and can give rise to genetic 

disorders such as cancer, ataxias, and Huntington’s, etc 14, 15. Cancer cells have a higher 

proliferation rate and a tendency to bypass cell cycle checkpoints and, therefore, an increased 

susceptibility to accumulating further DNA damage and mutations 1. Of particular interest is the 

fact that some cancer cells are able to survive, and not undergo cell death or senescence, despite 

sustaining high levels of DNA damage. It is believed that an enhanced DNA damage repair and 

survival ability will allow some cancer cells to develop resistance to genotoxic agents and 

accumulate further mutations. In consequence, deregulated DDR will not only impact cancer 

initiation, but also cancer progression and genotoxic drug resistance. In this review, we explore 

the impact of the FOXO3a-FOXM1 forkhead transcription factor axis on the DNA damage 

response, focusing on the therapeutic potential of targeting FOXO3a and FOXM1 in overcoming 

genotoxic drug resistance. 

 

FOXO3a 

FOXO3a is a member of the class O subfamily of forkhead box (Fox) transcription factors, 

which share a common conserved ‘wing-helix’ DNA-binding domain 16, 17. There is strong 

evidence that FOXO3a acts as a tumour suppressor and can inhibit cell growth by driving the 

transcription of genes, such as Bim, FasL, p27Kip1, p130 (RB2), essential for cell proliferative 

arrest, cell death and differentiation 18. Consistently, inactivation of FOXO3a has been shown to 

be a crucial step for oncogenic transformation 18-21. The activity, expression and subcellular 

localization of FOXO3a is regulated by a diverse range of post-translational modifications 22. 

Phosphorylation by kinases, particularly Akt (also called PKB) 23, ERK 24, IKB kinase (IKK) 25 

and serum and glucocorticoid-regulated kinase (SGK) 26 can promote FOXO3a nuclear to 

cytoplasmic shuttling 27, and it also provokes a conformational change in FOXO3a which 
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facilitates recognition by Mdm2 (murine double minute 2) and Skp2 (S kinase phase protein 2) 

E3 ligases, leading to its nuclear exclusion, retention in the cytoplasm and subsequent 

proteasome degradation and inactivation 28. Conversely, other kinases, such as p38 MAPK 29, 

stress activated c-Jun-NH2-kinase (JNK) 30, AMP-activated protein kinase (AMPK) 31 and 

Ste20-like protein kinase (MST1) 32, have been demonstrated to promote FOXO3a activity and 

expression. FOXO3a transcription factor can also be regulated by other post-translational 

modifications such as acetylation, methylation, ubiquitination and glycosylation 22. Interestingly, 

FOXO3a overexpression can arrest cell cycle progression and prevent damage induced by 

genotoxic agents and oxidative stress 33-37 

 

Modulation of DNA Damage Response by FOXO3a 

 

FOXO3a is a key factor in the control of the DNA damage response and that is mediated 

primarily through the regulation of a diverse range of genes involved in sensing DNA damage, 

propagating DNA damage response signals, cell cycle checkpoint arrest, and DNA repair 28. It 

has been shown that DNA damaging agents, such as doxorubicin, can activate the p38 MAPK, 

which in turn will phosphorylate FOXO3a on Ser-7 to promote its nuclear localization and 

activation to mediate cell cycle arrest 29. In this context, one of the direct transcriptional targets 

of FOXO3a is p27Kip1, a cyclin-dependent kinase (CDK) inhibitor that interacts with CDK-cyclin 

complexes to induce cell cycle arrest in G0/G1 as well as during S phase 38. Interestingly, 

FOXO3a can induce cells to enter senescence, a permanent state of cell cycle arrest through 

promoting the expression of p27Kip1 39. In concordance, the cell cycle promoters cyclin D1 and -

D2 are negatively regulated by FOXO3a 40. FOXO3a overexpression also induces a decrease in 

cyclin D1/2 protein and mRNA levels followed by G1 arrest and the conditional activation of a 

FOXO3a mutant results in repression of cyclin D1 and D2 promoter activities, indicating that 

cyclin D1/2 is a transcriptional target of FOXO3a. Importantly, ectopic expression of cyclin D1 

can prevent FOXO3a-mediated cell cycle arrest 40. In addition to G1 arrest, G2/M phase-arrested 

cells also display an upregulation in FOXO3a expression along with an increase in FOXO3a 

binding to promoter regions of cyclin B1 and Polo-like kinase 1 (PLK1) and a decrease in their 

expression 41. Nevertheless, the regulation of cyclins by FOXO3a does not always result in cell 

cycle arrest. Active forms of FOXO3a were shown to regulate cyclin G2 expression at the 
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protein and mRNA levels and transactivate its promoter, which was associated with exit from 

cell cycle 42. Unlike other cyclins, cyclin G2 does not promote cell growth, but might inhibit cell 

cycle progression and facilitate the maintenance of a quiescent state 43. In addition, activation of 

FOXO3a also modulates the expression of the retinoblastoma family protein p130 (RB2). 

Although p130 levels are low in cycling cells, its expression is increased in quiescent and 

senescent cells 44. In these cells, p130 is hypophosphorylated and can interact with the E2F-4 

transcription factor to promote the repression of diverse genes required for reentry into cell 

cycle, thus contributing to the maintenance of the quiescence state 44. In this context, FOXO3a 

has been described to upregulate the p130 gene and its protein levels, thus inducing cell cycle 

arrest, and eventually, cell quiescence 45, 46, This further confirms that FOXO3a can contribute to 

the regulation of cell cycle checkpoint and exit. Recent evidence also suggests a role of FOXO3a 

in regulating microRNAs in response to DNA damage. FOXO3a expression in colorectal cells 

was shown to be required for the binding to miR-34c, which in turn downregulates Myc 

expression in response to etoposide treatment 47. Consistently, conditional activation of FOXO3a 

resulted in a rapid accumulation of cells in the G1 phase, more pronounced in cells with Myc 

containing the 3-UTR sequence, therefore indicating that Myc downregulation is required for the 

FOXO3a-mediated cell cycle arrest.  

 

Reactive oxygen species (ROS) are generated as a by-product of normal aerobic activity, and, if 

not properly controlled, can cause substantial levels of DNA damage. As a result, the DDR is 

also activated in response to oxidative stress to protect against DNA damage. FOXO3a activation 

can also contribute to oxidative stress-resistance through direct transcriptional activation of the 

manganese superoxide dismutase (MnSOD, also called SOD2) gene 46. Whereas upregulation of 

SOD2 by FOXO3a protects quiescent cells from apoptosis induced by ROS, Akt (PKB)-

mediated phosphorylation and inactivation of FOXO3a culminates in reentry into the cell cycle 

and therefore, proliferation 46. Catalase, another scavenger of hydrogen peroxide, is also a direct 

transcriptional target of FOXO3a 48. In agreement, the expression of FOXO3a and its targets, 

MnSOD and catalase, is reduced in caspase-2 deficient cells, which accumulate higher levels of 

oxidative stress and DNA damage following induction of ROS 49. Caspase-2 knockout mice also 

develop early ageing symptoms in response to oxidative stress 50. FOXO3a can induce DNA 

repair and oxidant scavenging also be by mediating Muc1, a protein highly expressed during 
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oncogenic transformation 51. Muc1 expression can attenuate the inhibition of FOXO3a by Akt 

and reduce the intracellular hydrogen peroxide levels, therefore preventing breast cancer cells 

from undergoing oxidative stress-mediated cell death 52. FOXO3a-induced stress resistance can 

also be influenced by p53, which was described to inhibit its transcriptional activity in a SGK-

dependent manner 53. Upon treatment with UV radiation and etoposide, p53 expression was 

activated. This was followed by an increase in FOXO3a phosphorylation and its relocation to the 

cytoplasm, preventing transcriptional regulation of its downstream targets. Another negative 

regulator of FOXO3a expression is the latent membrane protein 1 (LMP1), an oncoviral protein 

crucial to EBV-mediated B-cell transformation, which is involved in genomic instability 54, 55. 

LMP1 can suppress DNA repair, through the phosphorylation of Akt and FOXO3a, leading to 

FOXO3a nuclear exclusion in epithelial cells. These effects are associated with a decreased in 

FOXO3a’s ability to promote DNA repair; this effect can be completely reversed when these 

cells are transfected with a non-Akt-phosphorylatable FOXO3a 55. This data suggests that LMP1 

modulates the FOXO3a pathway to prevent DNA repair and proposes some mechanisms that 

may account for LMP1-mediated genomic instability.  

In response to DNA damage, FOXO3a can not only regulate the expression of cell cycle 

regulator genes but also of those involved in DNA repair. One of the most studied transcriptional 

targets of FOXO3a in this context is Gadd45a 34, 56, a gene expressed in response to genotoxic 

stress 57.  Gadd45a is also relevant for inducing cell cycle arrest at the G2/M checkpoint upon 

DNA damage 58. FOXO3a has been shown to promote DNA repair following exposure to UV 

irradiation, at least in part, through inducing Gadd45a expression 34. Nevertheless, the key role of 

FOXO3a in DNA damage response is underscored by the revelation that FOXO3a can bind 

directly, through its carboxy-terminal region, to the FAT protein-binding domain of Ataxia-

Telangiectasia mutated (ATM) protein and thus activate its DDR signalling function 13. This 

suggests that FOXO3a may modulate the DNA-damage response through ATM. Consistently, 

FOXO3a overexpression promotes ATM-mediated signalling, the repair of the damaged DNA 

and the S-phase and G2-M cell-cycle checkpoints, while FOXO3a depletion leads to defects in 

these DDR functions 59. Notably, the involvement of FOXO3a in the DNA damage response 

signalling goes beyond its interaction with ATM. FOXO3a has been shown to negatively 

regulate the expression and activity of FOXM1, a forkhead protein involved in the regulation of 

genes regulating several aspects of DDR and genotoxic agent resistance. Essentially, FOXM1 is 
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one of the most important and relevant downstream transcriptional targets of FOXO3a, 

especially in terms of the regulation of the DNA damage response. In fact, FOXO3a not only 

represses FOXM1 transcription, it also competes for the binding to the same DNA motifs in 

target promoters (eg. FOXM1 and VEGF) and produces opposing transcriptional outputs through 

the recruitment of HDACs to repress the transcription of FOXM1 target genes 60. Thus, FOXO3a 

essentially antagonizes FOXM1-dependent transcription. In particular, FOXO3a activation will 

trigger the G1/S and G2/M cell cycle checkpoints as well as repressing DDR, cell proliferation 

and survival 61. Collectively these findings suggest that FOXO3a plays a central part in sensing 

genotoxic stress, relaying the DDR signals and integrating them with the cell cycle checkpoints, 

anti-oxidative stress mechanisms, DNA damage repair pathways and the senescence and cell 

death machineries. Notably, while FOXO3a can function to antagonize ROS and promote DNA 

damage repair and cell survival, it can also impair the ability of FOXM1 to enhance DNA 

damage repair. These discrepancies might reflect the transformation status of the cells. 

Accumulating evidence suggests that the role of FOXO3a in inducing DNA repair and oxidant 

scavenging occurs in normal mammalian cells in order to maintain genome stability and integrity 

and suppress the emerging of cancer clones 42, 49, 62. In addition, it also functions as a bona fide 

tumour suppressor to repress the oncogenic activity of FOXM1 60, 61 and thereby, restricting 

cancer progression and the development of resistance to DNA damaging agents 59, 63. 

 

Forkhead Box M1 (FOXM1) transcription factor regulates a broad spectrum of normal biological 

functions, including cell proliferation, cell cycle progression, cell renewal, cell differentiation, 

DNA damage repair, tissue homeostasis, cell migration, angiogenesis and cell survival 59. While 

FOXO3a is a typical tumour suppressor, FOXM1 functions as a potent oncogene. 

Overexpression of FOXM1 is the hallmark of many malignancies, including cancers of the liver, 

prostate, brain, breast, lung, colon, pancreas, skin, cervix, ovary, mouth, blood and nervous 

system 64-78. Furthermore, upregulation of FOXM1 expression has been proposed to be an early 

event during cancer development 74. In agreement, genome-wide gene expression studies have 

independently identified FOXM1 as one of the most commonly overexpressed genes in different 

human cancers 79, 80. Together, these findings suggest a central role for FOXM1 in cancer 

initiation. In addition, latest evidence reveals that FOXM1 also advances cancer progression by 

promoting cancer angiogenesis, invasion and metastasis as well as the development of genotoxic 
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resistance 70, 81-85. The role of FOXM1 in DNA repair is first defined by the finding that FOXM1-

deficient cells accumulate high levels of damaged DNA, suggesting that FOXM1 has a DNA 

damage repair function. Subsequent studies have revealed that this is due, at least in part, to the 

ability of FOXM1 to regulate the transcriptional control of a network of DDR genes essential for 

DNA damage sensing, mediating, signalling and repair  82-84. 

 

FOXM1 in the regulation of DNA damage repair pathways  

Eukaryotic cells are constantly exposed to a broad range of exogenous and endogenous 

genotoxic stresses during their lifetime. To prevent the accumulation of damaged DNA, cells 

respond by activating a number of repair pathways, including nucleotide excision repair (NER), 

fanconi anaemia (FA)/BRCA pathway, mismatch repair (MMR), base excision repair (BER), 

homologous recombination (HR) and non-homologous end-joining (NHEJ) 86.  

FOXM1 has been shown to be overexpressed in DNA-damaging cancer drug resistant cells and 

its expression can confer genotoxic agent resistance 63, 83, 84, 87. For example, FOXM1 has been 

shown to regulate quiescence-associated radioresistance of human head and neck squamous 

carcinoma cells 88. In agreement, a recent transcriptome meta-analysis across 11 microarray 

datasets have independently identified FOXM1 as one of the central transcription factors 

regulating radiation sensitivity 89. A growing body of evidence has revealed that FOXM1 has a 

role in the regulation of almost every aspects of DNA damage repair. NER functions to fix 

distorting base lesions, such as pyrimidine dimers, generated through exposure to genotoxic 

agents, such as UV, ionizing irradiation, environmental mutagens, and cancer chemotherapeutic 

drugs (Figure 1). Mutations in genes coding for NER factors can cause inherited disorders, such 

as xeroderma pigmentosum (XP), Cockayne syndrome, and trichothiodystrophy, as well as an 

increased in skin cancer risk 90. Several components of the NER are downstream targets of 

FOXM1. Proteins key in recognizing these types of DNA lesions and in introducing incisions for 

NER repair are xeroderma pigmentosum group A (XPA), XPE, XPF, XPG, Cockayne syndrome 

A (CSA), CSB, the XPC-RAD23B complex, the transcription factor IIH (TFIIH) complex, the 

XPF-excision repair cross-complementation group 1 (ERCC1) complex and replication protein A 

(RPA). Following incision, a 24-32 base oligonucleotide containing the damaged DNA is 

excised and replaced with the correct DNA sequence through gap-filling and religation by 

replication factor C (RFC), proliferating cell nuclear antigen (PCNA), DNA polymerase (DNA 
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pol) δror ε, DNA ligase I and RPA. Among these key NER factors, FOXM1 has been shown to 

transcriptionally regulate the expression of PolE2 and RFC4. The PolE gene encodes for DNA 

pol ε, while RFC4 is a subunit of RFC, which functions cooperatively with PCNA during the 

repair 91. In addition, FOXM1 is further linked to NER through its transcriptional regulation of 

RAD23B, a cofactor of XPC, involved in the initiation of NER 92. In quiescent cells, DNA pol δ 

and DNA ligase IIIαn along with their cofactor X-Ray Repair Cross-Complementing Protein 1 

(XRCC1) are required for gap-filling and ligation for NER in an alternative mechanism. In this 

way, FOXM1 can also influence NER in quiescent cells via XRCC1, which is another 

downstream target of FOXM1 92. The (FA)/BRCA pathway is usually activated as a result of 

inter-strand DNA crosslinks caused by ionizing radiation 93, 94. The (FA)/BRCA pathway often 

collaborates with NER to repair single strand DNA (ssDNA) damage by sharing common 

signalling components, and will in this way lend itself to the control by FOXM1. Furthermore, it 

is believed that the (FA)/BRCA pathway facilitates DNA repair by HR and cross-talks with DDR 

proteins, such as Nijmegen breakage syndrome 1 (NBS1), BRCA2 and RAD51, which are direct 

FOXM1 targets 83, 95, 96. MMR mends errors from cellular metabolism, DNA replication and 

recombination that result in mispaired and unpaired bases. During MMR, the mispaired bases are 

detected by the MutS-MutL heterodimers (Figure 1). FOXM1 is also linked to multiple repair 

pathways, including MMR, by its transcriptional target exonuclease 1 (Exo1) 91. Upon mismatch 

detection, the MutS-MutL complexes direct exonuclease 1 (Exo1) to remove the segment 

containing the mismatched base. The importance of this regulatory FOXM1-Exo1 axis in DDR is 

highlighted by the findings that FOXM1 modulates the sensitivity to the DNA-damaging agents 

cisplatin and doxorubicin through regulating Exo1 in ovarian and breast cancer, respectively 87, 

91.  The gap created by Exo1 is then filled with the correct base by DNA pol δ and εnand the 

remaining nick rejoined by DNA ligase. This repair process is again orchestrated by the RFC and 

PCNA that loads and clamps DNA pol, for DNA synthesis. As in NER, FOXM1 can also 

promote a number of SSB repair mechanisms, including MMR and BER, by transcriptionally 

activating the expression of genes, such as RFC4, Exo1, and PolE2 91, 92. During MMR, the co-

operating RFC4, PCNA and DNA polmerases direct ssDNA to fill the gap left following the 

removal of the segment containing the mismatched base, whereas DNA pol ε is involved in 

sealing the ssDNA gap after processing by nucleases during BER, NER and MMR. Consistently, 

mutations to the POLE gene have recently been identified to be associated with familial 
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colorectal adenomas and colorectal cancer (CRC) 97. In addition, FOXM1 also directly regulates 

the transcription of BRCA1-interacting protein-terminal helicase 1 (BRIP1/BACH1/FRACJ). 

BRIP1 contributes to processing interstrand crosslinks (ICLs) during MMR. This is mediated, in 

a BRCA1 independent manner, through its interaction with the MutLαimismatch repair complex, 
98. 

BER repairs damage to single bases caused by oxidation, alkylation, hydrolysis, or deamination 

throughout the cell cycle (Figure 1). The damaged bases are recognized by DNA glycosylase 

enzymes, which also mediate base removal before the repair is completed by APE1 

endonuclease, end processing enzymes (polynucleotide kinase-phosphatase), polymerases (Pol β 

and Pol λ for short-patch, and pol δ and pol ε for long-patch BER) and ligases (DNA ligase III 

along with its cofactor XRCC1 for short-patch, and DNA ligase III for long-patch BER). 

FOXM1 is also a transcriptional regulator of the BER factor X-ray cross-complementing group 1 

(XRCC1). In a similar way as for NER and MMR, FOXM1 can also promote BER by driving 

the expression of ssDNA repair genes, such as RFC4, Exo1, and PolE2 91, 92.  

Double strand breaks (DSBs) are the most harmful species of DNA lesions and are 

predominantly repaired by HR and NHEJ 5, 99, 100.  HR is a relatively error-free DNA repair 

mechanism that uses the chromosome as a template to direct repair and therefore, only in S and 

G2 phases after DNA replication and before cell division 101 (Figure 2). In HR, DSB response is 

initiated through the detection of DSBs by the MRN (Mre11-Rad50-NBS1) complex 99, 100, 

which helps to recruit and activate key DDR signalling kinases, including ATM at the sites of 

DNA damage. In turn, ATM phosphorylates H2AX, its downstream target histone, which 

ultimately culminates in the recruitment of DNA repair proteins to the damage sites 102. FOXM1 

has been found to regulate Nijmegen breakage syndrome 1 (NBS1) expression directly at the 

transcriptional level (Figure 3). In this way, FOXM1 can control the initiation of HR, as the 

assembly of the MRN complex is rate-limiting for the recruitment and activation of ATM,103.  In 

addition, there is evidence to suggest that this upregulation of the NBS1 expression by FOXM1 

also indirectly enhances the stability of the other MRN subunits, including MRE11 and RAD50, 

and thereby further promotes the HR DNA damage repair response 83. In turn, the activated 

ATM then phosphorylates its downstream substrates such as p53BP1, SMC1, BRCA1, NBS1 

and CHK2 to trigger cell-cycle arrest, apoptosis, and DNA repair 99, 104-108. FOXM1 can also 

promote HR repair indirectly through driving the transcription of S-phase kinase-associated 
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protein 2 (Skp2) and cyclin-dependent kinases regulatory subunit 1 (Cks1) 109. Skp2 and Cks1 

are key components of the Skp2-SCF E3 ligase complex that mediates the K63-linked 

ubiquitination of NBS1. This process is critical for the activation of ATM and its recruitment to 

the DNA damage foci to initiate HR repair 110. Appropriately, Skp2 deficient cells display HR 

repair defects and ionizing irradiation sensitivity 110.  

The actual HR repair begins with nucleolytic resection of broken DNA ends facilitated by the 

CtBP-interacting protein (CtIP), BRCA1 and the MRN complex. This yields a 3’-ssDNA that is 

stabilized by association with RPA. During DNA resection, the MRN complex initiates a short 

5'-end degradation, and the nucleases Exo1 and Dna2, together with the RecQ helicases degrade 

5’-strands further exposing long 3’-strands 111. During HR, the FOXM1 target Exo1 also 

unwinds duplex DNA and promotes DNA end resection. Next, the breast cancer susceptibility 

gene product 1 (BRCA1), BRCA2 and several RAD51-related proteins promote the 

displacement of RPA by the strand exchange protein RAD51, resulting in the formation of a 

RAD51 nucleoprotein filament. RAD51 then searches for homologous sequences and catalyzes 

an exchange strand between the broken duplex and the intact sister chromatid. Furthermore, 

FOXM1 has also been suggested to be an upstream transcriptional activator of BRCA2 96, a vital 

HR regulator which binds the ssDNA and recruits the recombinase RAD51 to stimulate strand 

invasion during HR. Intriguingly, RAD51 itself is another direct transcriptional target of 

FOXM1. Induction of RAD51 by FOXM1 in glioblastomas has been shown to confer resistance 

to the genotoxic alkylating agent temozolomide 96. In addition, the FOXM1 target BRIP1 also 

binds to and functions cooperatively with BRCA1 to promote HR repair. Bound BRIP1 unwinds 

damaged dsDNA to allow other repair proteins to access and process the damaged DNA 84, 112. 

The importance of BRIP1 in HR is reflected by the fact that individuals with both copies of the 

BRIP1 gene being mutated are predisposed to the FA type J (FA-J) genetic disorder. These 

individuals are also prone to developing leukaemias and cancers of the head, neck, breast, 

stomach, ovary, cervix and skin 112-115. 

NHEJ repairs double-strand DNA breaks by directly ligating together the broken DNA ends 

(Figure 3), without the need of a homologous template 116. NHEJ can accurately join compatible 

breaks with no damaged nucleotides, but can also introduce mutations when joining mismatched 

termini or termini that harbour damaged nucleotides. In NHEJ, DSBs are recognized by the Ku 

heterodimer complex (Ku70-Ku80), which binds to and activates the catalytic subunit of DNA-



 

13 

PK (DNA-PKcs). This catalytic subunit recruits and activates end-processing enzymes (eg. 

Artemis), polymerases (eg. pol µ and λ), DNA ligase IV and its cofactor XRCC4. The Artemis-

DNA-PKcs complex is thought to have 5’ and 3’ nuclease activity that can cleave the damaged 

DNA that overhangs to form blunt ends in order to prepare them for ligation by DNA ligase IV 

and its cofactor XRCC4, with the help of Cernunnos/XLF. The MRN complex is also involved 

in NHEJ repair (Figure 2), particularly in response to etoposide-induced DSBs 117. Cells deficient 

in Mre11 or Nbs1, but not ATM, exhibit a major NHEJ repair defect, suggesting that the 

function of the MRN in NHEJ repair is independent of ATM. This role of MRN also helps to 

link FOXM1 to the NHEJ pathway. 

Recent evidence also shows that the chromatin structure can also influence DNA repair, and that 

the repair of damaged DNA located proximal to compact chromatin is less effective than that in 

comparatively open chromatin, probably because compact chromatin can be a barrier for the 

access of repair proteins to the damaged DNA 118-120. In this regard, FOXM1 can facilitate DNA 

repair through modulating chromatin structure. For example, FOXM1 has been shown to 

regulate the expression of the DNA methyltransferase DNMT1 through the chromatin 

remodelling factor HELLS 121. Intriguingly, DNMT1 has a methyltransferase-independent role in 

promoting DNA damage repair through decondensing chromatin local to sites of DNA damage 
122. Therefore, FOXM1 can play an indirect role in DNA repair through promoting the 

expression of gene products that can modulate chromatin remodelling at sites of DNA damage to 

enhance repair. Collectively, these findings provide strong indications that FOXM1 plays an 

integral part in DNA damage response through driving the transcription of genes encoding for 

DNA damage sensors, mediators, signal transducers and effectors. 

 

Role of FOXM1 in genotoxic agent-induced cell cycle checkpoints and cell fate decisions 

FOXM1 is a principal promoter of cell cycle progression and its overexpression has been shown 

to confer proliferative advantages to cancer cells. On the other hand, FOXM1 is downregulated 

in response to genotoxic agents to evoke multiple cell cycle checkpoints, in particular those at 

G1/S, G2/M and M phases 123. Compelling evidence has demonstrated that FOXM1 is a cellular 

target of genotoxic agents and the expression and transcriptional activity of FOXM1 is 

substantially downregulated in response to genotoxic stress through transcriptional and post-

translational mechanisms. Upon treatment with genotoxic drugs such as epirubicin, p53 has been 
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shown to repress FOXM1 transcription through an E2F-element on its promoter in breast cancer 

cells 124. However, in the absence of functional p53, genotoxic stress will induce FOXM1 

expression through ATM and E2F1 to promote DNA repair and survival. Furthermore, 

epirubicin has been shown to induce FOXM1 transcription via E2F1 through activating the p38 

MAPK-MK2 signalling axis 125. Apart from transcription, the activity of FOXM1 is also 

controlled by genotoxic stress via post-translational modifications. Previous studies have shown 

that treatment with DNA-damaging agents, such as γ-irradiation, etoposide and UV, promotes 

CHK2-induced phosphorylation of FOXM1. Such phosphorylation results in the stabilization of 

FOXM1 and transcriptional activation of downstream DNA repair and survival genes 96. Recent 

evidence also suggests that DNA damaging agents can also modulate the stability of the FOXM1 

protein through SUMOylation 85.  

 

The downregulation of FOXM1 expression through transcriptional and post transcriptional 

mechanisms in response to genotoxic stress is critical for the DNA damage signals to execute the 

cell cycle checkpoints at G1/S, S, G2/M and M phases.  These cell cycle checkpoints are 

mediated by FOXM1 through the downregulation of cell cycle regulatory genes, such as Cyclin 

D1, Cyclin A2, CDC25B, PLK1, Aurora B kinase, Cyclin B1, PLK1, MYC, BUB1B and 

CENPF, which are known transcriptional targets of FOXM1 126. The inhibition of FOXM1 also 

results in the downregulation of its targets Csk1 and Skp2109, which are key components of the 

Skp2-SCF(Skp1-Cullin1-F-box protein) E3 ligase complex that mediates the degradation of the 

cyclin-dependent kinase inhibitors (CKIs) p21Cip1 and p27Kip1 127, 128. In this context, 

downregulation of FOXM1 in response to genotoxic treatments will lead to stabilization of 

p21Cip1 and p27Kip1 and thereby, the inhibition of the cyclin-CDK1/2 kinases and cell cycle 

arrest at the G1/S, S and G2/M checkpoints 129. Notably, FOXM1 also cooperates with other cell 

cycle regulatory oncogenic transcription factors, such as nuclear factor kB (NF-kB), E2F1, and 

B-myb to extend its influence to a greater network of cell cycle genes 130-133. It is believed that 

upon genotoxic stress, cells will undergo cell death or permanent cell cycle arrest-senescence, if 

the damaged DNA is so extensive that it is irreparable or that it cannot be rectified in time. 

FOXM1 also contributes to the modulation of cell fate decisions in response to DNA damage, 

through controlling the transcriptional activity of anti-apoptotic and anti-senescence genes, 

including Bcl-2, Survivin (BIRC5), and Bmi-1, respectively 130, 134, 135. There is now clear 
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evidence that in response to DNA damage cells are also eliminated through mitotic catastrophe, a 

form of non-apoptotic cell death also mediated by FOXM1 123. Accordingly, depletion of 

FOXM1 can lead to centrosome amplification and mitotic catastrophe 123. In agreement, MEIS2 

a protein involved in preventing mitotic catastrophe has been found to be a direct transcription 

activator of FOXM1 as well as a promoter of the MuvB-BMYB-FOXM1 cell cycle gene 

regulatory complex 136. In addition, the role of FOXM1 in evading mitotic catastrophe has been 

shown to involve the expression of genes, required for faithful chromosome segregation and 

mitosis, including Nek2, KIF20A, CENP-A and BUB1B (BUBR1) 123, 137. For example, BUB1B 

depletion has been shown to result in chromosome missegregation and mitotic catastrophe in 

neuroblastoma cells 138. Hence, downregulation of FOXM1 by genotoxic agents can also trigger 

suppression in the expression of essential component of the mitotic checkpoints. Collectively, 

these findings corroborate the idea that FOXM1, in addition to modulating DNA damage 

signalling and repair pathways, also governs the downstream cellular responses, involving 

apoptosis, mitotic catastrophe and senescence, in DNA damage response. 

 

Targeting FOXO3a and FOXM1 in DNA damage-response and cancer drug resistance 

The DNA damage response plays a crucial role in cancer initiation, progression and drug 

resistance. Whereas a deficiency in DNA damage repair contributes to tumorigenesis and 

increased risks of disease progression, aberrant activation of DNA damage repair also plays a 

key role in resistance to genotoxic anticancer drugs. Convincing evidence illustrates that the 

FOXO3a and FOXM1 transcription factors are regulated by cytotoxic and targeted-therapeutic 

agents and mediate their effects through modulating the transcription of their targets involved in 

apoptosis, cell cycle progression, senescence and DNA damage repair. As a consequence, 

abrogating the DDR pathways through targeting the FOXO3a-FOXM1 axis may represent an 

effective strategy for enhancing the therapeutic index of genotoxic agents (Figure 4). Besides 

genotoxic drugs, such as doxorubicin and cisplatin 29, 139, other cancer therapeutic agents, 

including paclitaxel 37, lapatinib 140, gefitinib 141, 142 and imatinib 143, have also been shown to 

exert their cytotoxic and cytostatic effects through FOXO3a. These findings highlight that 

FOXO3a is common cancer drug target and that combining genotoxic treatments with agents that 

target  FOXO3a may have enhanced therapeutic effects. Indeed, the use of drug combinations to 

treat cancer and to overcome cancer drug resistance is a well-established principle of cancer 
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therapy. In addition to cancer therapeutics, FOXO3a can also be activated by agents targeting its 

upstream regulatory PI3K-Akt(PKB) pathway. For instance, the Akt inhibitor, OSU-03012, has 

been shown to induce FOXO3a dephosphorylation and nuclear relocation in breast cancer cells 
144. A similar study has also demonstrated that another AKT inhibitor MK-2206 can cause 

FOXO3a dephosphorylation and activation, and is able to synergize with conventional genotoxic 

drug, such as doxorubicin, in liver cancer treatment. NVP-BEZ235, a dual PI3K/mTOR 

inhibitor, has also been reported to sensitize coloncarcinoma cells to genotoxic drugs through 

targeting FOXO3a 145. Another effective strategy to enhance the activity of DNA damaging 

agents and to overcome genotoxic resistance is through targeting the Sirtuin family of class III 

histone deacetylases (SIRT1-7), which are crucial regulators of FOXO3a activity 146, 147. The 

regulation of FOXO3a by SIRT1 was first demonstrated in cells under oxidative stress (eg. heat 

shock or hydrogen peroxide-exposed) where expression of SIRT1 resulted in FOXO3a 

deacetylation, increased expression of the DNA repair Gadd45a gene but decreased expression 

of pro-apoptotic targets such as FasL and Bim. This suggests that SIRT1 modulates the balance 

between FOXO3a-mediated stress resistance and cell termination 146. Recently, it has also been 

reported that the FOXO3a-mediated induction of Gadd45a can be negatively regulated by 

nicotinamide-phosphoribosyltransferase (NAMPT), a stress-induced protein, and SIRT1 148. In 

agreement, chemical inhibition of NAMPT or SIRT1 knockdown can result in increased 

FOXO3a acetylation and Gadd45a upregulation. Another Sirtuin protein, SIRT6, has also been 

shown to modulate FOXO3a expression 147. In the context of DNA damage repair, SIRT6 

overexpression can promote epirubicin resistance, whereas cells lacking SIRT6 accumulate 

significantly more DNA damage in response to genotoxic agents, including epirubicin and γ-

irradiation. In the same way, depletion of SIRT6 in breast cancer cells also results in inefficient 

repair of double-strand breaks and thus, accumulation of damaged DNA in response to DNA-

damaging agents. Intriguingly, these effects of SIRT6 on DNA repair and drug resistance appear 

to be mediated, at least in part, through the regulation of FOXO3a acetylation 147. Inhibitors 

against individual or multiple SIRTs have been developed and some of them have been shown to 

be able to reactivate tumour suppressors, like p53 and FOXO3a 149, 150. Consistently, small 

molecule SIRT-inhibitors, such as Sirtinol, Salermide, and EX527, have been shown to have 

anti-proliferative activity and be able to combine with DNA damaging agents, such as 

doxorubicin, to eliminate breast cancer cells 151. Collectively, these findings suggest targeting 
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FOXO3a is conceptually an effective therapeutic approach for cancer treatment. This is because 

not only FOXO3a transcriptionally regulates genes involved in cell cycle control and DDR but 

also it negatively regulates the transcriptional output of FOXM1, a key regulator of DNA repair 

and cell survival. Considering the critical role played by FOXM1 in DDR, attention has also 

focused on the generation of therapeutic strategies that will specifically inhibit FOXM1 

expression and function. It is interesting to note that FOXM1 inhibition can sensitize breast 

cancer cells to genotoxic agent-induced senescence, but FOXM1 depletion alone is enough to 

cause genotoxic drug resistant cells to enter senescence 83. This provides further proof that 

FOXM1 is a key determinant of genotoxic drug resistance, and is likely to be due to the fact that 

drug-resistant cancer cells have become overreliance on high levels of FOXM1 to protect them 

from genotoxic stress. This observation also suggests that the dependency on FOXM1 

overexpression in cancer and in genotoxic resistance can be exploited for therapeutic benefits. 

Siomycin A and thiostrepton are potent thiazole antibiotics that have been shown to suppress the 

FOXM1 mRNA and protein expression 152, 153. These thiazoles function by binding specifically 

to the DNA binding domain 154 and can kill cancer cells with tolerable toxicity to untransformed 

cells 152, 153. Another natural compound, 2-deprenyl-rheediaxanthone B, isolated from the fern 

Metaxya rostrata, has also been reported to activate cell death in colorectal tumor cells through 

targeting FOXM1 155. Approaches based on small peptides have also been developed to target 

FOXM1 directly. Small peptides which mimic the tumour suppressor p19ARF and can disrupt 

the interaction between FOXM1-p19ARF have been generated.  These ARF peptides have been 

shown to inhibit the expression and transcriptional activity of FOXM1 in hepatocellular 

carcinoma cells and suppress cancer cell growth 156. Together, these studies provide proof-of-

concept evidence that the FOXO3a-FOXM1 axis can be targeted to specifically eliminate cancer 

cells and drug resistant clones and pave the way for future FOXO3a-FOXM1 targeting 

therapeutics development. Evidence from these studies also argues strongly that FOXO3a, 

FOXM1 and their downstream gene signatures can be reliable diagnostic markers for cancer 

progression as well as genotoxic drug resistance. 
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Figure Legends 

Figure 1. 

FOXM1 regulates proteins crucial for both base-excision repair and mismatch repair processes: 

schematic diagramme comparing proteins involved in short-patch and long patch base excision 

repair, as well as mismatch repair. All proteins high-lighted in red have shown to be under 

FOXM1 transcriptional regulation (XRCC1, Polβ/ε, BRIP1 and the RFC4 complex). For base 

excision repair, a process where an incorrect base has been inserted in a DNA template, DNA 

glycosylase is responsible for the detection of the erroneous base insertion. Alternatively, during 

mismatch repair, a process where two inserted base pairs are not corresponding, damage 

recognition is performed by a larger number of proteins: RFC4 (controlled by FOXM1) works in 

conjunction with a bigger complex of PCNA, the Mut and BRIP1 (also under FOXM1 

transcriptional control). In this process, these proteins also perform the incision around the 

mismatching base, while incision is performed by APE1 endonuclease during base excision 

repair. The base excision repair process is then subdivided into short-patch and long-patch base 

excision repair: during short-patch, the single mismatched base is removed by XRCC1 (FOXM1 

target) polymerase-β complex; In the latter, PCNA joins FEN1 and polymerase β/ε (regulated by 

FOXM1) to perform the excision. Alternatively, in mismatch repair, excision is performed by 

Mutsα, EXOI and RPA. Ligation again differs between the pathways: XRCC1 now binds to 

DNA ligase III for the short patch base excision repair; Long patch base excision repair ligation 

is perfomed by PCNA bound to DNA ligase I; Mis-match repair uses the RFC4 complex, 

coupled with PCNA, RPA and DNA polδ. 

  

 

Figure 2. 

FOXM1 controls initial steps of non-homologus end joining repair mechanism: schematic 

diagramme describing the main stages of non-homologous end-joining repair (NHEJ) of double 

stranded DNA damage.  FOXM1 exerts transcriptional control over the proteins highlighted in 

red, Skp2 and Csk1 as part of the Skp2-SCF complex and NBS1, which are also shown in the top 
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right corner. Upon insurgence of a double-stranded DNA break, the FOXM1 promotes the 

transcription of Skp2 and Csk1 proteins, necessary for the formation of the Skp2-SCF complex. 

This will be phosphorylated, making it eligible for the K63-linked ubiquitination. The poly-

ubiquitin chain (depicted in green) is then transferred to NBS1 (also a FOXM1 target), activating 

the MRN complex for an ATM independent repair process. Damage recognition is performed by 

MRN coupled with PARP. Ctlp then cleaves individual DNA strand, to permit base excision. 

Finally, LNG3 and XRCC1 replace the cleaved damaged DNA strand by promoting the synthesis 

of the correct template, leaving a repaired double stranded DNA helix. 

 

Figure 3. 

FOXM1 regulates crucial genes in homologous recombination: schematic diagramme 

representing the main steps in the homologous recombination repair of double stranded DNA 

damage. As shown in the top right corner, FOXM1 positively regulates the expression of NBS1, 

BRIP1, EXO1, BRAC2 and RAD51 (depicted in red throughout the diagramme). Following the 

instigation of DNA damage, FOXM1 promotes the transcription of NBS1, which forms part of 

the MRN complex. This participates in the detection of the DNA damage, as well as in the 

phosphorylation of ATM. Phosphorylated ATM in turn phosphorylates BRIP1 (also regulated by 

FOXM1), CltP and BRCA1. Together, these proteins form a complex which participates in the 

unwinding of the double stranded DNA, making it accessible for the RPA, BLM, EXO1 

(regulated by FOXM1) complex, which cleaves and removes the damaged sections. RAD51, 

BRCA2 (both regulated by FOXM1) and PALB2 aid the strand invasion of a template double 

stranded DNA, upon which the new strand is modelled. Finally, resolvases coupled with RAD54 

regulate the synthesis of the new strand, creating a complete double stranded DNA.  

 

Figure 4. 

Targeting FOXO3a and FOXM1 in DNA damage response.  

Schematic diagramme representing upstream and downstream FOXO3a networks involved in 

modulation of its function and regulation of crucial transcriptional targets. FOXO3a is 

phosphorylated by several key oncogenic kinases such as Akt (also called PKB), IKB kinase 

(IKK) and serum and glucocorticoid-regulated kinase (SGK) and ERK, which facilitates 

recognition by Mdm2 (murine double minute 2) and Skp2 (S kinase phase protein 2) E3 ligases, 
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leading to its nuclear exclusion, proteasome degradation and thus, inactivation of its function. 

The latent membrane protein 1 (LMP1), an oncoviral protein, can modulate FOXO3a expression 

in an Akt-dependent way to prevent DNA repair. Conversely, FOXO3a can be reactivated 

through phosphorylation by p38 MAPK, stress activated c-Jun-NH2-kinase (JNK), AMP-

activated protein kinase (AMPK) and Ste20-like protein kinase (MST1), which are stimulated 

upon drug treatment or genotoxic stress such as exposure to doxorubicin, paclitaxel, UV 

radiation and Akt, Her2 and tyrosine kinase (TK) inhibitors. FOXO3a can also be regulated by 

acetylation, and SIRT 1 and SIRT6 histone deacetylase proteins play a crucial role in 

suppressing FOXO3a function. This phenomenon can be rescued by treatment with SIRT 

inhibitors, which can prevent the FOXO3a deacetylation and thus, inactivation. Cyclin D1/2 and 

G2, p27Kip1, p130 (RB2), GADD45, MnSOD, Polo-like kinase 1 (PLK1), Atm and the 

microRNA34-c are regulated by FOXO3a at the transcriptional level, modulating the processes 

of DNA damage response, resistance to oxidative stress, cell cycle checkpoints and 

senescent/quiescent state. Additionaly, FOXO3a role in regulation of the aforementioned 

biological processes relies, at least in part, on its ability to suppress the expression of the 

FOXM1 transcription factor, an important regulator of DNA repair and DNA damage response. 

 

 


