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Abstract

Recent studies have demonstrated the importance of transverse dispersion for

dilution and mixing of solutes but most observations have remained limited to

two-dimensional sand-box models. We present a new core-flood test to charac-

terize solute transport in 3-D natural-rock media. A device consisting of three

annular regions was used for fluid injection into a cylindrical rock core. Pure

water was injected into the center and outer region and a NaI solution into the

middle region. Steady state transverse dispersion of NaI was visualized with

an X-ray medical CT-scanner for a range of Peclét numbers. Three methods

were used to calculate Dt: (1) fitting an analytical solution, (2) analyzing the

second-central moment, and (3) analyzing the dilution index and reactor ratio.

Transverse dispersion decreased with distance due to flow focusing. Further-

more, Dt in the power-law regime showed sub-linear behavior. Overall, the

reactor ratios were high confirming the homogeneity of Berea sandstone.
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1. Introduction

Dispersion of solute plumes plays an important role in many scientific and

applied fields including groundwater contamination [33, 28], enhanced oil recov-

ery [48] and CO2 sequestration [38, 48, 45].

In the past, longitudinal dispersion, which is typically considerably larger5

than transverse dispersion, has received most of the attention. Several notable

studies, however, have shown that transverse dispersion can not be neglected

as it plays a key role in the dilution and mixing of solutes and mixing-limited

reactive transport [14, 13, 31, 15, 7, 8, 16, 20]. The main goal of our study is

to devise an experimental technique capable of quantifying three-dimensional10

transverse dispersion and dilution in natural porous media by providing several

quantities such as the transverse dispersion coefficient [41], the dilution index,

and the reactor ratio [29].

Transverse dispersion is the combined effect of transverse mechanical spreading

due to small scale velocity variations in the advective flux and molecular diffu-15

sion. This makes it highly dependent on transport conditions characterized by

the Peclét number (Pe). Pe is the ratio between the time needed for solutes to

travel a characteristic length L by diffusion tdif , and the time needed for solutes

to travel the same length by advection tadv:

Pe =
tdif
tadv

=
L2

Dm

L
v

=
Lv

Dm
, (1)

where Dm is the molecular diffusion coefficient [m2/s] and v the average fluid20

velocity [m/s] obtained by Q/(A×φ) where Q is volumetric flow rate [m3/s], A

is the cross-sectional area [m2], and φ is porosity [3].

For laminar flow, the dependence of transverse dispersion on Pe can be

divided into four different regimes [41, 3, 17]: (1) restricted diffusion, (2) tran-

sition, (3) power-law and (4) mechanical dispersion. The restricted diffusion25

regime (1) is defined by:
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Dt

Dm
=

1

Fφ
Pe << 1, (2)

in which F is the formation factor. Advection and diffusion have the same order

of magnitude contributions to dispersion in the transition regime (0.3 < Pe < 5)

and this regime is not strictly defined by an equation. The power-law regime is

given by30

Dt

Dm
= βPeδ 5 < Pe < 300, (3)

in which β and δ are fitting parameters obtained from experimental or model

results. The mechanical dispersion regime is defined by

Dt

Dm
= αPe Pe > 300, (4)

in which α is a fitting parameter obtained from experimental or model results.

Sub-linear behavior of Dt with Pe (velocity) in the power-law regime has

been observed both experimentally [9, 30, 34] and in pore-scale modeling [3, 42]35

and has been attributed to incomplete mixing at the pore throats [30].

It is common practice to take the transverse dispersion coefficient to be one

order of magnitude smaller than the longitudinal dispersion coefficient [1, 23] but

unless one studies solute transport in the advective-dominated regime this is not

appropriate [3]. As many groundwater flows do not often fall within the purely40

advective-dominated regime, there is a clear need for accurate experimental

studies on transverse dispersion.

Traditionally, dispersion of solutes has been described by the second central

moment, with the dispersion coefficient given by

Dt =
1

2

dσ2

dt
. (5)

For Gaussian plumes, which are fully characterized by their mean position and45

covariance matrix of displacements, the latter metric would also be indicative
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of solute dilution. When the plume starts to become non-Gaussian, the second

central moment can still reasonably describe spreading, (although with limi-

tations [5]) but it does a very poor job in describing dilution. Kitanidis [29]

introduced the dilution index, E(t), defined as50

E(t) = ∆V exp
(
−

m∑
k=1

Pk(t) ln(Pk(t))
)
, (6)

where ∆V is the volume of the domain divided by the number of bins used to

discretize the spatial domain. Pk(t) is the ratio of the solute mass in each bin

to the total solute mass in the system at time t and m is the number of bins

in the system. The dilution index defines how much volume is occupied by the

solute. Of all plumes with the same mass and mean, the Gaussian plume has55

the highest degree of dilution. The ratio of the dilution index of a plume and its

equivalent Gaussian plume can, therefore, be used as a measure of incomplete

mixing and is called the reactor ratio [29, 46].

In the laboratory, transverse dispersion coefficients have been determined

using four different methods: (1) from transport of volatile compounds across60

the capillary fringe [30], (2) by pool dissolution experiments [43, 21], (3) by the

length of reactive plumes [15], and (4) by tracer tests. Tracer tests are most

common and based on three principle techniques: (1) an annular core device

with a uniform solute injected into the core region and concentration measure-

ments of the effluent [6, 27, 22], (2) a device equally divided into two sides with65

a uniform solute injected at one-side and concentration measured using X-ray

light attenuation [24], at probe locations along the core [25, 26] or of the effluent

[35], and (3) a device for point source injection of a solute of uniform concentra-

tion and concentration measurements taken at several points along the center

line of the column [39, 32]. Benekos et al. [2] proposed a different technique with70

a helix and a cochlea device. With the exception of the technique of Benekos

et al. [2], tracer tests are sensitive to plume meandering and prone to overesti-

mation of the transverse dispersion.

All mentioned methods estimate a single average transverse dispersion co-
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efficient by fitting the experimental results to analytical solutions or numerical75

simulations and do not provide any information about the local heterogeneity of

the system. Furthermore, most of the experiments were carried out using sand

[6, 21, 30, 15, 22] or bead packs [26, 27, 25, 39, 43, 2, 22], besides Grane [24]

who determined the transverse dispersion coefficient in a Berea sandstone that

is known to have homogeneous flow and transport characteristics [4].80

To the best of our knowledge there are no techniques reported in the liter-

ature to make controlled observations of transverse dispersion, at high spatial

resolution, in three dimensions, in natural consolidated rock. In this work we

present a technique using X-ray tomography in combination with a new inlet

configuration to observe a steady-state concentration profile in a cylindrical rock85

core.

The goal of this study is two fold: (1) to obtain high quality spatially re-

solved data on transverse dispersion for a range of Pe that allow us to test

existing theories of transverse dispersion, and (2) to present a technique that

is applicable to natural consolidated rock representative of reservoir rocks. In90

addition, the new inlet configuration allows us to observe the spatial variation

of transverse dispersion which can be used to characterize rock heterogeneity.

Furthermore, the dilution index and the reactor ratio can be obtained as an

additional metric of transport heterogeneity.

The paper is organized as follows. In Section 2 we describe the experimental95

apparatus and the procedure. To aid the experimental design and the anal-

ysis of the experimental results, we present in Section 3 analytical solutions

of the concentration profile under the transport conditions studied, including

a general solution following the approach of Chen et al. [10] and a simplified

solution ignoring longitudinal dispersion. The transverse dispersion coefficients100

were derived from observed concentration fields of NaI solutes at Pe ranging

from 0.5 to 100 using three different methods: (1) fitting an analytical solu-

tion, (2) analyzing the second central moment and (3) analyzing the dilution

index, as described in Section 4 . In Section 5 we first validate the technique

by recovering conventional core average transverse dispersion coefficients in a105
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Berea sandstone that are shown to be comparable with literature values from

observations by Grane [24] and pore-scale simulations of Bijeljic and Blunt [3].

Furthermore, we provide values of the dispersivity, the dilution index, and the

reactor ratio and demonstrate how our findings can be used to fully characterize

transverse transport behavior in consolidated porous media. Implications of our110

experimental findings are discussed in Section 6 while conclusions are drawn in

Section 7.

2. Experimental Apparatus

Steady-state transport of a NaI aqueous solution continuously injected into

a cylindrical Berea sandstone core, 2.00 × 10−1m long and 7.62 × 10−2m in115

diameter, was visualized in three dimensions with the use of a medical X-ray

CT scanner. The tube current, tube potential and scan time were set to 200 mA,

120 kV, and 1 s, respectively. An inlet end cap device consisting of three annular

regions was used to create the boundary condition of the NaI concentration at

the inlet of the rock core. Deionized water was injected into the center and120

the outer annular region, whereas an aqueous solution of NaI was injected in

the middle annular region as illustrated in Fig. 1. The concentration of NaI

was 30 wt%, except for low Pe (0.5 and 2) where it was 15 wt%. The inner

(ρ1) and outer (ρ2) radius of the middle annular region were 2.31× 10−2m and

2.77× 10−2m, respectively.125

A steady and uniform flow field was created at the inlet. For the low Pe

(0.5 and 2) this was achieved by placing a ceramic porous plate (1 bar air entry

pressure) between the inlet end cap and the core. A 3 × 10−2m long plastic

ring was placed at the outlet to reduce boundary effects at the end of the core.

The rock core was oriented vertically to minimize effects of gravity. The flow130

direction was from bottom to top. Before saturating the core with pure water,

it was flushed with CO2 to ensure no gas bubbles would form. Three pumps

were used for injection, two pure water pumps and one tracer pump. A water

pump was used to create the confining pressure (Fig. 1). The experiment was
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Figure 1: Experimental apparatus - Deionized water is injected in the center and outer annular

region. A NaI solution is injected between ρ1 and ρ2. The big arrows represent the flow

direction.
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carried out for Pe=0.5, 2, 10, 20, 30, 40, 60 and 100, representing the restricted135

diffusion, transition and power-law regimes. The characteristic length in Pe is

taken as the grain size (150×10−6m) [37] and the molecular diffusion coefficient

(Dm) of NaI is 1.33 × 10−9m2/s. At steady state, X-ray scans were taken

every 2 × 10−3m along the core. The medical X-ray CT scanner can image

at resolutions of 1 mm3 but a significant, random uncertainty might exist in140

the CT-numbers assigned to each voxel. This uncertainty can be reduced by

averaging over multiple images [36].

In this study, images were taken under three different conditions: (1) a core

saturated with pure water, (2) a core fully saturated with the NaI-solution,

and (3) the core with the annular injection of the NaI-solution at steady state.145

We calculated the relative concentration of the NaI-solution in the steady state

tracer tests by:

[CNaI ] =
C −A
B −A

, (7)

in which [CNaI ] is the relative concentration of the NaI-solution; A is the voxel

CT-number under water-saturated conditions; B is the same number under NaI-

saturated conditions and C in the steady-state tracer test. All measurements150

were repeated three times and subsequently averaged to reduce the uncertainty.

For the calculation of the transverse dispersion coefficient a coarsening scheme

was applied to further reduce the level of noise. For each radial transect, 500

concentration measurements were taken at equal distance. Each concentration

measurement was the average concentration within a circle of radius 2.5×10−3m155

around the measurement location. This reduced the uncertainty in the concen-

tration measurement to < 5.0% of the initial concentration.

3. Mathematical Models

To aid in the design of the experiments and analyze Dt, analytical solutions

were obtained for transport in a porous medium with a radial geometry and an160
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annular source (Fig. 1) similar to the experiments. Axisymmetric conditions

were assumed in order to ignore the angular dependence. Two solutions were

found for this model: (1) for the two-dimensional advection-dispersion equation

(ADE) subject to a third-type inlet boundary condition where the sum of the

convective and diffusive fluxes at the inlet are constant and (2) a simplified165

solution ignoring longitudinal dispersion. For this purpose the approach of

Chen et al. [10] was used, modified for the specific geometry of our experiment.

3.1. Two-Dimensional ADE

The ADE with uniform coefficients in cylindrical coordinates is given by:

Dl
∂2C

∂z2
− v ∂C

∂z
+
Dt

r

∂

∂r

(
r
∂C

∂r

)
=
∂C

∂t
, (8)

where C (z, r, t) is the solute concentration; z is the coordinate along the core170

axis; r is the radial coordinate; t is time; v is the average water velocity (inter-

stitial); Dl and Dt are the longitudinal and transverse dispersion coefficients in

the units of [m2/s], respectively. The initial concentration is zero:

C (z, r, t = 0) = 0 0 ≤ z ≤ ∞, 0 ≤ r ≤ R, (9)

where R is the radius of the core.

The solute is continuously injected into the middle annular region, which can175

be expressed by a flux-related boundary condition:

vC (z = 0, r, t)−Dl
∂C (z = 0, r, t)

∂z
=


0 0 ≤ r ≤ ρ1
vC0 ρ1 ≤ r ≤ ρ2
0 ρ2 ≤ r ≤ R

,

(10)

in which C0 is the concentration of the injected solute; ρ1 is the inner radius of

the annular source; ρ2 is the outer radius of the annular source. The system is

assumed to be of semi-infinite length:

C (z →∞, r, t) = 0, (11)
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and the mantle of the core acts as no-flux boundary:180

∂C (z, r = R, t)

∂r
= 0. (12)

Eq. 13 gives the steady state solution of the 2-D ADE for the above boundary

conditions. The derivation can be found in appendix A, as well as the transient

solution that was used to approximate the time needed to reach steady-state in185

the experiments.

Steady-state solution of the 2-D cylindrical ADE :

C (r, z, t) =

vC0(ρ22 − ρ21)

R2
√
Dl

exp
( vz

2Dl

)exp(− z√
Dl

√
v2

4Dl

)
v

2
√
Dl

+
√

v2

4Dl

+
2

R2

∞∑
n=1

vC0

(
ρ2
λn
J1(λnρ2)− ρ1

λn
J1(λnρ1)

)
√
Dl

exp
( vz

2Dl

)exp(− z√
Dl

√
v2

4Dl
+Dtλ2n

)
v

2
√
Dl

+
√

v2

4Dl
+Dtλ2n

J0 (λnr)

|J0 (λnR) |2
.

(13)

where λn is the Finite Hankel transform parameter which is determined by:

dJ0 (λnR)

dr
= 0;

J0 () is the zero order Bessel function of the first kind and J1 () is the first order190

Bessel function of the first kind.

3.2. Two-dimensional cylindrical ADE ignoring longitudinal dispersion

When longitudinal dispersion is ignored, the 2-D ADE in cylindrical coordi-

nates (8) at steady state can be written as:195
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Dt

r

∂

∂r

(
r
∂C

∂r

)
= v

∂C

∂z
. (14)

At the inlet of the core, the concentration in the middle annular region is C0

and zero everywhere else:

C (r, z = 0) =


0 0 ≤ r ≤ ρ1
C0 ρ1 ≤ r ≤ ρ2
0 ρ2 ≤ r ≤ R

, (15)

and no-flux conditions exist at r=R:

∂C (r = R, z)

∂r
= 0. (16)

Eq. 17 gives the analytical solution of the ADE at steady state when longitu-200

dinal dispersion is ignored. The derivation can be found in appendix B.

Simplified solution ignoring Dl :

C (r, z) =
C0

R2
(ρ22 − ρ21)

+
2

R2

∞∑
n=1

C0

(
ρ2
λn
J1(λnρ2)− ρ1

λn
J1(λnρ1)

)
exp
(
−Dtλ

2
n

z

v

) J0 (λnr)

|J0 (λnR) |2
. (17)

4. Methods of Analyzing the Experiments

The radial geometry of the core and annular source used in the experiment205

(Fig.1) allowed the transverse dispersion coefficients to be calculated using three

different methods: (1) fitting the analytical solution (Eq. 17) to the steady state

concentration profile, (2) analyzing the second-central moment (Eq. 5) and (3)

analyzing the dilution index (Eq. 6).

At steady state, X-ray scans were taken every 0.2 cm along the core. Fig.210

2 shows three of these slices. For each radial transect (the orange lines) the

concentration distribution was obtained. From these concentration distributions

the transverse dispersion coefficients were calculated.
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Figure 2: Left: Three core slices (from bottom to top: inlet, half way, outlet) at steady state

for Pe=0.5. The orange lines represent the radial transects. Right: Concentration profiles

along one of the radial transects of the core slice. Experimental result: black dots with error

bar; 2-D ADE ignoring Dl: red solid line; 2-D ADE: blue dot-dash line.
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4.1. Fitting the Analytical Solution to the Concentration Profile

Fig. 2 compares the experimentally obtained concentration distributions215

with the concentration distributions obtained by the analytical solution of the

full 2-D ADE (Eq. 13) and the simplified solution ignoring longitudinal dis-

persion (Eq. 17) for Pe=0.5. The parameter of longitudinal dispersion used in

the 2-D ADE is one order of magnitude larger than the transverse dispersion

coefficient. It can be seen that the solution of the full 2-D ADE and the sim-220

plified solution give almost identical results. Similar results were obtained for

higher Pe. Therefore, the transverse dispersion coefficients were obtained by fit-

ting the simplified solution ignoring longitudinal dispersion to the experimental

data. For each radial transect at the inlet, the area of π(ρ22−ρ21) was calculated.

This area was kept constant throughout the fitting but ρ1 and ρ2 were varied225

to allow for meandering in the radial direction.

The analytical solution assumes a core of infinite-length. Fig. 3 shows the

error in the transverse dispersion coefficient obtained from fitting the analytical

solution to the numerical results using the reactive transport code CrunchFlow

[44] for Pe=2. It can be seen that the error is large at the inlet boundary due to230

a boundary effect of the numerical model, small in the middle of the core and

increases towards the outlet boundary due to the infinite length assumption.

Because of the possible existence of experimental boundary effects the last 2

cm of the core were not used, therefore the error in the calculated transverse

dispersion coefficients does not exceed 3%. The core average Dt obtained from235

fitting the analytical solution to the numerical result is 1.55× 10−7 m2/s, while

the actual Dt put into the model was 1.58 × 10−7 m2/s, which is an error of

only 1.75%.

4.2. Second Central Moment

The transverse dispersion coefficient is defined as the change of the second240

central moment with time (Eq.5). In the experimental set up of this study, time

is the distance along the core (z) divided by the velocity (v) and the transverse

dispersion coefficient can be defined as:

13



Figure 3: Error in Dt from fitting the analytical solution to the numerical CrunchFlow results

for Pe=2.

Dt =
v

2

dσ2

dz
. (18)

It is important to note that this formulation is not derived from the equations

and may not work for very long columns, high transverse dispersion coefficients,245

or a different radial distribution of the solute in the source.

On each of the transects (orange lines on Fig.2) 500 concentration measure-

ments were taken and coarsened into 94 segments, dr. Let A and R be vector

arrays of the area and coordinates of the center of each radial ring, respectively,

and C be a vector array with the solute concentrations of each segment on the250

transect.

The concentration obtained for each radial segment on the transect was

multiplied by the area of that ring to compute the mass of the ring. The sum

of the mass of all the rings provides the zeroth radial moment (M0):

M0 =

94∑
i=1

Ai × Ci. (19)

The first radial moment (M1) was calculated by multiplying the coordinate255

of the ring center by the mass of each ring, and then summing over all the rings

and dividing it by the total mass:
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M1 =
1

M0

94∑
i=1

(Ai × Ci)×Ri. (20)

The second central moment (M2) was calculated by first calculating the

square of the deviation from the mean for each of the locations of the ring

centers, and multiplying it by the mass of each ring. Then summing over all the260

rings and dividing it by the total mass results in:

M2 =
1

M0

94∑
i=1

(Ai × Ci)× (Ri −M1)2. (21)

The transverse dispersion coefficients were calculated from the second central

moment by two methods: (1) by fitting the variance length profile obtained

with the analytical solution to the experimentally obtained variance length pro-

file averaged over the radial transects, and (2) by plotting the second central265

moment of each radial transect against distance along the core (z) and fitting

a straight line to the data using least squares fitting (Fig. 4). The slope of

this line can be used in Eq. 18 to calculate a core average transverse dispersion

coefficient.

4.3. Dilution Index and Reactor Ratio270

For each of the radial transects in Fig. 2 the 1-D dilution index (Eq. 6) was

calculated. For this, first Pk(t) was obtained. Pk(t) is the ratio of the solute

mass in each radial segment, to the total solute mass of the radial transect at

time t. For this purpose, each radial transect was divided in 94 radial segments,

dr. To account for the radial geometry, the mass of each radial segment was275

weighted according to the area of the corresponding ring with width dr. The

total mass of the radial transect (M0) is the sum of the weighted mass of each

of the radial segments. Let A be a vector array of the area of each radial ring

and C be a vector array with the solute concentrations of each segment on the

transect. Pk(t) for each segment of the transect was calculated by dividing the280

weighted mass of the segment by the total mass of the transect:
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Figure 4: Variance vs distance for Pe=0.5, Pe=30, and Pe=100. The blue dots show the

variance calculated for each of the radial transects (orange lines (Fig. 2). The slope of the

black line (fitted to the data points using least squares fitting) is used to calculate Dt. The

running average is shown by the red line.
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Pk(t) = A× C/M0 (22)

The dilution index was obtained for each of the 50 transects and 100 slices using

Eq. 6 with ∆V = dr.

The transverse dispersion coefficients were calculated from the 1-D dilution

index by two methods: (1) by fitting the dilution index length profile obtained285

with the analytical solution to the experimental dilution index length profile av-

eraged over the radial transects, and (2) from the equation defining the dilution

index for 1-D point injection in a homogeneous porous medium (Eq. 23).

Kitanidis [29] showed that the dilution index for instantaneous point in-

jection in a 1-D homogeneous medium, with constant velocity and dispersion290

coefficient is given by

E(t) =
√

(2π) exp(1/2)
√

2Dt

√
t. (23)

By taking the natural logarithm on both sides, the following expression is ob-

tained:

ln (E) =
[1

2
ln (2π) +

1

2
+

1

2
ln (2Dt)

]
+

1

2
ln (t). (24)

The plot of ln (E) versus ln (t) will be a straight line with slope 1
2 and the

dispersion coefficient can be calculated from the intercept.295

Because of the radial geometry of the rock and the annular source in this study,

axisymmetric conditions can be assumed and each radial transect can be viewed

as a 1-D medium with a solute source of finite width (ρ2−ρ1)[m] at time t where

t = (z/v).

The transverse dispersion coefficient could therefore be calculated with the use300

of Eq. 24 for instantaneous point injection with a correction for the finite width

of the solute source. This correction was made by adding the time needed for

the dilution index to reach (ρ2 − ρ1)[m] to t0. To calculate how long it will
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take to spread to this finite width we need to use an estimated value of Dt. For

this we used the value of Dt obtained from fitting the analytical solution to the305

concentration profile.

Eq. 23 only applies for a homogeneous medium where solute plumes follow

Gaussian behavior which corresponds to the highest degree of dilution. In this

case the peak solute concentration should decrease with t−1/2 and should follow

a similar trend as the inverse of E.310

The ratio of the dilution index of a plume to its equivalent Gaussian plume is

called the reactor ratio:

Mgaussian =
Eexperiment
Enumerical

(25)

The reactor ratio can be used as measure of incomplete plume dilution, with

M → 1 when the plume is very close to a Gaussian plume and M → 0 when

the plume is very irregular and the porous medium is very heterogeneous. In315

addition, the ratio of the peak concentration to the peak concentration of its

Gaussian equivalent can be used [46]. To account for the radial geometry used in

this study the concentrations were weighted according to the area of the ring A.

For the experimental apparatus of this study, the use of the 1-D dilution320

index is only valid in the case of perfect symmetry. For more heterogeneous

cases where extensive plume deformation occurs, the cross-sectional dilution

index has to be used instead. The cross-sectional dilution index was obtained

for each of the 100 slices using Eq. 6 where ∆V is the area of the cross-section

divided by the number of voxels used to discretize the cross-section. Pk(t) is the325

ratio of the solute mass in each voxel to the total solute mass in the cross-section

at time t.

5. Results

Fig. 5 shows the steady-state concentration profiles, experimentally observed

and calculated from the analytical solution (Eq.13), for the injection of a NaI330
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Pe = 0.5 Pe = 10 Pe = 100

 NaI concentration (C/C0)
0 ≥1

Figure 5: Top: tracer plume at steady state. Bottom: cut-through along the cores axis for

the experimental results (left) and the results from the analytical solution (right)) for Pe=0.5,

Pe=10 and Pe=100. The arrows represent flow direction.
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Figure 6: Dt/Dm vs distance along the core. Dt was obtained from fitting the analytical

solution to the concentration profile.

aqueous solution into a Berea sandstone for Pe=0.5, Pe=10 and Pe=100. It can

be seen that the tracer plume was more focused for the high Pe value than for

the low one where there was more spreading in the transverse direction. From

these concentration profiles, the transverse dispersion coefficients were calcu-

lated using the methods described in section 4.335

5.1. Transverse Dispersion Coefficients

The value of Dt did not stay constant throughout the core but decreased

with distance along the core for all Pe (Fig. 6). The decrease became more

pronounced with increasing Pe.340

The core averaged transverse dispersion coefficients, obtained with the dif-

ferent methods for the different Pe can be found in Fig. 7 and Table 1. For
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Figure 7: Dt/Dm vs Pe. The colored symbols represent the results using the different methods

to calculate Dt for the Berea sandstone of this study. The black solid line shows the pore scale

modeling result for a pore-size distribution of the Berea sandstone from Bijeljic and Blunt

[3]. The black asterisks are the experimental results of Grane [24] for Berea sandstone.

the high Pe, the second central moment method using Eq. 18 was applied to

calculate the Dt using: (1) only the first half of the core and (2) the whole

core. For the low Pe (0.5 and 2) only the part of the core was used where the345

boundaries did not impact the steady state concentration profile. The values of

Dt calculated from the whole core are lower than when only half of the core was

used. When the whole length of the core is considered, fitting the analytical

solution to the concentration profile gives the highest values of Dt and the low-

est values are obtained with the method of fitting the 1-D dilution index length350

profile. The methods using the second central moment fall in between.
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Table 1: Dt/Dm and 95% confidence bounds in parentheses.

Pe Dt/Dm Dt/Dm Dt/Dm

E − Eq. 23 E − fit analytical E − cross section

0.5 0.956 (0.804 - 1.14) 0.400 (0.375 - 4.25) 0.367 (0.322 - 0.413)

2 0.808 (0.642 - 1.02) 0.603 (0.574 - 0.631) 0.584 (0.563 - 0.604)

10 3.53 (3.34 - 3.73) 3.61 (3.58 - 3.64) 3.38 (3.25 - 3.51)

20 6.55 (6.33 - 5.93) 5.78 (5.68 - 5.89) 6.13 (5.81 - 6.46)

30 9.38 (9.20 - 9.56) 8.36 (8.24 - 8.47) 8.26 (7.94 - 8.58)

40 12.9 (12.7 - 13.1) 11.0 (10.9 - 11.2) 12.7 (12.2 - 13.2)

60 17.1 (16.9 - 17.3) 13.9 (13.7 - 14.2) 17.3 (16.6 - 18.1)

100 27.6 (27.3 - 27.9) 23.1 (22.3 - 23.9) 29.1 (27.6 - 30.7)

Pe Dt/Dm Dt/Dm Dt/Dm

M2 − whole M2 − half M2 − fit analytical

0.5 0.325 (0.314 - 0.337) 0.325 (0.314 - 0.337) 0.427 (0.404 - 0.450)

2 0.769 (0.720 - 0.818) 0.769 (0.720 - 0.818) 0.651 (0.629 - 0.673)

10 3.20 (3.17 - 3.22) 3.43 (3.35 - 3.50) 3.79 (3.76 - 3.83)

20 5.77 (5.73 - 5.82) 6.22 (6.06 - 6.38) 5.97 (5.89 - 6.05)

30 8.18 (8.11 - 8.24) 9.12 (8.92 - 9.33) 8.46 (8.35 - 8.57)

40 13.5 (13.3 - 13.7) 15.1 (14.5 - 15.8) 12.7 (12.5 - 13.0)

60 16.8 (16.5 - 17.1) 18.3 (17.5 - 19.2) 15.3 (15.1 - 15.6)

100 24.6 (24.2 - 25.1) 32.4 (31.3 - 33.5) 25.4 (24.3 - 26.5)

Pe Dt/Dm

fit conc. profile

0.5 0.517 (0.463 - 0.571)

2 0.836 (0.772 - 0.900)

10 3.71 (3.62 - 3.80)

20 6.85 (6.69 - 7.01)

30 9.25 (9.05 - 9.45)

40 13.3 (12.9 - 13.6)

60 18.8 (18.3 - 19.3)

100 28.6 (27.6 - 29.7)
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Figure 8: Dt/Dm versus Pe in the power-law regime. Eq. 3 was fitted to this data. The

values for β and δ can be found in Table 2 .

The dependence of transverse dispersion on Pe for the power-law regime

(5 < Pe < 300) was investigated by fitting Eq. 3 to the data. The fitted line

can be seen in Fig. 8 and the values for β and δ can be found in Table 2.

The values for δ obtained with the different methods range from 0.84 to 0.97355

indicating sub-linear behavior of transverse dispersion in the power-law regime.

5.2. Transverse Dispersivities

Fig. 9 shows the graph of Dt versus velocity with straight lines fit to the

data for the different methods where the line slopes provide the dispersivities.

The dispersivities calculated this way can be found in Table 3, together with360

the individually calculated dispersivities for each Pe studied. The dispersivi-

ties obtained from each individual Pe are generally of similar value within each

method. Overall, the values of dispersivity of the methods of fitting the 1-D
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Table 2: β and δ values and 95% confidence bounds in parentheses from the fit to Eq. 3

Method β δ

Conc. profile− fit analytical 0.49 (0.34 - 0.63) 0.89 (0.82 - 0.96)

M2 − whole core 0.53 (0.11 - 0.96) 0.84 (0.65 - 1.0)

M2 − fit analytical 0.48 (0.20 - 0.76) 0.86 (0.72 - 1.0)

E − Eq. 23 0.47 (0.35 - 0.60) 0.88 (0.82 - 0.94)

E − fit analytical 0.47 (0.27 - 0.67) 0.84 (0.74 - 0.94)

E − cross section 0.33 (0.20 - 0.46) 0.97 (0.87 - 1.1)

Table 3: Core average dispersivity (αt) x 10−5m calculated for each Pe and from the slope of

Fig. 9.

Pe Conc. profile M2 − whole M2 − fit E − Eq. 23 E − fit E − cross section

10 4.06 3.30 4.19 3.80 3.92 3.57

20 4.39 3.58 3.73 4.16 3.59 3.85

30 4.12 3.59 3.73 4.19 3.68 3.63

40 4.60 4.69 4.39 4.47 3.75 4.39

60 4.45 3.95 3.58 4.02 3.23 4.08

100 4.14 3.54 3.66 3.99 3.32 4.22

Slope Fig. 9 4.17 3.60 3.58 3.97 3.20 4.30

dilution index length profile, and fitting the analytical solution to the concentra-

tion profile stay most constant and act as a lower and upper limit, respectively.365

5.3. Dilution Index

The dilution index was calculated for the experimental, analytical, numeri-

cal (CrunchFlow) results and from the equation defining the dilution index for

instantaneous 1-D point injection (Eq. 23). The results can be seen in Fig. 10.370

The analytical, numerical and the instantaneous point injection results are iden-

tical for Pe=100 but for Pe=10 the result from the instantaneous point injection

starts to deviate. This becomes more pronounced for Pe=2 due to the radial
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Figure 9: Dt vs velocity using the different methods to calculate Dt. The dispersivity can be

calculated from the slope of the best fit line.

boundary of the core. The experimentally obtained dilution index follows the

same curve as the analytical and numerical dilution index initially. For Pe=2375

the index starts to deviate after 0.04m, for Pe=10 after 0.09m, and for Pe=100

after 0.12m. The slope of the plot of ln(E) versus ln(t) for the different Pe can

be found in Table 4. The slope for a Gaussian plume would be 1/2 - the slopes

obtained from the experimental results are smaller but close to 1/2 for all Pe

studied.380

To check whether the obtained values of Dt for the different Pe are in agree-

ment, the dilution index was calculated for the instantaneous point injection

(Eq. 23) using the transverse dispersion coefficients obtained (i) from fitting

the analytical solution to the concentration profile, (ii) from the dilution index

method using the full cross-section, (iii) from fitting the second central moment385

length profile, and (iv) from fitting the dilution index length profile. The results

can be seen in Fig. 11. The dilution index should decrease for higher Pe - this

is only consistently the case for the transverse dispersion coefficients obtained
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Figure 10: Dilution index vs distance for the experimental, analytical, numerical results and

from the dilution index equation for point injection (Eq. 23) for Pe=2 and 100 (left) and

Pe=10 (right).

from fitting the analytical solution to the concentration profile (with the ex-

ception of Pe=30) and from fitting the dilution index length profile (with the390

exception of Pe=2).

5.4. Peak Concentrations

Peak, or maximum concentrations within a transect weighted according to

the area of the ring (Cpeak), were calculated for the experimental, analytical,395

numerical (CrunchFlow) results (Fig. 12). The peak concentration for Pe=100

and 10 follow the same trend as the numerical result. For Pe=2 the peak con-

centration stays much higher in the experiment than predicted by the model.

5.5. Reactor Ratio400

The reactor ratio and the peak concentration ratio were obtained by dividing

the experimentally obtained dilution index and peak concentration with the

dilution index and peak concentration of the Gaussian plume of the numerical

solution, respectively. The results can be seen in Fig. 13 and 14 and Table 4.
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Figure 11: Dilution index calculated using Eq.23 with the Dt obtained from fitting the analyt-

ical solution to the concentration profile (top left), from the dilution index - cross-section (top

right), from fitting the second central moment length profile (bottom left), and from fitting

the dilution index length profile (bottom right).
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Table 4: Slope of ln(E) vs ln(t) graph, reactor ratio & peak concentration ratio

Pe slope reactor ratio peak concentration ratio

0.5 0.415 0.829

2 0.495 0.810 0.573

10 0.491 0.962 0.930

20 0.482 0.945 0.881

30 0.487 0.951

40 0.481 0.945

60 0.468 0.932

100 0.492 0.964 0.888

Both ratios start close to unity and show a linear decrease with distance along405

the core. There is a clear separation between the reactor ratios for high Pe in

the power-law regime and the low Pe=2 and 0.5. Fig. 15 shows the ln(1/E)

and ln(Cpeak) versus distance along the core. It can be seen that ln(1/E) and

ln(Cpeak) follow the same trend.

6. Discussion410

6.1. Experimental Method

The consistency between the observations of transverse dispersion observed

in this work and those previously reported by Grane [24] and Bijeljic and Blunt

[3] serves as a benchmark validating the use of this technique for observing so-

lute transport and transverse dispersion. To that end, the core flood tests were415

rapid, and the simple experimental setup was relatively inexpensive as long as

access to an X-ray CT scanner is available. The analytical solutions for the

configuration allow for a simple design of the tests and also serve as a check

for aberrations due to experimental artefacts. The similarity between the con-

centration distributions obtained with the two-dimensional ADE accounting for420

longitudinal dispersion and the solution neglecting longitudinal dispersion shows

that longitudinal dispersion does not influence the steady-state concentration

29



0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Distance along core (m)

Re
ac

to
r R

at
io

 

 

 

Pe=100
Pe=60
Pe=40
Pe=30
Pe=20
Pe=10
Pe=2
Pe=0.5

Figure 13: Reactor ratio (Eq.25) vs distance for the different Pe.
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Figure 14: Peak concentration ratio vs distance for Pe=2, 10, and 100.
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profile. Similar observations have been made previously for different geometries

[47].

The radial geometry of the core and the new annular inlet configuration425

used in the experiment (Fig.1) allow the transverse dispersion coefficients to be

calculated using three different methods: (1) from fitting the analytical solution

to the steady state concentration profile, (2) by analyzing the second-central

moment, and (3) by analyzing the dilution index. This gives the opportunity

to compare and estimate the precision of the different methods.430

The analytical solution used from Eq. 17 is a solution for a homogeneous

porous medium with the bounded geometry of our experiment and, therefore,

the whole core can be used for the fitting. The second central moment method

using Eq. 18 and the dilution index method using Eq. 23 work for both ho-

mogeneous and heterogeneous porous media but assume an unbounded domain435

which means that only the part of the core can be used where the radial bound-

aries do not impact the concentration profile.

Fig. 10 shows the dilution index obtained from the numerical simulations,

the analytical solution and the equation for the dilution index for point injection

in a homogeneous unbounded domain (Eq. 23) using the transverse dispersion440

coefficients obtained from the fit with the analytical solution. It can be seen
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that for Pe=10 and 100 the boundaries do not impact the dilution index, i.e.

the graphs fall on top of each other. For Pe=2 it can be seen that the bound-

aries impact the dilution index and the graphs start to deviate. To calculate

the transverse dispersion coefficients using the second central moment method445

and the dilution index method, the part of the core from the inlet to the point

where they start to deviate was used.

To be able to use the whole core, the analytical solution was fitted to the

second central moment length profile and the dilution index length profile.

6.2. Transverse Dispersion and Dispersivity450

The transverse dispersion coefficient decreased with distance along the core

(Fig. 6). This decrease was persistent and more pronounced for the higher Pe,

which is an indication that this was not a boundary effect. Similar behavior

was observed at the pore scale [3] and at the field scale in 2-D [19] and 3-D [18].

This behavior can be explained by the process of flow focusing where stream-455

lines come together in zones of variable permeability. Due to this behavior the

transverse dispersion coefficients were higher when calculated over half of the

core (Table 1 and Fig. 7).

The core average transverse dispersion coefficients increased with Pe and

showed a sub-linear dependence on Pe in the power-law regime with values of460

power-law coefficient δ ranging from 0.84 to 0.97 for the three methods (Table

2). This is in good agreement with the δ values obtained from pore scale model-

ing for Berea sandstone, 0.94 [3] and 0.95+-0.07 [42] for the homogeneous Boise

sandstone. Significantly lower experimentally obtained power-law coefficients

have been reported in the literature for unconsolidated media, ranging from 0.5465

for Pe > 128 for a sand pack [30], and 0.57 for 80 < Pe < 1400 for a sand pack

[9] to 0.72 for Pe < 6307 for a bead and sand pack [34]. This sub-linear behavior

has been attributed to incomplete mixing at the pore throats. Another possible

explanation can be the more pronounced decrease in Dt with distance for the

higher Pe due to flow focusing.470

The dispersivities calculated from the core average transverse dispersion co-
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efficients are generally of similar value within each method. Overall, the values

of dispersivity of the methods of fitting the 1-D dilution index length profile,

and fitting the analytical solution to the concentration profile stay most constant

and act as a lower and upper limit, respectively. This shows that for a homo-475

geneous rock like the Berea calculating the transverse dispersion coefficients for

each of the radial transects is more precise than using the full cross-section be-

cause the width and location of the tracer can be adjusted during the fitting.

Furthermore, the variation in dispersivities obtained from the fit in Fig. 9 for

the different methods is relatively small, indicating that all methods can be used480

to obtain an estimate of the transverse dispersion coefficient.

6.3. Dilution Index and Reactor Ratio

Fig. 11 shows the dilution index calculated with the equation for instan-

taneous point injection (Eq. 23) by using the transverse dispersion coefficients

obtained from the different methods. Physically the dilution index should de-485

crease with Pe. This was observed for the transverse dispersion coefficients

obtained from fitting the analytical solution to the concentration profile (except

Pe=30) and from fitting the analytical solution to the dilution index length pro-

file (except Pe=2) but not for the Dt obtained using the other methods. This

indicates that fitting the analytical solution to the concentration profile and fit-490

ting the dilution index length profile are most precise in this case. However, for

more heterogeneous rocks, fitting the analytical solution to the concentration

profile might not work as the concentration distribution will not be close to a

Gaussian distribution. Furthermore, rock heterogeneity can lead to extensive

plume deformation affecting the symmetry of the system. When the system be-495

comes asymmetrical the cross-sectional dilution index method will be the best

option.

Fig. 13 and 14 show the reactor ratio and the peak concentration ratio,

respectively, for the different Pe studied. It can be seen that both ratios follow

the same trend for each of the Pe studied: the plume starts as a Gaussian plume500

and becomes slightly more irregular further along the core when more of the
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heterogeneities are sampled in the transverse direction. Both ratios decrease

linearly with distance along the core and do not behave asymptotically. This

can be explained by the fact that the transverse dispersion coefficient is not

constant but decreases with distance (Fig. 6) while a constant Dt is used in the505

numerical model. For the low Pe=0.5 and 2, the slope reaches an asymptotic

value due to the radial boundary. The slope is initially much steeper for the

low Pe because more of the core, and its heterogeneities, are sampled in the

transverse direction resulting in a more irregular plume. The average reactor

ratio for Pe=0.5 and 2 is significantly lower, around 0.82 while the reactor ratio510

for the higher Pe is around 0.95 (Table 4).

The reactor ratios are high and follow the same trend indicated by the slope

of the ln(E) versus ln(t) graph (close to a half, Table 4) and the inverse of the

dilution index and the peak concentration following a similar trend (Fig. 15).

This all shows that the plume spreading stays very close to Gaussian behavior,515

which is expected for a homogeneous medium like the Berea sandstone.

In this test, sodium iodide was used because of the high attenuation at rela-

tively low molar concentration. It is important to keep in mind that transverse

dispersion is compound dependent [11, 12, 40]. In principle, the test is general

to any compound of interest, as long as the impact on the local atomic density520

is sufficient to induce attenuation in the X-ray imagery. Thus, there will be

a trade-off between molecular weight of a compound and its mole fraction in

solution, so far as precision in the imaging is concerned. For Pe dependent ex-

periments, the same compound can be used in order to quantify the contribution

of different physical mechanism.525

7. Conclusions

We have developed a new core flood test for the characterization of trans-

verse solute transport in three dimensions in natural-rock media. The test has

been demonstrated to produce high precision observations of transverse disper-

sion and dilution over a broad range of Pe. Analytical solutions of the transport530
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equation for this new core-flood test were derived that can be used in experimen-

tal design and analysis. Transverse dispersion coefficients were calculated by (1)

fitting the analytical solution to the steady state concentration profile, by (2)

analyzing the second-central moment, and by (3) analyzing the dilution index.

All three methods give similar estimates of the transverse dispersion coefficients535

and can be used to estimate the transverse dispersion coefficient. However, the

methods of fitting the analytical solution to the concentration profile, and the

fit to the 1-D dilution index length profile seem to be most accurate and act as

the upper and lower limit, respectively. For more heterogeneous rocks, where

extensive deformations of solute plumes occur, the dilution index method using540

the full cross-section of the core might be the only method that can be applied.

This is the subject of future work.

We have shown that at the core scale transverse dispersion coefficients de-

crease with distance due to flow focusing and that this effect was more pro-

nounced for the higher Pe. This behavior has previously been observed for the545

core and field scale and can be a possible explanation for the sub-linear behav-

ior of the increase of transverse dispersion coefficients with Pe observed in the

power-law regime.

The plumes for the low Pe experiments were more irregular than the plumes

for the higher Pe because more pore-space heterogeneities were sampled in the550

transverse direction. Overall, the reactor ratios were high confirming the homo-

geneity of Berea sandstone.

Appendix A. Derivation of Analytical Solutions to the Two Dimen-

sional ADE

The advection-dispersion equation (ADE) in cylindrical coordinates is given555

by:

Dl
∂2C

∂z2
− v ∂C

∂z
+
Dt

r

∂

∂r

(
r
∂C

∂r

)
=
∂C

∂t
, (A.1)

where C (z, r, t) is the solute concentration; z is the distance along the core
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axis; r is the radial distance; t is the time; v is the average water velocity (in-

terstitial); Dl and Dt are the longitudinal and transverse dispersion coefficients,

respectively. Initially, there is no solute in the system:560

C (z, r, t = 0) = 0 0 ≤ z ≤ ∞, 0 ≤ r ≤ R, (A.2)

where R is the radius of the core.

The solute is continuously injected into the middle annular region. By applying

the law of mass conservation this can be described by

vC (z = 0, r, t)−Dl
∂C (z = 0, r, t)

∂z
=


0 0 ≤ r ≤ ρ1
vC0 ρ1 ≤ r ≤ ρ2
0 ρ2 ≤ r ≤ R

,

(A.3)

where C0 is the concentration of the injected solute; ρ1 is the inner radius of

the annular source; ρ2 is the outer radius of the annular source. Furthermore,565

the system is assumed to be of semi-infinite length:

C (z →∞, r, t) = 0. (A.4)

And impermeable conditions exist at r=R:

∂C (z, r = R, t)

∂r
= 0. (A.5)

The analytical solutions, transient and steady state of the 2D ADE in cylindri-

cal coordinates and the boundary conditions described above can be obtained

following the same procedure as Chen et al. [10].570

Finite Hankel Transform

First, the second kind of Finite Hankel transform is carried out on the ADE

(Eq. A.1) with respect to r resulting in:

Dl
∂2CH
∂z2

− v ∂CH
∂z
−Dtλ

2
nCH =

∂CH
∂t

, (A.6)
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where λn is the Finite Hankel transform parameter which is determined by

dJ0 (λnR)

dr
= 0, (A.7)

where J0 () is the zero order Bessel function of the first kind. CH (λn, z, t) is the575

second kind of Finite Hankel transform for C (r, z, t) as defined by the following

conjugate equations:

CH (λn, z, t) = H[C (r, z, t)] =

R∫
0

rC (r, z, t) J0 (λnr) dr,

(A.8)

C (r, z, t) =
2

R2
CH (λn = 0, z, t)

+
2

R2

∞∑
n=1

CH (λn, z, t)
J0 (λnr)

|J0 (λnR) |2
.

(A.9)

To obtain the transformed initial and boundary conditions the Finite Hankel

transform is carried out over r:

for λn 6= 0 :580

ρ2∫
ρ1

rJ0 (λnr) dr =
1

λn

ρ2∫
ρ1

λnrJ0 (λnr) dr

use
d

dx
[xpJp(x)] = xpJp−1(x)

1

λ2n
[λnrJ1(λnr)]

ρ2
ρ1 =

ρ2
λn
J1(λnρ2)− ρ1

λn
J1(λnρ1), (A.10)

for λn = 0 :
ρ2∫
ρ1

rJ0 (λnr) dr =

ρ2∫
ρ1

rJ0 (0) dr

use J0(0) = 1
ρ2∫
ρ1

rdr = [
1

2
r2]ρ2ρ1 =

ρ22
2
− ρ21

2
. (A.11)

The initial and boundary conditions after the Finite Hankel transform are:

CH (λn, z, t = 0) = 0, (A.12)

CH (λn, z →∞, t) = 0, (A.13)
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vCH (λn, z = 0, t)−DL
∂CH (λn, z = 0, t)

∂z
= vC0F (λn) ,

(A.14)

where585

F (λn) =


ρ22
2 −

ρ21
2 λn = 0

ρ2
λn
J1 (λnρ2)− ρ1

λn
J1 (λnρ1) λn 6= 0

(A.15)

and J1 () is the first order Bessel function of the first kind.

Laplace Trasnsform

Next, the Laplace transform is applied with respect to t:

L[CH(λn, z, t)] = CHL(λn, z, s) =

∞∫
0

CH(λn, z, t)e
−stdt. (A.16)

(A.17)

L
(
∂CH

∂t

)
is, using L(f ′(t)) = sF (s)− f(0), :

L(C ′H(t)) = sL(CH)− CH(0)

where CH(0) = 0 thus

L(C ′H(t)) = sL(CH) = sCHL. (A.18)

Substituting Eq. A.18 into Eq. A.6 results in:590

Dl
∂2CHL
∂z2

− v ∂CHL
∂z

− (Dtλ
2
n + s)CHL = 0. (A.19)

After the Laplace transform Eq. A.13 and Eq. A.14 become:

CHL (λn, z →∞, s) = 0, (A.20)

vCHL (λn, z = 0, s)−Dl
∂CHL (λn, z = 0, s)

∂z
=

vC0F (λn)

s
.

(A.21)(
Laplace transform of a constant is 1

s

)
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Particular Solution

Eq. A.19 is a homogeneous ordinary equation with the following general solu-595

tion:

CHL (λn, z, s) =

a1exp
[(v +

√
v2 + 4Dl(Dtλ2n + s)

2Dl

)
z
]

+a2exp
[(v −√v2 + 4Dl(Dtλ2n + s)

2Dl

)
z
]
.

(A.22)

The constants a1 and a2 can be found with the use of the boundary conditions

(Eq. A.20 and Eq. A.21). The particular solution to this problem becomes:

CHL (λn, z, s) =
vC0F (λn)√

Dl

exp
( vz

2Dl

)
1

s

exp
(
− z√

Dl

√
v2

4Dl
+Dtλ2n + s

)
v

2
√
Dl

+
√

v2

4Dl
+Dtλ2n + s

. (A.23)

600

Appendix A.1. Transient solution

To obtain the transient solution in the original domain, C(r, z, t), an in-

version of the Laplace transform and the Finite Hankel transform need to be

carried out.605

Inverse Laplace Transform

First, the Laplace inverse transform is carried out on Eq. A.23 using the First

Shift Theorem:

L−1F (s+ a)(t) = e−atf(t). (A.24)

For λn 6= 0, take a = v2

4Dl
+Dtλ

2
n and Eq. A.23 can be written as:
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CHL (λn, z, s) =
vC0F (λn)√

Dl

exp
( vz

2Dl

)
1

s

exp
(
− z√

Dl

√
s+ a

)
v

2
√
Dl

+
√
s+ a

, (A.25)

where610

vC0F (λn)√
Dl

exp
( vz

2Dl

)
= constant.

Therefore,

CH (λn, z, t) =
vC0F (λn)√

Dl

exp
( vz

2Dl

)
L−1

[1

s

exp
(
− z√

Dl

√
s+ a

)
v

2
√
Dl

+
√
s+ a

]
. (A.26)

Applying the First Shift Theorem (A.24) results in:

CH (λn, z, t) =
vC0F (λn)√

Dl

exp
( vz

2Dl

)
exp−atL−1

[ 1

s− a

exp
(
− z√

Dl

√
s
)

v
2
√
Dl

+
√
s

]
. (A.27)

Eq. A.27 can be solved with the following Laplace inverse formula:

 L−1
[ exp(−α

√
s)

(s−A2)(B +
√
s)

]
=

1

2(A+B)
exp(A2t−Aα)erfc

( α

2
√
t
−A
√
t
)

− 1

2(A−B)
exp(A2t+Aα)erfc

( α

2
√
t

+A
√
t
)

+
B

(A2 −B2)
exp(B2t+Bα)erfc

( α

2
√
t

+B
√
t
)
.

(A.28)

Let A = (
√

v2

4Dl
+Dtλ2n), B = ( v

2
√
Dl

) and α = ( z√
Dl

) then Eq. A.27 becomes:

CH (λn, z, t) =
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C0F (λn)

{
v

v + U
exp
[(v − U

2Dl

)
z
]
erfc

(
z − Ut
2
√
Dlt

)

+
v

v − U
exp
[(v + U

2Dl

)
z
]
erfc

(z + Ut

2
√
Dlt

)
+

v2

2DlDtλ2n
exp
( vz
Dl
−Dtλ

2
nt
)
erfc

( z + vt

2
√
Dlt

)}
,

(A.29)

where U = v
√

1 +
4DlDtλ2

n

v2 .615

For λn = 0 Eq. A.23 can be reduced to:

CHL (λn = 0, z, s) =
vC0F (λn = 0)√

Dl

exp
( vz

2Dl

)
1

s

exp
(
− z√

Dl

√
v2

4Dl
+ s
)

v
2
√
Dl

+
√

v2

4Dl
+ s

. (A.30)

Take a = v2

4Dl
:

CHL (λn = 0, z, s) =
vC0F (λn = 0)√

Dl

exp
( vz

2Dl

)
1

s

exp
(
− z√

Dl

√
s+ a

)
v

2
√
Dl

+
√
s+ a

, (A.31)

where

vC0F (λn = 0)√
Dl

exp
( vz

2Dl

)
= constant.

Therefore,620

CH (λn = 0, z, t) =
vC0F (λn = 0)√

Dl

exp
( vz

2Dl

)
L−1

[1

s

exp
(
− z√

Dl

√
s+ a

)
v

2
√
Dl

+
√
s+ a

]
. (A.32)
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Applying the First Shift Theorem (A.24) results in:

CH (λn = 0, z, t) =
vC0F (λn = 0)√

Dl

exp
( vz

2Dl

)
exp−atL−1

[ 1

s− a

exp
(
− z√

Dl

√
s
)

v
2
√
Dl

+
√
s

]
. (A.33)

Eq. A.33 can be solved with the following Laplace inverse formula:

 L−1
[ exp(−α

√
s)

(s−A2)(A+
√
s)

]
=(

1√
πt
exp
(α2

4t

))
t

+
1

4A
exp(A2t−Aα)erfc

( α

2
√
t
−A
√
t
)

− 1

4A
(1 + 2Aα+ 4A2t)exp(A2t+Aα)

erfc
( α

2
√
t

+A
√
t
)
. (A.34)

Let A =
√

v2

4Dl
= v

2
√
Dl

and α = z√
Dl

then Eq. A.33 becomes:

CH (λn = 0, z, t) = C0F (λn = 0){(√ v2t

πDl
exp
(
− (z − vt)2

4Dlt

)
+

1

2
erfc

[ z − vt
2
√
Dlt

]
−1

2

(
1 +

vz

Dl
+
v2t

Dl

)
exp
[ vz
Dl

]erfc
[( z + vt

2
√
Dlt

]}
(A.35)

Inverse Finite Hankel Transform

Next, the inverse Finite Hankel transform needs to be carried out using Eq.625

A.9. Substituting Eq. A.29 and Eq. A.35 into Eq. A.9, results in:

C (r, z, t) =
C0

R2
(ρ22 − ρ21){(√ v2t

πDl
exp
(
− (z − vt)2

4Dlt

)
+

1

2
erfc

[ z − vt
2
√
Dlt

]
−1

2

(
1 +

vz

DL
+
v2t

Dl

)
exp
[ vz
Dl

]erfc
[( z + vt

2
√
Dlt

]}
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+
2

R2

∞∑
n=1

C0

(
ρ2
λn
J1(λnρ2)− ρ1

λn
J1(λnρ1)

)
{

v

v + U
exp
[(v − U

2Dl

)
z
]
erfc

(
z − Ut
2
√
Dlt

)

+
v

v − U
exp
[(v + U

2Dl

)
z
]
erfc

(z + Ut

2
√
Dlt

)
+

v2

2DlDtλ2n
exp
( vz
Dl
−Dtλ

2
nt
)
erfc

( z + vt

2
√
Dlt

)}
J0 (λnr)

|J0 (λnR) |2
. (A.36)

Eq. A.36 is the transient solution of the 2-D ADE for the boundary conditions

described previously.

Appendix A.2. Steady State Solution

The steady state solution of the 2-D ADE for the boundary conditions de-630

scribed previously can be found by applying the Tauberian Theorem on Eq.

A.23:

for λn 6= 0:

CH (λn, z) =

vC0

(
ρ2
λn
J1(λnρ2)− ρ1

λn
J1(λnρ1)

)
√
DL

exp
( vz

2Dl

)exp(− z√
Dl

√
v2

4Dl
+Dtλ2n

)
v

2
√
Dl

+
√

v2

4Dl
+Dtλ2n

, (A.37)

for λn = 0:

CH (λn = 0, z) =
vC0(ρ22 − ρ21)√

Dl

exp
( vz

2Dl

)
exp
(
− z√

Dl

√
v2

4Dl

)
v

2
√
Dl

+
√

v2

4Dl

. (A.38)

Next, the inverse Finite Hankel transform needs to be carried out using Eq.635

A.9. Substituting Eq. A.37 and Eq. A.38 into Eq. A.9 results in:
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C (r, z, t) =

2

R2

vC0(ρ22 − ρ21)√
Dl

exp
( vz

2Dl

)exp(− z√
Dl

√
v2

4Dl

)
v

2
√
Dl

+
√

v2

4Dl

+
2

R2

∞∑
n=1

vC0

(
ρ2
λn
J1(λnρ2)− ρ1

λn
J1(λnρ1)

)
√
DL

exp
( vz

2Dl

)exp(− z√
Dl

√
v2

4Dl
+Dtλ2n

)
v

2
√
Dl

+
√

v2

4Dl
+Dtλ2n

J0 (λnr)

|J0 (λnR) |2
.

(A.39)

Eq. A.39 is the steady state solution of the 2-D ADE for the boundary conditions

described previously.

Appendix B. Derivation of Analytical Solution to the 2-D ADE Ig-

noring Longitudinal Dispersion640

When longitudinal dispersion is ignored, the ADE in cylindrical coordinates

(A.1) at steady state can be written as:

Dt

r

∂

∂r

(
r
∂C

∂r

)
= v

∂C

∂z
. (B.1)

At the inlet of the core, the concentration in the middle annular region is C0

and zero everywhere else:

C (r, z = 0) =


0 0 ≤ r ≤ ρ1
C0 ρ1 ≤ r ≤ ρ2
0 ρ2 ≤ r ≤ R

, (B.2)

645

and no-flux conditions exist at r=R:

∂C (r = R, z)

∂r
= 0. (B.3)
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The steady state solution of the 2-D ADE ignoring Dl in cylindrical coordinates

and the boundary conditions described above can be obtained by first carrying

out the second kind of Finite Hankel transform on Eq.B.1 with respect to r

resulting in:650

−Dtλ
2
nCH = v

∂CH
∂z

, (B.4)

where λn is the Finite Hankel transform parameter which is determined by

dJ0 (λnR)

dr
= 0, (B.5)

where J0 () is the zero order Bessel function of the first kind. CH (λn, z) is the

second kind of Finite Hankel transform for C (r, z) as defined by the following

conjugate equations:

CH (λn, z) = H[C (r, z)] =

R∫
0

rC (r, z) J0 (λnr) dr,

(B.6)

C (r, z) =
2

R2
CH (λn = 0, z)

+
2

R2

∞∑
n=1

CH (λn, z)
J0 (λnr)

|J0 (λnR) |2
.

(B.7)

To obtain the transformed initial and boundary conditions the Finite Hankel655

transform is carried out over r:

for λn 6= 0 :

ρ2∫
ρ1

rJ0 (λnr) dr =
1

λn

ρ2∫
ρ1

λnrJ0 (λnr) dr

use
d

dx
[xpJp(x)] = xpJp−1(x)

1

λ2n
[λnrJ1(λnr)]

ρ2
ρ1 =

ρ2
λn
J1(λnρ2)− ρ1

λn
J1(λnρ1), (B.8)

for λn = 0 :

ρ2∫
ρ1

rJ0 (λnr) dr =

ρ2∫
ρ1

rJ0 (0) dr
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use J0(0) = 1
ρ2∫
ρ1

rdr = [
1

2
r2]ρ2ρ1 =

ρ22
2
− ρ21

2
. (B.9)

The initial conditions after the Finite Hankel transform are:

C (λn, z = 0) = C0F (λn) (B.10)

where660

F (λn) =


ρ22
2 −

ρ21
2 λn = 0

ρ2
λn
J1 (λnρ2)− ρ1

λn
J1 (λnρ1) λn 6= 0

(B.11)

and J1 () is the first order Bessel function of the first kind.

Eq. B.4 is a homogeneous ordinary equation with the following general

solution:

CH (λn, z) = c1exp(−Dtλ
2
n

z

v
) (B.12)

The constant c1 can be found with the use of the initial conditions (Eq.

B.10). The particular solution to this problem becomes:665

CH (λn, z) = C0F (λn)exp(−Dtλ
2
n

z

v
) (B.13)

To go back to the solution in the original domain, C(r, z), an inversion of the

Finite Hankel transform needs to be carried out using Eq. B.7. This results in:

C (r, z) =
C0

R2
(ρ22 − ρ21)

+
2

R2

∞∑
n=1

C0

(
ρ2
λn
J1(λnρ2)− ρ1

λn
J1(λnρ1)

)
exp
(
−Dtλ

2
n

z

v

) J0 (λnr)

|J0 (λnR) |2
.(B.14)

Eq. B.14 is the analytical solution of the 2-D ADE at steady state when

longitudinal dispersion is ignored for the boundary conditions described above.
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