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Abstract— In this paper, a novel distributed model-based
prediction method is proposed using sensor networks. Each
sensor communicates with the neighboring nodes for state
estimation based on a consensus protocol without centralized
coordination. The proposed distributed estimator consists of a
consensus-filtering scheme, which uses a weighted combination
of sensors information, and a model-based predictor. Both
the consensus-filtering weights and the model-based prediction
parameter for all the state components are jointly optimized
to minimize the variance and bias of the prediction error in
a Pareto framework. It is assumed that the weights of the
consensus-filtering phase are unequal for the different state
components, unlike consensus-based approaches from litera-
ture. The state, the measurements, and the noise components
are assumed to be individually correlated, but no probability
distribution knowledge is assumed for the noise variables.
The optimal weights are derived and it is established that
the consensus-filtering weights and the model-based prediction
parameters cannot be designed separately in an optimal way.
The asymptotic convergence of the mean of the prediction error
is demonstrated. Simulation results show the performance of
the proposed method, obtaining better results than distributed
Kalman filtering.

I. INTRODUCTION

In this paper, we consider the problem of distributed
prediction of the state of a dynamical system from noisy
measurements taken by a wireless sensor network. This
approach, which is thought for the networked control field,
can be useful in many applications, such as wireless localiza-
tion, target tracking, environment and agriculture monitoring,
where the state of the processes has to be estimated in a
distributed manner at each sensor node. We assume that
each sensor locally estimates the state of a common dynamic
system with an uncertain model. This is done by letting
each node communicate measurements and estimates only
to neighboring nodes in the sensor network. Each sensor
filters the measurements by taking a linear combination of its
own and neighboring measurements and predictions. Subse-
quently, the sensor uses the current filtered measurements
to implement a classic model-based predictor, smoothing
the previous prediction error. The consensus-filtering weights
and the model-based prediction parameters are time-varying
and are computed locally by each sensor at each step in
an optimal way so as to minimize the mean and variance
of the current prediction error. In this paper, for the sake of
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simplicity, we assume that the entire system state is measured
by each sensor. The non-completely measurable state case is
left for further works.
Considering decentralized or distributed scenarios, the es-

timates are affected by bias due to the measurement and mod-
eling uncertainty and the possibly incomplete communication
between the sensors of the network. This motivates the need
of simultaneously minimizing the bias and the variance of the
estimation error. The proposed estimation method minimizes
at each discrete-time step both the mean and the variance of
the prediction error by posing a multi-objective optimization
problem based on a Pareto optimization framework and this
is the first main contributions of the paper. Compared to
Kalman-based approaches, beyond the asymptotic behavior
of the estimator – we show that asymptotic convergence
is achieved – we aim at guaranteeing a good transient
behavior of the estimator. Moreover, we jointly optimize the
design of both the consensus-filtering weights and the model-
based prediction parameters, and we establish that it is not
possible to separate the two designs. This is the second main
contribution of this work.
As far as our previous results are concerned, in [1] we

developed a distributed estimation method based on Pareto
optimization, but we considered only the measurement fil-
tering task of a scalar signal, whereas in the present paper,
we investigate the much more challenging task of prediction
with a multi-variable scenario having possibly correlated
components. The distributed state prediction goal is also
motivated by the purpose of applying the proposed method
to model-based fault detection in future works. Besides, in
[2] we proposed a distributed prediction approach for fault
detection purposes, but we did not consider the correla-
tions between different state components, i.e., we considered
each component as independent, and we did not optimize
the model-based prediction parameter (we assumed it was
given). On the other hand, in this paper, we minimize the
bias and the variance of the prediction error with reference
to both the consensus-filtering weights and the model-based
prediction parameter at the same time in a jointly optimiza-
tion problem. In this paper we obtain an important result:
filtering and prediction weights cannot be designed in an
optimal way separately. Therefore the approach proposed
in this paper gives a substantial innovative contribution to
the distributed estimation problem and considers a more
challenging scenario. To the best of the authors’ knowledge,
this is the first time that a Pareto optimization approach
has been designed for distributed prediction using sensor
networks.

Proposed Approach vs. State of the Art

In the state of the art, roughly two different approaches
have been proposed to the problem of distributed state



estimation and prediction. First, the approaches based on
diffusion strategies, such as the ones proposed in [3], [4]
and the references therein of the same authors, where the
diffusion of the local estimations in neighbors is applied
after incremental update. These are in contrast with the
second approach: consensus strategies, used, e.g., in [5],
where consensus approaches are applied to obtain average
observations or estimations at each iteration. Moreover, in
[6] an optimal decentralized Kalman-Consensus Filtering ap-
proach is designed with the objectives of estimating the state
of the system and reaching a consensus with neighboring
estimator agents on the estimate.
Unlike Kalman filtering approaches (such as the optimal

decentralized Kalman-consensus filter proposed in [6] that
assumes a Gaussian distribution), in the proposed method
no assumptions on the probability distribution of the mea-
surement and modeling noises are made: we do not need to
assume Gaussian distribution, but we assume knowledge of
the mean and covariance matrix of the noise components.
When our estimation problem is solved by a centralized
approach, the Kalman filter is optimal under Gaussian as-
sumption on the noises and represents the best linear filter
also when disturbances are non-Gaussian [7]. However, the
scenario we are facing is more challenging, since we consider
a distributed case, i.e., the prediction is computed locally
without the coordination of a central agent. Moreover, we
consider the multi variable case, unlike [8] which was for
scalar cases. This is done by managing correlations between
the different components of the state and of the noises, which
is a major analysis challenge. In this paper, we minimize
in a multi-objective optimization problem both the mean
and the variance of the prediction error at each iteration.
This is in contrast to [8], where Kalman-Consensus based
approaches are investigated for the scalar case to obtain
optimal Kalman gains and consensus weights such that the
variance of the estimate error is minimized. Compared to [6],
[5], [9], [10], we do not assume that the distribution of the
disturbance is known. We only assume to know the mean
and variance of such disturbance. Compared to [11], we do
not select the most accurate estimate to propagate through
the network. By using local estimation and measurements
fusion, our method updates the filtering weights at each
iteration. Furthermore, our work is in contrast to approaches
that are focused on average initial samples [12], or where the
estimation variables are static parameters [13], or where the
only measurements are diffused over the network [14], [15].
Compared to [5], [6], we do not use the consensus algorithms
in the estimator.
The paper is organized as follows. In Section II, we intro-

duce the problem formulation. We describe the distributed
prediction method in Section III, where the convergence
of the predictor is demonstrated in Subsection III-C. In
Section IV, the optimization problem of the time-varying
weights is designed and the optimal values are derived in
Section IV-A. Finally, some simulation results are provided
in Section V and concluding remarks in Section VI.

II. PROBLEM FORMULATION

We introduce some notations that will be used throughout
the paper. By |·| we denote the cardinality of the argument

and by ‖·‖ the spectral norm of a matrix. Given a stochastic
variable x, we represent as Ex its expected value. By 1
and I we denote the vector (1, . . . , 1)� and the identity
matrix with appropriate size, respectively. Finally, ⊗ denotes
the Kronecker product and the operator ◦ represents the
component-by-component product: as example, applied to a
matrix M as M ◦ I , it is equivalent to M with off-diagonal
elements set to zero.
The process the state of which we want to predict is

modeled as

x(t+ 1) = Ax(t) + w̄(t) + w̃(t), (1)

where t is the discrete time, x ∈ R
m denotes the state vector,

w̄ ∈ R
m represents a known time-varying bias including

possibly known non-linearities and process disturbances,
while w̃(t) models process uncertainties and noises.
Assumption 1: We assume that w̃(t) is a zero-mean pro-

cess with covariance matrix Σw(t).
A sensor network, made of n nodes, monitors system (1) by
taking measurements, so that, for each sensor node i, with
i = 1, . . . , n, we have:

yi(t) = x(t) + vi(t), (2)

where yi ∈ R
m denotes the measurements vector taken by

sensor i and vi ∈ R
m is the measurement noise. The non-

completely measurable state case is left for further works.
Assumption 2: We assume that vi(t) is a zero-mean mea-

surement noise, with Σvi its covariance matrix.
The extension to the non-zero mean case is trivial.
The original contribution of this paper concerns the state

filtering and one-step-ahead prediction. We wish to answer
the questions: how to optimally choose the weights of the
two phases? Can the two phases be designed separately?
The main underlying assumption is that each node of the
network observes the entire state vector and exchanges
measurements and predictions with the neighboring nodes
to implement a consensus mechanism. The communication
network is modeled by an undirected graph G = (V , E),
where Ni = {j ∈ V : (j, i) ∈ E}∪{i} is the set of neighbors
of node i ∈ V plus the node itself.

III. DISTRIBUTED STATE PREDICTION

We propose that each node i of the sensor network
implements a two phases estimator: a filtering phase and
a prediction phase. First, by communicating with neighbor-
ing nodes, the estimator filters the measurements noise by
computing a linear combination of its own and neighboring
measurements and predictions. This is similar to a consensus-
phase already used for distributed filtering:

x̄i(t) =
∑
j∈Ni

ki,j(t)x̂j(t) +
∑
j∈Ni

hi,j(t)yj(t), (3)

where ki,j(t) and hi,j(t) are time-varying filter weights that
we design, differently from consensus filtering approaches,
where they are given. The objective of this first phase is for
each node to reduce its own measurement uncertainty and to
reach a consensus, without centralized coordination.
After the consensus-filtering phase, each node implements

a classical model-based prediction, using filtered measure-
ments (obtained from the previous step), instead of the



observed measurements. The one-step-ahead prediction is

x̂i(t+ 1) = Ax̄i(t) + w̄(t) + λ′
i(t)(x̂i(t)− x̄i(t)), (4)

where λ′
i(t) ∈ R

m×m is a matrix collecting the time-varying
filter parameters that will be designed in an optimal form
in the following sections. The term λ′

i(t)(x̂i(t) − x̄i(t))
represents a correction of the previous prediction errors.
To facilitate the analysis, the distributed estimator-

predictor formulation can be expressed in a vector form that
includes all the nodes in the sensor network:

x̄(t) = K(t)x̂(t) +H(t)y(t)

x̂(t+ 1) = AE x̄(t) + w̄E(t) + λ′(t)(x̂(t)− x̄(t)),
(5)

where x̄, x̂ and y ∈ R
mn×1 are column vectors collecting

the local vectors x̄i, x̂i and yi, respectively, with i =
1, . . . , n; AE is a diagonal block matrix, with each block
on the diagonal equal to A, and wE is a column vector
of appropriate length, where the process disturbance vector
w is repeated n times. K(t) and H(t) are block matrices,
where each (i, j)-th block, with i, j = 1, . . . , n, collects on
the diagonal the weights with which the i-th sensor weights
measurements or estimates components developed by the j-
th node, if they are neighbors; the block is a null matrix if
i and j are not neighboring nodes. λ′ is a diagonal block
matrix, collecting matrices λ′

i, i = 1, . . . , n, on the diagonal.
The main goal of the paper is to devise a design principle

of the time-varying weights H(t), K(t) and λ′(t) in order
to minimize bias and variance of the prediction error at each
time-instant t. In particular, we aim at establishing whether
the consensus weights H(t) and K(t) can be designed
separately with respect to the prediction weight λ′(t). We
address this issue in the following subsection.

A. Analysis of the estimation error

Let us define the following estimation errors: the filtering
error ē(t) = x̄(t) − xE(t) and the prediction error Ê(t) =
x̂(t)− xE(t), with xE being a column vector of appropriate
dimension, where the process state vector x is repeated. They
can be computed as follows:

ē(t) =K(t)x̂(t) +H(t)y(t)− xE(t)

=K(t)Ê(t) +H(t)v(t),
(6)

where we use the following assumption, needed for the
tractability of the problem:
Assumption 3: Suppose that (K(t) +H(t))1 = 1.

For simplicity, we express the prediction parameter as
λ′(t) = AEλ(t), being λ(t) a diagonal matrix. Accordingly,
the prediction error is

Ê(t+ 1) =AE x̄(t) + w̄E(t) + λ′(t)(x̂(t)− x̄(t))−AExE(t)

− w̄E(t)− w̃E(t)

=AE [(I − λ(t))K(t) + λ(t)] Ê(t)

+AE(I − λ(t))H(t)v(t) − w̃E(t).
(7)

Let us compute mean and variance of the global estimation
and prediction errors. The expected value expressions are

Eē(t) = K(t)EÊ(t), (8)

EÊ(t+ 1) = AE [(I − λ(t))K(t) + λ(t)]EÊ(t). (9)

We introduce the following further assumption:
Assumption 4: The measurement noise v and process dis-

turbances w are not correlated.
The covariance matrices can then be computed as

E
[
(ē(t)− Eē(t))(ē(t)− Eē(t))�

]
= K(t)ΓÊ(t)K(t)� +H(t)Σv(t)H(t)�, (10)

where ΓÊ(t) = E

[
(Ê(t)− EÊ(t))(Ê(t)− EÊ(t))�

]
,

Σv(t) = E
[
(v(t)− Ev(t))(v(t) − Ev(t))�

]
,

Cov(Ê(t), v(t)) = 0, and ΓÊ(t+ 1) is

E

[
(Ê(t+ 1)− EÊ(t+ 1))(Ê(t+ 1)− EÊ(t+ 1))�

]
= W1(t)ΓÊ(t)W1(t)

� +W2(t)Σv(t)W2(t)
� + ΣwE (t),

(11)
with

W1(t) = AE [(I − λ(t))K(t) + λ(t)] ,

W2(t) = AE(I − λ(t))H(t)

and ΣwE (t) = E
[
(wE(t)− EwE(t))(wE(t)− EwE(t))

�],
being Cov(Ê(t), v(t)) = 0, Cov(Ê(t), w̃E(t)) = 0 and
Cov(v(t), w̃E(t)) = 0.

B. Local estimation and prediction errors

In this section, we derive the expressions of the local
estimation and prediction errors. Each node computes locally
a consensus estimation and a model-based prediction as

x̄i(t) = κi(t)x̂
reg
i (t) + ηi(t)y

reg
i (t)

x̂i(t+ 1) = Ax̄i(t) + w̄(t) + λi(t)(Ax̂i(t)−Ax̄i(t)),
(12)

where x̂reg
i and yregi are two column vectors collecting

the prediction vectors and the measurements vectors re-
spectively available at node i, ordered according to their
indexes: x̂reg

i = (x̂�
i1
, . . . , x̂�

iNi
)� , i1 < . . . < iNi , and

yregi = (y�i1 , . . . , y
�
iNi

)� , i1 < . . . < iNi , where Ni is the
cardinality of set Ni. Moreover, κi(t) and ηi(t) are the time-
varying matrices corresponding to the non–zero elements
of the m rows related to the i-th node of matrices K(t)
and H(t), respectively. Let us now define the local filtering
error ēi(t) = x̄i(t) − x(t) and the local prediction error
Êi(t) = x̂i(t)−x(t). Similarly to the global quantities, they
can be computed as

ēi(t) = κi(t)ε̂i(t) + ηi(t)vεi(t), (13)

Êi(t+ 1) =A(I − λi(t))κi(t)ε̂i(t) +Aλi(t)Êi(t)

+A(I − λi(t))ηi(t)vεi(t)− w̃(t),
(14)

where ε̂i collects the prediction error vectors available at
node i and vεi collects the measurement noise vectors
related to the measurements available at node i, both ordered
following their indexes.
Now, we can derive the expressions of the bias and the

variance for the local estimation and prediction errors. The
mean values can be computed as

Eēi(t) = κi(t)Eε̂i(t),



EÊi(t+ 1) = A(I − λi(t))κi(t)Eε̂i(t) +Aλi(t)EÊi(t)

= A[(I − λi(t))κi(t) + λ0
i (t)]Eε̂i(t),

whereas the variance can be computed as

E[(Êi(t+ 1)− EÊi(t+ 1))(Êi(t+ 1)− EÊi(t+ 1))�]

= W1i(t)Γε̂i(t)W1i(t)
� +W2i(t)Σvε̂i

W2i(t)
� +Σw(t),

(15)

where

W1i(t) = A[(I − λi(t))κi(t) + λ0
i (t)],

W2i(t) = A(I − λi(t))ηi(t),

Γε̂i(t) = E(ε̂i(t)− E[ε̂i(t))(ε̂i(t)− Eε̂i(t))
�]

and Σvε̂i
is the measurement noise covariance matrix, in-

cluding correlations between neighboring sensors.

C. Convergence analysis

In this subsection, we show that the mean of the global
prediction error (Eq. (9)) of our proposed estimation method
converges to zero. In this subsection, for the sake of no-
tational simplicity, we drop the dependence on t of the
matrices.
Proposition 3.1: Consider the global prediction error

mean of Eq. (9). The following local conditions are sufficient
to guarantee its convergence to zero: if 1

‖AE‖∞
> 1, then

n∑
j=1

∣∣kli,j ∣∣ < 1

‖AE‖∞
− 1

‖AE‖∞
+
∑n

j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j∣∣ < λl
i <

1
‖AE‖∞

+
∑n

j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j ∣∣ ;

(16)
if 1

‖AE‖∞
= 1, then

n∑
j=1

∣∣kli,j ∣∣ < 1

‖AE‖∞
− 1

‖AE‖∞
+
∑n

j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j∣∣ ≤ λl
i < 1;

(17)

if 1
‖AE‖∞

< 1, then

n∑
j=1

∣∣kli,j ∣∣ < 1

‖AE‖∞
− 1

‖AE‖∞
+
∑n

j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j ∣∣ < λl
i < 1−

1− 1
‖AE‖∞

1−∑n
j=1

∣∣kli,j∣∣ .
(18)

Proof: Eq. (9) represents the dynamics of a linear
time-varying system. We use the results in [16] to derive
convergence conditions on the time-varying matrices K(t)
and λ(t). A necessary and sufficient condition for global
asymptotic stability is given in [16], by which there exists a
finite k > 0 such that∥∥∥∥∥

k∏
t=1

AE [(I − λ(t))K(t) + λ(t)]

∥∥∥∥∥
∞

< 1. (19)

This condition is sufficiently satisfied if, for each t,

‖AE [(I − λ(t))K(t) + λ(t)]‖∞ < 1.

Remember that λ(t) and I−λ(t) are two diagonals matrices;
by definition K(t) is a block matrix, where each block is
a diagonal matrix; therefore also (I − λ(t))K(t) + λ(t)
is a block matrix with all diagonal blocks. Thanks to the
submultiplicative property of the norm, the convergence
condition is implied by

‖(I − λ)K + λ‖∞ <
1

‖AE‖∞
.

This is satisfied if, for each l-th row of each i-th block row
of matrix (I − λ(t))K(t) + λ(t), with i = 1, . . . , n and
l = 1, . . . ,m, we have

∣∣1− λl
i

∣∣ n∑
j=1

∣∣kli,j ∣∣+ ∣∣λl
i

∣∣ < 1

‖AE‖∞
. (20)

We analyzed this last condition for all the alternative cases
of values of λl

i to extract it from the absolute value and we
obtained the convergence conditions in the statement. �
Note that the previous proposition gives local convergence
conditions, meaning that they can be computed at each
node. Therefore, in this section, we have proved that the
proposed estimator converges under the derived convergence
conditions and we can therefore formulate an optimization
problem to build the distributed estimator.

IV. THE OPTIMIZATION PROBLEM

The proposed distributed estimation methodology is based
on minimizing the bias and variance of the prediction error
at every time step. To do that, each sensor at each step,
computes the optimal time-varying weights by solving a
Pareto optimization problem:

min
κi,ηi,λi

tr [ρiB
2
i + (1− ρi)Vi] (21a)

s.t. (κi(t) + ηi(t))1mNi
= 1m, (21b)

convergence conditions Eq.(16) ∨ (17) ∨ (18),
(21c)

where mNi = mNi, 0 ≤ ρi ≤ 1 is the Pareto parameter,
Bi = EÊi(t+1) is the prediction error bias, Vi = E(Êi(t+
1) − EÊi(t + 1))2 is the variance of the prediction error.
According to the derived expressions for the bias and the
variance of the prediction error, the cost function of problem
(21) is

tr [ρiB2
i + (1− ρi)Vi]

=tr [ρiW1i(t)Eε̂i(t)Eε̂
�
i (t)W1i(t)

� + (1− ρi)[Σw(t)

+W1i(t)Γε̂i(t)W1i(t)
� +W2i(t)Σvε̂i

W2i(t)
�]]

=tr [A(I − λi(t))κi(t)[ρ Eε̂i(t)Eε̂
�
i (t)

+ (1− ρi)Γε̂i(t)]κi(t)
�(I − λi(t))

�A� + (1− ρi)Σw(t)

+Aλi(t)[ρEÊi(t)EÊ
�
i (t) + (1− ρi)ΓÊi

(t)]λi(t)
�A�

+A(I − λi(t))ηi(t)[(1 − ρi)Σvε̂i
]ηi(t)

�(I − λi(t))
�A�],
(22)

where the last equality comes by inserting the definitions
of W1i and W2i, with ΓÊi

(t) := E(Êi(t) − EÊi(t))
2. The



first constraint in problem (21) is the local condition given
by Assumption 3; the other constraints are the convergence
conditions derived in Section III-C, depending on matrix A
norm. We briefly analyze the convergence conditions (16),
(17), (18). The first condition is common to all the three
cases. In the optimization problem, for tractability reasons,
we use the more restrictive conditions⎧⎨

⎩
κ�
i (t)1m ≥ 0mNi

κi(t)1mNi
<

1

‖A‖∞
1m

(23)

instead of
∑n

j=1

∣∣kli,j∣∣ < 1/ ‖AE‖∞, ∀l. Moreover, as
regards the quantities in Eqs.(16),(17),(18), we note that

− 1
‖AE‖∞

+
∑n

j=1

∣∣kli,j ∣∣
1 +

∑n
j=1

∣∣kli,j ∣∣ < 0,

1
‖AE‖∞

+
∑n

j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j ∣∣ > 1,

0 < 1−
1− 1

‖AE‖∞

1−∑n
j=1

∣∣kli,j∣∣ < 1.

In this paper, due to space restrictions, we consider only
the case for 1/‖AE‖∞ = 1/‖A‖∞ > 1 (Eq.(16)). The
other two cases, for different norms of system matrix A, can
be investigated in a similar way. Therefore, for tractability
reasons, we simplify the second condition in (16) with

0 ≤ λi ≤ I, (24)

using the element-wise inequality, which implies the more
complex condition in (16). To highlight the dependencies on
the the decision variables κi(t), ηi(t) and λi(t), we rewrite
the Pareto optimization problem (21) by substituting the
following expressions which are data of the problem or can
be computed using samples:

Mi(t, ρ) = ρEε̂i(t)Eε̂
�
i (t) + (1 − ρi)Γε̂i(t),

Mi(t, ρ)
loc = ρEÊi(t)EÊ

�
i (t) + (1− ρi)ΓÊi

(t),

Si(ρ) = (1− ρi)Σvε̂i
.

We obtain

min
κi(t),ηi(t),λi(t)

tr [A(I − λi(t))κi(t)Mi(t, ρ)κi(t)
�·

(I − λi(t))
�A� +Aλi(t)Mi(t, ρ)

locλi(t)
�A�

+A(I − λi(t))ηi(t)Si(ρ)ηi(t)
�(I − λi(t))

�A�

+ (1 − ρi)Σw(t)] (25a)

s. t. (κi(t) + ηi(t))1mNi
= 1m, (25b)

κ�
i (t)1m ≥ 0mNi

(25c)

κi(t)1mNi
<

1

‖A‖∞
1m (25d)

λi(t)1m < 1m, (25e)

λi(t)1m > 0m, (25f)

where the last two constraints are equivalent to the original
ones since λi(t) is a diagonal matrix. It is worth noting
that problem (21) and problem (25) have the same objec-
tive function, but, for tractability reasons, problem (25) is
constrained by more restrictive conditions. The analytical
solution of this approximated problem is given in Proposition
4.2. To derive it we analyze the optimization problem. Note
that problem (25) is convex since the objective function has
a quadratic form and Mi, M loc

i and Si are positive definite
matrices. Coherently, we can use Lagrangian duality to solve
the problem. Let introduce the dual variables ξi1, ξi2, ξi4 and
νi, which are m× 1 vectors, and the mNi × 1 vector ξi3.

Proposition 4.1: Consider optimization problem (25). Let
ε1 be a positive constant. Then, the optimal values of the
primal (κi(t), ηi(t) and λi(t)) and dual (ξi1, ξi2, ξi3, ξi4
and νi) variables satisfy the following equations:

(κi(t) + ηi(t))1mNi
− 1m = 0m, (26)

λi(t)1m − 1m ≤ 0m, (27)

−λi(t)1m ≤ 0m, (28)

ξ�i1(t)(λi(t)1m − 1m) = 0 ξi1(t) ≥ 0, (29)

ξ�i2(t)(−λi(t)1m) = 0 ξi2(t) ≥ 0, (30)

−κi(t)1m ≤ 0m, (31)

κi(t)1mNi
− 1

‖A‖∞
1m + ε1 ≤ 0m, (32)

ξ�i3(t)(−κi(t)1m) = 0 ξi3(t) ≥ 0, (33)

ξ�i4(t)(κi(t)1mNi
− 1

‖A‖∞
1m+ε1) = 0 ξi4(t) ≥ 0, (34)

2[Mi(t, ρ)κi(t)
�(I − λi(t))

�A�A(I − λi(t))] ◦ (1⊗ I)

+ [1mNi
ν�i ] ◦ (1⊗ I) + [1mNi

ξ�i4] ◦ (1⊗ I)

− [ξi3(t)1
�
mNi

] ◦ (1⊗ I) = 0,
(35)

2[Si(t, ρ)ηi(t)
�(I − λi(t))

�A�A(I − λi(t))] ◦ (1⊗ I)

+ [1mNi
ν�i ] ◦ (1⊗ I) = 0,

(36)
2[[κi(t)Mi(t, ρ)κi(t)

� + ηi(t)Si(t, ρ)ηi(t)
�

+Mi(t, ρ)
loc]λi(t)A

�A

− [κi(t)Mi(t, ρ)κi(t)
� + ηi(t)Si(t, ρ)ηi(t)

�]A�A] ◦ I
+ [1mξ�i1(t)] ◦ I − [1mξ�i2(t)] ◦ I = 0,

(37)

Proof: Problem (25) is convex. Therefore the Karush
Kuhn Tucker conditions are both necessary and sufficient for
optimality. In Eqs. (26)–(28) we derive the canonical form
of the constraints. Since κi(t), ηi(t) and λi(t) are composed
by diagonal blocks, the Eqs. (35)–(37) are obtained by using
matrix derivatives for diagonal and symmetric matrices [17],
[18]: given matrices A, M � 0 and diagonal matrix X , then

d tr(AXMXTAT )

dX
= 2(MXATA) ◦ I . (38)



As an extension to this result, given block-diagonal matrix
κ, positive semidefinite matrix M and matrix A, then

d tr(AκMκTAT )

d κ
= 2(MκTATA) ◦ (1⊗ I). (39)

�
In the following we analyze the derived KKT conditions to
obtain the optimal weight values.

A. The optimal weights

We formulated problem (21) to minimize mean and vari-
ance of the local prediction errors and we obtained some
optimality conditions for the equivalent problem (25) with
more restrictive constraints. Here we analyze the KKT con-
ditions to derive the optimal values for the decision variables
κi(t), ηi(t) and λi(t). We need the following preliminary
result:
Lemma 1: Suppose square matrices M , A and X with

same size, where A is symmetric and X is diagonal. Then

diag(MXA) = (M ◦A)diag(X).
Proof: Suppose all matrices have size n× n. We have

MX =

⎡
⎢⎢⎣
M11X1 M12X2 · · · M1nXn

M21X1 M22X2 · · · M2nXn

...
...

. . .
...

Mn1X1 Mn2X2 · · · MnnXn

⎤
⎥⎥⎦ ,

then we obtain

diag(MXA) =

⎡
⎢⎢⎣

∑n
i=1 M1iAi1Xi∑n
i=1 M2iAi2Xi

...∑n
i=1 MniAinXi

⎤
⎥⎥⎦ .

On the other side, we have (M ◦A)diag(X) =

=

⎡
⎢⎢⎣
M11A11 M12A12 · · · M1nA1n

M21A21 M22A22 · · · M2nA2n

...
...

. . .
...

Mn1An1 Mn2An2 · · · MnnAnn

⎤
⎥⎥⎦

⎡
⎢⎢⎣
X1

X2

...
Xn

⎤
⎥⎥⎦ ,

Thus for j = 1, . . . , n we have

[diag(MXA)]j =

n∑
i=1

MjiAijXi =

n∑
i=1

MjiAjiXi

= (M ◦A)diag(X).

(40)

�
We use this lemma to solve Equations (35) - (37). We now
define the mNi × 1 vector κvec

i (t) = κ�
i (t)1m, collecting

all the decision variables of the diagonals of κi(t) on a
column vector. Similarly, we define also ηveci (t) = η�i (t)1m,
λvec
i (t) = λ�

i (t)1m and νEi (t) = [1mNi
ν�i ] ◦ (1 ⊗ I)1m,

collecting Ni times the vector νi. For the sake of notation
simplicity, in the following we will omit the dependence on
the time when it is not strictly necessary. We now provide an
analytical solution for problem (25). It is worth noting that
only these formula have to be implemented in each node to
compute at each step the optimal weights.
Proposition 4.2: A solution for problem (25) is given by

ξi1 = 0, ξi2 �= 0, ξi3 = 0, ξi4 = 0, λi = 0,

κvec
i = − (

2Mi ◦ (1Ni1
T
Ni

⊗Di)
)−1

νEi , (41)

ηveci = − (
2Si ◦ (1Ni1

T
Ni

⊗Di)
)−1

νEi , (42)

νi = −2(Im×mNi
((Mi ◦Di)

−1

+ (Si ◦Di)
−1

)ITm×mNi
)−11m , (43)

where Im×mNi
:= 1T

Ni
⊗ Im, Di := ATA and Di =

1Ni1
T
Ni

⊗Di.

Proof: We observe that the Eq. (37) is equivalent to

diag
(
2(M loc

i + κiMiκ
T
i + ηiSiη

T
i )λiA

TA
)

= diag
(
2(κiMiκ

T
i + ηiSiη

T
i )A

TA
)
+ ξi2 − ξi1 . (44)

By using the result from (1), we have

λvec
i =

(
2(M loc

i + κiMiκ
T
i + ηiSiη

T
i ) ◦ (ATA)

)−1

(
diag

(
2(κiMiκ

T
i + ηiSiη

T
i )A

TA
)
+ ξi2 − ξi1

)
. (45)

Let us now analyze KKT conditions in Eqs. (35) and (36).
We find a solution with ξi3 = 0 and ξi4 = 0. Let note that
Eq. (35) holds if and only if it holds

2(Miκ
T
i (I − λi)

TATA(I − λi)) ◦ (1⊗ I)1m

= −1mNi
vTi ◦ (1⊗ I)1m = −νEi (46)

Let denote κi = [κi1 , · · · , κiNi
], where κij is the (j)-th

m×m diagonal block of κi, with j = 1, . . . , Ni. Similarly
we consider Mipq , which is the m×m block of matrix Mi:

Mi =

⎡
⎢⎣
Mi11 · · · Mi1Ni

...
. . .

...
MiNi1

· · · MiNiNi

⎤
⎥⎦ .

Then, by using block operations, we have⎧⎪⎨
⎪⎩

2(
∑Ni

k=1 Mi1kκikDi) ◦ I 1m = −vi
...

2(
∑Ni

k=1 MiNik
κikDi) ◦ I 1m = −vi

.

Thus by using block by block the result in (1):

2Mi ◦ (1Ni1
T
Ni

⊗Di)κ
vec
i = −1Ni ⊗ vi = −νEi . (47)

Remembering that by definition κvec
i is the vector that

collects all the elements from κi, from Eq. (47), we obtain

κvec
i = − (

2Mi ◦ (1Ni1
T
Ni

⊗Di)
)−1

νEi ,

and similarly

ηveci = − (
2Si ◦ (1Ni1

T
Ni

⊗Di)
)−1

νEi ,

as in the statement of the proposition. According to the first
KKT condition, we have

(κi + ηi)1mNi
= 1T

Ni
⊗ Im(κvec

i + ηveci ) = 1m , (48)



which implies that

νi = −2(Im×mNi
((Mi ◦Di)

−1

+ (Si ◦Di)
−1

)ITm×mNi
)−11m ,

where Im×mNi
denotes 1T

Ni
⊗ Im, and Di = 1Ni1

T
Ni

⊗Di.
In this way we have obtained the optimal value of the dual
variable νi and, by substituting the result in Eq. (41) and
(42), we obtain the optimal values of κi and ηi depending
on λi. We can observe that the KKT conditions hold by
imposing ξi2 �= 0: λi has to be null because of Eq.(30) and
ξi1 = 0 because of Eq.(29). Therefore, we can find optimal
solutions in closed form for κi and ηi by substituting λi = 0
in Eq. (41), (42) and (43). Remember that the weights are
adaptive and can be computed locally by node i at each
step. This is an optimal solution for the Pareto optimization
problem (25), if, once computed the solutions on-line, in
addition they satisfy the constraints in (31) and (32). �
In the analytical solution given by the previous proposition,
one of the convergence conditions constraints is active. Since
in problem (25) we have imposed more restrictive conditions
than the ones obtained in Section III-C for tractability rea-
sons, and so the solution could be sub–optimal, we propose
here an alternative solution of the problem to use the more
complex less restrictive computed constraints (16).
Proposition 4.3: A solution for problem (21) is given by

ξi1 = 0, ξi2 = 0, ξi3 = 0, ξi4 = 0, Eqs. (45), (41), (42) and
(43) with Di := (I − λi)

TATA(I − λi).
Proof: “Sketch”: we follow the same procedure as in

proof of Prop.4.2, but imposing the dual variables ξi1 , ξi2 ,
ξi3 and ξi4 all null, so that the constraints are all non active,
and letting the time-varying variable λi be non-null. In fact,
with these conditions, in Eq. (45) we have found an optimal
solution of λi depending on κi and ηi, and in Eqs. (41)
and (42) we have found an optimal solution of κi and ηi
depending on λi. �
To use the result in Prop. 4.3, we adopt a computational
method to find optimal values κ∗

i , η
∗
i and λ∗

i . At each step,
we initialize λi = Im/2, and define a small positive constant
ε. We first compute κi and ηi with the initial given value of
λi. Then we update λi with the computed values of κi and
ηi. We repeat this procedure until the difference between
current value of λi and the updated one is smaller than ε
as shown in Algorithm 1. At each step, we verify that the
obtained values satisfy the convergence conditions obtained
in Section III-C. Such a second solution method can be used
with any matrix A norm, since the convergence conditions
constraints are not active.
In this section we have proposed two methods to obtain the

values of the optimal time-varying weights for the proposed
distributed estimator. Moreover, we showed that in general
Theorem 4.4: Consider optimization problem (21). The

consensus-filtering weights κi and ηi, and the model-based
prediction parameters λi cannot be computed by two separate
optimization problems.

Proof: “Sketch”: from Prop. 4.3, it follows that the
optimal solution of λi depends on the optimal solutions of
κi and ηi, and vice versa. �

Algorithm 1 Algorithm
Set λ+

i = Im/2, ε
Im×mNi

= 1T
Ni

⊗ Im

repeat

λi = λ+
i

Di = 1Ni
1T
Ni

⊗ (Im − λi)TATA(Im − λi)

νi = −(Im×mNi
((2Mi ◦ Di)

−1 + (2Si ◦
Di)−1)ITm×mNi

)−11m

κvec
i = PK − (2Mi ◦Di)

−1 1Ni
⊗ Im νi

ηveci = − (2Si ◦Di)
−1 1Ni

⊗ Im νi

Ri = κiMiκ
T
i + ηiSiη

T
i

λvec
i = PΛ

(
(M loc

i +Ri) ◦ (ATA)
)−1

diag
(
RiA

TA
)

λ+
i = diag(λvec

i )

until |λi − λ+
i | ≤ ε

return κi(t) = diag(κvec
i ), ηi(t) = diag(ηveci ), and λi(t) = λ+

i

This is an important result, since in many works of the state
of the art (see [10], as example), the two phases (consensus-
filtering and prediction) are designed separately.

V. SIMULATION RESULTS

In this section, simulation results are given with the
purpose of illustrating the analysis performed in this paper.
In [1], it is explained how to derive the estimates of the
needed quantities to implement the proposed method.
To quantify the performance of the distributed estimator

proposed in this paper, we consider a linear system, whose
dynamics are described by the matrix:

A =

(
0.9 0.05
0.25 0.6

)
.

We compare the following prediction methods:
EDKF1: Decentralized Kalman filter as in [5].
EDKF2: Decentralized Kalman filter as in [6].
EKF: Centralized Kalman filter. The estimator collects

all the measurements and implements the classical
Kalman filter.

Ep1: The proposed estimator using Algorithm 1.
Ep2: The proposed estimator using Prop. 4.2.

Note that the Kalman Filter method can not be implemented
in the distributed scenario we are considering due to commu-
nication and computation limits. A 15-nodes network is ob-
tained by distributing the nodes randomly over a squared area
of size N/2 and the graph by letting two nodes communicate
if their relative distance is less than 1.7

√
N . The evaluated

performance metric is the Mean Square Error (MSE) of the
predictions at each node, that is then averaged over all the
nodes of the network. We consider different noise scenarios.
For each scenario, we repeat the experiment 50 times with a
random network topology. We denote MSE the average value
over the 50 experiments. We investigate the performances of
the considered methods with different values of modeling
uncertainty/disturbances and measurement noise. Figs. 1(a),
1(b) and 1(c) show the MSE values for all the estimators
with respect to the measurement noise standard deviation,
with different values of disturbances standard deviation for
each figure. In this first case, we consider Gaussian colored
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Fig. 1. MSE obtained by the three estimators with different values of measurement noise standard deviation. The standard deviation of the disturbance
noise is 0.5 in 1(a), 1 in 1(b) and 2 in 1(c).
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Fig. 2. MSE obtained by the five estimators with different values of
measurement noise standard deviation. The measurement noise is a white
noise. The standard deviation of the disturbance noise is 1.

noises for the measurement noise and white noises for
the disturbances. We can see that in these conditions, the
proposed estimator obtains always better results than the
distributed Kalman filters and it performs equal or slightly
worse than the centralized Kalman filter. Even in the ideal
case with Gaussian white noises (Fig. 2), where the Kalman
filter is optimal, the proposed predictor continues to behave
similarly.

VI. CONCLUDING REMARKS

In this paper, we propose a novel distributed prediction
method for dynamic systems using sensor networks, able
to simultaneously minimize both the bias and the variance
of the prediction error. The optimal consensus-filtering and
prediction weights are time-varying and can be computed
locally at each step by each sensor node. We consider a
multi-variable scenario where the components of the state
and therefore measurement and modeling noises can be cor-
related. No knowledge of the noise distribution is assumed.
As a future work, we aim at extending the proposed

method by considering the case the state is not observable by
each node, and a scenario with the topology changing along
the time. Moreover, future efforts will be devoted to a more
extensive simulative comparison with distributed prediction
methods at the state of the art.
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