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Abstract— This paper proposes a novel stochastic Fault
Detection (FD) approach for the monitoring of Large-Scale Sys-
tems (LSSs) in a Plug-and-Play (PnP) scenario. The proposed
architecture considers stochastic bounds on the measurement
noises and modeling uncertainties, providing probabilistic time-
varying FD thresholds with guaranteed false alarms probability
levels. The monitored LSS consists of several interconnected
subsystems and the designed FD architecture is able to manage
plugging-in of novel subsystems and un-plugging of existing
ones. Moreover, the proposed PnP approach can perform
the unplugging of faulty subsystems in order to avoid the
propagation of faults in the interconnected LSS. Analogously,
once the issue has been solved, the disconnected subsystem can
be re-plugged-in. The reconfiguration processes involve only
local operations of neighboring subsystems, thus allowing a
scalable architecture. A consensus approach is used for the
estimation of variables shared among more than one subsystem;
a method is proposed to define the time-varying consensus
weights in order to allow PnP operations and to minimize at
each step the variance of the uncertainty of the FD thresholds.
Simulation results on a Power Network application show the
effectiveness of the proposed approach.

I. I NTRODUCTION

The interest towards LSS (see, for example, [1]), Systems-
of-Systems [2] and Cyber-Physical Systems [3] is steadily
growing both in academia and industry. These systems,
characterized by a large number of states and inputs, are
spatially distributed and are modeled as the interaction of
many subsystems coupled through physical or communi-
cation relationships. Furthermore, they often can have a
dynamic structure that changes along the time. Reliability
is a key requirement especially in these systems, as their
increased size and complexity implies an increased risk of
faults. When monitoring this kind of systems, the adoption
of decentralized and distributed methods is usually necessary
due to computational, communication, scalability and relia-
bility limits (see [4], [5], [6], [7], [8] as examples). More-
over, an emerging requirement is the design of monitoring
architectures that are robust to changes that may occur in
the dynamic structure of the LSS. This is why, in this paper
we develop a distributed FD methodology, properly designed
for a PnP scenario. Differently from previous works ([7], [8],
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[9], [10]) where a deterministic approach was adopted, in this
paper the novelty is to consider stochastic bounds on the
noises and uncertainties, and to derive probabilistic thresh-
olds for fault detection. The aim is to propose a monitoring
architecture which is closer to industrial applications, where
deterministic bounds on the uncertainties are often difficult
to be obtained, producing then conservative results. To the
authors’ knowledge, this is the first time that a stochastic
distributed monitoring architecture is designed for LSS in
a PnP scenario. Some recent results are presented in [9],
integrating distributed model-based fault detection withMPC
for nonlinear LSS, and [10], where a PnP FD and Isolation
architecture is designed. Compared with [9], the present
paper shows the following significant differences.

• A general class of nonlinear systems is addressed, while
in [9] the analysis was limited to a class of nonlinear
systems, with matched control inputs.

• We exploit a full PnP framework, where the monitoring
architecture is robust to plugging-in and unplugging
of subsystems. Instead, in [9] only a reconfiguration
process after fault occurrence is considered, dealing
with just the disconnection of the faulty subsystem and
not addressing a possible plug-in of new subsystems.

• Here a stochastic approach is proposed, while in [9] a
deterministic framework was considered.

This last point is also the one that mainly describes the nov-
elty with respect to [10]. In this paper, the main contribution
is to define stochastic thresholds for fault detection, able
to guarantee a certain false alarms probability and allowing
PnP operations. A similar distributed stochastic monitoring
architecture has been proposed in [11], but in that paper,
the problem of designing an optimal decomposition of the
LSS was considered, where the dynamics of the system do
not change along the time, while here we consider a PnP
scenario. Moreover, in this paper, as a novel contribution,
we prove the convergence of the estimation error mean and
we define a novel time–varying consensus approach for the
estimation of state variables shared among more than one
subsystems. We propose a method to analytically compute
the consensus weights so as to allow PnP operations and to
minimize the magnitude of the thresholds .

Recently, some works have been published dealing with
PnP scenarios: [12], [13], [14] analyze only the control
problem; [15] designs a fault-tolerant control strategy for
a centralized system; [16] presents a fault-tolerant PnP con-
troller, but, differently from the proposed work, it considers
linear systems with a centralized approach. [17] proposes a
PnP reconfiguration of Intelligent Electronic Devices using
event-based Petri Net fault diagnosis methods.



II. PROBLEM FORMULATION

Let us consider an LSS, composed at timet of M
interconnected subsystems. Each subsystem dynamics can
be described as

Σ[i] : x
+
[i] = fi(x[i], ψ[i], u[i])+wi(t)+φi(x[i], ψ[i], u[i], t)

(1)

wherex[i] ∈ R
ni , u[i] ∈ R

mi , i ∈ M = 1, . . . ,M , are the
local state and input, respectively, at timet andx+[i] denotes
x[i] at time t + 1. The vector of interconnection variables
ψ[i] ∈ R

pi collects components of the states{x[j]}j∈Ni
that

influence the dynamics ofx[i], whereNi is the set of parents

of subsystemi at timet, defined asNi = {j ∈ M :
∂x+

[i]

∂x[j]
6=

0, i 6= j}. We also defineCi = {k : i ∈ Nk} as the set
of children of Σ[i]. Finally, we say thatΣ[i] and Σ[j] are
neighbors ifj ∈ Ni or j ∈ Ci. fi(·) : Rni×R

pi×R
mi → R

ni

represent possibly nonlinear nominal dynamics, including
known relationships with parent subsystems by means of the
interconnection variables, whilewi(·) : N → R

ni repre-
sents modeling uncertainties, considering unknown possibly
nonlinear coupling among subsystems. We assume that the
nominal model (1) takes already into account the influences
due to all the possible subsystems that can be plugged-in to
thei-th subsystem, by means of the interconnection variables
ψ[i]: at a certain timet, some of these variables could be null
(or set to a defined value) because the corresponding father
subsystem is not connected toΣ[i] at that time. Thek-th
component of vectorx[i] is specified byx[i,k]. The function
φi(·) : Rni × R

pi × R
mi × R → R

ni represents the fault-
function, capturing deviations of the dynamics ofΣi from
the nominal healthy dynamics: it is null before the unknown
fault time T0.

In this paper, we assume that the state vector is fully
accessible (possibly through noisy measurements). Hence,
the local output equation is:

y[i] = x[i] + ̺[i], (2)

where̺[i] ∈ R
ni , i ∈ M, is the local unknown measurement

error at timet. Similarly,

z[i] = ψ[i] + θ[i]

is the vector of measured interconnection variables commu-
nicated by father subsystems, withθ[i] collecting the involved
measurement error̺[j], j ∈ Ni.

The following assumptions are needed:
Assumption 1:The modeling uncertaintywi is an un-

known function, modeled as a stochastic process of unknown
distribution. We know at each time instantt the mean and
the variance of the stochastic variableswi(t), for all i ∈ M:

wi(t) ≈ (µwi
(t), σwi

(t)),
Assumption 2:The measurement noise̺[i] is a stochastic

process of known distribution. We assume to know at each
time instantt the mean and the variance of the stochastic
variables̺[i](t) for all i ∈ M:

̺[i](t) ≈ (µ̺[i]
(t), σ̺[i]

(t)).

The values of mean and variance in Assumptions 1 and 2
are obtained from the knowledge of the system process and
sensors methods.

Each subsystem is monitored by one Local Fault Diag-
noser (LFD). Some state variables, which we callshared
variables, are monitored by more than one LFD. These
variables represent the coupling variables: by means of
them, two (or more) subsystems are connected (see Fig.1).
Examples of applications that can be represented in this way
are: power networks, water/gas distribution networks and all
the facilities networks that are divided into subnetworks.As
a consequence, the considered decomposition of the LSS is
overlapping([1]), since some of the variables “belong” to
more than one subsystem.

Fig. 1. The possibly overlapping decomposition of the LSS structural
graph: the small green circles represent the state and input variables; the
yellow ones are the shared state variables.

The PnP framework we are considering, allows the plug-
in and unplugging of subsystems, without any need to
reconfigure the entire LSS: only neighboring subsystems
have to be updated, continuing to guarantee convergence
properties of the estimators and operational capabilitiesof
the diagnosers. We assume that only healthy subsystems are
connected to the LSS within the plug-in operations. On the
other hand, the unplugging process may occur also in faulty
conditions. In fact, one of the advantages of the proposed
framework is that, after fault detection, the faulty subsystem
can be disconnected, in order to avoid the propagation of
the fault in the LSS system. More specifically, plug-in and
unplugging operations, that we generally callreconfiguration
operations, could happen due to changes of the dynamic
structure of the LSS system or it could be the consequence of
the detection of a fault. In this second case, the unplugging
could be acted as a consequence of an isolation phase or in
alternative to an isolation step. In general, after the detection
of a fault, depending on the specific application context and
criticality, two distinct actions may be feasible: i) immediate
“disconnection” of the faulty subsystem after detection or
ii) continuation of the system operation in “safety mode”
and simultaneously fault isolation. This second option is not
analyzed in this draft.

III. T HE FAULT DETECTION ARCHITECTURE

In this section, we design a stochastic distributed FD archi-
tecture for the considered PnP framework. Each subsystem
is equipped with a local diagnoser.



An estimatex̂[i] of the local state variables is defined; the
estimation errorǫ[i] , y[i]−x̂[i] is then compared component-
wise with some properly designed time-varying stochastic
detection thresholds̄ǫ upp

[i] and ǭ low
[i] ∈ R

ni . If the residual
lies in the interval between the thresholds, then the local
fault decision about the status of the subsystem is healthy
with a certain probability; otherwise, if it crosses one of the
two thresholds, we say that a fault has probably occurred.
In the PnP framework, the diagnosers are designed so to
guarantee the convergence of the mean of the estimation error
both during healthy conditions and during the reconfiguration
process: the healthy subsystems diagnosers have to continue
to work properly also when the faulty subsystem(s) is (are)
unplugged and then plugged-in after problem solution. Fur-
thermore, properties are guaranteed during all the plug-in
and unplugging processes in healthy conditions.

A. The Fault Detection Estimator

For detection purposes, each subsystem is monitored by
a local nonlinear estimator, based on the local modelΣ[i]

in (1). The ki-th non-shared state variable ofΣ[i] can be
estimated as

x̂+[i,ki]
= λ(x̂[i,ki] − y[i,ki]) + fi,ki

(y[i], z[i], u[i]) , (3)

where the filter parameter is chosen in the interval0 < λ <
1, in order to guarantee convergence properties. Let now
consider a shared variablex[i,ki] = x[j,kj ], where ki and
kj are theki-th andkj-th components of local vectorsx[i]
and x[j], respectively. We use the redundant measurements
thanks to the overlapping for implementing a deterministic
consensus approach (see [10] where the effectiveness of
this consensus approach is demonstrated for a stochastic
framework). In fact, as regards shared variables estimation,
each subsystem communicates with parents and children
subsystems sharing that variable. In the following,S

k is the
time-varying set of subsystemsΣ[i] sharing a given state
variable k of the LSS at the current time stept. Let the
shared variable bex[i,ki]. The estimates of shared variables
are provided by the following estimation model:

x̂+[i,ki]
=

∑

j∈Sk

W k
i,j

[

λ(x̂[j,kj ] − y[j,kj ])

+fj,kj
(y[j], z[j], u[j])

]

, (4)

whereW k
i,j are the components of a row-stochastic matrix

W k, which will be defined in Subsection III-C, designed
to allow plugging-in and unplugging operations. By now,
notice thatW k collects the consensus weights used byΣ[i]

to weight the terms communicated byΣ[j], with j ∈ S
k. We

note that (4) holds also for the case of non-shared variables
(3), since, in this case,Sk = {i}, andW k

i,i = 1 by definition.
In the following, for the sake of simplicity, we omit the
subscript of the shared component indexk, i.e. we usex[i,k]
instead ofx[i,ki] when it is not strictly necessary.

B. The detection thresholds

In order to properly define the stochastic upper and lower
thresholds for FD, we analyze the dynamics of the local
diagnoser estimation error in healthy conditions. Defining

W k such that
∑

j∈Sk
W k

i,j = 1 and since for shared vari-
ables ∀i, j ∈ S

k there areki and kj such that it holds
fi,ki

(x[i], ψ[i], u[i]) = fj,kj
(x[j], ψ[j], u[j]), the k-th state

estimation error dynamics model is given by

ǫ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǫ[j,k] +∆fj,k + wj,k + ̺+[i,k]

]

, (5)

where∆fj,k , fj,k(x[j], ψ[j], u[j])− fj,k(y[j], z[j], u[j]) and
̺+[i,k] is the measurement error at timet+1. This is a general
formulation, and it holds also in the case of non-shared
variables, where it is simply:

ǫ+[i,k] = λǫ[i,k] +∆fi,k + wi,k + ̺+[i,k] , (6)

We now analyze the residual, first in the non–shared case
and then in the shared one, in order to derive the fault
detection thresholds. It is worth noting that at timet, when
the thresholds are computed for the stept+1, ǫ[i,k] is not a
random variable, since it can be computed as the difference
between the measurementy[i,k] and the estimatêx[j,kj ]. We
therefore analyze the stochastic part of the residual:

χ+
[i,k] = ∆fi,k + wi,k + ̺+[i,k].

Its mean and variance can be computed as

E[χ+
[i,k]] = E[∆fi,k] + E[wi,k] + E[̺+[i,k]]

Var[χ+
[i,k]] = Var[∆fi,k] + Var[wi,k] + Var[̺+[i,k]]

+ 2Cov[∆fi,k, ̺
+
[i,k]], (7)

where the following further assumptions are needed.
Assumption 3:The measurement noise̺[i,k] and the mod-

eling uncertaintywi,k are not correlated.
Thanks to this assumption, we can assume also that the
covariance between∆fi,k, which is the error on the nominal
model due to the measurement noise, and the modeling
uncertaintywi,k is null.

Assumption 4:Given the values ofy[i], z[i], u[i] and
known the probabilistic distribution of̺ [i] (and so ofθ[i]),
it is possible to computeE[∆fi,k] and Var[∆fi,k], where
∆fi,k = fi,k(y[i] − ̺[i], z[i] − θ[i], u[i])− fi,k(y[i], z[i], u[i]).
In the linear case, the solution of this problem is trivial and it
is not necessary to know the measurement noise distribution.

It is worth noting that, in the case the measurement noise
̺[i] is a white process, then Cov[∆fi,k, ̺

+
[i,k]] = 0 and (7) can

be simplified. Moreover, we consider the following additional
assumption for the sake of simplicity.1

Assumption 5:The measurement noise and the modeling
uncertainty are zero-mean:µ̺[i]

(t) = 0, µwi
(t) = 0, ∀t ≥ 0.

Then, (7) can be rewritten as:

E[χ+
[i,k]] = E[∆fi,k] (8)

Var[χ+
[i,k]] = Var[∆fi,k]+σ

2
wi,k

+σ2
̺+
[i,k]

+2Cov[∆fi,k, ̺
+
[i,k]]

(9)

1In case Assumption 5 is not satisfied, it is sufficient to introduce mean
values different from zero in the estimator formulation.



We now derive some time-varying stochastic bounds for
χ+
[i,k]. Chebyshev inequalities can be used, without any as-

sumption on the distribution of the residual. For a stochastic
variableX, with meanµ(X) and standard deviationσ(X),
it holds:

Pr
(

µ(X)− ασ(X) ≤ X ≤ µ(X) + ασ(X)
)

≥ 1− 1/α2

(10)
where α > 1 is a tunable, real positive valued scalar.
Therefore, it is possible to obtain a lower and a upper
stochastic thresholds for the residual signal, so that at each
time t

ǭ low
[i] ≤ ǫ[i] ≤ ǭ upp

[i] (11)

with a certain probability. For non-shared variables, the
thresholds can be computed at each stept for the following
stept+ 1 as:

ǭ
+ upp/low
[i,k] = λǭ

upp/low
[i,k] + E[χ+

[i,k]]± α
[

Var[χ+
[i,k]]

]
1
2

= λǭ
upp/low

[i,k] + E[∆fi,k]± α [Var[∆fi,k]

+σ2
wi,k

+ σ2
̺+
[i,k]

+ 2Cov[∆fi,k, ̺
+
[i,k]]

]
1
2

. (12)

The value ofα is a tuning parameter by which different
values of guaranteed false-alarms rate can be set.

Let us now analyze the case of variables shared among
more than one subsystem. As previously mentioned, in the
distributed FD architecture considering possibly overlapping
decomposition, certain state variables may be measured,
estimated and monitored by more than one LFD. In this
shared-variable case, the residual is

ǫ+[i,k] =
∑

j∈Sk

W k
i,j

[

λǫ[j,k] +∆fj,k + wj,k + ̺+[i,k]

]

,

Similarly as before, we obtain the following expressions
for the lower and upper thresholds:

ǭ
+ upp/low
[i,k] =

∑

j∈Sk

W k
i,j

[

λǭ
upp/low

[j,k] + E[∆fj,k]
]

± α







∑

j∈Sk

(W k
i,j)

2

[

Var[∆fj,k] + σ2
wj,k

+ σ2
̺+
[j,k]

+2Cov[∆fj,k, ̺
+
[j,k]]

]}
1
2

. (13)

It is worth noting that, since0 ≤ W k
i,j ≤ 1 for every

(i, j), then
∑

j∈Sk
(W k

i,j)
2 ≤ 1. Therefore, the variance

component of the threshold for the shared case in (13) is
lower that in the non-shared case in (12) in the case that
the variance of the uncertainty terms is equal for all the
subsystems. Then, in this case, we are able to show that,
sharing some state variables among more than one LFD
by means of the proposed consensus method implies the
reduction of the variance of the residual signal thus leading
to less conservative detection thresholds (see [10]).

Remark 1:For diagnosis purposes, the information ex-
change between the local diagnosers is limited. It is not nec-

essary that each diagnoser knows the model of neighbouring
subsystems. In the shared case (4), it is sufficient that each
subsystemΣ[i] communicates to neighbouring subsystems
in S

k only the interconnection variables and the consensus
terms for estimates and thresholds, locally computed.

C. The consensus matrix

In this subsection, we explain how to design a time–
varying consensus matrix in a proper way in order to allow
PnP operations. For PnP capabilities, we use a square time-
varying weighting matrixW k whose dimension is equal to
the maximum number (as large as wanted) of subsystems that
can be plugged in sharing that variable. Each row and each
column represent a diagnoser (and so the related subsystem)
sharing the variablek: the generic elementW k

i,j indicates
how much thei-th diagnoser weights the consensus terms
received by thej-th diagnoser inSk. Each row can have non
null elements only in correspondence of connected (plugged-
in) subsystems. In the case that, at a given time, the variable
is not shared (and hence a single subsystem is monitoring
it) the only non-null weight is the one corresponding to the
considered subsystem (this does not affect the convergence
of the FD estimator as illustrated in Subsection III-D). We
define the time-varying consensus-weighting matrixW k for
each(i, j)-th component for PnP purposes. The objective is
to obtain the most reliable local state estimation by using
only the terms available inSk at the current time step. To do
that, we want to use the weights that allow to minimize the
thresholds (13), by weighting more the currently connected
subsystems that have lower uncertainty in its measurements
and in the local model. Since the amplitude of the thresholds
is mainly due to the variance terms in (13), we decide
to minimize those terms. This is obtained by solving the
following quadratic optimization problem:

min
Wk

i,j

∑

j∈Sk

(W k
i,j)

2Var[χ[j,k]]

s. t.
∑

j∈Sk

W k
i,j = 1,

∣

∣W k
i,j

∣

∣ ≤ 1 ∀j ∈ S
k.

(14)

We have the following result. The proof is omitted due to
space constraints.

Proposition 1: The optimal weights for the minimization
problem in (14) are,∀j ∈ S

k:

W k
i,j =

1

Var[χ[j,k]](
∑

j
1

Var[χ[j,k]]
)
. (15)

At each time-step, every local fault-diagnoser receives
estimates and consensus terms of variablex[i,k] only from
the subsystems sharing it at that specific time, thus allow-
ing PnP operations. Then, it selects and weights more the
contributions affected by “smaller uncertainty”.

D. Estimator convergence

Next, we address the convergence properties of the overall
estimator before the possible occurrence of a fault, that is
for t < T0. Towards this end, for sake of compacting the
notation, we introduce the extended estimation error vector



ǫk,E , which is a column vector collecting the estimation error
vectors of theNk subsystems sharing thek-th state compo-
nent: ǫk,E , col

(

ǫ[j,k] : j ∈ S
k
all

)

, whereSkall collects all
the indices of the subsystems that can share variablek, also
the ones not currently connected. Hence, the dynamics of
ǫk,E can be described as:

ǫ+k,E =W k [λǫk,E +∆fk,E + wk,E ] + ̺+k,E , (16)

where̺k,E is a column vector, collecting the corresponding
kj value of vector̺ [j], i.e. ̺[j,kJ ], for eachj ∈ S

k; ∆fk,E
andwk,E are column vectors collecting the vectorswj,k and
∆fj,k, with j ∈ S

k, respectively. The following convergence
result can now be provided. The proof is omitted due to
space constraints.

Proposition 2: System (16), describing the dynamics of
the mean of the estimation error, where the consensus matrix
is row-stochastic and0 < λ < 1, is Bounded Input Bounded
Output stable.

IV. RECONFIGURATION STRATEGY

In the previous sections, we derived a suitable fault
detection architecture for a PnP framework. We now explain
how to use it during plug-in and unplugging operations.
As already explained, system reconfiguration could happen
due to changes over time of the dynamic structure of the
LSS system or it could be the consequence of the decision
of the monitoring architecture after fault detection. In both
cases (healthy and faulty conditions), subsystems plug-inand
unplugging are designed as follows.

A. Subsystem unplugging

In this paragraph, we show how to reconfigure local
diagnosers in the LSS when a subsystemΣ[j] is disconnected
from the LSS, guaranteeing estimators convergence and
monitoring of the new network with one less subsystem. We
need to retune fault diagnosers for children subsystemsΣ[i],
i ∈ Cj , since they do not receive anymore the interconnection
variables values from the parent subsystemΣ[j]. Moreover
if the unplugged subsystem was sharing variablek, its
consensus contribution will not be received by neighboring
subsystems sharingk. More specifically:

• In the children subsystemsi ∈ Cj , the components of
ψ̃[i] and z[i] related to subsystemΣ[j] become equal
to 0 or set to defined values (in the case0 is a not
appropriate value for the considered variable). This is
needed for the computation of detection estimates (4)
and related thresholds (12).

• In the neighboring subsystemsi, with i ∈ Cj or i ∈ Nj ,
sharing some variables withΣ[j], the weights associated
with Σ[j] in the consensus matricesW k computed in
(14) are set to zero andj /∈ S

k.

B. Subsystem plugging-in

The plugging-in of a subsystem into the LSS may be
needed in case of replacement of a previously unplugged
subsystem or if a novel subsystem has to be added to the
LSS. For what concerns the distributed FD architecture,
thanks to the way the time-varying shared variables estimator

is defined in (4), the plug-in is always feasible. More
specifically, if a subsystemΣ[j] is added to the LSS:

• In the children subsystemsi ∈ Cj , the components of
ψ̃[i] andz[i] related to subsystemΣ[j] are received and
used for the computation of detection estimates (4) and
related thresholds (12).

• In the neighboring subsystemsi, with i ∈ Cj or i ∈
Nj , sharing some variablesk with Σ[j], the consensus
matricesW k are computed as in (14) considering also
the components received fromΣ[j], that isj ∈ S

k.

V. EXAMPLE : POWER NETWORKS

In this section, we apply the proposed FD architecture to
the Power Network System (PNS) described in [9], that is
composed by five generation areas connected through tie-
lines (see Fig. 2). The LFDs share some state variables2. In

Fig. 2. Power network system.

[18], we shown how to reconfigure LFDs in a deterministic
framework. In order to test the proposed stochastic PnP FD
architecture, we use the scenario in Fig. 2 and same param-
eters and PnP model predictive controllers as in Section 7.2
in [18]. However, differently from [18], in this paper at time
t = 35s, a fault occurs in the speed governor in area4:
in particular, its time constant increases from0.1s to 10s,
which corresponds to a slower frequency regulation, both in
the primary and secondary control layers. The measurement
errors ̺[i], i = 1, . . . , 5 and the modeling uncertainties
wi(·) are zero-mean white Gaussian noise processes and their
variances areσ2

wi,·
= 0.001 andσ2

̺[i,·]
= 0.001, respectively.

Since the local models of each area and their interactions are
linear, we can easily compute Var[∆fi,·] for each variable.
For all LFDs we useλ = 0.3 andα = 2, thus dealing with
a maximum false alarm probability equal to15%. We have
performed 20 simulations using different sets of uncertainties
and measurement errors.

In Fig. 4, due to the fault, in all simulations we note
an increasing of the inputu[4] (power reference∆Pref4 )
and hence a diverging behavior of the frequency deviation.
Therefore, the errorǫ[4,2] = y[4,2] − x̂[4,2] (red dashed lines
in Fig. 3) diverges3: for all simulations, at timet ≥ 42s,
the LFD for area4 is able to detect the fault. As in [18],
we unplug area4 and reconfigure local controllers and the
LFDs for areas3 and 5, that were directly connected with

2Area 1 and 2 share the angular deviation∆θ1, area 2 and 3 share∆θ3,
area 2 and 5 share∆θ5 and area 3, 4 and 5 share∆θ4.

3For the convenience of the reader, in Fig. 3, after fault detection, errors
and thresholds involving state variables of area4 are kept constants for
display purposes. The local estimator is stopped.



the faulty area. As shown in Fig. 4, we note the benefits
of the reconfiguration, since, after a short transient, all local
power references can still compensate local power loads and
the fault is not propagated in the network.
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Fig. 3. Simulation: for area4, dashed lines are the errorsǫ[4] = y[4]−x̂[4]

and bold lines are the thresholdsǭ upp/low
[4]

, for faulty and non-faulty state
components. Fault timet = 35; detection timet = 42.
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Fig. 4. Simulation: for each area, power reference set-points (bold lines),
computed by PnPMPC controllers designed as in [9], and loads (dashed
lines). Note thatu[4] = ∆Pref4 = 0 (blue line) after unplugging area4.

VI. CONCLUDING REMARKS

In this paper, a stochastic distributed fault detection ar-
chitecture for nonlinear LSS is designed in a PnP scenario.

The proposed FD architecture is able to manage plugging-
in of novel subsystems and un-plugging of existent ones,
requiring reconfiguration operations only for the neighboring
subsystems. Moreover, the proposed PnP monitoring frame-
work allows the unplugging of faulty subsystems in the case
it is necessary to avoid the risk of propagation of faults in the
interconnected LSS. Simulation results show the potentialof
the proposed approach in a power networks application.

Future research efforts will be devoted to provide de-
tectability analysis and to extend the PnP methodology to
the case in which the state variables are not fully accessible.
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