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Abstract—This paper proposes a novel stochastic Fault [9], [10]) where a deterministic approach was adopted, i th
Detection (FD) approach for the monitoring of Large-Scale Sys- paper the novelty is to consider stochastic bounds on the
tems (LSSs) in a Plug-and-Play (PnP) scenario. The proposed nygises and uncertainties, and to derive probabilisticstiwe

architecture considers stochastic bounds on the measurement Ids for fault detection. The aim is to pr monitorin
noises and modeling uncertainties, providing probabilistic time- 0lds 1or fault deteclion. 1he aim IS to propose a monitoring

varying FD thresholds with guaranteed false alarms probability ~ architecture which is closer to industrial applicationsiene
levels. The monitored LSS consists of several interconnected deterministic bounds on the uncertainties are often difficu
subsystems and the designed FD architecture is able to manage to be obtained, producing then conservative results. To the
plugging-in of novel subsystems and un-plugging of existing 5;thors’ knowledge, this is the first time that a stochastic

ones. Moreover, the proposed PnP approach can perform . .. L2 . . . .
the unplugging of faulty subsystems in order to avoid the distributed monitoring architecture is designed for LSS in

propagation of faults in the interconnected LSS. Analogously, & PnP §cen§1ri9. Some recent results are prgsented in [9],
once the issue has been solved, the disconnected subsystem caintegrating distributed model-based fault detection WARC

be re-plugged-in. The reconfiguration processes involve only for nonlinear LSS, and [10], where a PnP FD and Isolation

local operations of neighboring subsystems, thus allowing a architecture is designed. Compared with [9], the present

scalable architecture. A consensus approach is used for the h the followi ianificant diff
estimation of variables shared among more than one subsystem; paper shows the toflowing signincant ditrerences.

a method is proposed to define the time-varying consensus . . .
weights in order to allow PnP operations and to minimize at « Ageneral class of nonlinear systems is addressed, while

each step the variance of the uncertainty of the FD thresholds. in [9] the analysis was limited to a class of nonlinear

Simulation results on a Power Network application show the systems, with matched control inputs.

effectiveness of the proposed approach. « We exploit a full PnP framework, where the monitoring
|. INTRODUCTION architecture is robust to plugging-in and unplugging

of subsystems. Instead, in [9] only a reconfiguration
process after fault occurrence is considered, dealing
with just the disconnection of the faulty subsystem and
not addressing a possible plug-in of new subsystems.

Here a stochastic approach is proposed, while in [9] a
deterministic framework was considered.

The interest towards LSS (see, for example, [1]), Systems-
of-Systems [2] and Cyber-Physical Systems [3] is steadily
growing both in academia and industry. These systems,
characterized by a large number of states and inputs, are
spatially distributed and are modeled as the interaction of °
many subsystems coupled through physical or communi-

cation relationships. Furthermore, they often can have g |ast point is also the one that mainly describes the nov-
Qynamlc struc'ture that chan'ges glong the time. Re|labl|lt¥|ty with respect to [10]. In this paper, the main contribati

is a key requirement especially in these systems, as their'yy gefine stochastic thresholds for fault detection, able
increased size and complexity implies an increased risk @f q,arantee a certain false alarms probability and allgwin
faults. When monitoring this kind of systems, the adoptionp gperations. A similar distributed stochastic moniigri

of decentralized and distributed methods is usually Nn@gss g, chitecture has been proposed in [11], but in that paper,
due to computational, communication, scalability andareli o problem of designing an optimal decomposition of the
bility limits (see [4], [5], [6], [7], [8] as examples). Mofe | 55 \as considered, where the dynamics of the system do
over, an emerging requirement is the design of monitoringq; change along the time, while here we consider a PnP
architectures that are robust to changes that may occur dRenario. Moreover, in this paper, as a novel contribution,
the dynamic structure of the LSS. This is why, in this papef,e prove the convergence of the estimation error mean and
we develop a distributed FD methodology, properly designegle define a novel time-varying consensus approach for the
for a PnP scenario. Differently from previous works ([7]},[8 estimation of state variables shared among more than one

This work has been conducted as part of the research prcgeability subsystems. We propose a method to analyncally compute
and Control of Power Networks with Energy Stord§FABLE-NET) which ~ the consensus weights so as to allow PnP operations and to
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I[I. PROBLEM FORMULATION The values of mean and variance in Assumptions 1 and 2

. . are obtained from the knowledge of the system process and
Let us consider an LSS, composed at timeof M sensors methods.

interconnected subsystems. Each subsystem dynamics cag, subsystem is monitored by one Local Fault Diag-

be described as noser (LFD). Some state variables, which we cdiared
ot g , ‘ variables, are monitored by more than one LFD. These

B ¢ @y = Fil@ v, up) Foi G (Ta v vt bies represent the coupling variables: by means of
(1) them, two (or more) subsystems are connected (see Fig.1).
wherez(; € R™, u € R™, i€ M =1,...,M, are the Examples of applications that can be represented in this way
local state and input, respectively, at timandz ", denotes are: power networks, water/gas distribution networks dhd a
x;) at time ¢ + 1. The vector of interconnection variablesthe facilities networks that are divided into subnetworks.
¥y € RPi collects components of the statés;;;},cn;, that —a consequence, the considered decomposition of the LSS is
influence the dynamics afy;, where)\; is the set of parents overlapping ([1]), since some of the variables “belong” to

. i oxt more than one subsystem.
of subsystem at timet, defined asV; = {j € M : % y
J

0,7 # j}. We also defineC; = {k : i € Ny} as the set
of children of Xj;;. Finally, we say that;; and X; are 2
neighbors ifj € NV; orj € C;. fi(+) : R xRPi x R™i — R™
represent possibly nonlinear nominal dynamics, including
known relationships with parent subsystems by means of the
interconnection variables, while;(-) : N — R™ repre-
sents modeling uncertainties, considering unknown phssib
nonlinear coupling among subsystems. We assume that the
nominal model (1) takes already into account the influences
due to all the possible subsystems that can be plugged-in to 2o
thei-th subsystem, by means of the interconnection variables
;)¢ at a certain time, some of these variables could be nullFig. 1. The possibly overlapping decomposition of the LSSicstral
(or set to a defined value) because the corresponding fatf§Eaph: the small green circles represent the state and irgighles; the
. . yellow ones are the shared state variables.
subsystem is not connected k; at that time. Thek-th

component of vectos:; is specified byx; 1. The function L
¢,(.)p. R x RPi x R[”]“ % Hg _ Rm ﬁgfé]sents the fault- The PnP framework we are considering, allows the plug-

in and unplugging of subsystems, without any need to
jeconfigure the entire LSS: only neighboring subsystems
have to be updated, continuing to guarantee convergence
| roperties of the estimators and operational capabiliies
é%e diagnosers. We assume that only healthy subsystems are
connected to the LSS within the plug-in operations. On the
other hand, the unplugging process may occur also in faulty
Y] = T + 0 (2) conditions. In fact, one of the advantages of the proposed
framework is that, after fault detection, the faulty sulieys
can be disconnected, in order to avoid the propagation of
the fault in the LSS system. More specifically, plug-in and
21 = Yp + Oy unplug_ging operations, that we generally cattonfiguration _
] ) ] ] operations, could happen due to changes of the dynamic
is the vector of measured interconnection variables CoOmMMygcture of the LSS system or it could be the consequence of
nicated by father subsystems, witfy collecting the involved  {he detection of a fault. In this second case, the unplugging
measurement erraf;;, j € ;. could be acted as a consequence of an isolation phase or in
The following assumptions are needed: alternative to an isolation step. In general, after the iete
Assumption 1:The modeling uncertaintyw; is an un-  of a fault, depending on the specific application context and
known function, modeled as a stochastic process of unknovgfiticality, two distinct actions may be feasible: i) imniat
distribution. We know at each time instanthe mean and “disconnection” of the faulty subsystem after detection or
the variance of the stochastic variabtegt), for all i € M: i) continuation of the system operation in “safety mode”
Will) % (fr, (1), 0w, (1)), and simultaneously fault isolation. This second optionds n

Assumption 2:The measurement noigg; is a stochastic analyzed in this draft.
process of known distribution. We assume to know at each
time instantt the mean and the variance of the stochastic
variablesgy; (t) for all i € M: In this section, we design a stochastic distributed FD archi

tecture for the considered PnP framework. Each subsystem
01 (1) = (o (1) 01 (1))- is equipped with a local diagnoser.

Z[z]

2[4]

function, capturing deviations of the dynamics Bf from
the nominal healthy dynamics: it is null before the unknow
fault time T;.

In this paper, we assume that the state vector is ful
accessible (possibly through noisy measurements). Hen
the local output equation is:

wheregj; € R", i € M, is the local unknown measurement
error at timet. Similarly,

IIl. THE FAULT DETECTIONARCHITECTURE



An estimatei|; of the local state variables is defined; theW* such thaty", .. W/, = 1 and since for shared vari-

estimation erroe; = yji)— 2 is then compared component-ables Vi, j € Sk there arek; and k; such that it holds

wise Wlth some properly designed time-varying st.ochastlyfi,k_i (:c[i],w[i]7u[i]) = fj}k] (x[j],lp[]_-],u[j]), the k-th state

detection thresholdé[i“m’ andé}”“’ € R™. If the residual estimation error dynamics model is given by

lies in the interval between the thresholds, then the local

fault decision about the status of the subsystem is healthyefak] = Z W} [/\qj,k] + Afjr+wik+ Q[J;’,f] , (B

with a certain probability; otherwise, if it crosses one loé t jesk

two thresholds, we say that a fault has probably occurred.

In the PnP framework),/ the diagnosers :re des?/gned so Where At = Sy, i, uy) — Jin(y), 20, ugs) and

guarantee the convergence of the mean of the estimation erf.« IS the measurement error at time 1. This is a general

both during healthy conditions and during the reconfigorati formulation, and it holds also in the case of non-shared

process: the healthy subsystems diagnosers have to centigiables, where it is simply:

to work properly also when th_e faulty subsystem(s)_ is (are) E[t.k] = A+ Afig +wip + Q[t' " (6)

unplugged and then plugged-in after problem solution. Fur- ’ '

thermore, properties are guaranteed during all the plug-in We now analyze the residual, first in the non—shared case

and unplugging processes in healthy conditions. and then in the shared one, in order to derive the fault

. . detection thresholds. It is worth noting that at timevhen

A. The Fault Detection Estimator the thresholds are computed for the stepl, ¢ 4 is not a
For detection purposes, each subsystem is monitored kynhdom variable, since it can be computed as the difference

a local nonlinear estimator, based on the local madgl between the measuremey) ;; and the estimate;; ;. ;. We

in (1). The k;-th non-shared state variable &f; can be therefore analyze the stochastic part of the residual:

estimated as n n
Xiik] = Afik+wik + Qi k)"

JAJJF :)\j}z_ ik +i- i)y Zli]> W[i) ) » 3
[i,k] ( [kl — Yl ”“1]) Jisks (y” [2 “) ) Its mean and variance can be computed as

where the filter parameter is chosen in the intefval \ <

1, in order to guarantee convergence properties. Let now E[X[t,k}] = E[Afi k] + Elwi ] +E[Q[J§,k]]
consider a shared variable; ,,) = x(;x,, wherek; and

k; are thek;-th andk;-th components of local vectors; Var[X[j k}] = Var[Af; 1] + Varjw; x] + Var[gfg k}]

and z(;, respectively. We use the redundant measurements ' T

thanks to the overlapping for implementing a deterministic + 2CovV[Af; k, Q[i,k]]’ ()

consensus approach (see [10] where the effectiveness @ere the following further assumptions are needed.

this consensus approach is demonstrated for a stochastiqgsymption 3:The measurement noise ;) and the mod-
framework). In fact, as regards shared variables estimatiogjing uncertaintyw; , are not correlated.

each subsystem communicates with parents and childrgfanks to this assumption, we can assume also that the
subsystems sharing that variable. In the followifity,is the  .ovariance between f; , which is the error on the nominal

time-varying set of subsystenis; sharing a given state mode| due to the measurement noise, and the modeling
variable i of the LSS at the current time stefp Let the ncertaintyw, ;. is null.

shared variable be; ;). The estimates of shared variables Assumption 4:Given the values ofyy, 2y, uj; and

are provided by the following estimation model: known the probabilistic distribution of; (and so off;),
o K . it is possible to comput&[Af; ] and VafAf; ], where

Tlicki] = Z:k Wi M@ = i) Afir = fir(yn — o 21 — 9> wiag) — fik Wy 200> wiag)-
JES In the linear case, the solution of this problem is triviatiain

+fik, (Wi 250, u))] + (8) s not necessary to know the measurement noise distribution

k : ; . It is worth noting that, in the case the measurement noise
there W” are the components of a row stochastic .matrlxgm is a white process, then CR\J; 1, o . ] = 0 and (7) can
WF, which will be defined in Subsection IlI-C, designed S 00 S K] : "
to allow plugging-in and unplugging operations. By nOWbe simplified. Moreover, we consider the following addiabn

. . ‘assumption for the sake of simplicity.
notlce_ tr:]atrI:Vk collects the c(_)nser;sus We'.gr?ts USSekszqu Assumption 5:The measurement noise and the modeling
to weight the terms communicated By;, with j € 5. ¢ yncertainty are zero-meap,, . (t) = 0, pq, (t) =0, ¥t > 0.
note that (4) holds also for the case of non-shared varlablq.?]en (7) can be rewrittengg]s' T =
(3), since, in this cas&" = {i}, andW}; = 1 by definition. : '
In the following, for the sake of simplicity, we omit the E[X?i_,k]] =E[Afi k] (8)
subscript of the shared component index.e. we user(; x)

instead ofxy; ,,) when it is not strictly necessary.
k] Varlxi; )] = VarlAf ] +02,  +0, +2COVAfix. of ]
B. The detection thresholds [i.k]

. . 9)
In order to properly define the stochastic upper and lower
thrGShOIdS fOI’. FD_' we anal_yze the dynamlp_s of the .Io_cal lIn case Assumption 5 is not satisfied, it is sufficient to introel mean
diagnoser estimation error in healthy conditions. Definingalues different from zero in the estimator formulation.



We now derive some time-varying stochastic bounds fogssary that each diagnoser knows the model of neighbouring
Xﬁ;k’]' Chebyshev inequalities can be used, without any asubsystems. In the shared case (4), it is sufficient that each
sumption on the distribution of the residual. For a stodbastsubsystem>;;; communicates to neighbouring subsystems
variable X, with meany(X) and standard deviatiom(X), in S¥ only the interconnection variables and the consensus
it holds: terms for estimates and thresholds, locally computed.

Pr(u(X) —ao(X) < X <pu(X)+ac(X)) >1-1/a®  C. The consensus matrix

. . In thi ion, we explain how ign ime—
where & > 1 is a tunable, real positive valued scalar. this subsection, we- expla ow to design a time

L . . varying consensus matrix in a proper way in order to allow
Therefore, it is possible to obtain a lower and a uppep, ; ;

. . . nP operations. For PnP capabilities, we use a square time-
stochastic thresholds for the residual signal, so that elt ea, _ . - i : o
time ¢ varying weighting matrixi/’* whose dimension is equal to

clow & (o g upp (11) the maximum number (as large as wanted) of subsystems that
G = = ) can be plugged in sharing that variable. Each row and each
with a certain probability. For non-shared variables, theolumn represent a diagnoser (and so the related subsystem)

thresholds can be computed at each stéqr the following sharing the variablé:: the generic eIemenWi’fj indicates

stept + 1 as: how much thei-th diagnoser weights the consensus terms
) received by the-th diagnoser irs*. Each row can have non
gt upp/low _ yg upp/low | pr + 14 {Var + } 2 null elements only in correspondence of connected (plugged
lisk] LK) D] £ @ [Varlg ) in) subsystems. In the case that, at a given time, the variabl
= Ag[zf“ﬁ]p/l““’ +E[Afi k] £ a[Var[Af; k] is not shared (and hence a single subsystem is monitoring
’ 1 it) the only non-null weight is the one corresponding to the
+o2 + o2+ 2COVIAf; 1, Q[JQ k]]} . (12) considered su_bsystem (_thls does not affect t_he convergence
- i, k) of the FD estimator as illustrated in Subsection IlI-D). We

The value ofa is a tuning parameter by which different define the time-varying consensus-weighting matﬁk for
values of guaranteed false-alarms rate can be set. each(i, j)-th component for PnP purposes. The objective is
Let us now analyze the case of variables shared amoffy obtain the most reliable local state estimation by using
more than one subsystem. As previously mentioned, in ttfly the terms available i* at the current time step. To do
distributed FD architecture considering possibly oveplag that, we want to use the weights that allow to minimize the

decomposition, certain state variables may be measurdfresholds (13), by weighting more the currently connected
estimated and monitored by more than one LFD. In thisubsystems that have lower uncertainty in its measurements

shared-variable case, the residual is and in the local model. Since the amplitude of the thresholds
is mainly due to the variance terms in (13), we decide
6;7k] = Z Wi’fj [A%k] + Afjn+wik + Qﬁk]} ’ ]Eo minimize thosg terr.ns.. Thls is obtaln.ed by solving the
e ollowing quadratic optimization problem:
Similarly as before, we obtain the following expressions min > (W) Varlx(; i)
for the lower and upper thresholds: Wii jesk
st YW =1, (14)
_+ upp/low __ k _ upp/low jesk
€k = Wi | A€ ik + E[Af; 1]
o j;Sk s e (WE| <1 vjesk,

We have the following result. The proof is omitted due to
tad Y (W) [var[A firl + 00, + a§+ space constraints.

[7,F]

jesk Proposition 1: The optimal weights for the minimization
1 problem in (14) arey; € S*:
+2CoMA [ o )]} (23) i .
(- . 15
It is worth noting that, sinc&) < W}, < 1 for every I Varlyg (X2 m) (15)

(i,7), then Z‘es’ﬂ(ij)z < 1. Therefore, the variance At each time-step, every local fault-diagnoser receives

component of the threshold for the shared case in (13) estimates and consensus terms of variablg, only from

lower that in the non-shared case in (12) in the case thtte subsystems sharing it at that specific time, thus allow-

the variance of the uncertainty terms is equal for all théng PnP operations. Then, it selects and weights more the

subsystems. Then, in this case, we are able to show thagntributions affected by “smaller uncertainty”.

sharing some state variables among more than one LFD .

by means of the proposed consensus method implies tHe EStimator convergence

reduction of the variance of the residual signal thus leadin Next, we address the convergence properties of the overall

to less conservative detection thresholds (see [10]). estimator before the possible occurrence of a fault, that is
Remark 1:For diagnosis purposes, the information exfor ¢ < 7. Towards this end, for sake of compacting the

change between the local diagnosers is limited. It is not nenotation, we introduce the extended estimation error vecto



ex, 1z, Which is a column vector collecting the estimation errois defined in (4), the plug-in is always feasible. More
vectors of theN, subsystems sharing thieth state compo- specifically, if a subsystert;; is added to the LSS:

nent: e,z = col (e 4 : j € SE,), whereS}, collects all  , |n the children subsystemisc C;, the components of
the indices of the subsystems that can share variabédso J,M and zy;) related to subsysterij; are received and
the ones not currently connected. Hence, the dynamics of sed for the computation of detection estimates (4) and
€k,r Can be described as: related thresholds (12).
+ _wk + « In the neighboring subsystenis with i € C; or i €
p =W Aee + Afes tweel +op  (16) N, sharing some variables with ;, the consensus
wheregy, £ is a column vector, collecting the corresponding  matricesiV* are computed as in (14) considering also
k; value of vectorgy;), i.e. o x,), for eachj € S¥; Afy the components received froly;;, that is; € S*.
andwy, g are column vectors collecting the vectars, and
Af;r, with j € S*, respectively. The following convergence V. EXAMPLE: POWER NETWORKS
result can now be provided. The proof is omitted due to In this section, we apply the proposed FD architecture to
space constraints. the Power Network System (PNS) described in [9], that is

fcomposed by five generation areas connected through tie-

Proposition 2: SV.Stem. (16), describing the dynamics o lines (see Fig. 2). The LFDs share some state variablas
the mean of the estimation error, where the consensus matrix

is row-stochastic and < A < 1, is Bounded Input Bounded AP AP,

2 3
Output stable.
P APref 2 L) = Aw, APrer3—i Xy Aws
v T
A

IV. RECONFIGURATION STRATEGY P Pas 4
In the previous sections, we derived a suitable fault Pro Ame,sj_ ) '_.AW, Py
detection architecture for a PnP framework. We now explain
AP,

o5 r 3
how to use it during plug-in and unplugging operations. APy — B Py J,
As already explained, system reconfiguration could happen APTW;.{ Ty |—.Aw1 Aprgf_4;.| Sy '_'Aw“
due to changes over time of the dynamic structure of the -
LSS system or it could be the consequence of the decision Fig. 2. Power network system.
of the monitoring architecture after fault detection. Inttbo
cases (healthy and faulty conditions), subsystems plagih  [18], we shown how to reconfigure LFDs in a deterministic
unplugging are designed as follows. framework. In order to test the proposed stochastic PnP FD
A. Subsystem unplugging architecture, we use the sger_lario in Fig. 2 and_ same param-
' eters and PnP model predictive controllers as in Section 7.2
In this paragraph, we show how to reconfigure locaj, [18]. However, differently from [18], in this paper at tém
diagnosers in the LSS when a subsystej is disconnected ; — 355 a fault occurs in the speed governor in afea
from the LSS, guaranteeing estimators convergence ajil particular, its time constant increases franis to 10s,
monitoring of the new network with one less subsystem. Wghich corresponds to a slower frequency regulation, both in
need to retune fault diagnosers for children subsyste€ms the primary and secondary control layers. The measurement
i € C;, since they do not receive anymore the interconnectiogyrors ou» @ = 1,...,5 and the modeling uncertainties
variables values from the parent subsystey. Moreover ., (.) are zero-mean white Gaussian noise processes and their
if the unplugged subsystem was sharing variableits variances are?, = 0.001 ando? = 0.001, respectively.
consensus contribution will not be received by neighboringince the local models of each area and their interactians ar
subsystems sharinly More specifically: linear, we can easily compute Varf; ] for each variable.

« In the children subsystemse C;, the components of For all LFDs we use\ = 0.3 and « = 2, thus dealing with
Y and zp; related to subsysterx; become equal a maximum false alarm probability equal 16%. We have
to 0 or set to defined values (in the ca8eis a not performed 20 simulations using different sets of uncetigsn
appropriate value for the considered variable). This iand measurement errors.
needed for the computation of detection estimates (4) In Fig. 4, due to the fault, in all simulations we note
and related thresholds (12). an increasing of the inputiy (power referenceAP,.y,)

« In the neighboring subsystemswith i € C; ori € N;, and hence a diverging behavior of the frequency deviation.
sharing some variables witfi;;, the weights associated Therefore, the erroy, o) = yja,9) — 14,29 (red dashed lines
with ¥;; in the consensus matricé®” computed in in Fig. 3) diverge¥ for all simulations, at timet > 42s,

(14) are set to zero anfl¢ S*. the LFD for area4 is able to detect the fault. As in [18],
L we unplug areat and reconfigure local controllers and the
B. Subsystem plugging-in LFDs for areas3 and 5, that were directly connected with
The plugging-in of a subsystem into the LSS may be
needed in case of replacement of a previously unp]uggedzArea 1 and 2 share the angular deviatitfi;, area 2 and 3 sharAés,
subsystem or if a novel subsystem has to be added to tHg§2 2 and 5 shardd; and area 3, 4 and 5 sharfs. _
s . For the convenience of the reader, in Fig. 3, after faultc&te, errors
LSS. For what concerns the distributed FD architecturgng thresholds involving state variables of areare kept constants for
thanks to the way the time-varying shared variables estimatdisplay purposes. The local estimator is stopped.



the faulty area. As shown in Fig. 4, we note the benefit¥he proposed FD architecture is able to manage plugging-

of the reconfiguration, since, after a short transient,caéal

in of novel subsystems and un-plugging of existent ones,

power references can still compensate local power loads areuiring reconfiguration operations only for the neiglihgr

the fault is not propagated in the network.

_upp,low
6[41??1‘3,4}]

;

€14,{1,34}]

20 40 60 80
t[s]

100

Fig. 3. Simulation: for ared, dashed lines are the errafg; = y4) — 24

and bold lines are the threshold<’??/ > for faulty and non-faulty state
components. Fault time = 35; detection timet = 42.

t[s]

Fig. 4. Simulation: for each area, power reference set-pdmld lines),
computed by PnPMPC controllers designed as in [9], and loddshéd
lines). Note thatuy) = AP..r, = 0 (blue line) after unplugging area

VI. CONCLUDING REMARKS

In this paper, a stochastic distributed fault detection ar-
chitecture for nonlinear LSS is designed in a PnP scenario.

subsystems. Moreover, the proposed PnP monitoring frame-
work allows the unplugging of faulty subsystems in the case
it is necessary to avoid the risk of propagation of faultshia t
interconnected LSS. Simulation results show the poteafial
the proposed approach in a power networks application.
Future research efforts will be devoted to provide de-
tectability analysis and to extend the PnP methodology to
the case in which the state variables are not fully accessibl
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