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Abstract— In this paper, a distributed method for fault
detection using sensor networks is proposed. Each sensor
communicates only with neighboring nodes to compute locally
an estimate of the state of the system to monitor. A residual
is defined and suitable stochastic thresholds are designed,
allowing to set the parameters so to guarantee a maximum
false alarms probability. The main novelty and challenge of
the proposed approach consists in addressing the individual
correlations between the state, the measurements, and the
noise components, thus significantly generalising the estimation
methodology compared to previous results. No assumptions on
the probability distribution family are needed for the noise
variables. Simulation results show the effectiveness of the
proposed method, including an extensive sensitivity analysis
with respect to fault magnitude and measurement noise.

I. I NTRODUCTION

In recent years, the research on large-scale and/or dis-
tributed systems has become always more important, due
to the relevant applications involving collaboration and
communication among subsystems. In order to satisfy the
growing demand for intelligent and reliable operations in
distributed systems, distributed fault detection approaches
have gained significant attention thanks to their advantages
on feasibility, reliability and scalability. Several distributed
model-based fault detection methods have been developed
based on observers ([1], [2], [3], [4], [5], [6]). An inter-
esting instrument for the monitoring of large-scale systems
can be represented by sensor networks. There exist many
works in the literature dealing with distributed estimation
methods using sensor networks (see, as examples [7], [8],
[9]). While many papers deal with the problem of sensor
fault detection for sensor networks ([10], [11] as example),
the use of sensor networks for the monitoring of processes
is a relatively new field of research. An exception is [12],
where a distributed fault detection and isolation technique
is designed, relying on decentralized Kalman filtering and
based on a distributed hypothesis testing method. [13] uses
sensor networks for distributed estimation, but the fault de-
tection decision is centralized. In this paper, a sensor network
monitors a system characterized by stochastic uncertainties
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using noisy measurements of the state. A residual signal is
defined and probabilistic thresholds are designed according
to a chosen maximum false alarm probability. The proposed
fault detection scheme takes advantage of the distributed
estimation approach over sensor networks introduced in [14].
The advantage of using this distributed prediction method
based on a Pareto optimization framework is that filtering
and prediction weights are computed at each time step so to
minimize both the bias and the variance of the prediction
error. Moreover, thanks to the way it is designed, it is
possible to estimate at each time step the mean and the
variance of the prediction error, thus allowing to obtain
suitable thresholds for some residual signals with known
confidence levels and guaranteed maximum rate of false
alarms. Furthermore, since the distributed Pareto estimator
does not require to know the distribution of process and mea-
surements noises (only mean and variance), it can be applied
to any noise distribution (having mean and variance). In this
paper, differently from [14], the goal is fault detection. In
[15], a distributed fault detection scheme is proposed based
on the distributed filtering method presented in [16], where
only the filtering weights are computed by solving a Pareto
optimization problem. In this paper, differently from [15], we
take into account the correlations existing between different
state variables and process noise components. This represents
a more challenging framework and a much more complicated
analysis in order to compute the stochastic thresholds. More-
over, in addition to [15], both the filtering and the prediction
weights are jointly optimized. In fact, each node in the sensor
network acts as a local estimation and detection agent, where
the local stochastic thresholds are updated at every iteration.
The rest of the paper is organized as follows. In Section
II we introduce the problem formulation. In Section III,
the distributed state estimation method is briefly presented.
Then the distributed fault detection algorithm is illustrated
and analyzed in Section IV. Simulation results are given in
Section V and some concluding remarks in Section VI.

Notation Given a stochastic variablex, we defineEx its
expected value. By1m and Im we denote them elements
vector (1, . . . , 1)⊤ and the identity matrix of dimension
m × m, respectively. Finally, the operator⊗ represents
the Kronecker product and◦ the component-by-component
product.

II. PROBLEM FORMULATION

The process whose state dynamics we want to monitor is
modeled as

x(t+ 1) = Ax(t) + w̄(t) + w̃(t) + β(t− t0)φ(x(t), t), (1)



wheret is the discrete time,x ∈ R
m denotes the state vector,

w̄ ∈ R
m represents any known time-varying modeling error

including possibly some known process disturbances and
modeling errors, whilẽw(t) models uncertainties and process
noises, andβ(t− t0)φ(x(t), t) represents the dynamics of a
process fault occurring at the unknown timet0, with β(t−t0)
being the time profile of the fault function.

Assumption 1:We assume that̃w(t) is a zero-mean pro-
cess with covariance matrixΣw(t).
A sensor network, composed ofn nodes, monitors system
(1) by taking noisy measurements, so that, for each sensor
nodei, with i = 1, . . . , n, we have:

yi(t) = x(t) + vi(t), (2)

whereyi ∈ R
m denotes the measurements vector taken by

sensori andvi ∈ R
m is the measurement noise.

Assumption 2:We assume thatvi(t) is a zero-mean1

measurement noise, with covariance matrixΣvi
. The mea-

surement noises in different nodes are not correlated with
each other.

Each node communicates with neighbors by means of a
communication network modeled by an undirected graph
G = (V, E), whereNi = {j ∈ V : (j, i) ∈ E}∪{i} is the set
of neighbors of nodei ∈ V plus the node itself. Each node of
the network observes the entire state vector and exchanges
measurements and predictions with the neighboring nodes, as
presented in [14]. The computed state prediction is then used
for fault detection. The objective of the proposed approach
is to monitor the state dynamics of (1), taking into account
the modeling and measurement uncertainty. Moreover, we
want to guarantee some properties on the fault detection
performance in terms of sensitivity and false alarms rate. As
already mentioned, this analysis is rather challenging due
to the fact that the state and noises components may be
individually correlated. In the next section, for the reader’s
convenience, the distributed state prediction method intro-
duced in [14] is briefly recalled.

III. D ISTRIBUTED STATE PREDICTION

Each nodei of the sensor network implements a two
steps estimator: afiltering phase and aprediction step.
First, by communicating only with neighboring nodes, the
estimator filters the measurements noise by computing a
linear combination of its own and neighboring measurements
and predictions:

x̄i(t) =
∑

j∈Ni

ki,j(t)x̂j(t) +
∑

j∈Ni

hi,j(t)yj(t), (3)

whereki,j(t) andhi,j(t) are some properly designed time-
varying filtering weights.

Secondly, each node implements a classical model-based
prediction, using filtered measurements (obtained from the
previous step), instead of the observed measurements. The
one-step-ahead prediction, considering healthy dynamics, is

x̂i(t+ 1) = Ax̄i(t) + w̄(t) + λ′
i(t)(x̂i(t)− x̄i(t)), (4)

1The extension to the non-zero mean case is trivial.

where λ′
i(t) ∈ R

m×m is a time-varying matrix collect-
ing the properly designed prediction parameters. The term
λ′
i(t)(x̂i(t) − x̄i(t)) represents a correction of the previous

prediction errors. To simplify the methodology and its anal-
ysis, we denote the filter parameter matrixλ

′

i(t) = λi(t)A ,
where λi(t) is the time varying diagonal matrix that we
design. Filtering weightski,j(t) and hi,j(t) and prediction
parametersλi(t) are computed at each time step by each
node in a distributed way so to jointly minimize the bias and
the variance of the prediction error̂Ei(t) = x̂i(t)−x(t), for
all i = 1, . . . , n, in a Pareto optimization framework.

We rewrite Eqs. (3) and (4) as

x̄i(t) = κi(t)x̂
reg
i (t) + ηi(t)y

reg
i (t)

x̂i(t+ 1) = Ax̄i(t) + w̄(t) + λi(t)(Ax̂i(t)−Ax̄i(t)),
(5)

where x̂reg
i and yregi are two column vectors collecting the

prediction vectors and the measurements vectors respectively
available at nodei, ordered according to their indexes:
x̂reg
i = (x̂⊤

i1
, . . . , x̂⊤

iNi
)⊤ , i1 < . . . < iNi

, and yregi =

(y⊤i1 , . . . , y
⊤
iNi

)⊤ , i1 < . . . < iNi
, with Ni = |Ni|

denoting the number of neighbors ofi plusi itself. Moreover,
κi(t) and ηi(t) are the time varying1 ×Ni block matrices
collecting the diagonal matriceski,j(t) and hi,j(t) with
j ∈ Ni, respectively.

The optimal time-varying weightsκi, ηi and λi at each
time t are the solutions of the following Pareto optimization
problem:

min
κi,ηi,λi

tr [ρiB
2
i + (1− ρi)Vi] (6a)

s.t. (κi(t) + ηi(t))1mNi
= 1m, (6b)

convergence conditions, (6c)

wheremNi
= m×Ni, 0 ≤ ρi ≤ 1 is the Pareto parameter,

Bi = EÊi(t + 1) is the expected value of prediction error,

Vi = E[(Êi(t+1)−EÊi(t+1))(Êi(t+ 1)− EÊi(t+ 1))
⊤
]

is the variance of prediction error. The constraints represent
some local conditions on the decisional variables, derivedin
[14] to guarantee the convergence of the prediction error.

We defineκvec
i (t) = κ⊤

i (t)1m, collecting all the decisional
variables of the diagonals ofκi(t) into a vector. Similarly,
ηveci (t) = η⊤i (t)1m, λvec

i (t) = λ⊤
i (t)1m and νEi (t) =

[1mNi
ν⊤i ]◦(1⊗I)1m, collectingNi times vectorνi, which is

a Lagrangian dual variable. By analyzing the Karush-Kuhn-
Tucker conditions related to problem 6, in [14] the optimal
weights are derived as

κvec
i =− (2Mi ◦Di)

−1
νEi , (7a)

ηveci =− (2Si ◦Di)
−1

νEi , (7b)

νi =− 2(Im×mNi
((Mi ◦Di)

−1
+ (7c)

(Si ◦Di)
−1

)I⊤m×mNi
)−1

1m ,

λvec
i =

(

2(M loc
i + κiMiκ

⊤
i + ηiSiη

⊤
i ) ◦ (A⊤A)

)−1
(7d)

(

diag
(

2(κiMiκ
⊤
i + ηiSiη

⊤
i )A

⊤A
))

,

with Di = 1Ni
1
⊤
Ni

⊗Di andDi := (I −λi)
⊤A⊤A(I −λi),

Mi(t, ρi) = ρiEǫ̂i(t)Eǫ̂
⊤
i (t) + (1− ρi)Γǫ̂i(t),



Mi(t, ρi)
loc = ρiEÊi(t)EÊ

⊤
i (t) + (1− ρi)ΓÊi

(t),

Si(t, ρi) = (1− ρi)Σvǫ̂i
(t) .

ǫ̂i collects the prediction error vectorŝEj , j ∈ Ni, available
at nodei and Σvǫ̂i

(t) is a block matrix collecting on the
diagonal the measurement noise covariance matricesΣvj

(t),
j ∈ Ni, related to the measurements communicated at node
i, both ordered according to the indexes, and

Γǫ̂i(t) = E[(ǫ̂i(t)− Eǫ̂i(t))(ǫ̂i(t)− Eǫ̂i(t))
⊤]

is the covariance matrix of the prediction errors. The Pareto
parameterρi is set locally.

In [14], a computational method is proposed (and also an
analytical solution of an approximated problem is proposed)
so that each node can compute locally at each time step
the filtering and prediction weights. Moreover, it is possible
to locally compute the estimateŝmǫi and Γ̂i respectively
of the expected valueEǫ̂i and varianceΓǫ̂i using at each
time step the new samples of local measurementsyregi and
state predictionŝxreg

i (see Algorithm 1 for details about the
estimation from samples).

IV. D ISTRIBUTED FAULT DETECTION

In the previous section, we have introduced the one-step
ahead prediction method. Based on those results, in this
section, a distributed fault detection scheme is designed by
analyzing the dynamics of a stochastic residual. Hence, the
fault detection probabilistic thresholds are derived for the
generated residual.

A. Local Residual Analysis

In this subsection we introduce the residual signal and we
analyze its stochastic features. The local residual is defined
asri(t) = x̄i(t)− x̂i(t). Its dynamics can be described as:

ri(t+ 1) = λi(t)Ari(t) + ēi(t+ 1)−Aēi(t) + w̃(t) , (8)

where ēi(t) = x̄i(t)− x(t) is the local filtering error.
We define the stochastic part of the residualri(t) as

χi(t) = ēi(t)−Aēi(t− 1) + w̃(t− 1), (9)

which is a stochastic variable at timet. We then analyze the
stochastic features of the residual. The mean ofχi is

µχi
(t) = Eχi(t) = Eēi(t)−AEēi(t− 1) . (10)

Since, using the definition, the filtering errorēi(t) can be
computed as

ēi(t) = κi(t)ǫ̂i(t) + ηi(t)vǫi(t), (11)

wherevǫi collects the measurement noise vectorsvj , j ∈ Ni,
then we deriveEēi(t) = κi(t)Eǫ̂i(t). We need the following
equation:

EÊi(t+ 1) =A(I − λi(t))κi(t)Eǫ̂i(t) +Aλi(t)EÊi(t)

=A[(I − λi(t))κi(t) + λ0
i (t)]Eǫ̂i(t) , (12)

where λ0
i is a 1 × Ni block matrix with only one-zero

componentλi, following the same index as in the setNi.

We require the following assumption:
Assumption 3:The measurement noisev and process dis-

turbancesw are not correlated.
We now derive the variance of the stochastic variableχi.

Lemma 1:The variance ofχi(t) defined in (9) is

σ2
χi
(t) =Γēi(t) +AΓēi(t− 1)A⊤ +Σw(t− 1)

−Cov(ēi(t), ēi(t− 1))A⊤ − (1⊤
Ni

⊗ Σw(t− 1))κ⊤
i

−ACov(ēi(t− 1), ēi(t))− κi(1Ni
⊗ Σw(t− 1)), (13)

whereΓēi(t) = E[(ēi(t)−Eēi(t))(ēi(t)−Eēi(t))
⊤] denotes

the variance of local filtering error and can be computed as

Γēi(t) = κi(t)Γǫ̂i(t)κi(t)
⊤ + ηi(t)Σvǫ̂i

ηi(t)
⊤. (14)

Due to space constraints, the proof is omitted.
The local autocorrelation matrix is defined as

Cov(ēi(t), ēi(t− 1)) =

E[(ēi(t)− Eēi(t))(ēi(t− 1)− Eēi(t− 1))⊤]. (15)

In the next subsection, we explain how to compute it locally.

B. Local autocorrelation matrix

Cov(ēi(t), ēi(t − 1)) is the ith diagonal component of
global covariance matrixCov(ē(t), ē(t − 1)) . To facilitate
the analysis, the distributed estimation formulation can be
expressed in an extended vector form including all the nodes
in the sensor network:

x̄(t) = K(t)x̂(t) +H(t)y(t)

x̂(t+ 1) = AE x̄(t) + w̄E(t) + λ′(t)(x̂(t)− x̄(t))

y(t) = xE(t) + v(t) ,

(16)

wherex̄, x̂, y andv are column vectors∈ R
mn×1 collecting

the local vectors̄xi, x̂i, yi and vi, respectively, withi =
1, . . . , n; AE = In ⊗ A is a diagonal block matrix, with
each block on the diagonal equal toA; w̄E = 1n ⊗ w̄ and
xE = 1n⊗x are both column vectors of appropriate length,
where the process disturbance vectorw̄ andx are repeated
n times, respectively.K(t) and H(t) are block matrices,
where each(i, j)th block, with i, j = 1, . . . , n, collects on
the diagonal the weights with which thejth sensor weights
measurements or estimates components developed by thejth

node, if they are neighbors; the block is a null matrix if
i and j are not neighboring nodes.λ′(t) = AEλ(t) is a
block matrix, collecting the matricesλ′

i, i = 1, . . . , n, on
the diagonal.

Therefore, the global filtering error̄e(t) = x̄(t) − xE(t)
and the global prediction error̂E(t) = x̂(t)− xE(t) can be
computed as follows:

ē(t) = K(t)Ê(t) +H(t)v(t), (17)

Ê(t+ 1) =AE [(I − λ(t))K(t) + λ(t)] Ê(t)

+AE(I − λ(t))H(t)v(t)− w̃E(t) ,
(18)

with w̃E = 1n ⊗ w̃, and the first constraint of problem (6)
is used. Let us compute mean and variance of the global
estimation and prediction errors.

Eē(t) = K(t)EÊ(t), (19)



EÊ(t+ 1) = AE [(I − λ(t))K(t) + λ(t)]EÊ(t). (20)

Since the local variance can be computed as

E[(Êi(t+ 1)− EÊi(t+ 1))(Êi(t+ 1)− EÊi(t+ 1))⊤]

= W (1)

i (t)Γǫ̂i(t)W
(1)

i (t)⊤+W (2)

i (t)Σvǫ̂i
W (2)

i (t)⊤+Σw(t),

whereW (1)

i (t) = A[(I −λi(t))κi(t)+λ0
i (t)] andW (2)

i (t) =

A(I−λi(t))ηi(t), then, the global variance matrixΓÊ(t+1)
can be derived:

E

[

(Ê(t+ 1)− EÊ(t+ 1))(Ê(t+ 1)− EÊ(t+ 1))⊤
]

=W (1)(t)ΓÊ(t)W (1)(t)⊤+W (2)(t)Σv(t)W (2)(t)⊤+ΣwE
(t),
(21)

with Σv(t) = E
[

(v(t)− Ev(t))(v(t)− Ev(t))⊤
]

,
ΣwE

(t) = E [w̃E(t)− Ew̃E(t)]
2,

W (1)(t) = AE [(I − λ(t))K(t) + λ(t)] ,

W (2)(t) = AE(I − λ(t))H(t),

whereW (1)(t) , W (2)(t) , Σv(t) andΣwE
(t) aren×n block

matrices, being Cov(Ê(t), v(t)) = 0, Cov(Ê(t), w̃E(t)) = 0
and Cov(v(t), w̃E(t)) = 0, using Assumption 3. Given (17)
– (20), we have:

ē(t)− Eē(t) =K(t)(Ê(t)− EÊ(t)) +H(t)v(t) ,

Ê(t)− EÊ(t) =W (1)(t− 1)(Ê(t− 1)− EÊ(t− 1))

+W (2)(t− 1)v(t− 1)− w̃E(t− 1) .

Hence, the global covariance matrix, collecting on the diag-
onal the matrices (15) needed to compute (13), is

Cov(ē(t), ē(t− 1)) =K(t)W (1)(t− 1)ΓÊ(t− 1)K(t− 1)⊤

+K(t)W (2)(t− 1)Σv(t− 1)H(t− 1)⊤ .

Proposition 4.1:Let us define two block matricesP (t) =

W (1)(t)ΓÊ(t) and Q(t) = W (2)(t)Σv(t). The covariance
matrix Cov(ēi(t), ēi(t− 1)) can be computed locally as

Cov(ēi(t), ēi(t− 1))

=
∑

j′∈Ni

∑

j∈Ni

ki,j(t)Pj,j′(t− 1)ki,j′(t− 1)⊤

+
∑

j′∈Ni

∑

j∈Ni

ki,j(t)Qj,j′(t− 1)hi,j′(t− 1)⊤ ,

(22)

where subscripts denote the indexes of the blocks in the block
matrices.
Due to space constraints, the proof is omitted. At each time
stept all the variables can be computed locally just commu-
nicating with neighboring nodes. The needed information is
collected from the set of nodesN all

i =
⋃

l∈Ni
Nl, denoting

the neighbours of neighbours of nodei, in two time steps,
thus involving only local communication.

C. The fault detection thresholds

In this section, the objective is to design the time-varying
thresholds that bound with a guaranteed probability each
residual component when the system is healthy.

Proposition 4.2:Let us consider the following time-
varying upper and lower thresholds for the residualri(t+1):

r̄
(k)+
i (t+ 1) =λi(t)r̄

(k)+
i (t) + µ(k)

χi
(t+ 1) + ασ(k)

χi
(t+ 1)

r̄
(k)−
i (t+ 1) =λi(t)r̄

(k)−
i (t) + µ(k)

χi
(t+ 1)− ασ(k)

χi
(t+ 1) ,

whereχ(k)
i andµ(k)

χi are thekth component of vectorsχi and
µχi

, defined in (10), respectively;σ(k)
χi is the square root of

the k-th diagonal component of matrixσ2
χi

in (13). Hence,
there exists a ‘tube’ between the two thresholds

r̄
(k)−
i (t) ≤ r

(k)
i (t) ≤ r̄

(k)+
i (t) . (23)

where, in healthy conditions, the residual lies with probabil-
ity greater than1− 1/α2.
The proof is based on Chebyshev‘s inequality and is omit-
ted due to space constraints. Thanks to the way they are
designed, the proposed thresholds guarantee that the false-
alarms rate is lower than1/α2. According to (23), a fault
is detectedby a nodei ∈ {1, . . . , n} when at least one
componentr(k)i of the residualri exceeds the corresponding
thresholds̄r(k)+i or r̄(k)−i .

The α parameter can be set according to the wanted
maximum false alarms probability, taking into account the
trade-off existing between robustness and sensitivity of the
thresholds. Less conservative thresholds can be designed if
we assume the noises̃w andvi are normally distributed.

D. The algorithm

The proposed distributed fault detection method is illus-
trated by Algorithm 1. In this paper the Pareto parameter
ρ is set to0.5. In [16] it is explained how to alternatively
compute it at each step in order to reach the knee-point of
the Pareto optimization.̂mēi denotes the local estimate of
Eēi. Roman numbers indicate the steps where information
communication is required.

V. SIMULATION RESULTS

In this section, some simulation results are presented to
illustrate the fault detection performance. We consider a
15-nodes sensor network monitoring the four-tanks system
introduced in [17]. LQR control is applied to regulate the
levels in the tanks. The nonlinear system is linearized around
the operation points. Zero-order hold method is used to
discretize the system with a sample timeTs = 1s . Given
Q = I4 andR = 2I4 and using the parameters as in [17],
the inputu(t) is generated so that system matrixA in (1) is

A =









0.9430 −0.0031 0.0262 −0.0118
−0.0036 0.9579 0.0121 0.0213
−0.0025 −0.0233 0.9500 −0.0084
−0.0153 −0.0010 −0.0053 0.9629









.



Algorithm 1 Fault detection algorithm for nodei
t := 0 , Ni := |Ni| , Nall

i :=
∣

∣N all
i

∣

∣ , ρi := 0.5

m̂all
ǫi

(0) := 0

Γ̂all
i (0) := Σ

vall
ǫ̂i

⊲ I

Extract m̂ǫi (0) from m̂all
ǫi

(0)

Extract Γ̂i(0) from Γ̂all
i (0)

x̄i(0) := yi(0)

x̂i(1) := Ax̄i(0)

repeat

t := t+ 1

Collect x̂
reg
i (t) := (x̂i1 (t), . . . , x̂iNi

(t))⊤ and y
reg
i (t) :=

(yi1 (t), . . . , yiNi
(t))⊤ where{i1, . . . , iNi

} ∈ Ni ⊲ II

ǫ̂i(t) :=
x̂i

1+ν
− ν1⊤x̂i+(1+ν)1⊤yi

Ni(1+2ν)(1+ν)
1

m̂ǫi (t) :=
t−1
t

m̂ǫi (t− 1) + 1
t
ǫ̂i(t)

Γ̂i(t):=
t−1
t

Γ̂i(t− 1) + 1
t
(ǫ̂i(t)− m̂ǫi (t))(ǫ̂

all
i (t)− m̂ǫi (t))

⊤

Si := (1− ρi)Σvǫ̂i
(t) ⊲ III

Mi := ρi(m̂ǫi (t)m̂
⊤
ǫi
(t)) + (1− ρi)Γ̂i(t)

Computeκi(t) , ηi(t) , λi(t) as in Eqs.(7)

x̄i(t) = κi(t)x̂
reg
i (t)(t) + ηi(t)y

reg
i (t)

x̂i(t+ 1) = Ax̄i(t) + w̄(t) + λi(t)(Ax̂i(t)−Ax̄i(t))

ri(t) := x̄i(t)− x̂i(t)

m̂ēi (t) := κi(t)m̂ǫi (t)

Γēi (t) := κi(t)Γ̂i(t)κi(t)
⊤ + ηi(t)Σvǫ̂i

ηi(t)
⊤

if t = 1 then

r̄+i (1) := ri(1) + 2|ri(1)|

r̄−i (1) := ri(1)− 2|ri(1)|

else

Collect x̂all
i (t − 1) := (x̂i1 (t − 1), . . . , x̂i

Nall
i

(t − 1))⊤

and yall
i (t − 1) := (yi1 (t − 1), . . . , yi

Nall
i

(t − 1))⊤ where
{i1, . . . , iNall

i
} ∈ N all

i ⊲ IV

ǫ̂alli (t−1) :=
x̂all
i (t−1)

1+ν
−

ν1⊤x̂all
i (t−1)+(1+ν)1⊤yall

i (t−1)

Nall
i

(1+2ν)(1+ν)
1

m̂all
ǫi

(t− 1) := t−2
t−1

m̂all
ǫi

(t− 2) + 1
t−1

ǫ̂alli (t− 1)

Γ̂all
i (t− 1):= t−2

t−1
Γ̂all
i (t− 2) + 1

t−1
(ǫ̂alli (t− 1)− m̂all

ǫi
(t−

1))(ǫ̂alli (t− 1)− m̂all
ǫi

(t− 1))⊤

ComputePi,i′ (t−1) with i′ ∈ N all
i and send toj ∈ Ni

⊲ V

ComputeQi,i′ (t − 1) with i′ ∈ N all
i and send to

j ∈ Ni ⊲ VI

Collect Pj,j′ (t− 1) , Qj,j′ (t− 1) with j, j′ ∈ Ni

Computeσ2
χi

(t) as in (13)

µχi
(t) = m̂ēi (t)−Am̂ēi (t− 1)

r̄+i (t) := λi(t− 1)r̄+i (t− 1) + µχi
(t) + ασχi

(t)

r̄−i (t) := λi(t− 1)r̄−i (t− 1) + µχi
(t)− ασχi

(t)

end if

until ∃ k : r
(k)
i (t) > r

(k)+
i (t) ∨ r

(k)
i (t) < r

(k)−
i (t)

A fault is detected at timet .

The process noisẽw(t) is a zero-mean Gaussian noise
with σ2

w̃ = 0.0001 I4 . The initial state is x(0) =
[4.81; 4.70; 1.0; 1.0]⊤. Each sensor in the sensor network
can measure the entire state. The measurement noisevi in
each nodei is an independent zero-mean Gaussian noise
with σ2

vi
= 0.0004 I4 and the Signal over Noise Ratio

SNR = 33.9794 . The 15-nodes sensor network is obtained
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Fig. 1. Estimates, Residuals and Thresholds for state component 1 .
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Fig. 2. Detection time Vs leakage size.

by distributing the nodes randomly over a squared area of
size n/2. The graphG is generated under the rule that
two nodes are connected if their relative distance is less
than 1.7

√
n . The parameterα is chosen equal to1 . We

assume that a leakage occurs at the bottom ofTank 3 at
time t0 = 150s with a fault matrixΦ given by

Φ =









0 0 0.0188 0
0 0 0 0
0 0 −0.0190 0
0 0 0 0









.

Fig. 1 shows the estimation performance and residuals and
thresholds in one of the state components affected by the
fault. We can see that the fault is detected at 153s after 3
seconds in each node. The sensitivity with respect to the
fault magnitude is then analyzed. We run101 experiments
with different randomly generated graphs. The cross-section
of the leakage in Tank3, ∆a3, is assigned evenly every
0.02 in the interval[0.1, 2.1]mm2. The detection times for
each experiment, considering a measurement noise such
that SNR = 33.9794, are shown in Fig. 2. We can see
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α = 0.8 and FAR = 2.3432%
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α = 1 and FAR = 0.77558%
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Fig. 3. Detection time Vs leakage size for differentα values.

that the detection time decreases when the cross-section of
the leakage increases, reaching then a minimum time of
detection. We then consider the influence of theα parameter
for fault detection. The detection times are plotted in Fig.
3 for the scenario with the measurement noise so that
SNR = 30.4576, considering three differentα values. Since
the measurements are affected by a higher noise, we can see
in this scenario the presence of false-alarms. Considering
different values of theα parameter, generally speaking, we
can see that increasing theα value allows to obtain a smaller
number of false-alarms but the detection time increases. We
define the False-Alarms Rate (FAR) indicator as:

FAR =
number of false alarms

101× n×m
× 100% .

In Table I we show the FAR indicator value for nine different
scenarios, considering three different SNR and three different
α values. We can see that, as expected, the false alarm
rate increases with the noise and decreases for largerα
values. This confirms that theα parameter has to be chosen
according to the noise features of the process and the wanted
false-alarms rate.

TABLE I

FALSE-ALARMS RATE

α 0.8 1.0 1.2

SNR = 33.98 0% 0% 0%
SNR = 32.04 0.173% 0.08% 0.03%
SNR = 30.46 2.343% 0.776% 0.693%

VI. CONCLUDING REMARKS

In this paper we have extended the distributed estimation
method proposed in [14] for distributed fault detection. Asa
future work, we intend to further extend the framework to the
non-completely measurable state case and we will analyze
observability and detectability properties.
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