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Abstract—In this paper, a distributed method for fault  using noisy measurements of the state. A residual signal is
detection using sensor networks is proposed. Each sensor defined and probabilistic thresholds are designed acaprdin
communicates only with neighboring nodes to compute locally {4 5 chosen maximum false alarm probability. The proposed
an estimate of the state of the system to monitor. A residual . L
is defined and suitable stochastic thresholds are designed, fau!t dgtec'uon scheme takes advantage ,Of the distributed
allowing to set the parameters so to guarantee a maximum €stimation approach over sensor networks introduced ih [14
false alarms probability. The main novelty and challenge of The advantage of using this distributed prediction method
the proposed approach consists in addressing the individual pased on a Pareto optimization framework is that filtering
correlations between the state, the measurements, and the 5,4 prediction weights are computed at each time step so to

noise components, thus significantly generalising the estimation . .~ . . . L
methodology compared to previous results. No assumptions on minimize both the bias and the variance of the prediction

the probability distribution family are needed for the noise €rror. Moreover, thanks to the way it is designed, it is
variables. Simulation results show the effectiveness of the possible to estimate at each time step the mean and the
proposed method, including an extensive sensitivity analysis variance of the prediction error, thus allowing to obtain
with respect to fault magnitude and measurement noise. suitable thresholds for some residual signals with known
confidence levels and guaranteed maximum rate of false
alarms. Furthermore, since the distributed Pareto estimat

In recent years, the research on large-scale and/or digoes not require to know the distribution of process and mea-
tributed systems has become always more important, d4frements noises (only mean and variance), it can be applied
to the relevant applications involving collaboration andp any noise distribution (having mean and variance). Is thi
communication among subsystems. In order to satisfy thgyper, differently from [14], the goal is fault detectiom |
growing demand for intelligent and reliable operations if15) a distributed fault detection scheme is proposed dase
distributed systems, distributed fault detection appneac on the distributed filtering method presented in [16], where
ha.Ve gained Signiﬁcant attention thanks to their advama96n|y the f||ter|ng We|ghts are Computed by Solving a Pareto
on feasibility, reliability and scalability. Several diftuted  optimization problem. In this paper, differently from [15e
model-based fault detection methods have been developggte into account the correlations existing between dffer
based on observers ([1], [2], [3], [4], [5], [6]). An inter- state variables and process noise components. This regsese
esting instrument for the monitoring of large-scale systemy more challenging framework and a much more complicated
can be represented by sensor networks. There exist magWalysis in order to compute the stochastic thresholdseMor
works in the literature dealing with distributed estimatio oyer, in addition to [15], both the filtering and the predicti
methods using sensor networks (see, as examples [7], [§leights are jointly optimized. In fact, each node in the sens
[9]). While many papers deal with the problem of sensopetwork acts as a local estimation and detection agent,avher
fault detection for sensor networks ([10], [11] as example}he |ocal stochastic thresholds are updated at everyiiterat
the use of sensor networks for the monitoring of processg$e rest of the paper is organized as follows. In Section
is a relatively new field of research. An exception is [12]j] we introduce the problem formulation. In Section lIl,
where a distributed fault detection and isolation techeiquthe distributed state estimation method is briefly presknte
is designed, relying on decentralized Kalman filtering angnen the distributed fault detection algorithm is illuséeh
based on a distributed hypothesis testing method. [13] usggd analyzed in Section IV. Simulation results are given in
sensor networks for distributed estimation, but the faek d Section V and some Concluding remarks in Section VI.
tection decision is centralized. In this paper, a sensavot  Notation Given a stochastic variable, we defineEz its
monitors a system characterized by stochastic unceﬂaintiexpected value. Byl,, and I,, we denote then elements
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wheret is the discrete timey € R™ denotes the state vector, where X;(t) € R™*™ is a time-varying matrix collect-

w € R™ represents any known time-varying modeling erroing the properly designed prediction parameters. The term
including possibly some known process disturbances anq(t)(z;(¢t) — Z;(t)) represents a correction of the previous
modeling errors, whileb(¢) models uncertainties and processprediction errors. To simplify the methodology and its anal
noises, andi(t — t)¢(xz(t), t) represents the dynamics of aysis, we denote the filter parameter matkixt) = X;(t)A,
process fault occurring at the unknown timewith 5(t—to)  where \;(¢) is the time varying diagonal matrix that we

being the time profile of the fault function. design. Filtering weights; ;(¢t) and h; ;(t) and prediction

Assumption 1:We assume thaii(¢) is a zero-mean pro- parameters);(¢) are computed at each time step by each
cess with covariance matriX,, (). node in a distributed way so to jointly minimize the bias and
A sensor networkcomposed ofr nodes, monitors system the variance of the prediction errdés;(¢t) = &;(t) — z(t), for
(1) by taking noisy measurements, so that, for each sensat i =1,...,n, in a Pareto optimization framework.
nodei, withi =1,...,n, we have: We rewrite Eqgs. (3) and (4) as

yi(t) = z(t) + vi(t), ) zi(t) = ki ()25 (t) +ni(t)y; *(t) 5)

wherey; € R™ denotes the measurements vector taken by”? &i(t +1) = ATi(t) +@(t) + As(1) (A4 (t) — AT(1)),
sensor; andv; € R™ is the measurement noise. where z;°®* and y;*® are two column vectors collecting the

Assumption 2:We assume that;(t) is a zero-meah prediction vectors and the measurements vectors reselgctiv
measurement noise, with covariance matdy. The mea- available at nodei, ordered according to their indexes:
surement noises in different nodes are not correlated wit* = (& ,....2] )", i1 < ... < in,, and y’eg =
each other. Whooul )T i < < iy, with N = [

Each node communicates with neighbors by means of fenoting the number of neighborsigflus: itself. Moreover
communication network modeled by an undirected graph, (¢ (t) andn;(t) are the time varying x N; block matrices
G =(V,&), whereN; = {j € V: (j,i) € E}U{i} isthe set collecting the diagonal matrices; ;(t) and h; ;(t) with
of neighbors of nodeé € V plus the node itself. Each node of j ¢ A/;, respectively.
the network observes the entire state vector and exchangeshe optimal time-varying weights;, n; and \; at each
measurements and predictions with the neighboring nodes, tfne ¢ are the solutions of the following Pareto optimization
presented in [14]. The computed state prediction is thed us@roblem:
for fault detection. The objective of the proposed approach

: 2
is to monitor the state dynamics of (1), taking into account Py tr [piBj’ + (1 = pi)Vi] (6a)
the modeling and measurement uncertainty. Moreover, we

g : Y : St (ki) +1:(0) Ly, = Lo, (6b)
want to guarantee some properties on the fault detection »
performance in terms of sensitivity and false alarms rate. A convergence conditions (6c)

already mentioned, this analysis is rather challenging dugheremy, = m x N;, 0 < p; < 1 is the Pareto parameter,

to the fact that the state and noises components may bg — ]EEi(t + 1) is the expected value of prediction error,

individually correlated. In the next section, for the recsle 2 ; > ; T
Vi=E[(E;(t+1)—-EE;(t+1))(E; 1) —-EE;(t+1

convenience, the distributed state prediction method-ntr (B )~ ( D(E(t+1) - ( ) |

is the variance of prediction error. The constraints regmes
duced in [14] is briefly recalled.

some local conditions on the decisional variables, derimed
I1l. DISTRIBUTED STATE PREDICTION [14] to guarantee the convergence of the prediction error.
We definex}°(t) = & (t)1,,, collecting all the decisional
variables of the diagonals of;(¢) into a vector. Similarly,
P = 0 (g N = A (D)1 and P (1) =

Each nodei of the sensor network implements a two
steps estimator: diltering phase and gorediction step.
First, by communicating only with neighboring nodes, th . ! o
estimator filters the measurements noise by computing };\mN °(1®1)1,, collectingV; times vecton;, which is

linear combination of its own and neighboring measuremenf;'s Lagranglan dual variable. By analyzing the Karush-Kuhn-
and predictions: ucker conditions related to problem 6, in [14] the optimal

weights are derived as

= D ka0 + D bWy @) e L aps0pp) (7a)
JEN; JEN;
wherek; ;(t) andh; ;(t) are some properly designed time- M == (28 0D) v, . (70)
varying filtering weights. Vi = = 2(Lmxmy, ((M‘ oD;) " + (7¢)
Secondly, each node implements a classical model-based (S;oD)™HIT ., )1
1 (3 mxXmn, m s

prediction, using filtered measurements (obtained from the 1 . -t
previous step), instead of the observed measurements. They*® = (2(M°° + k;M;x, +m:Sm; ) o (ATA)) (7d)
one-step-ahead prediction, considering healthy dynarisics (diag (2(ki M,k +m:iSin] )AT A)) |

Bi(t+1) = Azi(t) + w(t) + Xj(0)(@:(t) —2:(1)), (4 with D; = 15,1}, ®D; andD; := (I—\;)TATA(I - \y),

1The extension to the non-zero mean case is trivial. M;(t, pi) = piBé& ()EE, () + (1 — ps)Te, (1),



M;(t,pi)°° = pEE;()EE] (t) + (1 — pi)T 5, (¢), We require the following assumption:
S.(t _a S Assumption 3:The measurement noiseand process dis-
it pi) = (1= pi) B, (1) turbancesw are not correlated.
¢ collects the prediction error vectof;, j € A;, available Ve now derive the variance of the stochastic variaple
at nodei and ¥, (1) is a block matrix collecting on the ~Lemma 1:The variance ofy;(t) defined in (9) is
diag/c\)[nal tlhe n;easm;]rement noise covariance matmgg), . ‘7>2<i (t) =T, (t) + ATq, (t — DAT 4 5o (t — 1)
j € N, related to the measurements communicated at node * 0 - T -
i, both ordered according to the indexes, and —Cov(ei(t) &i(t —1)A" — (1y, @ Bu(t — 1)),
—ACOV(éi(t — 1), éi(t)) — /fi(]-N,i ® Zw(t — 1)), (13)

I': (t) = Aq', — E¢; €; — Aq', T
«(t) = El(&() - B&)(&(0) - B&() | wherel., (t) = E[(¢;(t) — E&:(t)) (:(t) — E¢,(t)) T] denotes

is the covariance matrix of the prediction errors. The Rarethe variance of local filtering error and can be computed as
parametel; is set locally.

In [14], a computational method is proposed (and also an  Le: (t) = ki()Te, (t)rs(t) " +0i(1)Su, mi(8) . (14)
analytical solution of an approximated problem is proppsed®Ue to space constraints, the proof is omitted.
so that each node can compute locally at each time step'he local autocorrelation matrix is defined as
the filtering and prediction \{ve|ghEs. Moreover, it is p_oiBIb Cov(es(t), es(t — 1)) =
to locally compute the estimate®., and I'; respectively
of the expected valu&é; and variancel;, using at each E[(e:(t) — Eei(t)) (et — 1) —Eei(t — 1)) 7). (15)
time step the new samples of local measuremeffts and
state predictions:;;*® (see Algorithm 1 for details about the
estimation from samples). B. Local autocorrelation matrix

50 (¢ — 1)) i th g
IV. DISTRIBUTED FAULT DETECTION Cov(e(t), &i(t — 1)) s the ;™ diagonal component of
) i i global covariance matriXCov(&(t),e(t — 1)). To facilitate
In the previous section, we have introduced the one-st§Re analysis, the distributed estimation formulation can b

ahead prediction method. Based on those results, in thigpressed in an extended vector form including all the nodes
section, a distributed fault detection scheme is designed i, ihe sensor network:

analyzing the dynamics of a stochastic residual. Hence, the o
fault detection probabilistic thresholds are derived foe t A z(t) = K()z(t) +H(t)y(t)/ X
generated residual. E(t+1) = Apz(t) + we(t) + N () (&) —z(t)) (16)

A. Local Residual Analysis y(t) = zu(t) + (),

. . : . . = 4 1 -
In this subsection we introduce the residual signal and w¥herez, &, y andv are column vectors R™"*" collecting
analyze its stochastic features. The local residual is eefinthe local vectorsz;, i;, y; and v;, respectively, withi =

asr;(t) = z;(t) — (). Its dynamics can be described as: +-- -7 Ap = I, ® A'is a diagonal block matrix, with
each block on the diagonal equal t wg = 1,, ® w and

ri(t+1) = Ni(t) Ari(t) + & (t + 1) — Ag;(t) + w(t), (8) =z =1, @z are both column vectors of appropriate length,
where the process disturbance vecioland x are repeated
n times, respectivelyX (¢t) and H(t) are block matrices,
where each(i, j)'" block, withi,j = 1,...,n, collects on
Xi(t) = &;(t) — Ag;(t — 1) +w(t — 1), (9) the diagonal the weights with which thjé" sensor weights
measurements or estimates components developed bh{'the
node, if they are neighbors; the block is a null matrix if
i and j are not neighboring nodes\'(t) = AgA(¢) is a
fiy; (1) = Ex;(t) = Ee;(t) — ARe;(t —1). (10)  block matrix, collecting the matrices;, i = 1,...,n, on

In the next subsection, we explain how to compute it locally.

wheree;(t) = z;(t) — «(t) is the local filtering error.
We define the stochastic part of the residudt) as

which is a stochastic variable at timeWe then analyze the
stochastic features of the residual. The meary,ofs

. . _ . - the diagonal.
Since, using the definition, the filtering errey(t) can be Therefore, the global filtering errar(t) = z(t) — zp(t)
computed as and the global prediction errdt(t) = &(t) — 2 (t) can be
i(t) = ri(t)é(t) + mi(t)ve (2), (11) computed as follows:
whereu,, collects the measurement noise vectorsj € N, e(t) = K(t)E(t) + H(t)v(t), 17)

then we deriveEe; (t) = k;(t)E¢; (t). We need the following E(t+1)=Ag[(I — A)K(t) + A1) E(t)
equation: _ (18)
) X + Ag(I — X@)H (t)v(t) — wg(t),
EE;(t+1) =A(I — Xi(t))ri(t)E (1) + AXi () EE; (t) with @ = 1,, ® @, and the first constraint of problem (6)
=A[(I — N (t)ri(t) + N (®)]Eé& (),  (12) is used. Let us compute mean and variance of the global

. . . estimation and prediction errors.
where \? is a 1 x N; block matrix with only one-zero P

componenty;, following the same index as in the s&f. Ee(t) = K(t)EE(t), (29)



EE(t+1) = Ag [(I — Mt)K(t) + A(t)| EE(t).  (20)

Since the local variance can be computed as
C. The fault detection thresholds
E[(E;(t+1) —EE;(t+1))(E;i(t+1) —EE;(t+1))"] In this section, the objective is to design the time-varying
= WO O, WD () T+ W2 (), W (1) +50(8), thresholds that bound with a guaranteed probability each
! A ’ ao residual component when the system is healthy.
whereW® (t) = A[(I — () (t) + \0(t)] and W (1) = Proposition 4.2:Let us consider the following time-
A(I=\s(£))mi(#), then, the global variance matrD@(t+1) varying upper and lower thresholds for the residyét +1):

can be derived: PO+ 1) =0T + a1+ ac((E+ 1)
) ) A . (k- - k K
E|(E(t+1)—EE®t+1)(E(t+1) —EBE(t+ 1))1 i) = nT 0+ ) (1) — a0l (4 1)

:W<1)(t)FE(t)W(1>(t)T+ W (6)SY (WD (£) "+, (£), wherexg’“) andu&’f.) are thek*™ component of vectorg; and

(21)  fiy,, defined in (10), respectively;:;’j) is the square root of

with  v(¢) = E[(v(t) —Ev(®))(v(t) —Ev(t))"], thek-th diagonal component of matrix? in (13). Hence,
Yy (t) = E[wg(t) — EwE(t)f, there exists a ‘tube’ between the two thresholds
i) <P <mP ). (23)
W®(t) = A [(I = AO)E () + A®)],

where, in healthy conditions, the residual lies with prabab

ity greater thanl — 1/a?.

The proof is based on Chebyshev's inequality and is omit-

ted due to space constraints. Thanks to the way they are
designed, the proposed thresholds guarantee that the false
alarms rate is lower tham/a?. According to (23), a fault

W (t) = Ap(I — A1) H(1),

whereW® (t), W®(t), ¥°(t) and ¥, (t) aren x n block
matrices, being CQ\E(¢),v(t)) = 0, COME(t), wg(t)) =0
and Covv(t),wg(t)) = 0, using Assumption 3. Given (17)

20 have. is detectedby a nodei € {1,...,n} when at least one
~ (20), we have: componemrgk) of the residual; exceeds the corresponding
_ _ p ~ thresholds?™* or #F)~.
t)—Ee(t) =K (t)(E(t) —EE(t H(t)v(t i (
Ae() ?() ((13( (®) . )+ (A)U( ) The o parameter can be set according to the wanted
(t) —EE(®t) =W (t - 1)(E({ - 1) —EE(t - 1)) maximum false alarms probability, taking into account the
+ WPt -1t —1) —wr(t—1). trade-off existing between robustness and sensitivityhef t

thresholds. Less conservative thresholds can be desifined i
Hence, the global covariance matrix, collecting on the diagve assume the noises andv; are normally distributed.

onal the matrices (15) needed to compute (13), is D. The algorithm

Cov(e(t),e(t — 1)) =K WO (t — 1)PE(t DK — 1)T The proposeq distributed fault detection method is illus-
trated by Algorithm 1. In this paper the Pareto parameter
p is set t00.5. In [16] it is explained how to alternatively
compute it at each step in order to reach the knee-point of
the Pareto optimizationn;, denotes the local estimate of
Ee;. Roman numbers indicate the steps where information
communication is required.

+KOWE (- 1)S0(t - D)H(t—1)" .

Proposition 4.1: Let us define two block matriceB(t) =
WO (HTE() and Q(t) = W (¢)XV(t). The covariance
matrix Cov(e;(t),e;(t — 1)) can be computed locally as

Cov(e;(t),ei(t —1)) V. SIMULATION RESULTS
:Z‘ Z ki i () Py (t— ks o (t— 1) _In this section, some simulation results are presented to
J'EN; 4~ FEN; illustrate the fault detection performance. We consider a
T - itori .
+ Zj/eMZjeNiki7j(t)Qj7j,(t — Dhijy(t—=1)", 15-nodes sensor network monitoring the four-tanks system

22) introduced in [17]. LQR control is applied to regulate the
levels in the tanks. The nonlinear system is linearizedrastou

where subscripts denote the indexes of the blocks in thébloE€ Operation points. Zero-order hold method is used to
matrices. discretize the system with a sample tirie = 1s. Given

Due to space constraints, the proof is omitted. At each tinfd = 14 and i = 21, and using the parameters as in [17],

stept all the variables can be computed locally just commutN iNPutu(t) is generated so that system matrin (1) is

nicating with neighboring nodes. The needed information is 0.9430 —0.0031 0.0262 —0.0118
collected from the set of node§?!" = J,.,,Ni, denoting 4 — | 00036 0.9579  0.0121  0.0213
the neighbours of neighbours of nodein two time steps, ~1-0.0025 —0.0233 0.9500 —0.0084

thus involving only local communication. —0.01563 —0.0010 —0.0053 0.9629



Algorithm 1 Fault detection algorithm for node

Real Signals and Estimates: component 1
T T T T T T T T T T

4

t:=0, N;:= NG|, N2 o= N2 p; := 0.5 —Signa
- all 3 Pareto estimates 1
m?i (0) =0 —— Model-based estimates
fall _
rg 0):=% vall > | 2
Extract ., (0 ( ) from m2(0) 1r
ExtractT;(0) from 12l(0) of
7i(0) = 0:(0) s s 5 100 o 10 160 10 200 250 340
z:(1) .= Az;(0) Time [s]
repeat 02 Residuals and Thresholds: component 1

t:=t+1 . —Eesidutahls ol /\k w

N ——Lower thresholds

Collect £}°8(t) == (@i, (t),..., 2y, ()T and y}*8(t) = 0.1 {___Upper thresholds Al

Wiy (8, wiy, (1) where{il,.. Jin,} EN; > 1l 0 l M V WM
% ul Xx; +(1+1/)1 vi
€z(t) = Ty AT (e 01 [Lem—
e, () == e, (t = 1) + 1&i(1) '
Ft:—lFt—l L& (t) — e, (1)) (€1 (t) — 1, (8) T .
( ) ( )+ 1(6'( ) = e (D)(ET(E) = e (1)) 0'20 20 40 60 80 100 120 140 160 180 200 220 240

=(1- pl)EU‘i () > 1l Time [s]
Mi = pi (e, (), (1)) + (1 = pi) i)
Computex;(t),n:(t), A:(t) as in EQs(7)
zZi(t) = Ki (DX (1) (1) + i ()y; " (t)
&i(t+1) = Az (t) + @ (t) + A () (A4 (t)
ri(t) = & (t) — &4(t)

méi (t) = Hi(t):rhei (t) ul .
Pz, (t) = ki®Di(O)ri ()T + 03 (8)Sv,, mi(t) T
if t=1 then

F(1) = (1) + 20ri (1)

(1) =ri(1) - 2|7'1(1 |

Fig. 1. Estimates, Residuals and Thresholds for state compdne

— Azq(t))

Detection Results with SNR = 33.9794

¢ a=1land FAR=0%
= =Occurrence of fault at time 150s

~3\ ||
A
8

N
3
3]

else
Collect 2'(¢t — 1) == (&4, (t — 1),...
and ya!'(t — 1)

Fault Detection Time [s]

N
N
S

(& (= 1))T
= (i (t = 1), yi g (6= 1)T where

180

{ily LR iN.aH} € '/\/;Zan > IV .'.'“.o-'."".-.n
’ zall T gall (e O celetells afelteteleh alulslelehlalallalsilalalall
call(p 1) .— Xi (t—1) v1 %2 (t—1)+(14v)1 (t— 1)1 1 : i H i ;
€ ( ) 1+2u N1111(1+21,)(1+y) ’ 04cross segtlson of Ieaklazge hole [mlni 2 ’
m2l(t —1) = m2l(t —2) + et —1)
fall L t—2 2 all 1 grallfy mall(p —
PP = 1)=g= 0 (0 = 2) + g5 (870 - 1) — g Fig. 2. Detection time Vs leakage size.
)Mt —1) —m2l(t—1)7
Computep; ; (t—1) with i/ € A2 and send tg e »;
>V by distributing the nodes randomly over a squared area of

Computeq, «(t — 1) with ¢/ € A" and send to size n/2. The graphG is generated under the rule that

JjEN; > VI
Collect p; ;/(t — 1), Q; 4/ (t —

Computes? (¢) as in(13)

1) with 4,5 e N;

two nodes are connected if their relative distance is less
than 1.7./n. The parameter is chosen equal td . We
assume that a leakage occurs at the bottonTatk 3 at

by (8) = e, (t) — Arng, (t — 1) time ¢ty = 150s with a fault matrix® given by
=+ N A Yl
ti(t) =Xt = DT (= 1) + sy (B) + oy, (t) 0 0 00188 0
7 (8) = Ai(t = 7 (= 1) + px; (B) — aoy, (1)
end if b = 00 0 0
|10 0 —0.0190 0

until 3k = (6) > T v @) <P @)

A fault is detected at time. 00 0 0

Fig. 1 shows the estimation performance and residuals and
thresholds in one of the state components affected by the
fault. We can see that the fault is detected at 153s after 3
The process noisev(t) is a zero-mean Gaussian noiseseconds in each node. The sensitivity with respect to the
with ¢% = 0.0001 I,. The initial state isz(0) = fault magnitude is then analyzed. We rufl experiments
[4.81;4.70;1.0;1.0] . Each sensor in the sensor networkwith different randomly generated graphs. The cross-secti
can measure the entire state. The measurement npise of the leakage in Tank, Aags, is assigned evenly every
each nodei is an independent zero-mean Gaussian noige02 in the interval[0.1,2.1Jlmm?. The detection times for
with agi = 0.0004 I, and the Signal over Noise Ratio each experiment, considering a measurement noise such
SNR = 33.9794. The 15-nodes sensor network is obtainedhat SNR = 33.9794, are shown in Fig. 2. We can see




Detection Results with SNR = 30.4576

Detection Results with SNR = 30.4576

Detection Results with SNR = 30.4576
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that the detection time decreases when the cross-section [3f
the leakage increases, reaching then a minimum time of
detection. We then consider the influence of thparameter
for fault detection. The detection times are plotted in Fig.[4]
3 for the scenario with the measurement noise so that
SNR = 30.4576, considering three different values. Since
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Detection time Vs leakage size for differentvalues.

T. Chen, C. Wang, and D. J. Hill, “Rapid oscillation fadktection and
isolation for distributed systems via deterministic leagjinNeural

Networks and Learning Systems, IEEE Transactions/oh 25, no. 6,
pp. 1187-1199, 2014.

V. Reppa, M. M. Polycarpou, and C. G. Panayiotou, “Dintited
sensor fault diagnosis for a network of interconnected gyfesical
systems,"Control of Network Systems, IEEE Transactions wol. 2,

no. 1, pp. 11-23, 2015.

the measurements are affected by a higher noise, we can spg Q. zhang and X. Zhang, “Distributed sensor fault diagads a class

in this scenario the presence of false-alarms. Considering
different values of thex parameter, generally speaking, we

can see that increasing thevalue allows to obtain a smaller [6]
number of false-alarms but the detection time increases. We
define the False-Alarms Rate (FAR) indicator as: 7]

number of false alarms
101 X n xm

In Table | we show the FAR indicator value for nine different
scenarios, considering three different SNR and threerdifte  [qg]
a values. We can see that, as expected, the false alarm
rate increases with the noise and decreases for lasger

. . [10]
values. This confirms that the parameter has to be chosen
according to the noise features of the process and the wanted
false-alarms rate.

FAR = x 100% .

(8]

[11]
TABLE |
FALSE-ALARMS RATE

[12]
I o [ 038 1.0 12 ]
SNR = 33.08 0% 0% 0%
SNR = 32.04 | 0.173% 0.08%  0.03% [13]
SNR = 30.46 | 2.343% 0.776% 0.6939

VI. CONCLUDING REMARKS [14]

In this paper we have extended the distributed estimation
method proposed in [14] for distributed fault detection.aAs [15]
future work, we intend to further extend the framework to th
non-completely measurable state case and we will analyze

observability and detectability properties. 7]
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