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Abstract: With the aim of designing controllers to simultaneously ensure robustness and
optimality properties, the mixed H2/H∞ control problem is considered. A class of input-
affine nonlinear systems is considered and the problem is formulated as a nonzero-sum
differential game, similar to what has been done earlier by Limebeer et al. for linear systems. A
heuristic algorithm for obtaining solutions for the coupled algebraic Riccati equations which are
characteristic of the linear quadratic problem is provided together with a systematic method
for constructing approximate solutions for the general, nonlinear problem. A few numerical
examples are provided.
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1. INTRODUCTION

In this paper we consider the problem of controlling an
input-affine system with two conflicting aims, namely to
achieve a certain objective in an optimal way using mini-
mal control efforts, while simultaneously ensuring certain
robustness properties with respect to an external distur-
bance. The former objective is similar to the objective of
optimal control, where a control input is designed to op-
timise a given objective function subject to the dynamics
of the system. This is closely related to the problem of
H2 control, where the goal is to design a control input
which minimises the energy of a certain control variable,
see Vinter [2000]. The latter is a problem of H∞ control
and is equivalent to a worst-case, or robust, problem (see,
for example, Isidori and Astolfi [1992], Astolfi and Colaneri
[2001]). In certain situations it is of interest to seek both
optimality and robustness and in these cases both perfor-
mance criteria are considered simultaneously. This is the
topic of mixed H2/H∞ control.

It is well-known that the H∞ control problem can be
formulated as a two-player, zero-sum differential game, see
Isidori [1992], Isidori and Astolfi [1992], Orlov and Aguilar
[2014], Basar and Bernhard [1995]. However, the more
complex nature of the mixed H2/H∞ control problem
calls for a somewhat different approach. In Limebeer et al.
[1992, 1994] linear systems are considered and a novel
approach for solving the problem is proposed by recognis-
ing that it can be described as a two-player, nonzero-sum
differential game. Thus, solutions are found using a game
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theoretic approach in which Nash equilibrium solutions,
which rely on solving a system of coupled algebraic Riccati
equations (AREs), are sought. Another game theoretic
approach is taken in Jungers et al. [2008] where a solution,
again for linear systems, is sought in terms of Stackelberg
solutions, instead of the more typical Nash solutions. In
Khargonekar and Rotea [1991] a suboptimal solution (for
linear systems) is found by reducing the problem to a
convex optimisation one. For nonlinear systems, different
approaches exist, see for example Astolfi and Colaneri
[2001] and references therein. In Lin [1995] nonlinear sys-
tems and the mixed H2/H∞ problem are considered and
as in Limebeer et al. [1994] the problem is formulated as a
differential game, for which the solution relies on solving
a system of coupled partial differential equations (PDEs)
which are typical of nonlinear differential games. However,
solving the PDEs characterising the differential game is
not generally a trivial task, an issue which is not addressed
in Lin [1995].

In general there is a trade-off between robustness and
optimality, in the sense that an increase in robustness
often comes at the cost of optimality and vice versa, as
seen in Astolfi and Colaneri [2001], Megretski [1994]. A
consequence of this trade-off is that obtaining solutions
for mixedH2/H∞ control problems usually is a challenging
task. Despite the challenges associated with mixedH2/H∞
control problems the topic is of significant practical in-
terest and consequently it is of interest to continue to
seek ways of obtaining solutions to such problems. In
Chen and Chang [1997] robust tracking of robotic systems
is posed as a nonlinear mixed H2/H∞ control problems
which is solved using game theoretic ideas and exploiting
the particular structure of the system. A similar problem



is considered in Tseng and Chen [2003] for non-holonomic
systems.

In this paper the problem of mixed H2/H∞ control for
nonlinear systems is solved using a differential game ap-
proach, similar to what has been done in Limebeer et al.
[1992, 1994] for linear systems and in Lin [1995] for non-
linear systems. The nonlinear problem is formulated as
a two-player nonzero-sum differential game for which a
systematic method of constructing approximate solutions
is developed using ideas similar to those introduced in
Mylvaganam et al. [2015].

The remainder of the paper is structured as follows. In
Section 2 the mixed H2/H∞ control problem is defined
for a class of nonlinear systems and formulated as a Nash
game. For linear systems (or linear approximations of a
system about an operating point) the problem can be
formulated as a linear-quadratic Nash game as in Limebeer
et al. [1992, 1994]. A brief summary of this linear setting
is given in Section 3 in which a novel algorithm for
determining solutions for the resulting coupled AREs is
also provided. The notion of algerbraic P̄ matrix solutions
for mixed H2/H∞ control is given in Section 4 and used
to constructed approximate solutions for the nonlinear
differential game in Section 5. The developed methods are
then illustrated by a numerical example in Section 6 before
some concluding remarks and directions for future work
are given in Section 7.

2. THE MIXED H2/H∞ CONTROL PROBLEM:
NONLINEAR SETTING

Consider an input-affine, nonlinear, system with dynamics
given by

ẋ = f(x) + g1(x)w + g2(x)u , (1)

where x(t) ∈ Rn is the state of the system, w(t) ∈ Rm1

is an exogenous input, u(t) ∈ Rm2 is the control input,
f : Rn → Rn is a vector field and gi : Rmi → Rn are
continues mappings, with 1 mi ∈ N+, for i = 1, 2. Without
loss of generality, the following assumption is made.

Assumption 1. The origin is an equilibrium of the system,
i.e. f(0) = 0.

Assumption 1 implies that there exists a matrix-valued
mapping F (x) (non-unique) such that f(x) = F (x)x.

In what follows let u denote feedback strategies, i.e. u =
u(x(t)) and consider the performance variables

z1 = h1(x) + k1(x)u , z2 = h2(x) + k2(x)u , (2)

where z1 ∈ Rp1 and z2 ∈ Rp2 , pi ∈ N+, for i = 1, 2, h1,
k1, h1 and k1 are continuous mappings, and z1 ∈ Rp1 and
z2 ∈ Rp2 , with pi ∈ N+, i = 1, 2, relate to the H∞ and the
H2 criteria, respectively.

In the remainder of the paper we make the following
standing assumptions, similar to those made in Astolfi and
Colaneri [2001].

Assumption 2. The mappings in (2) satisfy the following
conditions.

(i) The mappings h1(x) and h2(x) are such that h1(0) =
0 and h2(0) = 0.

1 The set of positive natural numbers is denoted by N.

(ii) The conditions h1(x)>k1(x) = 0, k1(x)>k1(x) = I,
h2(x)>k2(x) = 0 and k2(x)>k2(x) = I are satisfied
for all x.

Remark 1. The second conditions in Assumption 2 are
such that the cross terms in z>1 z1 and z>2 z2 are zero.
In Limebeer et al. [1994] this is ensured by defining the
performance variables as

z1 = z2 = z =

[
Cx
Du

]
,

where C and D are matrices of appropriate dimensions. N

We now introduce the following two cost functionals:

J1(u,w) ,
1

2

∫ ∞
0

(
−z>1 z1 + γ2w>w

)
dt

=
1

2

∫ ∞
0

(
−h1(x)>h1(x)− u>2 u2 + γ2w>w

)
dt ,

(3)

and

J2(u,w) ,
1

2

∫ ∞
0

z>2 z2dt

=
1

2

∫ ∞
0

(
h2(x)>h2(x) + u>u

)
dt ,

(4)

where γ > 0 is a “disturbance attenuation” level. The cost
functions J1 and J2 are to be minimised by the disturbance
w and the control input u, respectively.

Remark 2. Define q1(x) = h1(x)>h1(x) and q2(x) =
h2(x)>h2(x). It follows from Assumptions 2 (i) that these
can be written in the form qi(x) = x>Qi(x)x, i = 1, 2,
where Qi(x), i = 1, 2 are matrix-valued functions. N

The infinite-horizon, mixed H2/H∞ control problem is
defined in the following statement, similar to what has
been done in Limebeer et al. [1994].

Problem 1. Given the system (1) determine a feedback
control law u∗ such that

(i) The inequality z>1 z1 ≤ γ2w>w is satisfied for all
w(t) 6= 0 when x(0) = 0.

(ii) The state x is regulated while minimising the control
effort when the worst-case disturbance w∗ is applied
to the system, i.e. the cost functional J2 is minimised
when w = w∗.

Similarly to what has been done for linear systems in
Limebeer et al. [1992, 1994] and for nonlinear systems in
Lin [1995], Problem 1 can be formulated as a nonzero-sum
differential game characterised by the dynamics (1) and
the cost functionals (3) and (4) as follows.

Problem 2. Consider the system (1) and the cost function-
als (3) and (4). Solving the resulting two-player differential
game constitutes to determining a set of admissible 2 feed-
back strategies (u∗, w∗) satisfying the Nash equilibrium
inequalites

J1(u∗, w∗) ≤ J1(u∗, w) ,

J2(u∗, w∗) ≤ J2(u,w∗) ,
(5)

2 A set of strategies (u,w) is said to be admissible if it renders the
zero equilibrium of the system in closed-loop with (u,w) (locally)
asymptotically stable.



for all admissible sets of strategies (u,w∗) and (u∗, w),
where u 6= u∗ and w 6= w∗.

The Nash equilibrium strategies u∗ and w∗ are said to
be the optimal control and the worst-case disturbance,
respectively.

Remark 3. From (3) it is clear that provided J1(u∗, w) ≥ 0
when x(0) = 0 , for all w (such that the set of strategies
(u∗, w) is admissible), the first criterion in Problem 1 is
satisfied. The second criterion in Problem 1 follows directly
from the second Nash equilibrium inequality in (5) when
w = w∗. Thus, as remarked in Limebeer et al. [1994], Lin
[1995], Problem 1 can be described by the nonzero sum
differential game in Problem 2 provided J1(u∗, w) ≥ 0, for
all admissible (u∗, w). N

Suppose V1(x) ≤ 0 and V2(x) ≥ 0 such that Vi(0) = 0,
i = 1, 2, V2(x) − V1(x) > 0, for all x 6= 0 and satisfy the
so-called Hamilton-Jacobi-Isaacs PDEs

− 1

2
h1(x)>h1(x)− 1

2

∂V2
∂x

g2(x)>g2(x)
∂V2
∂x

>

− 1

2γ2
∂V1
∂x

g1(x)>g1(x)
∂V1
∂x

>
+
∂V1
∂x

f(x)

− ∂V1
∂x

g2(x)>g2(x)
∂V2
∂x

>
= 0 ,

1

2
h2(x)>h2(x)− 1

2

∂V2
∂x

g2(x)>g2(x)
∂V2
∂x

>

+
∂V2
∂x

f(x)− 1

2γ2
∂V2
∂x

g1(x)>g1(x)
∂V1
∂x

>
= 0 .

(6)

Moreover, suppose the solution is such that the following
assumptions hold.

Assumption 3. Consider the system (1) with output y(x) =
q1(x) + q2(x). Then the following conditions are satisfied

(i) The pair {f, y} is zero-state detectable.

(ii) The pair {f− 1
γ2 g
>
1

∂V1
∂x

>
, y} is zero-state detectable.

The Nash equilibrium strategies for the differential game
in Problem 2 are then given by

u∗ = −g2(x)>
∂V2
∂x

>
, w∗ = − 1

γ2
g1(x)>

∂V1
∂x

>
. (7)

Remark 4. The Nash equilibrium strategies derive from
the dynamic programming principle. The admissibility of
the pair of strategies {u∗, w∗} can be proved by taking
W = V2 − V1 > 0 as a candidate Lyapunov function. It
follows from (6) that Ẇ = − 1

2 (q1(x) + q2(x)) − ‖u∗‖2 +
1
2γ

2‖w∗‖2 and, consequently, (local) asymptotic stability
follows from Assumption 3 and LaSalle’s invariance prin-
ciple. N

Remark 5. The value functions Vi(x) are such that

Vi(x(0), u∗, w∗) = Ji(u
∗, w∗) ,

for i = 1, 2 (see Basar and Olsder [1982] for details). Since
V1(0, u∗, w∗) = 0 this implies that J1(u∗, w∗) = 0 when
x(0) = 0. It follows from the first of the Nash inequalities
(5) that Ji(u

∗, w) ≥ 0 for this initial condition. Thus, as
stated in Remark 3, the solution to the differential game
in Problem 2 solves Problem 1. N

In general, closed-form solutions to the HJI PDEs associ-
ated with a differential game are not easily obtained. As
a consequence it is often necessary to seek approximate
solutions for differential games, for instance as done in
Mylvaganam et al. [2015].

3. THE MIXED H2/H∞ CONTROL PROBLEM:
LINEAR SETTING

A brief summary of the theory concerning mixed H2/H∞
control problems for linear systems is provided in this
section. In this case the differential game in Problem 2
reduces to a linear quadratic differential game. For more
details regarding this class of problems see Limebeer
et al. [1992, 1994] and for details regarding general linear
quadratic differential games see, for example, Basar and
Olsder [1982], Starr and Ho [1969].

Consider the linear system

ẋ = Ax+B1w +B2u , (8)

with A ∈ Rn×n, B1 ∈ Rn×m1 and B2 ∈ Rn×m2 , and the
performance variables

z1 = C1x+D1u , z2 = C2x+D2u , (9)

with C1 ∈ Rp1×n, D1 ∈ Rp1×m1 , C2 ∈ Rp2×n and D2 ∈
Rp2×m2 . The corresponding cost functionals are quadratic
in the state and Problem 2 simplifies to a linear quadratic
differential game. Considering linear feedback strategies
only 3 , the solution to Problem 2 relies on coupled AREs.
Suppose matrices P1 = P>1 ≤ 0, and P2 = P>2 ≥ 0, such
that P2 − P1 > 0, satisfying

− C>1 C1 − P2B2B
>
2 P2 −

1

γ2
P1B1B

>
1 P1 + P1A

+A>P1 −
(
P1B2B

>
2 P2 + P2B2B

>
2 P1

)
= 0 ,

C>2 C2 − P2B2B
>
2 P2 + P2A+A>P2

− 1

γ2
(
P2B1B

>
1 P1 + P1B1B

>
1 P2

)
= 0 ,

(10)

can be found. Furthermore suppose (A,C2) is detectable
and ((A − 1

γ2B1B
>
1 P1), C1) is detectable. Then the Nash

equilibrium strategies, i.e. the optimal control and worst-
case disturbance, are given by

u∗ = −B>2 P2x , w∗ = − 1

γ2
B>1 P1x . (11)

Stability of the zero equilibrium can then be shown using
W = 1

2x
>(P2−P1)x as a candidate Lyapunov function as

in the nonlinear case.

Remark 6. The matrix-valued functions Qi(x) in Remark
2 are such that Qi(0) = C>i Ci, for i = 1, 2. N

Although in Limebeer et al. [1994] a scalar problem is
solved using a standard integration procedure, it is not
generally straightforward to obtain a solution for the
coupled AREs (10) arising in linear quadratic, nonzero-
sum differential games. See, for example, Engwerda [2005],
Papavassilopoulos and Olsder [1979] for details regarding

3 The Nash equilibrium strategies for a linear quadratic differential
game may, in general, be nonlinear. However, it is common to restrict
the attention to linear feedback strategies Engwerda [2005], Limebeer
et al. [1994].



solutions for the coupled AREs. In the following statement
a heuristic method for obtaining solutions for (10) is pro-

vided. First, let P̃i(t), Li(t) denote time-varying matrices
with the same dimensions as Pi, i = 1, 2.

Proposition 1. Let P̃i(0) = P̃i(0)> and Li(0) = Li(0)>,
for i = 1, 2 and consider the matrix differential equations

˙̃P1 =
(
− C>1 C1 −

1

2
(P̃2B2B

>
2 L2 + L2B2B

>
2 P̃2)

− 1

2γ2
(P̃1B1B

>
1 L1 + L1B1B

>
1 P̃1) + P̃1A

+A>P̃1 −
1

2
(L1B2B

>
2 P̃2 + P̃1B2B

>
2 L2)

− 1

2
(L2B2B

>
2 P̃1 + L1B2B

>
2 P̃2)

)
,

˙̃P2 =
(
C>2 C2 −

1

2
(P̃2B2B

>
2 L2 + L2B2B

>
2 P̃2)

− 1

2γ2
(L1B1B

>
1 P̃2 + P̃1B1B

>
1 L2) + P̃2A

+A>P̃2 −
1

2γ2
(L2B1B

>
1 P̃1 + L1B1B

>
1 P̃2)

)
,

(12)

and
L̇1 = Ṗ1 + κ(P̃1 − L1) ,

L̇2 = Ṗ2 + κ(P̃2 − L2) ,
(13)

where κ > 0. Any converging trajectories of the system is
such that the convergent values of P̃i (and Li) correspond
to a solution of the coupled AREs (10). �

Proof: Defining the error matrices Ei = P̃i − Li, i = 1, 2,
it follows that Ėi = −κ(Ei). It follows that any κ > 0 is
such that lim

t→∞
Ei(t) = 0. Moreover, when Ei = 0 the right-

hand sides of (12) are identical to the left-hand sides of
the coupled AREs in (10). By assumption the trajectories

are convergent, i.e. lim
t→∞

P̃i = 0, i = 1, 2. It follows that

the dynamic matrices P̃i (and Li), i = 1, 2 converge to a
solution of (10). �

Remark 7. If Li = P̃i, the matrix dynamic equations (12)
are similar to the AREs characterising the finite-horizon
problem with the same dynamics and cost functionals as
the differential game in Problem 2. For such problems,
solved over an interval [0, T ], Pi(T ) is known and the
resulting ordinary differential equations (ODEs) (12) are
solved backwards in time. Thus, the equations (12) can
easily be solved backwards in time to seek solutions of
finite-horizon problems 4 . Provided T is sufficiently large,
P̃i (and Li), i = 1, 2, will converge to a solution (if it
exists) of the finite-horizon problem.

It follows that Proposition 1 can be interpreted as a
way of identifying solutions to an infinite-horizon problem
by considering the convergent behaviour of the ODEs
characterising the corresponding finite-horizon problem.
Note, however, that this limit may not give all solutions

4 Whereas the finite-horizon problem is solved in Limebeer et al.
[1994] we are interested in obtaining solutions for the infinite-horizon
linear quadratic differential game. Therefore, we solve the problem
forwards in time and consider the asymptotic behaviour of the
dynamic variables P̃i and Li, i = 1, 2.

for the infinite-horizon problem, which can in general have
no solutions, a unique solution or several solutions (see
Weeren et al. [1999]). N

4. ALGEBRAIC P̄ MATRIX SOLUTION

In this section we give the notion of algebraic P̄ solu-
tions for the mixed H2/H∞ control problem. This is a
mathematical tool which is instrumental in constructing
approximate solutions for the differential game defined in
Problem 2.

Definition 1. Consider the system (1) and the cost func-
tionals (4) and (3). Let Σi : Rn → Rn×n be matrix-
valued functions such that Σi(x) = Σi(x)> ≥ 0 for all
x ∈ Rn \ {0}, and Σi(0) = Σ̄i > 0, for i = 1, 2. The C1
matrix-valued functions Pi : Rn → Rn×n, Pi(x) = Pi(x)>,
i = 1, 2, are said to be X -algebraic P̄ matrix solutions 5

of (6) provided the following conditions hold.

(i) For all x ∈ X ⊆ Rn, i = 1, 2, j 6= i,

−Q1(x)− P2(x)g2(x)g2(x)>P2(x)

− 1

γ2
P1(x)g1(x)g1(x)>P1(x) + P1(x)F (x)

+ F (x)>P1(x)− P1(x)g2(x)g2(x)>P2(x)

− P2(x)g1(x)g1(x)>P1(x)− Σ1(x) = 0 ,

Q2(x)− P2(x)g2(x)g2(x)>P2(x)

+ P2(x)F (x) + F (x)>P2(x)

− 1

γ2
P2(x)g1(x)g>1 (x)P1(x)

− 1

γ2
P1(x)g1(x)g>1 (x)P2(x) + Σ2(x) = 0 ,

(14)

(ii) Pi(0) = P̄i, such that P̄2 − P̄1 > 0, with P̄i, i = 1, 2,
symmetric solutions of the coupled Riccati equations

− C>1 C1 − P̄2B2B
>
2 P̄2 −

1

γ2
P̄1B1B

>
1 P̄1 + P̄1A

+A>P̄1 −
(
P̄1B2B

>
2 P̄2 + P̄2B1B

>
1 P̄1

)
− Σ̄1 = 0 ,

C>2 C2 − P̄2B2B
>
2 P̄2 + P̄2A+A>P̄2

− 1

γ2
(
P̄2B1B

>
1 P̄1 + P̄1B1B

>
1 P̄2

)
+ Σ̄2 = 0 ,

(15)

If x ∈ Rn, i.e. X = Rn, then P1 and P2 are said to be
algebraic P̄ matrix solutions.

Remark 8. An algorithm similar to that of Proposition 1
can be used to determine the matrix-valued functions
P1(x) and P2(x) satisfying (14) for each given value of
x. N

In what follows the existence of algebraic P̄ matrix so-
lutions is assumed and used to construct approximate
solutions for the differential game, similarly to what has
been done for a class of N -player differential games in
Mylvaganam et al. [2015].

5 Provided the set X contains the origin.



5. CONSTRUCTIVE APPROXIMATE SOLUTIONS

Let P1(x) and P2(x) denote an algebraic P̄ matrix solu-
tion, as introduced in the previous section. Introduce a
dynamic variable ξ(t) ∈ Rn and consider the extended
state-space (x>, ξ>)>. Furthermore, let Ri = R>i > 0 and
define the extended value functions

V1(x, ξ) =
1

2
x>P1(ξ)x− 1

2
‖x− ξ‖R1

,

V2(x, ξ) =
1

2
x>P2(ξ)x+

1

2
‖x− ξ‖R2

,

(16)

defined in the extended state-space. Let Φi : Rn × Rn →
Rn×n be continuous matrix-valued functions such that
x> (Pi(x)− Pi(ξ)) = (x − ξ)>Φi(x, ξ) and let Φ(x, ξ)
denote the Jacobian matrices of 1

2Pi(ξ)x with respect to
ξ, for i = 1, 2. Using this notation it follows that

∂V1
∂x

= x>P1(x)− (x− ξ)(R1 + Φ(x, ξ)) ,

∂V1
∂ξ

= x>Ψ1(x, ξ) + (x− ξ)>R1 ,

∂V2
∂x

= x>P2(x) + (x− ξ)(R2 + Φ(x, ξ)) ,

∂V2
∂ξ

= x>Ψ2(x, ξ)− (x− ξ)>R2 .

Finally, let Acl(x) describe the closed-loop system (1)
when the optimal control and the worst-case disturbance

(7) are applied, i.e. Acl(x) = F (x)− 1

γ2
g1(x)g1(x)>P1(x)−

g2(x)g2(x)>P2(x).

Using the properties of the algebraic P̄ matrix solution dy-
namic feedback strategies which satisfy partial differential
inequalities in place of the PDEs (6) can be constructed
as demonstrated in the following statement.

Theorem 1. Consider the system (1), the cost functionals
(3) and (4) and the resulting nonzero-sum differential
game described in Problem 2. Let R1 and R2 be such that
R2 > R1 and

R1(R1 +R2) + (R1 +R2)R1 > 0 ,

R2(R1 +R2) + (R1 +R2)R2 > 0 .
(17)

There exists a neighbourhood Ω, containing the origin, and
k̄ > 0 such that for all k ≥ k̄ the inequalities

HJI1 = −1

2
h1(x)>h1(x)− 1

2

∂V2
∂x

g2(x)>g2(x)
∂V2
∂x

>

− 1

2γ2
∂V1
∂x

g1(x)>g1(x)
∂V1
∂x

>
+
∂V1
∂x

f(x)

− ∂V1
∂x

g2(x)>g2(x)
∂V2
∂x

>
+
∂V1
∂ξ

ξ̇ ≥ 0 ,

HJI2 =
1

2
h2(x)>h2(x)− 1

2

∂V2
∂x

g2(x)>g2(x)
∂V2
∂x

>

+
∂V2
∂x

f(x)− 1

2γ2
∂V2
∂x

g1(x)>g1(x)
∂V1
∂x

>
+
∂V2
∂ξ

ξ̇ ≤ 0 ,

(18)
with

ξ̇ = −k
(
∂V2
∂ξ
− ∂V1

∂ξ

)
,

are satisfied for all (x, ξ) ∈ Ω. Suppose Assumption 3 is
satisfied with Vi, i = 1, 2, given by (16). Then, the dynamic
feedback strategy

u∗ = −g2(x)>
∂V2
∂x

>
, w∗ = − 1

γ2
g1(x)>

∂V1
∂x

>
,

ξ̇ = −k
(
∂V2
∂ξ
− ∂V1

∂ξ

)
.

(19)

is such that the closed-loop system (1)-(19) is (locally)
asymptotically stable. �

Proof: The left-hand-sides of the inequalities (18) can be
written in quadratic form

HJI1 =
1

2

[
x> (x− ξ)>

]
(M1 + kD1)

[
x

(x− ξ)

]
,

HJI2 = −1

2

[
x> (x− ξ)>

]
(M2 + kD2)

[
x

(x− ξ)

]
,

where Mi are given by

Mi(x, ξ) =

[
Σi Γi,12

Γ>i,12 Γi,22

]
,

with Γ1,12 = −Acl(x)>(R1−Φ1)−(P1+P2)g2g
>
2 (R2−Φ2) ,

Γ1,22 =(R1 − Φ1)>
(
g2g
>
2 (R2 − Φ2)− 1

γ2
g1g
>
1 (R1 − Φ1)

)
(R2 − Φ2)>g2g

>
2 ((R1 − Φ1)− (R2 − Φ2)) ,

Γ2,12 = Acl(x)>(R2 − Φ2) + 1
γ2P2g1g

>
1 (R1 − Φ1) , and

Γ2,22 =(R2 − Φ2)>
( 1

γ2
g1g
>
1 (R1 − Φ1)− g2g>2 (R2 − Φ2)

)
+

1

γ2
(R1 − Φ1)>g1g

>
1 (R2 − Φ2) ,

and Di are given by

Di(x, ξ) =

[
∆i,11 ∆i,12

∆>i,12 ∆i,22

]
,

with ∆i,11 = Ψi(Ψ2 − Ψ1)> + (Ψ2 − Ψ1)>Ψi, ∆1,12 =
−Ψ1(R2 + R1)> + (Ψ2 − Ψ1)>R1, ∆2,12 = −Ψ2(R2 +
R1)> − (Ψ2 −Ψ1)>R2, ∆1,12 = −Ψ2(R2 + R1)> − (Ψ2 −
Ψ1)>R2, ∆i,22 = Ri(R1 + R2) − (R1 + R2)Ri, i = 1, 2.
Noting that Ψ(0, ξ) = 0, it follows that Di, i = 1, 2, are
positive semidefinite in a neighbourhood Wi of the origin
of the extended state space Rn × Rn. The columns of the

matrix Z = [I, 0]
>

spans the kernels of Di(x, 0), i = 1, 2,
and Z>Mi

∣∣
0,0
Z = Σ̄i > 0. It follows from Anstreicer

and Wright [2000] that there exists a non-empty set Ω
containing the origin and k̄ ≥ 0 such that the inequalities
(18) are satisfied for all k ≥ k̄ and (x, ξ) ∈ Ω.

Noting that, by the definition of algebraic P̄ matrix solu-
tion, W = V2−V1 > 0 in a neighbourhoodW of the origin,
let W be a candidate Lyapunov function. Its time deriva-
tive is given by Ẇ ≤ − 1

2 (q1(x) + q2(x))−‖u∗‖2 + 1
2‖w

∗‖2.
By Assumption 3 and LaSalle’s invariance principle it fol-
lows that lim

t→∞
x(t) = 0. Furthermore, the zero equilibrium

of the system ξ̇ = −k(
∂V2
∂ξ
− ∂V2
∂ξ

)(0, ξ)> is asymptotically

stable. Thus, asymptotic stability of (x, ξ) = (0, 0) follows
from standard arguments on interconnected systems. �

Remark 9. The dynamic feedback strategies (19) are the
Nash equilibrium strategies of a modified two-player,
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Fig. 1. Time histories of P̃1 (black lines) and P̃2 (grey lines)
for different values of γ.

nonzero-sum differential game characterised by the dy-
namics (1) and the modified cost functionals

J̃1(u,w) ,
1

2

∫ ∞
0

(
−z>1 z1 + γ2w>w − c1(x, ξ)

)
dt

J̃2(u,w) ,
1

2

∫ ∞
0

(
z>2 z2 + c2(x, ξ)

)
dt ,

where ci(x, ξ) : Rn × Rn → R are continuous mappings
given by

c1(x, ξ) = 2HJI1 ≥ 0 ,
and

c2(x, ξ) = −2HJI2 ≥ 0 .
N

6. NUMERICAL EXAMPLES

Numerical examples illustrating the theoretical results of
Proposition 1 and Theorem 1 are provided in this section.

6.1 A scalar linear system

In this section we revisit the scalar example considered
in Limebeer et al. [1994]. Using the same four values for γ
considered therein we show that the algorithm proposed in
Proposition 1 yields solutions to the coupled AREs which
are consistent with those found in Limebeer et al. [1994].

Consider the case in which the state x ∈ R and the
performance variables are given by

ẋ = 2x+ w + 3u , z1 = z2 = [ 3x u ]
>
. (20)

The initial conditions for the matrices exploited in Propo-
sition 1 are selected as P̃i(0) = Li(0) = 0, i = 1, 2 and

κ = 1 is selected. The resulting time histories of P̃i (top)
and Mi (bottom) are shown for γ = 0.35 (dash-dotted
lines), γ = 0.4 (dashed lines), γ = 0.45 (dotted lines) and
γ = 0.5 (solid lines) in Figure 1, for i = 1 (black lines) and
i = 2 (grey lines). It can be seen that they converge to a
solution of (10) for all but the smalles value of γ.

6.2 A two-dimensional linear system

Consider now the case in which the state is described by
a vector x = [x1, x2]>, with the following dynamics

0 1 2 3 4 5 6
−1.5
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−0.5

0

0.5

P̃
1
,
L
1

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2

time (s)

P̃
2
,
L
2

Fig. 2. Time histories of the components of P̃i (black lines)
and Li (grey lines) for i = 1 (top) and i = 2 (bottom).

ẋ = diag{2, 1}x+ [ 0 0.1 ]
>
w + diag{4, 2}u ,

z1 =

[
x
u

]
, z2 =

[
2x
u

]
,

and γ = 0.5. A solution P1 and P2 to the coupled AREs
(10) is found using the algorithm proposed in Proposition

1 with κ = 1. The notation Li =

[
li11 l

i
12

li12 l
i
22

]
and P̃i =[

p̃i11 p̃
i
12

p̃i12 p̃
i
22

]
is used in what follows. The initial conditions

for the matrices are selected as P̃i(0) = 0, i = 1, 2,
L1(0) = −I and L2(0) = I. The time histories of pi11
(solid, black lines), pi12 (dash-dotted lines, black lines), pi22
(dotted, black lines), li11 (solid, grey lines), li12 (dash-dotted
lines, grey lines) and li22 (dotted, grey lines) are shown
in Figure 2, for i = 1 (top) and i = 2 (bottom). The

matrices converge to P̃1 = L1 = diag{−0.4585,−0.9252}
and P̃2 = L2 = diag{0.6404, 1.292}, and it is easily verified
that these matrices are a solution for (10).

6.3 A nonlinear system

Consider now the nonlinear scalar system with dynamics

ẋ = ax(1 + sinx) + b1w + b2u ,

with a ∈ R, b1 ∈ R, b2 ∈ R, the performance variables
z1 = z2 = z,

z = [ cx u ]
>
,

and the resulting Problem 2. Suppose a = −2, b1 = 0.4,
b2 = 1 and c = 2. The functions p1(x) = l1(1 + sinx)
and p2(x) = l2(1 + sinx) with l1 = −1.5 and l2 = 1.8
constitute an algebraic P̄ matrix solution with Σ1(x) > 0
and Σ2(x) > 0 in a neighbourhood of the origin. The
dynamic feedback strategies (19) are constructed using
this algebraic P̄ matrix solution with the selection of
parameters R1 = 1, R2 = 1.5, k = 0.1 and ξ(0) = 0.

Consider first the scenario in which x(0) = 0 and the
system is subject to the disturbance w shown in the top
graph of Figure 3. Note that this disturbance is such that
the trajectory of the system remains in the neighbourhood
Ω in which the inequalities (18) are satisfied. The time
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Fig. 3. Time histories of the the disturbance w, dynamic
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Fig. 4. Time histories of the the disturbance w∗ (top),
dynamic feedback control u∗ (middle), x (bottom).

history of the dynamic feedback u∗ given in (19), corre-
sponding to this selection of algebraic P̄ matrix solution
and disturbance, is shown in the second graph of Figure
3, whereas the time histories of the state x when u = u∗

(solid line) and u = 0 (dotted line) is shown in the third
graph of the same figure. The time history of ξ is shown
in the bottom graph of Figure 3.

Consider now the second scenario in which the system
has been perturbed so that the initial state is nonzero.
In particular consider the case in which x(0) = 0.4. The
resulting time histories of w∗ (top), u∗ (middle) and x
(bottom) when the dynamic feedback strategy u∗ and
dynamic worst-case feedback w∗ given in (19) are applied
are shown in Figure 4. For completeness the time history
of ξ is shown in Figure 5.

7. CONCLUSIONS AND FUTURE WORK

The problem of mixed H2/H∞ control for a class of
nonlinear systems is considered. Drawing inspiration from
Limebeer et al. [1992, 1994], Lin [1995] the problem is for-
mulated as a two-player, nonzero-sum differential game. A
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Fig. 5. Time history of the the disturbance ξ.

heuristic algorithm for obtaining solutions for the coupled
AREs which characterise the linear problem considered
in Limebeer et al. [1994] is provided before constructive
approximate solutions for the general nonlinear case are
given. A series of simple numerical examples for linear and
nonlinear systems is then provided.

Directions for future research include determining a strict
relationship between solutions to the modified differential
game in Remark 9 and the original differential game
and the mixed H2/H∞ control problem in Problems 1
and 2. This may rely on notions similar to the so-called
εα-Nash equilibrium solution introduced in Mylvaganam
et al. [2015]. It is also of interest to consider multi-player
mixed H2/H∞ control as well as comprehensive simulation
studies. It is also of interest to study the convergence
properties of the algorithm proposed in Proposition 1.
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2014.

G.P. Papavassilopoulos and G.J. Olsder. On the linear-
quadratic, closed-loop no-memory Nash game. vol-
ume 42, pages 551–560, 1979.

A.W. Starr and Y.C. Ho. Nonzero-sum differential games.
Journal of Optimization Theory and Applications, 3:
184–206, 1969.

C.-S. Tseng and B.-S. Chen. A mixed H2/H∞ adaptive
tracking control for constrained non-holonomic systems.
volume 39, pages 1011 – 1018, 2003.

R. Vinter. Optimal Control. Birkhäuser, 2000.
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