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A B S T R A C T

A general modeling framework for mixture design problems, which integrates Generalized Disjunctive
Programming (GDP) into the Computer-Aided Mixture/blend Design (CAMbD) framework, was recently
proposed (S. Jonuzaj, P.T. Akula, P.-M. Kleniati, C.S. Adjiman, 2016. The formulation of optimal mixtures with
Generalized Disjunctive Programming: A solvent design case study. AIChE Journal 62, 1616–1633). In this
paper we derive Hull Relaxations (HRs) of GDP mixture design problems as an alternative to the big-M (BM)
approach presented in this earlier work. We show that in restricted mixture design problems, where the number
of components is fixed and their identities and compositions are optimised, BM and HR formulations are
identical. For general mixture design problems, where the optimal number of mixture components is also
determined, a generic approach is employed to enable the derivation and solution of the HR formulation for
problems involving functions that are not defined at zero (e.g., logarithms). The design methodology is applied
successfully to two solvent design case studies: the maximization of the solubility of a drug and the separation of
acetic acid from water in a liquid–liquid extraction process. Promising solvent mixtures are identified in both
case studies. The HR and BM approaches are found to be effective for the formulation and solution of mixture
design problems, especially via the general design problem.

1. Introduction

The design of mixtures is an important and challenging problem
with numerous industrial applications. Of particular interest are
applications in separation processes, such as liquid–liquid extraction
(Brignole and Gani, 1983; Karunanithi et al., 2005; Cignitti et al.,
2015) and crystallization (Karunanithi et al., 2006, 2009), that require
suitable solvents or solvent mixtures to meet given specifications, and
where the choice of solvent can have a significant impact on the
performance of the process. In drug manufacturing, for example,
unsuitable solvents can result in undesired crystal morphology, which
may affect downstream processing and product performance (Gordon
and Amin, 1984; Karunanithi et al., 2006). Solvent mixtures are also
used in chemical reactors to enhance the reaction rate (Folić et al.,
2007; Struebing et al., 2013) or (Zhou et al., 2015) and in product
design as constituents of the final product formulations (Gani, 2004a,
b; Gani and Ng, 2015).

Several systematic methodologies have been developed within the
Computer-Aided Mixture/blend Design (CAMbD) framework (Gani,
2004a; Achenie et al., 2003) for the design of solvent mixtures
(Brignole and Gani, 1983; Buxton et al., 1999; Sinha et al., 2003;

Karunanithi et al., 2005; Cignitti et al., 2015; Jonuzaj et al., 2016),
blends of refrigerants (Duvedi and Achenie, 1997; Churi and Achenie,
1997; Vaidyaraman and Maranas, 2002), blends of polymers
(Vaidyanathan and El-Halwagi, 1996; Solvason et al., 2009; Zhang
et al., 2015), blended liquid products (Yunus et al., 2014) and heat
transfer fluid mixtures (Papadopoulos et al., 2013). A more detailed
description of the existing methodologies for mixture design can be
found in Jonuzaj et al. (2016). In spite of these advances, there remains
great potential to improve existing approaches to mixture design within
the CAMbD framework. In current practice, the number of compounds
or materials required for the design of mixtures or products is often
chosen first, before other design decisions are made, and this can lead
to suboptimal designs. Thus, most methodologies proposed to date
have been focused on the design of mixtures with a pre-specified
number of components and have been applied mostly to the design of
binary mixtures (Sinha et al., 2003; Karunanithi et al., 2005, 2006;
Buxton et al., 1999; Papadopoulos et al., 2013; Vaidyanathan and El-
Halwagi, 1996), with some exceptions such as the work of Solvason
et al. (2009), Yunus et al. (2014) and Jonuzaj et al. (2016), who have
presented methodologies for the design of multicomponent mixtures.
CAMbD methods generally rely on Mixed Integer Nonlinear
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Programming (MINLP) techniques to model the discrete decisions
inherent in mixture design problems, which are related to the number
of components in the mixture and their identities. The solution of the
resulting mixed integer optimization problems can be very challenging
due to nonconvexities in the space of the continuous variables and a
large combinatorial solution space which may lead to several numerical
difficulties.

By extending the applicability of CAMbD methods to generalized
mixture design problems, in which the number of components in the
optimal mixture is not fixed a priori, the explicit evaluation of every
choice of the number of components can be avoided, making it possible
to consider larger design spaces, especially as the number of desirable
components increases. This requires developing a comprehensive and
systematic mathematical programming approach for the formulation
and solution of such problems. In the context of a generalized CAMbD
problem, we have recently proposed (Jonuzaj et al., 2016) a novel
methodology for determining simultaneously the optimal number of
compounds in a mixture, the specific identities of the compounds, and
their composition in the mixture. The desired compounds are chosen
from a list of possible molecules. Within this approach, logic-based
modeling was employed to formulate the CAMbD problem as a
Generalized Disjunctive Program (GDP) (Raman and Grossmann,
1994), in order to address the difficulties arising from the complexity
of the model and facilitate problem formulation. From this initial work,
the objective of our current work is to study different strategies for the
solution of the GDP problem, including the Big-M (BM) (Nemhauser
and Wolsey, 1999; Raman and Grossmann, 1994) approach and Hull
Reformulations (HRs) (Lee and Grossmann, 2000, 2003), in order to
circumvent the combinatorial explosion that accompanies large design
spaces and facilitate problem solution. The design methodology and the
two different relaxation approaches are applied to two case studies of
increasing complexity. In the first, simple, example, which involves
solid–liquid equilibrium calculations, an optimal solvent mixture that
maximizes the solubility of a drug is designed. The second case study
consists of a more challenging problem, where the most effective
solvent mixture to separate acetic acid from water by liquid–liquid
extraction is designed. In both cases, the computational performance of
the different reformulation strategies is assessed. As will be seen, the
resulting problems are challenging to solve for existing optimization
algorithms. Here we focus on the development of a generic formula-
tion, with application to small-scale examples. In practice, the applica-
tion of the proposed approach to formulation design implies consider-
ing a large number of ingredients (e.g., there can be 10–30 ingredients
in a typical paint (Nicks and Ryan, 1975) or shampoo (Trüeb, 2007),
chosen from a much larger list).

The paper is organized as follows. In Section 2, a brief overview of
the GDP concepts necessary for the presentation of the problem
formulations and solution strategies is provided. In Section 3, several
mathematical formulations of the generalized mixture design problem
are presented. Then, in Sections 4 and 5, the proposed approaches are
applied to the two case studies.

2. A brief introduction to Generalized Disjunctive
Programming (GDP)

In this section we describe briefly the general formulation of GDP
problems, which was introduced by Raman and Grossmann (1994),
and we review briefly how the GDP problem, with its Boolean variables,
can be converted into mixed-integer form so that it can be solved by
standard MINLP algorithms (e.g., the outer-approximation algorithm
Duran and Grossmann, 1986; Fletcher and Leyffer, 1994). GDP is a
logic-based approach for formulating discrete/continuous optimization
problems that extends the disjunctive programming proposed by Balas
(1985) and involves Boolean and continuous variables that are related
via disjunctions, algebraic equations and logic propositions (Beaumont,
1991; Turkay and Grossmann, 1996). It has been employed by

Grossmann and co-authors in several applications in the area of
process systems engineering, such as the design of process network
systems (Raman and Grossmann, 1994; Vecchietti et al., 2003; Ruiz
and Grossmann, 2013; Trespalacios and Grossmann, 2015), the design
of distillation columns (Grossmann and Trespalacios, 2013), strip-
packing (Sawaya and Grossmann, 2005) and scheduling problems
(Raman and Grossmann, 1994; Sawaya and Grossmann, 2005;
Méndez et al., 2006; Castro and Grossmann, 2012).

The general formulation of a GDP problem involves an objective
function to be optimised, general constraints that must hold regardless
of the discrete choices, conditional constraints within disjunctions that
depend on the discrete decisions, represented by Boolean variables,
and logic propositions that connect the disjunctive variables. The
general formulation of a GDP problem is presented as (GDP) in
Appendix A for completeness. In order to exploit existing MINLP
algorithms, once an appropriate GDP formulation has been obtained, it
can be converted into an MINLP problem using different approaches,
such as big-M or Hull Reformulation, that result in relaxations of
varying strength (Lee and Grossmann, 2003; Grossmann and
Trespalacios, 2013). The BM formulation (Nemhauser and Wolsey,
1999) is the simplest representation of a GDP problem in a mixed-
integer form (Raman and Grossmann, 1994). The concept of a Convex
Hull relaxation of a convex GDP problem was introduced by Stubbs
and Mehrotra (1999) and was later extended by Lee and Grossmann
(2000), Lee and Grossmann (2003), Lee and Grossmann (2005) for the
derivation of Hull Relaxations for convex and nonconvex conditional
constraints. Generic formulations of the big-M and Hull Relaxation
approaches are presented in Appendix A as models (BM) and (HR),
respectively. In the (HR) model, disjunctive constraints are trans-
formed into mixed-integer equations via the perspective function,
y h ν y( / ) ≤ 0j k j k j k j k, , , , (Grossmann and Trespalacios, 2013). In order to
avoid the numerical difficulties (division by zero) that can arise from
perspective functions, the following approximation was proposed by
Sawaya (2006):

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟y h

ν
y

h y((1 − ϵ) + ϵ)
(1 − ϵ) + ϵ

− ϵ (0)(1 − ) ≤ 0j k j k
j k

j k
j k j k, ,

,

,
, , (1)

where yj k, is a binary variable that has one-to-one correspondence with
the Boolean variable, Yj k, , of model (GDP); hj k, is a nonlinear condi-
tional constraint that depends on the discrete decisions; νj k, is a
disaggregated variable and ϵ is a small tolerance which usually varies
from 10−8 to 10−2.

Both (BM) and (HR) have a one-to-one correspondence with model
(GDP) (Lee and Grossmann, 2000), so that all three formulations have
the same global and local solutions. The BM approach is known to give
weak lower bounds in the case of a minimization problem (Grossmann,
2002; Lee and Grossmann, 2003; Vecchietti et al., 2003). This is due in
part to the fact that it relies on the Big-M parameter, Mj k, , a bound
whose value cannot always be calculated exactly but is often specified
based on an approximate analysis of function ranges. As a result, it is
usually given large values, so that feasible points are not excluded from
the solution space. The HR formulation, on the other hand, incurs a
computational cost due to the introduction of a new set of disaggre-
gated variables, νj k, , and new constraints, thereby increasing the size of
the problem (Lee and Grossmann, 2000). For problems that are convex
in the continuous variables, it can be proved (Lee and Grossmann,
2003) that when the discrete domain of the Hull Reformulation is
relaxed (i.e. y0 ≤ ≤ 1j k, ), it gives bounds that are as tight as or tighter
than the bounds generated with the Big-M approach.

Although HR techniques may provide tighter lower bounds than the
traditional BMmodel, they do not always lead to more efficient solution
times due to the increased number of variables and constraints (Lee
and Grossmann, 2005; Lee and Leyffer, 2012; Grossmann and
Trespalacios, 2013). In cases where tight variable bounds are provided,
or in large problems where it is desirable not to increase the number of
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variables and equations, the BM model can compete with the HR
relaxation in terms of computational performance (Vecchietti et al.,
2003). In recent work, Castro et al. (2014) addressed the optimization
of the maintenance scheduling of a gas-fired power plant using a
continuous-time GDP model, where both the BM and HR techniques
were applied to recast the GDP into an MILP. It emerged from the
results of the case study that the BM reformulation gave better
computational performance than the Hull Reformulation.

In earlier works, Grossmann and co-authors (Lee and Grossmann,
2000; Vecchietti et al., 2003; Grossmann and Trespalacios, 2013) had
compared the performance of BM and HR in various example problems
(e.g., job scheduling, process network applications, strip-packing),
where HR was found to outperform the BM approach and to give
tighter relaxations. Ultimately, the best choice between BM or HR
depends on the complexity of the problem at hand and on the type of
the disjunctive constraints.

In order to improve the relaxation techniques, cutting plane
methods (Vecchietti et al., 2003; Lee and Grossmann, 2005; Sawaya
and Grossmann, 2005) and basic steps (i.e., hierarchy of relaxations)
(Sawaya and Grossmann, 2012; Ruiz and Grossmann, 2012;
Grossmann and Trespalacios, 2013) can also be used in solving GDP
models. In our current work, we compare the performance of the BM
and HR relaxations for solution of GDP formulations of mixture
design problems, but we do not apply cutting planes or a basic step
approach.

3. The generalized mixture design problem

The formulation of mixture design problems in a way which
integrates GDP into a CAMbD framework was introduced and de-
scribed in detail in our recent work (Jonuzaj et al., 2016). A brief
overview of the GDP formulations is given for completeness in the next
subsection, followed by a description of BM and HR models of mixture
problems in the remainder of this section.

3.1. Problem definition

The mixture problem is constructed in a systematic way and is
presented here in the context of the formulation of a generalized model,
where any number of components may be chosen up to a user-defined
maximum, based on a given list of candidate compounds, and subject
to property constraints. The design variables are the number of the
components that participate in the mixture, their identities and their
compositions. In order to develop the optimization problems, the
following index sets need to be defined. The first set, I N= {1, …, }c ,
defines the number of each component in the mixture, where Nc is the
total number of components. The mixture to be designed consists of
fixed molecules (e.g., solutes) that must necessarily be present in the
mixture and of unknown components (e.g., solvents) that are to be
selected from a predefined list. We define N′ as the number of fixed
components in the mixture and Nmax as the maximum number of
components to be designed, which are also labeled via the set
N N= {1, …, }max . Thus the maximum number of components in the
mixture is N N N= ′ +c max. The list of compounds from which the
unknown components are selected is given by the set S N= {1, …, }s ,
with N N≥s max. The chemical identity of each molecule is defined using
functional groups (building blocks such as CH3, OH) that can be used
in the calculation of relevant physical properties, and the groups are
represented by the set K N= {1, …, }K . For clarity, we use the term
“components” to refer to the ingredients/molecules in the mixture we
are designing and the term “compounds” to refer to ingredients/
molecules in the set S from which we choose the components. Those
components in the mixture that are not fixed (i.e., components N′ + 1
to Nc) are referred to as the “designed components”.

3.2. GDP formulation of the CAMbD problem

Following the derivation of Jonuzaj et al. (2016), the GDP
formulation of the general mixture problem can be written as:
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(G-GDP)

where f is the objective function to be optimised and g x( ) ≤ 0
represents general constraints that must hold regardless of the discrete
choices. Two different sets of disjunctions are included in this
formulation. The first set involves disjunctions for selecting each
component from a list of pure compounds and the assignment of a
component i in the mixture from a compound s in the list is determined
through Boolean variable Yi s, (a compound s is assigned to component i
in the mixture ifYi s, is True and it is not if Yi s, is False). The second set of
disjunctions involves property constraints that depend on the number
of mixture ingredients, n, and that are active when the corresponding
Boolean variable Y∼n is True. The vector h x( ) ≤ 0i s, represents the
constraints that depend on the identity of a compound and are active
when compound s is assigned to the ith component in a mixture (i.e.,Yi s,

is True). F x( ) ≤ 0∼
n is a vector of constraints that depend on the number

of components in the mixture. The mole fraction, xi, of a component i is
set to be greater than a user-specified threshold value xi

L if the
component is present in the mixture and is zero otherwise. This is
done to avoid the generation of unrealistic mixture compositions, with
many components present in very small quantities.

The logic conditions, Ω Y( ) = True, included in the model are derived
to avoid degeneracy of the solutions by enforcing a specific ordering of the
compounds. These constraints thus restrict the feasible space by eliminat-
ing identical degenerate solutions. Logic relations are also derived to
ensure that each candidate compound s is selected at most once and that
at most one compound is assigned to each component i
i N N( = ′ + 1, …, )c in the mixture. Additional logic propositions are
required to relate the Boolean variables for the number of designed
components in the mixture,Y∼n, n N= 1, …, max to the Boolean variables for
the assignment of a compound to each component, Yi s, , i N N= ′ + 1, …, c,
s N= 1, …, s. These logic relations can be translated into linear algebraic
equations (Williams, 1985; Raman and Grossmann, 1991) by replacing
the Boolean variables Yi s, and Y∼n with the binary variables yi s, and y∼n,
respectively. The logic propositions and the corresponding linear algebraic
constraints are summarized in Table 1. A more detailed description of all
the logic relations included in the model and how they are converted into
linear inequalities is given in Jonuzaj et al. (2016).

3.3. Reformulation of problem (G-GDP) as an MINLP via Big-M

The MINLP model derived by applying the BM reformulation to the
generalized problem (G-GDP) is written as follows:
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Table 1
Logic propositions and algebraic constraints for the generalized mixture design problem.

Logic expressions Linear inequalities
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where Ay b≤ is a set of linear inequalities resulting from the logic
relations, Ω Y( ), and presented in the right column of Table 1.

3.4. Reformulation of problem (G-GDP) as an MINLP via Hull
Relaxation

In the HR model, the continuous variables are disaggregated into
additional variables for each disjunctive term (e.g., xi is disaggregated
into νi n, ). Each nonlinear disjunctive constraint, h x( ) ≤ 0i s, , can be
formulated using one of the approximation functions proposed by
Sawaya and Grossmann (2007) in order to avoid singularities. The
resulting MINLP model derived by applying the HR approach to the
mixture design problem is written as follows:
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The (G-HR) formulation is often not directly applicable to mixture
design problems due to the presence of nonlinear phase equilibrium

relations in the model which can be singular at zero. The thermo-
dynamic expressions for some of the properties needed in phase
equilibria calculations, such as chemical potentials and activity coeffi-
cients, involve logarithmic functions that can lead to numerical
difficulties when a variable is equal to zero (e.g., x xln( ) cannot easily
be computed numerically when x=0). This problem may occur in model
(G-HR) where the disaggregated variables become zero when the
corresponding binary variable is zero. In order to avoid such singula-
rities, we employ a modified approximation function proposed by Ruiz
and Grossmann (2012) when logarithms are involved. Considering a
function F x x( ) = ln( )∼

i n i i, for some n N∈ {1, …, }max and some
i N N n∈ { ′ + 1, …, ′ + }, the following transformation is used:

x x β= ′ +i i (2)

F x x β′ ( ′) = ln( ′ + )∼
i n i i, (3)

where β is an arbitrary constant. Hence,
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where
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i n n i
L

i n n i
U

=1
, ,

max

(5)

Based on model (G-HR), for each component i N N= ′ + 1, …, c in the
mixture, the Hull relaxation of the first set of disjunctions (for the
assignment of compounds) leads to the introduction of Ns additional
variables and N2 + 1s additional equations in the problem.
Furthermore, the Hull relaxation of the second set of disjunctions
(for the number of components) leads to the introduction of Nmax

additional variables and N2 + 1max additional constraints in the pro-
blem.

4. Case Study 1: Maximizing the solubility of Ibuprofen

In order to investigate the relative performance of the two relaxa-
tions, we first focus on the case study used by Jonuzaj et al. (2016) and
present a brief summary of the salient features of the case study. The
objective is to identify an optimal solvent mixture that leads to the
maximum solubility of ibuprofen, xibu (i.e., the mole fraction of
ibuprofen in the mixture) at 300 K and 1 atm. Ibuprofen (ibu) is a
well-known anti-inflammatory drug that is used to relieve pain and
symptoms of arthritis, as well as common pains such as headache,
muscle ache and backache. Its manufacturing process involves crystal-
lization of the solute from a suitable solvent or solvent mixture (Gordon
and Amin, 1984; Karunanithi et al., 2006). A full description of the
problem of identifying appropriate solvents or solvent mixtures that
dissolve ibuprofen was given in Jonuzaj et al. (2016), and the proposed
GDP formulations were converted into MINLPs by using the big-M
approach. Here we extend this work by applying a Hull Relaxation and
investigate the use of the two relaxation techniques in CAMbD.

The model used in design includes phase equilibrium and phase
stability relations that increase the complexity of the models. In this
case study, however, only ibuprofen (solute) is at solid–liquid equili-
brium (SLE) and this helps to avoid some difficulties as the number of
phase equilibrium relations (equality of chemical potentials of each
component at equilibrium in all phases) is independent of the number
of components in the solvent mixture designed—in this case, one only
needs to equate the chemical potentials of ibuprofen in the (pure)
crystalline form and in the liquid mixture, not the chemical potentials
of all components. The solubility of ibuprofen in the solvent mixture
can thus be calculated as follows (Gmehling et al., 1978; Sandler,
1999):
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where xibu is the mole fraction of ibuprofen in the mixture, γibu is the
liquid phase activity coefficient of ibuprofen at composition x, tem-
perature T and pressure P, HΔ fus is the enthalpy of fusion of ibuprofen
at temperature Tm, R is the gas constant, and Tm and T are the normal
melting point of ibuprofen and the mixture temperature, respectively.
The enthalpy of fusion of ibuprofen and its normal melting point are
taken to be 25.5 kJ/mol and 347.15 K (Gracin and Rasmuson, 2002),
respectively. The activity coefficient is evaluated using the UNIFAC
(Fredenslund et al., 1975; Gmehling et al., 1978) group contribution
method, where the expressions depend only on temperature and
composition, but do not account for the (small) pressure dependence.
The UNIFAC model proposed by Smith et al. (2001) is employed in this
design problem and the relevant equations are presented in Appendix
B for completeness. In order to ensure that the final mixture is in one
phase, a miscibility constraint is introduced for every binary pair of
solvent molecules, to ensure that they are mutually miscible in the
proportions and at the temperature relevant to the mixture (Gani et al.,
1991; Smith et al., 2001):
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(7)

where γi
i j, is the activity coefficient of component i in a binary mixture

of i and j, and xi
i j, is the mole fraction of component i in the mixture of i

and j and can be calculated as follows:

x
x

x x
i j I i j=

+
, , ∈ , <i

i j i

i j

,

(8)

x x i j I i j+ = 1, , ∈ , <i
i j

j
i j, ,

(9)

where xi and xj are the mole fractions of components i and j,
respectively, in the multi-component mixture.

All the sets used in this case study are shown in Table 2. The solvent
molecules and ibuprofen are built from the set of functional groups.
The list of candidate solvents, the number of groups of each type k in
ibuprofen v( ′ )ibu,k and the number of groups in a solvent s v( ′ )s k, are
presented in Appendix C in Tables C.1, C.2, and C.3, respectively.

The parameters used in the UNIFAC model for the prediction of the
activity coefficient are taken from Poling et al. (2001).

4.1. Problem formulations

In the application of the proposed methodology, we consider two
formulations: a restricted problem, where we fix the number of solvent
components and design mixtures with one, two or three solvents
(N=1,2, 3); the generalized problem, where the number of components
in the mixture is not fixed but bounded by a maximum Nmax, which
takes a value of 3 here.

4.1.1. Restricted problem: fixed number of solvents
In a restricted problem, the decision variables are related to the

identities and compositions of mixture constituents. As shown in
Jonuzaj et al. (2016), the GDP formulation of the restricted problem
consists of disjunctions for assigning each solvent s from the given list
to components i in the mixture. In general, BM and HR formulations
differ in the way conditional constraints of the form h x( ) ≤ 0i s, (cf.
(GDP)) are recast. Here, conditional constraints represent the identity
of the selected solvent n v( ′ = ′ )i k s k, , , the molecular van der Waals volume
r r( = )i s and the molecular surface area q q( = )i s of the mixture compo-
nents. In both the BM and HR reformulations, these constraints can be
expressed algebraically as products of the appropriate binary variable,
yi s, , with the variables v′s k, , rs and qs, respectively, as given by:

∑n v y i c c c k K′ = ′ , = , , ; ∈i k
s S

s k i s,
∈

, , 1 2 3 (10)

∑r r y i c c c= , = , ,i
s S

s i s
∈

, 1 2 3 (11)

∑q q y i c c c= , = , ,i
s S

s i s
∈

, 1 2 3 (12)

where v′s k, represents the number of groups of type k in solvent s; rs and
qs are the van der Waals volume and surface area, respectively, for
compound s in the solvent list. These relations force the variables n ′i k, , ri
and qi to become zero when a solvent is not chosen, avoiding the use of
the big-M parameter in the BM approach or of disaggregated variables
in the HR. Thus, for the restricted problem, both approaches result in
the same MINLP model. A more detailed description of the MINLP
formulation for the design of a mixture with three solvents can be
found in our previous work (Jonuzaj et al., 2016).

4.1.2. Generalized problem: unknown number of solvents
In the generalized case, the number of designed components in the

mixture is not known in advance but rather is allowed to vary from one
to three solvents. Hence, the design variables include the number of
components in the mixture, their identities and compositions. The
problem includes disjunctions for the assignment of each candidate
solvent, disjunctions for the number of solvents selected and logic
relations as described in Section 3. The disjunctions for the identity of
solvent molecules in the mixture are the same as those described in the
restricted problem (i.e., they include functions for the identity, the van
der Waals volume and the van der Waals surface area of the
components in the mixture). The disjunctions for the number of
solvents selected include variables and functions that depend on the
number of components in the mixture, such as the compositions of all
the components, the miscibility functions and the UNIFAC model
equations used to evaluating phase equilibria. The disjunctions of the

Table 2
Indices and sets for case study 1.

Description Index Set Value range

Total components in mixture i, j I ibu, c1, c2, c3
Fixed components in mixture N′ ibu

Designed solvent molecules in mixture ii II c1, c2, c3
Pure candidate solvents s, s′ S 1, …, 9
No

=of solvent molecules in mixture n N 1, 2, 3
Functional groups k, m K 1, …, 14

Table 3
Results obtained for case study 1–comparison of BM (Jonuzaj et al., 2016) and HR formulations.

Problem: case xibu c1 xc1 c2 xc2 c3 xc3 CPU (s)

A1: N=1 0.31833 CHCl3 0.68167 0.35
A2: N=2 0.33383 CHCl3 0.52292 MeOH 0.14325 4.87
A3: N=3 0.33375 CHCl3 0.52263 MeOH 0.14262 EtOH 0.00100 107.90
A4: N ≤ 3 (G-BM) 0.33383 CHCl3 0.52292 MeOH 0.14325 369.06
A5: N ≤ 3 (G-HR) 0.33383 CHCl3 0.52292 MeOH 0.14325 93.59

(7)
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general problem are converted into mixed-integer form via BM and HR
techniques. Since the SLE relations are expressed only in terms of
ibuprofen, the natural logarithms that appear in the UNIFAC model
(Eqs. (B.2) and (B.7)) in Appendix B are treated as general constraints
and thus, do not cause any singularities when formulated via the HR
approach. The MINLP formulation resulting from the BM approach is
presented in Jonuzaj et al. (2016), whereas the MINLP model obtained
using the HR is given as model (G1-HR) in Appendix D.

4.2. Results and discussion

All models are implemented and solved in GAMS (GAMS
Development Corporation, 2014) version 24.2.3 and are run on a
single core of a dual 6 core Intel Xeon X5675 machine at 3.07 GHz with
48 GB of memory. One solution approach would be to enumerate the
different options on parallel computers. This is tractable for some
values of Nmax and Ns (e.g., for Nmax=3 and Ns=9 which is the case of
this example problem) but becomes challenging as the dimensionality
of the problem increases. Here, we investigate the use of MINLP
algorithms on a single processor for the solution of the problem.
DICOPT (Kocis and Grossmann, 1989; Grossmann et al., 2002), a local
MINLP solver, based on an implementation of the outer-approximation
(Duran and Grossmann, 1986; Fletcher and Leyffer, 1994) was used to
solve all problems, and attempts were made to solve to global
optimality with ANTIGONE (Misener and Floudas, 2014) and
BARON (Tawarmalani and Sahinidis, 2005). The restricted model
was solved for one, two and three solvents, and the general models
for at most three selected solvents; the results are summarized in
Table 3. The best solution, which corresponds to the highest solubility
with a value of 0.33383 in mole fraction, is achieved for a binary
mixture of chloroform (CHCl3) and methanol (MeOH). A mixture with
three components, with ethanol (EtOH) as the third solvent, gives
slightly lower solubility than the binary mixture. The mole fraction of
the third component is at the user-specified lower bound of x = 0.001c

L
3

,
which means that only a small amount of ethanol is added to the
mixture, and thus it does not have any significant impact on the
solubility of the drug.

The maximum solubility achievable in the restricted problem is
more affected if tighter bounds are used for the minimummole fraction
of solvent. For lower bound values of 0.01 and 0.1 (i.e., x = 0.01i

L and
x = 0.1i

L ), for example, the solubility x( )ibu becomes 0.33312 and
0.32696, respectively in three-component solvent mixtures. These
solutions are more markedly different from the performance of the
binary solvent pair.

In the general problem (with the number of solvents N unknown),

both the (G-BM) and (G-HR) models yield the same optimal solution
and the results validate those obtained when solving the three
restricted problems, confirming that the highest solubility is achieved
in a binary mixture of chloroform and methanol.

Several runs were carried out from different starting points in each
case and the values of the CPU time presented in Table 3 correspond to
the runs where the best solutions were found. In cases where the
number of mixture components is fixed N( = 1, 2, 3), the CPU time
increases rapidly with the number of components, due to the increased
size and complexity of the problems. The (G-BM) formulation of the
general problem requires more CPU time than is needed to solve each
instance of the restricted problem with a fixed number of components,
from one to three. The (G-HR) model, on the other hand, is solved in
less CPU time than the generalized (G-BM) problem and it also appears
to be more effective than enumerating all options in the restricted
problem N( = 1, 2, 3), from the perspective of computational cost.
Although the CPU times are representative of most solution attempts
from different starting points, the final solutions achieved cannot be
guaranteed to be global and the corresponding computational times are
affected by the initial guesses.

In working towards obtaining global solutions, global MINLP
algorithms, ANTIGONE version 1.1 (Misener and Floudas, 2014) and
BARON version 15.9.22 (Tawarmalani and Sahinidis, 2005), both
accessed via GAMS version 24.6.1, were employed to solve the
problems. However, only problem A1, which is the smallest in size
(N=1), was solved globally with ANTIGONE and BARON in 0.02 and
5.55 CPU seconds, respectively. The results obtained with both global
solvers verified the optimal solution obtained with the DICOPT MINLP
solver, i.e., the optimal solvent is found to be chloroform which yields a
solubility of 0.31833, as presented in Table 3. As the number of
components in the mixture is increased, the problems become more
challenging and thus convergence to global optimality was not reached
in 36,000 CPU seconds (10 CPU hours). The global solvers did not
identify better solutions than those reported with DICOPT. Although it
is desirable to find a global solution, this is not yet practical with these
deterministic branch-and-bound algorithms.

5. Case Study 2: Separation of acetic acid from water by
liquid–liquid extraction

Acetic acid is a colorless organic compound which can be produced
by methanol carbonylation, acetaldehyde oxidation, direct oxidation of
ethylene, hydrocarbon oxidation or fermentation (Sano et al., 1999;
Cheung et al., 2002; Gullo et al., 2014). In all cases, the purification of
acetic acid from an aqueous stream is required and can be achieved via

Fig. 1. Schematic of a single stage process for the extraction of acetic acid from water. Capital letters denote stream labels/flowrates and xp i, denotes the mole fraction of component i in

stream p.
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several separation techniques, such as adsorption, distillation, liquid–
liquid extraction, membrane separation and crystallization (Katikaneni
and Cheryan, 2002; Kaur and Vohra, 2010; Cheung et al. 2012 ; Choi
and Kim, 2013). Among these methods, liquid–liquid extraction is
accepted as an efficient, economical and environmentally friendly
method for the separation of acetic acid from water. In particular,
solvent extraction is employed as a first step in the purification of
mixtures with a relatively low concentration of acetic acid (e.g.,
mixtures of 90% mol water and 10% acetic acid), in order to reduce
the energy cost associated with the vaporization of a large amount of
water during distillation (Eyal and Canari, 1995; Karunanithi et al.,
2005; Alkaya et al., 2009; IJmker et al., 2014). Liquid–liquid extraction
is an important separation technology for a wide range of applications
in the chemical process industries, in which components are separated
based on their relative solubilities in two coexisting liquid phases. In a
liquid–liquid extraction unit, the component(s) to be recovered (here,
acetic acid) and the liquid carrier (here, water) are separated by the
addition of a solvent or solvent mixture that preferentially dissolves
one or more of the components therein. The degree of separation
depends on the unequal distribution of the components between the
two phases formed at equilibrium. The success of the extraction
process depends to a large extent on the choice of a suitable solvents
or solvent mixtures that meet regulatory and environmental standard.
The single stage extraction of acetic acid from water is illustrated in
Fig. 1, where an aqueous solution of acetic acid is first mixed with a
suitable solvent or solvent mixture and is then separated into two
phases in a settler (Seader et al., 2011).

Several researchers have previously investigated the design or
selection of solvents for liquid–liquid extraction based on solvent
properties, such as selectivity, solvent loss, solvent power and distribu-
tion coefficient (Cockrem et al., 1989; Pretel et al., 1994; Karunanithi
et al., 2005; Yang and Song, 2006; Cignitti et al., 2015). In particular,
Karunanithi et al. (2005) addressed the problem of identifying appro-
priate solvents for the extraction of acetic acid from water. Their model
included physical property and process model constraints, and the
amount of solvent in the feed mixture was fixed a priori by specifying
the solvent-to-feed flowrate ratio. The objective was to minimize the
quantity of acetic acid in the raffinate phase. The solvent molecules
were designed from functional groups and a large list of alcohols,
ketones, aldehydes, acids, esters and ethers was generated based on
structural constraints. The molecules generated were then screened
using pure component and mixture property constraints and only two
compounds that satisfied those constraints were included in the final
optimization problem. In a similar approach, Cignitti et al. (2015)
applied a systematic computer-aided design methodology to the design
of suitable solvents for the extraction of acetic acid from water. In their
work, the solvent flowrate was fixed and the objective was to maximize
the molar flowrates of acetic acid and water in the extract and raffinate,
respectively. As in Karunanithi et al. (2005), a decomposition-based
algorithm was used to solve the MINLP problem, where first acyclic
solvent components were designed from atom groups based on
structural constraints, and then the molecules were screened using

pure component and mixture property constraints. Nineteen com-
pounds passed the screening tests, and thus nineteen NLP problems
including the objective function and process model constraints were
solved in the final step.

In our current work, a general GDP formulation of the solvent
mixture design problem for the extraction of acetic acid from water is
derived based on the framework presented in Section 3. In particular,
the number of components, the identities and the compositions of the
mixture constituents are treated as unknowns in the model. A feed
mixture with 2.5 mol% acetic acid (approximately 8 wt%) and a
flowrate of 13,500 kg/h at 298 K and 1 atm is considered. The only
performance constraint is that the raffinate should contain at most
0.3% mol of acetic acid. The objective is to determine the optimal
solvent mixture that achieves a trade-off between a low solvent-to-feed
ratio and an extract phase that contains a large fraction of acetic acid
and small amount of water. This could in principle be addressed via a
multi-objective formulation to explore the space of Pareto solutions
(e.g., see Papadopoulos et al., 2013 and Burger et al., 2015 for
examples of the use of multi-objective optimization in molecular
design). Here, however, we adopt a single objective function similar,
but not identical, to that proposed by Naser and Fournier (1991):

F
F

x xmin + −S
E w E a, , (13)

where FS and F are the solvent and feed flowrates, respectively, while
xE a, , xE w, are the mole fractions of acetic acid and water in the extract
phase.

The evaluation of the objective function requires the determination
of two unknown liquid phases that are at equilibrium (i.e., the extract E
and the raffinate R). The following equations describe the liquid–liquid
equilibrium (LLE) relations between extract and raffinate phases:

γ T P x x γ T P x x i I( , , ) = ( , , ) , ∈E i E E i R i R R i, , , , (14)

where xE i, and xR i, are the mole fractions of component i in the extract
and raffinate streams, respectively, and γp i, , p E R∈ { , }, denotes the
liquid phase activity coefficient of component i in stream p at
temperature T, composition xp of stream p and pressure P. The activity
coefficients are evaluated using the modified UNIFAC (Dortmund)
model (Gmehling et al., 1993, 2002); the relevant equations are
presented in Appendix B. Note that the equations run over the set I
of all components in the mixture, in contrast to case study 1, where the
SLE equilibrium relation held only for one fixed solute, so that the
number of equations in the model was independent of the number of
solvents. The presence of solvent in both the raffinate and extract
streams thus leads to an increased level of complexity in the problem
formulation.

The following mole balances for each component in the system are
also included in the formulation:

x F x M=F a M a, , (15)

x F x M=F w M w, , (16)

x F x M ii II= , ∈F ii S M ii, ,S (17)

x M x E x R i I= + , ∈M i E i R i, , , (18)

where M, E, and R are the flowrates of the stream leaving the mixer
(acetic acid–water–solvents), the extract and the raffinate, respectively;
xp i, represents the mole fraction of component i in stream p. As with the
phase equilibrium model, the existence of some of the mole balance
equations depend on the number of components in the solvent mixture.
All the design sets used in this case study are shown in Table 4. The
solvent molecules, acetic acid and water are built from the set of
functional groups used in Dortmund UNIFAC.

The list of solvents in the set S is taken from Akula (2011), who
screened potential solvent molecules using solvent properties pre-
viously reported in the literature (selectivity, solvent loss, solvent

Table 4
Indices and sets for case study 2.

Description Index Set Value range

Total components in mixture i, j I a, w, c1, c2, c3
Fixed components in mixture N′ a, w

Designed solvent molecules in mixture ii II c1, c2, c3
Pure candidate solvents s, s′ S 1, …, 8
No

= of solvent molecules in mixture n N 1, 2, 3
Functional groups k, m K 1, …, 11
Streams p F F M E R, , , ,S

S. Jonuzaj, C.S. Adjiman Chemical Engineering Science 159 (2017) 106–130

113



power and distribution coefficient) in order to obtain an initial design
space of eight candidate solvents. The organic solvents selected are all
miscible or partially miscible with each other and with acetic acid, and
therefore the miscibility constraints (Eq. (7)) are not considered in this
case study. Here, low solvent losses to the raffinate phase (i.e.,
raffinate-extract immiscibility) are achieved by including this criterion
in the pre-screening of the candidate compounds (Akula, 2011) used to
arrive at the list of suitable solvents. We note that one could
additionally consider solvent loss in the raffinate as a constraint in
the design. The list of candidate solvents, the number of groups of type
k in acetic acid v( ′ )a k, and water v( ′ )w k, , and the number of groups of type k
in each candidate solvent s v( ′ )s k, are presented in Appendix C in Tables
C.1, C.2., and C.3 , respectively.

5.1. Problem formulations

In this section, the formulation of the restricted problem, where the
number of components is fixed, is first presented. The formulation of
the general problem, with unknown number of solvents is then
introduced. In the restricted problem, mixtures with one, two or three
solvents are designed and in the general model, mixtures with at most
three solvents are identified.

5.1.1. Restricted problem: fixed number of solvents
The formulation of the restricted problem is presented for the

selection of three solvents but it can be extended to any fixed number of
solvents. The model includes disjunctions for assigning solvents from
the list to designed components in the mixture and the assignment of
each compound is determined through Boolean variables, Yi s, (a
compound s is assigned to component i in the mixture if Yi s, is True
and it is not if Yi s, is False). The disjunctions for the assignment of
solvents are shown below:
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(R2-D)

In the above disjunctions, only one of the Boolean variables Yi s, can be
selected, which ensure the selection of exactly three solvents. The
identity of designed component i in the mixture n( ′ )i k, , its molecular van
der Waals volume (ri) and its molecular surface area (qi) are
represented via conditional constraints and are defined by multiplying
vs k, , rs and qs with the corresponding binary variable, as shown in
Eqs. (10), (11) and (12), respectively. Thus, as discussed in the first
case study (Section 4), the BM and HR approaches result in the same
MINLP formulation.

In addition to the disjunctions, logic relations are derived to avoid
degenerate solutions by enforcing a certain ordering of the solvents and
to avoid selecting a given candidate solvent more than once, as shown
in the first and second rows of Table 1. An algebraic reformulation of
disjunctions (R2-D) is included in the problem formulation, resulting
in the desired MINLP, whose detailed formulation is presented in
Appendix D, as problem (R2-MINLP), for completeness.

5.1.2. Generalized problem: unknown number of solvents
In the general problem, the number of solvent components present

in the mixture is allowed to vary from one to three solvents. As
discussed in Section 3, the general problem includes disjunctions for
the assignment of each candidate solvent and disjunctions for the
number of selected solvents. The first set of disjunctions is the same as
that presented in the restricted problem (disjunctions (R2-D)). The
second set of disjunctions includes variables and equations that depend
on the number of components in the mixture, such as the composi-
tions, mole balances, liquid–liquid equilibrium equations and the
modified UNIFAC model equations. These functions and the relevant

Table 5
Optimal objective function, optimal solvent mixtures and CPU times obtained when solving the restricted problem (for different values of N) and the general problem (with the BM and
HR formulations) of case study 2. Unless otherwise stated, the lower bound on solvent mole fractions in stream FS is set to x = 0.001FS i

L
, , i N∈ {3, …, + 2}.

Problem: case Objective Components xF i, xFS i, xE i, xR i, CPU (s)

B1: N=1 2.3203 Acetic acid 0.0250 0.0090 0.0030 1.00
Water 0.9750 0.1293 0.9925
Hexanone 1 0.8617 0.0045

B2: N=2 2.2299 Acetic acid 0.0250 0.0092 0.0030 17.59
Water 0.9750 0.1978 0.9913
Hexanone 0.8341 0.6616 0.0040
Pentanol 0.1659 0.1314 0.0017

B3: N=3 2.2305 Acetic acid 0.0250 0.0092 0.0030 470.84
Water 0.9750 0.1977 0.9913
Hexanone 0.8340 0.6616 0.0040
Pentanol 0.1645 0.1303 0.0017
Heptanol 0.0015 0.0012 0.0000

B4: N=3 2.2342 Acetic acid 0.0250 0.0092 0.0030 175.46

x( = 0.01)FS i
L

,
Water 0.9750 0.1971 0.9914

Hexanone 0.8332 0.6614 0.0040
Pentanol 0.1568 0.1244 0.0016
Heptanol 0.0100 0.0079 0.0000

B5: N ≤ 3 2.2299 Acetic acid 0.0250 0.0092 0.0030 350.84
(G-BM) Water 0.9750 0.1978 0.9913

Hexanone 0.8341 0.6616 0.0040
Pentanol 0.1659 0.1314 0.0017

B6: N ≤ 3 2.2299 Acetic acid 0.0250 0.0092 0.0030 297.02
(G-HR) Water 0.9750 0.1978 0.9913

Hexanone 0.8341 0.6616 0.0040
Pentanol 0.1659 0.1314 0.0017
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variables are placed in the appropriate disjunctions and are presented
as formulation (G2-D) in Appendix D. It should be noted that although
variables n ′i k, , qi and ri of the UNIFAC model depend on the number of
solvent molecules in the mixture, the corresponding assignment
equations can be placed outside the disjunctions (G2-D) and treated
as general constraints. These are due to the fact that these variables are
defined algebraically via the binary variables representing solvent
assignment, yi s, , (see Eqs. (10)–(12)) and that these binary variables
are linked to the binary variables y∼n for the number of mixture
components (see Table 1). Thus, the variables yi s, , s S∈ , become zero
when component i is not present in the mixture.

Following the formulation steps outlined in Section 3, all logic
conditions presented in Table 1 are also derived and included as
algebraic equations in the MINLP models. The disjunctions (G2-D) are
reformulated via BM and HR and the resulting MINLP problems are
given as models (G2-BM) and (G2-HR) in Appendix D. In the Hull
reformulations, disjunctive equations that include logarithmic terms,
such as the natural logarithms that appear in Eqs. (B.15) and (B.21),
are converted into equivalent equations using the approximation
function in Eq. (4) in order to avoid numerical difficulties.

5.2. Results and discussion

All models were implemented and solved in GAMS (GAMS
Development Corporation, 2014) version 24.2.3 using DICOPT
(Duran and Grossmann, 1986; Kocis and Grossmann, 1989;
Grossmann et al., 2002) or a global solver (ANTIGONE (Misener and
Floudas, 2014) or BARON (Tawarmalani and Sahinidis, 2005)). All
problems were run on the same computer as case study 1 and its
specifications are given in Section 4.2.

5.2.1. Solution with DICOPT
The restricted problem was solved for one, two and three selected

solvents and the results are summarized in Tables 5 and 6. The solvent
that yields the minimum objective function value is a binary mixture of
hexanone and pentanol. It also gives the highest recovery of acetic acid
in the extract phase. When varying the number of components in the
mixture, the largest difference is seen on going from a pure solvent to a
binary mixture, due to a 7% decrease in solvent flowrate. The best
ternary mixture found includes hexanone and pentanol, with heptanol
as the third solvent; it gives a slightly worse objective function value
than the binary mixture, because the solvent flowrate (FS) increases.
The mole fraction of heptanol in the mixture is very small (close to its
lower bound, i.e., xS i

L
, =0.001) and this small amount of solvent does not

modify significantly the results obtained with a binary mixture. The
impact of the third solvent in the separation process is clearer when
increasing the lower bound of the solvent mole fraction from 0.001 to
0.01, so that a greater amount of the third solvent is added to the
mixture. This is seen to affect mostly the solvent mixture flowrate, as
shown in Tables 5 and 6.

Hexanone, which is consistently found as the main component in
the solvent mixture for separating acetic acid from water, was also

identified by Karunanithi et al. (2005) as the best extractant for the
same application, which indicates that a good local solution has been
found. Hexanone was also found as a feasible solution in Cignitti et al.
(2015) for the extraction of acetic acid from water. Based on the design
criteria used by the authors, the best separation, however, with a high
recovery of the solute, was achieved with butane-2,3-diyl diformate
(atom groups: 2CH3, 2CH, 2HCOO). This molecule is not included in
our solvent list (Table C4), and thus it is not identified as an optimal
solution in our models. From Table 6, it can be observed that by using a
mixture with two or three solvents in the process a smaller solvent
flowrate is required and a larger percentage of acetic acid is recovered.
However, the amount of water in the extract stream also increases.
Hence, using a solvent mixture instead of a pure solvent may lead to
better reduced capital and operating costs and increased acetic acid
recovery but at the expense of slightly more demanding downstream
separation as a large amount of water is transferred to the extract
stream. One could modify the objective function to increase water
recovery by putting more weight on the mole fraction of water in the
extract stream.

The general problem was formulated via BM and HR and it was
solved for at most three selected solvents (Table 5). Both (G-BM) and
(G-HR) models yield the same optimal solution and the results are in
agreement with those obtained for the restricted problem, where the
best separation is achieved with a binary mixture of hexanone and
pentanol.

The computational times required to obtain an optimal solution for
each problem are also presented in Table 5. In the restricted problem,
where the number of components is fixed, the CPU time increases with
the number of components, as can be expected, due to the increasing
size of the problems. For ternary mixtures, the CPU time decreases
when the lower bound on the mole fraction of solvent is increased. In
the general problem, where the number of components is unknown and
can vary from one to three, the (G-HR) formulation requires slightly
less computational time than (G-BM) model in the examples studied.
Nevertheless, solving the general problem using the (G-BM) or (G-HR)
model appears to be more efficient than solving the restricted problem
with three solvents (N=3) in terms of computational cost. When the
lower bound on the solvent mole fraction is increased x( = 0.01)F i

L
,S

, the
computational cost of either the (G-BM) or the (G-HR) model is higher
than solving all cases (N=1, 2, 3 selected solvents) of the restricted
problem. It should be noted though that the solution times observed
with DICOPT are affected by the initial guesses provided in each
problem and thus the application of a global optimization algorithm is
required in order to conclude on the effectiveness of the solution
approaches (cf. Section 5.2.2).

All the mixed solvents identified contain one or two alcohols, which
may react with acetic acid, leading to the loss of acetic acid and the
production of esters. We expect these reactions to be very slow in the
absence of catalysts (Agreda and Zoeller, 1993; Lee et al., 2000;
Cheung et al. 2012), but to minimize the risk of side reactions affecting
the process, we consider the design of solvent mixtures by excluding
alcohols (i.e., pentanol and heptanol) from the solvent list. The results

Table 6
Objective function value, optimal solvent, raffinate and extract flowrates, extract mole fractions and acetic acid recovery obtained when solving case study 2. The solutions of the
restricted problem for different values of N and of the general problem with the BM and HR formulations are shown. All flowrates are shown in kmol/h.

Problem Objective FS E R xE a, xE w, %Recovery

B1 2.3203 1557.63 1805.21 460.42 0.0090 0.1293 92.20
B2 2.2299 1445.17 1820.06 333.11 0.0092 0.1978 94.35
B3 2.2305 1445.71 1820.47 333.24 0.0092 0.1977 94.35
B4 2.2342 1448.78 1822.84 333.93 0.0092 0.1971 94.34
B5 2.2299 1445.17 1820.06 333.11 0.0092 0.1978 94.35
B6 2.2299 1445.16 1820.05 333.11 0.0092 0.1978 94.35
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obtained with this reduced design space for the restricted and general
problems are presented in Tables 7 and 8. With the removal of
pentanol and heptanol, which were previously identified as the optimal
solvents in the binary and ternary mixtures, the best solution found
requires a pure solvent and not a solvent mixture. The optimal
extractant that yields the minimum objective function value appears
to be hexanone. Mixtures with two and three solvents, where isopropyl
acetate and butyl acetate are identified as the second and third optimal
components, respectively, lead to slightly worse results. The optimal
solution obtained when solving the three restricted problems is also
found with the (G-BM) and (G-HR) formulations of the general
problem. The observations made on computational cost for the larger
solvent list remain valid here: the CPU time required to solve the
restricted problem increases when more solvents are added to the
mixture (i.e., N = 1, 2, 3), while the (G-BM) and (G-HR) formulations
require less computational time than the solution of the three restricted
problems. Furthermore, the computational cost of solving every
formulation is significantly smaller than that of solving the correspond-
ing formulations when all candidate solvents are included. This lower
cost may be due partly to the reduced search space, as a smaller solvent
list is used, with a consequent decrease in the number of possible
solvent mixtures (for instance, for N=3, there are 56 possible solvent
combinations when the full list of solvents is used and only 20
combinations when alcohols are excluded). Furthermore, since all
problems are solved locally, the computational cost is affected by the
starting point given to the solver.

Table 7
Optimal objective function, optimal solvent mixtures and CPU times obtained when solving the restricted problem (for different values of N) and the general problem (with the BM and
HR formulations) of case study 2, with alcohols excluded from the solvent list. The lower bound on solvent mole fractions in stream FS is set to x = 0.01FS i

L
, , i N∈ {3, …, + 2}.

Problem: case Objective Components xF i, xFS i, xE i, xR i, CPU (s)

C1: N=1 2.3203 Acetic acid 0.0250 0.0090 0.0030 0.01
Water 0.9750 0.1293 0.9925
Hexanone 1 0.8617 0.0045

C2: N=2 2.3265 Acetic acid 0.0250 0.0090 0.0030 0.08
Water 0.9750 0.1303 0.9925
Hexanone 0.9900 0.8521 0.0045
Isopropyl acetate 0.0100 0.0086 0.0000

C3: N=3 2.3355 Acetic acid 0.0250 0.0090 0.0030 9.56
Water 0.9750 0.1309 0.9925
Hexanone 0.9800 0.8429 0.0044
Isopropyl acetate 0.0100 0.0086 0.0001
Butyl acetate 0.0100 0.0086 0.0000

C4: N ≤ 3 2.3203 Acetic acid 0.0250 0.0090 0.0030 0.03
(G-BM) Water 0.9750 0.1293 0.9925

Hexanone 1 0.8617 0.0045

C5: N ≤ 3 2.3203 Acetic acid 0.0250 0.0090 0.0030 0.13
(G-HR) Water 0.9750 0.1293 0.9925

Hexanone 1 0.8617 0.0045

Table 8
Objective function value, optimal solvent, raffinate and extract flowrates, extract mole fractions and acetic acid recovery obtained when solving case study 2, with alcohols excluded from
the solvent list. The solutions of the restricted problem for different values of N and of the general problem with the BM and HR formulations are shown. All flowrates are shown in
kmol/h.

Problem Objective FS E R xE a, xE w, %Recovery

C1 2.3203 1557.63 1805.21 460.42 0.0090 0.1293 92.20
C2 2.3265 1561.29 1811.56 457.73 0.0090 0.1303 92.24
C3 2.3355 1567.19 1819.75 455.44 0.0090 0.1309 92.28
C4 2.3203 1557.63 1805.21 460.42 0.0090 0.1293 92.20
C5 2.3203 1557.63 1805.21 460.42 0.0090 0.1293 92.20

Table 9
Best known objective function value and corresponding solvent mixtures obtained with
BARON when solving globally the restricted problem (for different values of N) and the
general problem (with the BM and HR formulations) of case study 2, with alcohols
excluded from the solvent list. In all cases except C1, convergence to global optimality is
not achieved within 10 CPU hours.

Problem Objective Components xF i, xFS i, xE i, xR i,

C1 2.3203 Acetic acid 0.0250 0.0090 0.0030
Water 0.9750 0.1293 0.9925
Hexanone 1 0.8617 0.0045

C2 2.3265 Acetic acid 0.0250 0.0090 0.0030
Water 0.9750 0.1303 0.9925
Hexanone 0.9900 0.8521 0.0045
Isopropyl acetate 0.0100 0.0086 0.0000

C3 2.3355 Acetic acid 0.0250 0.0090 0.0030
Water 0.9750 0.1309 0.9925
Hexanone 0.9800 0.8429 0.0044
Isopropyl acetate 0.0100 0.0086 0.0001
Butyl acetate 0.0100 0.0086 0.0000

C4 2.3203 Acetic acid 0.0250 0.0090 0.0030
Water 0.9750 0.1293 0.9925
Hexanone 1 0.8617 0.0045

C5 2.3203 Acetic acid 0.0250 0.0090 0.0030
Water 0.9750 0.1293 0.9925
Hexanone 1 0.8617 0.0045
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5.2.2. Solution with global algorithms
In order to obtain global solutions, ANTIGONE version 1.1 and

BARON version 15.9.22 were also used in this case study to solve the
problems. In the case where all candidate solvents were included in the
solvent list (i.e., problems B1-B6), only the smallest problem, B1, was
solved globally with both solvers, whereas convergence was not reached
in 36,000 CPU seconds in problems B2–B6. In problem B1, both
ANTIGONE and BARON found the same optimal solution as that
obtained with DICOPT, i.e., the optimal extractant is hexanone and the
objective value is equal to 2.3203, as presented in Table 5. Global
optimality was achieved with both ANTIGONE and BARON in problem
C1, when alcohols were excluded from the solvent list. The optimal
solutions obtained with DICOPT were also found with BARON in
problems C2-C5. However, it cannot be guaranteed that these are
global solutions as convergence to global optimality was not reached
within 10 CPU hours. No solutions were identified with ANTIGONE
within the same time limit. The results obtained with BARON are
presented in Table 9.

6. Conclusions

The design of optimal mixtures using Generalized Disjunctive
Programming within the Computer Aided Mixture/blend Design
framework presented in previous work (Jonuzaj et al., 2016) was
briefly discussed in this paper, and the use of different MINLP
reformulations of the problem was investigated. Within this systematic
approach, the general CAMbD problem in which the number, identities
and compositions of mixture ingredients need to be determined, was
formulated using GDP techniques. The number of interlinked decisions
to be considered in the general mixture problem can lead to challenging
mixed integer optimization problems with nonconvexities and large
combinatorial spaces. In particular, when the number of components
in the mixture is allowed to vary, highly nonlinear model equations
whose relevance depends on this decision variable, such as phase
equilibrium relations, may lead to numerical problems. In order to
address these difficulties and to facilitate problem formulation and
solution, the GDP framework was used to formulate the discrete
choices inherent in mixture design problems, as described in Jonuzaj
et al. (2016). Two different solution strategies, the Big-M approach and
the Hull Relaxation, were employed in this work to transform the
disjunctive constraints into mixed-integer form. The BM approach is
the most common relaxation technique. For convex problems it is
known that it can give poor relaxations, whereas HR leads to bounds
that are at least as tight as or tighter than the BM approach, at the
expense of introducing new variables and constraints. While the
mixture design problems considered are nonconvex, an initial investi-
gation of the ease of solution of the formulations was carried out.

The general mixture design methodology and the two relaxation
techniques were successfully applied to two case studies for the design of

optimal solvent mixtures. The solvents to be designed were selected from
a given list of candidate pure compounds. In the first case study, the
objective was to design the optimal solvent or solvent mixture to
maximize the solubility of ibuprofen at 298 K. This problem was
considered in our earlier work (Jonuzaj et al., 2016) with a BM
formulation and the effectiveness of the HR approach was investigated
here. The problem includes nonconvex solid–liquid equilibrium relations
and stability functions. The second case study involved the design of an
optimal solvent or solvent mixtures for separating acetic acid from water
in a single-stage liquid–liquid extraction process. This challenging
problem includes liquid–liquid equilibrium relations that must hold for
all known and unknown components in the process, increasing the
complexity of the models. In both case studies, the problem of finding an
optimal solvent mixture with a fixed number of components (the
restricted problem) was first formulated using 1, 2 or 3 solvents; then
mixtures with up to three solvents were designed without specifying the
number of components a priori (the general problem).

Optimal solutions were obtained for all problem instances using a
local MINLP algorithm. The results showed that the proposed for-
mulations offer a promising approach to mixture design, as the
simultaneous design of the optimal number, identity and compositions
of the components that participate in a mixture, can be achieved. The
two different relaxation techniques (BM and HR) were applied
successfully to convert the GDP formulations of the mixture problems
into MINLP models and were found to lead to computationally efficient
solutions, compared to enumerating the number of solvents in the
mixture. Thus, on the basis of the runs performed, the solution of the
general problem appears to be more advantageous than the repeated
solution of the restricted problem, even when choosing up to 3
components only. For the size and type of problems considered here,
no systematic trend in the relative computational performance of the
BM and HR approaches could be observed. Our work highlights that
the development of improved solution techniques is also an important
area of research, although it is beyond our current scope. In future
investigations, efforts will be directed at tackling larger problems and at
achieving convergence to the global solution in order to carry out a
comprehensive comparison of the proposed formulations. In addition,
the application of the proposed approach to the design of formulated
products (Yunus et al., 2014; Zhang et al., 2015) will be investigated.

Data statement: Data underlying this article can be accessed on
Zenodo at https://zenodo.org/record/55145, and used under the
Creative Commons Attribution license.
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Appendix A. Generalized Disjunctive Programming

A.1. GDP formulation

The general formulation of a GDP involves Boolean and continuous variables, algebraic equations, disjunctions and logic propositions as shown
below:
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where the objective, f, is a function of continuous variables represented by the m-dimensional vector x. The set of equations g x( ) ≤ 0 represents general
constraints that must hold regardless of the discrete choices, while h x( ) ≤ 0j k, and D x d≤j k j k, , are vectors of nonlinear and linear conditional constraints
that depend on the discrete decisions, as represented by the Boolean variables Y. The conditional constraints are included inside disjunctions and are
linked by the OR (∨) operator. The disjunctive terms are assigned Boolean variables,Yj k, , and each term is active when the corresponding Boolean variable

is true. Only one of the Boolean variables can be true in each disjunction
⎛
⎝⎜

⎞
⎠⎟Y∨

j J
j k

∈
,

k

, where the notation ∨ denotes the EXCLUSIVE OR operator. Ω Y( )

represents a set of logic relations for the Boolean variables (i.e., these relations involve only the Boolean variables) which are expressed via propositional
logic (Raman and Grossmann, 1994; Ruiz et al., 2012).

A.2. Reformulation of GDP as an MINLP via Big-M approach

The general reformulation of a GDP as an MINLP via big-M is given by:
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where y is a matrix of binary variables that has one-to-one correspondence with the Boolean variable matrix, Y, while the parameter matrix M is
such that each element Mj k, is a “sufficiently large” upper bound such that when y = 0j k, the inequality constraint is always satisfied. The logic
propositions in GDP, Ω Y( ) = True, have been converted into linear inequalities in (BM), Ay b≤ , using Boolean algebra rules (Williams, 1985;
Raman and Grossmann, 1991).

A.3. Reformulation of GDP as an MINLP via Hull Relaxation

The general formulation for linear and/or nonlinear disjunctions is as follows:
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where ν is a matrix of disaggregated variables, while the other variables, vectors and functions included in the (HR) model are the same as those
described in the (GDP) and/or (BM) formulations. It has been proved that the reformulated conditional constraints, y h ν y( / ) ≤ 0j k j k j k j k, , , , (Lee and

Grossmann, 2000) are convex in νj k, , ν x x∈ [ , ]j k
L U

, , if h x( ) ≤ 0j k, is convex in x, x x x∈ [ , ]L U (Hiriart-Urruty and Lemaréchal, 1993; Sawaya and
Grossmann, 2007).

Appendix B. UNIFAC group contribution methods

These equations are proposed by Smith et al. (2001) in a form convenient for programming and they are slightly changed in order to avoid some
numerical difficulties when the activity coefficients of components are calculated.

B.1. Original UNIFAC Model

Activity coefficient
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B.2. Modified UNIFAC (Dortmund) model

Activity coefficient

γ γ γ i Iln = ln + ln , ∈i i
C

i
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(B.14)
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Combinatorial part of activity coefficient
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Appendix C. Parameters of the UNIFAC model used in the case studies

C.1. Parameters for case study 1

The candidate solvents used in the first case study are included in Table C1; the number of groups of type k in ibuprofen v( ′ )ibu,k and in a solvent s
v( ′ )s k, are presented in Tables C2 and C3, respectively.

Table C1
List of candidate solvents–case study 1.

s Compound

1 Acetone
2 Chloroform (CHCl3)
3 Ethanol (EtOH)
4 Ethylacetate
5 Methanol (MeOH)
6 MIBK
7 2-Propanol
8 Toluene
9 Water
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C.2. Parameters for case study 2

The candidate solvents used in the second case study are presented in Table C4, whereas the number of groups of type k in acetic acid, in water
and in each solvent molecule are presented in Tables C5 and C6.

Appendix D. Problem formulations

For definition of indices and sets see Tables 2 and 4.

Table C2
v′ibu,k , number of each group k in ibuprofen–case study 1.

v′ibu,k CH3 CH aCH aCCH2 aCCH COOH

Ibuprofen 3 1 4 1 1 1

Table C3
v′s k, , number of each group k in a solvent s–case study 1.

v′s k, CH3 CH2 CH aCH aCCH3 CH3OH OH CH3COO CH3CO CHCl3 H2O

Acetone 1 1
Chloroform 1
Ethanol 1 1 1
Ethylacetate 1 1 1
Methanol 1
MIBK 2 1 1 1
2-Propanol 2 1 1
Toluene 5 1
Water 1

Table C4
List of candidate solvents–case study 2.

s Compound

1 Butyl acetate
2 Cyclohexyl acetate
3 Dimethyl heptene
4 Heptanol
5 Hexanone
6 Isopropyl acetate
7 Pentanol
8 Tetramethyl hexane

Table C5
v′i k, , number of each group k in acetic acid v( ′ )a k, and water v( ′ )w k, –case study 2.

v′i k, CH3 COOH H2O

Acetic acid, a 1 1
Water, w 1

Table C6
v′s k, , number of each group k in a solvent s - case study 2.

v′s k, CH3 CH2 CH CH=C CH3CO CH3COO cyCH2 cyCH OH (P)

Butyl acetate 1 3 1
Cyclohexyl acetate 1 5 1
Dimethyl heptene 4 2 1 1
Heptanol 1 6 1
Hexanone 1 3 1
Isopropyl acetate 2 1 1
Pentanol 1 4 1
Tetramethyl hexane 6 4
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D.1. Case study 1: MINLP formulation via HR for the general problem N( = 3)max

The MINLP formulation obtained using HR for the general problem of case study 1 is given below as model (G1-HR).
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⎡
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(G1-HR)

where dγi
i j, is the partial derivative of the natural logarithm of the activity coefficient of component i with respect to the mole fraction of i in the

binary mixture, i.e. dγ =i
i j γ

x
, ∂ln

∂
i
i j

i
i j

,

, , and it is calculated from the UNIFAC model dγ dγ dγ(i. e. = ( ) + ( )i
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, .

D.2. Case study 2: MINLP formulation for the restricted problem (N=3)

The MINLP formulation for the restricted problem of case study 2 is given below as model (R2-MINLP).
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(R2-MINLP)

D.3. Case study 2: Disjunctions for number of solvents for the general problem (Nmax=3)

The disjunctions for number of solvents for the general problem of case study 2 is given as model (G2-D).
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D.4. Case study 2: MINLP formulation via BM for the general problem N( = 3)max

The MINLP formulation obtained using BM for the general problem of case study 2 is given below as model (G2-BM).
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D.5. Case study 2: MINLP formulation via HR for the general problem N( = 3)max

The MINLP formulation obtained using HR for the general problem of case study 2 is given below as model (G2-HR).
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(G2-HR)

Although variables that correspond to the first designed component, c1, can be treated as general ones, they are disaggregated when formulating via
HR for consistent notation. In model (G2-HR), the approximation function of Eq. (4) is used when logarithms are involved in order to avoid
numerical difficulties.
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