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This paper describes a Bayesian statistical model for estimating flood frequency by combining uncertain
annual maximum (AMAX) data from a river gauge with estimates of flood peak discharge from various
historic sources that predate the period of instrument records. Such historic flood records promise to
expand the time series data needed for reducing the uncertainty in return period estimates for extreme
events, but the heterogeneity and uncertainty of historic records make them difficult to use alongside
Flood Estimation Handbook and other standard methods for generating flood frequency curves from
gauge data. Using the flow of the River Eden in Carlisle, Cumbria, UK as a case study, this paper develops
a Bayesian model for combining historic flood estimates since 1800 with gauge data since 1967 to
estimate the probability of low frequency flood events for the area taking account of uncertainty in
the discharge estimates. Results show a reduction in 95% confidence intervals of roughly 50% for annual
exceedance probabilities of less than 0.0133 (return periods over 75 years) compared to standard flood
frequency estimation methods using solely systematic data. Sensitivity analysis shows the model is
sensitive to 2 model parameters both of which are concerned with the historic (pre-systematic) period
of the time series. This highlights the importance of adequate consideration of historic channel and
floodplain changes or possible bias in estimates of historic flood discharges. The next steps required to
roll out this Bayesian approach for operational flood frequency estimation at other sites is also discussed.
� 2016 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

On 5–6 December 2015 Storm Desmond swept across northern
Britain, leaving record rainfall and widespread flooding in its wake
(Priestly, 2016). One of the worst affected places was Carlisle,
where thousands of homes were flooded after newly completed
flood defences were overtopped by rising flood waters (BBC,
2015a). While ministers insisted the defences could not be
expected to cope with the ‘‘completely unprecedented and unpre-
dicted levels of rainfall” (ITV News, 2015) from Storm Desmond,
local residents wondered why a £38million defence scheme had
failed barely five years after it was built (BBC, 2010).

The Carlisle case illustrates many of the central challenges of
quantifying the risk of flooding. The design of individual schemes,
like the wider system for allocating resources for flood defence in
England, requires estimates of the probability of flooding to
support risk-based management (Lane et al., 2011). Quantitative
assessments of flood frequency are also central to planning regula-
tion (Porter and Demeritt, 2012), insurability standards and pricing
(Krieger and Demeritt, 2015), and to the flood risk maps and
management plans mandated by the EU Floods Directive
(2007/60/EC). These and other flood risk management policy
instruments all depend on so-called ‘design floods’, whose magni-
tude is defined in terms of nominal return-periods, like the 1 in
100 year flood. However estimating flood frequency is necessarily
uncertain, and uncertainty in the design floods used for flood risk
assessment can have major implications for multi-million pound
decisions about whether and where new developments are permit-
ted and what, if any, standard of protection will be provided to
defend them from flooding.

One of the major sources of uncertainty in flood frequency
analysis is the paucity of instrumental records. Although the 0.01
Annual Exceedance Probability (AEP) flood event has become
something of an international default for design floods, mandated
both by the EU Floods Directive and by the US National Flood
Insurance Program, only a tiny portion of gauges provide continu-
ous data for that long. Hydrologists have developed a number of
approaches for dealing with the uncertainties arising from this
deficit of instrumental records, but they still leave wide confidence
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intervals, particularly for extreme flood events, whose frequency
we are most concerned with estimating correctly.

To address that challenge, this paper develops a Bayesian model
for supplementing instrumental readings of flood discharge from a
river flow gauge with estimates derived from documentary records
of historical floods, using the River Eden at Carlisle, UK as a case
study. For this case study, we use the term ‘historic data’ to refer
to estimates of flood discharge from any time prior to the introduc-
tion of the river flow gauge in 1967; whereas discharge readings
from the systematic period since 1967 are referred to as ‘gauge
data’. Compared to the conventional frequentist approaches to
estimating flood return periods, our Bayesian approach allows us
to update our initial estimates of flood frequencies by incorporat-
ing other increasingly uncertain kinds of data and to quantify the
total uncertainty involved in combining them through Monte Carlo
methods of sensitivity analysis. Our data, analytical methods, and
statistical models are described in Section 3. Then in Section 4
we contrast the results of our Bayesian model to the flood fre-
quency estimation performed using the WINFAP-FEH software
(WHS, 2014), which the Environment Agency (2012) recommends
for use in official flood appraisals in the England and Wales. In Sec-
tion 4 we also estimate the AEP for the recent extreme flood in Car-
lisle and use this example to evaluate the effect that an additional
data point can make to the uncertainty in the flood frequency
curve for sites of interest. The paper concludes with a discussion
of the wider implications of its findings for flood risk management.
2. Uncertainty in flood frequency analysis

Flood frequency analysis involves both epistemic uncertainties,
which arise from imperfect knowledge of the system being mod-
elled, and aleatory or stochastic uncertainties, which, for the pur-
poses of flood frequency analysis, can be thought of as truly
random (Beven, 2008). Environmental modelling has advanced
by minimising epistemic uncertainty through improved represen-
tation of natural processes whilst characterising aleatory uncer-
tainties probabilistically (Merz and Thieken, 2009). In the context
of flood frequency analysis, the aleatory uncertainties associated
with the chaotic aspects of long term weather forecasting limit
the goals of the analyst to that of establishing, through a flood fre-
quency curve, the probabilities of floods of certain magnitudes
rather than making predictions of when flood will actually occur.
Consequently, an idealised flood frequency curve for a location
would be an accurate representation of the flood probabilities in
that location. In practice it is inconceivable that all epistemic
uncertainty could be removed, even then, there would remain
some sources of aleatory uncertainty (such as the non-
stationarity of the system due to climate change) which would
introduce error.

In this section we briefly review some of the sources of epis-
temic uncertainty that undermine the conventional statistical
approaches for deriving probability distribution functions used to
represent stochastic processes. We then introduce the concept of
Bayesian approaches to analysis that allow the incorporation of
heterogeneous sources of data into the statistical analysis with
the overall aim of reducing the uncertainty in the probability dis-
tribution of flood frequencies.
1 The ‘year’ for hydrological purposes in the UK is defined as the ‘water year’ which
begins on 1st October, deemed to be the time when groundwater storages are most
usually low.
2.1. Statistical approaches to flood frequency analysis

Fisher and Tippett (1928) developed the first frequency curves
for estimating the probability of extreme events from time series
data, and the field of extreme value statistics is nowwell developed
(e.g. Castillo et al., 2005; Coles et al., 2001; De Haan and Ferreira,
2006; Reiss and Thomas, 2007). For hydrological purposes, time
series are typically divided into periods of 1 year1 with the maxi-
mum discharge figure recorded in each year termed the annual max-
imum (AMAX). Strategies for selecting the most appropriate extreme
value distribution (EVD) and fitting the distribution parameters to
the data can be reviewed in texts such as Hosking and Wallis
(1997), Beven and Hall (2014), and Parkes (2015).

In the UK the Flood Studies Report (FSR) (NERC, 1975) first pre-
scribed standardised ways to estimate flood frequencies from the
limited river and rainfall gauge data that was available. Subse-
quently, the Flood Estimation Handbook (FEH), the successor to
the FSR (IH, 1999), described several ways of estimating flood fre-
quency curves which, together with the related WINFAP-FEH soft-
ware from WHS (2014), are heavily recommended by the
Environment Agency (2012). The WINFAP-FEH software makes it
relatively simple to derive a flood frequency curve for a river loca-
tion, especially if there is an operational river flow gauge nearby
(see Fig. 6 for an example).

Often, the dominant source of uncertainty in flood frequency
analysis is the sampling error due to the shortness of the available
time series (Apel et al., 2008; Kjeldsen et al., 2014a). The FEH
advises that return period estimates from flood frequency curves
derived from a single gauge should not be used to estimate flood
return periods greater than half the length of the gauged record
(WHS, 2009b). This ‘rule of thumb’ advice has serious conse-
quences for practitioners: most gauge records in Britain are less
than 40 years old (Kjeldsen et al., 2008) so the use of conventional
statistical methods for flood frequency analysis is severely
restricted. A widely used method for overcoming this limitation
is to ‘‘trade space for time” (Van Gelder et al., 2000) by combining
the limited systematic gauge data at one site with data from
‘hydrologically similar’ sites elsewhere. This method is known as
‘regional frequency analysis’, and it is comprehensively assessed
by Hosking and Wallis (1997). The WINFAP-FEH software supports
regional frequency analysis with its ‘pooled analysis’ feature but, at
present, the WINFAP-FEH software provides no method for esti-
mating confidence limits for pooled analyses. Furthermore, con-
cerns with the earlier methods of site pooling have led to
alterations in the pooling method, referred to as ‘enhanced single
site analysis’, such that greater weighting is now given to the
gauged records at the site (WHS, 2009b). This suggests that issues
of inter-site correlation and heterogeneity endemic to site pooling
methods are not yet fully understood and will undermine any
attempt at uncertainty estimation. Consequently, pooled analysis
is not considered further in this paper. For further information
see Hosking and Wallis (1997) or Kjeldsen and Jones (2006).

Uncertainties also arise from the different methods of measur-
ing discharge, whose accuracy varies considerably with the type
of gauge, the geomorphology of the channel, and the level of water.
Furthermore discharge measurement uncertainties increase during
floods (Di Baldassarre and Montanari, 2010; IH, 1999; Neppel et al.,
2010; Rosso, 1985). For the majority of stations in the UK, the
water level is recorded every 15 min and the discharge is calcu-
lated indirectly from the stage-discharge relation using a rating
curve (CEH, 2014). Estimates of the general errors in discharge esti-
mates range from 3% to 5% of the discharge estimate (Cong and Xu,
1987) up to as much as 30% for extreme flows (Kuczera, 1996;
Potter and Walker, 1981). Other sources give typical values in
the range of 4–8% with estimates tending to cluster around 6%
(see for example Leonard et al., 2000; Pappenberger et al., 2006
and sources therein). Measurement errors will contribute to the
overall uncertainty of the flood frequency curve, but flood fre-
quency curves derived from river flow gauges often do not take
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account for this source of uncertainty (for example MacDonald
et al., 2013; Miller et al., 2012). The model described in this paper
explicitly considers the uncertainty in the gauged data (see
Section 3.6).
2.2. Information from historic flood records

Where information about historic floods is available, research-
ers have sometimes tried to incorporate it into their analyses.
While the original flood studies report (NERC, 1975) mentioned
incorporating historical data (Stedinger and Cohn, 1986), the prac-
tice was unusual, with just a few isolated examples (Potter (1978),
Sutcliffe (1978), McEwen (1987, 1990) and Acreman (1989)). But
subsequently, flexible data fitting methods such as the Expected
Moments Algorithm (EMA) (Cohn et al., 1997, 2001) that can
accommodate forms of historical data sets are becoming standard
practice in the US. In the UK, a report published by the Centre for
Ecology and Hydrology in 2001 provided guidance for, and under-
lined the benefits of, incorporating historical data in flood fre-
quency estimates (Bayliss and Reed, 2001). Soon thereafter the
British Hydrological Society produced a database of historical
hydrological records (Black and Law, 2004), which have been used
in several studies (see, for example Black and Burns, 2002;
Macdonald, 2013; Macdonald and Black, 2010; Macdonald et al.,
2006; Williams and Archer, 2002). But concerns remain about his-
torical data introducing biases that can degrade the accuracy of
flood frequency analysis (Hosking and Wallis, 1986).

A recent review by Kjeldsen et al. (2014b) highlights the unre-
alised potential to reduce the uncertainty in flood risk estimates
through careful use of historic data. Europe provides a wealth of
archival resources for studying historical floods; Brázdil et al.
(2006) cite numerous European studies spanning no fewer than
10 countries. In China too there is a long history of recording high
water marks, which have been exploited by historical flood studies
(see for example Li et al., 2013). Other historic information sources
include articles or photographs from newspaper archives
(MacDonald, 2014), high water marks carved onto bridges or other
buildings (Macdonald, 2007), dated stones placed at high water
marks of out of bank flows (Condie and Lee, 1982), diary or journal
entries and even literary works (The Bristol Post, 2013).

An epigraphic mark or a description in a journal can give an idea
of the maximum flood depth at a certain point, but this must then
be converted into peak discharge estimate, typically by using a rat-
ing curve (see Section 2.1), though geomorphological changes to
the channel may mean the current rating curve equation is less
applicable to historic floods (see for example Archer et al., 2007).
Issues of non-stationarity such as this are discussed further in
Section 5.

Such historic flood discharge estimates are likely to contain
considerable errors that must be accounted for. First, regardless
of the source, all historic data must be subjectively evaluated to
assess its reliability and the value it might add to existing flood fre-
quency estimates. For example a recording of a single flood event
from a journal of 1000 years ago may provide valuable insights
about the potential impact of a similar flood on contemporary soci-
ety (Brázdil et al., 2006) and assist in the estimation of the Probable
Maximum Flood (see for example Acreman, 1989; Kirby and Moss,
1987) for a location. But that same source would be of little value
in improving estimation of modern day flood frequencies if it
doesn’t cover a reasonably continuous time period. If, however,
the historical flood record provides some quantifiable information
about the likely flood magnitude and covers a continuous multi-
decade period such that the researcher can be reasonably confident
that all significant floods in that period at that location are
recorded, then the data can often be combined with the recent,
instrumental time series to improve the estimation of flood
frequencies.

As well as using historical data to provide estimates of peak
flood discharge, historical data may also provide information on
historical changes to the catchment, channel or hydrology that
undermine assumptions of stationarity and affect flood magnitude
and inundation extent (see for example Naulet et al. (2005), Razavi
et al. (2015)). This aspect is discussed for the Carlisle case study in
Section 3.3.

One important step in working with historic flood records is
identifying the smallest flood event still significant enough to have
been captured in the records. The estimated discharge associated
with that event becomes the ‘perception threshold’ (Q0) for the his-
torical time series which can then be treated as ‘censored sample’
for statistical purposes (Reis and Stedinger, 2005). Furthermore,
even if it is not possible to estimate the precise magnitude of floods
above the threshold of perception, the historical time series can
still be incorporated as a ‘binomial-censored’ sample whereby it
is known that in the historical record of n years, Q0 was exceeded
k times (Stedinger and Cohn, 1986). Where it is possible to esti-
mate the magnitude of historical floods, it is likely that the uncer-
tainty in those peak discharge estimates would be greater than the
instrumental record, and this must also be considered when esti-
mating the uncertainty of the flood frequency curve (Viglione
et al., 2013). Examples of studies where MCMC methods have been
used in Bayesian models that incorporate ‘censored samples’ of
historic floods include: O’Connell (2005), Parent and Bernier
(2003), Reis and Stedinger (2005); and Viglione et al. (2013).
2.3. Bayes theorem

The Reverend Thomas Bayes’ (1702–1761) famous theorem
relating conditional probabilities was published posthumously by
Richard Price, a mathematician friend of Bayes in an essay that
appeared in the Philosophical Transactions of the Royal Society
(Bayes and Price, 1763; Bertsch-McGrayne, 2011). Bayes’ rule can
be considered very simplistically as a statement that ‘‘by updating
our initial belief with objective new information, we get a new and
improved belief” (Bertsch-McGrayne, 2011). In mathematical form
it is written:

pðhjDÞ ¼ ‘ðDjhÞpðhÞR
‘ðDjhÞpðhÞdh ð1Þ

For any probability distribution with parameters h, such that p
(h) is the prior distribution (or initial belief) and p(h|D) is the pos-
terior distribution (new and improved belief) after having
observed the data, D (new information). ‘(D|h) is the probability
distribution or likelihood of the data (D) conditional on the param-
eters (h). The integral denominator in Eq. (1) is a normalisation
constant ensuring the area under p(h|D) is unity. Consequently
Bayes’ theorem can be expressed more simply as:

pðhjDÞ / ‘ðDjhÞpðhÞ ð2Þ
Notwithstanding the simplicity of Eqs. (1) and (2), the integral

denominator in Eq. (1) often has no analytical solution (Viglione
et al., 2013). Furthermore as more than one source of uncertain
observed data is used to infer multi-parameter distributions, the
expression of the joint posterior distribution also tends to become
intractable (Lunn et al., 2013). The steps required to address these
problems are far from straightforward, which is perhaps why Baye-
sian approaches to flood frequency analysis are uncommon outside
academic research (Kjeldsen et al., 2014b).

But advances in computing power now make it possible to run
Markov Chain Monte Carlo (MCMC) simulations that produce a
sample of the desired posterior distribution after a large number
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of steps. This brings Bayesian solutions within the reach of
researchers without extensive specialist statistical expertise (Reis
and Stedinger, 2005; Robert and Casella, 2004), and there are many
examples where researchers have proposed ways to combine sev-
eral data sources for flood frequency analysis and manage the
uncertainty within those data sources (see for example Chandler,
2013; Fernandes et al., 2010; Fill and Stedinger, 1998; Gaume
et al., 2010; Haddad and Rahman, 2012; Haddad et al., 2012;
Kuczera, 1999; Neppel et al., 2010; O’Connell et al., 2002; Parent
and Bernier, 2003; Payrastre et al., 2011, 2013; Reis and
Stedinger, 2005; Reis et al., 2005; Renard et al., 2006; Ribatet
et al., 2007; Seidou et al., 2006; Viglione et al., 2013; Wood and
Rodríguez-Iturbe, 1975).
3. Data and methods

Carlisle is a city in Cumbria, North West England with a popula-
tion of approximately 100,000 and a long history as an important
regional centre pre-dating the Roman occupation. Carlisle is located
on the confluence of the rivers Eden, Caldew, and Petteril, all of
which have flooded in recent decades. The fact that the city has
been established for many centuries means there are substantial
local archives charting the long history of flooding in the area. A
river flow gauge was installed on the River Eden at Sheepmount
(see Fig. 1 for location) in 1967. The gauge has been in operation
for over 40 years recording both flow and water level data every
15 min (CEH, 2014). At the time of writing the most recent pub-
lished gauged data is from 2012, giving a 46 year AMAX time series.

On 8 January 2005 Carlisle experienced its worst flood for over
200 years (Environment Agency, 2006), inundating much of the
city (see Fig. 1). This event has been heavily analysed thanks to a
unique set of accurate observations of peak flood depth and extent
collected immediately after the flood (see for example Fewtrell
et al., 2011; Horritt et al., 2010; Neal et al., 2012, 2009; Parkes
et al., 2013). As a result of the January 2005 event, an improved
flood defence scheme was developed and completed in 2010
(BBC, 2010), protecting the city against 0.005 AEP floods (return
period of 200 years) (Environment Agency, 2009).

3.1. River gauge data at Carlisle

The Flood Studies report (CEH, 2014) lists the gauge on the
River Eden at Sheepmount as ‘grade B’, while a Flow Quality Com-
ment document describes the gaugings there as showing less than
10% deviation from the rating curve. It characterises the high flow
record as ‘‘good to valid” although substantial bypass flow is also
noted when the level is above bank (Environment Agency,
2011c). In a paper modelling the January, 2005 Carlisle flood,
Horritt et al. (2010) set up a simple finite volume model (Horritt,
2004) in order to assess the performance of the Sheepmount gauge
and the Cummersdale gauge on the River Caldew. They find the EA
rating curve to be a good fit to both the within bank stage-
discharge measurements (up to 1000 m3 s�1) and for the January,
2005 event, although they recommend revising the peak flow from
1520 down to 1490 m3 s�1. This evidence suggests that gauge
readings at Sheepmount can be relied upon to be within approxi-
mately ±10% even for out-of-bank events. The Bayesian model
described in Section 3.5 takes account of this source of uncertainty
and the sensitivity of the model to it can be seen in Fig. 5.

3.2. Historical data at Carlisle

The January 2005 flood was described at the time as the worst
to affect Carlisle in over 200 years (Environment Agency, 2006),
only to be exceeded by the December 2015 flood (Marsh, 2016).
But these are by no means the only destructive floods to have
affected Carlisle; flood marks have been recorded on the Eden
Bridge since its construction in 1815, and these can be cross refer-
enced with newspaper reports and a staff gauge maintained by
Carlisle City Council for nearly 100 years from 1850
(Environment Agency, 2006). Smith and Tobin (1979) collated
records of historic flood events in Carlisle between 1800 and
1970, which the Environment Agency (2006) updated as part of
the Cumbria Floods Technical Report produced in response to the
2005 floods. Table 1 summarises data for the 212 years from
1800 to 2012.

Using the current rating equation (CEH, 2014):

Q ¼ 56:612 � ðh� 2:980Þ1:699 ð3Þ
where h is the measured (or estimated) stage, which for this site is
AOD – 6.9 m.

Notes:

1. Level at Eden Bride derived from recurrence interval in Smith
and Tobin (1979). For historical records, the water level at the
Sheepmount gauging station is calculated as approximately
1.1 m lower than the estimated level at the Eden Bridge.

2. Level at Eden Bridge from Cumbria Floods Technical Report
(Environment Agency, 2006). For historical records, the water
level at the Sheepmount gauging station is estimated to be
approximately 1.1 m lower than the estimated level at the Eden
Bridge. This figure comes from hydraulic flood models of the
January 2005 flood (see Parkes, 2015; Parkes et al., 2013).

3. From Sheepmount river gauge records (CEH, 2014).
4. These records are not used in the historical data set because

they are not the maximum flood for the ‘water year’ which
starts on 1st October.

The historical (pre-gauge) flood data available for Carlisle is in
the form of a ‘‘censored” time series where discharge estimates
for all floods above a certain ‘‘perception threshold” are assumed
to be known (Stedinger and Cohn, 1986). Combining the gauged
data from the Sheepmount gauge with the historical estimates
(Table 1) produces the time series shown in Fig. 2. Fig. 2(a) displays
the gauged and historical flood peaks as known values, whereas in
reality both the gauged AMAX readings and the historical
estimates are uncertain (although the gauge readings are likely
to be more accurate than the historical estimates). The ‘perception
threshold’ is inferred from the lowest historical flood peak. In this
case the perception threshold is likely to remain fairly constant
over the historical period because, in some sense, it is anchored
by the presence of the Eden Bridge, which was constructed in
1815, and has provided a benchmark against which the height of
subsequent floods have been marked by local residents (see
Section 3.3). The smallest flood in the historical record is estimated
to be 893 m3 s�1, suggesting a perception threshold of approxi-
mately 890 m3 s�1. Since the perception threshold is inferred from
the highly uncertain historical flood record, its value is also uncer-
tain. Fig. 3(b) shows the uncertainty associated with the gauge
readings, historical flood estimates, and the perception threshold.
Methods for deriving flood frequency curves should ideally incor-
porate all these sources of uncertainty when generating confidence
limits for the EVD parameters. Fortunately a Bayesian analysis
integrating the measurement errors and uncertainties can provide
a full posterior distribution of the EVD parameters (Reis and
Stedinger, 2005).

3.3. Land use and channel change

When using historic flood data to estimate contemporary flood
frequency curves, it is often necessary to consider physical changes



Fig. 1. Location map of Carlisle showing estimated extent of the flooding from 8th January 2005 (Environment Agency, 2006). Map data � 2014 Google.
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to the catchment, river channel or floodplain that may have
affected the extent of historic flooding and thus the rating curve
for the river at the study site.

The relationship between land-use change in the catchment
and fluvial flood risk is not yet fully understood, but is thought
to vary with the scale of the catchment under consideration
(Pattison and Lane, 2012). Historical maps of the catchment show
minimal land use change over the historical period; 200 years ago
the uplands were devoted to sheep grazing with only a little tillage,
much as they are today (see Vision Of Britain (2016) for historical
maps and details on land use). Furthermore, for larger catchments,
such as the River Eden at Carlisle, there is no evidence that local
scale effects of land-use change aggregate downstream
(O’Connell et al., 2007).

However, natural or man-made changes to the river channel in
or near the study area are likely to have a significant impact on
local flood levels (Neppel et al., 2010; Shaw et al., 2010, p. 128).
For example, the construction of levees will reduce the available
flood plain storage resulting in a higher water level at the channel
for a given discharge. Similarly, bridges often narrow the channel
and restrict flow. Changes to the river bed, from natural processes
such erosion and deposition or anthropomorphic activities from
dredging, are also likely to affect the stage-discharge relationship
over time (Jalbert et al., 2011).

Quantifying the full effects of this non-stationarity in Carlisle is
beyond the scope of this paper. However, a brief review of the lit-
erature, including historic maps and images (e.g. Fig. 4) of the area,
provides some indicative guidance.

Fig. 3(a) shows that before the historical period of this study,
the River Eden at Carlisle comprised two branches separated by
an area called ‘The Sands’. By 1821 (Fig. 3(b)) the Eden no longer
had two branches and ‘The Sands’ was not an island as the south-
ern branch of the Eden had been filled in (Cooke, 1829). The two
bridges shown in the 1805 map (Fig. 3a) were replaced by the
‘Eden Bridge’, completed in 1815 and still standing (Eden Bridge,
1932). It is clear that the geomorphology of the Eden changed con-
siderably between 1805 and 1821 and construction of the Eden
Bridge in that period may also have altered the river’s hydraulics.
From the evidence above it can be deduced that the infilling of
the southern branch of the Eden and the removal of the earlier
bridges over it occurred at some point between 1805 and 1815,
when the new Eden Bridge was completed. The impact of these
changes on flood levels and discharge is likely to be substantial
and largely unquantifiable. Consequently the estimated discharge
of 1025 m3 s�1 for the 1809 flood is less certain than the discharge
estimates for the subsequent historic floods. For this reason, the
discharge estimate for the larger 1809 flood is not used directly;
instead, the flood is given broad upper and lower bounds (see
Section 3.5).

Although the bridge built in 1815 still stands, its form has chan-
ged. There was originally a second new bridge completed contem-
poraneously to the south of the five arches in existence today. Both
bridges can be seen in Fig. 4. The second bridge spanned the earlier,
southern branch of the River Eden that was now dry, but still avail-
able for channelling floodwater. The arches forming the second
bridge were replaced by an embankment in 1969 to support a
new road scheme (Cumberland News, 2010). The removal of the
arches will have further restricted the flow of floodwater past the
Eden Bridge in times of flood.

Similarly flood defences on the floodplain in Carlisle have been
built and improved in several stages during the historical period.
Smith and Tobin (1979) document the construction of embank-
ments in the early nineteenth and twentieth centuries with further
improvements in 1932. More significantly, major improvements to
the flood defences were implemented following the 1968 flood,
which affected more than 400 properties (Atkins, 2011; CEH,
2014). The removal of the additional bridge arches and the flood
defence works carried out over the past century were probably
designed to keep the flows in the river. This hypothesis is backed
up by expert consultation with a local Flood Risk Management
Advisor for the Environment Agency (Environment Agency FRMA,
2014 interview), who explained:

‘‘I suppose over the years we have done a lot of work which will
keep the flows in the rivers so flow that was a meter below in
1856 might have had the same flow as we’ve had now, but
we don’t know”



Table 1
Extreme historical and gauged flood data for Carlisle since 1800. Sources: Cumbria Floods Technical Report (Environment Agency, 2006);
Smith and Tobin (1979); Environment Agency Sheepmount Gauging Station records (CEH, 2014); Carlisle Encyclopaedia references from
local newspapers (Carlisle History, 2014).

Date Estimated level at
Eden Bridge (m AOD)

Estimated level at
Sheepmount gauging
station (m AOD)

Estimated discharge at
Sheepmount gauging
station (m3 s�1)a

Approx. rank Notes

2/1809 13.6–14.0 12.7 1025 7–11 1
9/1809 13.6 12.5 12–18 1,4
11/1815 13.6 12.5 963 12–18 1
2/2/1822 14.00 12.9 1089 2–6 2
1/1/1851 13.41 12.3 905 25–31 2
10/2/1852 13.53 12.5 941 7–11 2
13/12/1852 13.83 12.7 1035 19–24 2
8/12/1856 14.19 13.1 1152 2–6 2
11/1857 13.45 12.4 25–31 2,4
11/1857 13.55 12.5 947 19–24 2
1/2/1868 13.60 12.5 963 12–18 2
7/10/1874 13.83 12.7 1035 7–11 2
1891 13.42 12.3 908 25–31 2
1899 13.6 12.5 963 12–18 1
27/1/1903 13.50 12.4 932 19–24 2
2/1/1916 13.37 12.3 893 25–31 2
27/12/1924 13.63 12.5 12–18 2,4
30/12/1924 13.78 12.7 1019 7–11 2
2/1/1925 14.11 13.0 1125 2–6 2
21/8/1928 13.45 12.35 917 25–31 2
29/12/1929 13.50 12.4 932 19–24 2
4/11/1931 14.08 13.0 1116 2–6 2
18/10/1954 13.56 12.8 950 19–24 2
9/12/1964 13.40 12.3 902 25–31 2
17/10/1967 12.28 25–31 3,4
23/3/1968 13.16 1200 2–6 3
4/1/1982 12.50 957 12–18 3
21/12/1985 12.43 936 19–24 3
1/2/1995 12.49 953 12–18 3
8/1/2005 14.15 1516 1 3
20/11/2009 12.74 1029 7–11 3

a The discharge (Q) at the Sheepmount gauging station is calculated from the stage (water level).
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There is no systematic information available about within-bank
channel changes over the historical period, but it is likely that the
practice of dredging to improve river navigation and, to a lesser
extent, flood management would have been more common during
the historical period than in recent decades, as is suggested by ref-
erences to the practice in Carlisle in 1948 and 1963 (Carlisle
History, 2014). This has been the trend across Britain as cost, envi-
ronmental concerns, and the shift from river to road transportation
have reduced dredging activities (Environment Agency, 2010).

Overall the effect of channel changes is likely to mean that dis-
charge figures calculated for historical floods using the current rat-
ing curve formula for the Sheepmount river gauge will be low
when compared to the AMAX time series from the gauge data. This
would manifest itself as a systematic error/bias in the historic data.

In order to estimate the scale of this bias, simulations of the
January 2005 flood were run using a digital elevation model
(DEM) that had been altered to remove the post-1968 defences
and incorporate the additional Eden Bridge arches. The simulations
were run using a 2-D flood model conditioned with data from the
January, 2005 flood. A full description of the model set-up, calibra-
tion, and performance can be found in Parkes et al. (2013) and
Parkes (2015). The maximum water level at the Eden Bridge (in
the approximate location of the historic flood marks) was
0.297 m lower when compared against comparable simulations
run using the 2005 DEM. By increasing the estimated flood levels
for the historic floods in Table 1 and recalculating the discharges
using the rating Eq. (3), the discharge estimates increase by
between 93 and 101 m3 s�1. Even with this adjustment, none of
the adjusted historical floods exceed the peak discharge of the
January 2005 flood. This agrees with local expert judgment that
the 2005 flood exceeded all floods in the historic period
(Environment Agency FRMA, 2014).

3.4. Selection of extreme value distribution (EVD)

Several different distributions have been proposed and used to
characterise flood frequency curves (Cunnane, 1989). Official river
agencies sometimes recommend or even mandate the use of par-
ticular distributions they consider most appropriate. In the United
States, Bulletin 17B from the United States Water Resources Com-
mittee (Kirby and Moss, 1987; USWRC, 1982) recommends using
the Log-Pearson Type III (LP3) distribution (Bobée and Ashkar,
1991; Reis and Stedinger, 2005; Vogel and McMartin, 1991). Con-
versely, in the UK the Flood Estimation Handbook (vol. 3) recom-
mends the generalised logistic (GL or GLO) distribution (IH,
1999), which, together with the generalised extreme (GEV) distri-
bution, is thought to be a satisfactory fit for almost all of the 602
gauged locations in the UK (Kjeldsen et al., 2008).

There is no purely logical reason for preferring any particular
extreme value distribution (EVD) for modelling a time series of
AMAX river gauge readings. Fisher and Tippett (1928) assert that
for a sequence of independent, identically distributed random vari-
ables, the asymptotic distribution for the largest value in a block of
n values will be of a GEV type as n tends to infinity. However, in the
real world, the AMAX time series is not bound to eventually con-
verge on a GEV distribution or any other mathematical function,
especially when one considers the many factors that violate the ‘in-
dependent, identically distributed’ assumption. Most commonly
used distributions have 3 parameters (often describing their loca-
tion, scale and shape), giving them the flexibility to approximate



Fig. 2. Censored time series of peak discharge flood data for the River Eden at the location of the Sheepmount river gauge, Carlisle, Cumbria, UK. 46 years of gauged data are
shown with 21 historical flood estimates from 1800. 2 b) shows uncertainty in discharge estimates and perception threshold, see Section 3.6 for a discussion of the error bars.

2 The notation for the location, scale, and shape parameters of the GEV distribution
is not consistent across disciplines. For example Kuczera (1996) uses m, a, and k
respectively; Viglione et al. (2013) use h1, h2 and h3, and reverse the sign of the shape
parameter (h3): a common practice in hydrology (Wilks, 2006, p. 105).
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a wide range of ‘real’ distributions which are obviously not bound
to adhere asymptotically to a mathematical formula. This uncer-
tainty about the relationship of the chosen EVD to the natural pro-
cesses it is representing, is referred to as model uncertainty (Wood
and Rodríguez-Iturbe, 1975).

One approach to managing model uncertainty is to create a
composite distribution of several different EVDs, each allocated a
weighting based on how well it fits the available data (Apel
et al., 2008, 2004; Wood and Rodríguez-Iturbe, 1975). However
the goodness of fit tests employed to establish the weightings for
candidate EVDs will always be limited because they can only oper-
ate within the range of observed data (Keef, 2014, p. 199). Further-
more, as Fig. 6 suggests, the sampling uncertainty often masks the
model uncertainty (Cunnane, 1987) such that it is not possible to
directly estimate the effect of the model error (Kjeldsen et al.,
2014a). For these reasons, we make no attempt to represent model
uncertainty using a composite of different distribution types.
Instead we selected a single distribution using the ‘goodness of
fit’ test proposed by Hosking and Wallis (1997) and described in
detail by Kjeldsen et al. (2008).

Table 2 shows the results for the Sheepmount river gauge of the
‘goodness of fit test’ implemented using theWINFAP-FEH software.
The test was run both for a single site analysis and a pooled anal-
ysis. Under the goodness of fit test, the distribution is considered
an acceptable fit to the data if the absolute value of Z is less than
1.64 (Hosking and Wallis, 1997; Kjeldsen et al., 2008), which
roughly corresponds to acceptance of the hypothesised distribu-
tion at a 90% confidence level (Hosking and Wallis, 1993). Only
the GEV and Pearson Type III distributions have an acceptable fit
for both single site and pooled analysis. Overall the GEV distribu-
tion gives the lowest absolute Z value so we selected it for use in
our Bayesian analysis of flood frequency at the Sheepmount river
gauge. Within extreme value theory, the GEV distribution is con-
sidered a sensible choice of distribution for modelling sequences
of independent random variables (Chandler et al., 2014;
Embrechts et al., 1997; Jenkinson, 1955) and is commonly used
for flood frequency analysis (see for example Gaume et al., 2010;
Haberlandt and Radtke, 2014; Kuczera, 1996; Naulet et al., 2005;
Neppel et al., 2010).

3.5. Model design

To conduct the Bayesian analysis for this paper, we used the

OpenBUGS software (Lunn et al., 2009). BUGS stands for Bayesian

inference Using Gibbs Sampling, so the software uses an imple-
mentation of the Gibbs sampler (Geman and Geman, 1984), which
is a special case of the Metropolis-Hastings algorithm (Hastings,
1970; Metropolis et al., 1953).

If just the gauged AMAX data were available, the likelihood
function for gauged data, ‘g(D|h), in Eq. (1) would be:

‘gðDjhÞ ¼
Ys
i¼1

f XðxiÞ ð4Þ

In this case D is the AMAX time series (x1, x2, x3,. . ., xs) of gauged
data of length s years and fX() is the probability distribution func-
tion (pdf) for X. Here the GEV distribution is used, which has
parameters, h ¼ fl� location;r� scale;g� shapeg2 and pdf given
by:

f ðx :;l;r;gÞ

¼ 1
r

1þ g
x� l
r

� �h ið�1=gÞ�1
exp � 1þ g

x� l
r

� �h i�1=g
� �

ð5Þ



Fig. 3. Historic maps of the River Eden at Carlisle. (a–c) from Cumbria Image Bank (Cumbria County Council, 2014). (d) from Carlisle Library � Ordnance Survey (Ordnance
Survey, 2011).
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Fig. 4. 1832 engraving of the Eden Bridge completed in 1815, showing the main five arch span over the Eden and the second bridge over the dry branch of the Eden. From
Cumbria Image Bank (Cumbria County Council, 2014).
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For non-zero g and, when g = zero:

f ðx :;l;r;gÞ ¼ 1
r
exp � x� l

r

� �h i
exp �exp � x� l

r

� �h in o
ð6Þ

When incorporating historic data, it is necessary to take account
of the incomplete nature of the dataset. The concept of the ‘percep-
tion threshold’ described in Section 3.2 can be defined as ‘the level
above which all flood events were recorded in the historic period’.
This can be expressed in terms of probabilities as:

PrðrecordedjXÞ ¼ 1 for X > XP

PrðrecordedjXÞ ¼ 0 for X < XP
ð7Þ

where XP is the perception threshold and Pr(recorded|X) is the prob-
ability of there being a recording of a historical flood in any year
given the existence of the ‘true’ annual maximum flood, X. The
assumption that no large flood events were missed during the his-
toric period is justifiable in the case of Carlisle due to the relatively
extensive local sources listed in Table 3. However, setting a value
for the perception threshold isn’t simply a case of choosing a value
just below the smallest historical flood event, because of the uncer-
tainty about the discharge estimates for those historic floods.
Whereas Viglione et al. (2013) set the perception threshold to the
upper bound of the smallest known historical flood, we have given
the perception threshold itself an uncertain value in the model.

During the historic period of length h years it is known there
were k floods above the perception threshold, XP. For k0 of the
historical floods there are estimates of the peak discharge available
denoted fy1; y2; . . . yk0 g. For the other k00 historical floods it can only
be said the flood was somewhere between an upper and lower
bound (note: k = k0 + k00). The upper bounds for these historic floods
are denoted fyU1; yU2; . . . yUk00 g and the lower bounds
fyL1; yL2; . . . yLk00 g. In this case there are 21 known historical floods
in Carlisle since 1800, of which there is an estimate of peak dis-
charge available for 20, so k0 = 20 and k00 = 1. For the remaining
(h-k) years of the historical period it can only be said that the max-
imum flood was below XP. Assuming that annual floods are inde-
pendent events, and following Stedinger and Cohn (1986) and
Reis and Stedinger’s (2005) methods for representing censored
data and the method of Viglione et al. (2013) for representing his-
torical floods with upper and lower bounds, the likelihood function
for the historical data, ‘h(D|h) is:

‘hðDjhÞ ¼
h
k

� �
FXðXPÞðh�kÞYk0

j¼1

f xðyjÞ
Yk00
m¼1

FXðyUmÞ � FXðyLmÞ½ �
( )

ð8Þ

This contains terms for the h-k historical floods below the per-
ception threshold, the k0 floods for which an estimate of peak dis-
charge is available, and the k00 historical floods known to lie

between upper and lower bounds. h
k

� �
¼ h!

k!ðh�kÞ! is the binomial

coefficient, and FX() is the cumulative density function of the GEV
distribution given by:

Fðx :;l;r;gÞ ¼ exp � 1þ g
x� l
r

� �h i�1=g
� �

ð9Þ

Combining Eqs. (4) and (8) gives the overall likelihood function
‘(D|h):

‘ðDjhÞ ¼ h

k

� �
FXðXPÞðh�kÞYk0

j¼1

f XðyjÞ
Yk00
m¼1

½FXðyUmÞ � FXðyLmÞ�
( )Ys

i¼1

f XðxiÞ

ð10Þ
Error terms for historical (yj) and gauged (xi) discharge esti-

mates are not shown.

3.6. Uncertainty in discharge estimates

Our Bayesian model for producing the probability distribution
functions for the location, scale, and shape parameters of the



Fig. 5. Sensitivity of the Bayes model to model parameter variation. The figures shown are for the mean value (blue dot) for the 0.01 AEP (100 year return period) flood with
95% confidence limits. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1198 B. Parkes, D. Demeritt / Journal of Hydrology 540 (2016) 1189–1208
GEV distribution needs to take account not only of the sampling
uncertainty due to the limited data available but also any random
and possibly systematic data errors in the gauged and historical
flood estimates. Fortunately the MCMC can easily incorporate data
uncertainty without much impact on execution time (Reis and
Stedinger, 2005). Various approaches to representing the error in
gauged and historical readings have been employed (see for exam-
ple Neppel et al., 2010), such as a log-normally distributed error for
gauged data (Kuczera, 1996) and a uniformly distributed error with
upper and lower limits for historical flood estimates (Viglione
et al., 2013). The approach for random errors taken here is to
assume both gauged and historical discharge estimates have a nor-
mally distributed error term associated with them, whose standard
deviation represents our confidence in the accuracy of the esti-
mate. Error in the gauge readings is likely to increase with the
magnitude of the flood (Di Baldassarre and Montanari, 2010; IH,
1999; Neppel et al., 2010; Rosso, 1985). By using a standard devi-
ation for the error term which is a percentage of the gauge reading,
error will scale in proportion to the estimated magnitude of the
flood.
Historical estimates of floods are not necessarily affected by this
bias. Instead, the uncertainty of historical estimates is affected by
other factors such as the time since the event and the richness of
the information source. We believe that modelling these factors
explicitly would add unnecessary complexity to the model. Conse-
quently the model uses the same standard deviation for the uncer-
tainty in all historical discharge estimates rather than a percentage
of the estimate (see Fig. 2b). Additionally the likelihood of a sys-
tematic bias in the historical discharge estimates should be consid-
ered and is discussed in the following section.

3.7. Model parameters and prior distributions

The OpenBUGS configuration settings and parameters used in
our Bayesian model are described in Table 3. The first entries in
Table 3 are the three prior distributions for the GEV model param-
eters (h ¼ fl;r;ggÞ. Kuczera (1999) recommends using informa-
tive priors based on a regional flood frequency analysis. Another
approach is to assume prior independence of the GEV parameters
using broad, uniform distributions for the location (l) and scale



Fig. 6. Flood frequency curve generated using single site analysis and showing annual maxima (AMAX) discharge data for the River Eden at the Sheepmount river gauge (blue
+), plotted using WINFAP-FEH software from WHS (2009a). Three different extreme value distributions (EVDs) have been fitted using the method of L-moments: 1.
Generalised Logistic (GL); 2. Generalised Extreme Value (GEV); 3. Log-Pearson Type III (LP3). Also shown are the 95% confidence limits for the fitted GEV curve based on
balanced re-sampling (Gleason, 1988) of 4999 samples taken from the AMAX series. The data points from the AMAX series are plotted using the Gringorten plotting position
formula (Gringorten, 1963). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Goodness of fit test results for 4 candidate (3 parameter) distributions for the AMAX
data from the Sheepmount river gauge in Carlisle, Cumbria. The test is designed such
that a distribution is considered to have an adequate fit the absolute value of Z (|Z|) is
less than 1.64 (Hosking and Wallis, 1997; Kjeldsen et al., 2008).

Fitted distribution Z value for single
site analysis

Z value for
pooled analysis

Generalised logistic �0.0524 2.6418
Generalised extreme value �0.5776 0.0044
Pearson Type III �0.6805 �0.1981
Generalised Pareto �1.7613 �5.6678
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parameters (r), and then giving some sort of geophysically repre-
sentative prior for the shape (g) parameter: a beta distribution in
the case of Martins and Stedinger (2000) or a Gaussian distribution
in the case of Neppel et al. (2010). For the UK there is no self-
evidently representative prior distribution, so we used uniform
(non-informative) priors for all three GEV parameters (see Robert
and Casella, 2004 for a discussion on choice of priors).

The default value for the gauged data uncertainty is based on
the reviewed literature (Environment Agency, 2011c; Horritt
et al., 2010), where an error of ±10% is roughly equivalent to a stan-
dard deviation of 5%. The default value for the historical adjust-
ment factor is based on the historical flood modelling described
in Section 3.1. The uncertainty in the historical floods and the per-
ception threshold are more subjective. We chose confidence limits
thought to be wide enough to cover most uncertainties in the his-
torical flood estimates.

3.8. Sensitivity analysis

In order to establish how the model behaviour changes as the
parameters are altered, we performed a sensitivity analysis. The
direct model output consists of the posterior estimates for
the mean and standard deviation of the three GEV parameters.
The flood frequency curve is then derived with confidence limits
by running a Monte Carlo simulation sampling from the uncertain
posterior estimates for the GEV parameters. For the sensitivity
analysis in Fig. 5, the mean and 95% limits for the 0.01 AEP flood
are used to show the effect on the flood discharge estimates of
varying the model parameters. Fig. 5 shows the sensitivity of the
model while varying five model parameters: Gauged data uncer-
tainty; historical uncertainty; historical adjustment factor; percep-
tion threshold; and perception threshold uncertainty. The ‘chain
length’ and ‘burn-in steps’ are settings required by the BUGS
MCMC simulations; they were included in the sensitivity analysis
to check model convergence. Increasing the chain length and
burn-in stapes above the defaults made no difference to the model
output suggesting satisfactory convergence.

All the graphs in Fig. 5 use the 0.01 AEP (100 year return period)
flood as the key metric, which is towards the higher end of the
flood frequency curve. The 0.01 AEP flood was chosen because it
is a familiar measure in the UK, being used as the definition of
the boundary between medium and high fluvial flood risk
(Environment Agency, 2011b). This metric will be more influenced
by the bigger floods in the time series, which explains why, as
shown be Fig. 5(a and b), the model appears insensitive to the
uncertainty both in the gauge readings and the historical flood esti-
mates until they reach values towards the upper end of the scale.
Extending the upper bounds of the gauged and historical time ser-
ies beyond that which is realistic (as defined by the literature
review and discussion with local Flood Risk Manager Advisor
(Environment Agency FRMA, 2014)) has the effect of enhancing
the influence of the medium sized floods on the upper end of the
flood frequency curve.

Overall themodel shows the greatest sensitivity to the historical
adjustment factor (Fig. 5(c)) which shows the importance of select-
ing a realistic value for this parameter. It should be noted that since
this factor is added directly to the historical flood estimates, this
parameter combines with the historical uncertainty parameter to
cover stochastic (random) and systematic (bias) error. Fig. 5(d)
shows the model is sensitive to the value chosen for the perception
threshold across all values; however there is no reason to select a
value far from that derived from the historical flood data.



Table 3
Bayes model parameters and prior distributions and BUGS MCMC settings.

Parameter Description Default
value(s)

Range used in
sensitivity analysis

Prior distribution for GEV
distribution parameters

l Location 0–1600
r Scale 0–500
g Shape �0.5 to 0.5

Gauged data uncertainty Uncertainty (standard deviation of normally distributed perturbation) applied to gauged
AMAX readings. Percentage of readings.

5% 0–20%

Historical uncertainty Uncertainty (standard deviation of normally distributed perturbation) applied to historical
flood estimates. Absolute value.

50 m3 s�1 0–316 m3 s�1

Historical adjustment factor Factor applied to estimates of historical flood discharge to take account of construction of
flood defences and reduction in dredging activities.

97 m3 s�1 �200 to 300 m3 s�1

Perception threshold Minimum value of floods in the historic period included in the historic flood record. 900 m3 s�1 740–1100 m3 s�1

Perception threshold uncertainty Uncertainty (standard deviation of normally distributed perturbation) applied to
perception threshold. Absolute value.

50 m3 s�1 0–140 m3 s�1

Chain length Number of MCMC steps per model run 20,000 20,000–100,000
Burn-in steps Number if MCMC steps disregarded as burn-in 5000 5000–20,000
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4. Results

4.1. Frequency analysis using gauged data only (single site analysis)

Initially we present a ‘single site’ flood frequency analysis per-
formed with the WINFAP-FEH software using just the 46 years of
annual maximum discharge time series data (Section 3.1) from
the Sheepmount river gauge. The resulting flood frequency curve
(referred to as ‘single site analysis’) is shown in Fig. 6 where the
GEV, GL and LP3 distributions have been fitted to the data using
the method of L-moments (Hosking, 1990). The 95% confidence
intervals for the GEV distribution were calculated by the
WINFAP-FEH software using a balanced re-sampling method
(Gleason, 1988; WHS, 2009a), which is a commonly used type of
‘bootstrap’ procedure (Kjeldsen et al., 2014a). The confidence inter-
vals represent the uncertainty of the curve fitting due to the length
of the time series: the longer the time series, the narrower the con-
fidence interval would be. Unfortunately, long and reliable time
series of AMAX records from river gauges are uncommon in the
UK; the 46 years recorded at Sheepmount is comparatively long,
the average record length being roughly 35 years (Kjeldsen et al.,
2008). The estimated AEP for the peak discharge (1516 m3 s�1)
measured during the January, 2005 Carlisle flood is 0.0055, or a
return period of 180 years, with 95% confidence intervals of
0.0386 to less than 0.0001, or return periods from 34 to greater
than 10,000 years (see Table 6).

Even the enormous width of these confidence limits may be
unrealistically narrow; the ‘bootstrap’ method is often found to
give lower uncertainty estimates than other, comparable methods
using the same data (Hall et al., 2004; Kjeldsen et al., 2014a). This
raises questions about how much protection is actually provided
by flood defence designs. After the 2005 flood, defences in Carlisle
were upgraded to protect against a similar scale event. But if the
AEP of the 2005 flood really is 0.0386, then a flood at least as large
might potentially be expected on average once every 34 years,
which is a much less comforting thought than if the new defences
provide a return period standard of protection greater than
10,000 years. However the width of the confidence intervals is so
great that it is impossible to say one way or the other using the
conventional statistical methods of flood frequency estimation rec-
ommended in the FEH.
3 Since ‘water years’ are deemed to start on 1st October (see footnote 1), the
December 2015 event is counted in the 2016 ‘water year’.
4.2. Bayesian model results

Running the model with the default parameters gives the poste-
rior distributions for the GEV model parameters described in
Table 4. Fig. 7 shows the resulting flood frequency curve with
confidence limits plotted using output from the Bayesian model.
Fig. 8 transposes the flood frequency curves for the single site anal-
ysis using the WINFAP-FEH software (GEV distribution fitted using
L-Moments) with the flood frequency curve generated using the
Bayesian model. The advantages of the Bayesian model over the
single site analysis presented in Section 4.1 can be seen in its nar-
rower confidence limits, which are also evident in the figures for
the confidence limits for the design floods shown in Table 5. The
Bayesian model gives an AEP for the January, 2005 flood of
0.00382 (return period 262 years) with 95% confidence limits of
0.014 to 0.000246 (return periods: 70 years to 4060 years).

4.3. Incorporating the December 2015 flood in the Bayesian model

The results presented so far have only included data up to 2012,
which at the time of writing was the extent of the AMAX time ser-
ies available from CEH (2014). But the controversy over the recent
Storm Desmond flooding of Carlisle in December 2015 has raised
important questions about just how unprecedented that event
was. At the time of writing two estimates for the peak discharge
at the Sheepmount gauging station are available: 1680 m3 s�1

(Marsh, 2016) and 1700 m3 s�1 (Parry et al., 2016). These prelimi-
nary estimates for the 2015 flood can also be incorporated into our
Bayesian model simply by treating the recent flood as an uncertain
estimate of an historic event. This enables us to update Fig. 2(b)
with Fig. 9. Note that, in producing Fig. 9, we have not applied
the historical adjustment factor to the December 2015 flood esti-
mate. Also it was necessary to extend the censored period to
account for the years 2013, 2014 and 20153 which have not been
published yet as part of the official instrumental record. The updated
flood frequency curve at the Sheepmount gauging station is shown
in Fig. 10. The effect of adding such a large flood to the dataset driv-
ing the model has a significant effect on the upper (low frequency
event) end of the curve. Table 6 shows how the output of the Baye-
sian model changes as the new data is added and Fig. 11 compares
the flood frequency curves from the Bayesian model both without
and including the December 2015 flood.
5. Discussion

The magnitude of the flood flows affecting Carlisle in December
2015 was unprecedented, with an AEP and return period we esti-
mate to be 0.00311 and 420 years respectively (95% confidence
limits of 0.0119–0.000255 for AEP, 42 to greater than 10,000 years



Table 4
Posterior distribution for the GEV parameters from the Bayesian model.

Parameter Mean Standard deviation

l – location 562.0 22.92
r – scale 160.1 13.05
g – shape 0.02423 0.07265
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for return period). Although the city’s flood defences had been
upgraded after the 2005 floods and succeeded in protecting the
city against the floods in 2009 (BBC, 2009), they were completely
overwhelmed by the scale of the flooding in 2015. Residents whose
houses have been flooded twice in just over a decade are now
demanding to know why a £38 million investment in new flood
defence failed to protect them (BBC, 2015b). Completed in 2010,
the new defence scheme had been designed to protect the city
against peak flood flows with an estimated AEP of 0.005 (return
period of 200 years) (Environment Agency, 2011a). This promised
to protect against floods at least as big as the January 2005 event,
which was estimated at the time, to have an AEP between 0.0057
and 0.005 (return period of 175–200 years) (Environment
Agency, 2006).

But there were substantial uncertainties about those return per-
iod estimates, and the December 2015 flood event raises questions
about their validity. First, AEP estimates are sensitive to the inclu-
sion of such extreme events in the sample used to calculate the fre-
quency curve. Beyond mere ‘hindsight bias’ (Tversky and
Kahneman, 1974), our analysis shows how accounting for the
2015 flood suggests that very large floods of this kind are likely
to occur with greater frequency than previously thought. For
example, we show that a flood in Carlisle of 1341 m3 s�1 which
had been expected to occur on average once every 100 years
according to our Bayesian model (Table 5) is now expected on
average once every 75 years when the model is run to include
the December 2015 flood data (Fig. 11).

Second, in the wake of yet another winter of severe flooding in
Britain, many people are asking if climate change is now causing
Fig. 7. Flood frequency curve of the River Eden at Sheepmount showing 95% confidence l
Xs) are the gauge readings from the Sheepmount river gauge (1967–2012) plotted using
(as solid blue circles) plotted using the method described by Bayliss and Reed (2001). The
references to colour in this figure legend, the reader is referred to the web version of th
such extreme flood events to occur more frequently (Met Office,
2015). Indeed the government has commissioned a review to see
if its flood frequency estimates are taking appropriate account of
climate change uncertainties (Defra, 2016). There is a substantial
body of research into the impacts of long term climate change on
river discharge (e.g. Arnell et al., 2014; Fowler and Kilsby, 2007;
Hannaford, 2015; Ramsbottom et al., 2012; Reynard et al., 2009).
Several studies have sought to attribute specific flood events in
the UK to climate change (Kay et al., 2011; Pall et al., 2011), and
similar attribution studies of Storm Desmond are under way (van
Oldenborgh et al., 2015). The censored time series presented in
Fig. 9 is certainly consistent with the hypothesis that extreme
floods are becoming more frequent. However, the large uncertain-
ties in the flood frequency curve derived for this paper emphasise
the difficulties of attributing individual flood events to global-scale
climate changes. This problem of detecting a climate change signal
is further confounded by other sources of non-stationarity. Land-
use and channel change were discussed in Section 3.3, and there
is also evidence of non-stationarity caused by climate variability.
For example Pattison and Lane (2011) find evidence that multi-
decadal cycles in the North Atlantic climate system are correlated
with variations in flood frequencies in Cumbria.

Regardless of the cause, non-stationarity seems to have been
accepted as a fact of life (Milly et al., 2008). To assist in understand-
ing this, the use of proxy records from before the historical period
can provide valuable information on non-stationarities. Paleo-
flood analysis typically involves the use of sedimentology or geo-
morphology techniques to search for evidence of deposits or ero-
sion from previous events (see for example Baker, 2006; Benito
et al., 2004; Li et al., 2013), but other proxy records such as tree
ring chronology can also inform researchers on issues of climate
and hydrologic stationarity (Razavi et al., 2015). In theory it would
also be possible to extend our Bayesian model to take account of
one or more paleoflood estimates derived from sediment analysis
in the study area. This would be done by adding a ‘prehistoric’ per-
iod to join the ‘gauged’ and ‘historic’ periods. The ‘prehistoric’ per-
iod would consist of uncertain estimates for the paleofloods and a
imits, derived using the Bayesian model described in Section 3.5. Also shown (as red
Gringorten plotting position formula and the historical flood estimates (1800–1966)
upper and lower limits for the 1809 flood are highlighted. (For interpretation of the
is article.)



Fig. 8. River Eden at Sheepmount flood frequency curves with 95% confidence limits showing comparison of curves derived using the Bayesian model with the single site
analysis using WINFAP-FEH software (GEV distribution fitted using L-Moments).

Table 5
Estimates of the discharge at the Sheepmount gauging station for certain design floods with 95% confidence intervals, comparison of single site analysis (GEV distribution fitted
using L-Moments – Section 4.1) with results of Bayesian model. Also shown is the percentage reduction in the 95% confidence interval of the design floods achieved by
implementing the Bayesian model. The results of running the Bayesian model using only the gauge data (no historic flood estimates) is included for comparative purposes.

AEP (return period, years) 0.5 (2) 0.0133 (75) 0.01 (100) 0.001 (1000)
Mean Discharge (m3 s�1)
(95% confidence intervals)

Single site analysis 617 (558–678) 1342 (1036–1853) 1400 (1056–1983) 1876 (1123–3295)
Bayesian model output 621 (574–670) 1289 (1144–1538) 1341 (1177–1631) 1766 (1405–2588)
Reduction in confidence intervala 20% 52% 51% 46%
Bayesian model (using gauge data only) 623 (562–690) 1408 (1142–2037) 1471 (1178–2200) 2000 (1421–4020)

a This is the reduction in the width of the 95% confidence interval by using the Bayesian model over the single site analysis.
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second prehistoric perception threshold derived from those pale-
oflood estimates. In practice, however, the model might require
some redesign to deal with the length of the prehistoric period.

Uncertainties about the impacts of climate change and non-
stationarity in the catchment simply add to and compound the
many other epistemic uncertainties in flood frequency estimation,
which frustrate policymakers needing to prioritise scarce resources
for flood risk management and communicate the standards of pro-
tection being provided to the public (Kuklicke and Demeritt, 2016).
Chief amongst these uncertainties is the sampling error caused by
the limited availability of data; symptomatic of this is the sensitiv-
ity of the high return period end of the flood frequency curve to the
addition of a new extreme event, as demonstrated in Section 4.3.
Our analysis shows that this sampling error can be reduced by
using historic flood estimates. They are particularly important
because they consist of estimates of previous extreme floods and
those are the ones we are most interested in because they dispro-
portionately influence the upper end of the flood frequency curve.
In this paper we have shown that these uncertainties can be
substantially reduced by incorporating historical flood records into
flood frequency analysis. The Bayesian model described in Sec-
tion 3.5 shows the value of incorporating estimates of historic
floods, bringing a reduction in 95% confidence limits of roughly
50% when compared to analysis that uses only the local gauged
data (Section 4.2). In addition the model employed here can also
incorporate subjective adjustment factors resulting from consulta-
tion with stakeholders with local hydrological knowledge. The
ability to add possibly subjective, expert hydrological information
to the Bayesian model (also see Viglione et al., 2013) can perhaps
assuage the concern that flood frequency analysis is dominated
by statistical analysis rather than hydrology (Singh and
Strupczewski, 2002). This point was borne out during discussions
with practitioners responsible for making flood risk estimates in
areas they have worked in for many years (Environment Agency
FRMA, 2014; Flood Risk Manager, 2014). The ability to incorporate
their local expertise could potentially make the resulting estimates



Fig. 9. Censored time series of peak discharge flood data for the River Eden at the location of the Sheepmount river gauge, Carlisle, Cumbria, UK. 46 years of gauged data are
shown with 21 historical flood estimates from 1800. In addition the December 2015 flood estimate is show with an extension of the censored period to cover the years
2013–2015.

Fig. 10. Flood frequency curve of the River Eden at Sheepmount showing 95% confidence limits, derived using the Bayesian model, including the December 2015 flood
estimate. Also shown (as red Xs) are the gauge readings from the Sheepmount river gauge (1967–2012) plotted using Gringorten plotting position formula and the historical
flood estimates (1800–1966) (as solid blue circles) plotted using the method described by Bayliss and Reed (2001). The upper and lower limits for the 1809 flood are
highlighted. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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more ‘physically-based’ in the sense that they take account of the
physical events and changes to the channel known to have
occurred but otherwise difficult to quantify. This can be done
within the Bayesian framework as long as it is communicated
transparently how the subjective factors are incorporated in the
model and how the model responds. As such flood risk estimates
and their associated uncertainty ought to be more plausible insofar
as they incorporate, in a systematic and rigorous way, more of the
available information about the historical frequency and nature of
flooding in the catchment.

But the software recommended by the Environment Agency
does not support the use of unsystematic (non-gauged) data, so
flood frequency estimates making direct use of historic data are
currently confined to the academia. Discussions with practitioners
responsible for making flood risk estimates in areas they have
worked in for many years suggest flood risk managers do indeed
take account of local expertise when making flood risk estimates
(Environment Agency FRMA, 2014; Flood Risk Manager, 2014;
Lane et al., 2011; Odoni and Lane, 2010), but the subjective process
is unlikely to be done consistently or transparently if it is not part
of the recommended protocol.

Bayesian approaches can overcome both these problems. They
enable you to use historic data and to do so transparently so that
the resulting impacts on the uncertainty are clear. The results pre-
sented in Section 4.2 show a reduction of over 50% in the confi-
dence intervals for the 0.01 AEP flood when our Bayesian model
is run using historic data combined with gauged data.

If we wanted to mainstream this approach, what would be the
next steps? At the moment the model employed for this project
has only been used for the data from Carlisle. But there is no reason



Table 6
Estimates of AEP and return periods (in years) for the January 2005 and December 2015 floods at Carlisle. The data show how the flood frequency curve is altered as new flood
data becomes available.

Flood event
Peak Discharge (m3 s�1)

January 2005
1516

December 2015
1690

AEP
(95% CL)

Return period
(95% CL)

AEP
(95% CL)

Return period
(95% CL)

Single site analysis 0.0055 (0.0386–<0.0001) 180 (34–<10,000) 0.00238 (0.0185–<0.0001) 420 (54–<10,000)
Bayesian model output
Without Dec 2015 flood 0.00382 (0.014–0.000246) 262 (70–4060) 0.00150 (0.00719–<0.0001) 665 (139–<10,000)
Including Dec 2015 flood 0.00666 (0.0192–0.00117) 150 (52–856) 0.00311 (0.0119–0.000255) 322 (84–3920)
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why the model would not work at other sites where there is a mix-
ture of gauged and historic data either in the form of uncertain
estimates of historic floods (censored historic time series), or just
knowledge of large floods in the past with no estimate of the peak
discharge (binomial censored time series) (Reis and Stedinger,
2005). If the model proved adaptable to other sites, it could be
packaged up with a ‘user friendly’ interface that would allow more
widespread use among flood risk management community.

However, substantial changes are often required to successfully
adapt academic software for commercial distribution (The
Economist, 2016). As well as improving the user interface, error
handling, and support infrastructure, one particular hindrance is
that, when using Bayesian MCMC analysis, it can be unclear when
the simulation is not converging on the posterior distribution
(Lunn et al., 2013, p. 72). For all the model runs in this project,
20,000 iterations with 5000 taken as burn-in was sufficient to
achieve convergence for the GEV parameter distributions. But this
may not be the case for other locations with different sets of data.
There are techniques for formally identifying convergence, for
example Plummer et al. (2006), but none are completely reliable
(Lunn et al., 2013, p. 75). Even though commercial statistical
Fig. 11. River Eden at Sheepmount flood frequency curves with 95% confidence limits sh
without the December 2015 flood.
packages are starting to incorporate Bayesian analysis modules,
(for example Stata, 2015), it is still difficult to envisage a software
package for estimating flood frequencies using Bayesian analysis
that could be used by practitioners with no knowledge of the
underlying techniques.

Furthermore, for the Carlisle case study, our job as researchers
was facilitated by the fact that the historical flood data had already
been collated from local archives and published. In order to main-
stream our Bayesian model, a practitioner would need to gather
the following inputs:

1. A historic catalogue of flood events. A useful starting point
may be the national database of historical records produced
by the British Hydrological Society (Black and Law, 2004), but
the practitioner may be required to supplement that data with
records from local archives.

2. Historic changes to the catchment and channel that may
have affected the intensity of floods and the stage-
discharge relationship. This too may require searching local
archives then testing the sensitivity of hydrological or hydraulic
models to the changes.
owing comparison of curves derived using the Bayesian model both including and
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3. Estimates of the peak discharge associated with historic
flood events. The task of creating a censored time series of his-
torical flood estimates would be daunting for a practitioner
starting from scratch, who was unlikely to have been trained
in the methods required for scouring local archives for records
of flooding.

4. Perception threshold. The sensitivity analysis of our model
(Section 3.8) shows that the identification of a realistic percep-
tion threshold is important when building a censored historical
flood record. The estimation of the perception threshold was
facilitated in the case of Carlisle due to the presence of the Eden
Bridge which provided a benchmark for much of the historical
period.

In the UK it may be feasible to identify a number of sites that do
satisfy these criteria. A cursory review of previous studies in the UK
suggest locations on the Rivers Tyne (Archer et al., 2007), Trent
(Macdonald, 2013), Ouze in Sussex (MacDonald et al., 2013) and
Yorkshire (Macdonald and Black, 2010) and Tay in Scotland
(Macdonald et al., 2006) would be suitable for the use of our Baye-
sian model. Further research should utilise a framework such as
that employed by Renard et al. (2013) to compare, across several
case studies, this method of frequency analysis with others that
can incorporate historical data, e.g. the EMA (Cohn et al., 2001).
6. Conclusion

While uncertainty is endemic to all estimates of flood risk, the
Bayesian approach developed in this paper offers a method both
for reducing its scale and managing it more transparently. In the
case of Carlisle, incorporating historic data into our Bayesian model
reduced the size of 95% confidence intervals by roughly 50% for
annual exceedance probabilities of less than 0.0133 (return periods
over 75 years) compared to standard flood frequency estimation
methods using solely gauge data. Several other locations in the
UK have been identified as possible additional case studies, but
even if these localities do not show similar reductions in uncer-
tainty from incorporating historic data, using a formal Bayesian
framework still provides greater transparency in flood frequency
estimation.

The two recent floods in Carlisle have highlighted the danger in
not taking explicit account of uncertainty when planning defences
and communicating their limits to residents. Although there is
clearly great promise in using models that can incorporate all
available data sources, more work is still required to mainstream
the Bayesian approach tested here and to develop decision-
support systems for helping making it available to users with no
specialist knowledge of the statistical techniques behind the
model.
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