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Abstract—Acoustic Simultaneous Localization and Mapping
(a-SLAM) jointly localizes the trajectory of a microphone array
installed on a moving platform, whilst estimating the acoustic
map of surrounding sound sources, such as human speakers.
Whilst traditional approaches for SLAM in the vision and optical
research literature rely on the assumption that the surrounding
map features are static, in the acoustic case the positions of
talkers are usually time-varying due to head rotations and body
movements. This paper demonstrates that tracking of moving
sources can be incorporated in a-SLAM by modelling the acoustic
map as a Random Finite Set (RFS) of multiple sources and
explicitly imposing models of the source dynamics. The proposed
approach is verified and its performance evaluated for realistic
simulated data.

I. INTRODUCTION

The ability to roam freely within the surrounding envi-
ronment is a fundamental requirement for robot technologies
targeted at the provision of assistance to humans, including
search-and-rescue, socially assistive, and hospitality applica-
tions. Any sensors, such as microphone arrays, installed in or
along the robotic body are therefore subject to rotations in
orientation and displacements in space over time.

The movement of microphone arrays can be exploited
constructively to triangulate the positions of surrounding sound
sources from bearing-only measurements. In order to exploit
spatial diversity of the moving platform, accurate knowledge
of the microphone array positions along the robot trajectory is
required. However, many robots, such as the humanoid NAO
by Aldebaran Robotics, are not equipped with self-localization
sensors, such that the robot positions are unknown and must
be estimated.

The robot trajectory can be estimated by exploiting the
apparent displacement of surrounding sound sources observed
from multiple positions along the robot trajectory. As both
the acoustic scene map [1] as well as the robot trajectory are
unknown and desired, a-SLAM is necessary to simultaneously
localize the robot trajectory whilst mapping the surrounding
map features, i.e., the sound sources. By exploiting spatial
diversity of the sensor, a-SLAM uses instantaneous Sound
Source Localization (SSL) estimates [2], [3] as measurements
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in order to track the three-dimensional Cartesian source posi-
tions in time. As the measurements, and hence the estimated
source tracks, are relative to the microphone array center, the
robot position can be estimated as the anchor point between
subsequent source measurements.

Traditional SLAM approaches often used for visual or
optical sensors, such as FActored Solution To Simultaneous
Localization and Mapping (FastSLAM) [4], are based on
the fundamental assumption that the surrounding features to
be mapped are static. However, human speakers are highly
non-stationary due to body movements and head rotations.
Moreover, sound emitted in enclosed spaces such as rooms
is subject to reverberation and background noise [5], leading
to SSL errors and spurious clutter measurements.

A new approach for SLAM using acoustic sensors recently
proposed in [6], [7] addresses the challenges of clutter, missing
detections, and SSL errors encountered when mapping sound
sources from reverberant speech signals. By formulating the
multi-source states as a RFS, surviving and newborn sources,
clutter, and missing detections can be explicitly modelled
and exploited for estimation of the source positions using a
Probability Hypothesis Density (PHD) filter [8]. Results in [6]
demonstrate that the proposed a-SLAM framework success-
fully infers the sensor path as well as the range and positions
of static sources from the bearing-only measurements.

In this paper we propose a novel extension of the a-SLAM
approach in [6], [7] by incorporating dynamical models to
capture the movement of sound sources typically encountered
in practice. The resulting a-SLAM approach captures the
movement of walking human speakers and models the time-
varying positions of static speakers due to head and body ro-
tations. Realistic simulations will investigate the performance
of the proposed framework for varying numbers of static and
moving sources, as well as the effect of a sound source’s
walking speed.

In the following, Section II introduces the system model and
Section III details the proposed approach. Simulation results
are presented in Section IV and conclusions are drawn in
Section V.

II. PROBLEM FORMULATION

The system model for a-SLAM captures positions and
trajectories of the robot and surrounding sources.



A. Source dynamical model

The state1 of source n ∈ Nt at time t is defined as
st,n ,

[
xt,n, yt,n, zt,n, ẋt,n, ẏt,n, żt,n

]T
, containing the source

position and velocity relative to rt. In order to allow for small
local variations in the source position due to head movements,
process noise is added to the source position, such that st,n is
modelled as

st,n = Dt,n st−1,n + nt,n, nt,n ∼ N
(
0, Qt,n

)
, (1)

where nt,n is the process noise with covariance Qt,n used to
model small deviations due to head and body rotations, and
Dt,n is the dynamical model, defined

Dt,n ,


1 0 0 ∆T 0 0
0 1 0 0 ∆T 0
0 0 1 0 0 ∆T

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (2)

where ∆T is the time delay between t− 1 and t.
By introducing moving sound sources and randomizing

the positions of static sources, the source positions therefore
become time-varying. This model violates the assumptions of
traditional SLAM approaches [9] often used for visual and
optical sensors, as approaches such as FastSLAM [4] require
static map features in order to decouple estimation of the
features from the robot trajectory.

To address the challenge of SLAM of moving sensor
arrays and moving sources typical for acoustic sensors, we
propose to utilize the a-SLAM approach in [6], [7]. In this
framework, the map of sources in (1) is captured in a RFS,
St , {st,n}Ntn=1, where each source position is considered as
a random state variable and where the set cardinality, Nt, itself
is a random variable. Using this formulation, the multi-source
state model can explicitly account for source initialisation,
survival between time steps, and termination, such that

St =

Nt−1⋃
n=1

P (st−1,n)

 ∪Bt, (3)

where Bt is a birth process. Furthermore, P (st−1,n) = st,n if
source n is persistent between t− 1 to t, and P (st−1,n) = ∅
otherwise, where ∅ is the empty set.

B. Source measurement model

In this paper, we assume that range-bearing measure-
ments of the source positions in (1) are available from,
e.g., Direction-of-Arrival (DoA) estimation using a spherical
anthropomorphic head array [3] and range estimation using
a robomorphic array of microphones attached to the robot’s
limbs [10]. In reverberation, the range-bearing measurements
are subject to localization error due to reverberation and noise.
Moreover, early reflections of sources often lead to spurious
clutter detections, such that the number of measurements,

1The notation k ∈ Kt is used for compactness to denote k ∈ {1, . . . ,Kt}.

Mt, is often not equal to the number of sources, Nt. The
measurements are therefore modelled as

ωt,m = g(st,n) + mt,m, mt,m ∼ N (0, R) , (4)

where ωt,m ,
[
rt,m, θt,m, φt,m

]T
, for m ∈ Mt, with

range, r =
√
x2 + y2 + z2, azimuth φ = arctan (y/x) and

inclination θ = cos−1
(
z/
√
x2 + y2 + z2

)
. The function g(·)

denotes the Cartesian-to-spherical transformation, and mt,m

is the measurement noise with covariance R.
Similar to (3), the point process of the Mt source measure-

ments is expressed as a RFS, Ωt , {ωt,m}Mt
m=1. Each source

measurement corresponds to either the direct path between the
robot and a source, a reverberant reflection, or a noise source.
Multi-source measurement models should hence account for
source detection, missed detection and clutter, such that

Ωt =

[
Nt⋃
n=1

D(st,n)

]
∪ Ct, (5)

where Ct is the RFS of clutter measurements and the local-
ization of sources is modelled as D(st,n) = ωt,m if st,n is
detected and D(st,n) = ∅ otherwise.

C. Robot model
The robot state, rt =

[
xt,r, yt,r, zt,r, vt, γt

]T
, at time t con-

tains the three-dimensional Cartesian position, (xt,r, yt,r, zt,r),
robot speed, vt, and orientation, γt. The robot position and
velocity can be modelled as a linear Gaussian state space
that is non-linear in the orientation. Augmenting the linear
variables in the vector pt ,

[
xt,r, yt,r, zt,r, vt

]T
,

pt = F t pt−1 + vt,p, vt,p ∼ N (04×1, Σt,v) (6a)

γt = γt−1 + vt,γ , vt,γ ∼ N
(

0, σ2
vt,γ

)
(6b)

where the matrix F t modelling the robot dynamics is general
but defined in this paper as a constant velocity and constant
height model, such that

F t =


1 0 0 ∆T sin γt
0 1 0 ∆T cos γt
0 0 1 0
0 0 0 1

 . (7)

Robots typically move within an environment based on path
planning algorithms. However, due to physical imperfections
of the robot’s motors and its environment, the executed
orientation, γt, and velocity, vt, typically diverge from the
planned orientation, yt,γ , and velocity, yt,v . The planned path
instructions, yt ,

[
yt,γ yt,v

]T
, referred to hereafter as the

robot measurements, can therefore be modelled as

yt,v = h pt + wt,v, wt,v ∼ N
(

0, σ2
wt,v

)
(8a)

yt,γ = γt + wt,γ , wt,γ ∼ N
(

0, σ2
wt,γ

)
(8b)

where h ,
[
0, 0, 0, 1

]
and where the discrepancy between

the planned and executed velocity and orientation is modelled
as White Gaussian Noise (WGN) noise, wt,v and wt,γ with
variance σ2

wt,v and σ2
wt,γ .



III. SYSTEM ESTIMATION

a-SLAM estimates the joint states, Xt , {(rt, (Nt,St))},
consisting of the robot states and the Nt multi-source states,
from the measurements, Zt = {(yt, (Mt,Ωt))}, containing
the measurements of the robot position and the Mt source
measurements, Ωt.

In a Bayesian framework, Xt can be estimated sequentially
by maximising the filtering density, p(Xt|Z1:t), at each
time step t. However, in practice, the multi-object densities
are combinatorially intractable. Instead of estimating the full
Probability Density Function (pdf), its first-order moment, the
PHD, λ(xt|Z1:t), can be estimated instead. Accordingly, the
PHD of the joint state, Xt, can be expressed as,

λ(xt|Z1:t) = p(rt|y1:t)λ(st|rt,Ω1:t) (9)

where λ(st|rt,Ω1:t) is the multi-source PHD, defined in detail
in Section III-B. The density p(rt|y1:t) is the robot posterior
pdf, given by [6]

p(rt|y1:t) =
L(Ωt|rt) p(rt|y1:t−1)p(yt|rt)∫
L(Ωt|rt) p(rt|y1:t−1)p(yt|rt)drt

(10)

where p(rt|y1:t−1) denotes the predicted robot pdf, and
p(yt|rt) is the likelihood of the robot instructions. The term
L(Ωt|rt) denotes the multi-source likelihood defined as

L(Ωt|rt) , e−Nt,c−pdNt|t−1

Mt∏
m=1

`(ωt,m|rt) (11)

and where Nt,c is the estimated number of clutter mea-
surements, Nt|t−1 is the predicted number of sources, and
`(ωt,m|rt) is the single-source likelihood and will be defined
in Section III-B2.

A. Estimation of sensor path

The unknown variable, pt, in (6) is modelled as a linear
Gaussian state space, but is non-linearly dependent on the
orientation, γt. A Rao-Blackwellized particle filter [11] is
therefore used to propagate p(rt|y1:t) in time, such that

p(rt|y1:t−1) = p(pt|y1:t−1,v) p(γt|y1:t−1,γ). (12)

Assuming that the orientation, γt−1 at t − 1, is described by
a cloud of It−1 particles, γ̂(i)t−1, the orientation at t can be
obtained by drawing P importance samples for each particle
from t− 1 from a proposal distribution, π(γt|γ(i)t−1), such that

γ̂
(i,p)
t ∼ π(γt|γ(i)t−1) (13)

for all p ∈ P and i ∈ It−1. The robot pose, pt, is described
by a linear Gaussian state-space conditional on the orientation.
Therefore, for each robot particle in (13), the Kalman Filter
(KF) equations [12] are evaluated to propagate the robot pose
in time. The pdf of the robot state, rt in (12) can therefore be
expressed as

p(rt|y1:t) =

It−1∑
i=1

P∑
p=1

α
(i,p)
t δ

γ̂
(i,p)
t

(γt)N (pt|ψ(i,p)
t ,Ψ

(i,p)
t )

(14)

where δ
γ̂
(i,p)
t

(γt) denotes the Dirac-Delta function of γt cen-

tered about γ̂(i,p)t , the updated sensor position mean, ψ(i,p)
t

and covariance, Ψ
(i,p)
t , are given by the KF update equations

[12], and the weights, α(i,p)
t , are defined as

α
(i,p)
t ,

α̂
(i,p)
t∑It−1

j=1

∑P
q=1 α̂

(j,q)
t

(15)

where the unnormalised weights, α̂(j,q)
t , are

α̂
(i,p)
t , α

(i,p)
t|t−1 L(Ωt|r(i,p)t )N

(
yt,v|hψ(i,p)

t|t−1, σ
2
t,s

)
×N

(
yt,γ |γ(i,p)t , σ2

t,wγ

)
.

(16)

It is important to note that the weight of each Rao-
Blackwellised robot state particle, r

(i,p)
t , accounts for the

multi-source likelihood, L(Ωt|r(i,p)t ). As the set of source
measurements, Ωt, is relative to the robot state, unlikely
particles, r

(i,p)
t , result in rotations and displacements of the

measurements. The discrepancy between the source estimates
St−1 and their measurements, Ωt, at t is therefore increased,
such that the likelihood, L(Ωt|r(i,p)t ) decreases. The likelihood
is therefore used as a weighting of the robot particles in (16)
in order to triangulate the robot position using the acoustic
map of estimated sources.

B. Estimation of source trajectories

The single-source states in (1) are modelled as a linear
Gaussian state space. Therefore, a Gaussian Mixture PHD
(GM-PHD) [13] is used to estimate the multi-source states,
St. For each sensor estimate, r

(i,p)
t , one GM-PHD filter is

propagated to estimate the source trajectories. For readability
the superscript (i, p) is dropped in the following.

1) Source Prediction: The predicted PHD is given by
a Gaussian sum of Jt|t−1 = Jt−1 + L components, with
Gaussian Mixture (GM) weights, w(j)

t|t−1, mean, m
(j)
t|t−1, and

covariance, Σ
(j)
t|t−1, such that

λ(st|rt,Ω1:t−1) =

Jt|t−1∑
j=1

w
(j)
t|t−1N

(
st |m(j)

t|t−1, Σ
(j)
t|t−1

)
.

(17)

The GM components can be grouped into components due
to newborn sources, λb(st|rt,Ωt), and persistent components
due to sources surviving from t− 1 to t, λs(st|rt,Ω1:t), such
that

λ(st|rt,Ω1:t−1) = λb(st|rt,Ωt) + λs(st|rt,Ω1:t). (18)

The predicted PHD of surviving sources is given by the GM,

λs(st|rt,Ω1:t−1) =

Jt−1∑
j=1

w
(j)
s,t|t−1N

(
st |m(j)

s,t|t−1, Σ
(j)
s,t|t−1

)
,

(19)



where the predicted GM weight, w(j)
s,t|t−1 = ps wt−1, and the

mean, m
(j)
s,t|t−1, and covariance, Σ

(j)
s,t|t−1, terms are given by

the KF prediction [13].
Similar to (19), the PHD of newborn sources is given

λb(st|rt,Ωt) =

L∑
`=1

w
(`)
b,t N

(
st |m(`)

b,t , Σb,t

)
. (20)

where m
(`)
b,t are the GM mean terms, the GM weights are

w
(`)
b,t = Nb

L for Nb expected source births per time step, and
the covariance, Σb,t, is constant and known a priori. The birth
process in this paper is measurement-driven, such that the GM
mean terms, m

(`)
b,t , are constructed from the measurements,

ωt,m, by drawing Mt L birth GM components from

m
(`)
b,t ∼ N (ωt,m, R) . (21)

for all m ∈Mt, where ` = (m− 1)L+ 1, . . . ,mL and R is
the measurement covariance in (4).

2) Source update: The updated source PHD, λ(st|rt,Ω1:t),
corrects the predicted components using the measurements
whilst accounting for the probability of source detection, pd.
Since both the prediction of surviving sources and the birth
PHD are expressed by GMs (19) and (20), the updated source
PHD is equivalent to

λ(st|rt,Ω1:t) = (1− pd)λs(st|rt,Ω1:t−1)

+ pd

Mt∑
m=1

Jt|t−1∑
j=1

w
(j,m)
t N

(
st |m(j,m)

t , Σ
(j,m)
t

) (22)

where the updated mean, m
(j,m)
t , and covariance, Σ

(j,m)
t , of

the GM components are given by the Extended Kalman Filter
(EKF) update equations [13], λs(st|rt,Ω1:t−1) is given in (19)
and the updated weights, w(j,m)

t , are

w
(j,m)
t , w

(j)
t|t−1

q(ωt,m|rt)
`(ωt,m|rt)

. (23)

with q(ωt,m|rt) , N
(
ωt,m | g

(
m

(j)
t|t−1

)
, S

(j)
t

)
. The single-

source likelihood, `(ωt,m|rt), is given by

`(ωt,m|rt) = κ(ωt,m) + pd

Jt|t−1∑
j=1

w
(j)
t|t−1 q(ωt,m|rt) (24)

where κ(ωt,m) is the PHD of clutter.
The source PHD can also be used to obtain an estimate of

the number of sources, N̂t, where [13]

N̂t =

Jt|t−1∑
j=1

w
(j)
t|t−1 +

Mt∑
m=1

Jt|t−1∑
`=1

w
(`,m)
t . (25)

C. Extraction of point estimates

A point estimate of the robot state at each t is extracted as
the weighted average of the particles, r

(i)
t and their importance

weights, α(i)
t for all i ∈ It, where It = It−1 P . Source point

estimates can be extracted as described in, e.g., [13].

IV. RESULTS

To test the performance of the approach for walking sound
sources the algorithm was tested in two experiments for
data generated from the following simulation for a room
of dimension 6 × 6 × 2.5 m. The robot path is generated
from (6) for an initial orientation of γ0 = 0 deg and
p0 =

[
2 m, 2m, 1.5m, 0.5m/s

]
respectively, for process noise

variance Σt,v = 10−9 × I4 and with σvt,γ = 45 deg on the
orientation. If the robot position lies within 1 m of any wall
at any t = k, the orientation is forced to γk = γk−1 σvt,γ
in order to reflect the position back into the room. With
σvt,γ = 45 deg, the robot can therefore perform a three-
point turn. In order to initialise the sources, the room region
is divided into four quadrants of equal area with origin at
(3, 3, 2.5) m. The Nt = 3 sources are assigned to quadrants by
randomly choosing a unique quadrant per source. The source
trajectories are generated from (1) with initial orientation of
0 rad. Head and body rotations of static talkers are modelled
using process noise with standard deviation in position of
0.1I3 m and 0 m/s in velocity. Walking sources are modelled
for different velocities as detailed below. If a walking source
reaches within 1 m of a wall at any t, its orientation is rotated
by π rad for the remaining trajectory. Each source is initialized
to a uniformly selected position within the assigned quadrant.

Two experiments were conducted: Experiment 1 investigates
the influence of the number of sources. Experiment 2 inves-
tigates the effect of increasing source velocity. The number
of robot particles is limited to It = 50 after each recursion
with P = 10. The number of source components is limited
to Jt = 450. Pruning as described in [13] was applied to the
source GM-PHD, whilst systematic resampling was used for
the robot particles [14].

A. Experiment 1: Number of walking sources

The scenario is evaluated for four different cases: 1) 3
static sources, 2) 3 walking sources, 3) 1 walking and 2 static
sources, as well as 4) 2 walking and 1 static source.. Each
case is evaluated for 5 independent Monte Carlo runs. The

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of samples, t

E
uc

lid
ea

n
di

st
an

ce
[m

]

Moving: 0; Static: 3
Moving: 1; Static: 2
Moving: 2; Static: 1
Moving: 3; Static: 0

Fig. 1: Robot localization performance for increasing numbers
of walking talkers.
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Fig. 2: Robot localization performance for increasing source
velocity.

source speed is 0.25 m/s, such that walking sources cover
a distance of 1 m during each experiment. The performance
of the proposed a-SLAM approach for robot localization is
evaluated using the Euclidean distance between the true and
estimated robot trajectories shown in Fig. 1.

The results show that the a-SLAM approach for a single
moving source converges to a localization accuracy of between
6 − 10 cm after t = 6. The variation in this value is due
to the dependency of a-SLAM on informative robot paths
[7]. Smoother curves could hence be obtained by averaging
over a large number of Monte Carlo runs to counteract this
path-dependency. The results in Fig. 1 indicate the general
performance trend of the proposed approach.

When considering 3 static sources, an average Euclidean
distance of 7 cm is achieved, i.e., an improvement of up to
4 cm. The modest decrease of up to 3 cm in localization
accuracy of the robot trajectory demonstrate that two sources
are sufficient to triangulate the robot from the acoustic map.

When considering 2 moving speakers and a single static
source, the robot path quickly converges to a Euclidean dis-
tance of 10 cm between the true and estimated robot position
(see Fig. 1). For 3 moving sources, the maximum Euclidean
distance diverges to 18 cm.

The results of Experiment 1 therefore demonstrate that
a-SLAM accuracy within 5 cm Euclidean distance can be
achieved if at least two sources are static. The static sources
act as reference points – or anchors – for the a-SLAM
algorithm. The results also indicate that a-SLAM is robust
against additional moving sources.

B. Experiment 2: Source velocity

To further investigate the robustness of the approach for
moving sources, Experiment 2 investigates the effect of the
source velocity. The scenario is evaluated for 2 static sources
and 1 walking source. The velocity of the walking source is
increased from 0.25 m/s to 1 m/s. The proposed approach
reaches a steady state after approximately t = 16. The

Euclidean distance between the true and estimated robot
trajectories are plotted in Fig. 2. The figure indicates that robot
localization performance can in fact be improved by increasing
the velocity of the moving source. The large displacement of
fast sources allows for the easier detection of the source’s
motion. Therefore faster convergence of the source model can
be achieved, leading to an overall improvement in a-SLAM
performance.

V. CONCLUSIONS

This paper proposed an approach to a-SLAM for moving
sound sources from moving microphone arrays. Models were
proposed to capture the natural head and body rotations of
static human talkers as well the motion of walking talkers. The
models were incorporated within a framework for a-SLAM
based on a RFS formulation. Simulation results demonstrated
that two out of three static sources are sufficient to accurately
localize the robot trajectory.
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