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Abstract 13 
 14 
High-throughput analysis of animal behavior is increasingly common following advances of recording 15 
technology, leading to large high-dimensional data sets. This dimensionality can sometimes be 16 
reduced while still retaining relevant information. In the case of the nematode worm Caenorhabditis 17 
elegans, more than 90% of the shape variance can be captured using just four principal components. 18 
However, it remains unclear if other methods can achieve a more compact representation or contribute 19 
further biological insight to worm locomotion. Here we take a data-driven approach to worm shape 20 
analysis using independent component analysis (ICA), non-negative matrix factorization (NMF), a 21 
cosine series, and jPCA (a dynamic variant of principal component analysis) and confirm that the 22 
dimensionality of worm shape space is close to four. Projecting worm shapes onto the bases derived 23 
using each method gives interpretable features ranging from head movements to tail oscillation. We 24 
use these as a comparison method to find differences between the wild type N2 worms and various 25 
mutants. For example, we find that the neuropeptide mutant nlp-1(ok1469) has an exaggerated head 26 
movement suggesting a mode of action for the previously described increased turning rate. The 27 
different bases provide complementary views of worm behavior and we expect that closer 28 
examination of the time series of projected amplitudes will lead to new results in the future.  29 
  30 
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Introduction 1 
 2 
Analyzing animal behavior is a high-dimensional problem since each joint in vertebrates and each 3 
independent muscle in invertebrates introduces new degrees of freedom.  This makes it challenging to 4 
provide comprehensive and quantitative descriptions of behavior even in small animals like the 5 
nematode worm Caenorhabditis elegans (Gomez-Marin et al., 2014). Traditional ethology methods 6 
have focused on observer-defined categories to reduce behavioral dimensionality but automated 7 
imaging and data analysis tools have made it possible to extract more complete records of an animal’s 8 
behavior (Anderson and Perona, 2014; Chen and Engert, 2014; Gouvêa et al., 2014; Machado et al., 9 
2015; Ohyama et al., 2013; Ramdya et al., 2015). From these data, lower-dimensional representations 10 
can then be identified using unsupervised learning algorithms.  Dimensionality reduction can be 11 
achieved using a variety of different methods. Each emphasizes different aspects of the underlying 12 
behavior and it is not clear which of these will be the most informative in advance or in fact what 13 
behavioral feature each corresponds to in contrast to observer-defined categories. However, the 14 
assumptions and limitations of each automated approach are made explicit in the algorithm and they 15 
can be compared quantitatively on a common data set. 16 
 17 
The nematode worm C. elegans is a useful model to test different dimensionality reduction methods. 18 
C. elegans moves by propagating bending waves along its body and, when confined to the surface of 19 
an agar plate, this motion occurs in two dimensions, making it possible to capture its behavior using a 20 
single camera. Previous work on C. elegans body shape using principal component analysis (PCA) 21 
has shown that the effective dimensionality of worm locomotion is low, as there are correlations 22 
between bends along different parts of the body (Stephens et al., 2008). Trajectories through the lower 23 
dimensional space defined by the principal components can be used to classify different genotypes 24 
and explain certain behaviors both in C. elegans and in the larvae of Drosophila melanogaster 25 
(Brown et al., 2013; Stephens et al., 2011; Szigeti et al., 2015). 26 
 27 
Here we revisit the question of how to represent worm shape space by using four different 28 
dimensionality reduction methods (Table 1). As each of these methods has different objectives, the 29 
resulting dimensions highlight different aspects of C. elegans shape space. We analyze these 30 
differences using features derived from the methods and compare the behavior of mutant worms. 31 
 32 
 33 
Methods 34 
 35 
Data 36 
The dataset used in the analysis was collected and described previously (Yemini et al., 2013). It 37 
contains 9964 videos of single worms moving freely on an agar plate for 15 minutes (after a 30-38 
minute-long acclimatization period). 335 different genotypes were analyzed including the N2 lab 39 
strain. We used the angle representation of the worm (Fig. 1B-C) with a mean of zero except for non-40 
negative matrix factorization (NMF) where all values were made positive by adding a constant (a 41 
requirement of the method). 10 N2 trajectories were picked randomly from a collection of 100 as the 42 
training set for jPCA (a dynamic variant of PCA). To obtain the variance of the basis shapes, we 43 
resampled the same collection 100 times obtaining 10 trajectories each time.  44 
 45 
Dimensionality reduction 46 
A training set of 3000 N2 shapes was picked randomly from a collection of 12600 for independent 47 
component analysis (ICA) and NMF. To obtain the variance of the basis shapes, we resampled the 48 
same collection 100 times obtaining 3000 N2 shapes each time. For analysis, a testing set of 3000 N2 49 
shapes was projected onto each basis shape to retrieve the corresponding amplitudes. To ensure that 50 
all of the mutants were represented in the test between PCA and the sinusoidal basis shapes, we 51 
sampled 1 shape from each of the 9964 recordings in the dataset. Each worm shape was reconstructed 52 
using either four principal components or the sinusoidal basis and the squared difference between the 53 
reconstructed and original shapes were determined in each case. PCA and NMF were conducted using 54 
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built-in functions of MATLAB, while freely available methods were used for ICA 1 
(http://research.ics.aalto.fi/ica/fastica/, (Hyvarinen, 1999)) and jPCA (Churchland et al., 2012). We 2 
used the deflation approach and the power law nonlinearity as the parameters for ICA, but we find 3 
that our results are robust to different parameters, as well. The sinusoidal basis shapes were defined to 4 
be cosine waves, 5 
 6 

Θ = cos !" !
!!"!#$

 

 7 
where s is the arclength, stotal is the total arclength, and n is an integer from 1 to the number of basis 8 
shapes used.  9 
 10 
Mutant comparisons 11 
We projected the entire dataset onto the NMF and jPCA basis shapes (derived from the N2 wild type 12 
training set) to obtain the projected amplitudes for each worm at each time-point. The projected 13 
amplitudes have arbitrary units because the basis shapes are normalized. We then took the mean 14 
absolute value of each projected amplitude as a simple feature characterizing each worm’s average 15 
shape. For jPCA, we measured the mean amplitude of the anterior oscillation in each individual, i.e.  16 
!
! !!!(!) + !!!(!) !/!!

!!! , where A1 and A2 are the projections onto the first two eigenshapes, and t is 17 

the frame number. These were compared between each genotype and the wild type (N2) using a 18 
Mann-Whitney U-test. Bonferroni correction was used to control for multiple comparisons. 19 
 20 
Worm maintenance and recordings 21 
As previously described (Yemini et al., 2011), worms were maintained under standard conditions on 22 
Nematode Growth Medium (NGM) plates with OP50 as food source at 22 °C. The mutant strains 23 
highlighted in the results section are BZ28 (snf-6)eg28, VC1295 egg-5(ok1781) and RB1340 nlp-24 
1(ok1469). Induced reversal experiments were carried out as described in (Alkema et al., 2005). The 25 
wild type strain was C. elegans variant Bristol, strain N2 and the mutant strain was MT13113 tdc-26 
1(n3419).  27 
 28 

Results 29 
 30 
Independent component analysis refines features derived from PCA 31 
Independent component analysis (ICA) minimizes the statistical dependence of the components in 32 
multivariate signals as compared with PCA that minimizes the projection error. This means that ICA 33 
can remove noise and separate artifacts from the data (Hyvärinen and Oja, 2000), while PCA focuses 34 
on reducing the unexplained variance with successive components. 35 
 36 
We find that ICA returns four basis shapes that are reminiscent of the ones obtained using PCA (Fig. 37 
2A-B), but the projected amplitudes of full worm trajectories show clear differences. This is 38 
consistent across resamplings and different parameters. The two PCA eigenshapes shown in Figure 39 
2C have previously been described as forming an approximate quadrature pair (Stephens et al., 2008). 40 
Therefore, the travelling wave that worms form during crawling locomotion is encoded as phase-41 
shifted oscillations in these modes. Histograms of projections onto the first two basis shapes averaged 42 
over multiple worms are shown in Fig. 2. A ring structure suggesting oscillatory behavior is clearly 43 
present during forward locomotion (Fig. 2C, top row) with both methods, although the probability 44 
distribution is less constant along the ring using PCA compared to ICA.  When all the data are plotted 45 
including turns and dwelling, the probability distribution becomes more uniform, especially for PCA. 46 
This suggests that ICA returns modes that isolate the crawling wave more completely from other 47 
aspects of the shape dynamics compared to PCA. 48 
 49 
Worm body segments are individually defined by non-negative matrix factorization 50 

Provis
ional



	 4	

Non-negative matrix factorization (NMF) is a commonly used method in computer vision and data 1 
clustering (Lee and Seung, 1999). In contrast to other methods that are more focused on returning a 2 
combination of the original variables as the reduced dimensions, NMF finds a parts-based 3 
representation. In the shape dataset, this means that each of the basis shapes is going to be good at 4 
explaining a particular segment of the worm and the corresponding amplitude will directly correlate 5 
with the size of displacement in that segment. Running the algorithm returns a set of basis shapes that 6 
indeed divides the worm into 5 approximately equally spaced segments (Fig. 3A-B) corresponding to 7 
the head, neck, midbody, hip and tail regions. 8 
 9 
We compared the NMF segment features (mean absolute projected amplitudes) across all 335 10 
genotypes in the database using the basis shapes derived from the training set of wild type N2 shapes. 11 
This set of basis shapes captures 97.6% of the variance in N2 and 97.1% in mutants. At least one 12 
feature was significantly different compared to the wild type N2 strain in 172 genotypes (significance 13 
level: 0.01, Bonferroni corrected Mann-Whitney U-test) (Fig. 4). The results confirm earlier research: 14 
for instance the mutant snf-6 is known to have exaggerated head movements (Kim et al. 2004). Most 15 
behavioral studies have not focused on describing the locomotion phenotype in detail, as this is often 16 
difficult to do by eye. However, NMF can provide testable hypotheses on the location of effect in a 17 
novel way, for instance with regards to the mode of action of the gene nlp-1. The lack of this 18 
neuropeptide is known to increase the turning rate of the worm via modulating the AIA neurons, but it 19 
is not obvious how these two are linked, as these neurons are highly interconnected with other 20 
neurons (Chalasani et al., 2010). We find that nlp-1 mutants show an increase in the amplitude 21 
projected onto the mode that corresponds to the head, while there is no significant difference along 22 
other parts of the body (Fig. 4).  Such a localized response could help constrain hypotheses for AIA 23 
function by focusing on neural circuits that modulate head muscles. NMF can also help in discerning 24 
phenotypes that may be masked by more obvious effects. An example of this is the egg-5 mutant that 25 
has severe developmental problems during the oocyte phase while still in the parent worm (Parry et al. 26 
2009). The increased movement in the hip and the tail of the worm (Fig. 4) could be due to a decrease 27 
of eggshell on the eggs inside the gonads, making them more flexible and less restrictive for the 28 
worm. 29 
 30 
Fourier cosine series captures 97% of variance across mutants 31 
Data-driven dimensionality reduction methods are inherently dependent on the dataset used to train 32 
them, meaning that the basis shapes produced will be different if a different training set is used. If the 33 
training set is large enough, variation will be small, but if only a small number of trajectories are 34 
available for a given condition then the derived shapes could vary significantly from sample to 35 
sample. Using a set of pre-determined basis shapes would avoid this issue, but to be useful they must 36 
explain most of the shape space variance across different individuals. Given the sinuous set of basis 37 
shapes derived using both PCA and ICA, we defined a Fourier cosine series as a set of basis shapes 38 
and tested if it could capture worm shapes compactly (Fig. 5A-B). The first four basis shapes of the 39 
cosine series captured 96.9% of the variance across the mutant shape test set (Fig. 5C). While the 40 
cosine series performs significantly worse than PCA (p=2.49*10-11, t-test), the difference is small (the 41 
top four PCA components capture 97.1% of the variance) and may be negligible for some 42 
applications. Using a set of analytically defined modes may prove useful in theoretical applications. 43 
 44 
Body oscillations are described by jPCA 45 
The methods considered above are time independent: they only take into account the distribution of 46 
shapes. In contrast, jPCA uses time series trajectories of worm motion, maps the shape space with 47 
PCA and then reorients these components to identify components that show strong oscillations 48 
(Churchland et al., 2012). Using this method on wild type (N2) trajectories leads to three pairs of 49 
components, each pair corresponding to a segment along the body of the worm (Fig. 6A-B). The 50 
components are ordered according to the strength of the oscillation detected, indicating that the 51 
oscillation produced during locomotion decreases in strength from head to tail on average.  52 
 53 
Worms have different movement patterns during reversals as opposed to forward motion. We 54 
analyzed different mutants to see if there is any difference compared to wild type N2 by looking at the 55 
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anterior body oscillation, a behavior that was the most rotationally robust in the dataset. Similarly to 1 
NMF, there is a large number of mutants (168, significance level: 0.01) significantly different 2 
compared to wild type N2 in the size of the anterior oscillation. Two examples are shown in Fig. 7. 3 
We found that the wild type worm reduces the size of its anterior body oscillation during spontaneous 4 
reversals, prompting us to consider whether this feature was sensitive to the head tip oscillation of the 5 
worm, as this is known to be suppressed during reversal (Alkema et al., 2005). However, the anterior 6 
oscillation detected by jPCA is not suppressed during touch-evoked reversals (Fig. 7).  We also 7 
looked at tdc-1(n3419) mutants, which have been reported to maintain their head tip oscillation during 8 
touch-evoked reversals (Alkema et al., 2005). As with N2, we do not detect a change in jPCA anterior 9 
oscillation in tdc-1(n3419) touch-evoked reversals, but we do find that the magnitude of the 10 
oscillation is lower in tdc-1 during spontaneous forward locomotion. This suggests that the jPCA 11 
anterior oscillation is not the same as the small oscillation that worms exhibit at the very tip of their 12 
heads. Despite this, the jPCA anterior oscillation does show a difference between spontaneous and 13 
touch-evoked reversals: both wild type and tdc-1 worms show a stronger anterior body oscillation 14 
during touch-evoked reversals (Fig. 7). Finally, we also found that egg-5 mutants fail to suppress their 15 
anterior body oscillation during reversal, even though they behave normally during forward 16 
locomotion. 17 
 18 
 19 
Discussion 20 
 21 
We used four different dimensionality reduction methods to obtain a number of new features that can 22 
be used to describe different groups of worms. The new features are straightforward to use and show 23 
interpretable differences between mutants. 24 
 25 
We found that none of the methods returned a more compact representation of the C. elegans shape 26 
space compared to PCA, confirming the previous lower-bound dimensionality of four for the worm 27 
shape space (Stephens et al., 2008). However, different projections provide different kinds of 28 
information, for instance the intuitive joint-like representation of postural dynamics through non-29 
negative matrix factorization or the full-body oscillations from independent component analysis. In 30 
addition, ICA clearly defines two sets of basis shapes (1 and 2; 3 and 4) corresponding to two waves 31 
with different frequencies, suggesting a possible representation of worm behavior as a superposition 32 
of two fundamental oscillations. The set of sinusoidal basis shapes provides an analytically defined set 33 
of shapes that could be used across experiments and labs to make results more directly comparable 34 
since they generalize well across mutant strains. jPCA contributes an interesting insight into the 35 
dynamic oscillation patterns of the worm body. This pattern could be consistent with a central pattern 36 
generator in the head producing an oscillation that becomes less coherent as it propagates down the 37 
worm (Gjorgjieva et al., 2014). 38 
 39 
Behavior is a dynamic process often involving shifts between different states, single events and cyclic 40 
episodes. The amplitudes of the shapes projected onto the different bases also change over time, but 41 
this was not taken into account when we interrogated the database. Instead, we used the magnitude 42 
averaged over the entire recording that reflects the general shape of the worm, which was sufficient to 43 
detect many significant differences. However, thorough time series analysis would likely reveal more 44 
details about the locomotion trajectories. Oscillations are ubiquitous in all four bases, but each feature 45 
also has a rich dynamical profile with different properties and comparison between these has the 46 
potential to provide different and complementary information. One example could be the 47 
characterization of the spontaneous switch between the feeding states of the worm. C. elegans has 48 
been reported to have three different behavioral states (roaming, dwelling and quiescence) that are 49 
influenced by food availability and nutritional status (You et al., 2008). The states are traditionally 50 
defined by instantaneous midbody speed when using automatic tracking, but this is known to have its 51 
limits when trying to find well-defined states (Ben Arous et al., 2009; Fujiwara et al., 2002; Gallagher 52 
et al., 2013). Shape has been useful for detecting lethargus, a different quiescent state that has a 53 
specific posture associated with it (Iwanir et al., 2013; Nelson and Raizen, 2013). The new shape 54 
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features could provide further insight into shape differences that characterize different behavioral 1 
states. At the same time, some bases may be better suited than others for defining predictors of single 2 
events such as omega turns, and description of periodic behaviors like reversals. 3 
 4 
Worm behavior has often been described using states defined by the experimenter. Using recording 5 
equipment and automated feature extraction was initially conceived to help with the process of group 6 
assignment and definition (Baek et al., 2002; de Bono and Bargmann, 1998), and this has been 7 
extended with unsupervised methods to detect patterns in worm locomotion (Brown et al., 2013; 8 
Schwarz et al., 2015).  As we have shown here, the basis used for representing shape can reveal 9 
different aspects of behavior and provide new avenues for the future development of behavior 10 
classification and analysis methods. 11 
 12 
 13 
 14 
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Method Abbreviation Description 
Principal 
Component 
Analysis PCA 

It finds linearly uncorrelated components in a given dataset. The successive 
components explain a decreasing amount of variance. 

Independent 
Component 
Analysis ICA 

It finds statistically independent components in a given dataset and removes 
noise and separates artifacts. 

Non-negative 
Matrix 
Factorization NMF 

It finds a parts-based representation with each component accounting for a 
particular segment of the data space. 

Cosine series - 
It is a pre-defined set of components. It is used to obtain projected 
amplitudes like components from the other methods. 

jPCA - 
It uses components defined by PCA and reorients them so that the projected 
amplitudes show a strong oscillation over time. 

Table 1. A list of methods, their abbreviations and short descriptions. 1 
  2 
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 1 

 2 
 3 
Figure 1. (A) A typical frame of a worm under the tracking microscope. (B)-(C) The outline and the 4 
curve through the center of the worm. The angle in radians between neighboring points along the 5 
centerline is plotted from the tip of the head (s = 1) to the end of the tail (s = 48). (D) As the worm 6 
moves, the value of each angle changes, but each subsequent angle provides little additional 7 
information because they are highly correlated with each other. (E) Dimensionality reduction methods 8 
can reveal more biologically meaningful time-series variables. 9 
  10 
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 1 

 2 
 3 
Figure 2. (A) Independent component analysis returns four basis shapes that explain 97.6% of the 4 
variance in the dataset. The graph shows an x-y coordinate representation of the modes with the 5 
resampled basis shapes in grey.  (B) The fraction of the variance explained along the worm by 6 
including an increasing number of basis shapes suggests that the modes can each explain a different 7 
part of the worm well. (C) Bivariate histograms for the amplitudes of basis shapes (wild type worm, 8 
15 minutes, frame rate: 30 Hz). Top row: forward locomotion only, bottom row: all data. Basis shapes 9 
1 and 2 from ICA form a ring in both cases (especially clear when only the forward locomotion is 10 
counted), suggesting an oscillatory behavior between them. Similarly, two basis shapes from principal 11 
component analysis are known to explain an oscillatory behavior, but they also include other 12 
information, as evidenced by a lack of clear, continuous ring in their histograms. 13 
  14 
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 1 

 2 
 3 
Figure 3. (A) Non-negative matrix factorization returns five basis shapes that explain 97.6% of the 4 
variance in the angle data. The graph shows an x-y coordinate representation of the modes with the 5 
resampled basis shapes in grey. (B) Angle representation of the basis shapes in (A) (legend in (C)). 6 
(C) The fraction of the variance explained along the worm by including an increasing number of basis 7 
shapes suggests that the modes can each explain a different part of the worm well, in this case 8 
localized to the five major segments of the worm. (D) Bivariate histograms for the amplitudes of basis 9 
shapes (wild type worm, 15 minutes, frame rate: 30 Hz). Basis shapes 3 and 4, and 1 and 5 both form 10 
incomplete rings, suggesting a more diffuse representation of the oscillatory sinusoidal crawling 11 
behavior using NMF. 12 
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Figure 4. The mean of the absolute projected amplitudes corresponding to each basis shape from non 4 
negative matrix factorization is taken for individual worms of four different genotypes. (wild type N2: 5 
n = 1303, snf-6: n = 43, nlp-1: n = 22, egg-5: n = 23) snf-6 and nlp-1 worms have significantly 6 
increased head motion, but normal movement in the rest of their body in terms of magnitude (padj(snf-7 
6) = 3.13 x 10-14, padj(nlp-1) = 6.83 x 10-4), while the opposite can be observed in egg-5 mutants 8 
(padj(hip) = 8.19 x 10-5, padj(tail) = 2.48 x 10-6). 9 
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Figure 5. (A) A cosine series was used to generate four basis shapes with increasing frequency. The 4 
corresponding x-y representations are shown. (B) The fraction of the variance explained along the 5 
worm by including an increasing number of basis shapes. (C) The shapes in the testing set were 6 
reconstructed using the four sinusoidal basis shapes and the top four modes of principal component 7 
analysis. The histogram of the correlation coefficients (between the reconstructed and the original 8 
shapes) suggests a significant, but small difference between the sinusoidal analysis (96.9%) and the 9 
data-driven approach (97.1%) (t-test, p = 2.49 x 10-11). 10 
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Figure 6. (A) jPCA is run with 12 components (top 6 shown here). The graph shows an x-y coordinate 4 
representation of the modes with the resampled basis shapes in grey. (B) Bivariate histograms for the 5 
amplitudes of basis shapes (wild type worm, 15 minutes, frame rate: 30 Hz). Basis shapes 1 and 2, 3 6 
and 4, and 5 and 6 all form rings, suggesting an oscillatory behavior between them and independent 7 
sinusoidal waves in the corresponding parts of the body. 8 
 9 

Provis
ional



	 15	

 1 
 2 
Figure 7. The amplitude of the jPCA anterior oscillation is measured for individual worms of three 3 
different genotypes during forward locomotion and reversals. (wild type N2: n = 1303, tdc-1: n = 19, 4 
egg-5: n = 23) tdc-1 has significantly reduced head oscillation during forward locomotion, but 5 
suppresses it during reversals to the same magnitude as wild types (padj(tdc-1) = 4.80 x 10-5), while the 6 
opposite can be observed in egg-5 mutants (padj(egg-5) = 3.71 x 10-4). During touch-evoked reversals, 7 
head oscillation is reduced in both wild type N2 and tdc-1 worms. Both have a significantly smaller 8 
ratio (forward/spontaneous reversal) than wild type (padj(tdc-1) = 3.73 x 10-6 , padj(egg-5) = 6.69 x 10-9 
6). 10 
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