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ABSTRACT 

For studies examining risk factors of sexually transmitted infections (STIs), confounding can 

stem from the characteristics of the partners of study subjects, and persist after adjustment 

for the subjects’ individual-level characteristics. Two conditions can produce confounding by 

the subjects’ partners: C1) partner choice is assortative by the risk factor examined and, C2) 

sexual activity is associated with the risk factor. We term this bias the assortativity bias. The 

objective of this paper is to illustrate the potential impact of the assortativity bias in studies 

examining STI risk factors, using smoking and Human papillomavirus (HPV) as an example. We 

developed an HPV transmission-dynamic mathematical model in which we nested a cross-

sectional study assessing the smoking-HPV association. In our base-case, we assumed 1) no 

effect of smoking on HPV, and 2) conditions C1-2 hold for smoking (based on empirical data). 

The assortativity bias caused an overestimation of the odds ratio (OR) in the simulated study 

after perfect adjustment for the subjects’ individual-level characteristics (adjusted OR=1.51 

instead of 1.00). The bias was amplified by a lower basic reproductive number (R0), greater 

mixing assortativity and greater sexual activity among smokers. To mitigate the assortativity 

bias studies should adjust for the characteristics of study partners. 
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Infectious diseases are transmissible, which implies that the contact network of an individual 

is a crucial determinant of his risk of infection (1). Thus, an individual’s risk of infection not 

only depends on individual-level risk factors, such as his age and gender, but on network-level 

risk factors. A classic example of this particularity of infectious diseases is herd immunity: 

vaccinating a portion of the population reduces the chance of non-vaccinated individuals 

being exposed to the infectious agent (2). Hence, an individual’s risk of infection following the 

introduction of vaccination depends on his/her vaccine status (individual-level risk factor), 

and the overall population-level vaccination coverage (network-level risk factor). 

 

In studies that examine the biological causes of sexually transmitted infections (STIs), control 

of confounding habitually follows the traditional non-transmissible disease approach of 

controlling for individual-level risk factors, with little attention to control for network-level 

risk factors such as the characteristics of the individual’s partners. In doing so, authors  

usually acknowledge the possibility of misclassification of sexual activity, due to misreporting 

by study subjects, which can cause residual confounding of effect measures if sexual activity 

is a confounder (3, 4). However, what is not generally acknowledged is that, even if the 

sexual activity of the study subject was perfectly measured and controlled for, the sexual 

activity of the partners of study subjects can also cause confounding. We term one particular 

form of confounding bias the “assortativity bias”, because it stems from assortativity in sexual 

mixing (partner choice). That is, on average, people have partners with similar characteristics 

(e.g., age) and behavior (e.g., smoking status) as themselves (5-8).  
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In STI studies, assortativity bias can occur if two conditions are met: (C1) partner choice is 

assortative according to the risk factor of interest, and (C2) the association between this 

factor and infection is confounded by sexual activity. When these conditions are met, the risk 

factor of interest can be associated with the likelihood of having an infected partner, and a 

confounding bias is likely to remain even after perfectly controlling the effect measure for the 

individual-level confounders. 

 

To illustrate the assortativity bias, we consider a simplified example where the effect of 

smoking on the risk of a STI is examined. In this example, assortativity bias can occur because 

the two conditions above are met: sexual mixing is assortative according to smoking status 

(C1) (6, 8), and the relation of smoking with the STI is confounded by sexual activity (smokers 

have more lifetime sexual partners than non-smokers and number of lifetime partners is a risk 

factor of STI (C2))(9, 10). 

 

Figure 1 illustrates the essential components of assortativity bias, assuming, for simplicity, 

that smoking is the only factor for which partner selection is assortative and that smoking 

itself has no biological effect on STI acquisition/transmission or duration. In Figure 1, the 

study subject’s smoking status is positively associated with the smoking status of his partner 

(assortative mixing by smoking status (C1)). A subject who smokes will be at greater risk of 

infection not only because of his own sexual activity, but also because his/her partner is likely 

to be a smoker and thus more likely to be more sexually active and infected. The smoking-STI 

association is confounded by sexual activity of the subjects (Figure 1 right panel, dotted 

arrows) and subjects’ partners (Figure 1 left panel, dotted arrows). Therefore, even if sexual 

activity of the subjects is controlled for (individual-level), residual confounding bias remains 

possible due to sexual activity of partners (network-level). Even if we assume a direct causal 
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effect of smoking on STI risk, the assortativity bias would still occur resulting in an 

overestimation of the magnitude of the effect for smoking on STI risk. Of note, the 

assortativity bias has a dynamical aspect: having a partner that smokes not only induces 

greater risk through the partner’s greater chance of being highly sexually active, but also 

through the partner’s own previous partners who were also more likely to be smokers. 

Conditions 1-2 are met for many common risk factors of STIs, including age, race and socio-

economic status (SES), and therefore assortativity bias is likely present in many prospective 

and cross-sectional epidemiological STI studies. 

 

Mathematical modeling has been used to understand potential biases in epidemiological 

studies of STIs (11-14). With modeling, an artificial world is created where transmission and 

natural history of disease can be simulated based on observed data. Epidemiological studies 

can be nested within the model to examine the presence/magnitude of potential biases under 

different assumptions regarding behavior, transmission, and natural history.  

 

In this paper, we examine the assortativity bias focusing on the smoking–STI association. 

Smoking is a suspected risk factor for STIs through increased transmission and/or duration of 

infection (15). As smoking is a modifiable behavior, there is a high interest in understanding 

its role on STI incidence/prevalence. Smoking has been independently associated with the 

prevalence of STIs such as human immunodeficiency virus (HIV), herpes simplex virus 2 (HSV-

2), genital and oral infections by human papillomavirus (HPV) in many studies (4, 9, 16-18), 

and these associations have been shown to follow monotone dose-response relationships (9). 

However, the possibility of assortativity bias was not addressed or controlled for in these 

studies. 
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The specific objectives of this paper are to use mathematical modeling: 1) to illustrate and 

describe the assortativity bias, using the association between smoking and genital HPV 

infection, and 2) to examine the sensitivity of the assortativity bias to the biological and 

behavioral parameters, for generalization of results. 

 

METHODS 

Mathematical model 

We developed a deterministic transmission dynamic model of HPV infection (see Web 

Appendix 1 for equations). The modeled population is heterosexual, open and stable. For the 

base-case scenario, we modeled HPV16 infection, which is the most prevalent type and causes 

the majority of HPV-related cancers. The simulated population is stratified for the two 

behavioral aspects from which the the assortativity bias stems: 1) smoking status 

(smoker/non-smoker), and 2) sexual activity (low/high). For simplicity, we did not stratify the 

model by age. On average, individuals spend 30 years in the modeled population, representing 

the years of higher sexual active life (e.g., 15-44 years of age). Sexual mixing depends on an 

individual’s smoking status and sexual activity. For each of these behavioral factors, we 

allowed mixing to vary from random to completely assortative (i.e., smokers only form 

partnerships with smokers). Hence, the model corresponds to Figure 1, but adding an arrow 

between the sexual activity of subjects and sexual activity of their partners. We included 

assortativity according to sexual activity as it is a key feature of sexual networks (19, 20). 

Based on empirical evidence, we assume that the two conditions for the assortativity bias are 

met: C1) sexual mixing is assortative for smoking (6, 8), and C2) smokers are more sexually 

active than non-smokers (9, 10). 
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Importantly, in our base–case, we assumed that smoking is not a cause of infection, to test 

whether observed associations between smoking and HPV infection can be explained by the 

assortativity bias. More specifically, we assumed that smoking does not increase HPV 

transmission probabilities or duration of infection. We also tested the extent of the bias under 

the assumption of a true biological effect of smoking on HPV infection (see below under 

sensitivity analyses). 

 

Parameterization 

Model parameter values and references are presented in the Web Table 1. We used biological 

parameter values estimated in prior modeling work (21-23), and estimated the proportion of 

smokers in each sexual activity class from an epidemiological study (24). Although studies 

suggest that sexual mixing by level of sexual activity and smoking status is assortative (6, 8, 

25, 26), no empirical estimates are available in the literature. In our base-case, we assumed 

assortativity parameters values for smoking status and for sexual activity to be 0.8 and 0.4, 

respectively (0.0=no assortativity, 1.0=complete assortativity), using parametric equations for 

mixing presented in the Web Appendix 2. We performed extensive sensitivity analysis on 

assortativity parameter values given their uncertainty.  

 

Experimental design and outcome measure 

To examine the association between smoking and HPV, we nested a prevalence study in the 

simulated population. Study subjects are a cross-section of the entire simulated population. 

HPV prevalence among study subjects was estimated at endemic equilibrium without HPV 

vaccination. We used odds ratios (ORs) of HPV infection (positivity) among smokers compared 

to non-smokers as the measure of association. The overall adjusted ORs were calculated as 

the weighted average of the stratum-specific ORs of the two sexual activity classes using, as 
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weights, the proportion of the population in each sexual activity class (see Web Appendix 3 for 

equations). In the simulated study, adjusted or stratum-specific ORs different from 1.00 can 

only be due to assortativity bias, because there is no biologic effect of smoking on infection in 

our model and sexual activity of subjects is perfectly adjusted for. The magnitude of the 

assortativity bias is the magnitude of the deviation of the adjusted and stratum-specific ORs 

from 1.00. 

 

Sensitivity analyses 

The aim of the sensitivity analyses was to 1) assess the impact of parameter uncertainty on 

the magnitude of the assortativity bias, and 2) illustrate how the assortativity bias could 

change for different STIs and population-level behaviors. We varied the key 

biological/behavioral parameters, one at a time, keeping the value of all other parameters 

fixed at their base-case values. We used the stratum-specific ORs to isolate the bias in each 

sexual activity class. Finally, we estimated the potential impact of the assortativity bias on 

adjusted OR assuming different magnitudes of a true biological effect of smoking on HPV 

infection.  

 

RESULTS 

Base-case 

Table 1 shows the base-case model predictions of the ORs of HPV infection among smokers 

compared with non-smokers. We estimated crude and adjusted ORs of 1.64 and 1.51, 

respectively (Table 1). Given that, in our model, smoking has no causal effect on HPV and we 

can perfectly control for sexual activity of subjects (no residual confounding), assortativity 

bias is the only possible cause of adjusted OR>1.00.  
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The magnitude of assortativity bias is generally greater for those with lower sexual activity 

(Table 1, Figures 2-3). This is because highly sexually active subjects will likely have highly 

sexually active partners (assortativity by sexual activity), irrespective of smoking status. 

  

Impact of behavioral factors  

Association between sexual activity and smoking. The ORs of HPV infection (assortativity bias) 

increase as the strength of the association between smoking and sexual activity among study 

subjects increases (Figure 2A). This is because a stronger association causes greater 

confounding by sexual activity (increased impact of Condition 2 – Figure 1). 

 

Assortativity by smoking status. Greater assortativity according to smoking status results in a 

steep increase in the ORs of HPV infection comparing smokers with non-smokers (Figure 2B). 

When smoking assortativity is stronger, the unbalance in sexual activity between smokers and 

non-smokers will be replicated between smokers’ partners and non-smokers’ partners to a 

greater extent (increased impact of Condition 1 – Figure 1).  

 

Assortativity by sexual activity. The ORs of HPV infection decrease with greater assortativity 

between individuals of the same sexual activity class (Figure 2C). As assortativity by sexual 

activity increases, the sexual activity of the study subject becomes a better proxy of his 

partners’ sexual activity. At the extreme, when mixing by sexual activity is completely 

assortative, subjects will have partners belonging to their own sexual activity class, 

irrespective of smoking status. Therefore, there will be no bias after stratifying for the sexual 

activity of study subjects. 

 

Impact of biological factors  
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Transmission probability & duration of infectiousness. The model shows that the magnitude of 

the assortativity bias is highly sensitive to the transmission probability or duration of infection 

(Figure 3A-3B). The ORs of HPV infection among smokers compared with non-smokers, 

stratified by sexual activity of study subjects, decreases steeply with increased transmission 

probability or duration of infectiousness. In general, if the reproductive number is low (i.e. 

low transmission probability, short duration or low partner acquisition rate), the difference in 

sexual activity between smokers and non-smokers can lead to large differences in HPV 

prevalence between the two groups. For example, if smokers and non-smokers were two 

separate populations (i.e. complete assortativity), then there is a threshold where the 

probability of transmission is too low and the virus disappears from the non-smokers 

population, but is high enough for the virus to remain in the smokers’ population, with greater 

sexual activity. In this extreme case, we would get an infinite OR. 

 

Natural immunity. The probability of developing natural immunity has little impact on the 

magnitude of the assortativity bias (Figure 3C). This is because the relative reduction in HPV 

prevalence caused by lower natural immunity is identical for smokers and non-smokers.  

 

Assortativity bias assuming a true biological effect of smoking 

Figure 4 shows the OR when varying the effect of smoking on the duration of infection with 

and without assortativity by smoking status. The assortativity bias produces an overestimation 

of the OR when smokers have a longer duration of infection than non-smokers. This 

overestimation of OR rises steeply as the biological effect of smoking increases. The OR is also 

overestimated when smoking directly affects the transmission probability, or the probability 

of developing immunity after clearance (results not shown). 

 



10	  
	  

DISCUSSION 

In this paper we present the assortativity bias, a frequently unrecognized confounding bias 

specific to studies examining risk factors of infectious diseases. To illustrate this bias, we 

considered the example of smoking as a possible biological cause of HPV infection. Using 

mathematical modeling, we showed that adjustment for the subjects’ individual-level sexual 

activity is not enough to isolate the true biological effect of smoking when mixing is 

assortative by smoking status (C1) and smoking status is associated with sexual activity (C2). 

There is empirical evidence that these two conditions hold for smoking (6, 8-10), and many 

other risk factors of infectious disease such as age, race/ethnicity and SES. Hence, the 

assortativity bias is likely present in many epidemiological studies examining risk factors of 

STIs and other infectious diseases.  

 

Our modeling results are consistent with the results from epidemiological studies examining 

the association between smoking and HPV or other STIs. In a recent large-scale study, the 

adjusted ORs of HPV infection in smokers compared to non-smokers was 1.4 (95%CI: 1.2, 1.7) 

(9), and most other studies have found ORs higher than 1.0 (18, 27-29). Our modeling analysis 

suggests that the assortativity bias could produce ORs of the magnitude seen in these 

empirical studies if assortativity by smoking status is high. The association between smoking 

and HPV infection is supported by traditional criteria of causality such as a dose-response. 

However, it should be noted that the assortativity bias can reproduce a dose-response 

relationship if (C1) mixing is assortative by smoking intensity and (C2) there is a dose-response 

relationship between sexual activity and smoking intensity. Significant associations between 

infection and smoking have also been observed in empirical-based studies for many other STIs 

(4, 16, 17). We showed that the size of the assortativity bias should be more important for 

STIs such as HIV, which have very small transmission probabilities. This is consistent with a 
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systematic review which showed that the association between HIV infection and smoking (4) 

was higher than for HPV (ORs between 1.2 and 3.5).  

 

Our results should not be interpreted as evidence that smoking is not a cause of HPV infection. 

It is conceivable that smoking itself may have a direct biological influence on HPV risk by 

negatively affecting mucosal immunity and/or by consuming micronutrients that mediate 

resistance to or clearance of HPV infection (30). Our model served to illustrate the 

mechanisms behind the assortativity bias, and the role it can play in overestimating the ORs 

in studies examining smoking as a risk factor for STIs. When we assume, in our model, that 

smoking is a biological cause of HPV infection, the assortativity bias greatly increases the 

adjusted ORs beyond the true biological effect. In addition, it is important to note that the 

magnitude of the assortativity bias may vary between countries due to differences in behavior 

(differences in the magnitude of C1-2), and therefore associations between STIs and risk 

factors can vary substantially between studies. 

 

The assortativity bias could affect many other risk factors than smoking, such as age and race. 

For example, young adults are generally the most at risk of STIs, even after adjustment for 

sexual activity (25, 31). It is suggested that this is due to a biological cause (cervical ectopy 

makes young women vulnerable to STIs) (32). Yet, sexual mixing is highly assortative with 

respect to age (5, 21, 33) (C1), and younger adults are more sexually active (33, 34) (C2), and 

hence an age-STI association can be partly due to the assortativity bias. Similarly, African 

Americans have higher STI prevalence after adjustment for sexual activity (7, 35). It has been 

shown that sexual mixing is assortative according to race/ethnicity (7, 20) (C1) and African 

Americans have younger age at sexual debut (36), which is a risk factor for many STIs (C2). For 

other risk factors, complete assortativity between individuals with the risk factor can hold 
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automatically and cause assortativity bias in prevalence studies. For example, being infected 

with HPV31 implies that a previous/current partner was infected with HPV31. Thus, there is 

de facto assortativity between individuals infected with HPV31 (C1). Because being infected 

with HPV31 is associated with sexual activity (C2), HPV31 can be measured in prevalence 

studies as a risk factor of other STIs, due to the assortativity bias.  

 

The main strength of this study was the use of mathematical modeling to perfectly control a 

fictive population, allowing us to quantify the assortativity bias. It was thus possible to 

explore the theoretical basis for the bias and the relation between the bias and behavioral 

and biological parameters. However, the main limitation of our model is that many sources of 

heterogeneity (sexual activity, smoking intensity, mixing) were not included and we assumed 

independence between mixing by sexual activity and by smoking status. Particularly, we did 

not include in the model other factors that could cause assortativity by smoking status. For 

example, SES is a risk factor for smoking (37, 38), and sexual mixing is assortative by SES (38), 

which indirectly produces assortativity with respect to smoking. SES could thus partly explain 

the assortativity by smoking status. In this case, we would still observe a bias in the smoking-

HPV association of the simulation, but this bias would be partly corrected by adjustment for 

the SES of study subjects. These model simplifications do not affect the robustness of our 

overall qualitative conclusions. However, in view of the model’s simplicity, one should not use 

the precise numerical model estimates of the ORs as representative of reality.  

 

To correct for the assortativity bias in studies examining smoking as a risk factor of HPV 

infection, one must control for systematic differences between smokers and non-smokers in 

exposure to infection. In prospective studies, the most direct method to avoid the bias is to 

assess the HPV status of new sexual partners of study subjects, and stratify the comparison of 
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HPV infection incidence between smoking and non-smoking subjects by exposure to infection 

(e.g., exposure to infected partners (39, 40)). Alternatively, the smoking status of new sexual 

partners of study subjects should be assessed to control for the higher chance of smokers 

having smoker partners. In our simulated study, adjusting for the smoking status of the 

subjects’ partners and the subjects’ sexual activity is sufficient to eliminate the assortativity 

bias (adjusted OR is 1.0). Given that many risk factors are investigated at once in empirical 

studies, it is necessary to have simultaneous adjustments for the key risk factors being 

investigated (e.g., age, race/ethnicity, SES) at the subject- and partner-level. However, real-

world sexual networks are more complex than the one reproduced by our model. Hence, it is 

essential to include as many risk factors as possible to be used as proxies of HPV infection to 

control for exposure to infection of the subjects partners. Residual confounding will likely 

remain. Furthermore, risk factors of subjects’ partners could also include the characteristics 

of their own partners (the partners of partners) which will likely not be known. Using proxies 

of characteristics of the whole sexual network of an individual, such as SES or the prevalence 

of smoking in the neighborhood, could complement the previous approach of adjusting for 

previous partners’ individual-level characteristics. A possible statistical framework for this 

would be multi-level model (41). In a cross-sectional study, information on past partners will 

be needed, with a recall window being a function of the duration of infection. Clearly, more 

research is required to identify the key partner and network characteristics that should be 

included in studies, and, in the case of cross-sectional studies, the number of past partners 

needed to reduce the magnitude of residual confounding. 

 

In conclusion, assortative sexual mixing by smoking status can cause bias in studies assessing 

the biological effect of smoking on HPV acquisition. This assortativity bias is likely to occur 

for other risk factors and infectious diseases. For a thorough adjustment of measures of 
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association, data on risk factors of sexual partners of study subjects is required to mitigate 

the impact of the bias. 
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Table 1. Odds Ratios of HPV Infection Between Smokers and Non-Smokers Among Modeled 

Study Subjects	  

 Odds ratio 

Crude  1.64 

Stratified  

    Low sexual activity class  1.52 

    High sexual activity class 1.07 

Adjusted 1.51 
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Figure 4 
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Figure 1. Illustrated example of the assortativity bias in the association between smoking and 

a sexually transmitted infection. Directed arrows represent causal link and double-headed 

arrows represent statistical link. For simplicity, we assume that smoking status is the only 

factor determining partner selection and that smoking does not affect risk and duration of 

infection. 

Figure 2. Impact of behavioral parameters on the assortativity bias. Univariate sensitivity 

analysis of the odds ratios of prevalence between smokers and non-smokers with one 

parameter varying: A) Proportion of smokers that are highly sexually active, B) Assortativity by 

smoking status, and C) Assortativity by sexual activity. For panel A), the proportion of non-
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smokers that are highly sexually active is fixed at its base case value. Hence, increasing the 

parameter in A) increases the strength of the association between smoking and sexual 

activity. 

Figure 3. Impact of biological parameters on the assortativity bias. Univariate sensitivity 

analysis of the odds ratios of infection between smokers and non-smokers varying: A) 

Probability of transmission per partnership, B) Duration of infection, and C) Probability of 

developing natural immunity after clearance of infection. 

Figure 4. Impact of a biological effect of smoking on the duration of infection. Univariate 

sensitivity analysis of the odds ratio (OR) of prevalence between smokers and non-smokers 

varying: Ratio of smokers’ versus non-smokers’ duration of infection. Two scenarios are shown 

both with base-case parameters except for the assortativity by smoking status: the blue curve 

is a scenario with assortativity parameter of 0.8 as in the base case and the dashed curve is a 

scenario without assortativity (parameter of 0). Hence, the difference in height between the 

two curves measures the magnitude of the overestimation due to the assortativity bias. 

	  


