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ABSTRACT

The study of thin-bed seismic response is an important part
in lithologic and methane reservoir modeling, critical for pre-
dicting their physical attributes and/or elastic parameters. The
complex propagator matrix for the exact reflections and trans-
missions of thin beds limits their application in thin-bed inver-
sion. Therefore, approximation formulas with a high accuracy
and a relatively simple form are needed for thin-bed seismic
analysis and inversion. We have derived thin-bed reflection
and transmission coefficients, defined in terms of displace-
ments, and approximated them to be in a quasi-Zoeppritz ma-
trix form under the assumption that the middle layer has a very
thin thickness. We have verified the approximation accuracy

through numerical calculation and concluded that the errors
in PP-wave reflection coefficients RPP are generally smaller
than 10% when the thin-bed thicknesses are smaller than
one-eighth of the PP-wavelength. The PS-wave reflection co-
efficients RPS have lower approximation accuracy than RPP for
the same ratios of thicknesses to their respective wavelengths,
and the RPS approximation is not acceptable for incident angles
approaching the critical angles (when they exist) except in
the case of extremely strong impedance difference. Errors in
phase for the RPP and RPS approximation are less than 10%
for the cases of thicknesses less than one-tenth of the wave-
lengths. As expected, a thinner middle layer and a weaker
impedance difference would result in higher approximation
accuracy.

INTRODUCTION

As exploration targets have been expanded in scope from struc-
tural traps to lithologic and stratigraphic traps, more attention has
been paid to thin-bed reservoirs that require higher resolution to be
recognized (Zhang and Zheng, 2007). However, mature industrial
amplitude variation with offset (AVO) inversion methods, which are
based on the Zoeppritz equations and their approximation formulas,
for describing reflection and transmission of plane waves across a
single interface, are not suitable for thin-bed problems (Pan and
Kristopher, 2013). Thin-bed seismic responses are composed of
the superposition of all reflecting waveforms and multiples, includ-
ing converted waves, which is different from a single-interface case
(Chen and Liu, 2006).
Thin-bed reflections depend not only upon the elastic parameters

of layered media, but also upon the thin-bed thickness and the fre-
quency of incident waves. Brekhovskikh (1960) studies reflections

and transmissions of plane waves propagating in layered media by
elastic dynamic theory and derives accurate equations with dis-
placement potential function. However, the complex propagator
matrix limited their application in seismic inversion. Meissner
and Meixner (1969) present the time delayed transmission/reflec-
tion method and deduce thin-bed reflection coefficients by multi-
plying the reflecting and transmitting coefficients of the top and
bottom interfaces. Widess (1973) studies the normal pulse reflec-
tions from the top and bottom of a thin bed under the assumptions
of equal amplitudes and opposite polarities and tries to predict thin-
bed thickness by amplitude information. Chung and Lawton (1995)
extend Widess (1973) study into a thin bed, which has equal am-
plitudes and identical polarities in the bottom and top interfaces and
analyze the influence of different wavelets on thin-bed reflections.
Liu and Schmitt (2003) present an acoustic reflectance spectrum
formula of a thin bed in the frequency domain and discuss the
impact of thickness and Poisson’s ratio on thin-bed seismic AVO
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responses. Pan and Kristopher (2013) compare thin-bed elastic
AVO responses with Liu and Schmitt’s (2003) acoustic AVO re-
sponses, and they investigate the influence of quality factor Q to
examine attenuation effects.
The works above gave several description methods of thin-bed

seismic responses. However, these reflection coefficient formulas
are either too complex for application (Brekhovskikh, 1960; Meiss-
ner and Meixner, 1969) or only suitable to some extreme hypotheti-
cal conditions without considering multiples (Widess, 1973; Chung
and Lawton, 1995; Liu and Schmitt, 2003; Pan and Kristopher
2013). In this paper, we initially give the propagator matrix equa-
tions for a thin-bed model with displacement functions, different
from Brekhovskikh’s derivation with displacement potential func-
tions. Then, we simplify reflection and transmission coefficients of
a thin bed in case of incident P-wave. We establish a quasi-Zoep-
pritz matrix approximation under the assumption that the middle
layer is very thin by modeling a thin middle layer in homogeneous
elastic three-layer media. Finally, we simulate different types of sin-
gle thin-bed models and a well log containing thin layers, and dis-
cuss the precision of approximate equations for different thin-bed
thicknesses and seismic responses of the well log.

THIN-BED REFLECTION/TRANSMISSION
COEFFICIENTS

For an isotropic elastic model with two horizontal interfaces (Fig-
ure 1), according to boundary conditions, the thin-bed reflection
and transmission coefficients defined by displacement with incident
P-wave can be described as

M

2
664
RPP

RPS

TPP

TPS

3
775 ¼ n; (1)

where M is a 4 × 4 matrix with four column vectors,
M ≡

h
m1 m2 m3 m4

i
, defined explicitly as

m1 ¼ −A

2
6664

sin α1
− cos α1

−jρ1ωVP1 cos 2β1
jρ1ω

V2
S1

VP1
sin 2α1

3
7775; (2a)

m2 ¼ −A

2
6664

cos β1
sin β1

jρ1ωVS1 sin 2β1
jρ1ωVS1 cos 2β1

3
7775; (2b)

m3 ¼

2
6664

sin α3
cos α3

−jρ3ωVP3 cos 2β3
−jρ3ω

V2
S3

VP3
sin 2α3

3
7775; (2c)

m4 ¼

2
6664

cos β3
− sin β3

jρ3ωVS3 sin 2β3
−jρ3ωVS3 cos 2β3

3
7775; (2d)

n ¼ −A

2
6664

− sin α1
− cos α1

jρ1ωVP1 cos 2β1
jρ1ω

V2
S1

VP1
sin 2α1

3
7775; (2e)

n is a 4 × 1 vector, A is 4 × 4 matrix with elements aij defined
as

a11 ¼ a44 ¼ 2 sin2 β2 cos Pþ cos 2β2 cos Q;

a12 ¼ a34 ¼ −j
�
tan α2 cos 2β2 sin P − sin 2β2 sin Q

�
;

a13 ¼ a24 ¼
j sin α2
ρ2ωVP2

�
cos P − cos Q

�
;

a14 ¼
1

ρ2ωVS2

�
tan α2 sin β2 sin Pþ cos β2 sin Q

�
;

a21 ¼ a43 ¼ −j
�
VS2 cos α2
VP2 cos β2

sin 2β2 sin P

− tan β2 cos 2β2 sin Q

�
;

a22 ¼ a33 ¼ cos 2β2 cos Pþ 2 sin2 β2 cos Q;

a23 ¼
1

ρ2ωVP2

�
cos α2 sin Pþ tan β2 sin α2 sin Q

�
;

a31 ¼ a42 ¼ 2jρ2ωVS2 sin β2 cos 2β2

�
cos Q − cos P

�
;

a32 ¼ −ρ2ω
�
VP2 cos

2 2β2
cos α2

sin P

þ4VS2 cos β2 sin
2 β2 sin Q

�
;

a41 ¼ −ρ2ωVS2

�
4VS2 sin

2 β2 cos α2
VP2

sin P

þ cos2 2β2
cos β2

sin Q

�
; (2f)

Figure 1. A thin-bed model with two horizontal interfaces.
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and

P ¼ ωh
VP2

cos α2; Q ¼ ωh
VS2

cos β2: (2g)

In equation 2, VP and VS are the P- and S-wave velocities, respec-
tively, ρ is the density, α is the P-wave incident, transmitted, or re-
flected angle, β is the S-wave transmitted or reflected angle, and
their subscripts i ¼ 1;2; 3 refer to three layers, h is the thickness
of the middle layer (i ¼ 2), ω is the angular frequency, and
j ¼ ffiffiffiffiffiffi

−1
p

is the imaginary symbol.
It can be proved that matrix M is in full rank. Thus, according to

Cramer’s rule, the reflection and transmission coefficients RPP, RPS,
TPP, and TPS can be obtained.
Note that the reflection and transmission coefficients RPP, RPS,

TPP, and TPS in equation 1 are defined in terms of displacements.
They are different from reflection and transmission coefficients de-
scribed with displacement potential functions (Brekhovskikh,
1960). Meanwhile, when the thickness of the middle layer is equal
to zero, equation 1 can be simplified into the Zoeppritz equations.

QUASI-ZOEPPRITZ MATRIX FORM

When the middle layer’s thickness is thin, h ≪ VP2∕ω and
h ≪ VS2∕ω, then we have P ≪ 1 and Q ≪ 1 in equation 2. Mean-
while, we can make additional approximations using the following
first-order Taylor expansions:

sin P ≈ P; sin Q ≈Q; cos P ≈ 1; cos Q ≈ 1; (3)

which simplify the elements aij in matrix A as

a11 ¼ a44 ¼ a22 ¼ a33 ¼ 1;

a12 ¼ a34 ¼ jωh
sin α1
VP1

;

a13 ¼ a31 ¼ a24 ¼ a42 ¼ 0;

a14 ¼
h

ρ2V2
S2

;

a21 ¼ a43 ¼ −jωh
�
2
V2
S2

V2
P2

− 1

�
sin α1
VP1

;

a23 ¼
h

ρ2V2
P2

;

a32 ¼ −ρ2ω2h;

a41 ¼ −ρ2ω2h

�
1 − 4V2

S2

�
1 −

V2
S2

V2
P2

�
sin2 α1
V2
P1

�
; (4)

according to Snell’s law. Obviously, all coefficients in equation 4
depend on only the P-wave incident angle α1.
Using these simplified aij coefficients, all of the column vectors

from equations 2a to 2e can also be represented in terms of the
P-wave incident angle. This allows equation 1 to be modified to
represent variation with respect to the incident angle, making it suit-
able for direct AVO analysis.

For the first-column vector m1 ≡ ½mi1�; i ¼ 1; : : : ; 4, we have

m11 ¼ − sin α1 þ j
ωh
VP1

�
1

2
−
ρ1
ρ2

V2
S1

V2
S2

�
sin 2α1;

m21 ¼ cos α1 þ j
ωh
VP1

�
ρ1
ρ2

V2
P1

V2
P2

−
�
1 − 2

V2
S2

V2
P2

þ 2
ρ1
ρ2

V2
S1

V2
P2

�
sin2 α1

�
;

m31 ¼
�
1 − 2

V2
S1

V2
P1

sin2 α1

�

þ j
ωh
VP1

�
ρ2
ρ1

cos α1 −
V2
S1

V2
P1

sin 2α1 sin α1

�
;

m41 ¼ sin 2α1

þ j
ωh
VP1

�
ρ2
ρ1

V2
P1

V2
S1

þ 4
ρ2
ρ1

V2
S2

V2
S1

�
V2
S2

V2
P2

− 1

�
sin2 α1

þ
�
2
V2
S2

V2
P2

− 1

��
V2
P1

V2
S1

− 2 sin2 α1

��
sin α1: (5a)

For the second-column vector m2 ≡ ½mi2�, we have

m12 ¼ −
�
1 −

V2
S1

V2
P1

sin2 α1

�
1∕2

− j
ωh
VP1

VS1

VP1

�
ρ1
ρ2

V2
P1

V2
S2

þ
�
1 − 2

ρ1
ρ2

V2
S1

V2
S2

�
sin2 α1

�
;

m22 ¼ −
VS1

VP1

sin α1 − j
ωh
VP1

�
1 − 2

V2
S2

V2
P2

þ 2
ρ1
ρ2

V2
S1

V2
P2

�

×
�
1 −

V2
S1

V2
P1

sin2α1

�
1∕2

sin α1;

m32 ¼ −2
V2
S1

V2
P1

�
1 −

V2
S1

V2
P1

sin2α1

�
1∕2

sin α1

− j
ωh
VP1

VS1

VP1

�
1þ ρ2

ρ1
− 2

V2
S1

V2
P1

sin2α1

�
sin α1;

m42 ¼
VP1

VS1

�
1 − 2

V2
S1

V2
P1

sin2 α1

�

þ j
ωh
VP1

�
ρ2
ρ1

V2
P1

V2
S1

þ 4
ρ2
ρ1

V2
S2

V2
S1

�
V2
S2

V2
P2

− 1

�
sin2 α1

−2
�
2V2

S2

V2
P2

− 1

�
sin2 α1

��
1 −

V2
S1

V2
P1

sin2 α1

�
1∕2

: (5b)

For the third-column vector m3 and the fourth-column vector m4,
we have

m3 ¼

2
6666664

VP3

VP1
sin α1�

1 − V2
P3

V2
P1

sin2α1
�
1∕2

− ρ3
ρ1

VP3

VP1

�
1 − 2

V2
S3

V2
P1

sin2 α1
�

2 ρ3
ρ1

V2
S3

V2
S1

�
1 − V2

P3

V2
P1

sin2 α1
�
1∕2

sin α1

3
7777775
; (5c)
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m4 ¼

2
6666664

�
1 − V2

S3

V2
P1

sin2 α1
�
1∕2

− VS3

VP1
sin α1

2 ρ3
ρ1

V2
S3

V2
P1

�
1 − V2

S3

V2
P1

sin2α1
�
1∕2

sin α1
ρ3
ρ1

VS3VP1

V2
S1

�
1 − 2

V2
S3

V2
P1

sin2 α1
�

3
7777775
: (5d)

For the right column vector n ≡ ½ni�, we have

n1¼ sin α1þj
ωh
VP1

�
1

2
−
ρ1
ρ2

V2
S1

V2
S2

�
sin 2α1;

n2¼ cos α1þj
ωh
VP1

��
1−2

V2
S2

V2
P2

þ2
ρ1
ρ2

V2
S1

V2
P2

�
sin2α1−

ρ1
ρ2

V2
P1

V2
P2

�
;

n3¼−
�
1−2

V2
S1

V2
P1

sin2α1

�

þj
ωh
VP1

�
ρ2
ρ1
cos α1þ

V2
S1

V2
P1

sin 2α1 sin α1

�
;

n4¼ sin2α1−j
ωh
VP1

�
4
ρ2
ρ1

V2
S2

V2
S1

�
V2
S2

V2
P2

−1

�
sin2α1

þρ2
ρ1

V2
P1

V2
S1

þ
�
2
V2
S2

V2
P2

−1

��
V2
P1

V2
S1

−2sin2α1

��
sin α1: (5e)

Note that the elements in vectorsm1,m2, and n are complex valued,
and the elements in vectors m3 and m4, which are the weights of
transmission coefficients, are real valued. Comparison of the vectors
above shows that the factor thickness causes thin beds to have com-
plex reflection coefficients and complex characteristic parameters,
such as peak instantaneous frequency or the amplitude spectrum.
These parameters can be used in estimation of thin-bed thicknesses
(Liu and Marfurt, 2006; Puryear and Castagna, 2008).
Under the assumption that the middle layer is thin, equation 1 for

thin-bed reflection-transmission coefficients is simplified into a rel-
atively simple form, which is similar to the Zoeppritz equations.
Equation 5 contains the plane-wave reflection and transmission co-
efficients, which are frequency dependent. They also depend on the
thickness and elastic parameters of the thin bed.
In addition, it is worthwhile to note that the reflection and trans-

mission coefficient equations that Schoenberg and Protazio (1992)
give for anisotropic layered media may also be simplified into equa-
tion 5 in the case of homogeneous elastic media under the same
thin-thickness assumption.

APPROXIMATION ACCURACY OF SINGLE
THIN-BED MODELS

To verify the accuracy and applicability of quasi-Zoeppritz ma-
trix approximation, we test first on single thin-bed models and ana-
lyze errors in amplitude and phase for reflection coefficients’
approximation.
There are four different types of single thin-bed models: (1) high-

impedance thin bed (ρ1V1 < ρ2V2 > ρ3V3), (2) low-to-high imped-
ance transition layers (ρ1V1 < ρ2V2 < ρ3V3), (3) low-impedance thin
bed (ρ1V1 > ρ2V2 < ρ3V3), and (4) high-to-low impedance transi-
tion layers (ρ1V1 > ρ2V2 > ρ3V3). Table 1 lists the elastic parame-
ters associated with these four models (Liu and Schmitt, 2003; Chen
and Liu, 2006). It can be calculated that models 1 and 3 would pro-
duce opposite-polarity reflections, whereas models 2 and 4 would
produce identical-polarity reflections (Kallweit and Wood, 1982).
When the normalized impedance difference between two sides of

an interface is calculated by

ΔI ¼ ρiVi − ρi−1Vi−1

ρiVi þ ρi−1Vi−1
; (6)

where i ¼ 2; 3, representing the normal incident reflectivity, the P-
wave normalized impedance differences of the four models’ top and
bottom interfaces are also listed in Table 1. All of these models have
strong impedance differences, for which linear approximations (Aki
and Richards, 1980; Shuey, 1985) may lead to significant errors;
however, quadratic or quartic approximations, proposed by Wang
(1999), could have a high accuracy.
According to Widess (1973), a thin bed is one whose thickness is

less than approximately λ∕8, where λ is the wavelength correspond-
ing to the dominant frequency in the thin bed. In our numerical cal-
culation, the thin-bed thicknesses are set as variable from λ∕8 to
λ∕60. Note that PS-waves have lower frequency than PP-waves
in field seismic data (Wang et al., 2009), and the former have lower
velocities than the latter for the same layer. We test PP- and PS-re-
flection coefficients with the same ratios of the thin-bed thicknesses
to their respective wavelengths. In seismic exploration of coal and
gas-oil reservoirs, the reflections are mostly considered within in-
cident angles smaller than the first critical angles, so we set the criti-
cal angles as the maximum incident angles, which are 30°, 30°, and
46.16° for models 1–3, respectively. Although model 4 does not
have the critical angle, we take 89° as its maximum incident angle.
Figures 2, 3, 4, and 5 plot the relative errors for each model, calcu-
lated as approximation∕true − 1, in percentage, and Table 2 lists the
maximum absolute values of these relation errors.
For model 1, errors in amplitude for the RPP approximation are

less than or equal to −9.31%, with the maximum error appeared in
the case of λ∕8 thickness and vertical incidence (Figure 2a and

Table 1. Parameters of thin-bed models. Units of velocities and densities are m∕s and g∕cm3, respectively.

VP1 VS1 ρ1 VP2 VS2 ρ2 VP3 VS3 ρ3 (ΔItop, ΔIbottom)

Model 1 3050 1525 2.7 6100 3050 2.7 2500 1525 2.7 (0.3333, −0.4186)
Model 2 3050 1600 2.7 4200 2500 2.7 6100 3100 2.7 (0.1586, 0.1845)

Model 3 2200 1200 2.3 1500 800 2.2 3050 1400 2.35 (−0.2105, 0.3695)
Model 4 6100 3100 2.7 4200 2500 2.7 3050 1600 2.7 (−0.1845, −0.1836)
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Table 2). As thin-bed thickness decreases and incident angle in-
creases, approximation errors decline quickly to less than 5%,
and trend toward to zero. For the RPS approximation, errors in am-
plitude are less than or equal to −5.91% with thickness less than
λ∕10. Similarly, the errors decline with decreasing thickness and
increasing angles. The PS-wave approximation shows higher errors
with the same ratios of the thin-bed thicknesses to their respective
wavelengths and quicker reduction with increasing incident angles.
Errors in phase for the RPP approximation are larger than 10% for
the λ∕8 and λ∕10 cases and not acceptable, and smaller than 5% for
all other (thinner) thicknesses (Figure 2b). For the RPS approxima-
tion, errors in phase decline from more than 9.04% (λ∕20) to ap-
proximately 3.49% (λ∕60). The RPS approximation is inapplicable
for the λ∕8 and λ∕10 cases because of large errors (>10%).

For model 2, errors in amplitude for the RPP approximation are
less than 5% except in the case of λ∕8 thickness (Figure 3a). When
the thickness is λ∕8, errors are slightly more than 10% for normal
incidence, but decrease very quickly with increasing incident an-
gles. For the RPS approximation, errors in amplitude are less than
2.42% with the incident angles less than 27°. The approximation
accuracy of RPP is higher than that of RPS for the same ratios of
layer thickness to their wavelengths except the case of λ∕8 (Table 2).
When the incident angle is near the critical angle, PS-wave errors
increase quickly, though are still smaller than 8.24%. Errors in
phase for the RPP and RPS approximation are smaller than 5% ex-
cept the cases of λ∕8 and λ∕10 for PP-wave. In amplitude and phase,
errors for the RPS approximation change quickly near the criti-
cal angle.

Table 2. The maximum absolute values of the relative errors (%) of thin-bed models with the incident angles smaller than the
first critical angles (when they exist). “Amp” stands for amplitude.

Model 1 Model 2 Model 3 Model 4

Amp Phase Amp Phase Amp Phase Amp Phase

λ∕8 PP 9.31 21.94 10.34 16.20 9.09 11.63 10.34 4.17

PS 24.41 15.34 8.24 4.21 14.90 11.65 9.84 16.55

λ∕10 PP 7.38 12.93 4.25 11.16 6.66 8.33 4.25 2.25

PS 18.23 14.04 6.01 2.91 11.62 14.78 7.36 11.44

λ∕20 PP 2.45 2.51 0.27 3.14 1.52 2.47 0.47 0.30

PS 5.91 9.04 1.91 1.22 4.68 10.46 2.32 3.23

λ∕30 PP 1.03 0.90 0.06 1.43 0.46 1.17 0.11 0.09

PS 2.79 6.50 1.12 0.94 2.64 5.64 1.08 1.47

λ∕40 PP 0.51 0.42 0.01 0.81 0.18 0.71 0.04 0.04

PS 1.60 5.05 0.80 0.74 1.72 3.39 0.62 0.84

λ∕60 PP 0.16 0.14 0.00 0.36 0.04 0.34 00.00 0.01

PS 0.72 3.49 0.52 0.50 0.92 1.58 0.28 0.37

Figure 2. Errors for reflection coefficients’ approxi-
mation of model 1. (a) Errors in amplitude and
(b) errors in phase.
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Figure 3. Errors for reflection coefficients’ approxi-
mation of model 2. (a) Errors in amplitude and
(b) errors in phase.

Figure 4. Errors for reflection coefficients’ approxi-
mation of model 3. (a) Errors in amplitude and
(b) errors in phase.

Figure 5. Errors for reflection coefficients’ approxi-
mation of model 4. (a) Errors in amplitude and
(b) errors in phase.
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For model 3, errors in amplitude for the RPP approximation are
less than or equal to −9.09%, and decrease in magnitude with de-
creasing thickness and increasing incident angle. For the thick-
nesses less than or equal to λ∕20, approximation errors are less
than −1.52% (Figure 4a). For the RPS approximation, errors in am-
plitude are not sensitive to the incident angles except around the
critical angle and follow the same trend — errors decrease as thick-
ness decreases. Except for the thicknesses of λ∕8 and λ∕10, where
errors remain approximately −14.90% and −11.62%, respectively,
errors of the other thicknesses are smaller than 5%. Errors in phase
for the RPP approximation are less than 10% except around the criti-
cal angle for the λ∕8 and λ∕10 cases, and smaller than 2.47% for the
other thicknesses. For the RPS approximation, errors in phase are
less than 3.23% except around the critical angle (Figure 4b). When
the incident angles are near the critical angle, the PS-wave approxi-
mation shows a sharp increase in error.
For model 4, errors in amplitude for the RPP approximation are

less than 4.25% except the case of λ∕8 (Figure 5a). When the thick-
ness is λ∕8, errors are slightly more than 10% for normal incidence,
but decline very quickly to less than 5%. Errors in amplitude for the
RPS approximation are less than 5% when the thicknesses are less
than or equal to λ∕20. Errors in phase for the RPP approximation are
smaller than 4.17% (Figure 5b). For PS-wave, errors in phase are
less than 3.23% for cases of thicknesses less than or equal to λ∕20.
Except amplitude approximation near normal incidence, the RPS

approximation fails for the λ∕8 and λ∕10 cases because of large
errors (>10%).
To analyze the influence of impedance differences on approxima-

tion accuracy, we present another series of thin-bed models with
opposite polarity but gradually decreased impedance differences.
Model parameters and P-wave normalized impedance differences
of thin-bed top and bottom interfaces are listed in Table 3.
For this group of models, errors in amplitude for the RPP and RPS

approximation decrease with decreasing impendence difference, ex-
cept for incident angles near the critical angle. The approximation
accuracy of RPP is higher than that of RPS for the same ratios of
thickness to their wavelengths. Taking thickness equal to 1/20
wavelengths, for example (as seen in Figure 6), the RPP and RPS

approximation share a similar trend of reduced errors in amplitude
with decreasing impedance difference, except for near critical
angles.
In summary, the numerical tests reveal that

1) Approximation accuracy of the quasi-Zoeppritz matrix is high
enough to be applied in seismic inversion of a single thin
bed, and will be improved when the thickness of the middle layer
and/or the impendence difference decrease. Errors for the RPP

approximation are generally less than 10% when the thin-bed

thicknesses are smaller than one-eighth of PP-wavelengths,
whereas errors for the RPS approximation are relatively worse.

2) Comparing PP- and PS-waves with the same ratios of thin-bed
thickness to their respective wavelengths, errors in amplitude
for the RPP approximation are smaller than those for the RPS

approximation except the case of λ∕8 for the thin-bed models
with identical polarities.

3) Errors for the RPS approximation increase quickly near the criti-
cal angles (when they exist) except in the case of a high-imped-
ance difference (such as model 1), and the quasi-Zoeppritz
matrix approximation is inapplicable.

4) Errors in phase for the RPP and RPS approximation are less than
10% for the cases of thicknesses less than λ∕10.

APPROXIMATION ACCURACY OF SYNTHETIC
SEISMOGRAMS

To verify the acceptability of quasi-Zoeppritz matrix approxima-
tion on the actual seismic data, we test further on a well log con-

Table 3. Parameters of thin-bed models with opposite polarities and decreasing impedance differences. Units of velocities and
densities are m∕s and g∕cm3, respectively.

VP1 VS1 ρ1 VP2 VS2 ρ2 VP3 VS3 ρ3 (ΔItop, ΔIbottom)

Model 1 3050 1525 2.7 6100 3050 2.7 2500 1525 2.7 (0.3333, −0.4186)
Model 5 3050 1525 2.7 5100 2550 2.7 2500 1525 2.7 (0.2515, −0.3421)
Model 6 3050 1525 2.7 4100 2050 2.7 2500 1525 2.7 (0.1468, −0.2424)
Model 7 3050 1525 2.7 3500 1750 2.7 2500 1525 2.7 (0.0687, −0.1666)

Figure 6. Errors in amplitude for reflection coefficients’ approxi-
mation of thin-bed models with thickness equal to λ∕20, as imped-
ance difference decreasing.
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Figure 8. PP-wave synthetic seismograms of the
well log. (a) The PP-wave seismic response simu-
lated by the exact formula and (b) PP-wave seis-
mic response simulated by the approximation
formula. The red arrows indicate PP-wave seismic
responses of the thin coal seam.

Figure 9. PS-wave synthetic seismograms of the
well log. (a) The PS-wave seismic response simu-
lated by the exact formula and (b) PS-wave seis-
mic response simulated by the approximation
formula. The red arrows indicate PS-wave seismic
responses of the thin coal seam.

Figure 7. Awell log containing thin layers from a
coal mine in China. (a) Before well-logging curves
stratification and (b) after well-logging curves
stratification. Dashed green frame indicates the
position of a thin coal seam.
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taining thin layers (Figure 7) from a coal mine in China. We com-
pare exact and approximate reflection coefficients based synthetic
seismograms.
After well-logging curves stratification, PP- and PS-waves syn-

thetic seismograms of exact and approximate reflections are simu-
lated and shown in Figures 8 and 9, respectively. We choose the coal
seam in the well log as our investigative target, position of which is
indicated by dashed green frame in Figure 7. The PP- and PS-wave
seismic responses of the thin coal seam, indicated by the red arrows
in synthetic seismograms, show that seismic responses simulated by
the approximate reflection coefficients match very well with those
simulated by the exact formula, which present quasi-Zoeppritz ma-
trix approximation working very well in the thin-bed target.

CONCLUSIONS

This paper derives equations for thin-bed reflection/transmission
coefficients defined by displacement. For the case of a single inter-
face, the matrix equations can be simplified into the Zoeppritz equa-
tions, so that many matured AVO inversion methods for a single
interface based on Zoeppritz equations and approximation formulas
can be easily imitated for further thin-bed AVO inversion.
The quasi-Zoeppritz matrix approximation is established under the

assumption that the middle layer is very thin. Compared with the
accurate equations, the quasi-Zoeppritz matrix approximation has
a compact form. The approximation reflection and transmission co-
efficients preserve the information of all wave modes and multiples.
The approximation errors are sensitive to the middle layer’s

thickness and less sensitive to incident angles except around critical
angles for thicknesses smaller than λ∕10. As proved, the approxi-
mation has higher accuracy for weaker impedance difference mod-
els as well as for models with a thinner middle layer. Therefore, the
assumption of a weak impedance difference may be discussed in
further research.
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