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Abstract The structure and connectivity of the pore space during the pyrolysis of oil shales determines
hydrocarbon flow behavior and ultimate recovery. We image the time evolution of the pore and microfracture
networks during oil shale pyrolysis using synchrotron X-ray microtomography. Immature Green River
(Mahogany Zone) shale samples were thermally matured under vacuum conditions at temperatures up to
500°C while being periodically imaged with a 2μmvoxel size. The structural transformation of both organic-rich
and organic-lean layers within the shale was quantified. The images reveal a dramatic change in porosity
accompanying pyrolysis between 390 and 400°Cwith the formation ofmicron-scale heterogeneous pores. With a
further increase in temperature, the pores steadily expand resulting in connected microfracture networks that
predominantly develop along the kerogen-rich laminations.

1. Introduction

The accelerated growth in global energy demand and the depletion of conventional hydrocarbon resources
have created a demand for alternative energy sources [IEA, 2015]. Oil shale, a fine-grained organic-rich
sedimentary rock, represents a large andmostly untapped unconventional hydrocarbon resource with global
reserves estimated at 4.8 trillion barrels [World Energy Council, 2013]. The largest known deposit is the Eocene
Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming [Dyni, 2003; Johnson et al.,
2009]. Kerogen, which constitutes most of oil shale’s organic matter, is a highly cross-linked, macromolecular
material distributed in a heterogeneous inorganic matrix [Fletcher et al., 2014; Solum et al., 2013]. Pyrolysis of
oil shale breaks down the complex kerogen network structure to produce shale oil and natural gas [Hillier
et al., 2013; Sun et al., 2014]. To improve our understanding of hydrocarbon transport phenomena involved
in the pyrolysis of oil shale, a comprehensive characterization of the changes in petrophysical properties is
required: in particular, the development of pore structure and connectivity. In this paper, we present a direct
visualization of the temporal evolution of the pore space during pyrolysis.

The application of this study is for oil shale retorting which can be categorized into two types [Lee et al.,
2007; Qian et al., 2008; Soone and Doilov, 2003]: aboveground (ex situ) and underground (in situ). Ex situ
processes involve mining near-surface oil shale deposits and retorting under anaerobic conditions at
temperatures near 500°C, for times on the order of an hour [Han et al., 2009; Lee et al., 2007]. On the
other hand, in situ retorting technologies involve heating oil shale in the geologic formation in the
range of 300–350°C from days to months [Brandt, 2008; Liu et al., 2009]. Many studies have been con-
ducted on oil shale pyrolysis to better understand the effect of fundamental parameters on shale oil
yield and quality to optimize the reaction conditions. This includes pyrolysis temperature [Chen and
Shi, 2010; Williams and Ahmad, 1999; Yue et al., 2014], heating rate [Değirmenci and Durusoy, 2005;
Nazzal, 2002; Williams et al., 1999; Yue et al., 2014], residence time for pyrolysis reaction [Williams and
Chishti, 2001], composition of pyrolysis atmosphere [Netzel and Miknis, 1982; Razvigorova et al., 2008],
particle size [Ahmad and Williams, 1998; Jaber et al., 1999; Khalil, 2013], and mineral matrix [Espitalie
et al., 1980; Karabakan and Yürüm, 1998]. Vacuum pyrolysis has been shown to enable higher yield
and improved quality shale oil in comparison with pyrolysis under atmospheric pressure [Hoekstra
et al., 2012; Pakdel et al., 1999; Roy et al., 1985; Siramard et al., 2016]. A reduced pressure facilitates
the transport of pyrolysis products by providing quicker escape of primary oil from the reaction zone,
thus reducing the secondary cracking reactions [Pakdel et al., 1999; Siramard et al., 2016].

In this experimental study, we apply vacuum pyrolysis conditions to the organic-rich Mahogany zone oil shale
of the Green River Formation to capture the dynamic pore structure development at temperatures represen-
tative of ex situ oil shale extraction technologies.
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X-ray microcomputed tomography (μCT)
has provided direct visualization and
quantitative assessment of geological
samples [Andrä et al., 2013; Andrew et al.,
2013; Berg et al., 2013; Blunt et al., 2013;
Cnudde and Boone, 2013; Dann et al.,
2010; Ketcham and Carlson, 2001; Lin
et al., 2015, 2016; Mahabadi et al., 2012;
Menke et al., 2015; Singh et al., 2016;
Wildenschild and Sheppard, 2013], includ-
ing oil shale rocks [Coshell et al., 1994;
Kang et al., 2011; Tiwari et al., 2013]. The
advantage of μCT is that it allows
nondestructive access to the internal
structure of objects, providing qualitative
and quantitative data about the structure
and morphology of 3-D samples and
features (pores, fractures, grains, etc.). To
capture dynamic processes, recent work
has focused on X-ray imaging of
geological materials using synchrotron
X-ray microtomography [Andrew et al.,
2015; Berg et al., 2014; Fusseis et al., 2014;
Madonna et al., 2013; Menke et al., 2016;
Panahi et al., 2014]. This can be considered
as four-dimensional (4-D) tomography
(three spatial coordinates plus time evolu-
tion), where 3-D tomograms are recorded
over a short period of time. Several com-
plex physical and chemical changes occur
during the thermal conversion of organic
matter in oil shale to produce oil and gas
[Braun and Rothman, 1975; Burnham,
2010; Kök and Pamir, 2000; Na et al.,
2012]—μCT can complement previous
work by quantifying the changes in pore
structure and connectivity.

Existing studies on oil shale imaging are
limited and have focused primarily on
static 3-D imaging. μCT has been applied
to oil shale samples from the United
States (Green River) [Tiwari et al., 2013],
China (Fushun) [Kang et al., 2011], and
Australia (Queensland) [Coshell et al.,
1994]. Tiwari et al. [2013] characterized
pore structures before and after pyrolysis
based on 42μmvoxel size scans with
pores as large as 500μm observed after
pyrolysis. These ex situ studies are limited
as they analyze samples before and after
an experiment, providing an incomplete
understanding of a spatially and tempo-
rally dynamic process. To capture this time

Figure 1. (a) Experimental apparatus used at Diamond Light Source
Beamline I13-2 and (b) schematic of experimental apparatus. (c)
Temperature profile used in the experiment, with each point (red)
representing an acquisition of a 3-D tomogram. In total 52 scans
were recorded.
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dependence, we require fast scanning times, high resolution, at high temperatures and anaerobic conditions. To
meet all of these challenges is currently experimentally difficult using laboratory-based μCT systems. Here
we present a novel experimental technique using synchrotron imaging to dynamically visualize and
quantify the 3-D pore network structure and connectivity for the pyrolysis of oil shale.

2. Materials and Methods

The oil shale sample was obtained from an outcrop of the organic-rich Mahogany zone of the Green River
Shale Formation (Uinta Basin, Utah). Thermogravimetric analysis (TGA) has been used extensively as a
means of determining pyrolysis characteristics and also to determine kinetic parameters [Jaber and
Probert, 2000; Karabakan and Yürüm, 1998; Kok, 2001; Rajeshwar, 1981; Tiwari and Deo, 2012a, 2012b;
Torrente and Galan, 2001; Williams and Ahmad, 2000]. In this study, TGA of the oil shale sample was
conducted using a Perkin-Elmer Pyris 1 instrument (Perkin Elmer, USA) to establish the mass loss profile
allowing for comparison with segmented pore volumes from image analysis. A 100 g sample of the oil shale
rock was crushed and milled, and 20mg of this powdered sample was heated to 850°C at a heating rate of
10°C/min using nitrogen as the purge gas.

A 2.5mm diameter by 10mm length core was selected from the same oil shale rock which contained organic
rich and lean laminations tightly bound in an inorganic mineral-rich matrix. A custom built furnace was used
to heat the sample during the experiment. The cylindrical furnace consisted of two viewports on opposite sides to
allow the X-ray beam to directly pass through. The sample was loaded into a borosilicate glass tube and placed
under vacuum pressure at 0.1 kPa absolute. A thermocouple measured sample temperature and a proportional
integral differential (PID) controller regulated the temperature to ±1°C. A detailed schematic of the experimental
apparatus is shown in Figure 1.

The experiment was performed at the Diamond Light Source I13-2 beamline with a polychromatic beam energy
that ranges from 8 to 30KeV with amaximum photon flux of 4×109 Ph/s. The low-energy X-rays were filtered by
passing the beam through 2mm Al and 0.1mm Au filters. A 250μm thick CdWO4 scintillator with a 4X objective
lens and a PCO EDGE 5.5 camera were used.

The 3-D scans had an exposure time of 80ms, capturing 2001 projections as the sample was rotated 180°
around an axis perpendicular to the quasi-parallel incident polychromatic X-ray beam. The total acquisition
time was 160 s per scan. Figure 1c illustrates the experimental heating profile with each point indicating a
tomography scan at the centre of the core with a 2mm×2mm field of view. The sample was heated from
20°C to 500°C with the temperature held constant at key pyrolysis stages where scans were recorded.

Each reconstructed image had 10003 voxels with a voxel size of 2μm. A nonlocal means edge preserving filter
[Buades et al., 2005, 2008] was applied to reduce noise (Figures 2a–2d). The pore space was segmented
(Figures 2e and 2f) using Otsu’s algorithm [Otsu, 1979] which maximizes the between-class variance of voxel
intensity. For this data set, the algorithm provided consistent segmentation to separate the pore space from
the rest of the solid phase. All image processing was conducted using the Avizo 9.0 program (FEI,
Visualization Sciences Group) and MATLAB (MathWorks).

3. Results

Figures 2a–2d show 2-D cross-sectional slices of 3-D images of the Green River (Mahogany Zone) oil shale
sample, with the gray scale values for each pixel corresponding to X-ray attenuation, which varies as a func-
tion of density and atomic number. In Figure 2a, the less dense organic-rich material is shown as the darker
colored regions, while the denser mineral-rich matrix appears lighter.

Figure 3 shows the porosity as a function of experimental time given the experimental temperature profile
(Figure 1c). Between 20°C and 380°C no visible change in porosity was detected for a 2μmvoxel size. The
cross sections (Figures 2b and 2e) reveal the onset of resolvable pores at 390°C in the organic-rich layers of
the shale sample with a total sample porosity of 2.7% (Figure 3). To illustrate this, Figure 4 presents 3-D visua-
lizations of the segmented pore structure (Figures 2e and 2f) at 390°C and 400°C. A dramatic increase in total
porosity to 21.9% is observed at 400°C as the pores expand resulting in microfracture networks parallel to
the shale bedding which provide a pathway for the outgoing hydrocarbons. In Figure 4c we plot the com-
puted porosity values for each vertical slice (A to B) at 390°C and 400°C, revealing a well-defined variation in
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Figure 2. (a–d) Filtered gray scale images at different temperatures. (e–g) Segmented images with pore space shown white.
The gray scale cross sections show organic-rich laminations (dark grey) tightly bound in an inorganicmineral matrix (light grey)
with no resolvable pore space between 20°C and 380°C. The first resolvable pore space appears at 390°C. There then follows a
dramatic increase in porosity to form microfracture networks along the organic-rich laminations (Figures 2c and 2f) with a
small but detectable increase in porosity with a further increase in sample temperature to 500°C (Figures 2d and 2e).

Figure 3. Porosity as a function of experimental time. The temperature is indicated by the arrows. Between 20°C
and 380°C no resolvable porosity was observed; at 390°C the first microscale pores were detected contributing to a
porosity of 2.7%; at 400°C a dramatic increase in porosity is observed resulting in a total porosity of 21.9%; and a further
increase in pyrolysis temperature to 500°C leads to a smaller increase in porosity to 24.9%.
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Figure 4. The 3-D rendered volumes of the oil shale sample at (a) 390°C and (b) 400°C. The dramatic increase in porosity
is visualized with the pore phase (blue) and remaining matrix phase (gray). The porosity profile across the sample from
A to B for both 390°C and 400°C reveals a variable porosity distribution related to the thermal decomposition of
organic material.

Figure 5. The 3-D rendering of the pore space where the colors indicate clusters of connected pores. At 20°C no pores can
be resolved. At 390°C all the pore space appears disconnected at the resolution of the image—the large range of colors
indicates a poorly connected pore network. At 400°C and 500°C the vast majority of the pore space is connected, 96.5% and
97.8% respectively, shown in blue.
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the spatial porosity distribution after pyrolysis. We observe greater porosity in the organic-rich regions
(which we assume are the darker areas at the beginning of the experiment) compared to the organic-lean
regions. We performed scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS)
analysis to confirm that the darker regions in the gray scale images are indeed organic rich (41% carbon
content) relative to matrix material (see supporting information for further details). The increased poros-
ities in the organic-rich regions fundamentally constitute the combined volumes represented primarily
by the loss of organic material. With increasing temperature, devolatilization of kerogen increases the inter-
nal vapor pressure of large unconnected pores to such an extent that the mechanical strength of the sur-
rounding material can no longer retain the gas, leading to the dramatic porosity changes observed
between 390°C and 400°C. A further increase in temperature to 500°C results in only a 3% increase in
average porosity to 24.9%.

The first scan at 400°C revealed a total porosity of 21.9% (Figure 3). The sample was held at 400°C with the
acquisition of a further four scans every 10min to examine the impact of time at a constant temperature.
We observe a small but noticeable increase of 2.2% in average porosity to 24.1% over a period of 40min.
This indicates the majority of the pore space transformation occurs within the first 10min of the temperature
stabilizing at 400°C.

Figure 5 shows a 3-D rendering of the connectivity of the pore space: at 390°C all the pore space appears dis-
connected at the resolution of the scan, as indicated by the wide range of colors. However, at 400°C, 96.5% of
the pore space is connected, and a further increase in temperature to 500°C results in a 97.8% connected
pore space. Figure 6a shows the mass loss for the bulk sample from TGA analysis and the fractional mass loss
change between two points which indirectly represents the pyrolysis reaction rate. At temperatures less than
200°C, a small mass loss is observed, primarily due to the evaporation of water, including adsorbed and inter-
layer water from clay minerals. At a temperature between 250°C and 500°C a major mass loss of 35.4% is
observed. Althoughwe obtain amass loss of 22.6% from the TGA experiment at 380°C, we did not observe pore
space development in our images at 2μmvoxel size until a slightly higher temperature is reached (Figure 2a).
This can be attributed to pore structure transformation at submicron resolution. The first mass loss stage in
Figure 6a represents the decomposition of organic material where chemical bonds linking the organic com-
pounds to the rock matrix are broken and the kerogen macromolecular structure is pyrolyzed yielding simpler
and lighter molecules. A single major trough for organic decomposition suggests that one distinguishable pro-
cess occurs in this temperature range governed by a single global reaction mechanism. At temperatures above
600°C, a further mass loss of 15.2% is observed related to the decomposition of carbonate and clay minerals. In
total we observe a mass loss of 50.6%.

Figure 6. (a) Thermogravimetric (TGA) data showing the fraction of the mass remaining as a function of temperature (solid
line) and the fractional change inmass (dashed line) between twomeasured temperature points.m0 is the initial mass,mi is
the mass at some temperature, and Δmi is the change in mass for a 10°C temperature increase. (b) Image derived data
showing the matrix (nonpore) volume loss due to pore space development (solid line) and the fractional change in matrix
volume. ΔVi is the change in volume for a 10°C temperature increase.
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We can relate the fractional mass loss in the TGA analysis to the change in pore volume from the images.
Assuming that organic material of a constant density is produced, we may assume that the mass loss is pro-
portional to the increase in pore volume. The fractional change in pore volume as determined from the 3-D
images is compared to the change in mass in Figure 6. We obtain a maximum change in oil shale matrix
volume at 400°C which is comparable to the maximum change in mass loss for the bulk oil shale sample
as measured by TGA. At the 2μmvoxel resolution we have captured the middle-to-late stage of pore space
development related to the thermal breakdown of organic matter. To characterize the pore structure evolu-
tion at earlier stages of mass loss, images with nanoscale resolution are needed.

4. Conclusions

A novel technique combining synchrotron X-ray tomography with a custom built furnace was designed and
applied to visualize and quantify dynamic pore space development for Green River Oil Shale of the organic-
rich Mahogany zone at temperatures representative of oil shale pyrolysis technologies (300–500°C). The
development in oil shale pore structure during pyrolysis was not resolvable at a voxel size of 2μm for tem-
peratures between 20°C and 380°C. The onset of resolvable pore space occurred at 390°C in the organic-rich
phases with a dramatic increase in porosity and connectivity at 400°C. This striking change in porosity was
corroborated by mass loss change determined by TGA. Increasing the temperature further to 500°C resulted
in only a small increase in porosity. On holding the temperature constant we observed that the majority of
the pore space development took place within the first 10min. We show that pore development is directly
related to the initial spatial distribution of organic matter. Our results provide a direct observation of pore
and microfracture development for oil shale pyrolysis to better understand the mechanisms that govern
the process to ultimately enhance pyrolysis performance.
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