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Abstract—In this paper, two novel channel parameter estima-
tion algorithms are proposed under the “wideband assumption”
(WBA), where a wavefront varies significantly when traversing
through the sensors of an array. The first is a covariance-based
algorithm that utilizes the cross-covariance matrix between two
subvectors of the received signal vector and its singular value
decomposition to reconstruct the parameter-dependent signal
subspace. The second employs the rotation of the array reference
point to transform the WBA problem to its “narrowband assump-
tion” (NBA) counterpart so that estimation techniques under
the NBA are readily applicable. Through computer simulation
studies, the two proposed approaches are shown to successfully
estimate the channel parameters under the WBA with outstand-
ing accuracy in terms of the root mean squared error.

Index Terms—Array processing, estimation problem, wideband
assumption, covariance matrix, array reference point.

NOMENCLATURE

a,A Scalar
a,A Column vector
A Matrix
(·)T Transpose
(·)H Hermitian
‖·‖ Euclidean norm
b·c Floor function
� Hadamard product
� Hadamard quotient
⊗ Kronecker product
� Khatri–Rao product
Ab Element-wise b-th power of A
diag(A) Diagonal matrix formed from A
exp(A) Element-wise exponential of A
rank(A) Rank of A
E{·} Expectation operator
1N Column vector of N ones
0N Column vector of N zeros
IN N ×N identity matrix
OM×N M ×N zero matrix
Z Set of integers
R Set of real numbers
C Set of complex numbers

I. INTRODUCTION

In the field of wireless communications using array process-
ing, the estimation problem (i.e., the estimation of the channel
parameters of interest) has been an active and important area

of research. Directions of arrival (DOAs) of wireless signals
exemplify the common channel parameters to be estimated
in this problem. A widely used family of techniques in this
domain is the signal subspace technique, where the signals of
multiple sources are mapped to a signal subspace, which is
embedded in a high-dimensional complex observation space.
The signal subspace is spanned by the array manifold vectors
of the sources. Therefore, with the estimate of the signal
subspace, projection operators can be exploited to determine
the parameters (e.g., DOAs) of the array manifold vectors
that reside in the signal subspace. Moreover, the subspace
techniques enjoy a substantial superresolution performance
advantage compared to other parameter estimation methods
like maximum likelihood, maximum entropy, and conventional
beamforming [1].

However, subspace techniques like multiple signal classifi-
cation (MUSIC) [1] or root-MUSIC [2] are only applicable
under the “narrowband assumption” (NBA), which is defined
as the case where a wavefront remains unchanged when it
traverses through the sensors of an array [3]. This is in gen-
eral valid in compact (small aperture and collocated) arrays.
Conversely, if the array elements are distributed in space with
large intersensor spacing, the NBA does not generally hold
because the transmitted wavefront may change significantly
when it traverses through the sensors of the array. This is
defined as the “wideband assumption” (WBA)1. In this case,
algorithms such as MUSIC fail to operate and estimate channel
parameters correctly.

In this paper, two novel channel parameter estimators
under the WBA are proposed. The first is a covariance-
based approach that makes use of the cross-covariance matrix
between two subvectors of the received signal vector and
its singular value decomposition to estimate the parameter-
dependent signal subspace. On the other hand, the second is
a reference-based approach that employs the concept of the
rotation of the array reference point to transform the WBA
problem to its NBA counterpart before the application of the
methods under the NBA. In this paper, the channel parameters
of interest under the WBA are the DOAs and ranges. Also,
the performance of the proposed approaches is examined in
terms of the root mean squared error (RMSE) using computer

1Note that the concept of the WBA should not be confused with that of
the wideband signal.



simulation studies.
The organization of the rest of this paper is as follows.

In Section II, the signal model under the WBA is presented.
In Section III, two novel channel parameter estimators under
this assumption are proposed and explained. In Section IV,
their performance is assessed via computer simulation studies.
Finally, in Section V, the paper is concluded.

II. SIGNAL MODEL

Consider an array of N widely distributed sensors (i.e., a
large aperture array) with a known array geometry. The array
geometry is described as

[r1, r2, . . . , rN ] =
[
rx, ry, rz

]T ∈ R3×N (1)

where rk ∈ R3×1 denotes the Cartesian coordinates of the k-
th sensor and rx, ry , and rz ∈ RN×1 represent the coordinates
of the x-, y-, and z-axis. Without loss of generality, the first
sensor is selected as the array reference point and is located
at the origin of the coordinate system. The array receives the
signals from M uncorrelated sources that follow the WBA via
the line-of-sight paths solely with M < N . In addition, it is
supposed that these sources are temporally uncorrelated. With
reference to Fig. 1, spherical wave propagation is assumed.
Furthermore, the position (i.e., Cartesian coordinates) of the
i-th source can be expressed as a vector

r̄i , r̄(θi, φi, ρi) = ρiui ∈ R3×1 (2)

with

ui , u(θi, φi)

= [cos θi cosφi, sin θi cosφi, sinφi]
T ∈ R3×1 (3)

where θi is its azimuth angle measured counterclockwise from
the positive x-axis, φi is its elevation angle, and ρi is its
range between the array reference point and the source itself.
Without loss of generality, in Fig. 1 and overall in this paper,
the elevation angle φi is assumed equal to zero.

The baseband signal x(t) ∈ CN×1 received at the array
under the WBA can be modeled as

x(t) = [x1(t) , x2(t) , . . . , xN (t)]
T

=

M∑
i=1

Si �mi(t) + n(t) (4)

where, for the i-th source, Si ∈ CN×1 is the spherical wave
array manifold vector and

mi(t) = [mi(t− τi1) ,mi(t− τi2) , . . . ,mi(t− τiN )]
T

∈ CN×1 (5)

contains the delayed versions of the message received at all the
sensors with τik denoting the relative delay between the array
reference point and the k-th sensor. Note that τi1 = 0 for all
the sources as the first sensor is the array reference point. Also,
if the i-th source follows the NBA, then mi(t) = mi(t) 1N .
Besides, n(t) ∈ CN×1 represents the complex additive white
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Fig. 1. Array and source geometry. A two-dimensional representative geom-
etry of the sensor array (represented by the blue circles) and the i-th source
(represented by the red square) of the azimuth angle θi and range ρi. The
term τik is the relative delay between the array reference point and the k-th
sensor for the i-th source.

Gaussian noise with zero mean and noise power σ2
n. Further,

the spherical wave array manifold vector is given as [4], [5]

Si = ραi ρ
−α(θi, ρi)� exp

(
−j2πFc

c

(
ρi1N − ρ(θi, ρi)

))
(6)

with ρ(θi, ρi) ∈ RN×1 defined as follows

ρ(θi, ρi) ,
√
ρ2
i 1N + r2

x + r2
y + r2

z − 2ρi
[
rx, ry, rz

]
ui (7)

where α represents the known path loss exponent, Fc expresses
the carrier frequency, and c denotes the speed of light. Equa-
tion (4) can be rewritten in a more compact matrix format
as

x(t) = (S�M(t)) 1M + n(t) (8)

where

S = [S1, S2, . . . , SM ] ∈ CN×M ; (9)

M(t) = [m1(t) ,m2(t) , . . . ,mM (t)] ∈ CN×M . (10)

It can be proven (given in Appendix A) that the covariance
matrix of the received signal vector x(t) is given, under the
WBA, as

Rxx = E
{
x(t)xH(t)

}
=

M∑
i=1

SiS
H
i � Rmimi

+ Rnn ∈ CN×N (11)

where Rmimi
and Rnn = σ2

nIN are the respective covariance
matrices of the i-th message and the noise. With reference to
Equ. (11), if Q denotes the number of the most significant
eigenvalues of Rxx, then Q is determined by the rank of
Rmimi

but also bounded from above by N , which is the
dimension of Rxx; that is,

Q = min

(
M∑
i=1

rank(Rmimi
) , N

)
. (12)



Based on Equ. (12), there are the following two cases.
• If Q < N , then the sources span solely a subspace of the

observation space. In this case, a source under the NBA
spans the same one-dimensional subspace as its corre-
sponding manifold vector. By contrast, a source under
the WBA spans a multidimensional subspace that is the
transformed2 version of the most significant eigenspace of
its covariance matrix. This means that only the parameters
of the sources under the NBA can be estimated using
subspace techniques like MUSIC.

• If Q = N , then the sources span the entire observation
space and the dimension of the noise subspace is zero.
This means that no parameters can be estimated using
subspace techniques like MUSIC.

In either case, the parameters of the sources under the WBA
cannot be estimated using the subspace techniques directly.
Hence, two approaches are proposed and explained in the next
section for solving the estimation problem under the WBA.

III. PROPOSED APPROACHES UNDER THE WIDEBAND
ASSUMPTION

A. Covariance-Based Approach

From the phase of the spherical wave manifold vector given
in Equ. (6), the relative delay vector τ i ∈ RN×1 associated
with the i-th source can be derived as

τ i , τ(θi, ρi) = [τi1, τi2, . . . , τiN ]
T

=
1

c

(
ρ1N − ρ(θi, ρi)

)
. (13)

If τ i was known, then the received signal vector x(t) could be
reversely delayed using τ i, forming the vector x̄i(t) ∈ CN×1

defined as follows

x̄i(t) = [x1(t+ τi1) , x2(t+ τi2) , . . . , xN (t+ τiN )]
T . (14)

Consequently, the corresponding reversely delayed message
vector of the i-th source is

m̄i(t) =


mi(t− τi1 + τi1)
mi(t− τi2 + τi2)

...
mi(t− τiN + τiN )

 = mi(t) 1N ∈ CN×1. (15)

This means that for the i-th source having the parameters θi
and ρi, the reversely delayed i-th message is aligned at time
zero and follows the NBA. Meanwhile, τ i is not equal to the
delay vectors of the other sources (provided that the delay
vectors of all the sources are different, which is valid in
general). Hence, the other sources still remain under the WBA.

The signal vector given in Equ. (14) can be partitioned
into two nonoverlapping (but possibly interlacing) subvectors.
Without loss of generality, assume that the two subvectors
contain the first NA and last NB elements respectively with
N = NA +NB ; that is,

x̄i(t) =
[
x̄TiA(t) , x̄TiB(t)

]T
(16)

2The transformation is governed by the array manifold vector of this source.

where x̄iA(t) ∈ CNA×1 and x̄iB(t) ∈ CNB×1. The cross-
covariance matrix between these two subvectors can be calcu-
lated as

Ri = E
{
x̄iA(t) x̄HiB(t)

}
= SiAS

H
iB � Rm̄iAm̄iB

∈ CNA×NB (17)

where SiA ∈ CNA×1 and SiB ∈ CNB×1 are the subvectors of
the manifold vector Si and Rm̄iAm̄iB

∈ RNA×NB denotes
the cross-covariance matrix between the subvectors of the
reversely delayed i-th message. Note that the cross-covariance
matrices of the other sources and noise become zero due to
the property of their temporal statistics. Since the reversely
delayed i-th message follows the NBA, its cross-covariance
matrix is Rm̄iAm̄iB

= Pi1NA
1TNB

with rank one where Pi is
its signal power. Therefore, Ri is simplified to

Ri = PiSiAS
H
iB . (18)

This is a rank one matrix and is completely determined by the
subvectors SiA and SiB of the manifold vector Si. Moreover,
it is not Hermitian and may not be square. Thus, its singular
value decomposition can be written as

Ri = UiDiVHi (19)

where Ui ∈ CNA×NA is a unitary matrix containing the left
singular vectors, Di ∈ RNA×NB is a rectangular diagonal
matrix containing the singular values on its diagonal, and
Vi ∈ CNB×NB is a unitary matrix containing the right singular
vectors. The structure of the matrix containing the singular
values is

Di =

[
Pi ‖SiA‖ ‖SiB‖, 0TNB−1

0NA−1, O(NA−1)×(NB−1)

]
. (20)

In other words, among the min(NA, NB) singular values, there
is only one nonzero singular value; i.e., the minimum singular
value is zero and its multiplicity is min(NA, NB)−1. Further,
the left singular vector corresponding to the most significant
singular value spans the same subspace as SiA and, similarly,
this applies to the right singular vector and SiB . This feature
can be employed to estimate the parameters of the i-th source,
regardless it following the NBA or WBA before the received
signal is reversely delayed.

According to the theory explained above, the estimation
algorithm is designed as follows. Suppose that L snapshots
are collected at the array at the sampling frequency Fs and
sampling period Ts = 1/Fs. The snapshots can be written in
a matrix format as

X = [x(t1) , x(t2) , . . . , x(tL)]

= [x1, x2, . . . , xN ]
T ∈ CN×L (21)

where t` = `Ts is the `-th time instance and xk ∈ CL×1 is
the vector of L snapshots collected at the k-th sensor. In order
to estimate the parameters θ and ρ of all the sources, a cost
function of these two parameters is to be maximized through a
two-dimensional search of them in a parameter space. In con-
trast to the MUSIC algorithm in [1], the null subspace in the



proposed covariance-based approach is parameter-dependent.
Based on the received signal matrix X of Equ. (21), the steps of
the proposed approach for estimating the channel parameters
are outlined below.

Step 1: For a particular (θ, ρ), calculate the discrete relative
delay vector based on Equ. (13) as

`(θ, ρ) = [`1(θ, ρ) , `2(θ, ρ) , . . . , `N (θ, ρ)]
T

= bFsτ(θ, ρ)c ∈ ZN×1 (22)

where `k(θ, ρ) denotes its k-th element.
Step 2: Reversely delay the signal received at the k-th

sensor (i.e., the k-th row of X, in the format of
a column vector) using `k(θ, ρ) as

x̄k(θ, ρ) = CL−`k(θ,ρ)
L xk ∈ CL×1 (23)

where CL is the L-dimensional circular shift matrix
given as

CL =

[
0TL−1, 1
IL−1, 0L−1

]
∈ ZL×L. (24)

By repeating this for all k (i.e., all the rows of X),
form the reversely delayed signal matrix associated
with this (θ, ρ) as

X̄(θ, ρ) = [x̄1(θ, ρ) , x̄2(θ, ρ) , . . . , x̄N (θ, ρ)]
T

=
[
X̄TA(θ, ρ) , X̄TB(θ, ρ)

]T ∈ CN×L (25)

where X̄A ∈ CNA×L and X̄B ∈ CNB×L are its two
submatrices containing its first NA and last NB
rows respectively.

Step 3: Calculate the cross-covariance matrix between the
two submatrices X̄A and X̄B ; that is,

Rx̄Ax̄B
(θ, ρ) =

1

L
X̄A(θ, ρ) X̄HB (θ, ρ) ∈ CNA×NB .

(26)
Step 4: Obtain the null subspace of Rx̄Ax̄B

(θ, ρ) using
its singular value decomposition. Taking its left
singular vectors as an example, its null subspace,
denoted as En(θ, ρ) ∈ CNA×(NA−1), consists of its
left singular vectors corresponding to its NA − 1
least significant singular values.

Step 5: Evaluate the following cost function

ξ(θ, ρ) =
SHA (θ, ρ)SA(θ, ρ)

SHA (θ, ρ)En(θ, ρ)EHn (θ, ρ)SA(θ, ρ)
.

(27)
Step 6: Repeat Steps 1 to 5 ∀θ and ∀ρ in the parameter

space.

B. Reference-Based Approach

In addition to the covariance-based method proposed above,
the channel parameters of the sources under the WBA can also
be estimated by exploiting the concept of the rotation of the
array reference point.

As described in Section II, the first sensor is selected as the
array reference point without loss of generality. This is defined

as the primary reference point, utilizing which the manifold
vector associated with the i-th source is Si. Now consider that
the array reference point is changed to the k-th sensor. In this
case, the new reference point is rk, and the array geometry
and azimuth angles and ranges of all the sources are measured
with respect to rk. Moreover, the manifold vector of the i-th
source under the new reference point is S−1

ik Si where Sik is
the k-th element of Si [4], [5].

In the presence of M uncorrelated sources, the signal
received at the array system when the k-th sensor is the
reference point can be expressed as [4], [5]

xk(t) =

M∑
i=1

S−1
ik Si �mi(t) + n(t) ∈ CN×1. (28)

Poll the reference point from the first sensor to the last and
preprocess (concatenate and average) all the received signals
as (the derivation is given in Appendix B)

x̄(t) =
1√
N

(IN ⊗ 1N )
T [
xT1 (t) , xT2 (t) , . . . , xTN (t)

]T
= Am̄(t) + n̄(t) ∈ CN×1 (29)

where A = 1N1TM � S ∈ CN×M and

m̄(t) =
1√
N

(S�M(t))
T

1N ∈ CM×1; (30)

n̄(t) =
1√
N

1N1TNn(t) ∈ CN×1. (31)

Furthermore, the covariance matrix of the preprocessed sig-
nal x̄(t) is given as

Rx̄x̄ = E
{
x̄(t) x̄H(t)

}
= ARm̄m̄AH + Rn̄n̄ ∈ CN×N (32)

where
Rm̄m̄ = E

{
m̄(t) m̄H(t)

}
∈ RM×M (33)

is a diagonal matrix with M nonzero elements on its diagonal
and

Rn̄n̄ = E
{
n̄(t) n̄H(t)

}
= σ2

n1N1TN ∈ RN×N (34)

has the rank of one. According to the structure of Rx̄x̄, its
eigenspace comprises the (M + 1)-dimensional signal sub-
space corresponding to the preprocessed messages and noise
as well as the complementary (N −M − 1)-dimensional null
subspace. Thus, the null subspace can be exploited to estimate
the channel parameters with the employment of the subspace
estimation techniques under the NBA.

In practice, let Xk ∈ CN×L denote the received signal
matrix when the k-th sensor is the reference point and

X̄ =
1√
N

(IN ⊗ 1N )
T [XT1 ,XT2 , . . . ,XTN]T ∈ CN×L (35)

denote the preprocessed signal matrix. Its covariance matrix
can be constructed as

Rx̄x̄ =
1

L
X̄X̄H ∈ CN×N . (36)

Its eigenspace corresponding to the zero eigenvalues is the null
subspace and is denoted as En ∈ CN×(N−M−1). The channel



parameters can be estimated by maximizing the following cost
function

ξ(θ, ρ) =
AH(θ, ρ)A(θ, ρ)

AH(θ, ρ)EnEHn A(θ, ρ)
(37)

where A(θ, ρ) = 1N � S(θ, ρ) ∈ CN×1.
Briefly, the two proposed channel estimators can be sum-

marized as the following steps.
• Covariance-based approach

1) For a particular (θ, ρ) calculate the discrete relative
delay vector using Equ. (22).

2) Reversely delay the signals received at all the sen-
sors using Equ. (23). Form the reversely delayed
signal matrix and partition it into two submatrices
using Equ. (25).

3) Calculate the cross-covariance matrix between the
two submatrices using Equ. (26).

4) Find the null subspace of the cross-covariance ma-
trix as its left or right singular vectors corresponding
to its least significant singular values.

5) Evaluate the cost function Equ. (27).
6) Repeat Steps 1 to 5 ∀θ and ∀ρ in the parameter

space to estimate the channel parameters.
• Reference-based approach

1) Poll the array reference point from the first sensor
to the last and construct the respective matrices of
the received signals using Equ. (35).

2) Preprocess (concatenate and average) the received
signals and calculate the covariance matrix of the
preprocessed signal using Equ. (36).

3) Find the null subspace of the covariance matrix as
its eigenvectors corresponding to its least significant
eigenvalues.

4) Estimate the channel parameters by evaluating the
cost function Equ. (37).

IV. COMPUTER SIMULATION STUDIES

The performance of the two proposed channel estimators
presented in Section III is assessed through computer simula-
tion studies. In the simulations, a 20-element uniform circular
array with 100 m intersensor spacing is utilized. The two
subvectors in the covariance-based approach are chosen as two
10-element vectors that comprise alternating elements of the
original received signal vector. Other simulation parameters
are summarized in Table I.

First, consider a scenario in which the array receives the
signals from four equipowered and uncorrelated sources under
the WBA with the signal-to-noise ratio (SNR) of 20 dB. The
azimuth angles and ranges of the sources are listed in Table I
while their elevation angles are assumed to be equal to 0◦. The
joint azimuth and range estimation results of the covariance-
and reference-based approaches are shown in Figs. 2 and 3
respectively. Four peaks can be clearly observed in both cases,
indicating a successful estimation of the azimuth angles and
ranges. The performance of the reference-based approach is
better than its covariance-based counterpart. This is because

TABLE I
SIMULATION PARAMETERS

Parameter Value Source Azimuth Range

Carrier frequency 3GHz 1 18◦ 578m

Sampling frequency 30MHz 2 59◦ 551m

Number of snapshots 200 3 137◦ 563m

SNR 20dB 4 156◦ 521m
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Fig. 2. Joint azimuth and range estimation of the covariance-based approach.
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Fig. 3. Joint azimuth and range estimation of the reference-based approach.

in the covariance-based approach, there exists the residual
of the undesired sources and noise in the cross-covariance
matrix. Meanwhile, in the reference-based approach, the noise
is transformed into an independent source that follows the
NBA and does not contribute to the null subspace.

Second, consider a scenario in which only a single source
under the WBA is present. Its azimuth angle, elevation angle,
and range are 18◦, 0◦, and 578 m respectively. The RMSE of
the azimuth and range estimates of the proposed approaches
versus the product of the SNR and number of snapshots is
shown in Fig. 4. The RMSE curves of the covariance-based
approach decline as the product of the SNR and number
of snapshots increases. This is an expected result as the
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Fig. 4. Estimation RMSE. The true azimuth angle and range are 18◦ and
578m respectively. The results are averaged over 10 000 realizations.

covariance-based approach belongs to the family of subspace
techniques and the estimation error tends to zero as L tends to
infinity. Furthermore, it is clear from Fig. 4 that the reference-
based approach enjoys very small RMSE curves. This is due
to the fact that the observation space is big (bigger than
the covariance-based approach) and the preprocessor averages
even further the noise effect.

In summary, both proposed approaches can estimate the
channel parameters (azimuth angles and ranges) of multiple
sources under the WBA very accurately.

V. CONCLUSIONS

In this paper, two channel parameter estimators under the
WBA are proposed. The covariance-based approach utilizes
the cross-covariance matrix between two nonoverlapping sub-
vectors of the received signal vector in conjunction with
its singular value decomposition to recover the parameter-
dependent signal subspace. Meanwhile, the reference-based
approach employs the concept of the rotation of the array
reference point so that the algorithms under the NBA are
readily applicable. Both proposed approaches are shown to
successfully estimate the DOAs and ranges under the WBA
with substantial accuracy in terms of the estimation RMSE.

APPENDIX A
DERIVATION OF THE COVARIANCE MATRIX

The covariance matrix of the received signal in the presence
of M uncorrelated sources under the WBA is

Rxx = E
{
x(t)xH(t)

}
= E

{
(S�M(t)) 1M1TM (S�M(t))

H
}

+ E
{
n(t)nH(t)

}︸ ︷︷ ︸
,Rnn

= E


(

M∑
i=1

Si �mi(t)

) M∑
j=1

Sj �mj(t)

H
+ Rnn

= E


M∑
i=1

M∑
j=1

SiS
H
j �mi(t)m

H
j (t)

+ Rnn

=

M∑
i=1

M∑
j=1

SiS
H
j � E

{
mi(t)m

H
j (t)

}︸ ︷︷ ︸
,Rmimj

+Rnn

=

M∑
i=1

M∑
j=1

SiS
H
j � Rmimj

+ Rnn (38)

where Rmimj
denotes the covariance matrix between the i-th

and j-th messages and Rnn denotes covariance matrix of the
noise. Since all the sources are uncorrelated, the covariance
matrix Rmimj = ON×N if i 6= j. Therefore, Equ. (38) is
simplified to

Rxx =

M∑
i=1
j=i

SiS
H
j � Rmimj + Rnn

=

M∑
i=1

SiS
H
i � Rmimi

+ Rnn. (39)

APPENDIX B
DERIVATION OF THE PREPROCESSED SIGNAL

The preprocessed (concatenated and averaged) signal in the
reference-based approach is

x̄(t) =
1√
N

(IN ⊗ 1N )
T [
xT1 (t) , . . . , xTN (t)

]T
=

1√
N

(IN ⊗ 1N )
T

(A� (S�M(t))) 1N

+
1√
N

(IN ⊗ 1N )
T

(1N ⊗ n(t))

=
1√
N

(
A� 1TN (S�M(t))

)
1N

+
1√
N

(
1N ⊗ 1TNn(t)

)
= A

1√
N

diag
(

(S�M(t))
T

1N

)
1N +

1√
N

1N1TNn(t)

= A
1√
N

(S�M(t))
T

1N +
1√
N

1N1TNn(t)

, Am̄(t) + n̄(t) (40)

where A = 1N1TM � S. Hence, this model follows the NBA
with the manifold vectors being the columns of A.
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