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Abstract—In this paper, with the objective of tracking the trajectory

of multiple mobile targets, a novel spatiotemporal-state-space model

is introduced for an array of sensors distributed in space. Under

the wideband assumption, the proposed model incorporates the array

geometry in conjunction with crucial target parameters namely (i) ranges,

(ii) directions, (iii) velocities and (iv) associated Doppler effects. Computer

simulation studies show some representative examples where the proposed

model is utilised to track the locations of sources in space with a very

high accuracy.

Index Terms—Array Processing, Spatiotemporal, Tracking, Spherical

Wave Propagation

NOTATION

A, a Scalar

A, a Column vector

A, A Matrix

(·)T , (·)H Transpose, Hermitian transpose

�,⊗ Hadamard, Kronecker products

exp(A) Element by element exponential of A

Ab Element by element power of the vector A

E{·} Expectation operator

vec(A) Vectorization of A by stacking its columns

IN Identity matrix of dimensions N ×N
1N Column vector of N ones

R, C Set of real and complex numbers

I. INTRODUCTION

Multiple source/target tracking is an important element of any

surveillance and monitoring system. For example, tracking the tra-

jectories of multiple sources can assist in resource management in

space [1], air traffic control [2], missile defence [3], asset tracking

[4], mobile communications [5] and wireless sensor networks [6][7].

A straightforward approach to solve the problem of tracking multiple

sources is to divide the tracking period into sufficiently small time

intervals, over which sources may be assumed stationary. In this case,

the tracking problem can be solved as a repetitive localisation prob-

lem. However, these algorithms begin to exhibit poor performance

in the presence of fast moving sources, when the source stationarity

over the observation interval is no longer true [8].

An alternative approach to tracking in the literature, is to introduce

a state space model to represent target motion dynamics. Using the

state space model, various Bayesian approaches may be employed

to estimate the locations of targets on a snapshot by snapshot basis

[9][10]. These algorithms provide a better performance at the cost

of an increased computational complexity. In this paper, in the

framework of a state space model, a solution to track multiple

mobile sources is presented using a large aperture array of passive

sensors with known array geometry connected with fibre, wireline or

wireless links. Note that this is distinctly different from the active

tracking ([11], [12], [13], [14]) or active localisation (e.g. [15],[16])

approaches discussed extensively for example in the "radar" literature.

The approach proposed in this paper differs from the aforementioned

approaches on many counts and is based on the utilisation of a fully

parametric target environment rather than a statistical modelling. In

this paper, due to the large array aperture, the sources are assumed

to lie in the near-far field of the array and hence a spherical wave

propagation model is employed. Using the spherical wave manifold

vector, encompassing the target’s parameters and Doppler effects, a

modelling based on a spherical wave spatiotemporal manifold vector

is developed under the “wideband1-assumption”. This modelling, in

conjunction with the kinematics of the target, enables the formation of

a state space model that can be used to track the range and direction

of the targets.

The remainder of this paper is organized as follows: In Section II,

the received signal vector is modelled under the wideband-assumption

for a large aperture of passive sensors using the concept of the

spherical spatiotemporal manifold vector. In Section III, the kinematic

model of the targets is developed. Using the models in Sections II and

III, in Section IV a novel spatiotemporal-state space model for the

multi-source tracking problem is presented. Following this, in Section

V, some examples of computer simulation results are presented and

the paper is concluded in Section VI.

II. WIDEBAND-ASSUMPTION AND SPATIOTEMPORAL ARRAY

MANIFOLD VECTOR

Consider a fully calibrated large aperture sparse array of N passive

sensors with locations in Cartesian coordinates given by the matrix

r ∈R3×N with respect to the system origin. That is

r = [r1, r2, . . . , rN ] =
[
rx, ry, rz

]T
, (1)

where ri ∈ R3×1 for i = 1, 2, · · · , N denotes the location of the

i-th element in the array and rx, ry, rz ∈ RN×1 denote the vectors

describing the x, y and z coordinates of the array elements. Without

loss of generality, assume the first array sensor is located at the array

reference point (i.e., r1 = [0, 0, 0]
T ). Consider that the array operates

in the presence of M targets with common carrier frequency Fc
where the i-th source transmits an unknown message signal mi(t). In

addition, it is assumed that the targets move at a constant speed over a

given observation interval subject to minor Brownian disturbances [9]

1If the transmitted wavefront changes when traversing through the sensors

of the array (i.e. different sensors see different parts of the transmitted signal)

this is defined as the “wideband-assumption” (this should not be confused

with the term “wideband signals”). If the array elements are distributed in

space with large inter-sensor spacings, this assumption is essential.



acting on their heading directions. Finally, it is assumed that the array

aperture2 is sufficiently large such that the targets lie in the near-far

field of the array and thus undergo spherical wave propagation.

Consider that the large aperture array is tracking the i-th target.

The baseband signal vector xi (t) ∈ CN×1 at point D received by

the passive array of sensors at point C can be modelled, under the

wideband-assumption, as

xi (t) = Si (t)� F i (t)�mi (t) + n (t) , (2)

where the vector Si (t) , S (θi (t) , ρi (t)) ∈ CN×1 represents

the N -dimensional array manifold (array response) vector, F i (t) ∈
CN×1 encompasses the effect of Doppler shift due to the velocity

of the target, the vector mi (t) ∈ CN×1 denotes the various delayed

versions of the i-th target’s signal received at the array elements

(wideband-assumption) and n (t) ∈ CN×1 models the noise. In this

paper, n (t) ∈ CN×1 is assumed to be zero mean additive isotropic

Gaussian noise with covariance matrix

Rnn = σ2nIN ∈ CN×N , (3)

where σ2n denotes the noise power. However, it should be noted

that the assumption of isotropic noise is not a restriction on the

proposed approach provided the noise covariance can be found (up

to an unknown scalar). With reference to Eq. 2, the vector F i (t)

models the effect of Doppler shift due to the velocity vector of the

i-th target vi ∈ R3×1 and can be expressed as

F i (t) = exp

(
j
2πFc
c

t (ρiυρi1N − rvi)�ρ
−1
i

)
(4)

with ρ
i
=

√
ρ2i · 1N + r2x + r2y + r2z −

ρic

πFc
rT k (θi), (5)

where the parameter t has been dropped from ρi and θi for notational

convenience and υρi denotes the radial velocity of the target. The

velocity vector vi can be split into its radial component denoted by

vρiuvρi
∈ R3×1 as well as its orthoradial component denoted by

vθiuvθi
∈ R3×1 as

vi = vρiuvρi
+ vθiuvθi

(6)

noting that uυθi
is a unit norm vector. Note that the vector F i (t) in

Eq. 4 is a function of the range ρi and direction θi of the emitting

source with respect to the array reference point, as well as the array

geometry.

With reference to Fig. 1, consider that the N -dimensional received

signal vector xi (t) is sampled with a period Ts (point D) and passed

through a bank of N tapped delay lines (TDLs). Consider that each

TDL is of length Ns. The output of the TDLs are concatenated and

sampled with a period NsTs to create the discretized signal vector

xi[k] ∈ CNNs×1 at point E (see Fig. 1) expressed as

xi[k] =
[
xT1i[k], x

T
2i[k], . . . , x

T
Ni[k]

]T
, (7)

where xji[k] = xji(kTcs) ∈ CNs×1 is the output from the j-th array

element TDL. The discretized signal vector xi[k] can be modelled,

2Since the array of sensors has a "large aperture", which is defined as the

largest distance between any two elements in the array, the proposed model

utilizes spherical wave propagation which is represented by the spherical array

manifold (see Eq. 5 in [17]).

Fig. 1. Processing the received signal vector in a bank of N tapped delay

lines (TDLs), each of length Ns.

under the "wideband-assumption" (WB-A) as

WB-A: xi[k] = hi[k]�
(
mi[k]⊗ 1Ns

)
+ n[k], (8)

where h
i
[k] , h (ρi [k] , vρi [k] , θi [k] , υθi [k]) ∈ CNNs×1 is defined

as the Spherical SpatioTemporal ARray (Spherical STAR) manifold

vector due to the i-th target transmission. This is a function of

the array geometry (known) and the unknown time varying target

parameters which are defined by the vector zi[k] ∈ R4×1 where

zi[k] , [ρi[k], vρi [k], θi[k], υθi [k]]
T . (9)

For the remainder of this section, the time parameter k will be

dropped from ρi, vρi , θi and υθi , for notational convenience. Thus,

in Eq. 8, the vector h
i
[k] can be modelled as

h
i
[k] =

(
Si[k]⊗ 1Ns

)
�F i[k]. (10)

Here, Si [k] is assumed to change at a much slower rate than

the vector F i [k]. In addition, F i[k] ∈ CNNs×1 encompasses the

discretized effect of Doppler shift and is given by

F i[k] = exp
(

j 2πFc
c
Ts [1, . . . , Ns]

T ⊗
[(
ρivρi1N − r

T vi

)
� ρ−1

i

])
,

(11)

which is a function of discretized time. Note that when the i-th source

is in the far field of the array, the vector F i[k] is no longer a function

of the source range, direction and the array geometry.

III. CONSTANT VELOCITY MULTI-TARGET KINEMATIC MODEL

Consider that the i-th source moves with a constant velocity along

a straight line relative to the array reference point. In this case, the

time varying azimuth angle may be described as,

θi(t) = θi(t0) + sin
−1
(
υθi(t0).T

ρi(t0)

)
, (12)

where T is defined as the time elapsed since t = t0 such that

T = t− t0 (13)

and

ρi(t) =
√
(ρi(t0) + υρi(t0)T )

2 + υ2θi(t0)T
2. (14)



Here, (ρi(t0), θi(t0)) and (υρi , υθi) describe the components of the

source location and velocity at t = t0 respectively. Note that the time

derivative of Eqs. 12 and 14 at t = t0 are given by:

θ̇i(t)
∣∣∣
t=t0

=
υθi(t0)

ρi(t0)
, ρ̇i(t)|t=t0 = υρi(t0). (15)

Let T denote the sampling time period such that t0 = (k− 1)T and

t = kT . The unknown source parameter vector zi[k] given by Eq. 9

can be used to define a discrete time state vector

zki = [ρki, ρ̇ki, θki, θ̇ki]
T , (16)

which includes all the kinematic characteristics of the target. A

suitable discrete time kinematic model for t = kT is

zki = Fiz(k−1)i + wki, (17)

where the state matrix Fi ∈ R4×4 is defined as

Fi = I2 ⊗
[
1, T

0, 1

]
(18)

and the error vector wki accounts for random perturbations about the

constant velocity trajectories. These perturbations can be modelled as

uncorrelated acceleration noise of zero mean with covariance matrix

given by

Qi=

[
q2ρi , 0

0, q2θi

]
⊗
[

T3

3
, T2

2
T2

2
, T

]
, (19)

where q2ρi and q2θi denote the continuous time model process noise

intensity for the range-velocity and azimuth-velocity, respectively.

The choice of small intensities approximates a nearly constant veloc-

ity model. Since the model is discretized, intensities have physical

dimensions of length2/time3.

The single target discrete time kinematic model, defined in Eq. 17,

can be generalised to the "multi-target" case, where M sources are

transmitting simultaneously, as

zk = Fzk−1 + wk, (20)

where

zk = [zTk1, z
T
k2, · · · , z

T
kM ]

T
(21)

wk = [wTk1, w
T
k2, · · · , w

T
kM ]

T
(22)

F = IM ⊗ Fi. (23)

Therefore, the covariance matrix of the discrete time state vector zk
defined as Pk ∈ R4M×4M is given by

Pk = FPk−1FT +Q, (24)

where Q ∈ R4M×4M is the block diagonal matrix containing all the

Qi matrices corresponding to all sources as defined in Eq. 19.

IV. SPATIOTEMPORAL MULTI-TARGET DATA MODEL

Consider again that M sources are transmitting simultaneously.

The received signal at the output of the TDLs is now modelled as

x[k] =

M∑
i=1

h
i
[k]�mi[k] + n[k]

=
[
H[k]�

(
M[k]⊗ 1Ns

)]
1M + n[k], (25)

where

M[k] , [m1[k],m2[k], . . . ,mM [k]] ∈ C
N×M , (26)

with mi[k] ∈ CN×1 describing the discretized message under the

WB-A and

H[k] ,
[
h
1
[k], h

2
[k], · · · , h

M
[k]
]
∈ CNNs×M , (27)

which has columns corresponding to the time varying spherical

spatiotemporal manifold vectors (see Eq. 10) of the M sources at

the k-th time interval.

Equation 25 can be rewritten in a more useful and compact form

as follows:

x[k] = (INNs �H[k])m[k] + n[k], (28)

where � denotes the Khatri-Rao row-wise product, which is the

row-wise Kronecker product of two matrices. The vector m[k] ∈
CMNNs×1 denotes the vectorisation of the matrix

(
M[k]⊗ 1Ns

)T
formed by stacking its columns into a single column vector given by

m[k] = vec
{(
M[k]⊗ 1Ns

)T}
. (29)

Therefore, in summary, based on Eqs. 20 and 28, a state space

model describing the motion dynamics of multiple sources and the

signals received at the output of the TDL can be defined as follows:

zk = Fzk−1 + wk
xk = (INNs �Hk(zk))mk + nk

}
k>0 (30)

where xk , x[k], nk , n[k], Hk(zk) = H[k] and mk = m[k]. This

is the standard structure of a discrete time state space model which,

however, involves the motion parameterisation described before and

also the Spherical STAR manifold vectors h
i
[k], i = 1, 2, . . . ,M,

associated with the M sources, taking into account the “wideband-

assumption”. With reference to Eq. 30, the process noise wk ∈
R4M×1 associated with the state space model and the measurement

noise nk ∈ CNNs×1 associated with the wireless channel are assumed

to have zero mean and known covariance matrices Q and σ2nINNs ,

respectively. Furthermore, the initial state vector z0 has a mean of

E{z0} and a covariance defined by the matrix P0. The first and

second order statistics of {z0, wk, nk} can be compactly restated

as follows:

E
{[
wTk , n

T
k , z

T
0 , 1
]T [

wHm, n
H
m, z

H
0

]}
=

[
Q, O4M×NNs
ONNs×4M , σ2nINNs

]
δk−m,

O4M×4M

ONNs×4M
O4M×4M , O4M×NNs
0T4M , 0TNNs

P0
E{z0}H


(31)

where Op×q denotes a (p× q) matrix of zeros.

V. PERFORMANCE EVALUATION

The simulation environment for utilising Eq. 30 is described as

follows. The array used for tracking is defined as

r =

 0, 50, 30, −30, 30, 10, −50
0, 0, 45, −50, −62, 75, 29

0, 0, 0, 0, 0, 0, 0

 (32)



Fig. 2. Position Tracking: True trajectories of two sources to be tracked

using the N = 7 element array in Eq. 32.

Fig. 3. Position Tracking: True trajectories and tracked positions for the

environment of Fig. 2 with Ns = 10 and SNRin = 0 dB.

measured in meters. The chosen array does not possess any special

geometrical structure. Two sources of equal power are tracked using

the array of Eq. 32. The signals of the sources are simulated as

independent identically distributed Gaussian processes with a unity

variance and the carrier frequency Fc is assumed to be 2.4 GHz.

The targets are moving in the same plane as the sensor array. The

array elements and the trajectories of the sources in the x-y plane

are shown (blue dotted lines) in Fig. 2.

Tracking is assumed to be performed, using an extended Kalman

filter, over an interval of 5s with T = 1ms. Hence, there are a

total of 5000 snapshots of data available at the end of the tracking

interval. The initial locations of the targets are assumed to be known

within 1 meter (e.g. estimated using any high resolution localization

approach as in [17]) with initial covariance matrix P0 = I4M×4M .

The selected level of the range process noise is q2ρi = 30 m2/ sec3

and the direction (angle) process noise is q2θi = 0.035 rad2/ sec3,

where i = 1, 2. Note that it is impractical to assume full knowledge

of the true process noise statistics (covariance matrix). However, any

"uncertainty" has no significant effect in the tracking performance.

For the purposes of simulation, the length of TDL for each element

Fig. 4. Range Tracking: True and tracked ranges for the environment of Fig.

2 with Ns = 10 and SNRin = 0 dB.

Fig. 5. Azimuth Tracking: True and tracked azimuth angles for the

environment of Fig. 2 with Ns = 10 and SNRin = 0 dB.

is assumed to be 10 (i.e. Ns = 10). The array data is simulated

for SNRin = 0 dB. Figure 2 provides a plot of the two target

true trajectories. Figures 3 to 5 provide a plot of the true target

motion parameters in dotted blue lines superimposed by red solid

lines representing the corresponding estimated parameters in a typical

sample run. From Figs. 3, 4 and 5, it is clear that the trajectories of

the 2 targets are accurately estimated for SNRin = 0 dB.

VI. CONCLUSIONS

In this paper, the problem of tracking multiple moving targets was

addressed using large aperture arrays. In particular, a novel spherical-

spatiotemporal-state-space model was presented incorporating the

array geometry in conjunction with time varying functions of the

ranges, directions and Doppler effects of the targets. An example

of simulation results was presented to demonstrate the proposed

model in tracking the locations and velocities of the targets. Some

applications of this model include battlefield communications, where

mobile soldiers may form the wide aperture sensor array, and cellular

communications, where locating mobile sources/targets enables high

precision beamforming to be deployed.
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