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ABSTRACT

We investigate the gauge dependence and convexity
properties of the effective potential using the Nielsen
Identities which control the gauge-parameter dependence of
physical quantities. We show that it is perfectly feasible to
use the 't Hooft gauge in effective potential calculations,
contrary to some earlier claims. In addition to Nielsen's
original derivation we show how the identities may be derived
by extending the set of B.R.S. transformations which act on the
theory and we demonstrate the utility of the method by
rederiving our results for the 't Hooft gauge and deriving the
identities in the planar gauge, which is a wvariant of the axial
gauge. We also show that it is possible to derive Nielsen
Identities for an effective action which contains composite
operators.

In the chapter on convexity we extend the results of
Fujimoto et al. on producing a convex effective potential from
the loop expansion for A¢“, to more general scalar Higgs
representations, making use of a condition on admissible wvacua
that arises from the Nielsen identities when we choose an 't
Hdoft gauge. We also consider the constraint effective
potential and show, using a computer simulation, that this too
gives rise to a convex result.

The last chapter deals with the calculation of a convex
effective potential at finite temperature. After giving a brief
_outline of the two complementary finite’temperature formalisms
and a brief reprise of Rivers' imaginary time formalism work we
show how to produce a convex effective potential at finite

temperatufe using the tadpole method of calculation in a real



time formalism. We show that this, as in the imaginary time
case, gives a result which breaks down at a temperature which is
below the supposed critical temperature of the theory,
invalidating the loop expansion results for critical

temperatures in spontaneously broken gauge theories.
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CHAPTER 1 INTRODUCTION



1. INTRODUCTION.

The notion of spontaneous symmetry breaking has been
integral to many of the recent developments in quantum field
theory. The Salam-Weinberg SU(2)xU(l) [1] theory of the weak
interactions, although now relegated to the role of a low energy
effective theory, relies upon the symmetry breaking effect of
the Higgs scalars to provide a gauge invariant mass term for the
gauge bosons that carry the short range weak force, the W's and
the 72, which were observed recently for the first time at CERN
[2]. In a spontaneously broken theory the possible vacua are
labelled by some order parameter (for instance the vacuum
expectation value of the physical Higgs scalar in the case of
the Salam-Weinberg model) and it may happen that the vacuum
energy density is lower for some non-zero value of this
parameter than for the zero case. The true vacuum of the theory
is then taken to be that with the asymmetric, non-zero order
parameter and the theory is said to be spontaneously broken.

An essential tool in the study of spontaneous symmetry
breaking is the effective actién and its constant field limit,
the effective potential. These were introduced by Schwinger [3]
and later exploited by Jona-Lasinio [4] and Nambu [5], who was
the first person to use the loop expansion in a perturbative
evaluation of the effective action. We follow below the
exposition of Coleman [6] in order to get a feel for the
physical meaning of the effective action and demonstrate why it
is the correct object to consider in a determination of the
vacuum of a spontaneously broken theory.

In a classical field theory the ordinary potential U(¢) is
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the energy density per unit volume for the state in which the
field has the constant value ¢. The situation in the quantum
theory is similar: V(3¢), the effective potential, is the energy
density per unit volume of the theory in which the expectation

value of the gquantum field is ¢, defined as

<ole]o>; __ owW[d]
<0|0>; ¢ 8J

(1.1)

where W[J] is the connected generating functional.
We observe that for a slowly varying source J-*we could

write the following expansion for W[J]

W[I)=fd*x( -2 (I)+2X(I) (3, H2+. .. ) (1.2)
) |

The effective potential may be defined by using a similar
expansion of the effective action I', which one can show to be
the generating functional for one-particle-irreducible (1PI)

diagrams [7].
F[$]=Id“x(—V<$>+§Z($>(au$>2+... ) (1.3)

If we consider a source that has a constant value J
throughout a box of side L fof a duration of time T and is
switched on and off slowly we find the following expression for

W (we have set T=1)
<0707 >=exp (iW[J])=exp( -iL3TE (J)) (1.4)

Throughout the box we have changed the Hamiltonian density

from H to H-J%, and as the change was adiabatic we should still



- 3 -
be in the ground state of the new Hamiltonian. If we turn off
the perturbation the ground state will go back to the ground
state of the original theory but it will retain its phase. We
expect states to develop in time as exp(-iET), so we can
identify £(J) from (1.4) as the energy per unit volume of the
perturbed Hamiltonian.

Now consider the problem of constructing a state |0> which
is a stationary state of <O'H|0> subject to <0|0>=1 and
<O‘¢‘O>=$. This may be solved by using Lagrange multipliers E
and J for the first and second constraints respectively. We are

therefore considering minimizing
<0|H-E-JF|0> (1.5)

From (1.5) we can see that

=<olo]0o>= - & (1.6)
and
ola|o>=E - 7 & (1.7)

At this point we recall that the effective action may be
defined as the Legendre transform of the connected generating

functional
r(&]=w[J]-fJ% (1.8)
which gives, on substituting in from (1.2) and (1.3)

-V(3)=-E (J)-J% (1.9)



or alternatively

V(®)=Eg(J) - J SE(J) (1.10)
which, on identifying £(J) with E, agrees with the definition of
<O\H|O>, the energy density of the system subject to the
constfaint <O|¢|O>=$. .The effective potential is thus the
energy density of the system and source subject to this
constraint. We also note that at J=0 the value of the effective
potential gives the vacuum energy density of the system, a
physical quantity which should therefore be gauge invariant in
gauge theories.

After this general discussion we now consider perturbative
evaluation of the effective potential, and ih this the definition
(1.8) and the expansion (1.3) prove to be of value. As F[$] is

the generating functional for 1PI diagrams [7] we can write

F[5]=217fd”x1..d“xnf(x1...xn)($(x1)—v)...($(xn)—v) (1.11)
n!

where F(xl...xn) is the sum of all 1PI diagrams with n external
legs and v is the wvacuum expectation value of 4. We now expand

P(xl..)xn) in momentum space to get

=gk . ~
T(X1eeeX)) [d kl...d*kna(kl+...+kn)exp(1kixi)r(kl...kn) (1.12)
If we now substitute this into (1.11) we find the series

r(3]=fd*xI1 % (o...0y(F(x)-v)" (1.13)
n!

where v is the vacuum expectation value of ¢
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To get the effective potential version of this we let the field

%(x) tend to a constant and find

V($)=-z—%ﬁ(ol...on)($—v>n (1.14)
n!

Formula (1.14) generates two of the standard methods of
calculating the effective potential. In both cases one works in
the context of a loop, or equivalently h, expansion. One could
choose to take (1.14) as it stands and perform the infinite sum
to a given loop order to calculate V. 1In the canonical example
of a scalar A¢" theory one could evaluate the one-loop effective

potential by summing over graphs of the form

(Fig.1)

This would give for the zero-and one-loop contributions to V

- - T2
V(§)=tn2f2+Lok+if abry (2 n (1.15)
2 41 2n 2(k2-p2+ie)
which gives, performing the sum,
- - i A2 .
V(5)=U(F)+fd4r In(1+—2%T ) (1.16) .
2 2(k2-p2+ie)



Alternatively, instead of performing the sum, we could

differentiate (1.14) w.r.t ¢ and then set ¢=v. This gives

o
<

_ =-Tl0) or V<$)=-15dv'fl<0) (1.17)
o=v

o
<

where_?l(O) is the sum of all 1PI Feynman diagrams at zero
momentum with one external leg, the so-called tadpole graphs.
The method was first suggested by Weinberg [8} and elaborated
by Lee and Sciaccaluga [9] in the context of dimensional
regularization, where it proves to be especially convenient. We
shall find in a later chapter that the technical quirks of
calculating an effective potential in real-time finite
temperature quantum.field theory make it useful there also.
Another method of calculating V by uéing background fields
is rather more indirect but it is perhaps the most convenient in
practice. It was first introauced by Jackiw [10], but we follow
here the more lucid exposition of Fujimoto et al. [11]. TIf we

have the classical potential U

_1 1 1
U(¢)_5Mab¢a¢b+3,Fabc¢a¢b¢c+ZTGabcd¢a¢b¢c¢d (1.18)

then V(%) will be given by
V($)=U(o)+z(M(9),F($),G) (1.19)

where I denotes the sum of all vacuum graphs in a theory where

we have made the substitutions Mab+Mab(¢) and FabC+FabC(¢) with



the functions given by
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Mab(¢)—Mab+F ¢c+;Gabcd¢c¢d

abc

(1.20)

Fabc<¢)=Fabc+Gabcd¢d

To prove this consider the effect of a c-number shift in
the argument of the path integral. The measure will be

unchanged and the Lagrangian will behave as
L(6)+Jd » L(p+c)+JI(o+c) (1.21)

One could rewrite the right hand side as

L(c)+Jc+o (RR+I)+AL(o) (1.22)
dc

where AL(<1>)=L(4>+c)-L(c)-—<1>-z-3-é
dc

‘We can absorb the shift in AL into a shift in the

parameters by writing

AL(4,p)=L(¢,p(c)) (1.23)

where the notation p(c) means we have made the replacements
(1.20) in the parameters of the theory. We now translate this
into the following identity for the connected generating
functional W[J,p], where we have explicitly displayed the

parameter dependence in the path integral:



w[3,p)=w'[J',p(c)]+a( (L(c)-c2Ey+cfT) (1.24)
dcC

where @ is the spacetime volume and
Jr=g2k
oc

We now consider the Legendre transform definition of the

effective action from both W and W'

r(s,p]=wlJ,p])-f3d

(1.25)
r'(e',pCer]=w'(a",pCc)]-[5"'J"
—- &W ' _8W'
where, as usual, ¢=— and ¢ ==— . We now note from (1.24) that
5d 8J!
~ &% 64! -
5=80 8dic = Frac (1.26)
8J'8d

If we substitute the definitions above back into (1.24) we find

the following identity for the effective action

F[5,p]=F[$',p(C)]+L(C)9+§EI$' (1.27)
Cc

The constant field limit of this gives the required identity for

the effective potential

V<$,p>=v'(a—c,p<c>>-L<c>—<$-c>§L (1.28)
C

With our sleight of hand in shifting the field we have
succeeded in expressing the original V in terms of a V'
calculated in a theory with shifted parameters along with

functions of the original Lagrangian.
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In particular for ¢=c we find that

V(c,p)=V'(0,p(c))-L(c)
or (1.29)

V(c,p)=V'(0,p(c))+U(c)

We thus see that the sum of all the diagrams with no external
legs (the vacuum graphs) added to the classical potential in the
shifted theory gives the effective potential.

As a final method of calculating the effective potential we
can consider a saddle point expansion, although this becomes
progressively more tedious as one proceeds to higher orders.

The one-loop result is, however, fairly easy to obtain and we
give a derivation below following [12],[13]. By analogy with
finite dimensional integrals we look for extrema of of the
exponent in the path integral, that is fields which satisfy the

classical equations of motion.
(v2+4m2) ¢g+U"' (90 )=J (1.30)

If we have a convex classical potential U we assume that we have
the trivial solution ¢3=0 for J=0 (the case of a non-convex
potential is considered in chapter 3 in detail). We now shift
the integration variable in the path integral ¢>4g+¢', keep the
quadratic portion in ¢' explicitly and expand the higher order

terms perturbatively to get

Z[J]=exp(iS£¢o,J])I[D¢‘]exp(ifd“x§<v2¢‘—(m2+U"(¢o>)¢'2)

$ 'n.,n (1.31)
Bz (90))
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To obtain the required loop (or h) expansion we rescale the
field ¢'>YN¢'., As we shall only be interested in the one-loop

result we drop the higher order terms, giving

Z[J]=exp(i8[¢o,J])I[D¢']exp(ifd“x§<v2¢'2—¢'2<m2+U"<¢o>>) (1.32)
T

With W[J] defined in the usual manner by

W[J]=-ih1nz[J] (1.33)

we see that the leading term in W[J], to order h®, is just

S[¢0,J]. The order h term is given by performing the Gaussian

integration

/[D¢' Jexp(-1fd*x §¢'(V2+m2+U"(¢o))¢') (1.34)
which gives

exp(—éTr.ln{V2+m2+U"(¢o))) | (1.35)

where the trace operates on all the indices (spacetime, group

ee)s We thus find

W[J]=S[60,J]+2Tr. 1n(V2+m2+U" (64)) (1.36)
2 |

We can now use the standard Legendre transform definition to

find T[{¢]. We recall that

r[3]=w[J]) - [ J% (1.37)
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8W_8s
5J &d

order. If we now expand S[3%,J] order by order in h we find that

and note that +0(h)=69+0O(h), so ¢ is given by ¢g to lowest

- 1 628
s[3,J]= s[¢g,d] +=2>2=|  _
because &S =0 We thus find that
"7 80| ¢=¢g ‘
S(%,3]=8[¢0,J] + O(n2) (1.38)

We can also substitute ¢ for 69 in the trace, as the difference

here will also be of O(H2). This gives us finally

w[3]=8[5] + 3% + Brr 1n(v2+m2+U"(3)) (1.40)
2
and
r[3]=8[5] + Brr 1n(v2+m2+U"(3)) (1.41)

2

This is the required result for the one-loop effectivé
potential.

There are two subtleties hidden in the formalism that we
have developed so far, the problems of the gauge dependence and
convexity of the effective potential. In a gauge theory an
injudicious choice of gauge, even one that might be useful in
other contexts, may'render the effective potential apparently
gauge dependent, which contradicts the interpretation of the
minimum value of the potential as the vacuum energy density.
This apparent paradox was resolved by Nielsen and is the subject
matter of chapter 2. The other problem is that of the convexity

of the effective potential. 1In a spontaneously broken theory
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one may choose to start with a classical potential which is
non-convex, but one can derive a condition to show that the
effective potential is convex, which contradicts the result of
the loop expansion in such cases. The difficulty may be
circumvented by a more careful treatment of the extrema in the
path integral,and this is the subject of chapter 3.
| One might also enguire as to whether the effective
potential (in its convexified form) remains a viable tool at
finite temperature, and we examine this in chapter 4. The
answer, as to so many questions, is "Up to a point" (in this
case a point of inflection!) [14]. We shall find all of the
methods of caiculating the effective potential that we have
outlined so far of some utility in our investigations. We
examine the Nielsen identities by using Jackiw's field shifting
method to verify them at one-loop order. The proof of convexity
at zero temperature relies upon the saddle point approach, as
does an imaginary time formalism calculation of a finite
temperature effective potential. We shall find, however, that
the tadpole method is the most convenient for calculating a
real-time formalism finite temperature effective potential.
Apart from the chapter on convexity we shall take the
Abelian Higgs model (charged scalar electrodynamics) as our
prototypical gauge theory. We choose to ignore the probable
triviality of Ao theory in 4 dimensions, a non-perturbative
effect, as the calculations are typical of non- trivial

theories.
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2.1 GAUGE DEPENDENCE: GENERAL CONSIDERATIONS

The treatment of the Higgs [15] mechanism using the
effective potential at tree level (i.e. the classical
potential)is a standard exercise in most quantum field theory
text books. For instance, if we consider the Abelian Higgs

model with the Lagrangian

1

* *
L=(Dp¢)<D”¢) + m2¢ 6 - A(d 6)2 -
4

F F*Y
uv
(2.1)

where

Dp¢ = au¢—1gAu¢ and F = auA - 2 A

we find that the potential U has a minimum at I¢li=v//2, where v
is /(m?2/r). If we now write ¢=(¢;+ i4,)//2, with ¢; and ¢,

real fields, we could choose <o]¢l|o>=v and <o|¢2|o>=o. Picking

out one of the possible vacua on the ring of minima as the
physical vacuum has broken the original U(l) symmetry.

gFig.zj The classical potential in (2.1)

oV
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Our initial parametrization of ¢ proves to be rather
inconvenient from the point of view of a physical

interpretation. If we choose instead

5(x)= ;i(v+n<x>)exp(iz<x>/v) (2.2)

and carry out the gauge transformation to the unitary gauge

. 1
¢' (x)=exp(-1E(x)/v])o(x) , B (x)=A (X)-30 E(x)
we find that the Lagrangian (2.1) is given in terms of the gauge

transformed variables as

-1 2 _ Lpoo2 1 2 41 2g gk
== - =m2n2-2(3 B -3 B )2 += B, B
L 2(aun) pe 4(au v “9,B) 2(gv) L
(2.4)
+g28 Bln(2vn)- av2n? - Lygt
2 4

The unphysical Higés mode £ (x) has been gobbled up to give a
mass term to the original U(l) gauge field.

This seemingly transparent classical argument does not
carry over directly to the quantum theory because there one must
work with a Lagrangian that includes a gauge-fixing term. The
effective potential as defined in (1.14)

V() = -z1- 7(0,...0)[5-v]" (1.14)

n!

is an off-shell quantity and one would not expect, a priori,

such an object to be gauge independent.
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Some explicit calculations (after Jackiw [16]) for massless
scalar QED confirm these suspicions. Indeed, if we choose the

gauge fixing term for (2.1) to be of the form

1 b 2
o (apA +evi¢i) (2.5)

we would find that even the tree level potential contained the

unphysical quantities g and v [17], [18].

V($)= —1(Vi¢i)2 - In2g2 4+ Ry ' (2.6)
28 2 41

One possible solution to the problem is to ignore it! One
cold choose to shift the Higgs fields by their tree level vacuun
expectation values (provided we did not choose a gauge such as
(2.5)) and retain tadpole graphs in higher order calculatigns
[19]. This would only work in cases where the vacuum is already
determined at the tree level, which would preclude the
consideration of the Coleman-Weinberg type symmetry breaking,
where it is the radiative corrections that lead to the
spontaneous symmetry breakdown. It would also prevent one
examining models in which the classical Higgs potential has a
larger symmetry than the rest of the Lagrangian (which gives
rise to the so-called pseudo-Goldstone bosons [20]). These, too
, require the inclusion of one-loop effects to determine the |
true vacuum. Finally, one might also like to check that
radiative corrections do not change the minima even in the
standard case.

Other solutions that have been advanced are that only in
the "physical" unitary gauge does'the effective potential have
any significance [18] and that expressing V in terms of

renormalized quantities rather than bare ones resolves the
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problem [21]. The correct approach was, howeVer, first proposed
by Nielsen [22], and we examine the identities he derived in the
rest of this chapter, drawing heavily on the later work of
Aitchison and Fraser [23] and Fukuda and Kugo [24].

If one considers the effective potential for a gauge theory
such as (2.1) it will depend explicitly on §, so we write it as

V(%,£). The vacuum is determined by the condition

o
<

=0 ' (2.7)

[}
o\

and spontaneous symmetry breaking occurs when (2.7) has a
non-zero solution, say $0(g). This situation would be gauge
invariant if, under a small change in &, the value of V at the
minimum (which is after all a physical quantity) remained

constant.

V($0+ 660,54'5&) = V($0 ,E) = len (2'8)
We could write this as
3V |, de L3V _ (2.9)

d2¢ | & dg dE

which states that the total differential of V wrt to £ at the
minimum is zero.
In a similar manner the masses of the Higgs particles will

depend upon both ¢ and £.

m2zm2 (3¢ ,8) (2.10)



- 17 =
If we demand that these too be gauge invariant under a change in
£ we find, by analogy with (2.9)

2 Y 2
ome|  de , dm* _ (2.11)

2% |& dE 2%
Nielsen's remarkable result was to derive, using the B.R.S.
[24] invariance of the theory, a set of identities of precisely
the form above, thus guaranteeing the gauge invariance of

physical quantities. They were

e2Y + c(5,5)%Y = (a)
3 8%
(2.12)
2 - 2
20 4 c(p,)¥- =0  if = (b)
33 8% 3%

The object C(¢,E£) is obtained as an explicit field-theoretic
expression and could be calculated in some expansion scheme.
We note that equation (2.12a) exceeds our requirements,; as it
does not just apply at the minimum of V. Along the

characteristics of V, the curves in the &, & plane for which

do _

dg

’ (2.13)

Q
‘)
™ e
N

V is a constant (see Fig.3 overleaf)
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We might also observe this by differentiating (2.12a) wrt to $.

g ELELE>9:)9¥ + % 5f(¢’5) 5Y = 0 (2.14)
2% 2% oY) )

At the minimum of V the last term vanishes and we find that

dV(9,E+8E) C(00,8) (2.15)

which means that an infinitesimal change £>£+8E, compensated by
a change ¢¢>d9+(C(dg,E)/E)SE, keeps V at its minimum value. The
beauty of Nielsen's results is that they enable one to calculate
in closed form the change in $g that compensates for the gauge
variation.

(Fig.3) The characteristics of (2.12a)

qSA\.
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2.2 THE NIELSEN IDENTITIES.

Nielsen's original work was with an Abelian Higgs model in

the Fermi gauge.

- 1 B2
L = - (3 A7) (2.16)
gf‘ 2 1)

but explicit calculations are plagued by infrared divergences
except in the Landau (E+0) gauge. One must therefore choose to
regulate these divergences in a suitable manner or to work in a

gauge such as (2.5) or the 't Hooft gauge proper

= 1 b N2
Lgf _25(6“A + egvi¢i) (2.17)

where v, = eij<o|¢j]o> with e =-1 and e =1, in which the
divergences do not appear.

There are two objections to the choice (2.17), which are
mooted in the paper by Aitchison and Fraser. They are, firstly,
that it is inconvenient and possibly inconsistent to introduce
into the Lagrangian a quantity that one is supposed to be
calculating and, secondly, that it is impossible to derive the
requisite Nielsen identity for this case. This clashes with the
complementary work of Fukuda and Kugo [24] who used an
old-fashioned approach to the derivation of Nielsen identities
and who saw no impediment to the use of 't Hooft gauges. The
derivation of the Nielsen identity also removes the objections
of Taylor and Dolan and Jackiw [17],[18] that are encapsulated
in equation (2.6). A correct choice of vacuum will remove the
gauge dependent term that is present at the tree level.

As a prelude to Nielsen's derivation we sketch the
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approach of Fukuda and Kugo, which bears a similar relationship
to his work as the original derivation of the Ward-Takahashi
identities does to a derivation based on B.R.S invariance [25].

We use ¢i to stand for all the fields, with the index i
being a generic one that labels all their attributes. We shall
also use Greek letters for group indices. The generating

functional is written as

exp(2W,[3])=/[Ds]a (o ]exp(L(s[s]-LF2+a0)) (2.18)
gl T 2

where Af[¢]=Deth and M, is defined by observing the behaviour

of the gauge fixing F under a>gauge transformation

P (0)>F, (6)+4 gug
(2.19)
@ a
o3>0+ (A #1754 50,0U,
where A;=é aué“(x—xa) for the gauge fields and is zero
otherwise.
If we now subject (2.18) to the transformation [7]
o.20. + (AT + t%, .o.)(M ‘l) uf (2.20)
i i i ij73 f af *

we find

_1 -
[-F, (2 &5 + 0,af + tBij(% 8-)) (g )gqJexp(3W3]) (2.21)

=0
which allows us to estimate the change in W.[J] under a

variation in the gauge fixing from F to F+AF.
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exp(2Ws,5:(3]) - exp(2W [J]) =

(2.22)
I[D¢]Af[¢]exp(%<8[¢]-i P2 +30))57, (af+ +F, 0.
21
g™ Jg, - AFg (o)
We can write this as [7]
Wepgeld] = W o [J] = g8 (2.23)

. , (
_ a - .
where f,= (A] + t ij¢j)[Mf ]aB AFB(¢) and the expectation value

is defined in the usual manner. This may be translated into the

change in the effective action by using the Legendre transforms

f+6f7 _ f+8 £
Pf+6f[¢ ] = wf+5f[J] - J ¢ (2.24)
fq _ f
Tergelo ] = Wepgeldl - T 0
f f
Ff[¢ ] = Wf[J] -dJd ¢
to give L
f+8F fq _ i
Teyggl® ] -telo7] = % Ji<05% >0, (2.25)

If we work to order AF it is easier to consider
r [¢f] -T [¢f] = J. <£.> (2.26)
f+8 £ f iTi *

which is the precursor of the Nielsen identity. The
differential version of (2.26) for an Abelian Higgs model with

gauge fixing of the form (2.5) is

8T 1 e
A= = <(J1do=d6-= 03.J) (3 A-vdy) > (2.27)
€ X(_vz_ev¢l)xy y .
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If we now choose J, = %% , 35=J,= 0 we find
or 1 3V - .
Err + = =— <0o_ ( ) (3.A-Vdp ). >=0 (2.28)
2 "2 P T T wy y

which is the effective action version of the first Nielsen
identity.

Having seen in outline how the Fukuda and Kugo approach
works we now move on to consider Nielsen's work itself, closely
following the approch of Aitchison and Fraser in [23]. Instead
of keeping the determinantal factor in the path integral we
introduce the usual ghost fields and make use of the B.R.S.
invariance of the gauge fixed Lagrangian to derive our results.
The essence of the method is to append an extra term to the
action in the generating functional and to arrange for the
B.R.S variation of this new term to be equal (to Wifhin a term

that vanishes when one considers the effective potential) to

v
0&

We first give a general discussion before examining the case of

g%% . This will become the £ term in the Nielsen identity.
a 't Hooft gauge fixing in detail. Consider the generating

functional
2,[3] = [[De] exp £(S[s]+3 0,+K;Q,+ nO) (2.29)

where we have included the standard source terms for the fields
and a source term for the B.R.S. variations (or charges) that
are non-linear in the fields (Qi=6¢i, where 8 is the B.R.S
variation). The subscript k denotes their presence and the

twiddle denotes the presence of the operator O.
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The KQ term does not affect the B.R.S. invariance since,
for the fields that require it, 62¢ = 0, It is inserted in order
to linearize the resultiﬁg identities. We also try to pick an
operator O such that 80 = 0 = g%% to give the required term in
the Nielsen identities. This works because Q% = %g (see
appendix A, courtesy of [23])

Bearing this in mind we now rewrite (2.29) explicitly for

an Abelian Higgs model to get

~ 90 i~

Z (3] = f[Da,1[De][De 1[Do;] expx(8)) (2.30)
where the action is given by

S, = [d%*=z(L + K,eve, .0, + J. 6, + J A* + n'¢ +¢ n + hO)
k 1%9%15%; 1% u n n

J J 1
(2.31)
and we use the full gauge-fixed Lagrangian for L
L=-F FP +1 (3 4 )00%.) - ec..(d ¢.)0.A"

4 WV ) ol 1 1] wp'1°°]

(2.32)
+182A2¢2 + lm2¢2 __l'_(bl* __1_ F2 + ¢*M¢
2 2 4! 2%

The B.R.S. transforms for this Lagrangian are given by

5A Ea (p ) 64) 0 ) é(b. = gee. .(I)(b .

*
where e is an anticommuting parameter and ¢ and ¢ are the ghost

and anti-ghost respectively. We now carry out a B.R.S.

transform on Zk to find that
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fd“z[DAu]...[Dd:i](J oty - n-gF(A 05) + Jiede; 0,07, =

1373
(2.34)
= _ifg4 iN
ifd z[DAu]...[D¢i]h(z)60(z)expn(sk)
We can rewrite this as an operator identity on ﬁk'
\ po _ Llod 8 5 \y -
[d z(Jua £ NF Flz7 » =7 ) * J; 5. )%, = R.H.S. (2.35)
&n u i i

We now perform a Legendre transform to obtain an identity on the

effective action.

r, = W, [d x(JuA + Mo +on Ji¢i)
where (2.36)
N 5Tk _ :
W, = -ih 1n %k and - = Au etc.
V)
This gives
8T 8T 8T, 8T
favz(-—" 2,8 + —5 1 F(E,,0;) - —r K -
éAu 8¢ E 6¢i éKi

(2.37)

_% [da%z[ DA ]...[D¢i]h(z)50(z)exp%(§
A B
v k
To obtain the effective action precursor of the Nielsen identity

o)

we differentiate (2.37) w.r.t. h and then set h to zero, which

removes the tildes. We note that %% = T(0), where we denote an

insertion of the operator O in I' by I'(0). We find (dropping k)

[d%xfd z( ST(0(x)]) 4 () + rgogx)] 1o _8r(o(x)) sr

6A£z) 6¢ (z) 551(2) 6Ki(z)

i)

(2.38)

sr(ox)) 6E ) = 1 fa*x/[ DA ]..[D¢.]60(x)exp%s
8K, (z) 8%, (2) Z y '
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The l.h.s. of (2.38) is already in the required form,so it only

remains to transform the r.h.s. We shall find in explicit

calculations that

L orqu iq_2W L orqt sW
= Jd xf[DAu]..[D¢i]60(x)expn S = & + ; [d xn ()5, (2.39)
From appendix A this equals
gL + 1 fd*x QL;——— 3 (x) (2.40)
°t 2 8¢ (x) ‘

% ‘

The second term, of the form i n¢ , will vanish when we consider
. 2

the effective potential. If we specialize to constant ¢ and set

the other classical fields to zero, we find
&%% - favx &F %Of oV - -E(0,8) fqugfquyx SLLO(X)] (2.41)
i LX) Q 8¢ (z)

Thus, provided that F(0,4)=0, a point that we discuss in detail

in the next section)we find

eV v c(F,2) Q% =0 (2.12a)
0 o¢
with C(¢9,E) given by the expression
(2.42)

_J'dq,x GP(O(X))
5K (0)

To obtain the Nielsen identity for the mass of the Higgs

particle we observe that the masses are given by the poles of
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the propagator dr, alternatively, by the zeros of the inverse

propagator

52T
6$i<x)6$j(y)

21
= iG (X—y).lj (2.43)

We are interested in the mass of the physical Higgs particle
which does not couple to the gauge boson. For our Abelian Higgs
model we can span the space in which the Higgs fields live by
the vectors n=(1,0) and e=(0}l). If we arrange ‘for the n
direction to be the physical Higgs (see the next section) we can

1
then split G into

phys.MiMj * (855 = mym;).rest (2.44)

The physical Higgs mass is then given by

1

- 2.2\ = '
Gphys (p<=m<) 0 (2.45)

We have, in the Abelian Higgs model,

1 2
(x-y) = —2°° ) (2.46)

6¢l (X)Ml (y)

G

o
Il
©

We now proceed by differenﬁating (2.37) twice w.r.t. ¢; to get
the following equation, where we have dropped terms that vanish

in the effective potential.



- 27 -

d 52T

5T 63r(0(x))
Eag

— — = [d*=xd*z( —
561 (y)ddy (W) 8616K1(2)801(y)861 (W)

(2.47)

82T 8§2r(0(x)) N 82T 521 (0(x))

851 ()68 (w) 8Ky (2)661 (V) 66,(x)8¢1(y) 8Ky (z)841 (W)

N 531 6T (0(x))
661 (x)801 (y)661 (W) 8Ky (2)

If we evaluate the expression at QE = 0 and use translational
X

invariance to see that the second terms in the products on the

second line can be written as functions of x-y and x-w we can

write (2.47) as

d - .\ -1 |
(¢ + C(%,8)—) G _ =
e 2% PRYS |3=5

(2.48)

fd“xjd“z[e”l (x-w)F(z,x-y) + G“l

phys (x-y)F(z,x-w)]

phys

If we Fourier transform this we find, using the convolution

theorem,

1

2\V=9:¢"
(p2)=2G7

_ 1
(255 + c(3,8)%) ¢

2y (gl (gt .
2% phys (p?)[d*r[d*zexp(ip.T)F(z,T)

(2.49)

21
From this we see that if G vanishes at a particular value of

2 it will also do so under the transformations E~E+6% and

p
4>6+(C(0,£)/E)68. We therefore have the second Nielsen identity

(2.12b).
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2.3 THE NIELSEN IDENTITY IN THE 't HOOFT GAUGE

We now give a careful derivation of the effective potential
Nielsen identity in the 't Hooft gauge proper, following in
detail the prescription of the preceding section for the Abeliah
Higgs model. The gauge fixing and ghost part of the Lagrangian

is now given by (c.f. 2.32)

1 B 2 *oh, a2, ¥
- (apA + egvi¢i) + au¢ "¢ e<¢ ¢sij§vi¢j (2.50)

and the B.R.S. transforms are given by

S8A = €d ¢ , 8¢=0 R 8. = eeé..¢¢.
(2.51)

R H
§¢& = = (d A¥ + eEv.¢.)
3 w ivi

We now choose the operator O that was introduced in the

last section to be

0=-L¢% a* —erv.s.) (2.52
- 2 IJ' ld)l . )

(the change in sign inside the brackets w.r.t. the gauge fixing

term is correct, see section 2.7)

The B.R.S. transform of the operator O is given by
1

= e[-L My2_ o2p2 2 1 * o 1 o *
80 8[25((6uA ) e<g (Vi?i) ) o+ ) b Ve ) et ¢ ¢sijvi

]

(2.53)

®;
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6L

If we use the equation of motion for the ghost field —, = n we
S¢

can write this as

Y N § B2 _ 222 2 1k gk

80 E[zg((auA Y<-e“k (vi¢i) ) + ; ¢ 7 ety ¢€ijvi¢j ]
(2.54)
We now compare this with
oL _ r_1 V2 _o2g2 2y _ o2p4 ¥
t5r = [—(0,4M)2-e282(v;0,)2) - e8¢ ¢ vy ] (2.55)

2
and we see that, to within a term that vanishes when we consider

*
the effective potential (%¢ n), g%% has been expressed in terms
of a B.R.S. transformed operator. We now follow the argument of

the preceding section through to obtain the first Nielsen

identity
V(3. ,E) s§T(0(x)) EV. § . 6T(0(x))
g— 270 fd“XS‘K""(‘o__— av _ _ — L irghrgta—— "
. (0) - A —
dE 3 04 Q 8¢ (z)

(2.56)

We note at this point that (2.56)7does not quite have the
form required of the first Nielsen identity because of the
inhomogeneous term on the r.h.s. We prefer to take a different
view from that espoused in both [23] and [24] in dealing with
this. These say that, having predetermined a direction of
symmetry breaking, one then chooses the direction of v to be
perpendicular to this in ¢é-space, thus eliminating the
inhomogeneous term. To us this seems inconsistent, because one
is supposed to be calculating the minima using the effective

potential calculated from the gauge-fixed Lagrangian, so one
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should not prejudge the direction of symmetry breaking. The

correct approach is to regard the homogeneity of equation (2.56)

(i.e. the condition vi$i=0) as a condition on the solutions of

the equation 9¥ = 0. For instance at the tree level with an 't
06

Hooft style gauge fixing we find two possible solutions for the

minima of the classical potential. They are

A 2.1/2
4 (EmZy*t/

¢ = e,
10 Lpen A
(2.57)
V. 1/2
5 = (& (m2-ge2v2))”/
i0 vl A

The second of these solutions is gauge variant, but if we impose
the condition vi$i= 0 on the solutions we find that it is not
allowed. To reiterate, the homogeneity of the Nielsen identity
ensures the absence of possible gauge depeﬁdent minima and is to
be regarded as a constraint on the aliowed directions of
symmetry breaking in ¢-space.
_ Condition

The vi¢i= OAdoes not just arise in connection with the
Nielsen identities; it is involved in the breaking of B.R.S.
symmetry, which is hardly surprising if we consider the means of
derivation of the Nielsen identity.

If we consider, after de Wit [26], the Noether current for

a B.R.S. transform, the so-called Taylor-Slavnov current

L L L *
gh =2 se + 22 sy 2 sy (2.58)

i c *
3(2,0;) 23 ,4) 2(8,6 )
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We find that

8 8
558, " F&—,.) X > (2.59)

8¢

B = i s .
2, <T(IH(x) X ) =1 <T(au¢6Au ede., .

€. .
1]

where X is any combination of fields and F is the gauge fixing

term. If we now choose X to be(P?O) we find

f
_i «r 7 O,

5 7
3, <T(J (x) (p<0>» )> SY7(x)

(2.60)

It

—i8 (x)<F

The integrated form of (2.60) will give the standard Slavnov
identity iff the r.h.s. is zero, i.e. <F>=0. In an 't Hooft like

gauge this may be written as
B =
<auA + egvi¢i> 0 (2.61)

or vi$ . = 0, which is slightly weaker than the vi$i= 0
i
condition that follows from the Nielsen identities ( but is

still sufficient to maintain the gauge invariance of physical
quantities).
If we bear the preceding discussion in mind we can choose

V.= ve, e=(0,1), which gives $i= on

i ni=(l,0). We can thus

i

consider the effective potential as a function of ¢; only.

&%§(¢’E) +c3,0)2Y = ¢ : (2.12a)

-65
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2.4 ONE LOOP VERIFICATION OF THE EFFECTIVE POTENTIAL IDENTITY

Verifying the Nielsen identities to one-loop order is not
only an instructive exercise in its own right but it also throws
light (in the mass identity) on the viabﬁity of the 't Hooft
gauge proper (one with ' eij<0‘¢j|0> = SijajO) in effective
potential calculations. Our results agree with those of Fukuda
and Kugo who stated (rather opaquely) that the correct way to
handle the 't Hooft gauge proper was to exclude the $j0 from any
of the differentiations on the effective potential, avoiding any
possible circular calculations. We shall belabour this point in
our verification of the mass identity to one-loop order. All
our calculations are carried out in the framework of a loop
expansion, using Jackiw's field-shifting method for calculating
V (and its relatives such as C(¢,£)). We expand (2.12aj order
by order in h, noting that C(a,a)'receives its first
contributions at one-loop order (as one may see from carrying
out the standard field rescaling ¢->vh¢ in (2.63))

1 _ 0
e v clE,e Y = (2.62)

) Y

where the superscripts denote the order in h. The function

C(%,&) is calculated from

c(3,8) = -infa*x<o|T(2)2[-247 (o A (x) - egva (x)) .
T 2
(2.63)

o4 (0)0 (0)exp(58 ¢ [7,2]1)] 0>
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where we have used & for the quantum field and ¢ for the
c-number shift. The effective Lagrangian in the shifted theory
is given by
S_..[5,8] = s[e+3] - s[F] - [d*ze(x)2E _ (2.64)
eff 3%

The one-loop term comes from dropping the interactions from the

exponent and is

cl(,z) = infd*x<o|T(2)22 ¢ (x)(0 A% (x) - egv 2 (x))es(0)2(0) 0>
a2 . 2 %

(2.65)
To evaluate this we use Wick's theorem to contract out the
fields, giving a ghost propagator multiplying either a Higgs
propagator or a mixed gauge boson/Higgs propagator. These give
the graphs

(Fig.4) The graphs for Cl(¢,%)

which we evaluate using the vertices and propagators in appendizx

B to get
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- . . 3 2 -
Cl(d),?;) = 1€ Ia-tlk 1 — ik (8¢ + EV)
k2+e2zv D,
(2.66)
-ielgv i(k2-ge?82)
(k2+e?Ev) D
where
D, = k* - k?(mj -2e%gvy) + e?¢?(e?g?vi+rmd)
and . (2.867)
m§ = L A32 - m2 , mi = 1 A32 - m2
6 2
We can simplify (2.66) to
2 el T2
cl(3,8) = ———5 favg (2vr0)k® - efevi (2.68)
(k2+e EVo) D
We shall save ourselves the labour of evaluating (2.68)
explicitly by considering the integral expresion for the
one-loop effective potential, which in our gauge is
v1(5,2) = ifa*k( In(k2+e?zvd) - 3 1n(-k?+e??)
(2.69)
2
L 1n(k2-m;) - I1nop )
2 2 n

Differentiating w.r.t £ we find

2k2e?rxvy + 2e%92r2v2 + e2§2mir

1 22 @
g_a_v_ = ifa%k (__ﬂldl__
0% k2+e2r vy

e4Eve

N |

D
n

(2.70)
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We can simplify this to

_ 2
1 iegémy TVK2 232
2 (k2+e2zvd) D,
To complete our evaluation of the identity we note that
0 -
&V - m3 3 (2.72)
¢

So, multiplying this by (2.68) and adding the result to (2.71)

we obtain the required one-loop Nielsen identity.

1 _ 0
20+ cl5,)2Y =0 (2.73)

g 2%

2.5 ONE-LOOP VERIFICATION OF THE MASS IDENTITY IN THE 't HOOFT

GAUGE PROPER

In verifying this identity we must exercise some care in

the treatment of the Sij$j° term that we introduce in the gauge
fixing. We note that the argument of the effective potential 4,
which we generate by the field shift used to perform the
calculation is NOT the same as the ¢y in the gauge fixing
except at the minima of the potential. We should therefore not

include the $p in the functional dependence when we are
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. : o dV 32V .
performing differentiations such as — or — Earlier
0¢ 0¢

calculations by Weinberg vindicate this viewpoint [20], as will
our following calculation of the mass identity. Weinberg
evaluated one-loop tadpole graphs in a 't Hooft gauge without
distinguishing between ¢ and 50 and found that

T = -1&% - m2ef, [atk 1

- 2
386 =% k2 (gk2-e2%g )

(2.74)

where his potential was equivalent to (2.69) with v set equal to
-3 before the differentiation was performed. From the presence
of the non-derivative term in (2.74) Weinberg concluded that the
effective potential was valid in the 'tHooft gauge only when £+o
However, one can obtain a derivative expression for the one-loop
tadpole graphs by differentiating (2.69) w.r.t. ¢ and then
setting v = —¢g, which is consistent with our interpretation of
the gauge fixing vy being sij¢j°'

If we'exercise a similar degree of care in the verification
of the mass identity at one-1loop level we obtain the correct

result. Equation (2.45) which defines the pole of the

propagator gives the physical mass as
m2 - m? - £(m?2) =0 (2.75)

where Z(pz) is the sum of the physical Higgs self energy graphs
at momentum p2. As we are working to one-loop level we can

write this as

m?2 - m? - z(mf) + 0(h%) = 0 (2.76)
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Now, following [23], we choose A~O(e") to simplify our
calculations (one makes a similar choice in the Coleman-Weinberg
model). This allows us to expand :! to order e?A, which is
where gauge dependence first enters in the one-loop effective

potential. We rewrite (2.76) as

m2 = m? + zl(o) + m? W'(L) b2=0 (2.77)
where the superscript on the the I denotes the loop order, which
is not included on the m for notational convenience. We can

rewrite this as

2yl 2 2
m2 = 6-V + m .a_Z_LLl (2.78)
342 dp? p?=0

Eij¢j0 eliminates the Higgs-photon mixing graphs
and the expansion scheme eliminates those shown below from a

Choosing v, =

calculation of .

(Fig.5) Graphs that are not necessary
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We are left with the three graphs shown below in order to
evaluate £l.

(Fig.6) Graphs to be calculated

(a)
Z7 N
/ \
(b) t —
\ !
N _7
(c)

We evaluate them using dimensional regularization and the MS

subtraction scheme to get the following results

l/n2 2
02 (%) = €78 (3 _1n g -1l tig 6a (2.79)
dp2 1672 £ -1 6

azl(p2) _ e2r (4
6

: o fig 6b (2.80)
dp T

1¢p2 2 2p T2
32-(p?) - €%E (2 4 187807 _ _ 3  14r ) fig 6c (2.81)
dp? 1612 3 M2 E -1

where, in the above,M 1is the arbitrary renormalization mass
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As we are working to O(f) we can evaluate £! at the classical

minimum of the potential, which we shall call c. We note that

dm?
Ac? and — |_
2¢ |d4=c

mf (c) = AC (2.82)

T W

Adding up the terms from the graphs evaluated at c¢ gives

1 2 2 2 2
3zt (p?) =8 g ( 1n & gct _ 1) (2.83)
dp2 b=c  167n2 M2
2
We now carefully evaluate the 9;% term in (2.78), taking care
¢
not to include the 50 term from the gauge fixing in the
differentiation.
d2vl

) ' (2.84)

If we multiply (2.83) by (2.82a) and add the result to (2f84) we

find, from (2.78))that

2 2 2 2¢ a2
g == Erc®yp £78CT) (2.85)
3t |¢p=c  32x2 M2
In our expansion scheme and gauge we find that
- 2 2¢ .2
cl(s,g) |_ = -88&1p &8¢ (2.86)
d=c 3272 M2

So from (2.82b), (2.85) and (2.86) we can see that the second

Nielsen identity is verified.
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2.6 THE GAUGE BOSON MASS IDENTITY.

For the sake of completeness we give a brief discussion of
Nielsen identity for the gauge boson mass, which is defined as

the zero of the transverse part of

52T
SKp(Y)éﬁv(W)

(2.87)

We proceed in a similar manner to the derivation of the Nielsen
identity for the Higgs boson mass, starting with (2.37) and
differentating it twice w.r.t. A. This gives, after dropping
terms which vanish because of the conservation of ghost number
or the setting of the classical fields to zero or because we

demand vi¢i =0

Q. §2r - [d¥xdbz 82r 62r(o(x))
% 8K (v)8K (W) 8K, (¥)631 (v) 8K(2)'6A (W)

(2.88)

L82%r 821(0(x)) . 8%r 8T(0(x))
éﬁv(W)651(V) 5Kl(z)5§u(Y) 6§u(y)6ﬂv(W)6$1<V) 6K1(z)

8T  83r(0(x))
801 6K1(z)6Au(y)6Av<w)

+

. The third term on the r.h.s. may be taken across to give the
required identity and the last term will vanish at the minimum
of the effective potential. To dispose of the remaining first
two terms we note that the mixed Higgs/gauge boson inverse

propagators
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X
5Ku(w)5$l(v)

(2.89)

and its companion term are proportional to ku and kv
respectiﬁely in momentum space. As we are interested in the

transverse part of the gauge boson propagator, applying the

k k
transverse projector, guv - —331 , will give zero from these
' k

terms. (2.88) will then become
82r

( agg + 03,802 ) = 0 (2.90)
0d aAu(y)éAv(w) trans.

which is the effective action precursor of the relevant Nielsen
identity. In a similar manner to the mass identity for the
Higgs scalar we argue that if (2.90) is zero at some m2 it will
remain zero under the transformations £+ + 88 and § > ¢ +
(C(9,2)/8)8E so we obtain

( &%— + 05,80 ) m2 =0 (2.91)

g X vector .

The proof does not quite follow the lines of that for the Higgs
boson mass, where the vanishing of the inverse propagator on
shell disposes of the terms similar to (2.89). In the present

case the mixed propagator has a gauge dependent pole,so we

cannot use this argument.
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2.7 AN ALTERNATIVE DERIVATION OF THE NIELSEN IDENTITIES

We present in this section an alternative derivation of the
Nielsen identities which is based on some work by Piguet and
Sibold [27]. It does not raise any new points but it does
remove the element of guesswork in choosing the operator O and
it sets the Nielsen identities in their proper context in a
group of identities that contfol the gauge dependence of the
generating functionals in a gauge theory. The trick in this
case is to enlarge the B.R.S. transforms to act on the gauge
parameter as well and to use the auxiliary field method of
gauge-fixing that was first promoted by Kugo and Ojima [28].

The auxiliary field approach has the great advantage (to
mathematicians!) of making all the B.R.S. transformations
nilpotent, which suggests a possible geometric interpretation
for the B.R.S. variation in terms of exterior derivations.

Piguet and Sibold introduce a B.R.S. variation on the gauge

parameter g
8t = ¢ v , y Grassmannian (2.92)

and show that under this extended set of B.R.S. transformations

the Slavnov-Taylor identity becomes (in a Yang-Mills theory)

s(r) + x %g =0 - (2.93)

where S is the usual Slavnov operator

-
O

5T 8
u

o |On
< |
*

—

s(r) = Tr [fd%x |

/|
+

(2.94)

o

=

o

Q

o o

<1 |+
+
o]

&p



- 43 -
In the above o and pu are sources for the B.R.S. variations of ¢
and Au respectively and B is the auxiliary field which allows us
to write the gauge-fixing part of the Lagrangian in the form
* *
L . =582 +B0 a*") + 1 4"B +5 ¢ DM (2.95)
gt i} B .
2 2
One can easily check that this is invariant under the B.R.S.

variations

S5A = ed & , 866 =0 , 8¢ =eB , 6E =ex (2.96)

We also note that in the absence of the last transformation and
*

the corresponding % x¢ B term in the Lagrangian, eliminating B

by Gaussian integration in the path integral (it has no kinetic

terms) gives the standard Fermi gauge-fixing.

= _ L Hy2 *pu
Lgf 2t (auA )<+ 5p¢ ¢ (2.97)

The effective action precursor of the Nielsen identity is then
simply obtained by differentating (2.93) w.r.t. y and then
setting ¥ = 0 (taking care with the sign of anticommuting

quantities in the process)

oT 3T
- — + — =0 2.98
We can now recast the gauge-fixing term in our Abelian Higgs
model into a form which is similar to (2.95) and which is
invariant under the new B.R.S. variation introduced in (2.96).

We then perform explicitly the steps leading to (2.98). The

gauge fixing is transmuted into
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- & p2 p * B
Lgf = ) B¢ + B(buA + egvid>i) + autb D" ¢
(2.99)
2 * 1 *B + *
-e“g ¢Eijvi¢j + g X exd Vi¢i

If we denote,as before the insertion of an operator O in T by
r(o) we find

8L — p( L4"B + epv,0,) (2.100)

3% 2

If we integrate out the auxiliary field we will replace it by
its minimum value in the exponent of the path integral, which is

given by the solution to its equation of motion

o |o
% |

=B+ (At rezviey) F e’ =0 (2.101)

Using (2.101) we can substitute for B in (2.100) and we find

that at ¥y = O

- 1 B -
= =7 -— (d A" - egv.¢.)) = r(P) (2.102)
2 2F W i7i

We see that the operator insertion is precisely % times the
operator O that we had to construct in the previous derivation

The B.R.S. variations are given by

86 =B , 840 =0, 8B =0, 64 =ed ¢ , B8b; = cec bbg

(2.103)-
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We note that, as advertised,

(2.93) becomes

82 = 0 on all the fields. Eq.

farx( & —— 5 F(x) + &L g + B(x) 2— )
A (x) SK. (x) 6¢.(X) 5¢ (%)
M i i
(2.104)
8T
+ X(S—g- =0
We can substitute for B in this from (2.101) to get
favx( &L 3, 5(x) + or 2
GKu(x) 5Ki(x) 6¢i(x)
£ (3,B*(x) + egv,§,(0) 00— - Ly g &L
8¢ (x) 2% 8¢ (x)
or  _
+ X3f = 0 (2.105)

We now differentiate w.r.t.

eduivalent of (2.98)

x and set ¥y = 0 to get the

8T Sr(P(z))

[d%xa%z( ST(P(2)] , O+ 8T(P(z))8r

8A& (x) 5K, (X) 8. i (%)

- 1 (6 KH(X) + egv.$.(X)) éLLELEll -
5 e . 5§ (x)

o
—~
|

o

()]
(a1

8K, (x) 8%, (%)

1 6_2_)('(_131_2_1) 6*(X))
28 8¢ (%)

(2.106)

Multiplying through by &, specializing to x-independent % ‘and

setting the other fields to zero gives
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£V _ gy S0(0(x)) 2V _ o SEvy04E fabxaty SL(0C0))
dE 5K, (0) 08, (x) Q 50 (2)
| (2.107)

which is identical to (2.56) in our previous derivation of the
Nielsen identities.

We could also demonstrate the independence of physical
quantities from the gauge-fixing vector vi using these

techniques. In the older approach we would have found that

3L _ _ b - e2”
viav evi(buA + egvi¢i) e<¢ ¢€ijvi¢j (2.108)
which can be generated from the B.R.S. transform of the
operator
0= e 2.109
_e¢¢igvi (‘O)

In our approach we could introduce the new B.R.S. transform

8V, = ep (2.110)

where the Py have the appropriate group properties but are
anticommuting objects. We would modify the gauge fixing term to
be invariant under this new transformation

Lye = 282 + B, A% + egviep) + 0,070k - ooy,

_e2p g
224 ey Vi, (2.111)



The Nielsen identity would then be, symbolically

dT dar  _
S(’apl) + 531 =0 (2.112)
where
_ar  _ :
36, r( eyto,) (2.113)

and corresponds, to within a multiplying’factor of Vi to the
result in the previous approach.

As a footnote we observe that the use of extended B.R.S.
identities clears up a small puzzle in the choice of the

"operator O. With a gauge-fixing of the form

_ L (s AF + ev.o.) (2.114)
¢ u ivi
0O is given by.
= 1 * i
0 = -2 ¢ (auA + evi¢i) (2.115)

whereas, with a gauge-fixing of the form

- -1 (3 A + eev.4.) (2.116)
oz n ivi
| it is given by
1 * 1)
O=-2¢ (3 A" - eEv.90.) (2.117)
5 m i'i

The difference in sign can be seen to arise from the extra

lx¢*v b term in (2.99) which preserves B.R.S. invariance under
2 ii
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8 » ex.
We have made no attempt at discussing the renormalizability
of the extended actions. However, Piguet and Sibold give an
extensive discussion of the renormalizability properties of a

*
Yang-Mills theory with the extra 1 xé B term in the gauge fixing
2

and show that the theory is essentially unchanged in comparison
with the usual case. Similar considerations would apply to the

extended actions in our Abelian Higgs model.

2.8 NIELSEN IDENTITIES IN THE AXTAL GAUGE

In order to further demonstrate the utility of the
Piguet-Sibold approach we shall give a derivation of the Nielsen
identities in the axial gauge. There are two points to bear in
mind for such a derivation: the first is that there are various
possible ways of implementing an axial gauge in the path

integral with gauge fixings of the form.

1
E g%(£2Py~"gP 4 B%(n 4%%) (2.118)
2
The most obvious choice with fab= -1 is pathological for & # 0

because the propagator is of the form

2 2
: np, *nap  pPpA p,P,P
— lg - + + 5

By m By 2 m 2] (2.119)
(nup ) (nup ) (nup,)

which goes as 0(1) for large p2. This invalidates the usual
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power counting arguments used in demonstrating the
renormalizability of the theory [29]. Another possible choice

is the planar gauge with

(2.120)

v B (2.121)

We note that the auxiliary field method of gauge-fixing used in
(2.118) would obviate the need for Nielsen-Kallosh ghosts if one

were working in a background field formalism where fab would be

ab
equal to 2—§él , where D(A) is the background field covariant
n

derivative. If we had written the gauge fixing in the usual

form

- -1 (n ab@ysab, uay (2.122)
oz P m

where au is the quantum field, we would have needed to add the

terms

(2.123)

where w is a complex anticommuting ghost and y is a real
commuting ghost to reproduce the required Yydetf factor that

ensures the invariance of the measure. This is automatically
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reproduced upon the integration of the B fields.

The second point to note is that the axial gauges, like
the Fermi gauges, will suffer from infrared divergences.
However, it is argued by Thompson and Yu [29] that these may be
regulated in the context of dimensional regularization and do
not affect the veracity of the identities. With the preceding
provisos in mind we write the gauge-fixing term in the planar

gauge for an Abelian Higgs model as

-EZpg (24 5+ B(n A") - ¢*(nua“)¢ (2.124)

L
gt 2 32

We now choose to extend the set of B.R.S. transforms acting on

our Lagrangian by including

8 = €y and 6nu = gp (2.125)

where both y¥ and the components of pu are anticommuting objects.
In order to maintain the B.R.S. invariance of the gauge fixing

term under these new transformations we must add the following

u

*,n2 * x, 0.0
Lo (BB - ¢ (p AY) - 2o (2—)B (2.126)
2 X H 32

We now consider separately the change in I' under a change

in £ and nu. In the first case we have the equation

. AT 3T
S(—) + = =0 with 6n =0 (2.127)
dx dE H
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and in the second we have

S(-— ) + — =0 with 8 =0 (2.128)

2
3T =1( 1452 B) (2.129)
dx | x=0 2 d2
and
* *, n¥
or = r(oa* + g ()B) (2.130)
apu pu=0 32

If we now eliminate the auxiliary field B in the time-honoured

manner we can see that

*
18 =r( - L (n,4")) (2.131)
% x=0 2g
and
* Bho
2% = r(s7 (" - D) a%) (2.132)
%p, | 0,0 n2 .

This allows us to obtain the Nielsen identity in its usual form

for g

MM C($,E)Q¥ = 0 (2.12a)
dE 20
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C is now given by

C(7,%) = infdx<o|T(2)2[- 2 4" (x)(n 4" (x))e4(0)0,(0).
s 2

(2.133)
i
exp(z Seff[®,¢]ﬂl0>
In a similar manner we can write the equation for n_ dependence
8% 4 p*F,0)2Y = o (2.134)
on
p o0
with D" given Dby
B, - . 4 i ' po n*n? * o
D¥(§,8) = infa*x<o[T(2)2[  (g"9- BR)u T (x)a%(x)ew (0)62(0)
T n
(2.135)

exp(L s_..[2,0])]0>

We note that C and D" do not receive any contributions at the

one-loop level because there is no mixed A/¢ propagator in the

planar gauge. The two-loop contribution is given by a graph of

the form

(Fig.7) Graph for C2(%,t)

! — _—
~ T

| e ™~
/ AN
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We thus see that, formally at any rate, deriving Nielsen
identities presents no problems in a planar gauge, though
explicit calculations will havé to overcome infrared

divergences.

2.9 A NIELSEN IDENTITY FOR AN EFFECTIVE ACTION CONTAINING

COMPOSITE OPERATORS

As well as the usual effective action which has a scalar
field as its argument one might also like to consider a
generalization which depends not only on $(x) but also on a
possible expectation value for T¢(x)¢(y) which we shall call
G(x,y). The physical vacuum for such an action would then be

given by

8T] ¢6,G 8T ¢,G
) 8G

=0 (2.136)

Such a formalism is useful in the study of dynamical symmetry
breakingjwhere an object such as T¢(x)4(y) may develop a vacuum
expectation value [30].
To develop the formalism,consider (after [30]) the

following action with a compound source.

A = i 1

2 L3,L] = [[Do]expz(S[e] + J0; + KiQ; + 5 ¢;L;505)  (2.137)
where we have againwlapsed into condensed notation

More explicitly
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1 = L oqteqh
; ROy [d¥xd*y 6, (%) Li; (¥ 65(¥) - (2.138)

[\

We now define Wk[J,L] by
¥ [J,L] = -ih 1n %k[J,L] (2.139)
and the classical field ¢ as

6%, [J,L]

M SR ES (2.140)
83 (%)

We also have the new relation

oW, [J,L] 1o _
——— =5 [3,(x0)8,(y) + NG, (x,¥)] (2.141)
L 5 (x,¥)

To obtain the effective action we perform the Legendre

transform

~ = & - 1 - -
T [9,6] =W [J,L] - [d*x &, (x)T; (x) - fa*xd*ye; (L 5 (x,7)85(¥)

(2.142)
Lg% g
S Jatxdty G0y (vom)
We observe‘from the above definition that
8T
k —
——— = =33 (x) - Jd¥x Ly (x,9)85(y) (2.143)
8¢, (x)
and
8T :
EGE”TE‘y) - -1+ L. (x,y) (2.144)
i *e 2 J
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The standard effective action corresponds to I'[$,G] evaluated at

L = 0, or equivalently I'[$,G] for the values of G which satisfy

3y
8G

for 2-particle-irreducible diagrams with lines representing

= 0. One may show that I'[$,G] is the generating functional

hG(x,y) [31] and it can be computed in a similar manner to TI'[3]
by considering the vacuum graphs for the shifted Lagrangian, but
this time retaining only the 2PI graphs.

We now consider our canonical example, the Abelian Higgs
model, for which we can write the generating functional more

explicitly as

~ * i
Z,[3,0] = [[Da ][De][De 1[Do;] exp 7 fd*x[L + K eve; 0, + JPAu
: (2.145)

+ J. 6.

* * 1 "
URSRASEAE A Ja*ye; ()L 5 (2,70 5(v)]

We have again chosen O so that 860 = g%% . We now carry out a
B.R.S. transform and use the invariance of the measure and

gauge-fixed Lagrangian to obtain

4 By _
f[d xf[D¢](Jub b - 7 F(Ap,¢) + Jie¢sij¢j +h&0

(2.146)
+ i fa*yed (x)e ;161 (X)L 5(x,9)05(¥)
+ i Jatyen (e 105 (L 5(x,3)81 (1)) expt Sqql2,0] = 0

where F is the gauge-fixing term.
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To express the terms containing L more succinctly we write them

as

1 1
efd'x (140 (0)E; () + efdty (o0 ()03 (M (Y))
(2.147)

where

1

(2.148)

f2
j(y)

N
[d*x L;s(x,y) 6, (x)

We now note that the invariance of the source term containing
Lij under the exchange of x and y implies that Lij(x,y) =

1 2 .
L..(y,x),so £ and f are equal, as are both the terms in

ji
(2.147). We can thus rewrite (2.146) as

4 By, _ 1
fd xf[D¢] (Jua 0] : F(Au,¢) +Jie¢eij¢j + hg§o
(2.149)

+ fd"ye¢<x)sil¢l<x)Lij(x,y)¢j<y))expi Sepsl®,0] = 0

This may be transformed, as in the standard case, to an operator

identity acting on ﬁk

fa*x( J“au & .1 P&, I J; S 4 qavy & Ly 5 & ]
&n g 6JP 5Ji 6Ki 5Ki 5Jj
(2.150)

.2 [I.n] = -ifd“xf[D¢]h(x)60(x)exp§ Seel®,0]
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We now proceed to write this as an identity on the 2Pf (in ¢
only) generating functional I'[¢$,G]. The fields other than ¢ are
Legendre transformed in the standard manner but (2.140) and

(2.141) apply for ¢. We find that (2.150) is transformed into

8T 8T 8T, 6T L.
L _ __k - k - - _ _k ___E_; . ({‘} Atz 67 D -
fa*=z ( GKu ap,d’ 6$§ F(Au’ CI)l) 651._ 6K1 1k& 5Cxy )KJ SKa
(2.151)

L fa*x[[De] nsO(x)exp: s_..[@,0]
7, n S

where we have dropped the x dependence in the l.h.s. for the
sake of compactness.

Remarkably, this is of exactly the same form as the Nielsen
identity on the standard effective potential, so we can follow
the proof through to obtain an identity on the effective
potential which is defined by

V(3,5 fd*x = - r[%,G] (2.152)

translationally invariant

. Subject to the usual constraint on the solutions arising from

the gauge-fixing we find (bYMeoLicALLY)

2V + D(5,6,0) + SE@,G;S) 2V =0 (2.153)
dE D% G

[VATIN

where \/,[D and £ are to be calculated from 2PI vacuum graphs
with internal lines set equal to AG.

The identity states that under a change in the gauge
parameter £ > £ + 88 the value of V is preserved by the

compensating change ¢ > ¢ + (D(%,£)/E)6E and that there is Q& similay
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change in G.

2.10 CONCLUSIONS

What lessons may be learnt from the preceding somewhat
involved calculations? The most important is that it is,
indeed, possible to use the 't Hooft gauge in effective
potential calculations. There is no breakdown in the Nielsen
identities and there is no circular argument involved in
introducing ¢j° into the gauge-fixing. This is reassuring, as
the gauge is not only convenient from the point of view of doing
calculations because of the absence of mixed gauge boson Higgs
propagators, but is also supposed to be a finite ¢ version of
the Unitary gauge in which only physical particles appear (the
E+o limit of the 't Hooft gauge is the unitary gauge). Our
discussion shows that this limit is not singular. |

The other main conclusion is that the Nielsen identity sits
in a broad class of identities derived by Piguet and Sibold
which govern the gauge dependence of the generating functionals
and we have used this relatidnship in our alternative
derivation. As a final observation we note that the Vigi =0
condition that emerges from the Nielsen identity will be of some

use in our investigations of convexity.



CHAPTER 3 CONVEXITY

3.1 Introduction

3.2 The constraint effective potential

3.3 The interpolated loop expansion

3.4 Gauge-fixing and explicit examples of
convexification

3.5 Discussion
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3.1 CONVEXITY: INTRODUCTION

If we consider the example of a spontaneously broken A¢"
theory we find that the one-loop effective potential is given by
(using dimensional regularization and the MS subtraction

scheme)

2
V=—— (U") (ln— - =) (3.1)

where U" is the second derivative of the classical potential

Ut = -m2 + X 42 (3.2)
2

The logarithmic term in (é.l) becomes complex inside the points
of inflection of the classical potential, ¢ = */(2m2/A). This
behaviour is not simply a one-loop artifact; at higher orders
one still finds 1n"u" terms (see, for example, Appendix F). The
effective potential measures an energy density, so such
complexity would seem to signal some kind of instability in our
choice of the vacuum configuration. One might also observe that
the one-loop effective potential which we have calculated
is non-convex in form (one of the standard definitions of
convexity for a function f(¢) is that £"(¢) > 0 for all ¢, which
is manifestly incorrect for our potential). However, one can
show quite easily, for a Euclidean field theory, that the
effective potential should be convex [31]. If we consider the

expansion for W[J] with a slowly varying source
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wla] = [d¥x [ —g¢J) + X X(3)(3,3)2 + ... ] (3.3)
2

we have, for a constant source
WlJ] ~ - QE(Jd) (3.4)

Now z[J] = exp% W(J], so we find that, in the constant source

limit

]

7(J) = exp (7i QE(J)) | (3.5)

where

Z(J)

[[Ds] exp(- i (sfe] - 3f9)) . (3.6)

: 2
If we now calculate 9—% , using (3.5) and (3.6) we find that it
2d

is equal to

- Ei (< (Jo)2 > - <Jo>2 ) (3.8)

where we have defined <0O> by

[[Ds] © expfi (s(e] - 3fe)

[[Ds] exp- L (s[o] - 3f6)
hal

(3.9)

For a well-defined measure, which we do have for a Euclidean
field theory (but not for a Minkowski one), the term in the

brackets in (3.6) 1is a variance and hence a positive quantity.
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2
Hence Q_% < 0. If we now recall the functional relation
)
2 2
fd4z— 0T hll = - 8% (x-y) (3.8)

86 (x)88(2) 8J(2)8J(y)

whose constant source limit is given by

2 2
Q__F,__b___V = -1 (3.9)
dJ2 232
2
we can see that g:g » 0, or that V is convex. This is
00

obviously at odds with our one-loop result.

A further hint of possible trouble with the formalism comes
from observing some of the general properties of Legendre
transforms [11]. For simplicity consider the function of a
single variable f(x). Its Legendre transform is defined to be

tl(y) = £(x) - xy  where y =1 (3.10)
Graphically, this means that we are plotting the intersection of
the tangent to f against its slope. The transform is

involutive, provided that the original function is convex
1,1
(£7)7(x) = £(x) (3.11)
and it satisfies (c.f. (3.8),(3.9))

d2f1gy) d2f(x)
dy?2 dx?

= -1 (3.12)
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The transformation will thus break down if either of the two
terms in (3.12) is zero, which will happen unless both are
strictly convex or concave. As our effective action and hence
effective potential are defined by a Legendre transform this may
give rise to problems. |

One can raise-further questions about the standard loop
expansion result, which we will henceforward call "V" to
indicate its dubiety, by examining the analogy between Euclidean
field theory and statistical mechanics, after Haymaker and
Perez-Mercader [32]. Bearihg in mind the expansion (3.3) and
the arguments of Coleman [6] sketched in the introduction, one
notes that the reverse Legendre transform on "V" gives ¥(J), the
vacuum energy density with a source J. To find £(J) for a given
J we can make use of the graphical interpretation of the
Legendre transform. We search for a(tangent to V(¢) of slope J
and its intercept will give us £(J). For a non-convex "V"

there may be more than one tangent of a given slope.

(Fig.8) Tangents to "V" ‘

N

‘&l\/
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However)the values of E(J) that are generated by the
tangents to the non-convex portion of "V" are higher than those
from tangents of identical slope outside the region of
non-convexity. This suggests that the non-convex region
corresponds to an unphysical, higher energy branch of the curve
and that the correct V should be taken to be the convex hull of
"y,

A similar conclusion may be reached by examining the
quantum-mechanical arguments of Evans and McCarthy [33].
Consider a spontaneously broken A¢* potential with minima at ¢
, giving two degenerate vacua, say j+> and \—>. For a finite
spacetime volume there will be matrix elements of observables
connecting the two, as it requires a finite amount of energy to
cross the hump in the potential. In the infinite volune limit,

however, the matrix elements will vanish and we may write

<t|H|i> Eg &

I+
I+

(3.13)

I

<t|o|> = toos,,

where H is the Hamiltonian density and & is the quantum field
operator. Any linear combination of the two vacua will be an
equally good ground state with energy Ey , as we may see from

.the following

|A> = A |+ + A_|-> where 1n,12 + 1A_12 = 1

(3.14)

AlH|A> = Bo  and  fe|a> = (a 12 - aa_12)60
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Note that the state |A> has a field vacuum expectation value
lying between the two minima. Since the effective potential may
be defined as the minimum of <H> subject to <&> = ¢ we have
found that its true value between -$, and +¢g is Eg,i1.e. a
linear interpolation. If the spacetime volume is finite there
will be, as we have already stated, transitions between the two
vacua giving a single minimum at ¢ = 0, which shows up in both
the path integral approach [11] and lattice calculations [34].
For a single system we would have to be in one or other of the
vacua so it is perhaps best to think of the effective potential
as being undefinea bétween the two minima

(Fig.9) The convex effecfive potential V

\VAPS

UN_F.TWED

N
4
-

¢

The result generalizes easily if we have discrete minima,

say |i> , i=1,n each with energy Eg.

<ilg|s> = Eob
(3.15)
<il@|j> = ¢% §.. (no sum)



-65-
If we take a state \x>

|x> =8 |i> g 1A 12 =1 (3.16)
. -

we find, in a similar manner to (3.15)

<xiH|x> = Eg
(3.17)

<x|@|x>

]
~s
>

o

e

|

which is just the convex hull of the set of minimum values {3g}.
Once again the linearly interpolated regions correspond to a
mixed vacuum state.

Both the work of Haymaker and Perez-Mercader and that of
Evans and McCarthy are a patch-up on the incorrectly calculated
"V" to excise the non-convex regions; It would obviously be
more satisfying to calculate the correct, linearly interpolated
V from scratch. This was done by Fujimoto et al. for the case
of spontaneously broken A¢"* in [11], where they showed that a
careful treatment of the saddle-points in the path integral (we
are doing a saddle-point caléulation in making a loop expansion
for the effective potential, as noted in the introduction) leads
to a linear interpolation over the non convex portions of "V".
Before examining this approach in section 2.3 we make an aside
on an alternative definition of the effective potential which is
useful in non-perturbative calculations and which provides

further evidence for convexity.
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2.2 THE CONSTRAINT EFFECTIVE POTENTIAL

Retaining the volume of spacetime explicitly we define the

function w(¢) by [35],[36]

[[D6] 8(c - &) exp(-S[s]) (3.18)

il

exp( - Quw(s) )

1 and ¢ = & Jd*x ¢(x). If we now multiply
Q

both sides of (3.18) by exp(QJ¢) and integrate over ¢ we find

where we have set h

fd% exp @(JF - w(d)) = [[Do] exp (-S[¢]+I[¢) = exp(-QE(J)) |
(3.19)

In the infinite volume limit one may take the saddle pont
expansion for the l.h.s. to be exact and find
Q(d - w(d)) = -RE(JI) (3.20)

sup J

which is, in effect a Legendre transform (the sup/inf may be
inserted into the Legendre transform in order to handle
non-convex functions). We shall denote this modified transform
by a superscript 1'. It agrees>with 1 for a convex function.
We thus have

ol () = () (3.21)
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We also know that V(%), the standafd effective potential, is
given by £1(J) so

ot 1 (E) = 2y = V() (3.22)

1

Now w will be single valued by virtue of the sup/inf

definition so wl 1 will be the convex hull of w and a V derived

in this manner will be convex.

(Fig.10) The double Legendre transform of w

ll
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We shall see, however, that a computer evaluation of w (not V)
using Wilson recursion relations [36] produces a convex result
so that, by virtue of 1 equalling 1' for convex functions and
the involutive property of the Legendre transform, the
constraint effective potential w is actually identical to the
standard V.

The idea behind the recursion relations is quite simple.
One considers the Fourier decomposition of thé fields in the

Lagrangian

6(x) = ¢0(x) + ¢1(X) (3.23)

where we regularize the theory with a cutoff A and where we

split the k integration so that

b0 (x) = | exp (ik.x) s (k) a9 (3.24)
A/2 < IKI < A

with the ¢; being the remainder. We can consider the field
variables as sitting on a lattice of spacing A_l (the inverse
highest momentum scale in the theory). This allows us to |
decompose the action and integrate out the higher modes in the

fields contained in ¢g.

- 2 2
if (0,0)2 = 227 2 e, if (3 ,01(x))
(3.25)
-d 1 1
[U(e(x)) =& § 3 U (b0, ¥ 01,) * A U (T00,™ 01,)

We have very crudely represented the wavelike nature of the ¢y

we are integrating over by a step function inside each lattice

cell and wé note that this does not contain any zero. component,
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which is consistent with our constraint effective potential
calculation where we integrate over everything except the zero
mode, and we have used d to denote the dimension of spacetime.
With the above approximations the action becomes

24,2 1 ,-d '
(3,01(x))% + F & Tooy A U( oo, +61,)

s[e] = [

N |

(3.26)

+ 2 A7 (=00 +o1 )

One now integrates over the ¢35 in the path integral and then
repeats the process with A/4 < Ikl < A/2 (and so on). In this
manner one derives a recursion relation for the constraint
effective potential.

-dA

Uy 41 (®) = =277 1n (F[U, () ]/F[U, @]) (3.27)

where

A-1 (U, (v + &)

FlUu, ()] = ° ay exp (-2(972Py2 _ o
(3.28)

- U, (-y + ¢) )

and U; is given by the classical potential. As x+mJUA+ W

A Fortran program to perform the above process is given in
Appendix C,and it gives results identical to Fukuda, who found
that starting with a non-convex classical potential the
_iteration served to convexify the potential. For sufficiently
large values of (m2/A) the effective potential was flat
bottomed, whereas for smaller values it had a true minimum at %

= 0. With our parameters (mz/k)>2.5 gave a flat potential.
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Lattice field theory calculations [37] give similar results,
with a flat bottomed or genuinely convex effective potential
emerging even when the the classical potential is non-convex.

We conclude that explicit evaluations of the path integral,
insofar as they are possible, support the notion of a convex
effective potential. Where, then, is the perturbative expansion

breaking down?

3.3 THE INTERPOLATED LOOP EXPANSION

If we have a non-convex classical potential U the minima
of U($)-J¢ are not uniquely specified for all J. TFor certain
critical values of J, say Jc , & small variation in J will cause
the absolute minimum of U(¢)-J¢, ¢o(J), to jump discontinuously
between the local minima. For instance, in a spontaneously
broken A¢* theory, Jc is zero and a small variation either side
of this causes the absolute minimum to jump between the two
local minima. To deal with this we subdivide the path integral
into regions Ri’ each of which contains one of the local minima,

which we shall denote by 5; [11].

| summn }
o
—
S
[}
™

exp (LW  [p.[De] exp(2 (s[6]-[34))
T i i hal

(3.29)

]
[ne

exp (2W,[])
T
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where

W, (7] = exp(-% (UCs5) - J63))f 5 [De] exp(fi fatr)
1

(3.30)
AL = L(o + 65) - L($7) - Jo

Q = [dtx

The approximation necessary to evaluate (3.29) is the extension
of the regions Ri to cover the full range of 4. We would

expect the overlap error thus introduced to be exponentially
small, as the fAiL are large and positiye in the region of
overlap. With each Ri replaced by the full range of integration
(3.29) can be thought of as defining a Jackiw—style expansion

about each ¢%

exp (£ W[J])= z exp(-& ("v(31) - g71y) | (3.31)
7 i n

The "V" is calculated in the standard loop expansion about the
appropriate ¢% to any desired order. Outside a critical range,
J—Jc > O(h) one of the terms in summation (3.31) will dominate
and we recover the standard loop expansion, which is

acceptable as we would be outside the non convex portion of "V".
Inside the critical range we need to consider the full
summatidn.

Thus to evaluate ¢ in this interval we would consider
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£ 3% exp(-2 (v (3Y) - IFY))
s=20-1 — — (3.32)
L exp(— ("V(3~) - J&))
i jo! )
Writing J = J' + JC we obtain
oD Fexp(2 (VIGEY) - 3'F - IFH))
- i T
b = — — — (3.33)
exp(-2 ("V"(FY) - 3§ - J_FD))
i ol

Now —Jc + "V"($l) is the same for all the terms in the

summation,so we can divide it out to obtain

5 5T eXp(fi J'%)

§ == 5 (3.34)
z exp(-—= J'9)
i g}

In these summations the element, or elements, with the
largest component in the J' direction will dominate in the
infinite volume limit. If J'$i is maximized for a set of $i,
then ¢, as defined by (3.34),will lie at the centroid of the
figure defined by the 51. Although this might apparently lie in
a non-convex portioﬁ of "V" it has resulted frgm a linear
combination of states of equal energy which are orthogonal in
the Hilbert space in the infinite volume limit (if J = O they
would be vacua), and is therefore part of a linearly interpolated
region.

We have thus shown that ¢ will lie at a Ei, in which case

it will be outside a non-convex region,or it will lie on a

J
linearly interpolated section of the graph. The non-convex
portions of "V" have been excised in the manner suggested by

the arguments of Haymaker and Perez-Mercader.
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To make these general considerations a little more concrete
consider the canonical example of a spontaneously broken A¢"

theory. We have, at the one-loop level for J ~ O

exp (l W(J))= exp(-9 ("v"l(3g) - Jog))
Nl yol

(3.32)
+ exp(-2 ("V"l(=F9) + JFg))
el
or, as nvnl($) - "V"l(—$)
1 Q _ Qoo
= W(J) = 1n2 - = "V"1(Fy) + 1n cosh( (3.33)
ol n yol
We thus find that
- - QJdo
57 =229 _ 5, tann ( ) (3.34)
Q aJd gl

which exhibits precisely the step-function-like behaviour in the

Q+» 1imit that we have taken as a signal of convexity

(Fig.11) Step-function-like behaviour of ¢

—

oSl B
1 h

M
gV




—74-

In this simple example we may proceed further and calculate V
itself, instead of demonstrating the linear interpolation by

more indirect means. We have, for J~0

} _ _ QJdg
ri(s) = w! - @3g! = -2 "v"1(§q) + h 1n2cosh( )
. T
(3.35)
_ QJog
-QJ%o tanh( )
I

QJdg
tanh (
0 i

), which allows us to eliminate the 1n cosh

2z

(o]

3]
ol e

1l

term and J in (3.35) to get

o

1 _ _ bo+ ¢ oo -
L () = -2"v'i(Fo) + 1 o[ (——) 12 &+ (——) /2]
bo— ¢ do+ ¢
(3.36)
_ do+ ¢
-2 % ln (——
do— ¢
Using V= -QI' we can rewrite this as
_ do+ @ b0+ ¢ do- & do- ¢
vi(§) = "V'l(sg) +2 (—— In ———— + —— 1n —)
2Q bo bo do bo
| (3.37)

which is wvalid for #¢l < ¢g. This exhibits both the linear
interpolation and finite volume correction we have mentioned

previously.
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3.4 GAUGE FIXING AND EXPLICIT EXAMPLES OF CONVEXIFICATION

The demonstration of the convexity of the effective
potential from the properties of ¢ depended crucially on the
various saddle point contributions being separated. In general
with a group G being broken to a (maximal, unless we are
suffiéiently perverse in our choice of Higgs representation)
subgroup H, the manifold of possible minima will be given by G/H
and we do not achieve this separation. One could ignore the
problem and simply extend the sum in (3.34) to an integration
over the manifold of minima as advocated by Fujimoto et al. [11]

and 'O Raifeartaigh et al. [35]. This would then give

fdu(s) ¢ exp(—i J'e)

b = (3.38)
[du(s) exp(-% J')

where the integration is understood to be over the manifold of
minima and dp(¢) is a suitable measure.

For example consider the case of S0(2) » 0 as in the
Abelian Higgs model. If we let J tend to zero in the ¢;

direction we find

T
o[ cos® exp(-Apcos6)ds
3= — (3.39)
[ exp(-Apcos® )ds
0
where we have parametrized ¢; as pcos6d and A = %ﬁ . This gives
Il(xp)
9y =p (3.40)

Io (Ap)
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This has the required step function like behaviour. Instead of
choosing an ad-hoc parametrization we could confine the region
of integration to the manifold of minima using 8-functions (or

distributions!). This would give

fdoy [dea8 (Y (62+08)—p) o1exp(-Ady)
[déy[doa8 (Y (0F+63)—p) exp(-roy)

01 (3.41)

which again integrates out to give (3.40). As another example
consider SO(3) +» SO(2) where the manifold of minima is s2, If

we again take J to zero in the ¢; direction we have

_ Jdey[dea[dess (Y (e + 035 + 03)-p) &1 exp(-Ady)
o1= (3.42)

fdo1[dea[dess (Y (63 + 63 + ¢3)-p) exp(-Ady)

Although the specific function this produces is different

31= o(% - cothh) | (3.43)
A

the step function like behaviour is still present.

Despite the above results the initial replace@ent L =
fdu(¢) is dubious and it would be preferable to avoid it in a
more rigorous approach., If we are dealing with the Higgs sector
in a gauge theory we could make use of our freedom of choice in
choosingfthe gauge fixing to discretize the minima. The gauge
to choose is just the 't Hooft gauge, which,provides the
required discretization because of the Vi$i = 0 condition

arising from the Nielsen identities.
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We note first that the Viai condition reqires some modification
for more complicated gauge theories. It should actually read
v: ni = 0 where the nr span the physical Higgs space and the «
is a group index (see [23]), which is saying that the vz lie in
the Goldstone boson subspace. The easiest way to achieve this
is just to choose the 't Hooft gauge proper

v = -ix T§j<o|q>j|o> = -i.g'r‘;j%o (3.44)
where the T% are generators in tﬁe appropfiate representation,
and we shall assume in the rest of this section that this has
been done.

If we consider first a real vector representation, our

condition with the Higgs fields in the N of SO(N) reads

7% .5.00. = 0 : (3.45)

7 F.0%x: =0 o (3.46)

where X3 lies on the manifold. We can write any X; as the

group rotation of \agv${0.
_ N A ] -/ |
Xy = exp(i9 Tij) 450 (3.47)

So (3.47) reads

(850- 3;50) = 0 (3.48)
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If we are considering the breaking SO(N)>SO(n-1) only one of the
Higgs fields will acquire a vacuum expectation value,so (3.48)
will be satisfied for a direction that is either parallel or
antiparallel to it. The manifold of minima for the above
breaking will be a hypersphere, so this picks out, as allowed
minima, two antipodal points where the axis along the direction
of symmetry breaking intersects the hypersphere.

For a complex vector representation we would write the
Higgs fields as the sum of two real fields ¢i = ¢il + i¢ig and
consider the gauge-fixing

1 Lo *
I (apA + (vi¢i) + (v

2g

*
i

*

9;) )2 (3.48)
The argument for the real case is now repeated with the number
of components doubled.

For a Higgs field in the adjoint we can write (3.45) as

a = =
fij¢ =0 (3.49)

because the sz are represented-by the structure constants f;j.
If we make the definitions 6 = EjoRj and & = $iRi,where the Ry

are the elements of the appropriate Lie algebra (3.49), becomes

[e,2] =0 . (3.50)

This means that, choasmg o to Lie n u/\e Car{:an SUb-
algebra ’ 5@ is
also

constrained to lie in the Cartan subalgebra,. All the
equivalent minima in U - J¢ are disconnected because, with & in

the Cartan subalgebra, they are taken into one another by the
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elements of the Weyl group Wﬁich leave the projection of J onto
the Cartan subalgebra invariant. This is a discrete group.

For the vector representations the only critical value of
the current is zero and we just consider convexifying between

the absolute minima. This is not the case for the adjoint

representation, where there may be solutions to %% = —JO and
. TRtal '
hence to g¢v = —JC for values of JC other than zero.

As an example of this one could consider an SU(3) adjoint
potential, though this is not representative in that the
relation (Tro2)2 = 2 Trod"* ensures that the non-convexity
vanishes when the quartic terms become dominant. This is not
necessarily true in other cases,as one can see from
consideration of a general adjoint potential at large I¢l.

1

Us) = A (z3%) + = Ay (25%) (3.51)

The matrix of second derivatives for this,

32y

2
2 = ( 4A(532) + 6A1%. )6., + 8A 5.3 .
e ( 4A(z%2) 195 )85y 550y (3.52)
i °%k

would be positive semi-definite (which would ensure convexity)

iff ViUijVj > 0 for all v and ¢. If A were negative, which is

allowed by the positivity constraint on the potential, choosing

v = (0,1,0...0) and § = (141,0,0...0) would give viU;5v5 <0,

thus showing the potential was non-convex at this point.

Returning to the SU(3) case,we can write the SU(3) adjoint

potential as [38].

_ _2 _ -
U(8) = p(1-4 )% + q(é + /3d 440 5 612 (3.53)
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where p,q > 0 and the dijk are defined by
R.], =25,. + 2d...R (3.54)
i Vii+ 3. 13 ijk7k *

If we now restrict ¢ to lie in the Cartan subalgebra, spanned by

A3 and Xg in the Gell-Mann basis, the potential may be written

as

U(33,%8) = p(L - 33 - §8)2 + q 33(1 + 2§)2
(3.55)
+ (g~ ®§ + 83) |

A plot of U(¢3,0g) shows that there are now other solutions for

Jc. The form of U(d3) on the three sections A,B,C is also_

given below. C B A
A_.
Fig.1l2 ¢%
71 F
[ N .
7
\ / 3
N\ x ¢
— — — = S0LUTION 10 %%’C X = ABSOLUTE MINIMA
3
C
B

A

AN\

AN 4

)
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In section B, for instance, the minima 1,2 are solutions to %% =
J for some J in the 8 direction and we would have to convexify
between points 1 and 2. By the time we have reached C the
quartic terms are dominant and the non-convexity has
dissappeared.

In the general adjoint case the shape of the region to be
convexified can be determined for any given direction of’J by
using the correspondence between the Dynkin diagrams that are
used to classify the symmetry breaking in the adjoint
representation and the Coxeter graphs that are used to describe
the symmetry of regular polytopes [38].

In both the vector and the adjoint case we have essentially
pickéd out a direction of allowed symmetry breaking by our
choice of gauge. We have not, however, determined our
orientation, leaving a residual inversion or Weyl symmetry, and it

is this which provides the convexification.

3.5 DISCUSSION

The convexification of the effective potential which we
have described does not cancel out the spontaneous symmetry
breaking displayed by the classical potential. If the

Lagrangian admits a Higgs mechanism

L p )zl (a%%y2 =1 M, 4 aA“B (3.56)
9 il 9 i) 9 1)
where MaB = (¢,TaTB¢) and the T's are the group generators, this

is unchanged and gives the same result when ¢ is in the

neighbourhood of a classical minimum. The role of V is to
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select between the various possible minima. A value of ¢ lying
in the linearly interpolated region arises from a mixed vacuum
state and we would not expect this in a static situation. The
convexification merely serves to remind us that our assumption
of a constant background field to expand about in the effective

potential is invalid for some values of J.
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4.1 CONVEXITY AT FINITE T

It is one's general intuition that symmetries ought to be
restored with increasing temperature. This would suggest the
qualitative behaviour shown below for a spontaneously broken A¢*
potential.

gFig.13) Behaviour of V with increasing temperature.

\/ \K;J\

N
N
v

T=0 T>T,

At some temperature, say Tc’ the theory will undergo a
transition from its‘spontaneously broken state to a symmetric
vacuum (<O|®|O> = 0). In order to try and observe these
effects perturbatively in the calculation of the effective
potential one needs to know how to deal with quantum field
theories at finite temperature. We present a short review of
two complementary formalisms in the next section and consider a
convex effective potential evaluated in both. Unforfunately
both our attempts at producing a finite temperature,convex
effective potential come unstuck at a temperature which is lower
than the supposed critical temperature of the theory (this may

not simply be a fault in the formalism; see section 4.8).
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4.2 FINITE TEMPERATURE CALCULATIONS

The initial approach to finite temperature calculations in
quantum field theory was in the so—calléd imaginary time
formalism. We follow the exposition of Bernard [39]. We
consider a quantum field theory described by the Hamiltonian
density H(n,®) where &(x,t) is the Heisenberg field operator and
t(x,t) is the conjugate momentum. The Schroedinger picture
operator is then ¥(x,0). Let ‘¢o> and ‘¢1> be eigenstates of
o(x,0) with eigenvalues ¢4 (x) and ¢; (X) respectively. The
transition amplitude for going from |¢0> at time O to (41> at

time T is just given by

. T ,
<61 |exp(-1iHT)|40> = N [[Ds][Dn] exp i([dtfd3x (z2% - H))
o ot

(4.1)
where the field integral runs over all configurations that start
at ¢g(x) at time O and end at ¢;(x) at time t = T. The momentum
integral is unrestricted. If we now let iT=g and make the

variable change it==z

B
<o1]exp(-pH)| 00> = N [[Do][Dn] exp([drfd3x (ind? - H))
0 dt

(4.2)
The finite temperature partition function Z = Tr (exp(—BH)),
where B is now identified with the inverse temperature, can be
calculated from (4.2) by restricting ourselves to periodic field
configurations. This establishes the formal analogy between -
Euclidean quantum field theory (which we are doing by virtue of

the Wick rotation on t) and statistical mechanics.
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B
Z = <|lexp(-BH)|6> = N [[De][Dn] exp(fdtfd®x (1% - H))

) ¢ periodic 0 T
-(4.3)

We can now integrate out the n's provided that H is no more than
quadratic in n. This replaces = by its value at the stationary

point and adds a determinant if the term in n is ¢ dependent.

This gives

z =N'(g)f[Do] exp (fdrfddx L_;:(6,18)) (4.8)
periodic

We note that the normalization may contain temperature
dependence. As the fields are periodic we may consider their

Fourier expansion

6(x,1) = % L @K exp(ik.x)exp(iw 1) 6 (k) (4.9)
where w, = 2%3 . If we now use the identity
B
édt exp i(wn -0 )T = BS (4.10)

and substitute the Fourier decomposition of ¢ into the

Lagrangian we find for the quadratic part

S = _l.g a3k b (B) (w2 + B2 +m2) o_ (-F) (4.11)
28
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The propagator is thus

(4.12)

5N

and the Feynman rules are obtained from the usual ones by the

replacements

[ak » L g [&3%k and ko + iw

. N (4.13)

8% (ky + Ky + v..) > -iB 83(K; + Ky + ..) (4.14)

60)1‘*‘ wo +.

To determine the temperature dependent normalization one must do
a Feynman style discretization of the path integral to find,

symbolically [40]
In N'(8) = -(1nB) § a3k (4.15)

One further sublety in the formalism ocurs in the treatment of
gauge theories. Tr (exp(—BH)) must be evaluated in a physical
gauge to avoid introducing specious states in the trace or one
must modify the definition of the finite temperature partition
function to include a projector onto physical states.

Z = Tr (P exp(-BH)) (4.16)

It is shown in [40] by Hata and Kugo that this may be written

as o : -

z = Tr (exp(-BH -71Q,)) (4.17)
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where Qc is the Fadeev-Popov ghost charge, generated by a scale
transformation on the ghost and anti-ghost fields.

Because of the presence of infinite sums for the energy
modes explicit calculations in the imaginary time formalism tend
to be rather unwieldy, especially at more than one-loop level.
An alternative approach is the real time formalism, which is
also known as thermofield dynamics (T.F.D.). This has been
developed largely by Umezawa and his collaborators at Alberta,
who have explored both the basic formalism and the technical
aspects of calculations in some detail. We shall give a brief
review below; for a fuller treatment see, for example Umezawa's
book [41] or the forthcoming book by Rivers [42]. Both the
imaginary time formalism and T.F.D. are, in fact, special
applications of a more general complex time method that was‘
first proposed by Mills as long ago as 1955 [43]. T.F.D. has
the conceptual advantage of having a clear physical picture
behind it, instead of being based on a purely formal analogy
between path integrals. We think of our universe as being
divided into a large box in which we do our calculations and a
remainder, which we shall treat as a thermal bath at temperature
T. At this stage we can see heuristically that there is likely
to be some form of.field doubling in such a theory because
energy may be absorbed.in our box by either the excitation of
new quanta in the box or the annihilation of holes in the
thermal bath. We would like to express the thermal equilibrium
values in terms of expectation values between pure states |B>

i.e.

<5|0\3> _ A <n‘0|n> exp(-BEn) (4.18)
L exp(-BE,) '
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With a single Fock space we would find it impossible to define a

state to satisfy the above. If we defined

|x> =z | exp(——;- BEn)/%exp(—i BE ) (4.19)

<A|O|k> would contain off diagonal terms coming from the matrix
elemehts <m|0‘n>. To remove these we consider the product space
|n> x lﬁ) where we adjoin a new Fock space to the first and

label its elements with tildes. Operators would become O x 1 in

the old space and 1 x O in the new. We can now define

~ 1 1
|B> = ﬁ |n> X |n> exp(—g BEn)/éexp(—; BEn) (4.20)

such that (4.18) is satisfied. The <Eiﬁ> product in the new
space ensures that the matrix elements of O are diagonal.

To see what this approach means in a path integral context
consider the path of integration we use in the complex t plane
at finite temperature. In the imaginary time formalism we are
integrating from t = 0 to &€= -iB, which we can translate to
E =-ty to t =-tQ - ip by the periodicity of the fields. The
real time formalism corresponds to choosing the contour 2 to
integrate along instead of 1. |

(Fig.14) Contours in the complex time plane
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The reqﬁired doubling of the fields comes from fields defined on
the contours C; and C, (the portions C3 and Cy decouple in the
tg + @ limit, which we take at the end of any calculation). In
fact, any contour that starts at A and ends at B would be just
as valid provided that ImT is monotonically decreasing along the
contour, which is demanded by causality. We have chosen contour
2 for calculational convenience and because it gives a Hermitian
Lagrangian [44],(45]. Fields defined on C, can be thought of as

thermal ghosts and correspond to the holes in the thermal bath.
o (x,t) = o(x,t - iB) (4.21)
We can write, formally for the path integral

z{J] = N'(B) [[D¢] exp(if (L + J¢)) O (4.22)
periodic c

where f means that the time integral is taken over the contour 2
c

The Lagrangian is given by

2
-—1-¢(a(23-v +m2 ) ¢ + U(y) (4.23)
2

where the time derivative 60 is along the contour and the fields
are defined on the contour. This can be recast into an integral
with fields involving real time arguments (see for example
[44]). We find that we obtain a matrix propagator By 5 i,j = 1,2
, where the 1 field is defined on the contour C; and the 2 field
is defined on the contour C,. The mixing between the fields
occurs only in the propagator and not at any vertices. The -

matrix propagator is given by



= k2 - m?2 -ie

k2 - m2 -ig
(4.24)

1 exp(—laukon)
_ 271i6(k2-m2) : 2

exp(=Blkol)-1 \ exp(-2gikol) 1
2

The potential term in the theory becomes U(¢;) - U(d). The
Green's functions are defined as the vacuum expectation values
of the physical 1 fields)so only these appear on the external
legs of any diagrams that we are calculating. We have traded
off a simplification in the individual graphs (integrals now
instead of both integrals and sums in the imaginary time
formalism) against an increase in the number of graphs. From
the point of view of effective potential calculations there are,
however, some technical difficulties lurking in the new
formalism, particularly as the presence of the heat bath
complicates Lorentz covariance (the kg» 0 and K » 0 limits do
not necessarily commute [45]). We shall also note that the most
obvious definition of the effective potential is identically

zero in T.F.D.
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4.3 IMAGINARY TIME EFFECTIVE POTENTIAL AT FINITE T

We follow the careful treatment of Rivers [46] in this
section to show that it is possible to produce a convex
effective potential at finite temperature, but only up to a
temperature at which the minima have crept in to the classical
points of inflection, at least for a classically spontaneously
broken potential. The same problem does not arise in Coleman-
Weinberg symmetry breaking, so calculations of the critical
temperature performed in this context are still reliable (in so
far as perturbative calculations ever are). The failure of the
calculation in the spontaneously broken case means that much of
the work of Dolan and Jackiw [18] is incorrect. We discuss
briefly the criteria for the restoration of symmetry at finite
temperature to show why this is so.

They note that for a reflection invariant effective

potential

P
<
[}%)
 —
|
[\~
<l
'@
<3

(4.25)

o
<
N

so symmetry breaking will be absent when oV # 0 for ¢ # 0. We

292
now decompose the effective potential into a zero temperature
part V0 and a finite temperature part VB . One can show that
finite temperature effects do not introduce any new infinities
into the theory [47], so one may still choose to perform
renormalization at zero temperature and regard the contribution

of VB as a finite temperature correction. The mass parameter of

the theory can be defined as -



(4.26)

To see whether we are sitting at a minimum or a maximum at the

origin Dolan and Jackiw suggest that we consider

= m2 + =— (4.27)

If the r.h.s. » 0 we are supposedly at a minimum and the the
critical temperature is defined to be that for which the r.h.s.
= 0. However, we know that this is too simplistic; because of
convexity one cannot simply look at the origin of the effective
potential to see whether one is rolling-up or downhill., Even if
one ignored the problem with convexity one would have to deal
with the.complexity of the higher order corrections at the
origin ( at one loop and high temperature there is a fortuitous
cancellation which does not persist at higher orders).

We now consider expiicitly the calculation of a convex
one-loop effective potential at finite temperature to see
whether it‘is possible to obfain some other criterion for the

restoration of symmetry. We first decompose unity as
fde 8(c - 1fd%*x ¢(x)) (4.28)
9]

and insert this into the path integral expression for the

generating functional 2Z

N [[Do]fdc §(c - -;- [d¥x (x)) exp(-i (S[6]-[78)) (4.29)



- 93 -
where wé have inroduced the artificial loop expansion parameter
a because H appears in the limits of integration (via B) in the
action. If we now write ¢(xX) as c¢ + Yan(x), insert it into the
path integral and exponentiate the delta fuction in (4.30) we

find

Z = [dedaf[Do] exp(-% (S[c+/an] -Je@))exp(iafd¥zn)  (4.30)
a o

which we can expand in n to get

Z = N [de A(e) exp (-2 (U(c) - Je)) (4.31)
a

where, dropping terms of O(n3) and higher

A(c) = fdaf[Dn] exp(iafd*zn)exp(-1fd*zn(-v2+U"(c))n (4.32)
2

If U"(c)A>O we may perform the Gaussian integration to get

A(e) = [U"(c))l/z exp (—39 2fdk 1n (k2 + U"(c)) (4.33)
2
Thus we get finally
- " 1/2 nyrnl
Z =N [de (U"(c)) exp(-("V"l(c) - Je)) (4.34)

In a similar manner to our discussion of the constraint
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éffective potential the @ + « limit will enforce the convexity.
If we now enquire what happens to the expression at finite
temperature we encounter difficulties. The high temperature

limit of the one loop effective potential is given by [18]

V() = ues) + L8 4 ordy (4.35)
B

From the above we find that the minima creep in with increasing

temperature

5o =+ (& (m2 - 2 yyl/2 (4.36)
A 24p2

At some temperature they will reach the ciassical points of

inflection

- 2m2y1/2

Fiae =+ (B ~ (4.37)
A

U" will become negative and the whole expansion scheme will

break down.

(Fig.15) Minima creep into the classical points of inflection

7
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The breakdown does not occur in the Coleman-Weinberg model, where
a similar expression to (4.34) may be derived,but in this case
U"(c) is positive for all values of ¢ because the spontaneous
symmetry breaking is induced by the radiative corrections. 1In
the spontaneously broken case we have here, however, we have not
reached the supposed phase transition when our calculation
breaks down. This might conceivably be a quirk of the imaginary
time formalism, so in the next section we will consider the

calculation of a finite temperature convex effective potential
using the real time formalism.

4.4 REAL TIME CONVEX EFFECTIVE POTENTIAL AT FINITE T

We can exploit the presence of the source term for the 2
field in the real time formalism generating functional to
exhibit an exchange symmetry between the 1 and 2 quantities
which will imply that the effective potential defined in the
most natural manner is actually zero [45]. If we consider the
finite temperature Lagrangian

L=§¢. Ay &, = U(L) + U(d2) (4.38)

J

We find that it has the following symmetry, where we denote

complex conjugation by an asterisk

* * *
L{¢1,02] = -L [e2 ,61 ] (4.39)

As a consequence of this the generating functional Z has the

symmetry
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*
2[J1,32] = 2 [-32,-J1]

(4.40)

where we have assumed real sources for simplicity. This gives

the following symmetry for W
*
W(Jdy,d2] = - W [-J,,-T]

If we now define 61 by

we find that
- %
91[J1,32] = ¥2[-J2,-J1]
With an effective action defined by
r{s:1,%2] = w[J1,32) - 3181 - J232

our symmetry becomes

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

with a similar identity applying to the effective potential.

The ground state of ' is located by solving

ov

a¢i i

the equations

=0, i.e. J, = 0, and we can see that this implies from

(4.43) that the ground state values of §, and ¢, are identical.
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However, if we consider the effective potential version of
(4.45)

V(%1, d2) = -V (& ) (4.46)
we see that this must be zero for identical field arguments.
Although this is true only at the minimum of the potential,
explicit calculations show that the one-loop term in V is ill

defined unless ¢, = ¢5, in which case it is zero! We can

sidestep the problem by considering the expansion for T[3%;,3,]

b L 4 L n,m
r fd%=x1...d X, [fd*y1...d Vo T (X1eeeyy)
n,m
(4.47)

[o1(x1) = v]eeeviiloatyy) - v]

where the superscripts denote the number of 1 and 2 field
external legs ( the symmetry we have discussed means that v is
the same for both &; and ¢5). We can insert the momentum

expansion into this

r(%1,%2] = [a*x ( -V(81,82) + ..) (4.48)
to obtain
V=-1 L r®Mp=0) [y~ v]® [6p- v]T (4.49)
n,m n! m!

If we now differentiate this w.r.t ¢; and set ¢;= 6o = v we

find
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o
<

= -r1:0(p=0) (4.50)

o
ol
—
<l
-
1
R4
N
1l
<

The l.h.s. equals the proper ¢; tadpole in the finite
temperature quantum field theory defined by the shifted
Lagrangian L(¢1+ v,bo + v). For a constant field the result can
trivially be continued to the imaginary time axis (by
translational invariance) so we have

iXimaginary time

o
<

l

(4.51)

o
=gl
—
|
=
il
©1
N
]
<
[e%
©
©|
]
<

We can thus integrate the sum of our tadpole graphs in the real
time formalism to obtain the imaginary time effective
potential. If we want to obtain a convex effective potential,
however, we must find out how to incorporate convexity into our
\tadpole calculations and this is the subject of the next

section.

4.5 ZERO TEMPERATURE TADPOLES

We attempt to use the suggestion of Fujimoto et al.,LH]
that the effects of subsidiary minima in the path integral
should be taken into account. As in the éaddle point case, fbr
certain values of J more than one minima will contribute to the

path integral. If we consider A¢"* we find that at J = 0
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1

In ( exp (T1) + exp (I2) ) = (4.52)
where I'y = T[3g] and 'y = TI'[-§] and the T on the r.h.s. is the
total convex effective action. If we differentiate I' w.r.t. &g

we find

0Ty 0T,
~ - exp I‘l + — exp I‘2
dT ddo ddo
— = : (4.53)
0do exp I'y + exp I'p
If we now recall that I'y = I'y; we find
dT 1 ?ar; ar,
— = =-(—= +—=) (4.54)
ddo 2 ddo 3d0 '

which we shall call the total tadpole, or TF for brevity.

In general, if the Lagrangian has some symmetry group G the
various minima, say <¢ >, can all be written as the group
transform of one particular minimum, say <a>, so I'! can be
thought of as a function of <a> for the purpose of integrating
the tadpole to obtain V.

To see the implications of &54)for the form of the
effective potential consider again a spontaneously broken Aoh
theory. For convenience in calculation we use dimensional
regularization and follow the methods of Lee and Sciaccaluga
[‘7]. To calculate'the tadpole we must work order by order in
h, to any desired degree of accuracy. The "zero-loop tadpole"
is just the differential of the classical potential U. If we

choose -



then the
U
where
M

The tadpole is

For J#0 only one of the minima contributes and,

1 1
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=—=nm 524___)\5'4

2 4!

potential in the shifted theory is given by
= L y252 4 L oppz o4 Ao

2 3! 4!
= QZ_U. F = gig
262 | & = %o 363 | & = %o
given by
=_M2$+_1.F$2 +l‘.$3
2 6

upon

(4.55)

(4.56)

(4.57)

(4.58)

integration, we recover U. However, at J=0,@Eﬁ)applies and we

have

Thus our zero-loop effective potential at J=0,

from the

(4.59)

integration of @qyﬁ is just a constant, giving the desired

linear interpolation.

If we now consider the one-loop tadpole we find it is

given by

; L
rl = - IF qgp t
327k k2 M2

(4.60) .
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2
where F=U''' and M =U''., After dimensional regularization and

minimal subtraction this becomes

(4.61)

where p is the arbitrary mass-squared introduced in the
renormalization. Because F(-$)=-F(%) and M2(—$)=M2($) the
contributions from 49 and -¢g when J=0 to the total tadpole will
cancel out, giving a constant contribution to V and preserving
the flat-bottomed bucket shape. When J+0 we recover the

standard one-loop effective potential upon integration of (8)

V=——M (In= - =) (4.62)
2 2 2 .
64~ B

We can see on general grounds that this behaviour will be
maintained to all orders. The tadpoles must be of the form
shown overleaf. The tadpole in Fig.16(a) is proportional to F
and that in Fig.16(b) to FA. 1Inside the blobs the F's must
always occur in pairs; otherwise we would have more than one
“external leg, as we can see in Fig.l1l7(b). All the other
elements occurring in the tadpole, such as M , are symmetric
under ¢g <« -6¢ interchange so, with a tadpole.proportional to

f, a sum over the two minima will give zero whatever the order

in the loop expansion.
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(Fig.16) General form of tadpole graphs

(b)

(a)

Two-loop graphs

.17

Fi

(b)
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4.6 TADPOLES AT FINITE TEMPERATURE AND FOR GAUGE THEORIES

If we consider the calculation of a finite temperature
effective potential using T.F.D. we obtain a similar
convexification., The only mixing between the physical "1"
fields and the thermal doublet "2" fields in T.F.D. occurs in
the propagators and the vertices differ only in sign (not in
strucfure). To obtain the required graphs for a finite
temperature loop calculation of the tadpole one takes the zero
temperature graph, fixes the external leg to be a "1t field and
then distributes "1" and "2" labels over the ends of thé
propagators in as many ways as possible. For example some of

the two-loop tadpoles in the A¢"* theory are shown below.

(Fig.18) Two-loop tadpoles

1(1 11 22 111
2
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Although the form of the propagators is different at finite

temperature

A 2 2
5 (k =M )

A= —;—L———— - 27ni
k =M +ie exp ( Blkgt) - 1

(4.63)

2 2 exp ( Blkol/2)
A12=A21= =-2nid(k -M ) (4.64)

expk( Blikot) - 1

1 .
Apo= —————— -27i
22 2 2

k -M -ie exp ( Blkgl) - 1

2 2
s(k =M )

(4.63)

they are still ¢g <« —-¢g symmetric. We can therefore apply the
diagrammatic arguments of the previous section to each tadpole
Fig. I18in turn and observe that the J=0 contributions from both
minima cancel. The result generalizes in the same manner aé
the zero temperature case to all orders because we can take each
distribution of "1" and "2" labels in turn and show that the
contributions of the two minima in each cancel separately by
virtue of the F(¢) » -F(-¢) reflection antisymmetry (we remember
that the form of the vertices is the same for "1" and "2" fields
and that the field shift we perform to evaluate the potential is
the same for both "1" and "2" fields). ‘

As a simple example of a spontaneously broken gauge theory
we consider an Abelian Higgs model. In order to use thé same
cancellation mechanism as in the A¢* case we work in an 't Hooft

gauge. The Lagrangian will be that given by (2.32) and the

gauge fixing given by (2.50). With the given gauge fixing the
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allowed directions of symmetry breaking are constrained by the
Nielsen identities to be parallel or antiparallel to $io (if we
are in the 't Hooft gauge proper), picking out two points on the
ring of minima of the potential as we discussed in chapter 3.
As in the A¢"* theory only one of the minima will contribute to
an evaluation of the effective potential when J#*0, whereas for
J=0 both points contribute, giving a constant effective
potential.

We can see this at the one-loop level (the zero-loop is
identical to the pure scalar) by considering the diagrams below

(Fig.19) One loop-tadpoles in the Abelian Higgs model

(@) (b)

(9
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The propagators and vertices necessary to evaluate these are

listed in appendix B and the results are

2 2 2 2

A - Y 1 k - e ¢p

Fig.19(a)= = ¢iojcr k( " ) (4.66)
3 k -m; Dn

. 2 - o1
Fig.19(b)= e & §0e, 4 Ja k——z— | (4.67)
2 2 2 2
2 _ 4 3 E(k -my-e & ¢g )
Fig.19(c)= 2e &.o/d k( + (4.68)
1 2 2 _ 2 D
k -e Cbo n

The proportionality to &y which ensures the cancellation of
tadpoles from the two minima is still present and the
generalization of the one-loop result to all orders and finite

temperature follows the same path as the scalar case.

4.7 DISCUSSION

We have seen that it is possible to produce a finite-
temperature, convex effective potential using T.F.D. tadpoles.
However, as the temperature increases the minima of the
effective potential creep inwards. At séme temperature ¢g will
reach the points of inflection of the classical potential where

M2=U''=0, and the loop expansion will break down. This is

almost obvious from the presence of M2 as the mass term in the
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propagators of T.F.D., and explicit calculations provide
confirmation. For instance the two-loop effective potential of
the pure scalar theory in the T+e, M2 +0 limit is given by (see

appendixD )

2 2_2 2
2_2 _h 2 = 2
S - R T T (4.69)

2 4! 48 2561 "

V=

which not only diverges but also emphasizes terms in the
expansion of higher order in h. As we noted before, in the
imaginary time formalism, this pfoblem will not arise for a
theory with Coleman-Weinberg type symmetry breaking because
there M2 >0 for all values of §.

Our attempt at producing a finite temperature, convex
effective potential in the real time formalism has thus run into
exactly the same problem as the imaginary time calculation.

When the minima of the potential creep in to the points of
inflection of the classical potential the expansion breaks downe.
That there may be something mofe to this breakdown than purely
formal difficulties is sugested by some recent calculations that
were carried out by de Carvalho et al. [48] who considered a
one-loop effective action which, instead of being expanded about
a uniform bac&;ound)was expanded about the one-dimensional kink

solution to the classical equations of motion.

bR (x) = (82 tann (DE) (4.70)
A Y2

Like a Block wall in a spin system the solution interpolates

between the two possible vacua and could be thought of as a
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domain wall. One can now compare the free energy (given by the
effective potential) at a given temperature for this solution
with the uniform backround using the imaginary time formalism.
This gives, on dividing by the area of the wall, a free energy
per unit area.

£(T) == ( T(T,4,(x)) = I'(T,9)) (4.71)

b

If we evaluate the one-loop approximation to (4.70) we find

that, at sufficiently high temperature

£(T) = a/2n /212
\ 4

(4.72)

This will vanish, and hence it will become energetically
favourable to have a kink solution rather than a constant

_ 16m? c L s .
== > which is known as the percolation

solution, when T2
temperature. 1If we now recall the one-loop result for the

minima at finite temperature

3o =+ (& (m2 - 2 ))1/2 (4.36)
A 24p2

We see that this is precisely the temperature at which the

minima reach the points of inflection 3, . = * (Zgﬁ. The

f A
suggestion is that the breakdown in the loop expansion might
signal the formation of domain walls. It might prove
illuminating to examine the Coleman-Weinberg model where such a
breakdown does not occur to see whether a percolation

temperature appears here also, which would cast doubt on the

interpretation above. The problem here is that the classical
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potential is really of order h because we impose A ~ e* so we
must include the one-loop terms from the gauge fields in our
equations of motion if we are attempting to find a kink solution
similar to (4.70) to expand about. These will contain
logarithmic parts and hence may not be very amenable to

solution.
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APPENDIX A: SOURCES WHICH ARE NOT LEGENDRE TRANSFORMED

Consider differentiating T w.r.t. a source which we do not

Legendre transform, say h.

e
o
<

_ 6
total &h

+

l

(A1)

o |On
= 1%

o |o
e-ll"dl
o

= |

® = constant

If we now use the standard Legendre transform definition of T

(3] = Wa] - 7% (A2)
We find
8F Y . oW 8J 83
sh  total 8h | ¢ = constant 8J 8¢ 6h
(A3)
_8 88 5 _ ;8
5¢ &h 5h
The second and third terms cancel by observing that ¢ = %% and
we also note that J = - é% . This gives us
56
8T _ oW
8h | & = constant = &h I ® = constant (43)
Or, as we can express J as a function of ¢.
8T _ &W
&h ' $ = constant = &h [ J = J(o) (A4)
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&W

Now 3 is just equal to

i 4
J/[Ds] O exp v ( Ja%= L + K,Q; + ho + Jio; )

— (AS)
7 ‘
and we evaluate this at J = J($), which is exactly what we would

have done in the standard Legendre transform definition. We

therefore write.

T _ o (A6)
8h dh
% can be regarded as an x-independent source to give, in a
similar manner,
.QE_ = ﬁv_ (A7)
68 €
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APPENDIX B: PROPAGATORS AND VERTICES FOR THE ABELIAN HIGGS

MODEL

The vertices in the shifted theory that we actually make use of

in our calculations are

- _ ;A z
= - 1 (8yy8i * Sy + bidy) (BD)
J K
!
= 12e2$igw (B2)
S \'g
|
= —jielry
A ie%Ed ey (B3)
/ \\
/// N\

= ~ecy (ky + k)F (B4)
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The propagators we use are

o— —
i
2 _ a2 ry
k e eijgvi¢j (BS)
l J
2 272 , n.:mM.
iLE - Eecé<) (51. - nin.) + j—-2 3 (B86)
D J J k2 - m?
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APPENDIX C: FORTRAN PROGRAM USED FOR WILSON RECURSION RELATIONS

We used the following Fortran 77 program running on the CDC
machines at Imperial College computing centre to evaluate the
Wilson recursion relations. The infinite integral in (3.28) is
approximated by a finite range and evaluated numerically, using
a NAG library routine. The results were sent to taped4=out and a
graph plotted on the line-printer. Two typical graphs are shown
after the program.

PROGRAM BFUK(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT,TAPE4=0UT)

C LIST OF VARIABLES

C
c M2 = MASS-SQUARED / LAMBDA = QUARTIC COUPLING /
C A = INTEGRATION RANGE / D = SPACETIME DIMENSION /
C DY = INCREMENT FOR INTEGRATION / C = CONSTANT IN
C CLASSICAL POTENTIAL (INSERTED FOR NUMERICAL REASONS)
c
C SETUP PARAMETERS
C B}
COMMON /USEFUL/A,D,DY,U(0:11,110) ,NYM
INTEGER NPHIM,MAXINT ,IFATL,NGRAPH
REAL DPHI,LAMBDA,M2,TEMP(0:11,110),X(110),Y(110),Z,ERROR,
+UMID,C
DATA A/2.0/,D/3.0/,DY/0.05/,M2/.1/,LAMBDA/.1/,IFAIL/1/
DPHI = DY
NYM = IFIX(2.*A/DY)
NPHIM = NYM
MAXINT = 2
c = 2.
C

C FILL AN INTIAL ARRAY WITH CLASSICAL POTENTIAL VALUES
C
DO 10 I=1,NYM
72 = -A + FLOAT (I)*DY
UCO,I) = -M2%(Z**2) + LAMBDA*(Z**4) + C
TEMP(0,I) = U(0,I)
10  CONTINUE

C
C INTEGRATION LOOP
C
DO 20 I = 1,MAXINT
DO 30 J = 1,NPHIM
DO 40 K = 1,NYM
Y(K) = YINT(K,J,I)
X(K) = -A + K*DY
40 CONTINUE
CALL DO1GAF(X,Y,NYM, ANS,ERROR,IFAIL)
C
C ERROR HANDLING
C

IF(IFAIL)9,9,8

8 IF(IFAIL.EQ.1)WRITE(6,995)
IF(IFAIL.EQ.2)WRITE(6,996)
IF(IFAIL.EQ.3)WRITE(6,997)
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C

C ERROR ABORT
C
STOP
C
C IF NOT CARRY ON WITH -INTEGRATION
C :
9 U(I,d) = ANS
30 CONT INUE
C
C RESCALE THE U VALUES
C

" UMID = U(I,IFIX(NYM/2.))
DO 35 L = 1,NYM
TEMP(I,L) = U(I,L)
U(I,L) = -2.*%%(-D*FLOAT (I-1))*ALOG(TEMP(I,L)/UMID)
35  CONTINUE
20  CONTINUE
C
C FORMATS FOR ERRORS
C
995 FORMAT (1X,"<4 POINTS")
996 FORMAT (1X, "WRONG ORDER")
997 FORMAT (1X,"NOT DISTINCT")
C
C PRINTOUT RESULTS
C
DO 60 I=0,MAXINT
WRITE(4,998)I,A,M2,LAMBDA
WRITE(4,898)
DO 50 J = 1,NYM,2
7 = -A + FLOAT (J)*DY
WRITE(4,999)U(I,J),TEMP(I,J),Z,J
50 CONT INUE
60  CONTINUE
c
C GRAPHICAL OUTPUT
c
DO 70 I = O,MAXINT
WRITE(4,998)I,A,M2,LAMBDA
WRITE(4,898)
NGRAPH = NYM/4
DO 80 J = NGRAPH,NYM-NGRAPH
X(J) = U(I,J)
80 CONT INUE
CALL PLOT (X,NYM)
70  CONTINUE

o

C
C FORMATS FOR PRINTOUT
C .
998 FORMAT (1X//"ITERATION",I3,1X,"A",F6.2,"M2",F6.2,"LAMBDA"
+,F6.2/)
898 FORMAT (1X,8X,"U VALUES",12X,"T VALUES",12X,"X VALUES", 12X
+,"N"/)

898 FORMAT (1X,"GRAPHICAL REPRESENTATION OF OUTPUT"//)
999 FORMAT (1X,1PE20.6,1PE20.6,1PE20.6,110)
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STOP
END

C FUNCTION TO CALCULATE THE VALUES OF THE INTEGRAND

FUNCTION YINT(NY,NPHI,NMINT)

COMMON /USEFUL/A,D,DY,U(0:11,110),NYM
REAL W

INTEGER NPLUS,NMINUS,NINT

C
C LET NINT = NINT - 1 TO GET THE CORRECT INDEX VALUES
C .
NINT = NMINT - 1
W = -A + NY*DY -
YINT = EXP (=2**((D~2.)*FLOAT (NINT))*(W**2))
C
C IS -Y + PHI < ~-A OR > A. 1IF SO FORGET U(-Y+PHI)
C

IF((NPHI-NY+IFIX(NYM/2.)).LE.O)GOTO 1
IF((NPHI-NY-IFIX(NYM/2.)).GT.0)GOTO 1
NMINUS = NPHI - NY + IFIX(NYM/2.)
CALCULATE THE CONTRIBUTION OF U(-Y+PHI)
YINT = YINT + EXP(-2**(D-1.)*FLOAT (NINT))*U(NINT,NMINUS))

IS Y+PHI < -A OR > A. IF SO FORGET U(Y+PHI)

QOO oo

1 IF((NPHI+NY+IFIX(NYM/2.)).LE.0)GOTO 2
IF((NPHI+NY-IFIX(NYM/2.)).LE.0)GOTO 2
NPLUS = NPHI +NY -IFIX(NYM/2.)
o
C CALCULATE THE CONTRIBUTION OF U(Y+PHI)
C
YINT = YINT + EXP(-2*%*(D-1,)*FLOAT (NINT))*U(NINT,NPLUS))
2 CONT INUE
RETURN
END

The subroutine PLOT called from the main program is concerned
with producing a graph on the line printer and we have not
reproduced it here.
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Typical graphs for the effective potential produced by the
program .
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APPENDIX D: THE TWO LOOP FINITE TEMPERATURE EFFECTIVE POTENTIAL

The two-loop zero temperature effective potential for a A"

theory is given by [9]

2 2
Vo = —=— [ F2m2( 2 a2 2 1n¥t L1y )
256m" 4 TR ¢ p2
(D1)
L 2 a2
+ MM [ L qp2 M 1,5, M _ 79 ]
2567t 4 T p2 28
and the two loop finite temperature effective potential by
L 232
v, = M p2ceny + EM raxay B(pMYG(x,y) +
B 3oq4 12874
(D2)
L 2 2m2 2
ALy aa¥MYE ey ¢ EEME (Lo 10y F e
128n* 2 p2 12872 2 /3 p2
where

1
exp(pMx) -1

Fy (M) = [dx v/(x2-1)

(D3)

1
(exp(BMx)-1) (exp(BfMy)-1)
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and
G(x,y) = 1n L(1*+2/(x?-1)(y2-1))2 - 4x2y?] (D4)
[ (1-2/(x2-1)(y2-1))2 - 4x2y?]
2
Now as B,M2 > O F;(BM) » —~—— ,,so in this limit the leading

68M2
contribution comes from (D2) and is given by

2 2 2
FZ 1p ¥° =% (D5)

128x" n?2 g2

V~

which, on substituting F = A¢ and adding the one-loop result

gives (4.69)
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