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ABSTRACT

Spontaneously broken gauge theories are now thought to be 
the first step in a fully unified theory of fundamantal 
processes. The occurrence of topologically stable solutions 
to the classical field equations in a large class of these 
theories, such as domain walls, strings, and monopoles, is of 
great interest to cosmologists because these objects will 
appear after phase transitions in the early universe. Of 
particular interest are strings, for they provide a promising 
way of seeding galaxy formation.

Just after the phase transition at which they are formed, 
the motion of strings is strongly affected by friction with 
the surrounding medium. This period is investigated, and a 
mechanism for the generation of baryon asymmetry by the decay 
of small loops of string into heavy bosons is examined. A 
lower bound on the scale of the phase transition is derived.

A new type of stable solution to the field equations of 
the Yang-Mills-Higgs system is presented, the 'bead', which 
can be thought of as a monopole on a string. Such beads are 
shown to exist in a large class of Grand Unified Theories, and 
their properties and a few of their cosmological implications 
discussed.

When we take fermions into account, it is well known that 
there exist solutions to the Dirac equation localised around 
the string, corresponding to bound fermions moving along it at 
the speed of light. The circumstances under which these
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fermions can make the string behave like a superconducting 
wire are investigated, and it is shown that when these 'zero 
modes' encounter a bead they undergo a process closely 
analogous to the Callan-Rubakov effect, whereby the fermions 
exchange charge with the bead. The thesis is concluded with 
some general remarks about zero modes in cosmology.
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"I got no strings to hold me down, 
to make me fret or make me frown..."

- Pinocchio (Walt Disney Pictures)
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CHAPTER 1: INTRODUCTION.
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1.1 Cosmic strings and the earky universe.

The success of the Salam-Weinberg unification of 
electromagnetic and weak interactions into a spontaneously 
broken SU(2)*U(1) symmetric gauge theory [ 1], and that of 
SU(3) as the gauge group of strong interactions [2], leads 
naturally to the supposition that these symmetries are 
subgroups of a larger group such as SU(5) [3], S0(10) [4], 
or Eg [5]. The full symmetry is broken by the Higgs-Kibble 
mechanism [6] at a scale of 1015 or 1016 GeV. These Grand 
Unified Theories (GUTs) can provide good values for the 
Weinberg angle, although some appear in trouble because of the 
refusal of the proton to decay quickly enough. At 
sufficiently high temperatures the gauge symmetries are 
restored [7] (this is similar to the restoration of rotational 
symmetry to the ground state of a ferromagnet as it is heated 
past its Curie point). In the hot big bang cosmology we would 
therefore expect the full unifying symmetry to become manifest 
at early times, and as the universe expands and cools there 
occur a series of transitions to phases of lower symmetry 
until the presently observed SU(3)c*U(1) symmetry is 
reached. The consequences of these phase transitions are an 
extremely fertile area of interaction between cosmology and 
particle physics. For example, a phase transition with 
supercooling leads to a state where the energy density of the 
universe is dominated by the constant vacuum energy of a 
scalar field involved in the symmetry breaking, and it expands 
exponentially or 'inflates’ to 1028 times its original size. 
This inflationary scenario [9] neatly solves the horizon and
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flatness [lo] problems of traditional cosmology, and can 
generate density perturbations sufficient for initiating 
galaxy formation [ll]. Furthermore, topologically stable 
objects can appear after the phase transitions, such as domain 
walls, strings, and monopoles [12,13,14], and their existence 
(which for the monopole is a necessary consequence of 
unification) can produce observable effects. For example, 
strings provide an attractive scenario for seeding galaxy 
formation [15-20] which in many ways is more attractive than 
one based solely on inflationary density perturbations. When 
combined with 30 eV neutrinos to satisfy the theoretical 
prejudice towards Q = 1, based on the success of inflation, 
cosmic strings can seed small scale mass concentrations such 
as galaxies and clusters, while the pancaking [21] of 
neutrinos supplies the large scale structure in superclusters 
and voids [22]. In view of the promise that cosmic strings 
hold it is important to ascertain their detailed properties in 
GUT models. Moreover, in the recent plethora of superstring 
inspired models [23], there are always extra U(l) symmetries 
that need to be broken somewhere between the electroweak scale 
102 GeV and the GUT scale 1015 GeV, producing cosmic strings 
which are not necessarily important for galaxy formation but 
nevertheless have observable properties [24], and in Chapter 
2, by re-examining the work of Bhattacharjee et al. [25], we 
find that intermediate scale strings can account for the 
observed preponderance of matter over antimatter.

Recently, the possibility that cosmic strings could 
behave like superconducting wires has been raised [26], with 
intriguing consequences for astrophysics and cosmology 
[24,26]. The current is carried by charged particles trapped



10
on the string, and questions raised about the direction of 
travel when these so-called zero modes are fermions have led 
to the idea of the ’bead’ [27]. In Chapter 3 the bead, which 
can be thought of as a monopole on a string, is introduced and 
discussed, while in Chapter 4 the fermionic zero modes on 
cosmic strings are examined in more general cases than those 
considered by Witten [26]. The existence of an effect 
analogous to the Callan-Rubakov effect [28] for these modes 
when they encounter a bead is demonstrated. Lastly, some 
general remarks about bead cosmology are made.

The rest of this chapter is concerned with reviewing some 
aspects of cosmic strings and introducing some of the ideas 
and techniques necessary for later sections.

1.2 The Nielsen-Olesen string.

In this section we will discuss the string solutions to a 
(classical) gauge field theory. The term 'string' suggests a 
solution to the equations of motion which departs from the 
ground state in a small region around a line in space. The 
Nielsen-Olesen string [29] is such a solution to the Abelian 
Higgs model, and is in effect a relativistic generalisation of 
the vortex lines or flux tubes that crop up in 
superconductors.

Consider the Abelian Higgs Lagrangian

1 uv * u  o *  * o= - — r F F + (D <t>) + m 2 <i> <t> - U4> <t>)24 )iv |i (1 .2 .1)
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where, as usual

D = 5 + ieA|i (i |i

This is U(l) symmetric, and the vacuum states of the theory, 
defined by

<t> = / (m2 /2X) , A = 0 (1.2.2)i (i

forms a manifold isomorphic to S1 - the bottom of the ’wine 
bottle' Higgs potential. We shall look for a solution of 
finite energy per unit length with cylindrical symmetry about 
the z axis, clearly a reasonable ansatz for a string. Finite 
energy per unit length means that the covariant derivative of 
<j> should vanish at large distances from the z axis:

eA p = i(5 <j>)(! v |i y

With the trial solution

<|>(x) = / (m2/ 2 \  )f (p )exp(in0 ) 

A (x) = 6 A(p)
(1.2.3)

where p and 9 are cylindrical polar coordinates, we see that 
at large distances f = 1 and A = (-n/ep), while f and A vanish
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as p -* 0. The flux 3? through a large loop c in the x-y plane 
is given by

<£ = / B dxdy = / A^dx = 2-rcn/eZ G

Hence we see that the condition of the single-valuedness of <J> 
imposes quantisation on the flux. If equations (1.2.3) are 
substituted into the equations of motion the following 
asymptotes as p -► °° are foun c [29,78]

A -*■ -n/ep + 0(exp(-mvp)) (1.2.4)

f -* 1 - 0(exp(-mp)) (1.2.5)

where m = min(2m ,m ) and m and m are the vector and. scalar x v ’ s v s
boson masses, equal to (e <|>(®) ) and (/2\ <}>(«) respectively. 
From (1.2.4) and (1.2.5) we see that the magnetic field is
confined to a tube of width m while the potential energy
departs from its vacuum value inside a tube of width m-l The

This,energy per unit length is [29] approximately <t>(°°) 
then, is a string. It is not clear how this survives 
quantisation: it is possible to quantise small oscillations 
around this classical configuration [30,78] but whether the 
string is stable in the full quantum theory is an open 
question. The answer is probably yes, because the string is 
topologically stable: in order to deform the solution to the 
trivial vacuum <j> must at some point become discontinuous, and 
hence we would have to pass through a state of infinite energy 
density. Such a tunnelling process would take an infinite
time.
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We now turn to a discussion of the classical motion of 

such a string in spacetime [31,32], and we shall see that for 
motions in which the thickness of the string can be ignored 
the string behaves exactly like the massless relativistic 
string of Nambu [33]. The zeros of the Higgs field trace out 
a sheet in spacetime, and this suggests that we define an new 
orthonormal set of coordinates Xa , such that x̂ 1 (X° , X1 , 0,0) are 
the coordinates of this world sheet. Hence X° and X1 are 
coordinates in the sheet and X2 and X3 are space coordinates 
normal to the string. The action is

S = Jd^xZ-g/ (1.2.6)

where g is the determinant of the 4-metric and the
Lagrangian density, is non-vanishing only in a small region w
~ m _1 around the world sheet. Rewriting the action in the s
n£w coordinate system we have

S = JdX°dX1/dl2dX3 ( / - y  + . . . ) ^  (1.2.7)

where y is the induced metric on the world sheet and the dots 
indicate terms which vanish as X2 and X3 tend to zero. In the 
limit w ■+ 0 we may integrate over the transverse coordinates 
to obtain

S = -|i/ dX°dX1/-y (1.2.8)

where p, 4> (®) 2 and
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5 x 
d\(

5 x 
d V

5 x
a \ °

a x (1.2.9)

This is exactly the action for a relativistic string of 
tension \x [3l], Denoting differentiation with respect to the 
timelike coordinate X° by a dot and the spacelike coordinate 
X1 by a prime we can define a Lagrangian

L(x, x ’ ) = -|i[(x.x')2 - (x’)2(x)2] (1.2.10)

The relevant 4-metric for cosmology is the 
Friedmann-Robertson-Walker (FRW) metric which describes an 
expanding space of constant curvature [8]. The square of the 
invariant line element is

ds2 = (dv2 - dx2)R2(t ) (1.2 .1 1)

where dx2 is the square of the line element of the spacelike 
hypersurfaces, R(x) is the scale factor, and t is the 
so-called conformal time defined from the usual time 
coordinate t by dt2 = R2(t )dv2 . To simplify the equations of 
motion we can choose a gauge [34]

\0 = T X . X = 0 (1.2 .12)

In this gauge the equations of motion can be shown to be 
[35,36]

1 A xx‘ + 2x(1 - x2 )R/R = - ^  ( — )~ ~ ̂ ~ y ' e 5 c1 v z J
(1.2.13)
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where

£ = /(x’2/(l - x2)) (1.2.14)

From E = /R3d3xT00 = î/das we see that \ iz is the energy per 
unit length of the string [36]. The second term on the left 
hand side is like a damping term proportional to 1/t , caused 
by the expansion of the universe and not to be confused with 
damping caused by friction with the surrounding medium, while 
the magnitude of the right hand side is essentially the 
inverse of the curvature radius of the string. When damping 
is small we can rescale a  + z a  so that x2 + x'2 = 1. It is 
therefore consistent to assume that the damping is small when 
[35]

2 ± / x \  << x" (1.2.15)

Thus for a wave of coordinate amplitude ao and coordinate 
wavelength \0

t >> \(j/ao (1.2.16)

so in terms of the proper amplitude and wavelength a and \

t >> A.2/a (1.2.17)

The strings are Brownian and so X ~ a on scales larger than 
the persistence length. We can therefore conclude that 
damping is negligible on scales less than the horizon size,
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except for small amplitude oscillations. On larger scales the 
strings move very slowly with respect to the surrounding 
matter and are conformally stretched, that is, both the 
wavelength and the amplitude go as R(t) (~ t1/2 in a radiation 
dominated universe). The horizon size goes as t and 
eventually catches up with X, after which time the damping 
term may be ignored and the equation of motion is

• •x x" = 0 (1.2.18)

with constraints x2 + x'2 = 1 and x.x' =0, which is the 
equation of motion of a free string. Hence well inside the 
horizon strings move freely [30,35]. This picture has been 
extensively confirmed by simulations [37].

1.3 Strings in non-Abelian gauge theories.

The above discussion of the string solution to the 
Abelian Higgs model may be extended to a general gauge theory 
[13]. The important thing to note is that in tracing a loop 
in space well away from the string the vacuum manifold M is 
covered n times. This is the winding number of the map <{> : S1 ■* 
M and is a topologically conserved quantity [38]. Field 
configurations with different values of n are not smoothly 
deformable into each other, and so n labels equivalence 
classes of maps. These can be given a group structure to 
produce the first homotopy group , which essentially tells
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us about the 'holes’ in a manifold. If (M) is non-trivial, 
(i.e. contains more than just the identity) then there are 
string solutions to the theory, and in the Abelian Higgs model 
i z \ is just the group of integers under addition, Z. For a 
general spontaneously broken theory where a gauge group G is 
broken to a subgroup H, M - G/H, and if G is connected and 
simply connected (i.e. if %o(G) = 0 - (G) ) then we can use
the relation

*1 (G/H) * tzo (H) - H/H (1.3.1)c

where Hc is the component of H connected to the identity.
What this means is that non-contractible loops in G/H are 
images of paths in G joining disconnected pieces of H.

Let us be a little more concrete and represent the Higgs 
field by a vector in weight space, $(p,<|>), where <J> is now the 
azimuthal angle. The string solution to a non-Abelian theory 
may be written in a form where rotations about the z axis are 
induced by gauge rotations

® (p .♦ ) = g(<t>)®(p) = e 1 ^  ®(p) (1.3.2)

such that g(2n;) is in the disconnected component of H . It is 
not possible to deform this to a trivial solution with g(<(>) in 
Hc for all <t> without moving g(2it) out of H, and so this is a 
string solution, with $(p = 0) = 0. It need not necessarily 
be the lowest energy solution: indeed, if Q has eigenvectors 
with zero eigenvalue it will save potential energy to have at 
least one of them non zero at the core of the string [27].

A large class of symmetry breaking patterns with strings
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have been found by Olive and Turok [39], Let G be a simple 
Lie group with simple roots (i = 1,..., rank G). Its 
fundamental weights are defined by

2\ c l . /  ( a  . ) 2 J J
6 . .ij (1.3.3)

Suppose that the Higgs field is in a representation obtained 
by symmetrising the product of n fundamental representations 
with highest weight , and that the parameters of the 
potential are chosen such that the manifold of minima is the 
gauge orbit through a standard <$q aligned with the highest 
weight n\^>. (This is actually impossible for a single Hi 
field in real representation; in that case we must form a 
complex representation out of a pair of such fields).

We can now describe the little group H of 3>q [39]. Let 
a^ be the unique simple root that is not orthogonal to X .
Then the continuous part of H is the subgroup K of G obtained 
by exponentiating the algebra whose Dynkin diagram is given by 
removing the dot corresponding to a from that of G. The 
fundamental weight \  generates a discrete unbroken subgroup 
Znk whicl1 coincides with K at k points. The full little group 
H is therefore [ 39]

H = K x Znk/ Zk

where is a cyclic subgroup of the centre of K. From
(1.3.1) we see that tii(G/H) is Z , so strings labelled by a 
winding number conserved modulo n result. A particular case 
of this type of symmetry breaking is presented by Nielsen and
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Olesen [29], where SU(2) is broken by a pair of adjoint Higgs 
fields $1, $2 to Z2, although they did not present the lowest 
energy solution. The stable solution can be written so that 
the gauge rotation that acts on the Higgs field is generated 
by T3, the third isospin component [27]

$1 = fi(p)(0,0,l) $2 = t 2 (P )(cos<j> ,sin<j> ,0)
(1.3.4)

\  = 6^A(P)C0,0,l)

where fi(0) $ 0, f2(0) = 0 = A(0), and fi and f2 tend to 
constants at infinity, with A vanishing as (ep)_1. Note that 
the Higgs field at the core of the string is non zero because 
it is parallel to the zero eigenvector of T3 . In Nielsen and 
Olesen's version, $1 also vanished at the core as follows

$1 = f 1 (p ) (-sin<l>, cos<t> , 0) (1.3.5)

According to Everett and Aryal [76], (1.3.4) is energetically
preferred. The difference between the two types of solution 
will be important in Chapter 3 when we discuss the bead.

1.4 Formation and evolution of cosmic strings.

Let us now suppose that there is a phase transition 
occuring in the early universe in which the gauge symmetry is 
broken in such a way that it]_(G/H) f  0: in other words, 
strings may be formed. Kibble [13] has discussed the
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mechanism by which they appear. The essential point is that 
just after the phase transition, which we shall take to occur 
at time t , the direction of the Higgs field in group space isV-/

uncorrelated beyond some distance £(t ). This means we may 
divide space up into domains of size £ in which the direction 
of the Higgs field is more or less constant, but between which 
there is no correlation. If the Higgs field traverses a 
non-contractible loop in G/H when going around an edge where 
three or more domains meet then a string will be trapped at 
the junction. We therefore expect there to be of order one 
string in each volume of size [13]. We can estimate the
initial correlation length by reference to an 0(N) model which 
exhibits* a second order phase transition. The effective 
potential, including the finite temperature corrections [13], 
takes the form

VC* )  = X O 2 -  ri2 ) 2 + (/  X ) AT2 <J)2 ( 1 . 4 . 1 )

where T is the temperature and A is of order 1. Above the 
critical temperature

Tc - r, (1.4.2)

the minimum is at $ = 0, while well below this temperature 4> 
reaches its zero temperature value of r\ , and the original 0(N) 
symmetry is broken to 0(N-1). The correlation length of the 
Higgs field is essentially the inverse of its mass

l = m -1 = /Xn = /XT s c (1.4.3)
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Initially, therefore, there is approximately one segment of 
string of length £ per volume of £3 , and so with \i being the 
mass per unit length the energy density in string is

Ps(tc) ~ p5-2 (1.4.4)

Vachaspati and Vilenkin [40] have performed a Monte Carlo 
simulation to study the fractal dimension and size 
distribution of strings and loops just after the phase 
transition. Their method is to assign phases 2 n n / 3  

(n = 0,1,2) at random to each site of a cubic lattice, and 
when n changes around a face in one of three ways - (0,0,1,2), 
(0,1,1,2), or (0,1,2,2) - a string is assigned to that face. 
They found that ~80% of the length of string was in the form 
of 'infinite' string, while the rest was contained in a 
scale free distribution of loops. The length 1 of string 
between two points a distance R apart was

1 ~ R2/5 (1.4.5)

which is the same as that for a random walk, although the long 
distance correlations are different. Simulations on different 
lattices [4l] give essentially the same results. Kibble has 
done the same thing for Z2 strings [42], approximating SU(2) 
by the tetrahedral group, and found the proportion in long 
strings to be higher, about 94%, a figure supported by Aryal 
et al* [43] .

With regard to the loop distribution we mean by scale 
invariant that it contains no dimensionful constants, and so
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the number density dn of loops of sizes between R and R+dR 
must be

dn ~ dR/R4 (1.4.5)

Initially, the strings are heavily damped by friction 
[13,44], by a force per unit length of crpv, where a is the 
total cross section per unit length for the particles 
constituting the medium, which has energy density p, through 
which the strings are moving with velocity v. A section of 
string with radius of curvature L experiences an acceleration 
of p/L towards the centre of curvature and soon reaches its 
terminal velocity v determined by [13,44]

pav^ = |i/L (1.4.6)

Kinks on a scale L will be damped in a characteristic time t^ 
= \ i/pa and straightened in a time L/v^, so that the 
correlation length goes as [13,45,46]

dg. _ _g__dt - 5/vt V 5 (1.4.7)

Everett has shown that [44]

a m 2 (T/Tc ) (1.4.8)

so, ignoring the logarithm and using the approximate 
expression for the energy density in a radiation dominated 
universe p - 0.03m2/t2, where m = G~1/2 is the Planck mass, ̂ p' p ’
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with a value of about 1019 GeV, we find that [46]

td - (G p. )nip/ 2 t3 / 2 (1.4.9)

l 2 - (Gp. )mp/ 215 / 2 (1.4.10)

Friction damping is important until time t* when the scale 
below which kinks in the string move freely becomes equal to 
the horizon size, given by

t* = td = 5 = (Gn)-2mp (1.4.11)

This is about 10-31 seconds for GUT scale strings. For light 
strings it can be quite late: for example t+ can reach the 
nucleosynthesis era for (Gp.) ~ 10~22. We will examine the 
evolution of a system of strings between the phase transition 
and t^ in more detail in Chapter 2. After t* strings move 
freely inside the horizon size t, and we move into an era 
where this is the only scale in the process. Waves on the 
string above this size are conformally stretched with the 
expansion of the universe as we saw in section 1.2. Since the 
horizon size grows as t while the wavelength grows as t1/2 or 
t2/3 according to whether the universe is radiation or matter 
dominated sooner or later any particular wave will fall inside 
the horizon and start to move freely. The wave oscillates 
with constant proper amplitude [34] and the wavelength is 
redshifted with expansion, and so the energy in a comoving 
volume remains very nearly constant [37]. At some point 
during its motion the string can intersect itself, and what 
happens then is a problem which has been tackled numerically
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for global strings (i.e. ones formed by the breaking of a 
global symmetry) by Shellard [47] and analytically by Copeland 
and Turok [48]. It seems that when strings intersect it is 
very probable that they will reconnect the other way: here we 
use the term ’probable' in the sense of an average over 
intersection angles and velocities. This is plausible because 
the total length of string, and hence the energy, is decreased 
this way. For very high transverse velocities and for nearly 
parallel configurations the strings pass through each other, 
in the first case because the time scale for reconnection is 
longer than the time taken to pass though, and in the second 
because little enrgy is saved. However, in the above sense, 
the reconnection probability p is approximately unity 
[47,48].

If a string intersects itself then a loop is formed, 
leaving the long string somewhat straighter. This process of 
loop formation is crucial to the string picture, because the 
network of long strings must lose energy at a rate sufficient 
to stop its energy density from dominating the universe. 
Vilenkin [49] has discussed a possible string dominated 
universe in which p = 0, which is filled with strings of 
persistence length greater than the horizon size. In this 
universe the energy in a comoving volume R3 is proportional to 
\iR so the energy density goes as nR”2 , and therefore R ~ t.
The success of the current ideas about nucleosynthesis 
requires that the universe be radiation dominated when the 
temperature is a few MeV, so the evolution towards string 
domination would have to be very slow and the strings formed 
very late [49]. However, it is difficult to see how causality 
can allow the strings to ever straighten out on scales much
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greater than t. Even if p - 1 it is possible that the 
universe becomes string dominated, as discussed by Kibble

so by a dynamic equilibrium in which small loops are chopped 
off from and reconnect to the network. Small oscillations on 
long strings and loops have constant energy in a comoving 
volume [37] and hence behave like matter, with a scale factor 
going as t2 1 3 [46].

Numerical simulations [37], however, confirm the 
following picture [34-37] in which strings form a small 
constant fraction of the energy density. Soon after a wave 
falls within the horizon and starts to move at relativistic 
speed a loop can be chopped off. This loop will fission into 
a number (of order 10) of daughter loops, some of which will 
fall into the class of non-self-intersecting solutions found 
by Kibble and Turok [55] and survive. Thus we expect that one 
loop of size t will be formed per horizon volume per expansion 
time, so if n(t) is the number density of loops at time t

where v = 0.01 [37]. The number density will decrease as the 
cube of the scale factor, so the number density at time t of 
loops formed between t’ and t' + dt' is

[46]. Here the network has a small persistence length, kept

dn(t) = p+dt (1.4.12)

n(t,t ')dt (1.4.13)

In a radiation dominated universe
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n(t,t ')dt dt' (1.4.14)v t 3 / 2 t  i 5 /  2

If the loops are formed with size t' this can be translated 
into a formula for the number density of loops in a size 
interval dL

The whole system of long strings and loops thus evolves in a 
scale free manner; that is, there are no dimensionful 
constants in the above. There is one long string per horizon 
volume belonging to the network of conformally stretched 
brownian string with persistence length t, and a set of loops 
distributed in size according to (1.4.15). There is a lower 
cut off in size caused by loss of energy in the form of 
gravitational radiation [50-54]. A loop of size L once well 
inside the horizon will oscillate freely, obeying the flat 
space equations of motion (1.2.18), and the radiation rate can

be estimated from the quadrupole formula E = -GM2R1+a)6 [ 51 ] • A 
loop of size L oscillates with frequency L/2 [55] so that

Numerical calculations by Vachaspati and Vilenkin [51] 

indicate that y = 50, a figure confirmed analytically by 
Burton [53]. The lifetime t of a loop of size L is therefore 
about L/(yG^i), and the smallest loops at time t are of size 
(yGii)t.

n(t,L)dL = v -------t 3 / 2 L 5 / 2 (1.4.15)

E = -yG|i2 (1.4.16)
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The energy density of the long strings, p , can be 

obtained by considering the network to be a set of string 
segments of length t separated by a distance t. In that case

P„ = P/t2 (1.4.17)

Relative to the radiation energy density = 
is the fraction

: 0.03m2/t2 this P

P„/Pr = 30G^ (1.4.18)

The energy density of the loops is easily calculated:

P - / _gj£V----dL
1 (yG|i t) t3/2L5/2

(1.4.19)

where the mass of a loop size L is ppL, with 
Hence

P = 9 [ 37] .

Px/Pr = 30Pv (Gh )1''2/y (1.4.20)

For GUT scale strings, G\i - 10-6 and this ratio is about 10-4 , 
just the size of perturbation needed to initiate galaxy 
formation [56]; this and the scale free nature of the 
distribution make cosmic strings a prominent candidate for 
seeding galaxy formation, as will be briefly discussed in the
next section.
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1.5 Cosmic strings and galaxy formation.

Zel'dovich [15] first suggested that linear structures 
with a mass per unit length of about 1034 GeV2 could provide 
the necessary spectrum of density perturbations for initiating 
galaxy formation. In Vilenkin's scenario [15] , it the 
oscillating loops chopped off inside the horizon during the 
evolution of the network that provide the scale invariant 
spectrum of density perturbations. It can be shown that the 
time averaged field of an oscillating loop is identical to 
that of a surface with mass density proportional to x2, and 
with total mass equal to that of the loop [16], so that the 
perturbations are in the form of effectively point-like seed 
masses. The number density at time t of loops formed between 
time t’ and t’ + dt' is

dn(t,t')~ (R(t)/R(t' ))3t'-‘*dt' (1.5.1)

When the loops are formed, they are about t' in size, because 
they have been chopped off a network of long strings which 
have straightened out below the horizon size. Hence the mass 
M of the loops when formed is [it', and in a radiation 
dominated universe the number density of loops with masses 
between M and M + dM is

dn(t,M) ~ t"3/2(M/^)-5/2 d (M/ p,) (1.5.2)

Before decoupling the loops cause small acoustic adiabatic 
perturbations [56], oscillating at constant amplitude until 
tdec^"the time of decoupling of matter and radiation), at which
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point damping by photon diffusion occurs of all adiabatic 
perturbations below the Silk mass [57]

, ~ 1.3xl012(Qh2)"3/2M

where Q is the ratio of the mass density of the universe to 
the critical density, and h expresses the uncertainty in 
measurements of the Hubble constant Hq :

Hq = lOOh km s-1 Mpc-1

At t^ec the loops themselves start to collect baryons around 
them, in a manner described by the spherical collapse model 
[58]. According to this model, the mass collapsed and 
virialised around a seed mass 6M at time t is

M = 6M(t/tdec)2/3 ■ (1.5.3)

The virialised mass of the accreted object is proportional to 
the seed mass, so if a certain size loop forms a galaxy, we 
might expect larger loops to form clusters of galaxies, 
because large loops will accrete small loops as well. The 
cosmic string theory accounts for the observed galaxy-galaxy 
and cluster-cluster correlation functions in a natural way. 
These functions are defined from the number density of the 
objects (galaxies, clusters) by

£ (r) = (n (r)/n - l)g,cv  ̂ g,cv g,c ; (1.5.4)

where the barred quantity is the average. When expressed in
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scale-invariant way in terms of the mean separation of the 
objects, d,

5g>c(r) = Pg^Cr/d)-1-8 (1.5.5)

It is found that p =* 1.1 [59] and p = 0.27 [59] for Abell 
clusters [60], defined as regions containing more than 50 
bright galaxies inside a radius of 1.5h“1Mpc. Their mean 
separation is SSh-1 Mpc, whereas for galaxies it is about 5h_1 
Mpc. In the string picture the perturbations that seed the 
formation of galaxies and clusters are produced in a scale 
invariant manner by loops, and the stronger correlation of 
galaxies is a result of gravitational clustering. Turok [19] 
has found a remarkable agreement between £(r/d) from numerical 
simulations and (1.4.5), and this must be counted as one of 
the succeses of cosmic strings. Furthermore, by asking that 
the loops that today have the Abell separation are massive 
enough to accrete enough matter for an Abell cluster, one 
finds that G\i ~ 5* 10“6 [ 19,18] , which fits in with the idea 
that strings should be formed at the GUT scale. Cosmic 
strings can also give good values for the peculiar velocities 
of galaxies [6l], This figure for G^ is consistent with 
bounds on gravitational radiation from observations of the 
timing of the millisecond pulsar [62], from nucleosynthesis 
[63], and from variations in the temperature of the microwave 
background [63,64]. The best evidence for cosmic strings 
would be an observation of a linear discontinuity of 6T/T ~ 
10~5 in the background, caused by the peculiar 'missing angle' 
in the space around the string [65,66]. This could be 
observed if current sensitivities are increased by a factor of
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about 5 [63], Of course, as Peebles has pointed out [67], 
there are problems with this theory. One of the most puzzling 
is the overabundance of loops under the size which is thought 
to accrete a galaxy. Since the virialised mass is 
proportional to the seed mass, and mass is held to trace 
luminosity, the luminosity distribution function for galaxies 
<t>(L), that is the number density of galaxies with luminosities 
between L and L + dL, should go like L_5/2. Unfortunately, 
the exponent is measured to be more like -1.3 [68]. A better 
understanding of the details of collapse around a cosmic 
string is clearly required.

1.6 Superconducting strings.

The discovery by Witten [26] that under certain 
circumstances cosmic strings can behave like superconducting 
wires suggests the possibility that strings might be 
observable through their electromagnetic interactions as well 
as their gravitational ones. Chudnovsky et al. [24] have 
analysed the interactions of superconducting strings with 
plasmas and they show that they are synchrotron sources, and 
go so far as to suggest that a recently observed radio source 
showing filamentary structures [69] may be a cosmic string, 
although there are adequate conventional explanations [70].
In this section we shall see how a string may be 
superconducting, and introduce some of the ideas that will be 
explored in more detail in Chapter 4.
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Let us consider two chiral spinors and , where ys^  

= and Y5^r = Y , coupled to gauge and Higgs fields in the 
usual way

¥ Y*(ia + eA)T + Y <£+¥r (1 .6 .1)

The fields W 1 and <$ transform under a gauge group U(l)xU(l) 
with charges (q^,q), (q ,-q), and (-q^-q ,0), so that when 
has a non zero vacuum expectation value the unbroken subgroup 
is U(l) and string solutions exist. Suppose we have such a 
string along the z axis, so that the Higgs and gauge fields 
can be written

®(p,<tO = e i l *>®o (P ) = 5 ^  A ( p ) ( 1 . 6 . 2 )

where $o vanishes at the origin and tends exponentially to a 
constant, r\ say, at infinity. The Dirac equation in the 
string background can now be solved, and we shall find that 
there are some solutions which are localised around the string 
and propagate along it at the speed of light [26,72,73].
These are the so-called zero modes. We make the assumption 
that in a z independent background the spinors are separable 
as follows

r - a(t,z)c|;̂  r(p,<j>) (1.6.3)

where a is a function and are spinors, and take (q, + q )JL j 37 X I *
to be +1 for simplicity. The Dirac equation for (ĵ  then
reduces to
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iyiDi(a(J;1) = a[(iyp5p - q ^ y ^ ) ^  + g e ^ o  (p )4r) (1.6.4)

where i = 0,3 and D is the covariant derivative. Solutions 
exist in which the right hand side vanishes [72,73]; these are 
the zero modes found by Caroli et al. for vortices in a type 
II superconductor [91] and by Jackiw and Rossi for the 
Nielsen-Olesen vortex in 2+1 dimensions [72], which are 
normalisable in the directions transverse to the string and 
have the properties [73]

1717242 = 4-l 1717 2 4r = -4r 71^2 = i4r (1.6.5)

It follows that 70734-] = -4-. and so a obeys± , r 1, r

( 5 + 5  )a = 0 ( 1 . 6 . 6 )
u Z

Therefore the solution is a = a(t z), which corresponds to 
a particle trapped on the string travelling at the speed of 
light in the +z direction. Replacing the string by an 
antistring is equivalent to rotating the string through 180° 
about the x axis, and so the particle travels in the -z 
direction on an antistring. If instead (q^ + ) = “1 the
phase of the Higgs field in (1.6.4) changes in the opposite 
sense, and so these fermions effectively ’see' an antistring 
and the direction of travel is towards z = -®.

The cancellation of anomalies in the 3+1 dimensional 
theory has important consequences for the physics of the zero 
modes [26]. Let the generators of the U(l)xU(l) symmetry be Q



and Q respectively. The interesting anomaly is the QQQ: for 
each pair (4^,4^) bound to the string the coefficient of the 
anomaly is proportional to (q1)2q^ + (~q1)2qp = (q1)2(q^ +
q^ ). Since they are all coupling to the same Higgs, (q^ + q^) 
is equal to the same quantity, q say, for all +z movers and 
equal to -q for all -z movers, and the anomaly cancellation 
condition gives [26]

I (q1)2 = I (q1)2 (1.6.7)+z -z
movers movers

The simplest anomaly free theory useful for our purposes 
is one with a chiral fermion of Q charge +e travelling in the 
+z direction and another of Q charge +e travelling the other 
way. The fermionic part of the 3+1 dimensional action is

Sf = / d** x l ^^iy.Dcj,^ - g(4^$ 4>̂  + h.c.) (1.6.8)
Q

Using the relations (1.6.5) we find that 4»,cp , <p,y (|>, andj. r j. a x
<\> y (a = 1,2) all vanish, and after integrating over ther a r
directions transverse to the string we are left with

S,, = Jdtdz ai’i(D. + D )ai + a2i(D. - D )a2 (1.6.9)X ~c z z z

where oq and a2 are the +z and -z moving modes respectively. 
From them we may form a two component Dirac spinor a and the
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action becomes

Sf = Jdtdz aiy1Dia a = (1.6.10)

where the y1 are two-dimensional Dirac matrices appropriate to 
the world sheet of the string. This equation can be solved by 
bosonising the field theory, as Witten did [26], but the 
essential physics of the interaction with an electromagnetic 
field can also be found by solving the Dirac equation. In the 
gauge A0 = 0, an electric field with component tangential to 
the string equal to E can be described by a gauge potential A

Z

= Et. This would obtain if, for example, the string were 
moving steadily through a constant magnetic field. The 
solutions to the Dirac equation are then

ai ~ expf-ik(t-z) - ieEt2/2]
( 1 . 6 . 1 1 )

<X2 ~ exp[-ik(t+z) + ieEt2/2]

The energy and momentum operators are E = id and p =
L Z

-id + eA , so the 2-momenta (E,p ) of the +z and -z moving z z z
modes are (k + eEt, k+eEt) and (k - eEt, -k + eEt) 
respectively. This means that the modes gain or lose energy 
according to their direction of motion: if e is positive, +z 
movers gain energy and momentum from the electric field, while 
-z movers lose it. If the initial ground states for the zero 
modes are Dirac ’seas' filled to the k = 0 level, then the ±z 
movers are all shifted up (or down) at a rate ±eE. The 
density of states per unit length in two dimensions is l/2u,
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so after time t there will be k/2rc holes of charge -e 
travelling at the speed of light in the -z direction and the 
same number of particles of charge +e travelling in the +z 
direction. Hence the total current J is [26]

J = e2 Et/n (1.6.12)

If there are several ±z moving modes trapped on the string 
each with the sum of the square of their charges being Ee2, 
the total current is

J = J1 + Jr = £ e2 Et/n (1.6.13)

The energy of each mode changes at a rate ed,A = eE, so thatX z
in this approximation the current obeys the equation

dJ/dt = e2 E/ti (1.6.14)

which is characteristic of a superconductor. When the field 
is turned off the current continues to flow.

There is an upper limit to this current, due to the fact 
that fermions can leave the string if they have high enough 
energy. An unbound fermion has mass m^ = gri at infinity, so 
when the energy of a zero modes is bigger than this it becomes 
energetically favourable for it to make a transition to a 
lower energy but unbound state, of which there are plenty 
available. The number of states per unit length for a single 
mode with Fermi momentum m^ is m̂ /27i:: this energy will
eventually be reached by the top of the Fermi sea if the field 
is applied for long enough, at which point the field energy
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goes into creating unbound particles rather than increasing 
the current. The maximum current for a single mode of charge 
e is therefore

Jmax = = emfc2/h (1.6.15)

The maximum current for electrons is about 20 amps, while for 
superheavy fermions of mass about 1015 GeV it can reach 1020 
amps. If the electric field is not switched off when J is

tilclX

reached, particles with charge e^ will leave the string at a 
rate per unit length of

d2N/dtdz E/h (1.6.16)

The anomaly cancellation condition means that there is no 
build-up of charge on the string since particles of equal and 
opposite charge are created at the same rate. This situation 
does not hold for axion strings [74] where the effective 2-d 
theory on the string is anomalous. Here the non conservation 
of charge on the string is compensated by a radial current 
carried by the axion field [74].

In a realistic situation the time varying currents 
induced on the string by an electromagnetic wave will produce 
a back e.m.f., thus modifying the right hand side of (1.6.14) 
by a factor L. Witten finds this inductance to be [26]

L = (1 + Z e2 In (ri/ go )  / 2-n:2 ) 1 (1.6.17)

where n is the mass scale of the string and w the frequency of
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the incident wave. For GUT scale strings of galactic size 
this is about 10”1 , but for most purposes it can be 
neglected.

There are also bosonic charge-carrying zero modes [26]. 
The Higgs potential may be such that it is energetically 
favourable for a charged massless component to have an 
expectation value at the core of the string, which is possible
for components with Q = 0. Indeed, we shall see in Chapters 3 
and 4 that it is natural in S0(10) to suppose that this 
happens. The result of this core v.e.v. is that the scalar 
field can have modes of the form e v ’ '$(x,y). The 
effective two dimensional action of the modes, after the 
transverse coordinates have been integrated out, can be shown 
to be equivalent to the bosonised version of the fermionic 
zero modes [26]. If a is the coordinate along a loop of 
string the persistence of the current (i.e. its 
superconducting property) is guaranteed by the fact that N = 
/da.d0/ d o 2 n  must be an integer, and in the absence of a field 
J ~ da/d9. The maximum current is determined by the fact that 
N is only well defined if M  0 everywhere at the core of the 
string. When the current approaches $(0,0) then the 
probability for tunnelling processes in which N changes by an 
integer presumably becomes appreciable. Hence the maximum 
current for bosonic zero modes is

Jmax en (1.6.18)

which is bigger than the maximum current for fermionic zero 
modes by a factor g-1 .

Now we turn to a few aspects of the astrophysics of
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superconducting strings, as discussed by Chudnovsky et al. 
[24]. An oscillating loop of size R in a constant magnetic 
field Bo will see an alternating electric field E = vxBq /c and 
develop an alternating current with period R/c. From (1.6.19) 
we see that for typical loop velocities of order c the typical 
current in the loop will be

J = ce2BoR/h (SI units) (1.6.19)

This is about 3.1012(R/1018 m)(Bo/10“10 T) amperes, where 1018 
m is a typical size of a loop in a galaxy and 10-1° Tesla a 
typical value for a galactic magnetic field. The value can 
only be reached for strings with heavy charge carriers; if the 
charge carriers are light the current will be limited by Jmax
and the loop will turn kinetic energy into particles at a rate 
of about

dN/dt - 2.1031 (R/1018 m)(B0/lO-10 T) s”1 (1.6.20)

If these particles are quarks and leptons this means that mass 
is created at a rate of about 3.104 kg s_1 or about 1011+ kg 
per period, over a region of about 30 pc. This is clearly 
insignificant compared with the mass of the loop itself: over 
one galactic revolution (1015 s) only about IO20 kg is 
produced - not even enough to make a small moon.

The oscillating current-carrying loops, if they were 
still around, are sitting in an ionised plasma, which means 
that as the string sweeps through it the charged particles can 
produce radiation by shock heating and synchrotron emission as 
they spiral in the very intense magnetic fields near the
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string. Chudnovsky et al. estimate the rate of energy loss 
due to synchrotron radiation in a plasma of number density n 
to be [24]

Egy = 102t+ (B0/lO“10 T)3/2(R/1018 m)5/2(n/10“6 m"3 ) Js-1
( 1 . 6 . 2 1 )

at a typical wavelength of

X ~ 0.2(n/10-6 m-3)-1/2 m (1.6.22)

This is much greater than the width of the string because the 
radiation occurs at the so-called tangential discontinuity, 
where the ambient lines of force pile up against those 
produced by the current on the string. Shock heating of the 
plasma dissipates much more energy for large loops: the energy 
loss due to this effect is [24]

Esh = 1033(B0/10-10 T)(R/1018 m)2(n/10“6 m“3)1'2 Js"1
(1.6.23)

Now, 1033 Js-1 is about 1028 GeV2, so this will be comparable 
to gravitational radiation if 50Ĝ i2 < 1028 GeV2 (see equatiom
(1.4.16)), that is, if Ĝi < 10"12 [24].

In Chapter 4 we shall look at zero modes on strings in 
non-Abelian gauge theories, and find significant differences 
in their current carrying ability.
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CHAPTER 2: FRICTION DOMINATED STRINGS AND BARYOGENESIS.
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2,1 Cosmic strings during the friction dominated era.

In this chapter, the evolution of a system of cosmic
strings during the period when their motion is strongly
affected by friction is discussed. This lasts from the time
the network of strings is formed, t = (G[i)_1t , until a timec p
t* - (Gn)_1t , when friction is unimportant for all curvature 
scales below the horizon [13,34]. In some superstring 
inspired models [23] (Gp) can be as small as 10_3i+, 
corresponding to the electroweak scale \i ~ 102GeV, so t* could 
be as large as 1025s. The evolution of light strings is thus 
dominated by frictional forces until comparatively late times. 
We shall see that friction changes the details of the 
evolution of the string system, and indeed may just 
conceivably cause the universe to become string dominated 
shortly after the phase transition. At any rate, the number 
density of loops formed during this time with sizes between R 
and R + dR is not the scale free distribution

n(t,R)dR = vt“3/2R-5/2dR (2.1.1)

What happens when small loops decay into heavy 'X' bosons will 
be investigated, and finally we shall re-examine the mechanism 
for baryon number production proposed by Bhattacharjee 
et al. [25], and show that loops decaying during the heavily 
damped period can produce realistic amounts of baryon 
asymmetry. An approximately Brownian network of infinite 
strings and loops is produced at the phase transition [ 13,40] 
with correlation length £ = (Xri) \  where X is the quartic
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self-coupling of the relevant Higgs field and tj its vacuum 
expectation value. The critical temperature Tc is essentially 
n. Using the relation between time and temperature t =
0.3m //N^T2 , (where is the effective number of relativistic 
degrees of freedom, equal to the number of bosonic plus 7/8 
times the number of fermionic degrees of freedom), we find 
that this happens at a time t Q given by tQ - 0.3 mp/ZN^n2 .
The strings begin to move under tension jj. - ri2 , and a segment 
of string curved on a scale r experiences a straightening 
force of \ x / r . However, the network is immersed in radiation 
with density p = /30 = 3m 2/32-n;t2 and so a segment of

■T*

string moving with velocity v will experience a retarding 
force per unit length of apv, where a is the cross-section per 
unit length. The smallest scales of the string will thus move 
at a terminal velocity v^ = ii/ap£. Everett [44] has 
calculated the cross-section for particles scattering off the 
string; for particles of momentum ~ T it is

a (T ) = it2 /T2 In2 (T/T ) (2.1.2)

Hence we can define a damping time t^ = \i /  a p - Giim̂ 1 / 213 / 2 , 
so that v - t^/5• We may define the scale below which 
damping is negligible as that for which the terminal velocity 
is 1; hence this scale, r^(t), is

rf(t) = (G|i / 213 / 2 (2.1.3)

From this the evolution of the correlation length of the 
string network can be found [13,94]. The rate of increase of 
the correlation length will be given essentially by the
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terminal velocity, so that

d§_ ti
dt 5

This may be integrated to give

(2.1.4)

l 2 ( t )  = l 2 (t ) + (Gii)m1 / 2 (t5 / 2- t 5/2 ) (2.1.5)U v

Comparing rf(t ) from (2.1.3) with £(t ) « (Xri)-1 we see that
initially, r^ << £, and the network is essentially "stuck" by
friction in the surrounding radiation and conformally
stretched until £(t )a(t)/a(t ) = r^(t), where a is the
Friedmann-Robertson-Walker scale factor. At this stage he
universe is radiation dominated with a(t) ~ t1/2, so using the
expressions for t and 5(t ), and equation (2.1.3) we findc c
t = t /\. At this point the ratio of the energy density in c
string p , to that in relativistic particles, p , isS I*

(i a2 (t ) 3 m 2__ __(__________P_) -1
£2 (t ) a2 (t) 32tt; t2 30X

(2.1 .6)

so if X is more than about 0.03, there is a chance that the 
energy density of the universe will become dominated by 
strings with a very small correlation length. It is 
straightforward to see that this string dominated universe, as 
discussed by Kibble [94], evolves almost like a matter 
dominated one, with the scale factor proportional to 
t^, where 3 is between 2/3 and 1, but much closer to 2/3. The 
energy in a comoving length of infinite string with
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persistence length much less than horizon size remains almost 
constant because redshifting just straightens the string [37], 
while the number of strings per unit volume just goes as a“3. 
Hence
the energy density goes as a-3 when £ << t. The exponent of t 
cannot quite be equal to 2/3, because if £ = t the whole 
network of string is conformally stretched so that the energy 
density, , becomes proportional to a-2. In this case,
discussed by Vilenkin for non-intercommuting strings [49], the 
scale factor goes as t. Albrecht and Turok however have 
simulated such strings [37], and found that £ << t and that 
the energy density went as a-3. It would seem that the 
smaller 5/t, the closer an infinite string dominated universe 
is to a matter dominated one. If the strings do reconnect the 
other way when they intersect, loops will be chopped off the 
straightening network, but since their energy also scales as 
a-3, a mixture of loops and long string will still behave like 
matter. Whatever the relative proportion of long strings and 
loops this is still a disaster: a universe dominated by
string from early times is clearly not ours. However, in view 
of the uncertainties in the calculation, especially in the 
estimate of the force due to friction, few firm conclusions on 
the value of \  can be drawn. .Anyway, let us suppose that \  is 
sufficiently small that the universe remains radiation 
dominated. Eventually, the constant terms in (2.1.5) will 
become negligible and £(t) will obey

C2(t) - (Gp. )m 1/2t5/2 (2.1.7)

The network will continue to evolve under friction until the
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persistence length £ catches up with the horizon, at a time t+ 
given by £(t+) « t+. After t+, which is approximately 
(Gji)"11 , £ can grow no faster than t, by causality, and the 
usual string scenario begins to take effect.

Between t+ and t we can expect loops to be chopped off 
the network, and in a volume £3 one loop will be produced in a 
time v^/£, so that the loop production rate per unit 
volume is

dn 1 d£
dt v £4dt ( 2 . 1 . 8 )

where v = 10-2 [37], (Note that in the scaling solution we 
have £ - t and dn/dt = vt_1+.) The loops thus produced will 
initially shrink at their terminal velocity: if r is the 
radius,

r  - -t^/r - ( G \ i )m 11 2 t3 1 2 /r (2.1.9)

So that if t’ is the time of formation (neglecting numerical 
factors of order unity)

r2 (t) = r2 (t' ) - (G[i)m 1/2(t5/2 - t'5/2) (2.1.10)P

Therefore the loops will begin to move freely, i.e. friction 
will be unimportant, when

r2(t) < rf2(t) (2.1.11)

The loops will be formed with size r(t') ~ £(t'), and using
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equations (2.1.3) and (2.1.7) we obtain

2t' 5 / 2 - t5/2 < (Gp, )m 1/2
P (2.1.12)

Thus the loop starts to move freely between t’ and 22/5t',
almost immediately in fact, and we can take its size to be
r^(t'). The loop will be fairly circular when it starts to
move freely because irregularities will be smoothed out during
the damped collapse, but there is no danger of it shrinking
to a point and annihilating immediately because to do that the
loop would have to be circular to within a string thickness.
This is highly unlikely. The energy in the loops will go into
heating up the radiation, but it is easy to see that the rate
of energy loss as heat is insignificant, except for very large
values of (G|i): let p = |i£“2 be the energy density in thes
network and p - 0.03m 2t-2 be the energy density in I* P
radiation. Now p , which goes as t“7/2, is the maximum rate 
that energy density can appear as loops. We shall shortly see 
that the loop energy density goes as t-3/2 to begin with, and 
then as t“2, which is always a slower decrease. Hence p is 
an upiper bound for the rate of heating. Using (2.1.5)

so even if the upper bound were saturated and all the energy 
lost by the network were to go into particles, the effect on 
the radiation density would be negligible.

♦
The loops, then, are produced at a rate v£(t)“4£(t) 

(equation (2.1.8)) with size r^(t), whereupon they radiate

ps/pr = 10(Gp)1'2(to/t)1/2 (2.1.13)
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gravitationally [50-54] at a rate y f (Gjx)i-l , with y' = 50.
Their initial mass is Piir^t), where p is close to 2 n , so the 
lifetime of the loop will be about (yGp,)“1r^(t) where y - 10. 
The loop number density will decrease as the FRW scale factor 
cubed, so if n(t,t')dt' is the number density at time t of 
loops formed between t’ and t' + dt' in a radiation dominated 
universe, then using (2.1.7) we have

n (t, t ' )dt' = v (G^)“3/2m “3/l+t-3/2t'-^^dt* (2.1.14)

Note that this is not scale free. Let us now see how the mass 
density evolves towards its scaling value. The density in 
infinite string is ~ p£~2, so

P„/Pr = 30(Gn)1/2(tc/t)1/2 (tc << t < t*) (2.1.15)

The density in loops is

Pl(t) - / Pnr£(f) (2.1.16)
s

Any loop formed before t will have decayed by gravitationals
radiation to a size of order of its width, ari”1 (where a is
the inverse of a coupling constant), whereupon it will have
decayed into massive bosons. Taking this into account we can
find t by solving s

(yGp)-1(rf(ts) - an-1) = t

so defining t+ to be (Gji)_1/2t we find from (2.1.3)c

(2.1.17)
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t = a2/3t (1 + yt/at+)2/3 (2.1.18)s c

Performing the integration, we have

p,(t) = pv(i(Gp.)"1/2m -1 /4t”3/2t “3/1+ (2.1.19)i. o

Hence for t < t+ p. goes as t-3/2 and

P;L/pr = 30(pv/a1/2)(Gii)3'"*(t/tc)1/2 (2.1.20)

and for t > t+ p. goes as t-2 and

P l /Pr = 3 0 (Pv /y 1/2 )(Gp)1/2 (2.1.21)

which is the value obtained from the scaling solution. Thus 
the oscillating loops come to dominate the energy density of 
the string network at t « (a11 2/0 v ) (Gp, )-11 4 t . The loops are 
initially very much smaller than the persistence length of the 
string network because £/rf - (Gp )_11 4 (t/t )114 , and so we 
might expect that the reconnection probability [95] is very 
small. At this stage, therefore, the system probably could 
not start to evolve towards the string dominated universe 
discussed by Kibble [94]
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2.2 The decay of small loops and baryon asymmetry.

In this section we shall investigate the final stages of 
a loop's life, when it disappears into a burst of heavy 
bosons. The hope was originally to try and get a lower bound 
on the string tension, because for low values of \x there are 
lots of small loops about, and some observational constraints 
might have been found on the flux of particles resulting from 
their decays. Unfortunately, as we will see, this flux is too 
low to have any significant effects, but the decays of small 
loops are a mechanism for providing out of equilibrium decays 
of massive bosons, an essential ingredient for the generation 
of baryon asymmetry n^/s [96]. Thus, by re-examining the work 
of Bhattarcharjee et al. [25], we will find that reasonable 
values for n^/s can be obtained.

First let us calculate the decay rate of small loops.
Recall that the decay time of a loop formed at t is given bys
(2.1.18). Hence the decay rate per unit volume, dr^/dV, is

For t < t+ this is

dTl = (v/a13/6)(G(l)l(m^ (t + /t)3/2 (2.2.2)

and for t > t+

(2.2.3)
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The loops are assumed to decay when their radii are ari"1 , 
which means that they will release energy of about 2 n a r \ in the 
form of heavy gauge and Higgs bosons, which decay sooner or 
later (depending on their couplings to fermions) into 
relativistic particles. Let us first consider the case where 
the particles decay in much less than an expansion time. The 
rate at which energy appears as radiation, , is then

P1+y = ( ^ - 6) (Gli)9/2mp5(L)3/2 (t < t+) (2.2.4)

At t - t+ this will be important compared to 
Pr - 0.06mp5(Gp,)91 2(t+/t)3 if (2uv/a7/6) > 0.06, so it just 
conceivable that the universe undergoes a brief period of 
reheating around t = t+ = (Gp)“1/2tc. At other times the 
energy from the decays will be rapidly thermalised and have 
little effect. The decay rate r of heavy bosons, which have

X

mass m , will be on dimensional grounds approximately given by
X

[97] r ~ g2m , where g is either the Higgs or gauge coupling 
to fermions. Hence the bosons will decay in less than 
expansion time if

g“2mx“1 < t(T) = 0.3mp/N^/2T2 (2.2.5)

This is only possible for phase transitions occuring at a 
scale t) such that

g-2mx-l < t(Tc = n) (2.2.6)

or
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n < g2(0.3/Nl/2)mp (2.2.7)

For Higgs bosons this could be as low as 1013 GeV.
Let us now consider what happens when r << t_1 forX

t > t . After the phase transition the X-bosons acquire a 
mass, but because their decay rate is so slow their number 
density and hence their energy density just decreases like 
a-3. Therefore the universe becomes matter dominated at a 
time t given by

X

This continues until the massive bosons decay at x 2 3r>—1
which is about g~3 (Ĝ i ) 1 1 2 t .c

If the interactions of these bosons violate C and CP, 
their out of equilibrium decays can generate a non-zero baryon 
number density [96]. Suppose that on average the decay of an 
(X,X) pair produces baryon number e. Before t the numberX

density of X bosons n is equal to the number density of any
X

relativistic species, so that the ratio of n to the entropy
X

density s is just N^”1. This means that if t < t , the baryon 
asymmetry produced is n /s = 10“2e. If x > t , most of the

o  X

photons we see today came from the decays of X bosons, in 
which case n^/s = z .

The evaporation of loops of string into heavy bosons also 
produces an out of equilibrium decay, as pointed out by 
Bhattarcharjee et al. [25]. They used the fact that an 
initially static loop of length 1 collapses to a doubled loop

1 (2 .2 .8 )
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in a time 1/4 [55], at which point, if it is a Z2 .string [29], 
it will annihilate into bosons, and their decay produce the 
baryon asymmetry. They estimated that the fraction f of loops 
that would collapse and annihilate immediately would be about 
10”1. In view of numerical simulations [37] this now seems 
highly optimistic; the loop is being chopped off a moving 
string so it appears very unlikely that it would form an 
initially static configuration. What is more likely is that 
the loops start to oscillate, after an initial period of 
friction damped shrinking, and radiate away their energy 
gravitationally until their radii become comparable to their 
width. At this point their field theoretic origin becomes 
important. Presumably they decay fairly quickly into bosons, 
and Shellard's global string simulations [47] lend support to 
this. Let us assume that the average number of heavy bosons 
per loop decay is , and let us also assume that the decay 
rate of bosons into light particles is sufficiently fast so 
that there is no era of matter domination after the phase 
transition. If the average baryon number per decay is e, then 
during the friction dominated period

dn„/dt -.D Acc-13/6 (t+/t)312 (t < t+) (2.2.9)

dn^/dt - -13/6 (t+/t)x1/3 (t > t+) (2.2.10)

where A = e vN^ (G|i ̂ m ^ 1* . To a first approximation we may 
ignore the contribution of decaying loops to the entropy 
density s, which is approximately

s = N*T3 = (G|J )9 7 4 m 3 (t+/t)3/2 ( 2 . 2 . 1 1 )
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so that the baryon number asymmetry generated is about

nB/s * / (dnB/dt)s-1dt = (evt^/y1 3 ' 6 ) (Gp. )7 1 ‘•m t+
( 2 . 2 . 1 2 )

= (vN1/y13/6 )(Gji)1/1*e

Using v = 10-2 and y - 10 we have

nB/s = 10-1* (Gn)1/'*N1e (2.2.13)

Hence we see that for GUT scale strings, where G(i = 10-6 , this 
mechanism is insignificant compared to the usual scenario 
unless = 103, which seems hard to obtain. However, if C 
and CP are not broken until a string-producing phase 
transition at 1013 GeV, the decay rate of bosons will be fast 
enough so that they are always in equilibrium, and little or 
no baryon asymmetry will be generated in this way. However, 
the decay of string loops can easily generate nB/s = 10“9 with 

10 and e = 10~3 . The quantity e can never be greater 
than 10"2 [97] so realistic amounts of baryon asymmetry cannot 
be produced by string loops if (Gp.) < 10~16

In conclusion, we have seen how in the friction dominated 
period the initial network of string evolves towards the 
scaling solution. In order that the persistence length goes 
from (Gp)1/2tc to t loops must be formed faster than the 
scaling rate per unit volume of vt“4, in fact from (2.1.8) it 
is

dn/dt = v(Gp)-3 / 2mp“3 / 4 t_l 9 / *+ (2.2.14)
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These loops initially shrink under friction until the 
acceleration due to curvature in the string is large enough to 
overcome the damping forces, and then they radiate 
gravitationally in the usual way before annihilating into 
massive bosons. The out of equilibrium decay of these bosons 
can generate realistic amounts of baryon asymmetry if 
G(i > 10”16. If G \i > 10“13 the decay rate of the bosons can be 
slow enough for the usual out of equilibrium decay scenario to 
work, in which case the loop contribution is swamped.
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CHAPTER 3: BEADS ON STRINGS
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3.1 The SU(2) bead.

In section 1.3 we saw that an SU(2) gauge theory broken 
by a pair of adjoint Higgs to Z2 had string solutions with 
first homotopy group Z2 , which are often called Z2 strings, 
with the form (1.3.4) carrying flux 2ix/e. The antistring is 
obtained by replacing $ , the azimuthal angle, by -4>, and by 
-A^ , so that after a gauge transformation by exp(i7i:T3) the 
Higgs fields may be written

®l = fl(p)(0,0 ,- l)
(3.1.1)

$2 = f 2 (p ) (cos<|> , sin<|> , 0)

The appellation Z2 means that string and antistring are 
» smoothly deformable into each other through states of finite 
energy per unit length; in fact, all we do is smoothly change 
the sign of $2 • This does not mean, however, that string and 
antistring are identical up to a gauge transformation, 
although their asymptotic values at infinity are related by a 
rotation through % about $2• This gauge transformation is 
singular at the origin, so that the two solutions are indeed 
distinct [27]. In order to get from one to the other it is 
clear that if $1 and $2 are to remain everywhere perpendicular 
then $ 1 (p = 0) must vanish somewhere during the deformation,
At that point it is energetically favourable for $1 to be in 
the Nielsen-Olesen configuration (1.3.5), which at large p is 
just a u / 2  rotation of (1.3.4) about $2* Recall that this is 
a higher energy configuration. We are now able to present the
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bead: in its simplest form for a string centred on the z axis 
it is just a solution which interpolates between string at z = 
+<» and antistring at z = -®. In view of the above discussion 
for SU(2) Z2 it is clear that there is a region of higher 
energy per unit length where $1 vanishes. Minimising the 
energy of the solution will, in the competition between 
gradient energy in the z direction and the ’potential' energy 
per unit length (all the other pieces in the expression for 
the energy), produce a configuration in which the departure 
from the ground states will be confined to a region of order 
m _1, the" inverse of a scalar boson mass. We shall show thatO
this is true under a reasonable set of assumptions in the next 
section.

We can also see why the bead may be called a monopole on 
a string. Suppose that $1 and ^2 gain expectation values at 
two different scales, so that we can imagine an intermediate 
U(l) theory:

3? 1 <3? 2SU ( 2)-- -> U ( 1 )  + Z2 (3.1.2)

After the first stage, 't Hooft-Polyakov monopoles can appear
[14,73]. For a monopole centred on the origin (r = 0)
vanishes and takes up a ’hedgehog’ configuration everywhere
else, that is to say that if we identify space and isospin
axes $1 points away from the origin and reaches its vacuum
value outside a spherical region of size m -1. The directions
of in group space defines the generator of charge 
rotations, and we can define a U(l) flux by



59

Flux = /dSi(<£>i .B1) (3.1.3)

where the integral is taken over the sphere at infinity. This 
is equal to 4 n /e [14]. Following Bais [75] we may ask what 
happens to this flux after the second stage of symmetry 
breaking when $2 acquires an expectation value orthogonal to 
$1 (this can be arranged by having a ( $ 1 .$2 )2 term in the 
potential). Clearly, it is confined to a tube extending to 
infinity, and since the stable flux tubes - strings - of the 
Z2 theory carry a flux 2-n:/e, we need two of them attached to 
the monopole. We can also see that there must be two flux 
tubes by the following argument: in this gauge if <$2 is to be 
orthogonal to a radial vector it must be a tangent vector to 
spheres centred on the monopole, and so by a well-known 
theorem [38] it must vanish at two points at least. These 
define the positions of the flux tubes, and arranging them in 
opposite directions along the z axis gives us exactly the bead 
solution described above, but globally rotated by n / 2  around 
the T3 isospin axis.

We can now write down the form of the Higgs fields at 
infinity for the SU(2) bead solution, which will exhibit a 
form useful for later generalisation. Let us form a complex
representation $ = <3>i + i$2, and take §0 ~ (i,0,l) . In the 
gauge we have been working in, the solution at large distances 
from the z axis for a bead at the origin is

T

(3.1.4)
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where x(+0°) = 0, x(0) = it/2, and x(_0°) = it. The solution at 
z = -co iS gauge equivalent to the antistring, <£ = exp(-i<t>T3 )$q 
by the gauge transformation exp(-i-rcT1 ).

In section 3.3 we shall investigate the question of 
whether this can be generalised to the more general symmetry 
breaking schemes, in particular G -> KxZ2 [ 39,27].

3.2 Solving for the bead configuration.

Having written down a form for the bead solution in
(3.1.4), it now remains to substitute into the equations of 
motion to find a static solution satisfying the bead boundary 
conditions. The solution may be written as follows :

(sin<}> sinx' cos<{> sinx 
cosx

(°+ a(p,z) ( 0

/ cos4>
$2 = f 2(P > z) l-sinp (3.2.1)

0
%  = ?

, /  COScj)
Az = ( 1 - G(p,z)) f-sin<j>

where f^, f2, , and all vanish at the origin and a, F,
and G all vanish at infinity. The boundary conditions on 
x'(z) are x'(±0°) = 0* The form for the gauge potentials 
follows from the condition that the covariant derivative 
(S + ieA )$i,2 vanishes at infinity. The solution could be 
found by minimising the energy of this configuration which
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would give six coupled nonlinear partial differential 
equations. In principle they are numerically solvable, but we 
can extract much information without going to all this 
trouble, for we know roughly what the solution will look like 
anyway. The transition between string and antistring will 
occupy only a small distance, probably of order m , aroundo
the origin, where x will change from 0 to %, and a(p) will 
change sign. The functions f]_ , f2 , F, and G will not depend 
very much on z since they are determined mainly by the shape 
of the solution in the transverse direction. In order to find 
the size of the bead all we need to is look at the equations 
of motion near the origin, where fi and f2 vanish and F and G 
are equal to one. The equations of motion for the Higgs field 
are

V = + §1 - x]2)2 + 6($? - + e (3>i .<3? 2 )2 (3.2.3)

(This is not the most general potential.) When the two Higgs 
fields are orthogonal the last term vanishes, as is the case 
here. In the limit p -* 0 equation (3.2.2) reduces to

(a = 1,2) (3.2.2)

where

(3.2.4)

By contracting both sides with (sin<}> , o o s §  , 0) and (0,0,1) and
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using fi(0,z) = 0, we see that

(3.2.5)

Near the z axis, fi can be expanded in powers of p

fl = ci(z)p + c2(z)p2/2 (3.2.7)

Substituting into (3.2.5) we find that the left hand side is 
equal to 3sin(x)c2/2, and so C2(z) vanishes for all z. 
Furthermore, the right hand side of (3.2.6) will have a piece

of a(p,z), and since the left hand side is non-singular at the 
origin we may therefore conclude that the coefficient of p in 
the expansion of a(p,z) about the z axis is -ci(z)cosx* In 
order to proceed further it is necessary to make the 
assumption that a(p,z) is separable near p = 0, at least up to 
0(p2 ): we write a(p,z) = R(p)Z(z) with Z(z) =
-cos(x )ci (*z)/ci (°°) so that Z(±®) = ±1, and we obtain

equal to cicos(x)p”1 unless it is cancelled by the derivatives

The derivatives of Z vanish at z = ±®, so

RM(0) = [2Xn2 - 2(\+6)R(0)2]R(0) (3.2.9)
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Substituting back into (3.2.8) a simple equation for Z
results:

(3.2.10)

This has the well-known 'kink' solution

Z = tanh[ 2R(0)/(A. + 6)(z - zq ) ] (3.2.11)

In order to estimate R(0) we must examine the Higgs potential 
at z = +«

V = \((fx + a)2 + t \  -  n2)2 + 6((fx+ a)2 - f2)2 (3.2.12)

At the core where fi and ± 2 vanish the potential is minimised 
when a = R(0) = /(\/(X + 6)), so we might expect the true 
value of R(0) to be slightly larger in order to save radial 
gradient energy. If we take this difference to be small, we 
find that the bead is confined to a region of order 
(rî X)-1 = m -1 in size, as was expected. If §1 and $2 have

o

different expectation values tii and r)2 (ti > h 2 )  > which we 
could arrange by having rj2 = n? + and changing the second 
term in (3.2.3) to 6(<I>Jti2” ^  h 1 )2/h2 > the calculation goes 
through as before, but with 6 replaced by 6 (r)2 /"n )2 . If the 
two scales are very different the bead size is determined by 
the larger scale, which controls the symmetry breaking SU(2) -> 
U(l), that is, the bead is similar in size to the monopole of 
that theory. This is in keeping with the idea of a bead being 
a monopole on a string.
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3.3 Beads and non-Abelian strings.

The question now arises whether it is possible to 
generalise the bead solution to other symmetry breaking 
schemes with Z2 strings. It is not possible to answer this 
question in general, but we shall address two particularly 
relevant classes of symmetry breaking, G -> KxZ2 [39] which 
contains SU(2) -> Z2 as the simplest example, and also 
SO(n) -► S[0 (p)x0(n-p)] . However, SU(2) is a special case for 
there is no continuous symmetry in the unbroken subgroup. In 
all other cases we are faced with the possibility that the 
string is gauge equivalent to the antistring, by which we mean 
that there exists an element k in the connected component of 
the unbroken subgroup such that if the string solution is

®(p,4>) = e i,)>Q®( p) (3.3.1)

then

k e 1 't’% ( p )  = e 1 't’Q ®(p) (3.3.2)

We shall see that there are two sorts of string, one in which 
this is the case [76], and one in which the string is 
homotopic but not gauge equivalent to the antistring, on which 
beads can exist. The issue of the conditions under which each
is the lowest energy solution has not yet been resolved [77].
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In general we would expect their energies to depend on the 
dimensionless parameters of the Higgs potential, but a full 
answer can only be obtained by accurate numerical solutions to 
the equations of motion.

In section 1.3 we saw that a compact simple Lie group G 
could be broken to KxZn by a Higgs field $ in a symmetric n̂ 1̂ 
rank tensor representation aligned with the highest weight 
|x̂ >, where X^ is a fundamental weight [39]. The first 
homotopy group iti of G/(KxZn) is Z , so n-1 topologically 
inequivalent strings result, and we may write the solution for 
a string on the z axis in a form in which the fields are 
independent of z and are a gauge rotation at ®, namely (3.3.1) 
in which $(p) $o = |nX£>T) as p -*• ® . We shall consider two 
possibilities, exemplifying the two types of stringnmentioned 
earlier, one where Q is in the Cartan subalgebra and one where 
it is not. Let us consider the first possibility, in which 
case we may write Q = q.H, where H1 are the generators of the 
Cartan subalgebra (i = l,...,rank G). At infinity, 
single-valuedness of the Higgs field imposes a quantisation 
condition on Q

nX^.q=m (3.3.3)

where m is an integer, so that the Higgs field changes by a 
phase at infinity

im<J>$ (® , 4>) = $o e (3.3.4)
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We shall call these strings 'phase* strings for this reason. 
From here on we confine our remarks to the most relevant case 
n = 2, for which the string has m = 1 and is homotopically 
equivalent to the antistring with m = -1. However, these 
solutions are not gauge equivalent, for that would require an 
element k of the unbroken subgroup K such that

kQk-1 = -Q (3.3.5)

and this is not possible because of the component of q in the 
direction of . This means that the deformation which takes 
the string to the antistring will in general take the field 
configuration through states of higher energy.

This is the basis of the bead solution, which 
interpolates between string at z = ® and antistring at z = -®. 
At large p it may be written as

®(*,z) = e1't,Qelx(z)T'I>o = gO,z)$0 (3.3.6)

j_ V  ( — adwhere x(+®) = 0 and e anticommutes with Q, so that
— iy (  —co Wunder the gauge transformation e the solution as

z -> -co is e^^^o , the antistring. One way of arranging this 
is to have q parallel to the simple root not orthogonal to X 

which we may call , and the quantisation condition (3.3.3) 
means that

Q = <vH/(<xs,)2 (3.3.7)
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There are good energetic reasons for this, as will be 
explained shortly. This Q and complex combinations of the 
corresponding step operators, E and E_ , form an SU(2)

subalgebra generated by (T1 ,T2 ,T3 ) with T3 = a^/(a^)2, T2 =
-i(E - E )//2 and T1 = (E + E )//2. A suitable T is 

a ,  - a a, -a, ''
clearly T2.

A U(l) flux, the analogue of the $1 component of flux in 
the SU(2) case can be defined by having the generator X be

X = g(*,z)(X4 .H)g-1(*,z) (3.3.8)

In going from z = 05 to z = -® tr(QX) changes sign, and hence 
so does the U(l) flux. In this sense we can justify the idea 
of a bead as a monopole on a string, for it is a source of 
this flux which is trapped inside oppositely oriented 
strings.

We now consider the case where Q is equal not to the 
diagonal generator T3 but to one of the other two, say T1, 
which is not in the Cartan subalgebra of G. In this case $ 
does not change by a phase at infinity beause $0 is no  ̂an 
eigenvector of Q, so we can call these strings 'non-phase' 
strings, and we shall now see that there is a set of gauge 
transformations generated by an element of the Lie algebra of 
K which takes Q to -Q. Consider a generator B = {3 .H such that
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p .a f  0, and p = 0. Then 

[ B ^ 1] = i (p . a)T2
(3.3.9)

[B,T2] = -i (p . a )T 1

and B generates the required transformation

e103?1e-106 = cos( (p .a)9)T1 - sin( (p .a ) e ) T 2 (3.3.10)

taking T1 to -T1 when 9 = n/(p.a). Hence the string solution 
e^ % ( p )  is gauge equivalent to the antistring solution by 
k = q^ 3/(P *a ) # Such a B always exists except for the trivial 
case of SU(2). Clearly, if the non-phase string is the stable 
configuration stable beads cannot exist without additional 
Higgs fields to break the string-antistring symmetry [76], and 
so it is important to find iinder what conditions which of the 
two types of solution is the stable one. This question cannot 
be settled without numerical calculations of the energies of 
the solutions, which Everett and Aryal have done for SU(2) ■*
Z2 [76]. However, this does not fully model the situation for 
larger groups so to conclude as they have done that beads do 
not exist for S0(10) is not neccessarily correct [77].

Let us see how the SU(2) strings fit into the above 
discussion. The Nielsen-Olesen Z2 string is a phase string, 
an assertion which can be demonstrated as follows: by forming 
a complex representation <£> = <£]_+ i<i>2 this string solution 
(equation (1.2.9) with $]_ replaced by (1.2.10)) can be written 
at infinity as
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0 -i 0
1 0 0
0 0 0 (3.3.11)

T
(i , 1,0)ri//2, this is equal to e^$o and (3.3.11)If $0

describes a phase string. On the other hand the string
( $.3.4) may be written, after a gauge transformation by 
ituT2 /2e1 ' , as e 9 3?o which is an example of a non-phase string.

We may decompose $ into eigenvectors <j>. of T1 , where \  = ±1
o a .

, as e

o
and 0 [76]

(3.3.12)

making clear that the behaviour of $ as a function of the 
azimuthal angle is not a phase change. This solution can have 
a piece proportional to 4>q non-vanishing at the origin because 
its azimuthal covariant derivative can vanish everywhere, and 
so potential energy is saved, which makes it likely that the 
non-phase string is the lower energy configuration of the 
two. The computer calculations of Everett and Aryal confirm 
this [76]. However, they did not take into account the fact 
that the Higgs fields of the Nielsen-Olesen string could also 
have a piece in the T3 direction which need not vanish as
p 0 .

As mentioned earlier, SU(2) -> Z2 is a special case 
because it has no unbroken continuous symmetries. Let us 
address the general case G -► KxZ2. First consider phase 
strings, for which Q in (3.3.1) is an element of the Cartan 
subalgebra of G. From the quantisation condition (3.3.3) we
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know that

Q = .H/2(\s )2 + ,i.K (3.3.13)

where the K1 are the generators of the Cartan subalgebra of K. 
The energy per unit length of the string is made up of three 
pieces

E = / d2x[ tr (B2 ) /2 + tr(D<£ + .D$) + V($)] (3.3.14)

magnetic, gradient, and potential energies respectively.
Since B is proportional to Q making tr(Q2) as small as z
possible will save magnetic energy, which means that there is 
a tendency for |i to vanish in (3.3.13), that is by having Q 
entirely orthogonal to the Lie algebra of K. However, if the 
Higgs field is in a representation which has no weights with 
zero eigenvalues under \ .H, it may be energetically 
favourable for \i f  0 so that Q can have zero eigenvalues.
For example, if is the simple root not orthogonal to \ , 
then Q = a ^ / ( a ^ ) 2 is just such a Q. Magnetic energy will be
saved if we choose the basis of K such that a ,  is a short<3?
root. In general it is to be expected that the direction of Q 
depends on the ratios of the dimensionless couplings in the 
Higgs potential to the square of the gauge coupling e. An 
interesting point to notice is that if \x f  0, the string is 
carrying some flux of the unbroken subalgebra: this is rather 
intriguing because we usually expect colour magnetic fields of 
an unbroken symmetry group to be unconfined. In the next 
section the long range magnetic fields of the two types of 
string will be investigated.
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Comparing the phase string with the non-phase string is 

more difficult, for in general both can have <S> non-vanishing 
at the origin, and both have the same value of tr(Q2). Let us 
write down the equations of motion, defining the function F 
by

A F(P))

and using (3.3.1). They are

rl 5_ 5_
 ̂p dp P 5p

F2-2 Q2)® av
d$ +

F" - — ' -2e2—2 ($+Q2<£) P P 0

where the potential has the form

V = \x(tr($+$) - -n2)2 + X2 br ($+$<£+$)

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)

Everett and Aryal [76] have argued that since, at infinity,
$+Q2$ = t] 2 for the phase string and r \2 /2 for the non-phase
string that the latter is energetically favoured. While it is
true that the energy contains a piece tr(Dx$+D $) =<P <p
F2 (<$+Q2$ )/p2 , we see from (3.3.16) after multiplying by ^  and 
integrating by parts that the radial gradient energy contains 
a piece which cancels it, and by the equations of motion we 
find

E = / d2 x[ tr (B2 ) /2 + V(®) - tr(®+||:+}] (3.3.19)
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Written in this form, it is not clear whether the phase or 
non-phase string has lower energy. The determination of the 
conditions for which each is the stable string must await an 
accurate numerical solution to (3.3.16) and (3.3.17).

We conclude this section with a couple of examples, one 
of which fits into the G -> KxZ2 class of strings, and the 
other serves to illustrate the class SO(n) -> S[0(n-p)xO(p)] 
[80,81].

Consider a Higgs field transforming under the six
dimensional representation of SU(3) formed by symmetric
complex 3x3 matrices transforming under an element g of SU(3)

Tas $ ■> <£' = g$g . If the potential is such that 3?o is zero 
except in the bottom right hand entry then SU(3) is broken to 
SU(2)xZ2, where the SU(2) is generated by the Gell-Mann 
matrices X1 , X2 , and X3 and the Z2 by X8. The phase string 
solution may be written as [79]

$(p,<})) = e1(|)Q0(p) + l  Miai(p))e1<{)Q (i=l,2)
i

(3.3.20)
A = -5 , ~~ [ 1 — F (p ))

\i p.(J) ep ̂ v J J

where

Q = 4 1° 0i
s) ®(p) =

fo0 00 00
\o 0 -1 / lo 0 1

(3.3.21)
1 0

0 o) / I 0 0

Ml = rs 0
0 1 m2 = 0 0 0

l o 1 Oj l o 0 0
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The NL are invariant under Q and so the functions a^ need not 
vanish as p -► 0. The generator Q could also be parallel to a 
weight

Q = diag(-l,-l, 2)/4 a±(p) = 0 (3.3.22)

which has smaller tr(Q2) but vanishing $(p = 0).
The non-phase string may be written as (3.3.20) but with 

Q equal to the matrix with a1/2 in the bottom right hand 
corner and Mi = diag(0 ,1,-1)//2, and this is gauge equivalent 
to the antistring under k = diag(l,-l,l) = e171̂ 3 .

Finally, consider the beaking S0(3) -* 0(2) by a Higgs 
field in the 5 dimensional representation of traceless 
symmetric 3x3 matrices. This is achieved by having the Higgs 
at infinity be $o = diag (1,1,-2 )ri, in which case the generator 
of the 0(2) is T3 . The string solution may be written

<S(p,<t>) = ei<t’Tl$oe-i't,Tl (3.3.23)

which is clearly a non-phase string gauge equivalent to the
inT3antistring by a rotation e . This is the simplest example 

of the general form S0(n) -> S[0(n-p)x0(p)] which has been 
discussed by Lazarides et al. [80,81]. The rank of the 
subgroup is unchanged so that the Cartan subalgebra is 
unbroken, and consequently the strings cannot be phase 
strings. By embedding the above in traceless symmetric nxn 
matrices we see that in this scheme strings are always gauge 
equivalent to antistrings.

In summary, then, we have found that in non-Abelian gauge
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theories with string solutions there are two kinds of string, 
the non-phase string which is gauge equivalent to the 
antistring in the sense (3.3.2) and the phase string which is 
not. If iti(G/H) = Z2 , when a phase string is deformed into 
the antistring it passes through states which in general have 
higher energy per unit length. The bead is just a solution 
which interpolates in space between string and antistring 
and so cannot exist on the phase string without additional 
Higgs fields. We have found that beads can exist in a large 
class of theories of the form G -► KxZ£ although not without 
extra Higgs in SO(n) -> S[0 (n-p)xO(p)] .

3.4 Long range fields of beads.

All along we have been working with the idea that beads 
are like monopoles on strings, and in this section it is 
pursued to see whether, like the monopole, the bead has long 
range magnetic fields decaying as r“2 at infinity. This 
actually depends on the direction of the generator of 
rotations around the string, Q, but let us first recall some 
facts about monopoles in non-Abelian gauge theories 
[14,73,82-29].

When a gauge symmetry G is broken to a subgroup H by some 
Higgs field <5 gaining a vacuum expectation value ll$ll = n we 
may look for finite energy solutions in three space dimensions 
by requiring that the Higgs field approaches the vacuum 
manifold M sufficiently fast as r •* ®. This provides a map 
$: S2 -> M = G/H. Now, suppose that there exist equivalence



75
classes of these maps which are non trivial, that is,
%2 (G/H) f  0, then by continuity $(S2), where S2 is a sphere
of radius r, must contract to a point in the Higgs field space
as r + 0. However, unless is a deformation of the constant 
map, it cannot do this while remaining in the vacuum manifold,
and so there must be a region in space where V($) is greater
than its vacuum value. When spherical symmetry is imposed and 
the energy minimised there are finite energy configurations 
with magnetic fields decreasing as r-2 at infinity, which are 
non-Abelian generalisations of the Dirac monopole [88], When 
112(G) = 0 - 711 (G) we may use an analogous formula to (1.3.1)

tt2(G/H) = Hi (H) (3.4.1)

The Dirac monopole has a string singularity in the gauge 
potential [89] which is unobservable and can be removed by 
defing the gauge potential bn two patches, the upper and lower 
hemispheres of a large sphere centred on the monopole, in 
which case the fields may be written

= g(l - cos0)/rsin0 

A^ = -g(l + cos0)/rsin0
(3.4.2)

Both are nonsingular on their respective hemispheres and both 
have the curl

r
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Where the two patches intersect we must demand that there be 
no physical difference between the two potentials: that is, 
they must differ by a gauge transformation

a“ (0 = n/2) - A^(9 = */2) = (3.4.4)

where Q = . Single valuedness of £2 requires

eg = n/2 (3.4.5)

which is the Dirac quantisation condition for Abelian 
monopoles. For a non-Abelian monopole which appears in a 
symmetry breaking G -► H with ic2(G/H) f  0, the gauge 
transformation in (3.4.4) is

Q (4>) = exp(i2egM<f>) (3.4.6)

where M is in the Lie algebra of H . We can always conjugatei
this into the Cartan subalgebra [90], and the single 
valuedness condition becomes that Q(2it) must act trivially on 
any weight of the root lattice of G, A(G):

4 it iegM \> X> (3.4.7)

If we write M = m.H, where the H1 are the generators of the 
Cartan subalgebra (i = l,...,rank G), this can be expressed 
as [87]

2egm.\ e Z V X e A (G) (3.4.8)
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We see that eg just affects the normalisation of M; in 
particular if we choose eg = 1 we have that 2m . \  is an 
integer for all elements of the weight lattice. Therefore m

vis an element of the coroot lattice A^(G ), which is the 
lattice generated by the coroots aV of the dual group Gv of G. 
The coroots are defined by [84] aV = a/(a)2 for each a e 3?(G), 
the root system of G. For simply laced groups the coroot 
lattice is isomorphic to the root lattice, and with the 
conventional normalisation aV = a/2.

The non-Abelian monopole fields are, analogous to
(3.4.2),

= m.H(l - cos9)/rsin9 <P

A^ = -m.H(l + cos9 )/rsintj) (3.4.9)

rB = m.H—3~ r3

A particularly relevant class of theories with monopoles is 
one in which G -> KxU(l) (locally) by an adjoint Higgs with 
components parallel to a fundamental weight \  [86]. The
generators of K are those which commute with \  .H, not 
including .H which generates the U(l) subgroup of H . It can 
be further shown [85] that the stable monopoles are those for 
which m has component X^/2(\^)2 in the direction of the U(l) 
generator (this gives 2m.\ = 1 which is the lowest
non-trivial U(l) charge), and is in addition a short root of
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GV, short because the magnetic energy goes as J*(m2B2)d3x.
Note that these are identical to the conditions on the 
generator Q of the phase of the Higgs field in the phase 
string.

Let us now turn to the bead which appears in the symmetry 
breaking scheme G -> KxZ2 , where the Higgs is parallel to the 
weight 2\^> (see sections 1.3 and 3.3, and ref. [39]). Let 
the bead be centred at the origin on a string lying along the 
z axis. Since we are looking for monopole-type fields the 
appropriate coordinate system to use is spherical polars, 
notwithstanding the complications that appear at cosG = ±1. 
When 0 is small at sufficiently large r we may write

3? (<J>) = e*"^ 2 V * ( 3 . 4 . 1 1 )

and recalling the results of sections 1.3 and 3.3 there are 
two cases for q in Q = q.H if a is not parallel to \  . One 
is where q = a^/(a^)2 , and so there is some component on the 
Lie algebra of K, and one in which q = \^/2(\^)2. Let us 
consider the first case.

At large r the bead may be written

$  ( r  , 9 , <t> ) =  e i 't’Qe i 0 ( 9 ) T 2 ® o ( r , 9 )  =  g ( * , e ) ® 0 ( 3 . 4 . 1 2 )

where T2 = -i(E - E )//2 so that e = -Q. Thea, -a,<3?
2\(£> component of a?o must vanish at 9 = 0,n;. Presumably it 

will be energetically favourable to have 9 be as smooth a 
function of 9 as possible, so that 0(9) = 9. For finite
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energy the covariant derivatives of $ must vanish at large 
r, except around 9 = 0  and % where the string is, so if we 
write T3 for Q to facilitate later calculations,

= -T3(1 - F(r,0))/ersin© 

A0 = *.T(1 - G(r ,0 )) /er
(3.4.13)

where £ is a unit azimuthal vector in the space spanned by the 
SU(2) subalgebra generated by T3, T2 , and T1 = (E + E_ )//2.

The functions F and G differ from zero only in a small region 
of order m,̂ -1 from the string, so that as r ® they become 
'spikes’ with unit amplitude at 0 = 0 and % and their 0 
derivatives become

lim
X* -> cn

5F 5G 
50 *50 5 (0 71 ) 6 ( 0 ) (3.4.14)

The magnetic field is radial and given by

B = — l —x-fr̂ -(A sin0 ) r rsm0 ̂ 5 9 v <j> 5 4> A0 ̂ + ief A0 ,A<j> ̂ (3.4.15)

= ( 1 5 Fer2 sin 9 5 0 'It 3 (3.4.16)

This is just the field for two oppositely oriented strings 
along the z axis. Note the similarity of Â  and to the 
monopole solution (3.4.9): in fact we may identify Q with -M, 
so that this bead is like a G KxU(l) monopole with all its 
flux confined to the strings.
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Now let us consider the case where the generator of the 

phase of the stable string is parallel to X^.H, and the group
is such that a_ is in a different direction in the weight<3?
space. As indicated in section 3.2, in the bead solution q
must be parallel to a root in order that there exist a group 

inT1element e that conjugates q to -q. At z = ±» we expect
the string to reach its ground state which has no component of 
non-Abelian flux in K at the core, so that A^(0 *► 0,-n:) ~ X̂  .H. 
We might therefore expect that the difference between q and X̂  
’escapes' from the core and that there are long range fields 
away from the string. It will turn out that there is such a 
solution. Let us define «, the component of q in the Lie 
algebra of K, by

q = \# /2(\s )2 + k (3.4.17)

We can always add a term A(9)g(K.H)g_1/ersinG to A. without<P
affecting the covariant derivative of $, with a view to
finding a solution with the correct Aa near the string. We<t>
can calculate g(<.H)g-1 as follows: first note that

[k .H,T1] = iK.a^T2 

[ k .H ,T2] = -ix .a^T1
(3.4.18)

From this it follows that

e10T2K.He l9T2 = k .H + (k .cx̂ )T3 - K.a^(T3cos9 + T^sinQ)
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and therefore

g(K.H)g 1 = k .H + (tc.a^)(T3 - r.T) (3.4.19)

Now we can calculate the magnetic field of the bead which has 
gauge potentials

A = - C  ~ F> T3 + H d ) { K 'a 9 ) <b ersinQ ersinO (T3 - r.T + k .H 
< . a$

(3.4.20)
<t> ,T

A. = er (1 - G)

After a straightforward piece of algebra the result is

B_ = er
1___

"z"sin9"
fdA 
 ̂d9 g(<.H)g 1 + ^T3)5 Fr

50 (3.4.21)

From the requirement that at large r and as 9 tends to 0 and % 

the solution must look like a string with 
A = .H/2(\^)2ersin0, we have

\$ /2(\s )2 = q + A(0)k (3.4.22)

= -Q “ A(n)(K.as )[2q + < / (k . ) ] (3.4.23)

Equation (3.4.17) requires that A(0) = 1 in (3.4.22), and that 
A(iu) = -1 and k .oĉ  = 1/2 in (3.4.23). The contribution to the 
energy of the long range radial magnetic field is proportional 
to /d3 x( ̂ )  2/sin2 9 , and this is minimised and the boundary 
conditions satisfied for A(9) = cos0, and substituting this
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into (3.4.21) we see there really is a monopole on the string.
The condition 2(<.a^) = 1 gives us some information about k :
there are at most three simple roots of K which are not
orthogonal to , and we can find the coefficients k^ in an
expansion of k in these roots by minimising £k2, which appears

i
linearly in the magnetic energy. In particular, in S0(10) -> 
SU(5)xZ2 with a Higgs in a 126, corresponds to one of the 
fishtails in the Dynkin diagram of S0(10):

o--- o
a$

Hence if 0C3 is the simple root of 'the fork of the fishtail,
k = -03/2, which is a coroot of «.

In conclusion to this section, we have seen that there
are two answers to the question of the long range fields of
the bead in G *► KxZ2 • If the stable string has q = \^/2(\^)2
then there is no non-Abelian flux down the core of the string,
and if is not parallel to a root k will not be zero, and
the bead will look like a monopole of charge -k .H with two
strings attached. If, on the other hand, q is the shortest
simple coroot not orthogonal to , then the k component of

_2flux will be confined to the string and there is no r 
monopole-type field. This has relevance to a situation where 
there is an intermediate stage of symmetry breaking with an 
adjoint Higgs

G KxU(l) + KxZ2
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Then the stable monopoles after the first stage will have 
magnetic charges with some U(l) component and also a component 
in the Lie algebra of K, which is actually a root of the dual 
group Kv [87]. When the U(l) symmetry is broken to Z2 the 
Abelian flux must be confined in some way, either with the 
non-Abelian flux is left behind, leaving a monopole with 
charge k on the string, or with the non-Abelian flux taken 
along the strings as well. Which of the two actually is the 
case depends on the relative importance of the magnetic and 
Higgs potential energy; we see from (3.4.21) that the magnetic 
energy, = tr(B2)/2, is proportional to e”2, so in the limit 
«.e -► 0 we expect the minimising of to be the deciding 
factor. In that case any 'unbroken' flux will escape from the 
string and take up a spherically symmetric monopole-type 
configuration. On the other hand the Higgs potential energy 
of the solution goes as X-1 , so for sufficiently small X, q 
will align itself with a root and all the magnetic flux will 
be confined.

Finally, we note that the bead has a dyonic degree of 
freedom [92,73], exactly as might be expected from treating it 
as a monopole on a string. First, a brief summary of the 
properties of the dyon is in order. The dyon is a paticle 
with both magnetic and electric charge, and in a monopole 
solution the electric charge arises because it has a 
degenerate set of solutions related by global charge 
rotations, and motions in this manifold give the monopole a 
charge. This is entirely analogous to spatial translations, 
which produce a degenerate set of solutions parameterised by 
collective coordinates which are the position of the centre of
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the monopole, and motions in this manifold produce states 
which have non-zero 'charge' under the generators of the 
translation group, namely momentum.

Consider the 't Hooft-Polyakov monopole, which appears 
when SU(2) (generators T1, T2, T3) is broken by an adjoint 
Higgs $ to U(l), and whose fields can be written ■[14,89]

$ = (r .T ) f (r)

= (r*T) (l - F(r))/er (3.4.24)

A

S  = (r.T)|2(l - K(r))

The unbroken generator is Q em = r.T, and if we make a gauge
is:Qemtransformation which at large r is e we see that the

Higgs and magnetic fields at infinity are invariant,but the 
gauge potentials are rotated. This is a sensible collective 
coordinate for the monopole, because if we started with a 
widely separated monopole-antimonopole pair and cut the 
solution in two, rotated the monopole relative to the 
antimonopole, and glued it back together again, we would 
obtain a new solution which is not merely a gauge 
transformation of the old one [73]. If the monopoles have a 
long range non-Abelian magnetic field, the only H rotations 
that can be considered as a collective coordinate are those 
which leave the long range magnetic field invariant.

Let us suppose that the monopole is moving in this
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degenerate manifold of globally gauge rotated solutions so 
that e = e(t). We may write the fields in a gauge where all 
the time dependence is in Ao, so that

A° = i (at£)Qem (3.4.25)

Since Q depends on 0 and $, to avoid singularities at r = 0 
e must be a function of r and vanish at the origin. Hence 
there is a radial electric field, and the minimum energy 
solution for a particular charge is the dyon. When these 
motions are quantised a discrete spectrum of charged states 
results because the motion is in a compact manifold [73].

Exactly the same considerations apply to both sorts of 
bead, (3.4.13) and (3.4.20), which have a degenerate set of 
solutions generated by those generators of K which leave B 
invariant at large r but which act on A non-trivially. When 
all the flux is confined, as in (3.4.13), there may be 
complications with dyonic charge carried along the string, 
carried by massless bosonic excitations [26], but in the 
second case (3.4.20) where there are no bosonic zero modes we 
do genuinely obtain something that looks like a dyon on a 
string. We will see in the next chapter the importance this
has for the fermion zero modes.
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3.5 Beads in cosmology.

We have seen that beads can have magnetic charges, and 
the presence of these charges on an oscillating loop will 
produce dipole radiation. Let us assume as a best estimate 
that all the beads act as independently oscillating magnetic 
charges, so that if there are N beads of charge g on a loop 
size R, this radiation will dominate if

Ng2R2u)4 > 100G(i2 (3.5.1)

or, using g ~ e-1

N > (m-, /m )2 v loop7 p' (3.5.2)

Hence this is significant only for very small loops.
The presence of a bead on a string will not affect waves 

on it above a certain scale, as the forces on the bead will 
change slowly enough for its inertia not to matter. If the 
frequency of the string motion is R-1, then the bead will be 
undrgoing typical accelerations of R-1. If the angle the 
strings make at the bead is 0, then 0 will be small and the 
wave on the string little affected if

n/mb >> R"1 (3.5.3)

where m^ is the mass of the bead. If the bead is a monopole 
formed at an earlier phase transition then this equation gives 
the scale above which waves on the string are affected
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negligibly by the the bead. If ~ p,1/2, as for beads formed 
with the string, then this scale is just the width of the 
string, are the waves are never bothered by beads. There is, 
of course, always some interaction between beads and waves: a 
travelling wave will tend to carry a bead along with it, as 
one can easily convince oneself with a real bead and a real 
string.

How many beads do we expect per unit length of string? 
Suppose the beads are formed with the string. Then there will 
be of order one per persistence length along the string, as 
the Higgs field is uncorrelated beyond this distance. They 
will not necessarily be stationary, so they will move towards 
each other and annihilate, rather like two kinks. This 
process will be encouraged by waves on the string moving in 
opposite directions carrying the beads along with them, so a 
reasonable guess would be that there is always of order one 
bead per persistence length of string. Thus when loops are 
chopped off the network there will be a small (even) number of 
beads on each one. We have already seen that fairly soon 
after the phase transition the presence of beads does not 
affect the subsequent motion of the string network, and 
radiation from beads is insignificant. Thus the existence of 
beads on cosmic string will not radically affect their 
evolution and their ability to seed galaxy formation remains.
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CHAPTER 4: ZERO MODES ON NON-ABELIAN STRINGS
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4,1 Zero modes on strings

In section 1.6 the existence of fermion zero modes on
Abelian strings was demonstrated. As we have seen, the
structure of a string in a non-Abelian theory is more
complicated, involving more than one component of the Higgs
field, and it is by no means obvious that they should also
possess zero modes, nor is it obvious that such solutions,
should they exist, be superconducting. In this chapter zero

*modes on both phase and non-phase strings occuring in the 
breaking scheme G -*• KxZ2 will be investigated. This is an 
important class, because the Higgs that causes the breaking 
also gives Majorana masses to unobserved fermions, which is a 
vital ingredient in realistic chiral theories [3,4,5]. If we 
want to put chiral fermions in a fundamental representation of 
some compact simple Lie group there is always at least one 
extra fermion that must be given a large mass (for example, in 
S0(10) it is the right-h aided neutrino), so the Higgs 
representation must be contained within the symmetric product 
of two fundamental representations. Just such a Higgs 
produces the symmetry breaking under discussion. Recalling 
the results of previous sections and ref. [39], the Higgs 
field <£ lines up parallel to the weight 2X^>, where X ^ is a 
fundamental weight, and the string solution may be written

$(p,<j>) = e1<})Q( | 2̂  >f (P ) + | 0>a(P )) (4.1.1)

where Q 0> = 0, f(0) = 0, f(=°) = r\, and a(p) vanishes
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exponentially outside the string. The simple roots of the 
continuous part of the unbroken subgroup K are those simple 
roots of G for which a.\^ = 0. The unique simple root not 
orthogonal to is denoted , and satisfies 
2 a ^ , X ^ / ( a ^ ) 2 = 1. The SU(2) subgroup generated by T3 =
a,.H/(ct,)2, T2 = -i(E - E )//2, and T1 = (E + E )//2,

<£ <3?
where the H1 are the generators of the Cartan subalgebra of G 
and E^ are step operators satisfying [H^E ] = aXEa, does not 
leave |2\^> invariant and hence Q can be chosen from them. 
There are essentially two choices; Q can be in the Cartan 
subalgebra, so that if Q = q.H = T3 then ;q = a^/(a^)2, or Q 
can be chosen to be one of the other two generators, T1 say. 
If Q = T3 the Higgs field changes by a phase at infinity and 
the string is said to be a phase string

$  (p ><t>) 2 \ $ > f ( p ) e i,f’ +  | 0 > a ( p  ) (4.1.2)

If Q = T1 the behaviour at infinity is not a phase change, and 
we have the non-phase string

$  (p > <t>) ei‘t,Tl 2\j > f 1 (p ) + 0 > ' a ’ ( p ) (4.1.3)

where T1 0> = 0. This is gauge equivalent to

3 ^

<Sg(p,<t>) = e1*'1 el1tT /2( |2Xs>f ' (p ) + | 0> 1 a 1 (p )) (4.1.4)

It will be convenient to rewrite this in terms of eigenstates 
of T3 , for which we need to know the effect of T2 on the
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weights in (4.1.4). The generator T2 is composed of step 
operators, and we know that

E 2 \ , >  = Ni 2 \ , -  a , >-a, <±> 1 <3? §<3?

(E_„ )2 2Xfl> = N2NX 2XS - 2^> (4.1.5)

(E_a )3|2X®> = 0

This last follows because the length of the a^ string throug h 
2\^ is 2a^ . (2\^)/(a^)2 = 2. Hence the three weights |2\^>,

- a^>, and 2\^ - 2a^> form a triplet representation of 
the SU(2) generated by the T1 (i = 1,2,3), with T3 eigenvalues 
+1, 0, -1 respectively. In a notation following Everett and
Aryal [76] we can write them as symmetric matrices <t>i 
(t>_i , in which case

, <j>0 , and

<£(°°,0) = [(4>i+ <t>_i)/2 + 4> o / 2 ] r)

Thus the phase string in this notation is

(4.1.6)

$(p,<t>) = ei<J) (j> i f (p ) + <|>o a (p ) (4.1.7)

and the non-phase string is

<̂> (p , 4>) = ei(̂ T [(4>i + 4>-i )/2 + <t>o//2]f' + 0 a 1 (4.1.8)
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with. f ' (0) = f (0) ; f'(») = n = f(»); a'(0), a(0) f  0, 
a' (°°) = 0 = a (®).

In section 4.2 we shall consider the phase string, which 
is not gauge equivalent to the antistring and which can 
therefore support beads, and we shall find that the zero mode 
solutions are more complicated than in the Abelian string [26] 
because of the role played by the zero eigenvector component 
a(p). In particular we will see that particles and 
antiparticles can travel in opposite directions when excited 
by an electric field, and the consequent annihilations 
effectively cause the string to have a resistance. In section
4.3 non-phase strings will be considered, where there is a set 
of gauge transformations taking the string continuously to the 
antistring, and it will emerge that although there are zero 
modes they cannot support an electric current. In section 4.4 
we will discuss what happens when fermion zero modes encounter 
a bead, and it will be shown that there is an effect analogous 
to the Callan-Rubakov effect [28,73] in which the fermions can 
change quantum numbers and leave the string. In the final 
section some remarks about the cosmological implications of 
superconducting zero modes and beads will be made.

4.2 Fermions and phase strings.

In this section the discussion of section 1.6 will be 
generalised to fermions in a non-Abelian string background, in 
particular we consider the phase strings in the class of 
theories G + KxZ2 • The fermions are in a fundamental
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representation R with highest weight , while the Higgs field 
is in the symmetrised product of two R's and is parallel to 
the highest weight 2X^>. The fermionic part of the
Lagrangian is then

—1 rr ’ y . ( £ eA)Yl.r - g(T 1^>Tr + h. c .) (4.2.1)

where y5Y^,r = +Y^,r. The group transformation laws are ■*
%  = g$gT , Y1 > g(T1) = gY1, and YP ■> S(Yr) = (gT )”1Yr. In
order for there to exist a right handed spinor transforming
this way, either R is real or pseudoreal, or if R is complex
then Yr = (Y^)c. The conjugate spinor is defined from Y by Yc 

—T= CY , where C is the charge conjugation matrix. In fact the 
supposed chirality of nature indicates that in realistic 
models R will be complex, but we shall not impose this 
condition yet.

As usual we will take the string along the z axis so 
that $(p,(j>) = <J)i f (p )ei(̂ + <j>oa(p) and A^ = 6 (J)Q(F(p) - l)/ep . 
The fermi fields have expansions in weights of G

Y 1>r - l <K1,r x > (4.2.2)

We only need consider those weights for which <\ ' 4>i,o X> does 
not vanish, for it is these components of the fermi field 
which are confined to the vicinity of the string. The highest 
weight of the fermion representation is X^>, the next is 
X -a*>. These are the only two weights which can be combined 
to give non-zero inner products with |2X^> and 2X^- a^>, and



94
^ihey form an SU(2) doublet with eigenvalues ±1/2 under 
a^.H/(a^)2. The Lagrangian for these two components is then

c|l’rY.(id + eA/2 )(J;̂  ’r

- g[ f (P )e1<1>4>^^ + a(p ) cJj + a*(p)4>Lr+ + h.c) (4.2.3)

The equations we have to solve to find the transverse zero 
modes are, for c|>̂

Y 1 ( i8 ,■ - e A + g(f(p)ei<t>.+ + a(p )4>r ) = 0

Y 1 ( eAi /2)<Pi

(4.2.4)
+ ga (p H +  = 0

pwhere i = 1,2, and there is another pair for <p with 4>
*replaced by -<J>, and a by a . Note that applying y°y3 leaves

1 r 1 rthe form of the equations unaltered, so that if (cp , ' ,<|> ’ ) is
*T* —

a solution then so is y ° y 3 (<|> + ,r ,4;^, r ) • We may therefore 
resolve the solutions into eigenstates of y°y3 , which meatfs 
for fermions with y 5 = X that i y 1y 2 = X y ° y 3 . Let the 
eigenvalues of i y ^ 2 on be \i (p. = ±1), in which case 
equations (4.2.4) become

ly * e1 ip<{>( 5
dp + iH P §  eA + g(fe1(|)̂ ^ + a.*Z) = 0

(4.2.5)
. i iat}) r 5 iyie1 v S p

. • u d n. . > . 1 , * . r
+ ^  + 5 eA<t>- + <- + = 0
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1 rThese can be further simplified by defining spinors x + ’ as 

follows

= exp(±^ /dp 'A. (p 1 ))ell±4) x +
0

(4.2.6)
= exp(±^§ /dp'A. (p ’ ))e±I±ir, <b 1

where 1+ and r+ are integers to be determined. Equations
(4.2.5) then become

. i i (p. + l + )<t>f5 1^  e + (jp -  )x+

+ g( f (p )ei(l + r + )<t> r , a, NQpR(p)„rair_X + + a(p)e' I J-I r\
X e = 0

(4.2.7)
. i i(n + 1 _)<t> r 5 1 , , x -iiR(p) r ir+<{> _ n1Y e > x -  Sa(̂ P)e X+e - 0

wher e

R(P) = Jdp'eA (p’)
0 <b

(4.2.8)

At large p, R(p) -> -lnp and at the core, since F(p) ~ 1 - cp2 , 
R(p) ~ -p2(ec/2). If we take into account the other two 
equations we obtain 6 equations in tiue 4 unknowns 1+ , r+ :

(i + 1+ = 1 + r+ = r
|i + 1 = r ,

p + r+ = -1 + 1+ = 1
(4.2.9)

= 1+\i + r
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If ll = +1, then 1, = r, = 0  aid -1 = r =1, whereas if-r + — —

1 rp. = -1, then 1+ = -r = 1 and 1_ = r_ = 0. Since %+ and x +

are eigenvectors of iŷ -y2 with eigenvalues + \i and - \ i

i 1 r 1respectively it is clear that iy x+ « x + • In order that y+ be 
an exponentially decreasing (rather than increasing) function 
at large p the constant of proportionality must be unity, and 
equations (4.2.7) become

(5_dp
+

2p J

(1 + lOi
2p J

X+ +  g ( f ( p ) x +  + a ( p  ) e M'R ^ p 

x]_ + g a *  (p ) e “ ^ R ^ p ^x \  = 0

0

(4.2.10)

At large p, c|>J ~ p“1/2, so that as they stand these solutions 
are not normalisable. We can interpret this as meaning that 
the (p_ fermion is not bound to the string, although this state 
of affairs can be remedied with another Higgs field, as we 
shall shortly demonstrate.

Let us therefore consider the behaviour of the solutions 
as p -> 0. We may drop the labels l,r so that

lim = A+ p + (4.2.11)
p-* 0

Substituting into (4.2.10) we conclude that in order to avoid 
singularities at the origin in the solutions
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n - 1 = n+ = 0 (n = +1)
n , - 1 = n = 0*r — = -1)

We can also obtain relations between A+ and A_

A_(n_ + 1) + ga* (0 )A+ = 0 (\x = +1)
A+(n+ + l) + ga(0 )A_ = 0 (jx = -1)

All this information is summarised in TabLe 4.1 below.

Table 4.1

Note the importance of the non-vanishing component of $ at the 
origin: if a(p) were to be everywhere zero, as would be the
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case if Q * .H (the one considered by Witten [26]) the
equations for 4>+ and 4;_ would decouple. For \i = +1, 4>_ would
obey iy1 (5 + p-1 )cl_ = 0 as p 0 and so go acs p-1 , and
similarly <\> for \i = -1. The normalisable mode has \i = +1 and
has a (\) , component only: this is Witten's result that there ±p. s

only one zero mode for a pair of chiral fermions gaining mass
from the string Higgs field. On the other hand, when there is
a classical Higgs field at the core of the string coupling the

1 r 1 rzero mode pair c|> * to another pair 4j_’ which are massless at 
the normalisability of the solution is destroyed. This may be 
interpreted as the large value of the Higgs field at the core 
promoting decays of the form <j> $(j>_ and the escaping to
infinity. Thus true zero modes in this case require an 
additional Higgs to bind 4>_ to the string. This can be done 
by arranging a coupling with constant g' to a Higgs which 
gains a vacuum expectation value n ' in a component 
transforming as <|> (|> . This then modifies the second of the 
zero mode equations (4.2.4) by the addition of a term 
g'f'(p)e so that the large p behaviour of cj* becomes
p_1/2e-  ̂ ^ p which is clearly normalisable.

Given that we have two normalisable zero modes with 
opposite values of p, let us now turn to their motion in the z 
direction. They obey

i ( Y ° a t - Y 3 9 2 )4'± = o (4.2.12)

so bearing in mind that cj;+ are eigenstates of y°y3

(9t + ^ z )4>± 0 (4.2.13)
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Hence the two zero modes travel in opposite directions at the 
speed of light. When there is no Q = 0 Higgs coupling 4>+ to 
(\>_ at the core the zero modes are pure (with p = +1) 
travelling in the +z direction and pure (with p = -1) 
travelling in the -z direction. If there is such a coupling,
i.e. a(0) f  0, then the travelling modes must be a mixture 
of cp. , b and $."T —

Note that under certain circumstances, for example in
1 rS0(10) where is the left handed antineutrino, <\>+ is

actually the conjugate of 4>̂ , so that this component gains a
Majorana mass from the Higgs field $. The relation between
the spinor and its complex conjugate means that it must be a
real function of (.t - pz), but since in realistic theories b +
is uncharged this has no bearing on the superconducting
modes.

This discussion is best illustrated with an example such 
as S0(10), based on one considered by Witten but with a 
different Q [26]. The left handed fermions lie in a _16_ and 
the Higgs's in a 126, a 45, and a lj). The § 1 2 6  breaks S0(10) 
to SU(5)xZ2 giving the right handed neutrino a mass, and the 
broken SU(2) is the right handed isospin subgroup with 
generators T^ (i = 1,2,3). We can therefore identify with 
the left handed antineutrino and with the left handed 
positron. In addition there are three other right handed 
isospin doublets consisting of the left handed anti-up and 
anti-down quarks, but these do not couple to the component of 
the <3? 126 which gains a vacuum expectation value and so at this 
stage they are not bound to the string. Let us label the
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^simple roots ai,...,. as and identify them on the Dynkin 
diagram as follows

o---o----ccai a2 a
ai+

«5

Thus T3 = as.H/Cas)2 and ^126 = 2\s>ri. The Dynkin diagram of
the SU(5) subgroup is just that made up of to a4 . 
Conventionally, SU(5) is broken to SU(3)xSU(2)^xU(1)y by the 
adjoint Higgs parallel to \3«H, where are defined by
(1.3.3), so that the left handed isospin group is generated by 
T2 = a i , . H / ( a k ) 2 , T2 = - i ( E „  - E„ )//2, andX (Zl| (Il|

T1 = (E + E )//2. No fermions get masses at this stage,
ait -ait

and since [T3,^3.h ] = 0 the <£45 does not change around the
string. Finally the Higgs SU(2)^ doublet that gives masses to
the electrons and quarks is contained in the 10_ of S0(10).
This doublet has T3 = +1/2 which can be seen as follows. Ther
elements of the Cartan subalgebra of SO (10) can be written as 
( a 2 / 2)*m , where M is a diagonal 5x5 hermitian matrix. The 
generators a^.H correspond to M = diag(1,-1,0,0,0), 
diag(0,1,-l,0,0), diag(0,0,1,-1,0) , diag(0,0,0,1,-1), and 
diag(0,0,0,1,1) respectively, and so the SU(2)^ Higgs doublet 
in question is ((t)-1-)̂  = (1, i)x (0,0,0,1,0) and (<|>0 )T = 
(l,i)x(0,0,0,0,l) which clearly has T3 = ±1/2 and T3 = +1/2. 
The component <t>° has the SU(5) quantum numbers of the left 
handed neutrino, and gains a vacuum expectation value of r]' at 
the electroweak scale. However, if there were a string 
present, this component of the <j>io would change phase by 
ei / 2 arounc} ^  and hence not be single valued. Clearly, some
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modification to Q is required in order to make the phase 
change around the string an integer multiple of 2it, subject to 
the condition that tr(Q2) be as small as possible to minimise 
magnetic energy. As it stands the lowest energy solution is 
to make 4)0 invariant under the new phase generator, which we 
can call Q', in which case tr(Q'2) is minimised for

Q' = (a2/2)x[(l,l,l,l,0)/2] = 3Qem/2 + T2 + T2 (4.2.14)

In this case there is no phase change in 4>iq around the string 
and it remains at its vacuum value all the way to the core. 
Hence there can be no quark and lepton zero modes. 
Interestingly though, there is some electromagnetic flux 
running along the string even though electromagnetism is 
unbroken. In order to get quark and lepton zero modes we 
could follow Witten [26] by including an additional Higgs in 
the 210 and arranging the couplings so that a neutral 
component with = T2 = 1/2 gains a large expectation value 
at the core of the string. Alternatively, we could arrange 
couplings between the 126 and the _10_ such that the charged 
component of the SU (2) ̂ Higgs doublet, <J> + , gains a large 
expectation value at the core. Either way, it is 
energetically favourable for

Q' = (a2/2)x(0,0,0,0,2) = (4.2.15)

and so the neutral component <t>° changes phase by 2n around the 
string. Hence in an obvious notation (<t>+ , <j>0 ) =
( a' (p ) ,f ' (p )elĉ) , and from equations (4.2.12) we can write 
down the equations for the analogues of the x's.
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(|j* + ----p- — '■) u + g'(f’(p)u + a,(p)ep,R ^ d )  = 0
(4.2.16)

+ -1- -p  ̂̂ ) d + g'(f'(p)d + a'*(p)e_pR ^ u )  = 0

where for convenience we have ignored the fact that u and d 
have different couplings to the Higgs field. In view of the 
above discussion we see that these equations possess 
normalisable solutions with both p = +1 and p = -1, behaving 
aps p_1/2exp(-m p) at large p, so there are u and d quark modes

q.

travelling in both directions on the string.
Now we turn to the question of whether these modes are 

superconducting. If the discussion of section 1.6 were to 
apply, we would expect an electric field to excite u and d 
quarks travelling one way and d and u travelling the other. 
However, there is now the possibility of particle-antiparticle 
annihilations which will make the current relax to zero.
Hence the string is not superconducting and in effect has a 
resistance, a conclusion which generalises to any phase 
string with a Higgs field at the core coupling the zero modes 
together.

We can estimate the energy loss per unit length due to 
this process as follows. The annihilation cro'ss-section for 
two massless particles heading towards each other on the 
string is given roughly by

a (k + k ') /d2xcp+ (p — 1)4» (p —  1) 2e^/(k + k')2 (4.2.17)
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where the integral represents the overlap between the 
oppositely travelling modes, which couple to a radiation field 
with z component of angular momentum equal to 1. From Table
4.1 we can estimate its value to be about g'a’(0)w, where w is 
the width of zero mode. Let us define C = g,2w2 a’(0) 2. If 
dk and dk ’ are the number densities per unit length and wave 
number interval then the annihilation rate per unit length is

d2N/dtdz ~ //dkdk'cr(k + k ’)/w2 (4.2.18)

If the fermi seas are filled to a momentum k^, the rate of 
energy loss per unit length is

ds/dtdz ~ //dkdk'(k + k')cr(k + k')/w2

^ ' 2 a' (0)e g (4.2.19)

The energy per unit length in the zero modes is about k^2, so 
there is a characteristic time u for the decay of any current 
J ~ ek^ of

t ~ k^/el+g,2|a'(0) (4.2.20)

Now, I a1 (0) is typically 0(r) 1 ) so even for a large current 
with k_£ = O(ri') the relaxation time is about 10“17 seconds. 
We can estimate what the fermi momentum is by equating the 
rate of increase of energy in a loop of size R (>> ri T~1 ) , 
which is eE, to the energy loss. This implies
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kf ~ E/Re3Ti'2 (4.2.21)

For realistic electric fields generated by motions through 
galactic magnetic fields, E << n2 , and this and therefore the 
energy loss are clearly negligible. Hence we conclude when 
there is component of Higgs at the core of the string coupling 
oppositely travelling fermions together, there are no 
significant currents on the string. Recalling (4.2.15), we 
see that in S0(10) with quarks and leptons bound to the 
string, the charged component of the Higgs elctroweak doublet 
must be non-zero at the core, so these S0(10) -* SU(5)xZ2 
strings are not superconducting.

Note that if quarks and leptons are not bound to the 
string it can be superconducting because of the charged 
component of the $126 a"t the core, but the maximum current 
will be limited to about 0.5 MeV by decays into electrons and 
neutrinos.

This has been a rather complicated section, but it is 
possible to draw some conclusions together. A simple phase 
string in G -> KxZ2 with just one Higgs field does not have 
normalisable zero modes if the Higgs field does not vanish at 
the origin, because a component of the fermion field behaves 
as p“1/2 at infinity. If there is a further stage of symmetry 
breaking in which this fermion gets a Dirac mass there two 
possibilities. Firstly, if it energetically favoured that the 
second Higgs field does not change phase around the string, 
there may be a bosonic superconducting mode carried by the 
first Higgs at the core of the string if this component is 
charged. The current carried by this mode is limited by the 
decays of Higgs into fermions. On the other hand, if the
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second Higgs field does change phase around the string, the 
fermion 4>_ (and some others consistent with anomaly 
cancellation in the effective two dimensional theory on the 
string) will be trapped on the string. The string will only 
be superconducting if there is no possibility of particles and 
antiparticles travelling in opposite directions on the string 
so that they annihilate. We have seen that when there is a 
component of the Higgs field at the core which couples 
oppositely travelling modes together, then just this situation 
results. A particular example was the string in 
S0(10) -*■ SU(5)xZ2 with quark and lepton zero modes.

4.3 Fermions and non-phase strings.

In this section we shall repeat the clculations of the 
last section to show that there are travelling zero modes on 
the non-phase string. However, when we go on to consider the 
response of the solutions to the application of an electric 
field, we shall see that the situation is complicated by the 
fact that Q and Qem need not commute, and this destroys the 
superconductivity. Let us again consider the string along the 
z axis, and for a non-phase string the background fields can 
be written (4.1.8)

®(p,4>) = [( e 1 **! + e — 1 * <J) _!) f (p ) /2 + <t,0 (:>i(p )//2 + a(p))]
(4.3.1)

A p = W 3(F(p) - l)/ep

Note that the functions f, a, and F will be in general
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different than those, in the last section, although the

1 rboundary conditions are the same. Writing 4>+ ’ for the 
fermion SU(2) doublets under T3 , the Lagrangian becomes

/ f  = ,rY . (ia + eA/2)<J)̂  ,r

- |gf(p)(e1‘l>̂<t)̂  + (4.3.2)

- g( (a(p) + f(p)//2)4T^^ + (a*(p ) + f (p )//2)Ij7l|̂ ) - h.c.

The equations of motion for the transverse zero modes are 
(for <J>̂ and 4>̂ )

- e A i /2)<l,^ + |g f (p )ellt>(l,̂ + g(a(p) + c|/ = 0
(4.3.3)

Y1(iai + e A i /2)<(,^ + |gf (p )e-l4,4>f + (a*(p) + = 0

The other two are obtained by the replacements 1 - r, a ~ a , 
and <j> - -<|). Repeating the steps (4.2.4) to (4.2.10) we arrive 
at

(■ h + ( 1  2pP’)' h l  + | g f x+ + g ( a + f / v ^ e ^ V  = 0

(4.3.4)
(§£- + + | g f x l  + g ( a *  + f//2)e-,lRx^ = 0

1 r 1 rIt is clear that as p ■> ® x + * and x _ ’ are equal and vanish 
as p-1 / 2 exp(-gr)P) for both p = +1 and p. = -1, and since f 
vanishes as p or faster at the origin, the p -> 0 behaviour is
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îhe same as in the last section. Hence we have two 
normalisable zero modes, with \i = ±1, as summarised in Table
4.2 ’.below. Note that N = 1 + 1/V2.

Table 4.2

Form of solution p -> 0
behaviour

P  -> co

behaviour

( 4  = + 1 )

1-----------------------1------------------------

4  + ( p , <t>) ~  e R//2*  + ( p  ) A p - 1 >2 e _NgT,p

4^_ ( P , 4>) ~  e - R / 2 x _  (p ) e _i<^
_ ( £ a ! i 0 i A ) p p —1 / 2 e “ Ngr)p

( p  = - 1 )

^  + ( p , 4 > )  ~  e “ R^ 2 x + (p ) e i(J)
_ ( g a ( 0 ) A ) p p - l / 2 e -Ngl l p

4 * _ ( P > ) ~  e R^ 2 x _ ( p  ) A p _ i / 2 e - Ng n p

Now let us consider the t,z dependence. In the absence of any 
other fields we just have

i(y0dt- Y3azH ± = 0 (4.3.5)

or
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(5t + n5z) = 0 (4.3.6)

and there are zero modes travelling in opposite directions.
Now we ask if these modes are superconducting. There is a 
real difference to the phase string, because the generator of 
the azimuthal dependence of the string Higgs field, Q, does 
not necessarily commute with the electromagnetic charge 
generator Qem» A non-commuting example is SO (10) SU(5)xZ2 
in the gauge where Q = T1 =(Ea^+ E_ )//2 and Qgm is diagonal.

Here, Q = (on + 2a? + 3a3).H/3, so [Q ,Q] = -iT2. A 
commuting example is Eg -► SO(10)xZ2 with the simple root 
assignment

ai «2 
o--- o- a 3 a 5 <*6

In this case Q = T1 = (E + E )//2 and [ Q ,Ql = 0.
a s  - a s  L e m ’ J

Now T1 is not diagonal, so if [Q ,Ql vanishes then Q 
is zero in the blocks where T1 is non-zero. Hence the 
fermions, which fall into doublets under T1, are uncharged and 
the zero modes are not superconducting. If Qem does not 
commute with Q, then the bound doublets are not eigenstates of 
the electromagnetic charge operator, and Qem is also a 
function of <j). In the gauge Ao = 0 the t,z equations of 
motion are therefore

(5t + ^az H ± = -i^eAzQ e m ^ (4.3.7)
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However, QemclJ+ are now linear combinations of eigenstates of 
T1 , which are different functions of p and 4> , with 
coefficients depending on <j>, and equations (4.3.6) cannot be 
satisfied for all p and <j) . Hence the separation into 
transverse coordinates and t,z is no longer valid when an 
electromagnetic field is applied; in effect the zero modes are 
destroyed by the field. Hence we conclude that non-phase 
strings are not superconducting.

4.4 Fermion zero modes and beads.

In this section we investigate what happens when a 
fermion trapped in a superconducting zero mode encounters a 
bead. Recall that these modes can occur only when oppositely 
travelling fermions are not coupled by a Higgs field at the 
core of the string. We may write the bead fields at large p 
as

$($,z) ei<})Qeix(z)T 2 ^ > n (4.4.1)

The generators Q and T can be identified with the generators 
T3 and T2 of the broken SU(2) subalgebra in G KxZ2 , and this 
may be rewritten in terms of the eigenvalues <j> + i , <j>o , and <j>__i 
of T3 a"s

^(4>>z) = [̂ -(e '^(cosX + 1)<!>i + e '^(cosX - 1)4>_1)
sin* . i 

~ 1 ~/2 (4.4.2)
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We can see explicitly how the string turns into an antistring 
as cosx goes from 1 to -1. Bearing in mind the results of the 
last two sections the equations of motion at large p for the 
two spinors x + defined in equation (4.2.6) can be written down 
immediately.

(I? + + |gn(cosx + i)xl = o
(4.4.3)

(|p- + + |g^l(cosx - l ) x l  = 0

Hence the large p behaviour for both p = +1 and -1 is, 
neglecting powers of p ,

X+ ~ exp(-gn(cosx ± l)p/2) (4.4.4)

The results of section 3.2 indicate that we can expect cosx
behave like tanh(m z): at any rate, there will be a region ofs
order m^1 outside which cosx differs very little from +1 oro
-1. Thus well away from the bead in the +z direction <\>_ is 
effectively unbound (but still normalisable) while c|> is 
confined to the string, whereas the situation is reversed for 
negative z, where is bound to the antistring. Conversely, 
for the antibead, which interpolates between antistring at 
z = +co and string at z = -®, with Higgs field $ given by

§ e-i*QeixT 2 ^ > n$ (4.4.5)
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4>+ is bound to the string when z is negative. Now, the t,z 
dependence is determined by equation (4.2.13),
(d + 5̂ )(J> = 0, so the \i = +1 solution moves in the +z

u Z  *

direction. Let there be a 4>+ zero mode travelling along the 
string from negative z towards the antibead at z = 0. At 
large p the fermion wavefunction behaves as

<l>+ ~ e ik t̂ “ z ̂ p-11 2 exp( gn (cos* - l)p/2) (4.4.6)

so that upon passing through the bead cos* -► 1 and the fermion 
is effectively unconfined, and can be scattered off the 
string. Note that cj> is no longer massive at positive z, 
because the direction of symmetry breaking has been rotated by
inT : it is now the <\> component which, is bound to the string,

with \l = -1. In fact, the whole Cartan subalgebra has been
iuTconjugated by e , because if $ = g(<j>,z) 2\^>n its little 

group is the little group of 2\^> conjugated by g(4>,z). This 
means that 4>+ (z -* ) has the same quantum numbers as
4>_(z ->-<=) (and vice versa); suppose Y is some generator such 
that at z = +®, Y<l> + = y+4>+ , then at z = the quantum numbers 
are given by the eigenvalues of

(4.4.7)

Now cf;+ have eigenvalues ±1/2 under Q, and using the SU(2) 
inT 2property e 4; + « 4», we find that at z = -®

Y(z = - ® H ± = y_ ch± (4.4.8)
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Thus we can interpret the wavefunction (4.4.6) as being a 
particle which changes its quantum numbers at the bead and 
becomes unbound. This is reminiscent of the Callan-Rubakov 
effect [28,73], whereby fermions scattering in a j = 0 channel 
off a monopole exchange charge with its dyon degree of freedom 
[92].

. Now suppose there is another stage of symmetry breaking 
caused by another Higgs $' gaining a vacuum expectation value

—  cr * •n * nof t] 1 , at which <|>_ gains a mass g'n* and behaves as e at
large p and large z. (Note that for the modes to be 
superconducting must also vanish at the core.) This Higgs 
will be a function of z as in equation (4.4.1),

®'(<t>,z) = [tt( e-1'*’ (cosx + 1)4> J-1 + ell*’(cosx - l)4>f)
d>o]n' (4.4.9)

(The Q = -1 part is non-zero at vz = because it is giving 
<\) , with Q = -1/2, a mass.) Taking into account the coupling 
of the fermi fields to both Higgs's the behaviour of the 11 =
+1 and -1 solutions at large p in the bead background will be

<i>+ ~ e“ik  ̂t“Z')p“1/2ex.i{-(gTi(cosx+l)-g,ri ' (cosx-l)]p]
(4.4.10)

_ ~ e"ik('t+z  ̂p_ 1 ' 2ex.p[-( g 'n ' (cosx + 1 )-gii (cosx-1)) P ]

respectively. Recalling that the quantum numbers of c|> and 
are interchanged either side of the bead, it makes sense that
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.Alhe coefficients in the exponents should also be 
interchanged.

The \x = -1 solution might be reflected by the bead into a 
\i = +1 solution but the amplitude for this process is down by 
0(e2) on the transmission amplitude. Thus we can conclude 
that when <\>+ and zero modes interact with a bead they are 
most likely to pass through and interchange quantum numbers. 
There is a small probability of reflection, but this must 
also change a 4> + mode into a <J>_ mode (or vice versa) . This 
may lead to one of them leaving the string if it has momentum 
greater than g'n'*

Now, conserved charges cannot just disappear. If, for 
example, 4> + and _ have different electric charge then the 
difference must be transferred somewhere when the mode passes 
through the bead. We saw in the last section that the bead 
may indeed have charge degrees of freedom, so in order for 
charge to be conserved the interaction of the zero mode with 
the bead' must excite it into a charged state. We might call 
this a Callan-Rubakov effect for beads on strings.

4.5 Superconducting zero modes in cosmology.

In the work by Chudnovsky et al. [24], it was shown how a 
superconducting string might become observable through shock 
heating of the surrounding plasma or perhaps by synchrotron 
emission. Another electromagnetic process which might lead to 
observable effects is radiation by large currents flowing in 
the string. Here we investigate under what conditions this
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might become important. An oscillating loop of radius R 
carrying a current J will emit magnetic dipole radiation at a 
rate given roughly by the dipole formula

E ~ - ( t cJR2 )2oo4 (4.5.1)

where (it JR2) is the magnetic dipole moment if the loop were 
circular. Since w ~ R_1 we find that this will be more 
important than gravitational radiation if

J2 > 10 OG |i2 (4.5.2)

Given that J is limited by a mass gn, and \i ~ r \ 2 , we fin.a

g > 10(Gp)1/2 (4.5.3)

If the current carriers are fermions, a typical value for g 
would be 10~3 . Hence if G\i < 10“8 magnetic dipole could 
conceivably dominate gravitational radiation if the current 
could somehow attain its maximum value. Of course, motion 
through a magnetic field is required to create a current in 
the first place. Little is known about primordial fields, 
but it is usual to assume that large scale fields appeared 
with the formation of galaxies. If a string moves a distance 
d through a coherent galactic magnetic field Bq it will pick 
up a current [26]

J ce2Bg d/h (4.5.4)
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which for a typical galactic distance of 104 pc ~ 1020m is 
about 1014 amps. It is difficult to imagine how larger 
currents could be generated, so realistically dipole radiation 
can only dominate for

G\x < 10"1 (J/mp) ~ 1CT11 (4.5.5)

This field will dominate the galactic magnetic field out to a 
distance given by

\ i 0 J  

4TZT > io- 10 T (4.5.6)

A loop of size R can pick up a current J ~ 1012(R/1018 m) amp, 
(see equation (1.6.19)) so the magnetic fields of the loop 
dominate out to

r/R < 10-3 (4.5.7)

so even for a 104 pc loop the effects due to its magnetic 
field could only be observed out to about lOpc from the string 
[26].
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4.6 Conclusions.

In Chapte.r 2 the evolution of a system of strings between 
the time of its formation at a second order phase transition 
and the time when friction in the surrounding medium becomes 
unimportant was investigated. It was shown that if the 
initial correlation length of the Higgs field were too small,
i.e. if the quartic coupling constant were too big, then the 
universe could become string dominated soon after the phase 
transition. The decays of small loops into heavy bosons 
during this time could provide the out of equilibrium decays 
necessary to generate baryon asymmetry if G|i > 10”16. Once G|i 
reaches 10~12, though, the bosons can be stable enough for the 
bosons to last a few expansion times after the phase 
transition before decaying, and this mechanism is more 
effective.

Chapter 3 presented the bead, which appears as an 
interpolation between string and antistring in a theory with 
Z2 strings such as G KxZ2 . The bead can be thought of as a 
monopole on a string, and, depending on the theory, some or 
all of the monopole's flux can be confined to the string. It 
was shown that beads need not radically affect the 
conventional string scenario.

Finally, in Chapter 4, fermion zero modes on non-Abelian 
strings were examined, taking into account the possibility of 
having a Higgs field at the core of the string coupling
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oppositely moving fermions. It was found that 
superconductivity was only possible if this core field 
vanished. If superconducting zero modes encounter a bead they 
can exchange charge in a process similar to the Callan-Rubakov 
effect. A brief discuusion of some cosmological consequences 
of beads and zero modes was given.

An important question remains to be answered: under what 
conditions do beads appear on a string? It has been pointed 
out [76] ..that there are string solutions which are gauge 
equivalent to antistrings, but it remains to solve the coupled 
non-linear partial differential equations in order to find the 
values of the coupling constants for which this is the most
stable string.



118

REFERENCES

1. S. Weinberg, Phys. Rev. Lett. 19_, 1264 (1967);
A. Salam in Elementary Particle Theory-, ed. N. Svartholm 
(Almquist & Forlag, Stockholm, 1968);
S. Abers & B.W. Lee, Phys. Rep. 9C, 1 (1973).

2. H. Fritzsch, M. Gell-Mann & H. Leutwyler, Phys. Lett.
74B, 365 (1973);
S. Weinberg, Phys. Rev. 2 8_, 4482 (1973)

3. H. Georgi & S. Glashow, Phys. Rev. Lett. 3_2, 438 (1974)

4. H. Fritzsch & P. Minkowski, Ann. Phys. (NY) 93_, 193
(1975) .

5. F. Gursey, P. Ramond & P. Sikivie, Phys. Lett. 60B, 177 
(1975)

6. P.W. Higgs, Phys. Rev. Lett. _13, 508 (1964);
T. W.B. Kibble, Phys. Rev. 155, 1554 (1967).

7. S. Weinberg, Phys. Rev. D9, 3357 (1974);
L. Dolan & R. Jackiw, Phys. Rev. D9, 3320 (1974);
D.A. Kirzhnits & A. Linde, Ann. Phys. (NY) 101, 195
(1976) .

8. For a review see, for example, S. Weinberg, "Gravitation 
& Cosmology" (Wiley N.Y., 1972)

9. A.H. Guth, Phys. Rev. D23, 347 (1980);
A. Albrecht & P. Steinhardt, Phys. Rev. Lett. 48_, 1220
(1982);
A. Linde, Phys. Lett. 108B, 389 (1982).

10. A. Linde, Rep. Prog. Phys. 42, 389 (1979)



119

12.

13.

14.

15.

16.

17.

18.

19.

2 0 .

21

22 .

11.

23.

S. Hawking, Phys. Lett. 115B , 175 (1982);
A. Guth & S-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982);
A. Starobinski, Phys. Lett. 115B , 175 (1982);
J. Bardeen, P. Steinhardt & M. Turner, Phys. Rev. D28,
679 (1983).

Ya. B. Zel’dovich, I. Yu. Kobsarev & L.B. Okun, Sov.
Phys. JETP 40, 1 (1975).

T. W.B. Kibble, J. Phys. A9, 1387 (1976).

G. 't Hooft, Nucl. Phys. B79, 276 (1974);
A.M. Polyakov, JETP Lett. 20, 194 (1974).

Ya. B. Zel’dovich, Mon. Not. R. Astron. Soc. 192, 663
(1980) ;
A. Vilenkin, Phys. Rev. Lett. Jt6, 1169 (1981);
A. Vilenkin & Q. Shafi, Phys. Rev. Lett. 5_1, 1716 (1983);
J. Silk & A. Vilenkin, Phys. Rev. Lett. J53, 1700 (1984).

N. Turok, Phys. Lett. 126B, 437 (1983).

N. Turok, Nucl. Phys‘. B242, 520 (1984).

N. Turok & R. Brandenberger, Phys. Rev. D33, 2175 (1986).

N. Turok, Phys. Rev. Lett. 55_, 1801 (1985).

A. Albrecht, R. Brandenberger & N. Turok, ITP preprint 
NSF-ITP-85-96 (1985)

Ya. B. Zel’dovich, Astron. Astrophys. 5 , 84 (1970).

J.R. Bond, G. Efstathiou & J. Silk, Phys. Rev. Lett. 45, 
1980 (1980).

J.D. Breit, B.A. Ovrut & G.C. Segre, Phys. Lett. 158B, 33 
(1985);
F. del Aguila, G. Blair, M. Daniel & G.G. Ross, CERN 
preprint CERN-TH.4336/85 (1985).



120
24. E.M. Chudnovsky, G.B. Field, D.N. Spergal & A. Vilenkin, 

Harvard-Smithsonian Center for Astrophysics preprint no. 
2242 (1986).

25. P. Bhattarcharjee, T.W.B. Kibble & N. Turok, Phys. Lett. 
119B, 95 (1982) .

26. E. Witten, Nucl. Phys. B249, 557 (1985).

27. M. Hindmarsh & T.W.B. Kibble, Phys. Rev. Lett. 55̂ , 2398 
(1985) .

28. V. Rubakov, Nucl. Phys. B203, 311 (1983);
C.G. Callan, Phys. Rev. D26, 2058 (1983).

29. H. Nielsen & P. Olesen, Nucl. Phys. B61, 45 (1973).

30. R. Jackiw, Rev. Mod. Phys. 49, 681 (1977).

31. P. Goddard, J. Goldstone, C. Rebbi & C.B. Thorn, Nucl. 
Phys. B56, 109 (1973) .

32. D. Forster, Nucl. Phys. B81, 84 (1974).

33. Y. Nambu, Proc. Int. Conf. on symmetries and quark 
models, (Wayne State University, 1969)

34. A. Vilenkin, Phys. Rev. D24, 2082 (1981).

35. N. Turok, Phys. Lett. 123B, 387 (1983).

36. N. Turok & P. Bhattarcharjee, Phys. Rev. D29, 1557 
(1984).

37. A. Albrecht & N. Turok, Phys. Rev. Lett. _54, 1868 (1985).

38. C. Nash & S. Sen, "Topology and Geometry for Physicists" 
(Academic Press 1983).

39. D. Olive & N. Turok, Phys. Lett. 117B, 193 (1982).



121
40. T. Vachaspati & A. Vilenkin, Phys. Rev. D30 , 2036 

(1984).

41. W. Press & N. Turok, Unpublished.

.42. T.W.B. Kibble, Phys. Lett. 166B, 311 (1986).

43. M. Aryal, A. Everett, T. Vachaspati & A, Vilenkin, Phys. 
Rev. D34, 434 (1986) .

44. A. Everett, Phys. Rev. D24, 858 (1981).

45. T.W.B. Kibble, Acta Physica Polonica B13, 723 (1982).

46. T.W.B. Kibble, Phys. Rev. D33, 328 (1986).

47. P. Shellard, Unpublished.

48. E. Copeland & N. Turok, Fermilab preprint (1986).

49. A. Vilenkin, Phys. Rev. Lett. 5J3, 1016 (1984).

50. A. Vilenkin, Phys. Lett. 1Q7B, 47 (1981).

51. T. Vachaspati & A. Vilenkin, Phys. Rev. D31, 3052 
(1985) .

52. N. Turok, Nucl. Phys. B242, 520 (1984).

53. C.J. Burton, Glasgow Dept, of Natural Philosophy preprint 
(1985) .

54. T. Vachaspati, A. Everett & A. Vilenkin, Phys. Rev. D30, 
2046 (1984).

55. T.W.B. Kibble & N. Turok, Phys. Lett. 116B, 141 (1982).

56. Ya. B. Zel'dovich, Mon. Nat. R. Astron. Soc. 160 lp 
(1972);
E.R. Harrison, Phys. Rev. D7, 2726 (1970);
J.M. Bardeen, Phys. Rev. D22, 1882 (1980);
W.H. Press & E.T. Vishniac, Ap. J. 239, 1 (1980).



122
57. J. Silk, Nature 215, 1155 (1967).

58. P.J.E. Peebles, "The Large Scale Structure of the 
Universe" (Princeton, 1980).

59. N.A. Bahcall & R.M. Soniera, Ap. J. 270, 20 (1983).

60. G.O. Abell, Ap. J. Suppl. 3_, 211 (1958).

61. R. Brandenberger, N. Kaiser, P. Shellard & N. Turok,
Imperial/TP/85-86/25 (1986).

62. C. Hogan & M. Rees, Nature 311, 109 (1984);
E. Witten, Phys. Rev. D30, 272 (1984).

63. R. Brandenburger, A. Albrecht & N. Turok, ITP preprint 
NSF-ITP-86-15 (1986).

64. R. Brandenburger & N. Turok, Phys. Rev. D33, 2182 (1980).

65. A. Vilenkin, Phys. Rev. D23, 852 (1981).

66. N. Kaiser & A. Stebbins, Nature 310, 391 (1984).

67. P.J.E. Peebles, Unpublished.

68. J. Primack, SLAC-PUB-3387.

69. P.A. Shaver et al., Nature 313, 113 (1985);
R.H. Becker & D.J. Helfand, Nature 313, 115 (1985).

70. D.J. Helfand & R.H. Becker, Nature 313, 118 (1985).

71. E. Witten, Phys. Lett 153B, 243 (1985).

72. R. Jackiw & P. Rossi, Nucl. Phys. B190, 681 (1981).

73. J. Preskill, 1985 Les Houches lectures, CALT-68-1287 
(1986) .


