
p-ADIC NUMBER THEORY AND ITS APPLICATIONS IN
A CRYPTOGRAPHIC FORM

by

RAOUF N. GORGUI-NAGUIB

A Thesis Submitted for the Degree of
Doctor of Philosophy

of the University of London

Department of Electrical Engineering
Imperial College of Science and Technology

University of London

June 1986

2

ABSTRACT

This thesis is concerned with a study of p-adic number theory
and its application in developing a secure public-key cryptographic
system.

p-adic number systems may have either an infinite or finite
structure. First, the infinite p-adic expansion is considered with
particular emphasis on the finite representation of such infinite
sequences. Proof of periodicity and an algorithm for its computation
are given. An algorithm for the conversion from these variable-length
representations to the field of rational numbers is also developed
based on existing algorithms for the conversion in the case of finite
p-adic systems.

However, by considering the arithmetic in segmented p-adic
fields based on Hensel codes, it is shown that previously derived
algorithms tend to give erroneous results. These limitations are
corrected and modified algorithms for closed finite p-adic arithmetic
operations are presented.

Due to their inherent structure, finite p-adic number systems
do not lend themselves to a secure implementation of a p-adic-based
cryptosystem. Consequently, a new public-key encryption system based
on variable-length p-adic number structures is proposed. The system
has the property of combining the advantages of both the
Rivest-Shamir-Adleman (RSA) and Diffie-Hellman algorithms and of
exploiting the pseudo-randomness of the p-adic numbers in the p-adic
field Qp to generate the ciphertext.

This first scheme is then extended to the g-adic ring, Q_,o
where the ciphertext, now, consists of g-adic numbers. The decryption
algorithm first converts the g-adic sequence into p-adic numbers using
information sent by the source and based and discrete logarithms.
Following that, a conversion back to the field of rational numbers
enables the recipient to decipher the message.

3

Cryptanalytic approaches to break the two proposed schemes
are then considered and short and long messages are simulated, first
on a random basis, then based on the relative frequencies of the
alphabetic characters in the English language and the distribution of
p-adic numbers for different primes is studied.

Authentication in this system is discussed and a new digital
signature procedure is introduced. Finally, an overall comparison
between the system and existing public-key cryptosystems is performed.

4

ACKNOWLEDGEMENTS

The work reported in this thesis was supervised by
Dr. Robert King. I am grateful for the many advices he gave and the
critical discussions we had in the course of the preparation of the
various papers and the thesis. I would also like to express my
appreciation for creating a free atmosphere for research which
contributed significantly to this work.

I gratefully acknowledge the financial supports given by the
Committee of Vice-Chancellors and Principals (CVCP) of the Universi­
ties of the United Kingdom through their Overseas Research Students
(ORS) award, and the University of London through the Sir Edward Stern
Studentship award.

My special thanks to Dr. I. Habbab for the many stimulating
discussions we had during the last few years and for the valuable
advices he gave me regarding this work.

I wish to extend my thanks and appreciation to my colleagues,
and especially to the members of Dr. King's research group, who helped
in any way in the formulation of this thesis. Their constructive
criticisms and the many different attacks they directed to the
proposed cryptographic system were very important in ascertaining its
theoretical and practical security.

Finally, I dedicate this thesis to May and to my parents,
especially my father, to whom I know it means a great deal. Without
their love, support and confidence in me, this work could not have
been achieved.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

CHAPTER 1 INTRODUCTION

1.1 Historical Background of Number Theory

1.2 Introduction to p-adic Number Theory

1.3 Brief Introduction to Cryptography

1.4 Outline of the Thesis

CHAPTER 2 VARIABLE-LENGTH p-ADIC NUMBER SYSTEMS

2.1 Infinite p-adic Expansions

2.2 KrishnamurthyTs Algorithm for Conversion

from Rational Number to Infinite p-adic

Form

2.3 Period Detection

2.3.1 Proof of Periodicity in Infinite p-ad

Number Systems

2.3.2 Algorithm for the Period Computation

2.4 Algorithm for Computing the Variable-Length

p-adic Expansions

5

p a g e

CHAPTER 3 FINITE-SEGMENT p-ADIC NUMBER SYSTEMS

3.1 Mathematical Introduction to Finite p-adic

Number Systems

3.2 Structure of Hensel Codes

3.3 Arithmetic Operations in Segmented p-adic

Fields
a

3-3.1 p-adic Addition in Q
A

3.3.2 p-adic Subtraction in Qp

3.3.3 p-adic Multiplication in Qp
A

3.3.4 p-adic Division in Qp

3.3.5 Limitations of Krishnamurthyfs

Algorithms

3.3.5.1 Limitations of the Addition
Algorithm

3.3.5.2 Modified Addition Algorithm

3.3.5.3 Limitations of the Multi­

plication Algorithm

3.3.5.4 Modified Multiplication Algorithm

39

41

43
44
46
4 7

47

49

A 9

50

52
53

3*4 Conversion of Hensel Codes and Variable-Length

p-adic Expansions to Rational Form

3.4.1 Method of Congruences Based on p-adic

Weights

3.^.2 Method of Look-Up Tables

3.4.3 Method of Successive Addition

57

57

60

40

7
p a g e

3.5 Limitations of the Use of Segmented p-adic Number

Systems 61

CHAPTER 4 MATHEMATICAL THEORY OF CRYPTOGRAPHIC SYSTEMS

4.1 Introduction to Cryptosystems 63

4.2 Authentication and Digital Signature 66

4.3 Complexity Theory and the Theory of NP-Completeness 68

4.4 Public-Key Cryptology 70

4.4.1 The Diffie-Hellman System 71

4.4.2 Comments on the Diffie-Hellman System 74

4.4.3 The Merkle-Hellman System 75

4.4.4 Comments on the Merkle-Hellman System 78

4.4.5 The Rivest-Shamir-Adleman (RSA) System 80

4.4.6 Comments on the RSA System 82

CHAPTER 5 A NEW PUBLIC-KEY CRYPTOGRAPHIC SCHEME BASED

ON p-ADIC NUMBER SYSTEMS

5.1 Introduction to the Proposed System 87

5.2 p-adic Code Structure for Cryptographic

Implementation 8

5.3 Choice of Alphabet 93

5.4 Realization of the Scheme Based on p-adic

Fields 94

5.4.1 The p-adic Encryption Algorithm 94

5.4.2 The p-adic Decryption Algorithm 96

p a g e

5.5 Realization of the Scheme Based on g-adic Rings

5.5.1 The g-adic Encryption Algorithm 98

5.5.2 The g-adic Decryption Algorithm: The

Decomposition of Q- into Qn 99-o P

CHAPTER 6 EVALUATION OF THE PROPOSED SYSTEM

6.1 Cryptanalytic Approaches to Breaking the p-adic

Based System 102

6.2 Attempts at Breaking the g-adic Based System-

Diffusion and Confusion 132

6.3 Authentication and a New Digital Signature

Procedure Based on p-adic Number Systems 136

6.4 Comparison with Other Public-Key Encryption

Systems (1̂ °

CHAPTER 7 CONCLUSIONS

1457.1 Summary of Contributions

7.2 Suggestions for Further Research 152

REFERENCES 755

APPENDIX A Table of H(p,r,ct) Codes for p = 5 , r = 4 160

APPENDIX B Table of Variable-Length p-adic Codes for
p = 5 and y = 17 163

r>

page

APPENDICES Cl & C2 Computer Programs

Appendix C1 Program for the Variable-Length p-adic/Rational

Conversion 167

Appendix C2 Program for the Finite-Segment p-adic

Conversion and Full Arithmetic Package 183

- 10 -

L IS T OF TABLES

page

T a b le 2 . 1 (A) C o m p a riso n o f p e r io d le n g t h s w ith th e E u le r
^ f u n c t i o n f o r v a r io u s p rim e s p and d e n o m in a to rs d .

T a b le 2 . 1 (B) C o m p a riso n o f p e r io d le n g t h s w ith th e E u le r
^ - f u n c t i o n f o r v a r io u s la r g e r p rim e s p and th e same
d e n o m in a to rs d

T a b le 3 - 1 K r is h n a m u r t h y ’ s a lg o r it h m f o r segm ented p -a d i c
m u l t i p l i c a t i o n i n th e c a s e o f a = 1 / 1 5 and B = 5 /4
f o r p =» 5 and r ■ 4

T a b le 3 . 2 M o d if ie d a lg o r it h m f o r segm ented p -'a d ic m u l t i p l i c a t i o n
i n th e c a s e o f a = 1 / 1 5 and B = 5 /4 f o r p = 5 and
r =» 4

T a b le 4 . 1 S u c c e s s iv e i t e r a t i o n s f o r b r e a k in g th e RSA syste m f o r
th e c a s e e ■ 1 7 , n ■ 2 7 7 3 and C =■ 948

T a b le 6 . 1 R e la t iv e f r e q u e n c ie s o f th e E n g l is h c h a r a c t e r s and
sp a c e 113

page

L IS T OF FIGURES

F i g . 4 .1 B lo c k d ia g ra m o f a c o n v e n t io n a l c ry p to s y s te m 65

F i g . 4 .2 C o n tain m en t r e l a t i o n s h i p s betw een c o m p le x ity
c l a s s e s P , NP and N P -c o m p le te 69

F i g . 4 .3 B lo c k d ia g ra m o f a p u b l ic - k e y C r y p t o s y s t e m 1 72

F i g . 4 .4 Flow o f in f o r m a t io n i n th e M e r k le -H e llm a n
c ry p to s y s te m 7 9

F i g . 4 .5 Flow o f in f o r m a t io n i n th e R iv e s t-S h a m ir-* A d le m a n
(RSA) c ry p to s y s te m 83

F i g . 5 . 1 S t r u c t u r e o f th e v a r i a b l e - l e n g t h p * a d ic code b a sed
on th e p e r io d X ^9

F i g . 5 . 2 Flow o f in f o r m a t io n i n th e p ^ a d ic b a sed c ry p to s y s te m 95

F i g . 6 .1 F re q u e n cy o f o c c u r r e n c e o f p*^adic num bers f o r random
m essage w it h e q u ip r o b a b le c h a r a c t e r f r e q u e n c ie s -
Pa b = 2 9 0 9 , M = 10 0 105

F i g . 6 .2 F re q u e n cy o f o c c u r r e n c e o f p*^adic num bers f o r random
m essage w it h e q u ip r o b a b le c h a r a c t e r f r e q u e n c ie s -

Pa b ® 2 9 0 9 , M = 10 0 0 106

F i g . 6 .3 F re q u e n cy o f o c c u r r e n c e o f p ~ a d ic num bers f o r random
m essage w it h e q u ip r o b a b le c h a r a c t e r f r e q u e n c ie s
PAb = 2 9 0 9 , M = 10 0 0 0 107

F i g . 6 .4 E n tro p y c u r v e s f o r random m essages w ith e q u ip r o b a b le
c h a r a c t e r f r e q u e n c ie s - M » 10 0 108

F i g . 6 .5 E n tro p y c u r v e s f o r random m essages w ith e q u ip r o b a b le
c h a r a c t e r f r e q u e n c ie s - M =* 10 0 0 109

F i g . 6 .6 E n tro p y c u r v e s f o r random m essages w ith e q u ip r o b a b le
c h a r a c t e r f r e q u e n c ie s - M * 100 00 110

F i g . 6 .7 F re q u e n cy o f o c c u r r e n c e o f p - a d i c num bers f o r random
m essage w ith r e l a t i v e f r e q u e n c ie s o f E n g l is h
c h a r a c t e r s - p ^ = 2 9 0 9 , M = 10 0 114-

F i g . 6 . 8 F re q u e n c y o f o c c u r r e n c e o f p -a d ic num bers f o r random
m essage w ith r e l a t i v e f r e q u e n c ie s o f E n g l is h
c h a r a c t e r s - pAB * 2 9 0 9 , M =* 10 0 0 1 1 5

F i g . 6 . 9 F re q u e n c y o f o c c u r r e n c e o f p -^ad ic num bers f o r random
m essage w ith r e l a t i v e f r e q u e n c ie s o f E n g l is h
c h a r a c t e r s - p AB = 2 9 0 9 , M = 10 0 0 0 116

F i g . 6 . 1 0 E n tro p y c u r v e s f o r random m essages w ith r e l a t i v e
f r e q u e n c ie s o f E n g l is h c h a r a c t e r s - M * 10 0 117117

page

118

119

120

121

122

123

124

125

128

129

133

134

139

12.

6.11

6.12

6 . 1 3

6 . 1 4

6 . 1 5

6.16

6 . 1 7

6.18

6 . 1 9

6.20

6.21

6.22

6 . 2 3

E n tro p y c u r v e s f o r random m essages w ith r e l a t i v e
f r e q u e n c ie s o f E n g l is h c h a r a c t e r s -> M » 10 0 0

E n tro p y c u r v e s f o r random m essages w ith r e l a t i v e
f r e q u e n c ie s o f E n g l is h c h a r a c t e r s M =* 10 0 0 0

F re q u e n cy o f o c c u r r e n c e o f p --a d ic num bers f o r th e
m e ssa g e : M aking C o n fu s io n W orse Confounded -

PaB - 2909

F re q u e n cy o f o c c u r r e n c e o f p ^ a d ic numbers f o r th e
m essa g e : I t I s a Long Road t h a t Has No T u r n in g

Pab" 2909

F re q u e n cy o f o c c u r r e n c e o f p H a d ic num bers f o r th e
m essa g e : M aking C o n f u s io n W orse Confounded -

P AB = ^ ° 01

F re q u e n cy o f o c c u r r e n c e o f p ^-ad ic num bers f o r th e
m essa g e : I t i s a Long Road t h a t Has No T u r n in g -

P a b - 1 , 0 0 1

F re q u e n c y o f o c c u r r e n c e o f p r-a d ic num bers f o r th e
m e ssa g e : M aking C o n f u s io n W orse Confounded -
Pa b = " 6 7

F re q u e n c y o f o c c u r r e n c e o f p -^ad ic num bers f o r th e
m e ssa g e : I t i s a Long Road t h a t Has No T u r n in g -•

'P a b = 9967

F re q u e n cy o f o c c u r r e n c e o f p ^ a d ic num bers and p e r io d
p a ra m e te rs f o r th e m e ssa g e : I t s A l l G re e k to Me ^

pab - 1,001

F re q u e n cy o f o c c u r r e n c e o f p ^ a d ic num bers and p e r io d
p a ra m e te rs (L o g . s c a l e) f o r th e m essa g e : I t s A l l
g re e k To Me - p ^ = 4001

F re q u e n cy o f o c c u r r e n c e o f p -a d ic num bers and m o d if ie d
p e r io d p a ra m e te rs f o r th e m essa g e : I t s A l l g re e k to Me
p = 7 4 8 9 , p ^ = 4001

F re q u e n cy o f o c c u r r e n c e o f p ^ a d ic num bers and m o d if ie d
p e r io d p a rm e te rs (L o g .s c a le) f o r th e m e ssa g e : I t s A l l
G re e k To Me - p = 7 4 8 9 , p Ab = ^001

Flow o f in f o r m a t io n i n th e d i g i t a l s ig n a t u r e p ro c e d u re

< O’

13

LIST OF SYMBOLS

The following is a list of symbols and abbreviations appearing
in the thesis and their definitions:

Q Field of rational numbers

s Field of p-adic numbers

s Segmented p-adic field

Qg Ring of g-adic numbers

P’PAB Prime integers

Residue system modulo m

(mod m) Modulo an integer m

Congruential relation

* Incongruence symbol

a |b a is a divisor of b

aJ[b a is not a divisor of b

<a>b Residue of a modulo b

b 1 (m) or b ̂ Multiplicative inverse of an integer b modulo m

H(p ,r ,a) Hensel code representation of a rational a

r Length of segmented p-adic code
A
r Extended p-adic code segment

X Period of p-adic expansion

mct Mantissa of H(p,r,a)

ma Temporary modified mantissa of H(p,r,a)

ea Exponent of H(p,r,a)

(a ,b) GCD of a ,b

Lem (a ,b) Least common multiple of a,b

Z Set of all integers

Z + Set of positive integers

GF(p) Galois field with p a prime integer

Farey sequence of order N

Higher integral part of x(the smallest integer

greater than or equal to x)

Euler totient function

Maximum value of numerator and denominator in a

particular alphabet

Primitive element of a prime p

1.5

CHAPTER 1

INTRODUCTION

1.1 Historical Background of Number Theory

The theory of numbers is concerned with properties of the

natural numbers 1 ,2,3» , also called the positive integers. These

numbers together with the negative integers and zero, form the set of

integers Z.

Properties of these numbers have been studied from earliest

times. Historical records show that as early as 5700 BC, the ancient

Sumerians kept a calendar, and so, they must have developed some form

of arithmetic. By 2500 BC, the Sumerians had developed a number

system using 60 as a base. The study of numbers evolved through the

eras until around 600 BC when the Greeks started the first scientific

approach to the study of integers. To them is attributed the true

origin of the theory of numbers.

After Euclid, in 300 BC, no significant advances were made in

number theory until about AD250 when another Greek mathematician,

Diophantus of Alexandria, published 13 books where he made systematic

use of algebraic symbols.

Again, after Diophantus, not much progress was made in the

theory of numbers until the 1 7 th century when the subject was revived

through the efforts of the remarkable French mathematician Pierre de

Fermat. He was the first to discover really deep properties of

integers.

Then, followed Euler, Lagrange, Legendre, Gauss and Dirichlet

who all contributed to the further development of the subject. At the

turn of the 18th century, Gauss published his book "Disquisitiones

Arithmeticae” which transformed the subject of number theory into a

systematic and well founded science.

The field of number theory is vast and some parts require

profound knowledge of higher mathematics. Nevertheless, there are many

problems in number theory which are very easy to state, yet very

difficult to solve [19]. For example, the Goldbach conjecture asserts

that every even integer greater than 2 is the sum of two primes. This

conjecture was verified up to 100,000 at least, yet no proof for it

has ever been provided.

In fact, many such problems deal with prime numbers and this

above-mentioned paradox will be reflected in our study of cryptography

from chapter 4 onwards.

Number theory has many applications in various fields of

science such as in physics, biology, computer science, digital

communications, cryptography, etc... [47].

The subject of this thesis is to introduce one area of number

theory, which deals with p-adic number systems, in the fast-growing

subject of cryptography, thus attempting to design a secure system

which achieves the private flow of information between two users in a

multi-user, multi-access network.

17

These two areas of work are introduced in sections 1.2 and

1.3* respectively.

1.2 Introduction to p-adic Number Theory

The set of numbers which are representable in a digital

computer in terms of some radix, such as 2(binary), 8(octal) or

10(decimal) is a finite subset of the field of real numbers.

For example, it is not possible to represent a rational number
£L- exactly in a radix-S machine if b has a factor relatively prime to

B. Thus, ̂cannot be represented exactly in a binary or decimal

machine.

Consequently, because of the difficulties associated with

using a finite subset to simulate the infinite field of real numbers

and trying to solve ill-conditioned problems using inexact arithmetic,

it is important to investigate finite number systems which perform

exact arithmetic.

This is how attention was turned to p-adic number theory for

its possible applications in a digital computer in order to achieve

exact computations.

Although Kurt Hensel [21], [22] introduced the p-adic number

fields into algebraic number theory in 1908, research into p-adic

number systems for error-free computations was only recently initiated

by Krishnamurthy [29],[30],[31] and Alparslan [3].

18

The idea was to truncate the infinite p-adic expansion to a

fixed number of digits, r, for all rational numbers in a suitable

subset of Q. These fixed-length representations are called Hensel

codes.

The finite number system consisting of these Hensel codes has

recently been applied to many areas of research such as in matrix

processors [29],[30],[31L design of algorithms for error-free compu­

tations [18] and in digital signal processing where, very recently,

p-adic transformations have been introduced and are currently being

investigated [17],[32],[34],[39],[40],[41],[43].

The infinite field of p-adic numbers and the finite-segment

p-adic number systems constitute the building blocks of this thesis.

They will be considered in detail in chapters 2 and 3 respectively.

And, it was found, through their study, that the features of these

number systems lend them to a very effective application in the design

of two secure cryptographic algorithms. This will be reflected

throughout their study in the following chapters when they will be

introduced into the subject of cryptography.

1 .3 Brief Introduction to Cryptography

The use of secret communications by means of coded messages

has been a practice throughout ancient and modern history. In recent

wars, codes and ciphers have been used to ensure that secret informa­

tion was not transmitted to the enemy.

19

However, it is not only the governments, the military, the

security agencies and the diplomatic corps who transmit secret

communications. The art of information security is in everyday use.

Recent developments in computer science include the concepts of

computer-based message systems and electronic mail, amongst others.

Modern technology has provided fast and accurate means of transmitting

messages. However, there are situations where it is necessary to

prevent any intruder or illegal listener from intercepting certain

messages on a particular channel. This necessity has transformed the

art of secret communications into the science of cryptography, where

researchers attempt to design secure systems which prevent

cryptanalysts from intercepting and deciphering any coded information

being transmitted.

Cryptography relies on various sciences, namely, number

theory, complexity theory, computer design and architecture, and the

design and analysis of algorithms [20].

These sciences have contributed to the development of the

public-key encryption concept where every potential recipient of

secret messages publishes his encrypting key, but knowledge of the

encrypting key is of no practical help in decryption.

The two schemes proposed in this thesis are based on this

concept and will be detailed in chapters 5 and 6. The concept of

public-key cryptosystems itself will be studied in great detail in

chapter 4.

1

20

1.4 Outline of the Thesis

The problem addressed in this thesis was defined in general

terms in sections 1.2 and 1.3. In this section, the contents of the

thesis are briefly described.

Chapters 2 and 3 consist of a study of p-adic number systems.

In chapter 2, variable-length p-adic number -systems are

considered. After an introduction to the p-adic fields and the

formation of infinite canonic p-adic expansions, Krishnamurthyfs

algorithm for the conversion from a rational number representation to

a representation in the p-adic field Qp is described. Through the

analysis of infinite p-adic sequences, it is found that part of the

sequence is recurring. Proof of periodicity and an algorithm for the

efficient computation of the p-adic period are provided. Finally, an

algorithm for computing variable-length p-adic codes based on the

aperiodic and recurrent elements is developed. The algorithm is

deterministic in length and thus results in a finite representation of

infinite p-adic expansions.

Chapter 3 consists of a thorough study of finite-segment

p-adic number systems and the finite p-adic field Qp. Bounds on the

subset of rational numbers uniquely representable in Qp are given and

the reason for their existence is explained. Then, the different

structures of Hensel codes are presented for different elements in Q.

It was suggested by Krishnamurthy that it was possible to perform

21

closed p-adic operations in Q Krishnamurthyfs algorithms are

presented in detail and their limitations are pointed out. Some of

these algorithms lead to erroneous results in certain cases. Modifica­

tions to Krishnamurthyfs algorithms are suggested and, although

it is now possible to perform arithmetic operations in Q , given the

original bounds, the closure problem is put into perspective as a

practical limitation of the use of finite p-adic number systems.

Finally, the different algorithms for converting from Qp back to Q

are presented and analysed in detail.

Chapter 4 deals with the mathematical theory of cryptographic

systems. An introduction to cryptosystems, the need for them and

their features are explained. The notions of authentication and

digital signature are also introduced. Then, an introduction to

complexity theory and the theory of NP-completeness is given. It is

shown that modern public-key cryptosystems are based on problems drawn

out of these classes of complexity, and the three main systems which

fit into this category are explained in detail.

In chapter 5, the results, modifications and different

analyses on p-adic number systems performed in chapters 2 and 3 are

linked to the subject of cryptography. After an introduction to the

proposed system, p-adic code structures for cryptographic implementa­

tion are introduced. This leads to a discussion of the alphabet to be

used in the system and the entailing restrictions when generating it.

Then, the first realization of the system is performed, based on

p-adic fields, and the corresponding encryption and decryption

algorithms are detailed. The second realization is based on g-adic

22

rings and the previous encryption and decryption algorithms are

extended to this scheme. However, the decryption algorithm requires

the decomposition of g-adic rings into p-adic fields and the algorithm

for achieving this transformation is given.

Chapter 6 deals with the detailed evaluation of the proposed
)

system. Cryptanalytic approaches attempting to break it are under­

taken. The p-adic scheme is considered first and to which theoretical

and statistical attacks are directed. Then, the g-adic scheme is

analysed for security and the notions of diffusion and confusion are

presented. A new authentication and digital signature procedure is

also suggested and, finally, the schemes put forward in this thesis

are compared with the three main cryptosystems.

In chapter 7, the contribution made is summarized and sugges­

tions for further research are made.

The listings of computer programs are given in Appendices C1

and C2. The programs are written in FORTRAN 77 and contain, respec­

tively, the variable length p-adic conversion techniques from Q to Qp,

and vice-versa, and a full package implementing p-adic conversion and
ari thmetic in Qp.

23

VARIABLE-LENGTH p-ADIC NUMBER SYSTEMS

CHAPTER 2

2.1 Infinite p-adic Expansions

In 1908, Hensel [21] introduced the infinite p-adic number

system. Out of this system, emerged a major branch of modern algebra

called valuation theory. In this section we shall introduce some

notions relating to the p-adic valuation, or p-adic norm. However,

for a systematic study of valuation theory and p-adic functions, the

reader is referred to [4],[6],[27] and [35].

The ordinary absolute function |*| on the field Q has the

following basic properties for a s Q:

|ot| >_ 0 and |ct| = 0 if and only if a = 0 (2.1)

For a and 0 e Q,

|aB| = |a||8| (2.2)
| a+B| < |a| + |0| (2.3)

It is noticed that property (2.3) is the "triangle inequality".

In the field of rational numbers Q, the absolute value mapping,

|•|, can be shown to be norm on Q, [4]. Another norm on Q, of more

interest to us here, can be constructed on the observation that, if a

is a non-zero element of Q, then a can be expressed uniquely in the

form

a
a

(2 . 4)

- Oli. -

b Pn

where p is a prime

a ,b , n e Z, b * 0

(a ,b) = 1 and p f a, p f b.

With this definition, the p-adic norm can then be defined [27]

such that:

if a * 0

if a = 0
(2.5)

and it should be observed that the p-adic.norm is counter-intuitive

since a large positive integer n implies a small value for the p-adic

norm.

The concept of the p-adic field Qp follows from the principle

that any rational number a expressed as in (2.4) can be uniquely

represented by an infinite series of the form:

oo
a = I an pn ; an e I (2.6)

n--m
m e Z

and this infinite series converges to a with respect to the

p-adic norm [6].

25

It is convenient to introduce a shorthand notation for (2.6)

similar to the decimal representation used for base 10. In a conven­

tional decimal expansion, there are infinitely many digits correspond­

ing to the negative powers of the radix 10, whereas a p-adic sequence

is composed of infinitely many digits representing the non-negative

powers of p. For convenience in arithmetic operations, these digits

will be written to the right of the p-adic point. Hence, the p-adic

■series in (2.6) will be expressed in the form:

a = a- a- ... a- • a a ... (p) (2.7)-m -m+1 - 1 0 1

It .is also noted that the digit positions corresponding to the

non-negative and negative powers of the base are reversed for p-adic

expansions and p-ary expansions. For example, if a is a positive

integer, then its p-adic representation is of the form:

a = *a0 a l ... ak 00 ... (p) (2.8)

while its p-ary representation is the reflection of (2.8) about the

p-adic point:

a = [a a - ... a •]n (2.9)k k-1 0 P

Also, it is observed [29] that negative rationals occur as

true-complement (left-to-right) of the positive number. This and

other word formats will be discussed in more detail in chapter 3 when

we consider segmented p-adic codes and finite-length p-adic arithme­

tic.

26

In order to convert a rational number a to p-adic form, we

will present an algorithm developed by Krishnamurthy [29] and [31].

In section 2.3, an iterative algorithm will be developed which allows

to detect the period in the p-adic expansion and to determine the

"aperiodic” elements in the expansion.

2.2 Krishnamurthy*3 Algorithm for Conversion from Rational Number

to Infinite p^adic Form

Given a rational a = - with (a,b) = 1 and b * 0, then theb
p-adic expansion can be obtained by the following algorithm:

1. Set c = a

Check if pn |b. The value of n will control the position of

the p-adic point.

Set d = b/pn.

2. Solve the congruence:

dx = 1(mod p)

If xn is a solution, then

an = c*xn (mod P)•

3. Set Y = --a_d n

e'
d' *

If Y - 0, set a^ _ q f0r i > n and stop.4.

27

cfThe value of c' will be divisible by p. Set c = - .P

Set d = df

Go to step 2.

Note that, contrary to the algorithm which will be presented in

the next section, this algorithm is non-terminating since the

convergence to the given rational can be achieved only for an infinite

number of digits in the expansion, if the rational is neither an

integer nor a radix fraction.

2 . 3 P e r io d D e t e c t io n

In this section we will show that the canonical p-adic expan­

sion of a rational number is periodic (or recurring). An algorithmic

approach to computing the period will be given, followed by an

algorithm for the determination of the aperiodic elements and the

elements comprised in one recurring cycle.

2 . 3 . 1 P ro o f o f P e r i o d i c i t y in I n f i n i t e p -a d l c Number System s

If a a j where (a,b) 1, then a can be written in the form

a a

d »pk
(2.10)

where p f d and k c Z.

28

Since p is relatively prime to d taken as modulus, then in

the series of powers of p:

P = {1,p,p2,P3,...} (2.11)

all terms are relatively prime to d and, hence, are congruent to terms

of a reduced system of residues modulo d [1],

And since any reduced system of residues modulo d contains

(d-*i)terms

whereas the

series {P} is infinite, then there must exist two terms in {P}, say

p1 and pJ congruent modulo d:

p* E pJ (mod d) (2.12)

Assuming i > j , then by dividing both sides of the congruence

by pJ , which is relatively prime to d, we get

p*~^ E 1 (mod d) (2.13)

and so there are positive exponents, k, for which

pk E 1 (mod d) (2.14)

Let A be the smallest of such exponents. So, by its very

definition, A is characterized by two properties:

*

p* E 1 (mod d) (2 .15)

_ 90 _

1 .

2. No power of p with positive exponent < A i s congruent

to 1 (mod d) .

Now, i f k i s any positive exponent for which congruence

(2 .14) i s s a t i s f i e d , then

k E 0 (mod A) . (2 . 1 6)

This i s so since, i f we assume that, conversely, k i s not

d i v i s i b l e by A, then we can write

k = Aq + r (2.17)

where q e Z+

and 0 < r < A.

Then

p k . p (X q + r)

= (pX) q -pr (2. 18)

But, from (2. 15) ,

p^ E 1 (mod d).

Hence

30

p k _ p r = 1 (mocj d) (2 .19)

and this cannot hold unless r= 0, so that k is divisible by A and

(2.16) is true.

Hence, we can say that the elements

P = (1,P,P2,P3 A-1 ,
»• • •. P I

all different modulo d, and that the

p’ = Ip\ A+1P
2 A—1 ,

* • • •» P 1

r 2Xp." = Ip ,
2A + 1

P
3A-1 ,

> * « »» P f

(2 .20)

and so on

are congruent modulo d to the terms in {P}, i.e. the series

r 2 A-1 ,P = i 1 , p ,p ,..., p \

is periodic with a period length A.

2.3.2 Algorithm for the Period Computation

Having established from section 2.3.1 that the infinite p-adic

expansion of a rational number has a periodicity A, the problem now is

to develop a practical algorithm for the solution of the congruence

p̂ = 1 (mod d)

to determine the effective value of A.

31

The following is a more detailed analysis of the properties of

the congruence

ax E 1 (mod m) (2.21)

These properties will lead to the derivation of the required algo­

rithm.

The least positive integral solution x * k of the congruence

(2.21) is called the exponent to which a belongs modulo m [5].

Let <f>(m) be the Euler totient function of m. The following

properties of $ makes it possible to calculate <j>(m) [9]:

1. <(>(mn) = <|>(m) <j)(n) whenever (m,n) = 1 (2.22)

2. 4>(q) = q -1 for q prime (2.23)

k k-13. <Kqk) = q - q

k-1 (2.2U)= q (q-1) for q prime

= m n (1 *• 1 (2.25)4. <J>(m) -)
q I m q

We also state, without proof, Euler's theorem and Fermat's

corollary (Fermat's little theorem). Their proofs can be found in

[5]:

Theorem: Let a,m be integers with m > 0. If (a,m) = 1, then

32

a<£(m) = 1 (mod m) (2 .26)

Corollary: I f q i s a prime and a i s an integer such that q | a,

then

Q- 1a (mod q) (2.27)

Also, an integer a is called a primitive root modulo m 1 if x

in (2.21) is equal to $(m) (i.e. congruence, (2.26)).

Going back to the original congruence (2.15), we can write d

such that

2
d = P j 1

€2
P2

e
D ^* * * pn

n c*

a * d = n P i 1 (2.28)
i = 1

where p̂ * p, Vi. This is the prime factor decomposition of d.

Hence,

p X = 1 (mod p^1 • p22pnn) (2.29)

The Chinese Remainder Theorem (CRT), [42], states that solving

(2.29) is equivalent to solving the simultaneous congruences

X • e ,*p 1 = 1 (mod p^ 1) ; i = 1 ,2 ,...,n (2.30)

and hence,

X = Lcm(X^) (2.31)

Recalling from section 2.3.1, congruence (2.16) shows that, if

(p,d) = 1 then

pk = 1 (mod)

if and only if A Ik.

Consequently, we can write that
X J <j>(d) (2.32)

and that

(2.33)
O *However, using (2.24), ^(p^1) can be factored into a product

of powers of distinct primes, say

and the algorithm is based on the above factorization procedure. The

solution.

Function ’PERIOD' in Appendix C1 reflects the theoretical

analysis performed in this section.

Table 2.1(A) gives the different values of A for various

combinations of the primes p and denominators d and compares

these values with the Euler ^-function. In Table 2.1(B), larger

(2.34)

idea is to divide ^(p^1) by all prime factors qj such that

45(p^1)/qj is a solution of (2.15) to obtain the least integral

values of p are considered for the various denominators d.

34

Table 2.1(A): Comparison of period lengths with the Euler ^-function
for various primes p and denominators d.

d 4? (d) 5 7 11

P

13 29 37 53

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 2 2 1 2 1 2 1 2
4 2 1 2 2 1 1 1 1
5 4 1 4 1 4 2 4 4
6 2 2 1 2 1 2 1 2
7 6 6 1 3 2 1 3 3
8 4 2 2 2 2 2 2 2
9 6 6 3 6 3 6 1 2
10 4 1 4 1 4 2 4 •4
11 10 5 1 0 1 10 10 5 5
12 4 2 2 2 1 2 1 2
13 12 4 1 2 12 1 3 1 2 1
14 6 6 1 3 2 1 3 3
15 8 2 4 2 4 2 4 4
16 8 4 2 4 4 4 4 4
17 16 16 16 16 4 16 16 8
18 6 6 3 6 3 6 1 2
19 18 9 3 3 18 18 6 18
20 8 1 4 2 4 2 4 4

35

Table 2.1(B): Comparison of period lengths with the Euler
^function for various larger primes p and
the same denominators d

36

2.4 Algorithm for Computing the Variable-Length p-adic Expansion

In section 2.2 we presented a non-terminating algorithm,

developed by Krishnamurthy, for the computation of the infinite p-adic

expansion of a rational number a.

In this section, another algorithm based on a lemma by Mahler

[35] is developed and which puts into perspective the notion of p-adic

period presented in the previous sections. We thus obtain a varia­

ble-length p-adic expansion where the aperiodic terms are computed and

the recurring elements are determined only once.

By the unique factorization theorem in the domain of integers,

any rational number a can be written uniquely in the form:

a = p k • - (2 .3 5)

where k e Z , (a,b) = 1, p j a, p | b.

On the other hand, the infinite p-adic expansion of a p-integral

rational number

co
“ = I an Pn » an G xp (2.36)
D n=0

can be computed iteratively using the formulas

37

a n-1 n n- = a + a p +...+ a p + — • p“b o r n-1 b (2 .37)

where r0 = a

r r ., n n+1and — = a_ + ---b n b * P

Hence,

■ = a- b + r dn n n+r

or

rn ~ anb
n+1 (2.38)

But, since our analysis is concerned with a residue system

modulo p, then equation (2.38) can be written in the form:

<an b>p <rn - r p>_ n n+1 P

Hence ,•

<an b>p <rn>p (2.39)

Also, since b | P, the multiplicative inverse of b modulo p

exists, and since an e Ip, we have:

“ <an>p
where

<'c *rn^p (2.40)

38

c = b 1 (p) (2 . 4 1)

or

be = 1 (mod p)

Setting r0 = a and using equations (2.38) - (2.41), the

different an are computed and then the subsequent r are computed

from a knowledge of an and rn.

If

r = r, n+1 1

for any i = 1,2,...,n, then the terms

a , a a }0 1 i-1

are the aperiodic elements, whereas the terms

l i + 1 .an-1 a (n

represent the periodic elements with periodicity

X = n - i + 1 (2.42)

It is now clear that it is possible to obtain a deterministic

variable-length representation of an otherwise infinite p-adic

expansion. There remains the problem of converting such a code back

to its rational form. We will postpone our analysis of this problem

until we discuss finite-segment p-adic number systems and, especially

the arithmetic in Q •

1

7 0 -

CHAPTER 3

FIN ITE-SEG M EN T p -A D IC NUMBER SYSTEMS

3.1 M a th e m a tic a l In t r o d u c t io n to F i n i t e p -a d ic Number System s

In chapter 2 an analysis of the p-adic field Qp was performed.

In this chapter we consider the segmented p-adic field Qp where a

unique code, called Hensel code, is derived for a rational number by

truncating its infinite p-adic expansion to a finite number of digits

r .

The uniqueness of this code, however, spans over a certain range

of rationals. This range is determined by the order-N Farey fractions

[18], Fj|, where the integer N is the largest positive integer which

satisfies the inequality

m > 2N2 + 1 (3.1)

where

m = pr (3.2)

for a prime p.

Hence

N = (3-3)

aAnd so, for a rational a = - to have a unique Hensel codeb
H(p,r,a), the following bounds must be satisfied:

(3.4)
Pr -1

< a,b < /
pr-1

where b * 0 and p { b.

These bounds were never mathematically justified [32]. However,

using Hensel codes to represent rationals is essentially the same as
_, acalculating modulo p1 . Consider the two rational numbers a = - andb

and 0 = j . If H(p,r,a) = H(p,r,0)f then

pr I(ad - be) (3.5)

But, if a,b,c,d are bounded by (3*4), then

|ad| , |be| <
Pr-1

(3.6)

Therefore

ad - be | £ pr-1 < pr (3.7)

But (3.5) and (3.7) are contradictory statements and, in fact, the

only integer whose absolute value is less than pr which is divisible

by pr is zero. Hence,

, , a ead = be or - = -b d (3.8)

and the rationals a and 0 are the same.

3.2 Structure of Hensel Codes

In [29] and [31], Krishnamurthy introduced the finite-segment

Hensel codes in Qp. Having satisfied the bounds in (3.4), the

Hensel code is then unique. Furthermore, the individual digit

positions have the following positive or negative fractional weights :

,r/ 2 - 1
- P r / i

.r/2 - 1

-pr/2+i -pr-l
pr/2-l 9 ••• 9 /

pr/2~
(3.9)

These fractional weights, according to [29], are necessary to

convert Hensel codes back to their rational form. However, as will be

described later in section 3.4, this property is not of paramount

importance if other conversion techniques are to be used.

On the other hand, the sequence of weights (3.9) shows that the

length, r, of any Hensel code must be even. This, again, will be put

into perspective in section 3.4. It enables us, however, to formulate

the structure of Hensel codes for a e F̂ .

In chapter 2, it was shown that the infinite p-adic expansion of

a can be written as:

a = a , a,a ̂*a,a ,a ,... (p) (3-10)-n -n+1 - 1 0 m m +1

Truncating the above expansion gives

t • • • fH(p,r,a) = a , a-n -n+1 a — a ,a , ... ,a (p) (3.11)
- 1 0 1 m

which is of length

r = n + m + 1 (3-12)

The elements â , i = -n,...,m can be determined according to the

algorithm given in section 2.2, chapter 2. In this case, however, the

algorithm is made to terminate when all r terms of the truncated

expansion have been computed.

As a consequence of (3.4) and the fact that the total number of

digits, r, in the code must be even, positive and negative integers
rare represented by exactly - digits, assuming that the p-adic point
this to the left of the zero digit, the remaining digits being 0 or

(p-1) respectively.

By shifting the p-adic point to the right of the
r i.

0. 1.2....,- - 1tn position, the above integers become radix fractions,

1. e., fractions the denominator of which is divisible by pn and,

consequently, all radix fractions whose denominators do not exceed N

become representable. All other rationals will, in general, occupy

all the r positions.

Hence, positive integers will be in the form:

• a , a ,...,a f 0,0,...,0 (3.13)

> r/2-1

- 43

e.g., H(5,6,87) = .223000.

Negative integers, on the other hand, are in complement form,

and have the following structure:

•a ,a ,...»a , (p-1),(p-1),...,(p-1) (3.14)0 1 r/2-1
r/2-1

e.g., H(5,6,-73) = .202444.

Radix fractions are obtained by moving the p-adic point of

positive or negative integers to the right by a number of locations

e.g., H(5,6,87/5) = 2.23000

H(5,6,87/25) = 22.3000

H(5,6,-73/25) = 20.2444.

Soft and hard fractions have the general form of the segmented

p-adic number representation given in (3.11) and the digits assume

values between 0 and p-1.

3.3 Arithmetic Operations in Segmented p*adlc Fields

Throughout this section, and merely for convenience purposes,

the Hensel code H(p,r,a) will be denoted as an ordered pair in

mantissa-exponent form, (m ,ea) [31]. And, since the length of the

code is fixed to r digits, ea is allowed to have the value 0 or

negative values.

When ea = -n, the p-adic point is then placed n digits to the

right of the left-most digit of m . Consequently, the mantissa is of

the form

m = 0 «a a ... a (3*15)a 0 1 r - 1

and

ea < 0 (3.16)

When performing arithmetic operations in Q , it is necessary to

ensure that the closure property is maintained throughout our computa­

tion. That is, if the operands are within the bounds' (3.*0» then so

must be the result of the operation.

In the following sections (3*3.1 - 3*3*J1), we present the

algorithms developed by Krishnamurthy [29] and [31] for the four basic

operations. In section 3*3-5 we show fundamental limitations in

Krishnamurthyfs algorithms and give our corresponding modified

algorithms.

3*3.1 p^adic Addition in Qp

3 GGiven a = - and 6 = - , such that b,d * 0, (a,b) =1 and b d
(c,d) = 1, then the corresponding Hensel codes of a and 8 of the

same length r in the segmented p-adic field Op may be written

45 -

respectively as:

H(p,r,a) = (ma, ea)

H(p,r,8) = (mg, e6)

where

m„ = 0 *a a • • • cLa 0 1 r-1

3 U o % cr o b ... b1 r-1)

(3.17)

with r even, and e and e» both satisfying the inequality:

-<■ ; ' £ ea> eg < 1 (3.18)

The algorithm for adding H(p,r,a) and H(p,r,8) retains the lower

exponent and finds the sum digit ŝ and carry digit c^+1 from a

knowledge of â , b̂ and . Thus

s i = (â + b̂_ + ci) (mod p) (3-19)

for i = 1,2,...,r-1

with o11o
O

and C = 1 if (aL +i + 1

= 0 otherwise

and ignoring cr.

e.g., H(5,4,3/13) + H(5,4,11/13) = (0.1143,0) + (0.2430,0)

= (0.3034,0)

= H(5,4,14/13).

- L f \ -

3.3.2 p^adic Substraction in Qp

p-adic substraction i s realized as a complemented p-adic addi

t ion. Thus, to perform the operation H(p,r,a) - H(p,r,B), we write,

H(p,r,a) - H(p,r,B) = H(p,r,a) + H(p,r,-B)

= H(p,r,a)+ H(p,r,B)

= (ma>ea) + (5 g , e g) (3 .20)

where

mfl = 0 •£ b . . . b p 0 1 r-1
i s the complement of

mg = 0.bQ b, . . . br_,

and the elements 5^ are obtained through the following rules :

1) If bi ^ 0 for 0 < i £ (r - 1)

then = p-b^ for i = 0

and = (p-D-b^ for 1 < i £ (r - 1)

2) If bi = 0 for 0 < i < j

then 5^ = 0 for 0 £ i £ j

and b = p - b
j + 1 j+1

= (p-1)-bj_ for (j+2) £ i £ (r-1)

3.3- 3 p-adic Multiplication in Qp

The multiplication algorithm of H(p,r,ct) and H(p,r,6) consists

in forming the cross-products of the mantissa such that:

Pi , j “ bi aj , for 0 £ 1 £ (r_1)

and c_j
. ii 0 T 1 (3 .2 1)

and then forming the partial products and the f in a l product P by

successive s h i f t s and additions as given by:

r-1
p , « l p , i a(j) (3.22)

j- o ,J

and

r-1
P = I Pi a(i) (3.23)i=0

where A(x) denotes a right s h i f t of the partial result by x d ig i ts .

The exponent of the resu lt i s then (ea + e ^) .

A

3-3.4 p^adic Division in Qp

Consider the finite-segment p-adic divis ion of H(p, r, a) , the

dividend, by H(p,r,B), the divisor. The quotient i s then H(p,r,Y)

such that:

- 48 -

m n = 0 *a a a „CL 0 1 r - 1

rag ii o cr o b i • • • br-1

my u o • & o • • • V r

The division operation, therefore, is similar to p— adic multipli­

cation but for computing the multiplicative inverse of b 0 , b 01 (p).

Algorithms for computing b 01 (p) can be found in [25].

If b 0 = 0, the divisor is shifted left, keeping count, until the

first non-zero digit and the exponent e^ is adjusted accordingly.

The algorithm for division is then as follows:
t t lSet R 0 = m . This represents the zeroc partial remainder. Let

R^ denote the partial remainder at the ith stage and R ^ denote its

ith digit. Then,

qi = R ii bo1 (mod P) for i = 0,1,2, ... ,r-1 (3-24)

The next partial remainder R is then given by
i+1

R. = R, + q.- • m R • A(i) (3.25)
1+1 i l »

where m^ is the complement of m^ and A(i) denotes aright shift by i

digits, and the algorithm terminates when q is obtained. Ther-1
exponent ey of the result is then (ea - eg).

3.3.5 L im it a t io n s o f K r ls h n a m u r t h y *3 A lg o r ith m s

In this section we show that the algorithms for addition and

multiplication (and hence, those for substraction and division)

presented earlier do not always generate a correct result having the

same code-word-length as the two operands. In fact, in such cases,

confining these operations to the prescribed size without incurring

any modifications to the algorithms, results in an incomplete code

which is seriously erroneous [16]. After discussing these limitations

we will present the modified complete algorithms for closed finite
A

p-adic arithmetic operations in Q

3.3.5.1 Limitations of the Addition Algorithm

The algorithm described in section 3*3*1 would always work if

the exponents were different, that is,

ea * eg (3*26)

Alternatively, if the exponents were equal, then the algorithm

is.guaranteed to work if they were both zero. On the other hand, if

ea and e^ were equal but are not zero, i.e., pn |b,d, then the algo­

rithm would work if and only if ŝ | 0 (mod p), where i denotes the

position of any leading zero in the sum.

Summarizing, the algorithm for addition would yield the correct

result in all instances except in those cases where:

ea = eS < 0

and si = 0 (mod p) , i = 0, 1 ,.. , ,k

where k < |e l-i — i a I 1
}

(3.27)

In this latter case, the resulting sum, which should correspond

to (where Y = a+$), contains k+1 leading zeros. These leading

zeros not only are meaningless, exactly as in p-ary arithmetic, but

their existence leads to an entirely erroneous code. Also, in what

regards the final exponent, e-y, it is not equal to ea or eg as shown

in the algorithm.

If these leading zeros were simply discarded from the resulting

mantissa, then, consequently, H(p,r,Y) is no longer a correct Hensel

code of length r, but its effective length is r-k-1 and the missing

digits and the correct exponent, e - y , are yet to be determined for a

complete exact code.

3«3.5.2 Modified Addition Algorithm

To overcome the problem mentioned in section 3.3*5.1, in the

case where ea = e-g < 0, the algorithm presented in section 3*3*1

should be carried over the same range, r, until sp is reached where it

should be extended as follows:

1. Compute cr

2. If Sj_ = 0 (mod p), i = 0,1,...,k where k < | ea| -1,

then compute H(p,r,a) and H(p,r,S)

where r = r+2 for k = 0

= r + k k even

r+k+1 k odd

51

3. = (â + + ĉ) (mod p), i = r, r+1,...,r+k, taking the

value of cr, computed in (1), into consideration.

4. The resulting sequence of digits is shifted left by k+1

locations yielding my, and ey = ea + k + 1. This code is the

required Hensel code of size r.

1 1 1 6Example: Consider the segmented p-adic addition of — and — .• 1 0 15
Their corresponding Hensel codes for p = 5 and r = 4 are:

H(5,4,11/10) = (0.3322,-1)

H(5,4,16/15) = (0.2413,-1).

If we apply Krishnamurthy's algorithm of section 3.3.1, as it

stands, the segmented p-adic operation would yield the result

(0.0340,-1), which does not correspond to the Hensel code of T = 13/6.

If fact, it is not a Hensel code at all.

Consider now the modified addition algorithm discussed above.

Since ea = ê = -1 and s0 =0, where k = 0, then r = 6. Thus,

H(5,6,11/10) + H(5,6,16/15) results in a mantissa of 0.03404 where

the addition process is stopped after reaching i = r+k = 4 (whereas it

was terminated at i = r-1 = 3 in Krishnamurthy’s algorithm).

Now, shifting this mantissa left by 1 location yields my =

0.3404 and ey = 0, i.e.,

52

H(5,4,Y) = (0.3404,0)

which corresponds to Y = 13/6.

3.3-5-3 Limitations of the Multiplication Algorithm

Here, again, we point out that Krishnamurthyfs algorithm for the

p-adic multiplication in Qp, described in section 3-3*3 would perform

correctly provided either one of the following two conditions is

satisfied:

= e,

2. ea * eB such that ea < eg and mg does not consist of any leading

zeros in its first r/2 digits.

If we consider now the case where

ea < e 8

and

, rm =0, i=0,1,...,k where k £ (- -1),
3i 2

then, unavoidably, and after performing the described algorithm,

leading zeros will appear in the final product leaving its mantissa,

my, incomplete, with the exponent, ey, of the product not equal to

ea + eg as stipulated in section 3-3-3-

53

3.3«5.4 Modified Multiplication Algorithm

The erroneous code resulting from applying Krishnamurthy's

algorithm as it stands can be corrected if the following preliminary

steps were undertaken

r1. If m =0, i = 0,1,...,k, where k < (- - 1),
Si ~ 2

then compute H(p,r,B) where, again,

r = r + 2

= r + k

= r + k + 1

for k = 0

k even

k odd

2. Shift m^ of H(p,r,B) left by k+1 locations resulting in the

temporary shifted sequence nig. It should be noted that the

effective length of nig under consideration is taken equal to

r, but does not correspond to the mantissa of any Hensel code.

From this point onwards, Krishnamurthy's algorithm is applied

with the difference that the product's exponent, ey, is given by:

eY = ea + eB + k + 1

and this exponent, together with the resulting mantissa, correspond to

the Hensel code of Y = a • B.

We illustrate the points discussed in section 3.3.5.3 and in

this section by the following example.

- 54 -

Example: Assume a = 1/15 and 8 = 5/4. Then, the multiplication of

H(p,r, a) by H(p,r,Y) consists in multiplying the Hensel codes

(0.2313,-1) and (0.0433,0) for p = 5 and r = 4.

The segmented p-adic multiplication algorithm as described in

section 3.3.3 is depicted in Table 3.1 and the product resulting is,

thus, H(5,4,Y) = (0.0342,-1) which, again, is obviously erroneous.

However, since ea < ê and the first leading digit in m^ = 0, at

k = 0, then H(5,6,5/4) = (0.043333,0) and = 0.4333.

Given this temporary value of the multiplier mantissa, the

segmented p-adic multiplication is performed according to

Krishnamurthyfs algorithm and as depicted in Table 3.2.

Hence, my = 0.342.4

and ey = -1 + 0 + 0 + 1 = 0

and the final product H(5,4,y) = (0.3424,0) which corresponds to

Y = 1 /1 2 = 1 /1 5*5/4.

- s a ­

lable 3.1: Krishnamurthyfs algorithm for segmented p-adic
1 5multiplication in the case of a = — and 8 = -15 4

for p = 5 and r = 4

t

56

Table 3.2: Modified algorithm for segmented p-adic multiplication
1 5in the case of a = rr and 0 = ̂ for p = 5 and r = 4

i , j 0 1 2 3

a j 2 3 1 3
b i ij 3 3 3

0̂
o o 3 1

P o , , . 2 2
p* 0 (2 14 0
P » , 3 2

Po 3 3 1 3

•

P i 1 0 0

•

p 2 1 0

•

p 3 1

p 3 4 2 14

1

57

3 Conversion of Hensel Codes and Variable^Length p^adic Expansions

to Rational Form

Having analysed the arithmetic in Q we now consider the

problem of converting a finite or infinite p-adic code to its

rational equivalent. There are three main conversion techniques [29]

which we will analyse in turn.

3 . 1 Method of Congruences Based on p^adic Weights

In section 3.2 it was mentioned that the digit positions in a

p-adic representation have corresponding fractional weights given by

(3.9).

The conversion from p-adic form to rational form depends on the

type of fraction under consideration:

a) Soft fractions: These are rational fractions a/b where

b|(pr^2—1). The weighted sum W will then be equal to the actual value

of such particular rational and satisfies the equation:

a W

or a(pr/2 - 1) - bW = 0 (3.28)

and hence the conversion from a p-adic representation to rational form

only involves finding this weighted sum.

b. Hard fractions; Fractions which do not have the property that

the denominator is a divisor of pr/'2-] are called hard fractions.

Their weighted sum will not be equal to their actual value and,

consequently, such weights are called pseudo-weights.

, Such fractions will only satisfy the following congruence:

a(pr^2-1) - bW = 0 (mod pr) (3.29)

In this case, the conversion from p-adic code to rational form

involves the solution of the above congruential relation. This is the

same as solving the diophantin'e equation:

a(pr/2-1) - bW = kpr , k = ±1, ±2,... (3-30)

for various values of k, and the solution which yields an order-N

Farey fraction is taken.

However, it is known, [29], that an equation of the form

ma - nb = 1

has a solution a = a0 and b = ba obtained by expanding m/n as a

continued* fraction and taking the last but one convergent which equals

b0/a0 and, since there are many solutions to the problem, other

solutions of the form:

+tn ±tm
a0 , b0 , for t= 0,1,2,...

have to be tried.

Alternatively, a faster procedure can be applied which considers

the weight, W ’, of the reciprocal of the p-adic number which yields a

value of k such that

WWf - (pr/2-1)2
k = --------------- (3.3D

Pr I

Then, a search is made for that value of t which will give the

desired order-N Farey fraction.

However, the study of this conversion method shows that it is

not a practically suitable technique. This is chiefly due to the fol­

lowing points:

1. Given a p-adic code, it is not known apriori whether the weight

attributed to it is a proper weight or a pseudo-weight. This is due

to the fact that the type of initial rational has to be determined,

1. e., soft or hard fraction, prior to its conversion to p-adic code.

2. In the case of hard fractions, particularly, solving the

congruence (3*29) requires a great amount of computation time, even if
the fast procedure described above were to be used.

In general, conversion of p-adic codes to rationals using the

weight assignment technique proves to be laborious and time consuming.

3.4.2 Method of Look-up Tables

In this method, a look-up table is stored for every rational

number occurring in the order-N Farey sequence. To every value is

assigned the corresponding p-adic representation for the required

value of the prime p (and length r, if we consider Hensel codes). A

direct mapping between the fields Qp and Q (or Qp and Q) allows the

determination of the rational number.

This technique involves the computation and storage of all the

codes for every value of p (and r) under consideration and, although

the mapping is fast, the table generation procedure itself is labori­

ous if various combinations of the parameters p and r are re­

quired .

3.4.3 Method of Successive Additions

Using the modified algorithm presented in section 3*3.5.2 for

the p-adic additions, it is possible to successively add a p-adic code

until all the last r/2 digits assume the value 0 or (p-1), therefore

reaching the configuration of a positive or negative integer respec­

tively .

Therefore, the numerator of the corresponding rational fraction

is the weighted power sum of the leading r/2 digits and the

denominator is the number of additions performed to reach this con­

figuration + 1 .

61

If the last r/2 digits equal 0, then the fraction is positive.

Conversely, if they are equal to (p-1), the fraction is negative.

This method proves to be reasonably fast and extremely flexible

since the conversion is systematically performed over any required

value of the prime p. The ambiguity pertaining to the

weight/pseudo-weight determination in the congruential technique and

the complexity in generating look-up tables are thus avoided.

This technique is the one used in constructing our cryptographic

scheme and throughout our computations.

3.5 Limitations of the Use of Segmented p^adlc Number Systems

In this chapter we presented an analysis of finite p-adic number

systems. Arithmetic operations in Qp were considered. From this

analysis we draw two main conclusions regarding the use of p-adic

number systems in Qpj

1. In section 3.1 it was shown that, in order to have a unique

Hensel code, the rational number should have its numerator and

denominator bounded by (3.4). This presents a serious limitation of

these finite systems: closure of arithmetic operations is not
guaranteed since the mapping of the result from Q to Q may not

correspond to the order-N Farey sequence.

62

2. The limitations of Krishnamurthy's algorithms for performing

finite p-adic arithmetic present a drawback in the use of these

algorithms, and, although we were able to modify these algorithms, a

longer intermediate code was required to implement these

modifications.

It is then apparent that the use of finite p-adic number systems

confined to a fixed length r involves a constant overflow trace and a

constant analysis of the structure of the operands prior to any finite

p-adic operations.

i
For this reason and for other reasons which will be explained in

chapters 5 and 6, we will consider the use of variable-length p-adic

number systems for the implementation of our proposed cryptosystem.

63

CHAPTER 4

MATHEMATICAL THEORY OF CRYPTOGRAPHIC SYSTEMS

4.1 Introduction to Cryptosystems

The main task of a cipher system is to map a plaintext message

onto a ciphertext message to be transmitted over an insecure channel.

This mapping should only be known to the source and receiver, such

that any eavesdropper on the insecure channel cannot decipher the

ciphertext to recover the original message.

Thus, the first aim of any cryptosystem is privacy. The

second important goal is authentication, i.e., the prevention of an

unauthorized party to inject a message into a public channel and thus

assuring the receiver of a message of the legitimacy of its sender,

[1 3] and [14].

In 1949, Shannon discussed the theory of secrecy systems

through an information theoretical approach, [49]. He laid down five

criteria for unconditional secrecy, that is, the ability of a system

to resist any attacks by a cryptanalyst who is given unlimited time

and computational power. For a detailed discussion and evaluation of

those criteria, the reader is referred to Beker and Piper's paper [8].

64

Since then, considerable advance has been achieved in the area

of cryptography, mainly due to technological advances and to theoreti­

cal developments in information theory and computer science. As a

consequence,- new disciplines have emerged, such as complexity theory

and the analysis of algorithms, [28] and [15].

Since unconditional security is practically impossible to

achieve (the only unconditionally secure system known is the one time

pad, [24], which requires an extremely large key size), researchers

are striving to design increasingly computationally secure

cryptosystems. By computationally secure systems, we mean systems

which are not vulnerable to cryptanalytic attacks subject to

limitations in the cost and time of cryptanalysis, but which would be

overpowered given unlimited conditions.

As a result, conventional cryptographic systems developed from

the basic monoalphabetic ciphers, through the more recent mechanical

cipher devices and shift registers, [7], [8] and [10], to what is now

called public-key cryptosystems. A detailed discussion of public-key

systems will be presented in section 4.4.

In a conventional cryptographic system (Fig. 4.1), however,

the source and receiver both share the same key. The source first

enciphers the message M, based on the key k, to produce the ciphertext

C:

C = Ek (M) (4.1)

Fig. 4.1: Block Diagram of a Conventional Cryptosystem

At the receiving end, the recipient uses the same key k, but

with a deciphering procedure which is the inverse of the enciphering

operation, and recovers the message M:

D k (C) = Ejj(Ek (M)) = M CU.2)

The insecure channel in Fig. 4.1 is shown by the broken lines.

A cryptanalyst with a knowledge of the key k can break into the system

and decipher any transmitted message. For this reason, the key has to

be securely transmitted between the legitimate users. This is usually

done by some physical means, thus imposing unrealistic cost and delay

problems on the system.

In the next section we discuss the important feature of

authentication and digital signature requirement in cryptographic

systems. Then, in section 4.3, we briefly introduce the newly

developed science of complexity theory which leads to a presentation

of the theory of NP-completeness of public-key cryptosystems and

present the major schemes based on this concept. In order to show the

potential viability of each of these schemes, it will be followed by

some of the attacks it has been subjected to.

4.2 Authentication and Digital Signature

In section 4.1, we briefly mentioned that one of the main

goals of a cryptosystem is to provide authentication. In fact, what

we mentioned earlier related to message authentication, whereby

preventing the unauthorized injection of a message in the public

c h a n n e l .

67

Another feature of the authentication process is that of user

authentication, where the task of the system is to verify that an

individual is who he claims to be [133-

In some cryptographic applications, it may not be sufficient

to authenticate the validity of a message or whether it has been sent

or interfered in by a third party. One further requirement is to

prove that:

a) the recipient has effectively received a message from the

source a n d ,

b) the recipient has not forged or modified the message in any

. w a y .

In cases of dispute, this feature provides the receiver of a

message with legal proof of the Identity of the sender [14] and also

bears an added protection for the sender who may thus prove his

disassociation from a particular message the recipient claims to have

r e c e i v e d .

This concept is that of digital signature where, on transmis­

sion channels, it is necessary to provide the equivalent of a written

signature in order to settle any dispute between the sender and

receiver as to what message, if any, was sent.

58

This process of signing a document entails the existence of a

secret key known only to the sender [12]. It should not be confused

with the public key which will be discussed in future sections. But,

it is obvious that both the secret and public keys are interrelated in

some m a n n e r .

4 .3 C o m p le x ity T h eo ry and th e T h e o ry o f N P -C o m p le te n e ss
t

In section 4.1 we mentioned that the recent advances in

technology, in general, and in computer science, in particular, have

created new fields of research. One such field which has a direct

bearing on cryptography is that of complexity theory.

Complexity theory is a collection of results in computer

science which, in essence, attempts to quantify the statement, [28]:

"Problem A is harder than Problem B" .

Normally, when discussing problems in this context, we only

consider decision problems whose solution is either 'yes’ or Tn o ?,

[7].

A decision problem is said to belong to the complexity class P

if it can be computed in polynomial time using a deterministic Turing

Machine. On the other hand, if a decision problem can be solved in

polynomial time by a non-deterministic machine, it is said to belong

to the class NP.

69

One subclass of the NP problems is called the NP-complete. To

define this class we have to introduce a well known problem in

complexity theory which is the satisfiability problem. A full

analysis of this problem can be found in [15]. For any given problem

in class NP, there is a polynomial time algorithm which reduces that

particular problem to the satisfiability problem. If the

satisfiability problem can be solved with a polynomial time algorithm,

this implies that every problem in NP is also in P. Conversely, if

any problem in NP is intractable, then the satisfiability problem

itself also must be intractable. Problems which share this property

are the NP-complete problems.

In Fig. 4.2, we show the containment relationships between the

classes P, NP and NP-complete. It is clear that any problem in class

P is automatically in class N P . It is also noted that not all

problems in NP and which do not belong to P are NP-complete.

Class N P

F i g . 4 . 2 : C o n t a i n m e n t R e l a t i o n s h i p s B e t w e e n C o m p l e x i t y C l a s s e s
P , NP a n d N P - C o m p l e t e

70

Cryptography can draw directly from complexity theory, and

particularly from the theory of NP-completeness, by attempting to

provide algorithms which make any cryptanalytic task intractable.

The different systems which are presented in the following

section reflect this requirement, and so does the scheme based on

p-adic number systems which we are proposing in chapter 5.

4,4 Public-Key Cryptology

In section 4.1 we explained the flow of information in a

conventional cipher system. The main disadvantage of such a system is

the need for a physically secure channel to transmit the enciphering/

deciphering key from the sender to the receiver. This same channel

could not itself be used to transmit the message for reasons of

capacity and delay.

This situation creates a problem of key management. Not only

do the sender and receiver have to wait while the keys are sent, but

also, in a system with, say, one million users, there are almost 500

billion possible connections, [14], and the cost of transmitting these

keys becomes prohibitive. There is also one added risk which is that

of the "extent of security" of the presumed secure channel.

These problems have generated the idea of public-key systems

and, although Diffie and Heilman, [14], classify such systems into two

categories, that of public-key distribution (as the Diffie-Hellman

71

scheme itself [14] and the Merkle scheme [36]) and of public-key

cryptosystem, we will follow Beker and Piper's nomenclature, [8], and

group them under the same heading of public-key cryptosystems.

Such systems are based on the concept that, although a public

entry resides in a directory and the enciphering and deciphering

algorithms are also made public, a cryptanalyst cannot decipher a

message since this operation requires the receiver's own secret key to

be exerted upon the deciphering algorithm.

As indicated in Fig. 4.3, the sender also uses his own secret

key to encipher the message. The system then becomes a two-way

communication system whee a cryptanalyst’s task is made as hard as

attempting to solve an NP problem: although he can access the public

directory and use the public keys deposited, he still necessarily needs

the secret key of the receiver in order to be able to decipher the

encrypted message.

Three of the most realistic public-key cryptosystems which we

shall discuss in detail over the next section are the Merkle-Hellman,

Diffie-Hellman and Rivest-Shamir-Adleman systems.

4.4.1 The Diffie-Hellman System

The Diffie-Hellman key distribution scheme [1 3] makes use of

the apparent difficulty of computing discrete logarithms over a finite

Galois field GF(p) where p is a prime.

MESSAGE M
SOURCE

Fig. 4.3s Block Diagram of a Public-Key Cryptosystem

73

If a is a fixed primitive element of p, let

y E ax (mod p) ; 1 <_ x <_ p-1 (4.3)

In this case x is referred to as the logarithm of y to the base a

modulo p:

x E loga y (mod p) ; 1 < y < p-1 (4.4)

or, alternatively, as the index of y to the base a [5]:

x = ind'ay (4.5)

In this system, each user generates an independent random

integer, xA (for user A), chosen uniformly from the set {1,2, ...,p— 1}.

x A is a secret integer known only to A. But, whereas xA is secret,

the value yA is placed in a public directory, such that,

y A = ciX a (mod p) (4.6)

Wherever two users, A and B, want to communicate privately,

they use the key:

KAB
X X , A B (mod p) (4.7)

User A computes K AB by obtaining yB from the public directory

and letting:

- 1U -

K
X

AB = y B
A (mod p) (4.8)

, Xb/ a(a) (mod p) (4.9)

X AX Ba (mod p) (4.10)

In the same way, user B obtains K AB through:

KAB (mod p) (4.11)

In order to decipher any message, a cryptanalyst will have to

compute the common secret key KAB such that:

(lo g a yB)
K AB = Ya

_ (io ga yA)
= y B

(mod p)

(mod p)

(4.12)

(4.13)

4.4.2 Comments on the Dlffle^-Hellman System

As mentioned in section 4.4.1, the Diffie-Hellman algorithm

relies on the complexity of computing discrete logarithms over GF(p).

It is quite simple to compute y from x in (4.3). This operation takes

at most 0(21og2p) multiplications [25].

75

On the other hand, computing x from y is much more

complicated. One of the best algorithms which computes indices modulo

p runs in exponential time 0 (p 1//2) [26]. Another algorithm which runs

in subexponential time, i.e., which has a running time better than

0(p£) for all e > 0, was developed by Adleman [2] and requires
/ logP (p)logp logp (p)0(e 9 e e ^

However, it has been shown [44], [45] that if (p-1) has at

least one large prime factor or if p is large [2] such that

p > 200 bits, then indications show that exponentiation modulo p

becomes a one-way function and would then fall in class NP.

The fundamental criticism to be directed to this scheme is

that, due to the fact that both entries yA and yB reside "permanently"

in the public file, there is great concern that the repeated use of

the same key might severely compromise it and hence the encipherement

protocol itself may be compromised.

In the p-adic-based cryptosystem that we propose in chapter 5

we show how to overcome this fundamental shortcoming of the

Diffie-Hellman algorithm.

4.4.3 The Merkle-Hellman System

Merkle and Heilman [38] have devised a cryptosystem based on

the trapdoor knapsack problem which is known to be an NP-complete

problem.

76

Generally, a trapdoor one-way function is an easily calculated

function for which it is computationally infeasible to compute the

inverse function unless certain specific information which was

initially used in the design of the function is known.

Given a vector of integers, a:

a = (ax , a 2 , ... ,an) (4.14)

and an integer c, the knapsack problem consists of finding a subset of

the (a^[such that the sum of elements of the subset is equal to c. In

other words, it is required to find a binary vector x of n elements,

such that:

c = a • x

n
- I a, x, (11.15)

1=1

To formulate' their cryptographic algorithm, Merkle and Heilman

start by considering a relatively simple knapsack problem and build it

into a more complex form.

To encrypt a message, first it is divided into n-bit blocks

(xx , x 2 ,...,xn), then the vector a is used to form the dot products,

as in (4.15), thus yielding the ciphertext c.

To recover the x^ .from a knowledge of c is believed to be

computationally infeasible if the a i and x̂ _ have been chosen randomly.

77

To add one extra degree of complexity, when considering an

effective cryptosystem, the algorithm for generating public keys first

generates a simple random knapsack vector a ’ (with several hundred

elements) which is kept secret. It also generates a random number m,

such t h a t ,

n
m > T a'

i=1 i

-1and a random pair to and to , given by

tuto = 1 (mod m)

(4.16)

(4.17)

Finally, the public knapsack vector, or enciphering key, is

obtained by a component multiplication:

a.r = co a ’(mod m) ; i = 1 ,2 ,...,n (4.18)1 l

When a user A wishes to send a message x to B, he computes the

ciphertext c as in (4.15) and sends c to B. B uses his secret
-1

multiplicative inverse to modulo m and performs the following

computation:

c' E a) c (mod m)

?= to 1 a i xi (mod m)
i = 1

-1 nl { [to a.’ (mod m)] x.- } (mod m)
_ i i xto

78

n -1
= X { [o i QJ

i = 1
(mod m)] X..

i 1
(mod m)

n
E £ a) (mod m)

i=1 1

= aT • x (4.19)

n
since m > 7 a ’

i = 1 i

The vector a is placed in a public directory as a u s e r ’s key

while Co 1 and m are kept secret to decipher any message which has been

enciphered with this public key.

Fig. 4.4 shows the flow of information in the Merkle-Hellman

system.

4,4,4 Comments on the Merkle-Hellman System

Although known to be in NP-complete, the knapsack problem has

been shown [23], [48] to be solvable under some assumptions. This

fact leads to the necessity of generating specific sequences of the

vector a [37].

Furthermore, from a practical point of view, the public key

vector a is extremely large. Merkle and Heilman recommend the

following minimum parameters of a to ensure secure communication:

*

MESSAGE
SOURCE

Fig. 4.4s Flow of Information in the Merkle-Hellman Cryptosystem

n = 100

2 . each randomly chosen a' is a (9 9+i)~bit natural number.i

These specifications, although they safeguard the

cryptographic security of the system, the orders of magnitude involved

are extremely impractical to be incorporated in a public directory

which may be shared by a wide number of users.

4,4.5 The Rivest-Shamir*Adleman System

1 .

The Rivest-Shamir-Adleman [46] (RSA) system uses

exponentiation in a different way from that used by Diffie and

Heilman. They make use of the fact that, given the modern computer

technology, it is computationally easy to find large prime numbers of

the order of 100 digits. On the other hand, given the same computer

power, it appears that factoring the product of two such primes is

computationally infeasible and hence belonging to the class NP.

In this system, user A selects two large primes p and q at

random. Then he obtains their product n:

n = p • q (4.20)

Consequently, since p and q are primes (refer to equation

(2.19) in chapter 2), the Euler totient function <j>(n) is computed as:

<j>(n) = (p- 1) (q- 1) (4.21)

- 81 -

The encryption key, e, is then chosen at random from the

interval [2 , <j>(n)-1], such that

(e, <f>(n)) = 1 (4.22)

The decryption key, d, is the multiplicative inverse of e

modulo <j>(n):

ed = 1 (mod <f>(n)) (4.23)

The pair of integers (e,n) is made public while p,q, < p (n) and

d are all kept secret. A message is then represented as a sequence of

integers m x, m 2 ,..., such that

0 1 m i £ n_ 1 (4.24)

and m^ is about 700 bits.

Each block m^ is then enciphered using the public keys e and n

of the receiver and the ciphertext, c, is produced according to:

e
c^ = (mod n) (4.25)

To decipher the message block m ^ , c^ is raised to the

receiver's secret power d:

d e d
c^ = (m^) (mod n)

= mi (mod n) (4.26)

82

and since m^ < n, the value obtained corresponds to the originally-

transmitted message block.

In Fig. 4.5 we describe the flow of information in the RSA

system.

4.4.6 Comments on the RSA Systems

The RSA system has, so far, withstood many attacks and, unless

large improvements are made in the factorisation problem or techniques
e

for inverting m^ without requiring the secret decryption key d, are

found, it remains potentially secure.

However, an algorithm for breaking the RSA system has been

independently devised in [51]. It relies on the possibility that an

encrypted message m can be decrypted by successively re-encrypting the

ciphertext, c, where c = m e (mod n).

More formally, this can be shown by setting c x to c then

compute

c = ce (mod n) (4.27)
i + 1 i

Congruence (4.27) is then repeated until c = c. Then c.- = m.i + 1 1

This is illustrated in Table 4.1 where we consider the same

example used by Rivest et. al. [46].

MESSAGE
SOURCE

RECEIVER

Fig. 4.5: Flow of Information in the Rivest-Shamir-Adleman (RSA) Cryptosystem

84

For the case p = 47 and q = 59, then n = p*q = 47.59 = 2773

and d = 157. Consequently, <£(2773) = 46.58 = 2668 and the encrypting

key e is the multiplicative inverse of d modulo 2668. Thus e = 17.

Rivest e t . a l ., in their example, considered the message

ITS ALL GREEK TO ME

(Julius Caesar, I, ii, 288, paraphrased)

and they encoded two letters per block, substituting a two-digit

number for each letter: blank = 00, A = 01, B = 02 ,..., Z = 26.

Thus the whole message is encoded as:

0920 1 900 0 1 1 2 1 2 0 0 0 7 1 8

0505 1100 2015 0013 0500

Since e = 17, then the message has the following ciphertext:

0948 2342 1084 1444 2663

2390 0778 0774 0219 1655

In Table 4.1, we consider the first block of ciphertext where

c x = 948 and by successively raising this block to e = 17 modulo 2773,

it is seen that it converges back to c : in 44 iterations. The 43rd

iteration, however, is the initial encoded message, 920, corresponding

to the first two letters I and T of the transmitted message.

85

Table 4.1: Successive iterations for breaking the RSA system
for the case e = 17, n = 2773, C = 948

ITERATION C 1 7 (MOD 2773)

948
1 1207
2 723
3 802
4 2305
5 21 51
6 2552
7 11 56
8 1 243
9 2033

10 900
11 1 5 1 0
1 2 2187
13 1679
14 251
15 2 1 2
16 299
17 2387
18 841
19 ' 2 2 1 8
20 4
21 27
22 11 36
23 21 00
24 535
25 2682
26 2493
27 271
28 2364
29 263
30 1 431
31 153
32 71 2
33 617
34 2375
35 2572
36 63
37 2092
38 487
39 507
40 653
41 1 325
42 192
43 920
44 948

Another more complicated algorithm which also attempts to

break the RSA cryptosystem was developed by Herlestam [23]. Although

both algorithms have a small probability of success since they depend

on particular values of e and $(n), they offer some indications

regarding a higher probability of breaking the system.

It should be emphasized, however, that these algorithms do not

address the factorisation problem in any way but they rely on the

ciphertext itself and the public information in order to recover the

corresponding plaintext.

37

CHAPTER 5

A NEW PUBLIC-KEY CRYPTOGRAPHIC SCHEME BASED ON

p-ADIC NUMBER SYSTEMS

5.1 Introduction to the Proposed System

In chapter 4 we described the mathematical theory of pub­

lic-key cryptosystems. We showed that all the algorithms developed

for this class of security systems rely on number theoretic concepts.

In this chapter, we extend this principle by devising a new

algorithm for public-key encryption. This algorithm is an extension

of both, the Diffie-Hellman and RSA systems. It exploits the features

of each system's one-way functions: in the case of the Diffie-Hellman

system, the difficulty of computing discrete logarithms over finite

fields and, in the case of the RSA system, the complexity of factoring

a known integer into its prime factors.

Furthermore, the scheme makes use of the p-adic number system

discussed in chapters 2 and 3* It is demonstrated that, by using this

system to encipher a given alphabet, any cryptanalytic approach will

have to consider a very large search space to determine the prime p

which allows the decryption of the message to be performed.

To achieve this, variable-length p-adic number systems will be

used. The structure of the corresponding p-adic codes will be given

in section 5 . 2 and, in section 5 .3 , we discuss the problem of select­

ing the alphabet required for the proposed cryptosystem.

- 88 -

The encryption and decryption algorithms are presented in

section 5.4.

In section 5.5, a further extension of the p-adic system is

proposed, where the algorithm is performed over a g-adic ring instead

of a finite p-adic field. The search space then increases

exponentially and any cryptanalytic attack will not only have to

consider prime values but, also, any power of a prime.

The algorithms for encrypting and decrypting in this extended

system will also be derived and the method of converting a g-adic

sequence of integers into its corresponding p-adic sequence will be

explained.

5.2 p^adic Code Structure for Cryptographic Implementation

In chapter 3, we pointed out some of the limitations of using

finite-segment p-adic number systems.

To these limitations, we add one extra constraint. For

implementation in a cryptographic scheme where the alphabet is made

public to all users, a knowledge of the fixed finite length r of

H(p,r,a) where a is an element of the alphabet and p is an unknown

value, gives direct indications to the value of p. This is due to the

inherent structure of the finite p-adic number systems and which are

necessarily bounded by the bounds given in (3.4).

On the other hand, a knowledge of r is required in order to

perform the conversion algorithm in any decryption process to recover

the message a.

89

To solve this paradox, we suggest that, variable-length p-adic

number systems be used. This is done as follows.

Given an alphabet set and based on a particular prime value,

p, the sender of a message can compute the period X of the varia­

ble-length p-adic code according to the analysis reported in section

2.3 of chapter 2. Also, the aperiodic elements in this expansion can

be computed as shown in section 2.4 of the same chapter. The algorithm

given in section 2.4 also allows the first periodic element, a pointer

to which will be denoted by X x, to be detected.

Hence, the structure shown in Fig. 5.1 is suggested for the

variable-length p-adic code.

start of period

f

X *1 • « • • • 4

Aperiodic terms Periodic terms
of length X

Fig. 5.1 Structure of the variable-length p-adic
code based on the period X

In Appendix B we give a table of such codes for p = 5 and for

a maximum numerator/denominator value of 1 7 , for comparison with the

finite-segment Hensel codes with r = 4, given in Appendix A.

90

To convert such a code back to its rational value a, we use

the successive addition algorithm described in section 3 . 3 * An

integer representation is reached when, for a particular even value of
rr, the last - digits = 0. However, to find this even value of r, we

proceed as follows.

If T is the largest value represented in the alphabet, then

set

T (5.1)

. . 2Y 2 = p r - 1

. . r
l o g (2 Y 2 + 1)

log p
(5.2)

If the obtained value of r is odd, then

r = r + 1 (5.3)

Consequently, a code corresponding to the variable-length

p-adic code sent, but of length r, can be formed by the receiver and

hence converted to its unique rational value in the alphabet.

Another algorithm,’ however, considers the canonic p-adic

expansion of a:

- I
n=i n Pa (5.4)

- ?1 -

Since a is periodic with periodicity then we can write a in

the form:

i i+1 i+k
a = a p + a p +... + a p i i+1 i+k

i+k+1 i+k+2i
1 * 2

+ b 4 p + b ^ p + ... + b A p
i+k + \

i+k+X+1 i+k+2 A+ b p + ... + bA p

(5.5)

p 1 (a + a p + . . . + a pk) i i+1 i+k

i+k+1 A- 1+ p (b 1 + b 2p + . . . + b A p)

i+k+A+1 A~1+ p (b 1 + b 2 p + . . . + b , p)

(5.6)

i i+k+1 \ 2 \ .
= p 1A + p B(1+pA + p + ...) (5.7)

where

A = a + a p + . . . + a p} i i+1 i+k

and

= b 1 + b 2 p + . . . + b A P
A-1 } (5.8)

B

92

Then, (5.7) equals

p 1 A i+k+1 „ + p B
1 - p A

s i n c e , in Q p ,

(5.9)

and

2A (n -1)A 1 -p nA
1 + p A + p +...+ p = ----

1 - p A
(5 .10)

1 -pnA 1
--- — — — as n
1 - p A 1 - p A

Thus, A is the sequence of aperiodic terms in the structure,

while B is the sequence of periodic terms (notice that b x in the

above analysis corresponds to the element pointed at by in the

code), and by computing (5 .8) and (5 .7), the equivalent rational value

of a can be determined.

However, this algorithm is more complicated than the fast

successive addition algorithm since it involves continuous

exponentiation, multiplication and addition. Furthermore, the magni­

tude of the result of the exponentiation of the prime p can cause

overflow problems since the above operations are no longer carried out

in a modular field.

93

We thus revert to the successive addition algorithm described

in this section and based on the proposed p-adic code structure to

convert the codes from Qp to Q.

5.3 Choice of Alphabet

Since our proposed cryptosystem is based on p-adic number

systems, then, initially, our alphabet will consist of rational

numbers.

For each character, a, in the alphabet two integer values are

assigned, one for the numerator and another for the denominator of a.

There are two considerations to be made in this respect.

First, notice that in the p-adic code structure given in

section 5.2, the p-adic point is not considered as part of the code.

If a p-adic point were incorporated, then it is possible to deduce the

value of p. Consequently, radix fractions corresponding to p must be

omitted from the alphabet.

This is easily done since, once the alphabet has been generated

and stored for public use, users of the system will select values of p

such that

p > Y (5.11)

where Y is the largest value represented in the alphabet set.

In a typical cryptographic system, this is guaranteed because

it is necessary to use large values-of p (of the order of 200 digits). »

94

The second consideration relates to what we label "fractional
cambiguity". By fractional ambiguity we mean fractions - such that ifd

a
(c,d) > 1 they can be reduced to a fraction - where (a,b) = 1 andb
which already exits in the alphabet.

It can be ensured that this situation does not occur if the

elements of an alphabet are drawn from an order-N Farey sequence.

5.4 Realization of the Scheme Based on p*adic Fields

In Fig. 5.2 we show the flow of information in the proposed

cryptographic system based on p-adic number systems. The scheme

involves two prime numbers p and These prime numbers are chosen

randomly and, as in any cryptographic scheme based on discrete

logarithms, p must be chosen such that p-1 has at least one large

prime factor.

The system is best described by explaining the corresponding

encryption and decryption algorithms.

5.4.1 The p«-adic Encryption Algorithm

Suppose that A and B want to secretly communicate together,

then in this system, as in the Diffie-Hellman system, we propose that

p and its primitive element a be universal to all users of the system

along with the afore-mentioned alphabet.

Fig. 5.2: Flow of Information in the p-adic-Based Cryptosystem

96

A chooses a secret key, K s and places y a in a public diree
A R

t o r y , such that:

yA = a (mod p) (5.12)

and so does B, with his secret key K :
SB

y B = a Sb (mod p) (5.13)

Then, if A wants to send a message, m, to B, he first selects a

prime P Ag, such that,

This prime constitutes the basis of the p-adic code in the

ciphertext (and which, actually, corresponds to p of Qp in chapter 2).

pAb is a hidden information which will be sent to B as the header, h,

prior to the sequence of p-adic codes of the message m. This is done

as follows:

the ciphertext is sent over the insecure channel and is composed of

the variable-length p-adic code of m.

5.4,2 The p'-adlc Decryption Algorithm

At the receiving end, B who is anticipating to receive a

(5.14)

(5.15)

since y B is in the public directory ahd K is known only to A. Then,

message from A, first acquires the header h. This header contains the

97

necessary information which allows B to decipher the subsequent

code. To "filter” PAB from the header h, B performs the following

computation:

K 3(yB) A • p a b ' (mod p)

K s K =,
(a S b) 3a P AB (mod P)

K s
(a A) 30 P AB (mod P) (5 .1 6)

B u t ,

Ksa A (mod p) = yA

which is in the public directory, and K is only known to B. Hence,
SB

the value

K K
k = (a A) Sb (mod p) (5.17)

can be computed.

Since p is a prime, then k 1 (p) exists. By calculating this

value of k 1 (p), B recovers pAB such that,

p ^ = h • k 1 (mod p) (5 . 1 8)

and consequently B is able to decipher the encoded p-adic message

based on this value of p ^ and according to the method reported in

section 5 .2 .

5.5 Realization of the Scheme Based on g-adic Rings

In section 5.4 we described the suggested cryptographic

algorithm based on a prime pAB and its corresponding p-adic field

Q
pAB

In th is sect ion, we extend th is concept even further with the

view of making any cryptanalyst' s task computationally in fe a s ib le .

For th is purpose, we suggest the implementation of the scheme over the

g-adic ring Q . In fa c t , th is i s a generalization of the p-adic case.

For a formal introduction to g-adic rings, we refer the reader

to M a h l e r ’s book [35]; in this thesis we are concerned with the

application of such rings in our cryptographic scheme. This, again,

will be explained in more detail through the following encryption and

decryption algorithms.

5.5.1 The g'-adlc Encryption Algorithm

As mentioned earlier, this is an extension of the previously

detailed algorithm for the case GF(pA B).

In the g-adic case, if A wants to send a message, m, to B, then

the ciphertext is taken over p^ where n s Z + (and n < p, the

universal prime in the s y s t e m) .

A, then, transmits the first header, h : , as in (5.15):

K sh, = (yB) A • P ab (mod p) (5.19)

- 99 -

and also sends a second header, h 2 , such that

K s
h 2 - (yg) A • n (mod p) (5.20)

Then, he sends the g-adic sequence of

corresponding to Q CT whereo

integers representing m and

g = pn AB (5.21)

The computation of the g-adic sequence in Q_ is similar to theo
variable-length p-adic sequence in Q with the difference that the

PAB
modulus is the prime p^g raised to the power n.

5.5.2 The g^-adic Decryption Algorithm: The Decomposition of

Qg into Q p

To be able to decipher the received ciphertext, based on the

g-adic ring Q , the receiver, B, first has to recover the values of

pAB and n from the headers h t and h 2 , respectively. This is done in

the same manner described in section 5.4.2, namely:

hj = k • p ^ (mod p)

and

(5.22)

h 2 = k • n (mod p) (5.23)

where k is given by congruence (5 .1 7).

H e n c e ,

(5 .24)= h 1 • k (mod p)

and, similarly,

n E h2 • k (mod p) (5 .25)

Subsequently, based on the knowledge of p ^ and n, B can

decipher the received sequence of g-adic numbers. This is done in two

stages. First, the g-adic sequence is transformed into a p-adic

sequence and, then, the usual p-adic to rational conversion, described

in earlier sections, is performed.

The conversion from the g-adic code to the p-adic code is based

on the following development, where p ^ is replaced by p for

simplicity of notation (but which should not be confused with the

universal prime of the cryptosystem).

Since we are considering the case of g = pn where n >_ 2, it can

be shown [3 5] that any pn -adic number, 8 , can be expressed as a p-adic

number. Assume

S = I (p11)1 (5.26)
i=-j

and which represents the canonic series for 8 , where j e Z and the

coefficients 8 ̂ are pn -adic digits 0 , 1 ,2 ,...,pn- 1 .

To the basis, p, these coefficients can be written as:

b in+k (5 .27)
n - 1

;i = , I b in+k ' P
k=0

where i = - j , - j + 1 , - j + 2 , . . .

In (5.27), the new coefficients bin+k are p-adic digits,

0 , 1 ,2 ,...,p— 1 . hence, S can be expressed as the p-adic number

00
B = I bm pm (5.28)

m=-jn

Consequently, B, upon receiving the sequence of pn-adic

numbers, undergoes a decomposition of these numbers into the

corresponding p-adic field and, finally, converts the obtained p-adic

code into its rational equivalent, thereby recovering the original

message sent by A.

102

CHAPTER 6

EVALUATION OF THE PROPOSED SYSTEM

6 .1 Cryptanalytlc Approaches to Breaking the p-adic-Based System

In the preceding chapter, a new cryptographic scheme based on

p-adic number systems was presented. This algorithm r e l ied on the

discrete logarithm problem. Breaking the system i s equivalent to

breaking the Diffie-Hellman distr ibution scheme. However, an improve­

ment on the Diffie-Hellman algorithm was introduced through the use of

variable-length p-adic codes.

In th is chapter, i t i s intended to subject the proposed scheme

to different attacks and, through these attacks, attempt to evaluate

i t s cryptographic v i a b i l i t y .

To study the security of the system, the following analysis

w i l l be based on the fact that solving discrete logarithms, where the

modulus p is large (> 200 b i t s) or i f p-1 has at lea s t one large prime

factor, i t i s computationally infe a s ib le to calculate the secret keys

K_ and K_ from a knowledge of y* and yR (in congruences (5.12) and
SA SB a a

(5 . 1 3) in chapter 5) and which reside in the public f i l e .

Consequently, the next step in the cryptanalytic attack is to

aim to recover p^g from a knowledge of the header h. To do t hi s , h

should be properly factorized.

m3

Again, the factorization problem appears to be an NP problem,

since factoring a number seems to be much more . difficult than

determining whether it is prime or composi te [46]. Since this

factorization problem is the basis of the RSA system which is known to

be reasonably secure, one extra degree of complexity is even claimed

in our scheme over the RSA system.

Whereas in this latter algorithm the problem resides in the

ability to factorize n, where

n = p-q

into the two distinct prime factors p and q, the proposed system, on

the other h a n d , involves the congruence

h = k*p£3 (mod p) (6 . 1)

where there is no guarantee that k is a prime number. Hence, the

modular factorization of h into a prime and a composite number is much

more complicated than the decomposition into two primes.

Assuming that a cryptanalyst has available the currently

non-existing ability to factorize a 2 0 0-digit long number into 2

primes, it is then safe to ascertain that it is unrealistic, given a

margin of safety against future developments, to assume that such a

cryptanalyst can solve the even more complex problem of factorizing the

2 0 0-digit long number into a prime and composite factors, and then

selecting the correct prime pAB out of all the involved possibilities.

Secondly, the possibility of breaking the system based on a

ciphertext-only analysis is considered. This, again, appears to be a

computationally infeasible task due to the pseudo-randomness in the

distribution of the p-adic numbers in Q
pAB

The plots given in Figs. 6.1, 6.2 and 6.3 reflect this

evidence. In these plots the prime pAB = 2909 is considered and a

random alphabet of 26 characters, with Y = 20, is generated. Then,

message lengths of M = 100, 1000 and 10000 characters were randomly

simulated and the frequencies of occurrence of the p-adic numbers

0,1,...,2908 are respectively plotted for each message length. It is

seen from these plots that the p-adic numbers have a random

distribution over the considered range.

However, one argument which is further investigated, claims

that, although the p-adic numbers are randomly distributed, some of

the numbers in Q do not appear in the transmitted p-adic code.
P AB

By detecting such numbers, a cryptanalyst may have an indication,

however extremely small, to the prime pAB and hence the ability to

break the system.

To confirm that this argument has no chance of breaking the

proposed scheme, entropy calculation of the p-adic numbers for

different primes pAB was then tested. This is shown in the plots of

Figs. 6.4, 6.5 and 6 . 6 where values of pAB in the range between 0 and

10000 were considered. By simulating random messages of lengths

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE
1^5

-10 '
p-BDIC NUMBERS

Fig.6.1 FREQUENCY OF OCCURENCE OF p-BDIC
NUMBERS FOR RBNBOM MESSBGE UITH
EQU IPROBaBL-E CHBRBCTER FREQS.

2909. M 1 0 0

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE
106

- 1 0 '
p-flDIC NUNBERS

Fig.6.2 FREQUENCY OF OCCURENCE OF p-BDIC
NUMBERS FOR RPNDOM MESSPGE UITH
EQUITROBPBLE CHPRPCTER FREQS.

2303. M » 1000

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

107

LO

0. 00

/ l A i
T-----1----

20.0 0

„ A A _ _ _ V l/V L A _
---1-----1-----1-----1-----1-----r
40.00 60.00 80.00

• 10'
p-RDIC NUMBERS

_ u ^
-- 1----
100.00

N u
-- 1-----1
120.00

« 1 0 '

p-RDIC NUMBERS

Fig.6.3 FREQUENCY OF OCCURENCE OF p-RDIC
NUMBERS FOR RRNDOM MESSRGE UITH
EQUIPROBRBLE CHPRRCTER FREQS.
p a 2303. M =RB 1 0 0 0 0

EN
TR

OP
Y

• 1 0 '
P R r n E s

Flg.S.4 ENTROPY CURUES FOR RBNJDON MESSAGES
UITH EQUIPROBABLE CHARACTER FREQS.
n * 1 0 0

EN
TR

OP
Y

- 1 0 9 -

• 1 0 '
PRIMES

Flg.S.S ENTROPY CURUES FOR RRNBOM MESSAGES
UITH EOUIPROBABLE CHRRRCTER FREQS.
M =» 1000

EN
TR

OP
Y

- 1 1 0 -

■ 1 0 '

PRIMES

Fig.S.S ENTROPY CURUES FOR RANDOM MESSAGES
LJITH EQUIFROBABLE CHARACTER FREQS.
M = X0000

M = 100, 1000 and 10000 characters (based on a randomly generated

alphabet with Y = 2 0), the entropy of the p-adic numbers occurring in

the corresponding codes is respectively plotted.

The curve indicated by pAB represents the upper bound for the

corrresponding entropies of the p-adic numbers. This curve is equal

to log 2 pAB and is based on the fact that, for a prime pAB , there

are actually pAB possible p-adic numbers and each of these numbers has

an equally-likely probability of — . Hence,
pAB

P AB
H(pA B) = “ l Pi 1 ° S 2 Pi

p AB 1o1 ~ log2 PaB
1= 1 P AB

= log 2 PAB (6.3)

The curve indicated by PAB~ RED. follows from the same reason­

ing, but additionally taking into consideration the fact that many of

the p-adic numbers in the range 0 to pAB - 1 do not appear in the code

and hence this curve is the reduced form of the curve PA B . Thus, it

is shown that, even if a cryptanalyst could "filter" out the p-adic

numbers which are not present in any length of message, all the other

p-adic numbers occurring in the codes have an entropy approaching that

of pAB - RED. and, hence, the information content conveyed to the

cryptanalyst through the ciphertext is decisively extremely

uninformative.

In Figs. 6.7 - 6.12, the same analysis performed above is

carried out but taking into consideration the relative frequencies of

the English alphabet [7], [50] given in Table 6.1. For the prime

PAb = 2909, frequencies of occurrence of the p-adic numbers are shown

in Figs. 6.7, 6 . 8 and 6.9 for simulated message lengths of M = 100,

1000 and 10000 respectively. Figs. 6.10, 6.11 and 6.12, on the other

hand, show the entropy curves for the p-adic codes corresponding to

various primes pAB and compared with log 2 pAB and log 2 (P ^ q - R E D .) .

These 3 figures again correspond to M = 100, 1000 and 10000 charac­

ters, respectively.

The same conclusions reached previously hold in the case of the

English alphabet, and it is apparent that a cryptanalyst's search to

break the encryption algorithm, and based on statistical approaches is

an infeasible task.

Furthermore, it is seen that no clear variations occur if

longer message lengths are studied. Hence, even an attack directed at

analysing the statistics of a "long" message will fail.

Next, we consider two specific messages in English and plot the

frequencies of occurrence of the p-adic numbers appearing in the code

corresponding to various values of pA B . The two messages are "Making

confusion worse confounded" and "It is a long road that has no turn­

ing" . The plots corresponding to each of these messages are shown in

Figs. 6.13 and 6.14 for p AB = 2909, Figs. 6.15 and 6.16 for pAB = 4001

and Figs. 6.17 and 6.18 for pAB = 9967, respectively.

- 112 -

Table 6.1: Relative frequencies of English alphabetic
characters and space

CHARACTER RELATIVE FREQUENCY

space 19.248
A 6.595
B 1 .205
C 2.246
D 3.434
E 10.257
F 1 .799
G 1.627
H 4.921
I 5.625
J 0.124
K 0.624
L 3.251
M 1 . 9 4 3

N 5.450
0 6.062
P 1.558
Q 0.076
R 4.835
S 5.109
T 7.313
tr 2.227
V 0.790
w 1.906
X 0.122
Y 1 . 5 9 4

z 0.060

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE
- 114 -

■ 1 0 l
p—PDIC NUMBERS

Fig.6.7 FREQUENCY OF OCCURENCE OF p-pDIC
NUMBERS FOR RPNBOM MESSPGE UITH
RELPTIUE FREQS. OF ENGLISH CHPRS.

= 2303. M *» 100

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

l * W W Ul
• 1 0 '

p-RDIC NUMBERS

Flg.S.8 FREQUENCY OF OCCURENCE OF p-flDIC
NUMBERS FOR RRNBOM MESSRGE UITH
RELRTIUE FREQS. OF ENGLISH CHPRS.

* 2303. M ■ 1000

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE
1 1*

130.00 1S3.00 17S.00 IBS.00 222.00
- 1 0 '

p—PD IC NUMBERS
24S.00 2S8.00 2 S 1 .00

Flg.S.B FREQUENCY OF OCCURENCE OF p-fl])IC
NUMBERS FOR RBNBOM MESSRGE WITH
RELRTIUE FREQS. OF ENGLISH CHPRS.
p =* 290 3 s M = 100 0 0 PB

EN
TR

OP
Y

- 1 0 1
PRIMES

Fig.6.10 ENTROPY CURUES FOR RRNDOM MESSAGES
UITH RELRTIUE FREQS. OF ENGLISH CHARS.
n » t o o

EN
TR

OP
Y

• 1 0 1
PRIMES

Flg.S.ll ENTROPY CURUES FOR RANDOM MESSAGES
WITH RELATIUE FREQS. OF ENGLISH CHARS.
M - 1000

EN
TR

OP
Y

- 1 1 9 -

- 1 0 1
PRIMES

Flg.S.12 ENTROPY CURUES FOR RANDOM MESSAGES
UITH RELATIUE FREQS. OF ENGLISH CHARS.
M » 10000

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE
120

- 1 0 l
p-RDIC NUNBERS

Flg.S.13 FREQ. OF OCCURENCE OF p-RDIC
NUNBERS FOR THE HESSBGE j HRKING
CONFUSION UORSE CONFOUNDED.

230 9

F
R

E
Q

U
E

N
C

Y

O
F

O

C
C

U
R

E
N

C
E

to (0 * » ■a
*0

D
1

to
)

C
2)

1
r

3
m

o
to

D
IJ

1
to

•
Cl

70
ro

to
o

U)
70

to
o

O
to

U)
ID

o
o

to
2)

o o
4

-i
c

X
i

2)
ID

m
m

-4
3

3
O

X
m

to
ID

to
to

to
o

3)
to

<n
o

to
*0

to
1 3

C
H

to
2)

-1
H

12
O

H
H

1
to

Q

,0
5

0,
10

J
__

i__
_
I__
_
i__
_
i

o o

20,00 40.00 SO.00 80.00 100.00 120.00

F
R

E
Q

U
E

N
C

Y

O
F

O

C
C

U
R

E
N

C
E

o0
,0
0

J_
__

L
o o

0,
05

i_
__

l_
0,
10

__
I

I I

fr
eq

ue
nc

y
of

 o
cc

ur
en

ce

fr
eq

ue
nc

y
of

 o
cc

ur
en

ce

122

* 1 0 '

p-PDIC NUMBERS

• 1 0 '
P - F I B I C NUMBERS

Fig.6 . IS FREQ. OF OCCURENCE OF p-RDIC
NUMBERS FOR THE MESSBGE* MBKING
CONFUSION UORSE CONFOUNDED.

= 4 0 0 1

I 0 0t>
F

R
E

Q
U

E
N

C
Y

O

F

O
C

C
U

R
E

N
C

E

2
2 to

2 (O * m b 01

2
2

2

c
70

r
3

m
o

to
D

2
m

•
tn

to to
o

7)
2

o
2

2 b -4 2
—l 2

2
m

H

O
O

7)

O n c 7) m 2
2

O
m

m
2 2

to
to

to
o

2
2

2

CT
o

m
2

-
I

-4

2
c

~

b

70

-4

*-•
2

n
H

H

2
to

to

o

HDIC

F
R

E
Q

U
E

N
C

Y

O
F

O

C
C

U
R

E
N

C
E

a o

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE
124

i i i i i i i i i

' 0 . 0 0 1 0 0 . 0 0 2 0 0 . 0 0 3 0 0 . 0 0 4 0 0 . 0 0
- 10'

p-PDIC NUMBERS
5 0 0 . 0 0

---1----
5 0 0 . 0 0

- 1 0 '
p-PDIC NUMBERS

Fig.6.17 FREQ. OF OCCURENCE OF p-PDIC
NUMBERS FOR THE MESSPGE* MPKING
CONFUSION UORSE CONFOUNDED.

3 3 6 7

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

- 1 0 '
p-RDIC NUMBERS

Fig.S.18 FREQ. OF OCCURENCE OF p-RDIC
NUMBERS FOR THE MESSRGE j IT IS
R LONG ROPD THRT HPS NO TURNING

3 3 G ?

126

It is shown that in each of these plots, the p-adic numbers

which are present in the range 0 to p ^ - 1 have a random distribution

in all cases. Such a distribution does not lend an intruder with any

particular information and a systematic search over various p-adic

fields Q is rather a tedious task.
PAB

Moreover, it is important to take into consideration the fact

that the randomly generated alphabet in all the previous instances

only considered an alphabet consisting of 26 letters and a space. If

the size of the alphabet is increased, so will increase the number of

p-adic numbers and the additionally created elements of the code will

contribute to the increase of the degree of randomness in the

distribution.

Before moving to the evaluation of the g-adic scheme, one

particular point is analysed in detail.

In the proposed p-adic code structure it was suggested that the

first two"elements in the code refer to the periodicity and to its

start, respectively.

When using large values of PAg, the corresponding values of X

and X^ will generally have a much smaller magnitude than that of the

elements in the p-adic code. Furthermore, values of X and X^ are

repetitive in the sense that, given pA B , many denominators in the

alphabet assume the same values of X or x (refer to Tables 2.1(A) and

2.1(B)) and hence these values have a higher frequency of occurrence

than that of the p-adic numbers themselves.

127

This is illustrated in the following ciphertext generated from

the message: "Its all Greek to me" (first used by Rivest et. al. [46]

and which was shown to be breakable under the RSA system in section

4.4.6). Here, a randomly generated alphabet and the prime pAB = 4001

are used. The ciphertext is then composed of blocks of 4-digit

numbers and the markers indicate the value of X at the start of each

sequence:
«■ » •
0 0 0 2 0 0 0 2 1 3 3 4 2 6 6 7 1 3 3 3 0 0 0 6 0 0 0 2 0 4 4 5 0 8 8 9 1 7 7 8 3 5 5 6 3 1 1 1 2 2 2 2 0 4 4 4 0 0 0 1 0 0 0 2 2 5 0 1 2 5 0 0

0 0 0 3 0 0 0 2 3 4 3 0 2 8 5 7 1 7 1 4 3 4 2 9 0 0 0 2 0 0 0 2 3 3 3 5 0 6 6 6 3 3 3 4 0 0 0 2 0 0 0 2 3 3 3 5 0 6 6 6 3 3 3 4 0 0 0 2 0 0 0 2
i • • *

2 6 6 8 1 3 3 3 2 6 6 7 0 0 0 2 0 0 0 2 0 3 3 4 1 6 6 7 0 3 3 3 0 0 0 1 0 0 0 2 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 2 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 2
i • '

3 5 0 2 3 5 0 0 0 0 0 6 0 0 0 2 0 4 4 5 0 8 8 9 1 7 7 8 3 5 5 6 3 1 1 1 2 2 2 2 0 4 4 4 0 0 0 3 0 0 0 2 1 1 4 4 2 2 8 6 0 5 7 1 1 1 4 3 0 0 0 1
t

000216021600 0 0 0 1 0 0 0 2 1 0 0 1 1 0 0 0

To emphasize this fact, the plot of Fig. 6.19 shows, although

not very clearly, that a peak occurs, in the frequency distribution

curve, at the values of 0001 and 0002, due to the repetitive

occurrences of X and A . The same fact is clarified through Fig. 6.20

where the frequency of distribution of the p-adic numbers is plotted

against their logarithms. The above-mentioned peak is then 'clearly

seen.

To avoid any risk that such sharp boundaries which occur

between successive sequences may give any indications, however

extremely small, to the value of the prime pAB, it is suggested that

values of X and X be embedded in the code itself. This is achieved

as follows.

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE
128

- 10 1
NUMBERS IN GFC40015

Flg.S. 13 FREQ. OF OCCURENCE OF p— RD IC
NOsa. BND PERIOD PRRRMETERS FOR
THE MESSPGEi ITS ALL GREEK TO ME
p 3 4001 AB

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

- 12 Q -

10 10 10 10

LOG. C NUMBERS IN GFC4001)]

Fig.6.20 FREQ. OF OCCURENCE OF p-PDIC
NOs. PND PERIOD PPR'S <L O G . SCPLE:>
FOR THE NESSPGE j ITS PLL GREEK
TO HE. - pPB

*

I L, 1 1 I 1

4
10

400 1

130

In the encryption algorithm, instead of sending A and Â

explicitely in the code, it is proposed that the sender keeps a

running counter, N, of each element in the plaintext. This element is

increased by 1 for A, then for A^, and then consecutively for their

next occurrences. Hence, the sender A transmits the values

and

A' = p^g • A • N (mod p)

A| .5 pAB • A1 • (N+1) (mod p)

(6.4)

(6.5)

instead of actually transmitting A and A^. The next value of N

will then be N+2 for the following AT, and so forth.

The recipient, B, on the other hand, has already computed pAB

from the header and, starting with a value of N = 1 , B can keep track

of the same running counter N. Hence, B can compute A and Â from A'

and Aj respectively, such that:

A = A' • * n] ̂ (mod p) (6.6)

and

M * [pAB * (N+1)] 1 (mod P) (6.7)

The inverse values modulo p in congruences (6.6) and (6.7) are

guaranteed to exist since p is a prime (Euler's theorem).

Consequently, B will be the sole detector of the periodicity

parameters through the whole of the transmitted message and thus can

exactly and secretly determine the previously distinctive boundaries.

131

In conclusion, this scheme achieves two goals:

1) As mentioned above, the sharp edges which indicate the

start and end of a sequence of ciphertext are "smoothed” out. A

cryptanalyst cannot derive any information regarding the structure of

the transmitted ciphertext and, hence, the very minimal amount of

information which was previously present in the code has now

completely disappeared.

2) Since the values of A' and A' are computed modulo p

(and not P^g), then the numbers appearing in the ciphertext will be

randomly distributed over the range 0 to p— 1 , thus increasing the

search space which will have to be considered by a cryptanalyst to

break the code.

The ideas discussed above are best described through the same

example considered earlier. In this case, p = 7489 and p^g = 4001.

The code is then as follows:
» i •

0513102613 3426671333 64822052044508 89177 835 5 63111222204445027494325012500

350759 693430285717143429648269953 3 3 5 0 6 6 6 3 3 3 4 0 0 1 9 0 5 3 2 3 3 3 5 0 6 6 5 3 3 3 4 2 9 1 0 3 4 2 3
9 9 9 *

2 6 6 8 1 3 3 3 2 5 6 7 3 9 3 6 4 4 4 9 0 3 3 4 1 6 6 7 0 3 3 3 2 4 8 1 5 4 7 5 1 0 0 1 1 0 0 0 2 9 9 4 6 5 0 1 1 0 0 1 1 0 0 0 3 5 0 7 1 9 0 3
f * *

3 5 0 2 3 5 0 0 5 3 8 3 2 9 2 9 0 4 4 5 0 8 8 9 1 7 7 8 3 5 5 6 3 1 1 1 2 2 2 2 0 4 4 4 2 3 5 1 3 9 5 5 1 1 4 4 2 2 8 6 0 5 7 1 1 1 4 3 6 9 1 1

49811 6 0 2 1 6 0 0 7 4 2 4 0 3 8 3 1 0 0 1 1 0 0 0

It is noticed that, although we have retained the same markers

positions for ease of locating the start of each sequence, these

markers now point out at the value of A' (the next value being that of

A!).

The frequencies of occurrence of the numbers present in the

ciphertext, and which are no longer in Q , but in the much larger
pAB

field of GF(P), are plotted in Fig. 6.21 for p = 7^89 and

PAB = silown that the previous peak no longer exists in

the new ciphertext and to emphasize this observation, the same

frequencies of occurrence are again plotted in Fig. 6.22, but against
*

the logarithms of the numbers occurring in the code and which belong

to GF(P).

6.2 Attempts at Breaking the g'-adic-Based System - Diffusion and

Confusion

Having subjected the p-adic-based cryptosystem to the attacks

of the previous section, the g-adic scheme is now analysed for secu­

rity.

To break the scheme based on g-adic sequences, two

factorization problems of the headers ĥ and h^ have to be solved to

recover the values of p^ and n. Both values are necessary to

decipher the transmitted ciphertext.

Without the knowledge of pAB and n, if a cryptanalyst reverts

to a statistical attack on the ciphertext, then the analysis of the

g-adic system is much more complicated than that of the p-adic system.

This is due to the fact that the search space with the g-adic scheme

spans over Q where g = p1?̂. and n c Z + . In other words, the search
o Ad

X b 01 b w
H

x
2

X
O

a
O

X
X

W
m

3
•

D
m

*
»

X
X

m
2

o
i

u
X

3
u

m
3

o
(/)

O
o

ii
U)

to
n

X
H

c
\j

Cl
X

X
•A

m
M

m
00

b»
n

2
U)

to
n

*■
H

m
-4

-d
D

(n
m

o
X

X
X

to
X

H

r
□

*U
II

r
to

1 X
-A

Cl
tJ

to
o

X
X

H

o
m

X
O

m
V

7C
01

f
r

e
q

u
e

n
c

y

o - b o a •A \J a - b a o

2
tn

c

w
3

o
~

to
*

m
o o o \J o - o o M \J O

 -
i

-
05

0
.1

0
_J
__
_
I__
_
I__
_
I__
_
I

O
F

O

C
C

U
R

E
N

C
E

o o

CG8t»£:>J9 MI

F
R

E
Q

U
E

N
C

Y

O
F

O

C
C

U
R

E
N

C
E

o o

133

FR
EQ

UE
NC

Y
OF

 O
CC

UR
EN

CE

134

10 10 10 10

LOG- C NUMBERS IN GF<?483>1

Fig.S.22 FREQ. OF OCCURENCE OF p-RDIC
NO*. AND NODIFIED PERIOD PAR'S
CLOG. SCALED FOR THE MESSAGE.
ITS ALL GREEK TO ME.
p =* P483, pAD = 4001

135

space increases exponentially with increasing values of n. Such a

search is computationally infeasible since the only bound on n is that

n < p-1 .

Furthermore, the different combinations of p ^ and n are

unlimited in the sense of a computer search. Consequently, these

aspects lend the proposed system to the class NP.

Shannon [49] introduced the notion of diffusion. In this

method, the statistical structure of a message which leads to its

redundancy is dissipated into long range statistics. A cryptanalyst

must intercept tremendous amounts of ciphertext to be able to

understand this structure.' Furthermore, even when he has sufficienti
material, the analytical work required is much greater since the

redundancy has been diffused over a large number of individual

statistics.

This notion of diffusion is achieved by both the p-adic and

g-adic-based systems (as has been shown in the entropy curves in the

previous section). The inherent structure of the p-adic field and,

more importantly, that of the g-adic ring, yields to a random

spreading of the elements of Q and Q_ over the considered range.
pAB S

As has been shown, even with a long ciphertext, a cryptanalyst still

cannot study the structure of the corresponding codes.

Another concept, also introduced by Shannon [49] and achieved

in the proposed systems, is that of confusion.

136

Confusion attempts at making the relation between the

statistics of the enciphered message and the key a very complex and

involved one. This is clearer in the case of the g-adic based system

where no deterministic link is apparent between pAB, n and the

corresponding terms generated in Q .o

Two interleaved elements of complexity are thus achieved by

this system: first, the diffusion over the g-adic numbers of the

ciphertext sequence which are themselves embedded into a higher class

of confusion created by the infinitely many combination possibilities

of the values of pAg and n .

6 .3 A u t h e n t ic a t io n and a New D i g i t a l S ig n a t u r e P ro c e d u re B ased on

p r a d lc Number S ystem s

In section 4.2, it was pointed out ‘that authentication and

digital signature represent an extremely important requirement in any

cryptographic system.

It should be emphasized that the lack of a user authentication

procedure in a system enables any intruder to generate illegal

messages and send them to target recipients. However, in the proposed

public-key cryptosystem, this problem is solved since A uses his own

secret key to send the headers ĥ and ĥ , and B uses A fs public key to

decipher the message based on ĥ and h^.

Another user, X, or an intruder,, cannot use K since it is a
SA

137

secret key only known to A, and if X generated a message to B, based

on his (i.e., X’s) secret key (or any other randcm key), then B would

not receive the corresponding headers properly since he has to

identify X (not A) as the sender and consequently use yx as the public

deciphering key.

The other feature necessitated in an efficient cryptosystem is

a secure yet adaptable signature procedure.

A signature procedure acts both ways in case of disputes.

First, it is necessary to prevent any receiver, B, of a message from

changing the contents of the message, or forging a message and sending

it to himself, claiming that A has originated it. On the other hand,

this procedure is necessary in order to confirm whether A has or has

not effectively transmitted a certain message. In some cases, A may

deny having sent a message and, in others, he may claim that he has

sent a particular message while, in fact, he has not.

The signature procedure is thus required to solve such con­

flicts. It is needed to be secure such that B cannot forge it and

such that it can only be revealed to a higher authority if and when

the case arises. It should also be adaptable in such a way that it is

message-dependent in order to either confirm or deny the contents of

the ciphertext, along with identifying the message originator.

In this section a new digital signature is suggested which

satisfies the above requirements. It is based on discrete logarithms

and is a direct function of the message.

138

The method i s d e p ic t e d in F i g . 6 . 2 3 . A f t e r th e se n d e r A has

sent his final message block, he can send one extra enciphered code

based on Q or Q_. This is his signature S:
pAB S

K
S = (M) Sa (mod pAB) (6.8)

where M is a function of the message elements :

M = f (m i) (6 . 9)

This function may be, for instance, the product of all numerators and

denominators constituting the message, or part of it, according to a

protocol agreed upon by all users of the system.

Although the value S can be. sent as an extra header at the end

of the message (i.e., in integer form), it is suggested that it is

preferable to send it in p-adic (or g-adic) code. In this way it will

constitute an added proof for the values of p^ (and n) on which the

earlier message was originally based.

The adaptability of this procedure is clear since it is

directly linked to the message, to pAB and to n. Its security is also

guaranteed since it is based on A's secret key and on discrete

logarithms. Thus B cannot compute the value of K from a knowledge
SA

of S and M.

From a cryptanalyst's point of view, he is initially faced with

the harder problem of deciphering the p-adic or g-adic code of the

signature before even attempting to solve a discrete logarithm. In

MESSAGE
SOURCE

ENCRYPTION ALGORITHM
+
TRANSMISSION OVER INSECURE CHANNEL

i

Fig. 6.23: Flow of Information in the Digital Signature Procedure

139

1 LQ

other words, for a cryptanalyst to break the digital signature

procedure suggested in this section, he has to break the entire

encryption algorithm described over the previous chapter.

6.4 Comparison with other Public-Key Encryption Systems

In the previous sections a detailed evaluation of the

cryptographic viability of the proposed scheme was performed. This

evaluation was based on all possible cryptanalytic approaches which

aimed at breaking the p-adic and then the g-adic systems.

It was shown that, from the number theoretic side, breaking the

system is equivalent to solving discrete logarithms over finite

fields. From the statistical side, it was demonstrated that an attack

on the system without a knowledge of p ^ and n has to consider an

extremely large search space where the possibility of detecting useful

information is ruled out as a possible computational undertaking by

the cryptanalyst.

The suggested system reveals distinct advantages over the

existing public-key systems.

First, compared with the Merkle-Hellman algorithm, it does not

suffer from the need of selecting any particular sequences for the

encryption process: the Merkle-Hellman algorithm was shown to be

breakable under some assumptions if care was not taken while creating

the encrypting vector. This vector, due to its dimension and

magnitudes of its elements, proved impractical to be stored in a

public file shared by a large number of users. Also, when used for

obtaining signatures, the trapdoor knapsack algorithm appears to be

weak [38] in comparison with other existing public-key systems.

Secondly, compared with the Diffie-Hellman and RSA systems, the

proposed system is shown to be more secure than either scheme. This

is due to the fact that it uses features from both systems, namely the

discrete logarithm and factorization problems respectively.

While in the Diffie-Hellman scheme the emphasis is solely on

the key distribution method rather than on the encryption algorithm,

the proposed system makes use of the key distribution scheme and

introduces a new and secure enciphering method.

Whereas the RSA system considers sending the message directly

over the channel by raising it to the power of the encryption key,

the proposed system conceals the plaintext in the form of p-adic and

g-adic codes thus making any cryptanalytic attack a highly complex

operation.

The encryption algorithms proposed in this system, not only aim

at generating a highly confusing and seemingly random ciphertext but,

more importantly, they maintain a high degree of security against

different attacks.

This has been shown (in section 4.4.6) not to be the case in

the RSA system and which is considered to be the most practically

secure cryptosystem known to the author. Although the attacks

directed at the RSA system in section 4.4.6 are not guaranteed to

succeed in all cases, still they do give strong indications of the

vulnerability of such a system.

The two suggested schemes, however, have been shown , through

the previous analyses, to safeguard the cryptographic security of the

system against directed attacks. It has been demonstrated that, given

that no algorithm exists which efficiently solves the discrete

logarithm problem, the p-adic and g-adic schemes are theoretically and

experimentally secure and that they do not share the same degree of

vulnerability as the RSA system.

The signature procedure described in the previous section is

totally message and sender dependent. If it is transmitted in the

form of a p-adic or g-adic sequence, as it is suggested, it forms a

direct unbreakable and unforgeable link between the sender, the

message he sent, p ^ and n.

When comparing the proposed system with other cryptosystems, it

is also important to consider the bit rate required for the efficient

implementation of each scheme.

In this respect, the Merkle-Hellman system requires an ex­

tremely large key size: the elements of the vector a are 0(200)-bit

natural numbers and the vector x is 0(n)-binary bits where n is the

length of both vectors a and x* R e f e r r i n g t o s e c t i o n s 4.4.3 and 4.4.4,

t he g e n e ra te d c i p h e r t e x t , c , i s t h u s :

- 143 "

n n
0(l (99 + i)) = 0(- (n + 199)) (6.10)
i=1 2

i.e., 0(15000)-bits for n s 100.

This order of magnitude is demanded in the Merkle-Hellman

implementation to ensure maximum cryptographic security. Furthermore,

complicated encryption algorithms to produce "safe” sets of the

extremely large vector a and to store these sets in the public

directory are necessarily required.

The RSA system, on the other hand, is found to be very

efficient in terms of bit rate requirements. The system is considered

secure if the ciphertext is 0(700)-bits.

But, as has been demonstrated earlier in the thesis, the

successive encryption algorithm can break the RSA system and,

consequently, it has to be thoroughly investigated when using such

orders of magnitude to ensure the practical safety of its use.

In the proposed cryptsystem, however, it is shown that,

compared with the RSA system in particular, the ciphertext is much

longer than in the RSA case. This extended length of the code may be

regarded as a disadvantage in the system. However, unlike the RSA

system, the proposed schemes are shown to be theoretically and

practically more secure than the RSA algorithm. Longer ciphertexts do

not constitute a problem .in practical implementation where ̂ software

algorithms are fast and efficient. Furthermore, if the hardware

implementation of the system can be achieved, then the speed and

efficiency of operation will improve even more.

In conclusion, the comparison between the two systems, is,

in fact, a tradeoff between security and practicality of

implementation. In cryptographic systems design, the chief target is

security, and this is believed to be achieved through the schemes

developed in this thesis.

Also, the longer codes contribute to the inherent existence of

the concepts of diffusion and confusion discussed in section 6.2.

These concepts, consequently, enable the users of the system to

consider smaller orders of magnitude in the ciphertext. Prevention

from cryptanalytic attacks is thus based on confusion rather than on

extremely large numbers. This has an important impact where mini­

computers or, eventually,, microcomputers are to be used in a

multi-user cryptographic network.

CHAPTER 7

CONCLUSIONS

7.1 Summary of Contributions

. This thesis was concerned with the application of p-adic

number systems in the design of a secure public-key cryptographic
ischeme.

p-adic number systems, although introduced by Hensel in 1908,

have only recently attracted attention for their possible uses in

exact linear computations, matrix processors and signal

transformations.

On the other hand, the subject of cryptography with all its

pertaining features is currently being seriously investigated by

researchers. The tremendous developments in the areas of computer

science, design and analysis of efficient algorithms have led to the

consequent development of cryptology.

Although cryptology involves many ' sciences which all

contribute to the design of secure systems, it is fundamentally based

on number theory.

It was through the study of p-adic number systems that a link

was made between the two areas. Due to their inherent structure and

their seemingly random distribution, these systems were shown, in this

thesis, to be an important tool in the design of a public-key

cryptographic system.

After a brief introduction in chapter 1 to p-adic number

systems and to cryptography, in general, chapter 2 is a detailed

analysis of variable-length p-adic number systems. The canonic

infinite p-adic expansions corresponding to rational numbers have been

discussed and the algorithm proposed by Krishnamurthy for the

conversion from the rational field Q to the p-adic field Q , where, p

is a prime, was studied.

By considering infinite p-adic expansions and by detecting

the period in the recurrent elements of these expansions, a simple

formula was derived which proved the existence of periodicity and

which allowed the simple calculation of corresponding p-adic periods.

Although simple in form, this formula had to be

computationally efficient. A practical efficient algorithm was then

developed which computed the p-adic period, \, for any rational

number, given the prime P. Comparison between the periods

corresponding to different denominators and their Euler totient

function was also presented for different prime values.

To make use of this efficient ability to compute the p-adic

period and with a view to using the p-adic number systems in designing

a secure cryptographic scheme, another algorithm for the conversion

from Q to Qp wa developed and which is considered to be better than

Krishnamurthy's algorithm, since this latter algorithm is non

terminating. The conversion algorithm presented in section 2.4,

however, computes all the aperiodic and periodic elements in the

p-adic canonic expansion and terminates after one complete cycle of

the recurring elements.

In chapter 3, finite-segment p-adic number systems calculated

over the finite field Q , were studied. Through a brief mathematical

introduction to these systems, it was pointed out that, for rational

values to be uniquely represented in Qp, they have to satisfy certain

bounds. Although these bounds were never mathematically justified, an

explanation for their existence was provided in section 3-1.

Section 3.2 dealt with the structure of Hensel codes and the

different representations in Qp of different rational number

structures. Then, arithmetic operations in Qp were discussed.

Krishnamurthy1s algorithms for the four main operations were given.

However, it is seen that these algorithms do not always generate the

correct results and, in some cases, the obtained results do not

correspond to any Hensel code. The algorithms which were developed in

section 3*3.5 overcame these drawbacks in Krishnamurthy’s algorithms

and allowed closed arithmetic operations to be performed in Q .

In section 3-4, the different methods for the inverse

conversion from Qp to Q were presented. These methods were analysed

separately, and it is seen that the method of successive additions

proved to be the most flexible and fastest amongst all other

techniques and, hence, was the one to be adopted in the proposed

cryptographic algorithm.

148

Finally, the limitations of using segmented p-adic number

systems were discussed, in general, and particularly in connection

with cryptographic usage and, consequently, it was decided to con­

struct the cryptographic scheme based on variable-length p-adic number

systems.

In chapter 4, the mathematical theory behind cryptographic

systems was presented and the requirements which should be met by such

systems were detailed. A conventional cryptosystem was described and

the practical limitations of such a system were pointed out. This led

to the introduction of public-key cryptosystems which enabled privacy,

security, authentication and digital signature procedures to be

incorporated in one system. The needs for authentication and digital

signatures were clarified in section 4.2.

It was mentioned earlier that the design of secure crypto­

graphic systems relied mainly on number theory. Nevertheless, other

disciplines also control the efficiency of such systems. One such

science is that of complexity theory. Problems were classified in

complexity classes according to the degrees of difficulty in solving

them. The hardest of these classes is the so called NP-complete

class. Designers of cryptosystems attempt to base their algorithms on

this class of complexity. The new algorithms presented in this thesis

appear to belong to the class NP.

Based on all these features, the concept of public-key

cryptosystems was then explained and, in section 4.4, the 3 main

systems which fall into that category of cryptographic schemes were

discussed in detail.

149

Chapter 5 is the actual implementation of p-adic number

systems in the design of the proposed cryptosystem. The p-adic code

structure to be used in this system was introduced and it was seen how

variable-length p-adic number systems can be efficiently implemented

in the proposed scheme. The conversion from Qp to, Q was discussed

again based on this proposed structure. Rational values in Q would

correspond to elements in the system’s alphabet.

The subject of alphabet generation was then discussed and the

necessary restrictions for any ambiguity-free cryptosystem were

presented. Practical ways of overcoming these restrictions were also

given.

Then, in section 5.4, the first scheme based on p-adic number

fields was put forward and the corresponding encryption and decryption

algorithms were explained. The second scheme is an extension of the
first and relies on the g-adic rings, Q_, where g is a power of ao
prime p^ (i.e., p^). With one extra header in the encryption

algorithm, the security of the cryptosystem is exponentially in­

creased. However, to be able to convert the ciphertext, now in Q , to

the rational field Q to recover the message, an algorithm was devel­

oped which first converted Q into Q and finally, elements in Q
S PAB pAB

are converted to their rational value through the usual conversion

algorithm.

The proposed system was then objectively evaluated in chapter

6. Different cryptanalysis approaches were directed, first at the

p-adic scheme and, secondly, to the g-adic scheme. It was shown that

150

the system incorporated the two safety building blocks of the

Diffie-Hellman and RSA systems. It relies on the difficulty of

solving discrete logarithms over GF(p) and on the difficulty of

factorizing a number into its prime components. Considering the

latter feature, it is thought that the factorization problem in the

proposed system is even harder to solve than in the RSA system, since

it invloves the decomposition of a number into two primes or more and,

also, over GF(p), which is not the case in the RSA system.

Unless any major developments take place regarding the

solution of the above-mentioned problems, the system is considered

theoretically safe and practically safer than either the Diffie-

Hellman and RSA systems. This is because of the random configuration

of the ciphertext which follows directly from the application of

p-adic number systems.

To prove the randomness of this structure, statistical

analysis of the distribution of these numbers in Q was performed by
pAB

calculating the frequencies of occurrence in a particular range, and

by computing the entropy of the p-adic numbers occurring in a message.

Entropy calculations were based on random messages of lengths 100,

1000 and 10000 characters. The messages themselves were, first, con­

stituted of 26 random alphabet characters. Then, the analysis was

based on an English alphabet generated by considering the relative

frequencies of the English characters. Random messages of the above

lengths were also simulated and the entropy studied. It was shown

that the p-adic numbers did, in fact, occur in a random manner in the

ciphertext and, even though, a cryptanalyst could detect those numbers

151

which may not be present in the ciphertext, this deduced information

does not help the cryptanalyst in solving the problem he is faced with

in any way.

The randomness in the distribution of p-adic numbers has also

been tested in the case of specific English messages. Two messages

were considered and values of p^g = 2909, 4001 and 9967 were used to

study the frequencies of occurrence of the p-adic numbers in the

corrresponding ciphertext.

One consideration which was then dealt with was the periodic­

ity parameters. It was shown that, although the p-adic numbers are

randomly spread over a particular range, the periodicity parameters,

on the other hand, tend to be small in magnitude (relative to the

p-adic numbers) and repetitive. This leads to the possibility of

detecting the code boundaries. And, although this fact does not

constitute a risk to the proposed system, an algorithm was developed

to embed the periodicity parameters in the code. Numbers occurring in

the code, now, have the added feature of being spread over GF(p)

instead of Q
PAB

The same approach was carried over to the second system. Only

there, the cryptanalysis task proved to be more complex. A

cryptanalyst, in the g-adic system, is faced with a search which

increases exponentially with the increase of the power n. It is

claimed that this search falls in the NP-class of complexity problems

unless otherwise proved.

152

The concepts of diffusion and confusion introduced by Shannon

were also discussed in regard to the two schemes.

In section 6.3, a new digital signature method was suggested

which relied on discrete logarithms and p-adic number systems. In it,

the user would sign his messages and it guaranteed the authenticity of

the message contents in a transmitted ciphertext. The receiver could

not initiate messages and claim they were transmitted by a certain

sender and he could not change the contents of a received message. A

sender could not deny having sent a message either. The signature

procedure suggested links the sender, the message, p^g and n in one

unbreakable unit.

Finally, a comparison was carried out, in section 6.4, between

the proposed system and already existing cryptographic algorithms.

According to the analysis carried out in this thesis, it was found

that, unless an algorithm for solving discrete logarithms over GF(p)

was developed, the p-adic and, more so, the g-adic system prove to be

safer than the Dif f ie-Hellman and RSA systems. Breaking the two

proposed schemes is equivalent to breaking the Diffie-Hellman system.

7.2 Suggestions for Future Research

In this section, some ideas are suggested for further

investigation. These ideas relate to both the analysis performed in

this thesis and to cryptography in general.

153

First , regarding the analysis of the p-adic and g-adic

schemes, it was shown that these schemes were secure given any

cryptanalytic attack. This statement is made, at least, from the

author’s point of view. Methods and ways of cryptanalysis other than

those reported in this thesis can be thought of and directed to the

schemes. Once the method has withstood all attacks for a sufficient

length of time, it may be practically used with a reasonable amount of

confidence.

The number theoretic algorithms which are at the core of the

proposed system should be further investigated. Attempts of breaking

the system may lead to efficient algorithms for solving the discrete

logarithm problem over finite fields or the factorization problem,

both knowingly unsolved as yet.

From a practical side, it is suggested that these schemes be

implemented on microprocessors for the speed and flexibility of

operation. This would involve the implementation of p-adic arithmetic

on'microprocessors, a very attractive project in its own right, since

it would lead to extremely fast and error-free computations. On the

other hand, it would involve a thorough study of finite-segment p-adic

number systems and a further investigation of the closure of arithme-
/S

tic operations in Q .

Regarding cryptography in general, security measures should be

studied to safeguard the information held in the public directory.

If a cryptographic system is to be of value, its keys must be

protected. In some situations, the "loss" of cryptographic keys may

occur. This may be due to:

a) hardware malfunction

b) software error

c) human error in handling the keys

The effects of losing a key should be studied and techniques of

overcoming such mishaps should be investigated.

Finally, dedicated hardware for the implementation of crypto­

graphic schemes is needed. For instance, the computation involved in

finding suitable prime numbers is heavy; exponential functions

involved run too slowly when carried out by software; modular

arithmetic is not yet efficiently implemented. All these factors

determine the need for hardware designs of cryptosystems which will

run in a fast and efficient way.

155

REFERENCES

[2]

[1]

[3]

[4]

C5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

W.W. Adams and L.J. Goldstein
"Introduction to Number Theory”
Prentice-Hall, Inc., 1976.

L. Adleman
"A Subexponential Algorithm for the Discrete Logarithm
Problem with Applications to Cryptography"
Proc. of the 20^ IEEE Symp. on Foundations of Computer
Science, October 1979, pp. 55-60.

E. Alparslan
"Finite p-adic Computing Systems with Possible Applications"
Ph.D. Dissertation, Dept, of Elec. Eng., University of
Maryland, College Park, 1975. ’

Y. Amice
"Les Nombres p-adiques"
Presses Universitaires de France, 1975.

T.A. Apostol
"Introduction to Analytic Number Theory"
Springer-Verlag, 1976.

G. Bachman
"Introduction to p-adic Numbers and Valuation Theory"
Academic Press, Inc., 1964.

H. Beker and F. Piper
"Cipher Systems - The Protection of Communications"
Northwood Publications, 1982.

H. Beker and F. Piper
"Communications Security; a Survey of Cryptography"
IEEE Proc., vol. 129, pt. A, No. 6, August 1982, pp. 357 —37 6.

Z. I. Borevich and I.R. Shafarevich
"Number Theory"
Academic Press, 3rd Printing, 1973*

B. Bosworth
"Codes, Ciphers and Computers - An Introduction to Information
Security"
Hayden Book Company, Inc., 1982.

D.W. Davies and W.L. Price
"The Applications of Digital Signatures Based on Public-Key
Cryptosystems"
Proc. of the 5th ICCC, October 1980, pp. 525-530.

D.W. Davies and W.L. Price
"Security for Computer Networks"
John Wiley and Sons, 1984.

[13] W. Diffie and M.E. Heilman
"New Directions in Cryptography"
IEEE Trans, on Inf. Th., vol. IT-22, No. 6, November 1976,
pp. 644—65̂ .

[14] W. Diffie and M.E. Heilman
"Privacy and Authentication: an Introduction to Cryptography"
Proc. of the IEEE, vol.67, No.3, March 1979, pp. 397-427.

[15] M.R. Garey and D.S. Johnson
"Computers and Intractability - A Guide to the Theory of
NP-Completeness"
W.H. Freeman and Co., 1979.

[16] R.N. Gorgui-Naguib and R.A. King
"Comments and Corrections on ’Matrix Processors Using p-adic
Arithmetic for Exact Linear Computations’"
To be published, IEEE Trans, on Computers.

[17] R.N. Gorgui-Naguib and A. Leboyer
"Comment on 'Determination of p-adic Transform Bases and
Lengths'"
Electronics Letters, vol. 21, No.20, September 1985,
pp. 905-906.

[18] R.T. Gregory and E.V. Krishnamurthy
"Methods and Applications of Error-Free Computation"
Texts and Monographs in Computer Science, Springer-Verlag,
1984.

[19] R.K. Guy
"Unsolved Problems in Number Theory"
Problem Books in Mathematics, vol.1, Springer-Verlag, 1981.

[20] M.E. Heilman
"The mathematics of Public-Key Cryptography"
Scientific American, August 1979, pp. 130-139.

[21] K. Hensel
"Theorie der Algebraischen Zahlen"
Teubner, Leipzig, 1908.

[22] K. Hensel
"Zahlentheorie"
Goschen, Berlin and Leipzig, 1913.

[23] T. Herlestam
"Critical Remarks on Some Public-Key Cryptosystems"
BIT, vol. 18, 1978, pp. 493-496.

[24] D. Kahn
"The Codebreakers, the Story of Secret Writing"
New York, Macmillan, 1967.

157

[25] D.E. Knuth
"The Art of Computer Programming - vol. II: Seminumerical
Algorithms”
Addison-Wesley Publishing Co., 1969.

[26] D.E. Knuth
"The Art of Computer Programming - vol. Ill: Sorting and
Searching”
Addison-Wesley Publishing Co., 1973.

[27] N. Koblitz
"p-adic Numbers, p-adic Analysis and Zeta-Functions"
Graduate Texts in Mathematics, Springer-Verlag,1977.

[28] A.G. Konheim
"Cryptography, a Primer"
John Wiley and Sons, 1981.

[29] E.V. Krishnamurthy, T. Mahadeva Rao and K. Subramanian
"Finite-Segment p-adic Number Systems with Applications to
Exact Computation"
Proc. Indian Acad. Sci., vol. 81A, No. 2, 1975, pp. 58-79.

[30] E.V. Krishnamurthy, T. Mahadeva Rao and K. Subramanian
"p-adic Arithmetic Procedures for Exact Matrix Computations"
Proc. Indian Acad. Sci., vol. 82A, No. 5, 1975, pp. 165-175.

[31] E.V. Krishnamurthy
"Matrix Processors Using p-adic Arithmetic for Exact Linear
Computations"
IEEE Trans, on Computers, vol. C-26, No. 7, July 1977,
pp. 633-639.

[32] A. Leboyer
"p-adic Numbers-p-adic Transform"
MSc. Ccmmunications Report, Imperial College, June 1985.

[33] W.J. Leveque
"Fundamentals of Number Theory"
Addison-Wesley Publishing Co., 1977.

[3^] V. Loahakosol and W. Surakampontorn
"p-adic Transforms"
Electronics Letters, vol. 20, No. 18, August 1984, pp.
726-727.

[35] K. Mahler
"p-adic Numbers and their Functions"
Cambridge Tracts in Mathematics, Cambridge University
Press , 2nd ed., 1981 .

[36] R.C. Merkle
"Secure Communications Over Insecure Channels"
Communications of the ACM, vol. 21, No. 4, APril 1978, pp.
294-299.

1 58

[37] R.C. Merkle
"Secrecy, Authentication and Public Key Systems"
Ph.D. Dissertation, Dept, of Elect. Eng., Stanford Univ.,
Stanford, CA, June 1979.

[38] R.C. Merkle and M.E. Heilman
"Hiding Information and Signatures- in Trapdoor Knapsacks"
IEEE Trans, on Inf. Th., vol. IT-24, No. 5, September, 1978,
pp. 525-530.

[39] N.M. Nasrabadi
"Orthogonal Transforms and their Applications to Image Coding"
Ph.D. Thesis, Imperial College, London, 1984.

[40] N.M. Nasrabadi and R.A. King
"Fast Digital Convolution Using p-adic Transforms"
Electronics Letters, vol. 19, No. 7, March 1983, pp. 266-267.

[41] N.M. Nasrabadi and R.A. King
"Complex Number Theoretic Transform in p-adic Field"
Proc. of IEEE-ICASSP 84, 1984, pp.28A.4.1 - 28A.4.3.

[42] I. Niven and H.S. Zuckerman
"An Introduction to the Theory of Numbers"
John Wiley and Sons, 4ti:1 ed., 1980.

[43] S.-C. Pei and J.-L. Wu
"Determination of p-adic Transform Bases and Lengths"
Electronics Letters, vol. 21, 1985, pp. 431-432.

[44] S.C. Pohlig
"Algebraic and Combinatoric Aspects of Cryptography"
Ph.D. Dissertation, Dept, of Elect. Eng., Stanford Univ.,
Stanford, CA, June 1977.

[45] S.C. Pohlig and M.E. Heilman
"An Improved Algorithm for computing Logarithms Over GF(p)
and its Crypographic Significance"
IEEE Trans, on Inf. Th., vol. IT-24, No.1, January 1978,
pp. 106-110.

[46] R.L. Rivest, A. Shamir and L. Adleman
"A Method for Obtaining Digital Signature and Public-Key
Cryptosystems"
Communications of the ACM, vol.21, No.2, February 1978,
pp.120-126.

[47] M.R. Schroeder
"Number Theory in Science and Communication"
Springer Series in Information Sciences, Springer-Verlag,
1984.

[48] A. Shamir and R.E. Zippel
"On the Security of the Merkle-Hellman Cryptographic Scheme"
IEEE Trans, on Inf. Th., vol. IT-26, No.3, May 1980,
pp.339-340.

159

[49] C.E. Shannon
"Communication Theory of Secrecy Systems"
Bell Sys. Tech. J., 28, 1949, pp.657-715.

[50] C.E. Shannon
"Prediction and Entropy of Printed English"
Bell Sys. Tech. J., 30, 1951, p p . 50-64.

[51] G.J. Simmons and M.J. Norris
"Preliminary Comments on the M.I.T. Public-Key Cryptosystem"
Cryptologia , vol.1, N o . 4, October 1977, pp.406-41 4.

160

APPENDIX A

Table of H(p,r,a) Codes for p = 5, r = 4

b \
a 1 2 3 4 5 6 >

1 .1000 .2000 .3000 .4000 .0100 .1100
2 .3222 .1000 .4222 .2000 .0322 .3000
3 .2313 .4131 .1000 .3313 .0231 .2000
4 .4333 .3222 .2111 .1000 .0433 .4222
5 1.000 2.000 3.000 4.000 .1000 1.100
6 .1404 .2313 .3222 .4131 .0140 .1000
7 .3302 .1214 .4021 .2423 .0330 .3142
8 .2414 .4333 .1303 .3222 .0241 .2111
9 . .4201 .3012 .2313 .1124 .0420 .4131

10 3.222 1.000 4.222 2.000 .3222 3.000
11 .1332 .2120 .3403 .4240 .0133 .1411
12 .3424 .1404 .4333 .2313 .0342 .3222
13 .2034 .4014 .1143 .3123 .0203 .2232
14 .4101 .3302 .2013 .1214 .0410 .4021
15 2.313 4.131 1.000 3.313 .2313 2.000
16 .1234 .2414 .3104 .4333 .0123 .1303
17 .3043 .1132 .4121 .2210 .0304 .3342

b \
a 7 8 9 10 11 12

1 .2100 .3100 .4100 .0200 .1200 .2200
2 .1322 .4000 .2322 .0100 .3322 .1100
3 .4313 .1231 .3000 .0413 .2231 .4000
4 .3111 .2000 .1433 .0322 .4111 .3000
5 2.100 3.100 4.100 .2000 1.200 2.200
6 .2404 .3313 .4222 .0231 .1140 .2000
7 .1000 .4302 .2214 .0121 .3423 .1330
8 .4030 .1000 .3414 .0433 .2303 .4222
9 .3432 .2243 .1000 .0301 .4012 .3313

10 1.322 4.000 2.322 .1000 3.322 1.100
11 .2204 .3041 .4324 .0212 .1000 .2332
12 .1202 .4131 .2111 .0140 .3020 .1000
13 .4212 .1341 .3321 .0401 .2430 .4410
14 .3222 .2423 .1134 .0330 .4431 .3142
15 4.313 1.231 3.000 .4131 2.231 4.000
16 .2042 .3222 .4402 .0241 .1421 .2111
17 .1431 .4420 .2024 .0113 .3102 .1240

162

b \
a 13 14 15 16 17

1 .3200 .4200 .0300 .1300 .2300
2 .4322 .2100 .0422 .3100 .1422
3 .1413 .3231 .0100 .2413 .4231
4 .2433 .1322 .0211 .4000 .3433
5 3.200 4.200 .3000 1.300 2.300
6 .3404 .4313 .0322 .1231 .2140
7 .4142 .2000 .0402 .3214 .1121
8 .1241 .3111 .0130 .2000 .4414
9 .2124 .1420 .0231 .4432 .3243 •
10 4.322 2.100 .4222 3.100 1.422
11 .3120 .4403 .0340 .1133 .2411
12 .4424 .2404 .0433 .3313 .1342
13 .1000 .3034 .0114 .2143 .4123
14 .2343 .1000 .0201 .4302 .3013
15 1.413 3.231 .1000 2.413 4.231
16 .3340 .4030 .0310 .1000 .2234
17 .4234 .2323 .0412 .3401 .1000

153

APPENDIX B

Table of Variable-Length p-adic Codes for p 5 and y = 1 7

1 1 2 10 1 2 20 1 2 30
2 1 2 32 1 2 10 1 2 42
3 2 2 231 2 2 413 1 2 10
4 1 2 43 1 2 32 1 2 21
5 1 2 10 1 2 20 1 2 30
6 2 2 140 2 2 231 1 2 32
7 6 2 3302142 6 2 1214230 6 2 4021423
8 2 2 241 1 2 43 2 2 130
9 6 2 4201243 6 2 3012432 2 2 231

10 1 2 32 1 2 10 1 2 42
11 5 2 133240 5 2 212041 5 2 340332
12 2 2 342 2 2 140 1 2 43
13 4 2 20341 4 2 40143 4 2 11430
14 6 2 4101343 6 2 3302142 6 2 2013431
15 2 2 231 2 2 413 1 2 10
16 4 2 12340 2 2 241 4 2 31042
17 16 2 30431210240132342 16 2 11323420431210240 16 2 41210240132342043

6

1 1 2 40 1 3 010 1 3 110
2 1 2 20 1 3 032 1 2 30
3 2 2 331 2 3 0231 1 2 20
4 1 2 10 1 3 043 1 2 42
5 1 2 40 1 2 10 1 3 110
6 2 2 413 2 3 0140 1 2 10
7 6 2 2423021 6 3 03302142 6 2 3142302
8 1 2 32 2 3 0241 1 2 21
9 6 2 1124320 6 3 04201243 2 2 413

10 1 2 20 1 2 32 1 2 30
11 5 2 424033 5 3 0133240 5 2 141120
12 2 2 231 2 3 0342 1 2 32
13 4 2 31232 4 3 020341 4 2 22321
14 6 2 1214230 6 3 04101343 6 2 4021423
15 2 2 331 2 2 231 1 2 20
16 1 2 43 4 3 012340 2 2 130
17 16 2 22102401323420431 16 3 030431210240132342 16 2 33420431210240132

165

V
a 7 8 9

1 1 3 210 1 3 310 1 3 410
2 1 3 132 1 2 40 1 3 232
3 2 2 431 2 3 1231 1 2 30
4 1 2 31 1 2 20 1 3 143
5 1 3 210 1 3 310 1 3 410
6 2 2 240 2 2 331 1 2 42
7 1 2 10 6 2 4302142 6 2 2214230
8 2 2 403 1 2 10 2 2 341
9 6 2 3432012 6 2 2243201 1 2 10
10 1 3 132 1 2 40 1 3 232
11 5 2 220411 5 2 304112 5 2 432403
12 2 2 120 2 2 413 1 2 21
13 4 2 42123 4 2 13410 4 2 33212
14 1 2 32 6 2 2423021 6 2 1134310
15 2 2 431 2 3 1231 1 2 30
16 4 2 20421 1 2 32 4 2 44023
17 16 2 14312102401323420 16 2 44204312102401323 16 2 20240132342043121

V
a 10 11 12

1 1 3 020 1 3 120 1 3 220
2 1 3 010 1 3 332 1 3 110
3 2 3 0413 2 3 2231 1 2 40
4 1 3 032 1 2 41 1 2 30
5 1 2 20 1 3 120 1 3 220
6 2 3 0231 2 3 1140 1 2 20
7 6 3 01214230 6 2 3423021 6 3 13302142
8 1 3 043 2 2 230 1 2 42
9 6 3 03012432 6 2 4012432 2 2 331

10 1 2 10 1 3 332 1 3 110
11 5 3 0212041 1 2 10 5 2 233240
12 2 3 0140 2 2 302 1 2 10
13 4 3 040143 4 2 24301 4 2 44103
14 6" 3 03302142 6 2 4431013 6 2 3142302
15 2 2 413 2 3 2231 1 2 40
16 2 3 0241 4 2 14210 1 2 21
17 16 3 011323420431210240 16 2 31024013234204312 16 2 12401323420431210

166

V s
a 13 14 15

1 1 3 320 1 3 420 1 3 030
2 1 3 432 1 3 210 1 3 042
3 2 3 1413 2 3 3231 1 3 010
4 1 3 243 1 3 132 1 3 021
5 1 3 320 1 3 420 1 2 30
6 2 2 340 2 2 431 1 3 032
7 6 2 4142302 1 2 20 6 3 04021423
8 2 3 1241 1 2 31 2 3 0130
9 6 2 2124320 6 3 14201243 2 3 0231

10 1 ' 3 432 1 3 210 1 2 42
11 5 2 312041 5- 2 440332 5 3 0340332
12 2 2 442 2 2 240 1 3 043 !
13 1 2 10 4 2 30341 4 3 011430
14 6 2 2343101 1 2 10 6 3 02013431
15 2 3 1413 2 3 3231 1 2 10 I
16 4 2 33402 2 2 403 4 3 031042
17 16 2 42342043121024013 16 2 23234204312102401 16 3 041210240132342043

16 17

1 1 3 130 1 3 230
2 1 3 310 1 3 142
3 2 3 2413 2 3 4231
4 1 2 40 1 3 343
5 1 3 130 1 3 230
6 2 3 1231 2 3 2140
7 6 2 3214230 6 3 11214230
8 1 2 20 2 2 441
9 6 2 4432012 6 2 3243201

10 1 3 310 1 3 142
11 5 3 1133240 5 2 241120
12 2 2 331 2 3 1342
13 4 2 21430 4 2 41232
14 6 2 4302142 6 2 3013431
15 2 3 2413 2 3 4231
16 1 2 10 4 2 22340
17 16 2 34013234204312102 1 2 10

1

167

APPENDIX Cl

Program for the Variable-Length p-adic/Rational Conversion

163

C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

FINITE REPRESENTATION OF INFINITE p-ADIC EXPANSIONS

RATIONAL / INFINITE p-ADIC CONVERSION BASED ON
----------- THE PERIOD CALCULATION -----------

NOTE: THE STRUCTURE OF THE RESULTING CODE IN THIS PROGRAM FOLLOWS
THE THEORETICAL DESCRIPTION.

C Main program calling different subroutines from tlie menu
C

INTEGER P
C
C Reading the initial value of the prime p of the infinite p-adic field.
C This value can be altered during execution through the command RDA.
C

CALL CREAD(P)
C
10 WRITE (5,999)
999 FORMAT (/,2X,'Enter command or HLP')

READ (5,998) COM
998 FORMAT (A3)
C
C These are the command routines which, in turn, will call the corresponding
C operation routines.
C

IF (COM.EQ.'HLP'.OR.COM.EQ.'hip')
IF (COM.EQ.'RDA'.OR.COM.EQ.'rda')
IF (COM.EQ.'FOR'.OR.COM.EQ.'for')
IF (COM.EQ.'INV'.OR.COM.EQ.'inv')
IF (COM.EQ.'END'.OR.COM.EQ.'end')
GO TO 10

CALL CHLP
CALL CREAD(P)
CALL CFOR(P)
CALL CINV(P)
GO TO, 20

C
C
c
20 STOP

END

c
c
c
c
c
c
c

************ *******
* *
* COMMAND modules *
* *

SUBROUTINE CHLP
C
C Command routine to display menu items
C

C

WRITE (5,*)
WRITE (5,*)
WRITE (5,*)
WRITE (5,*)
WRITE (5,*)

Commands are:'
RDA - read a new value of P'
FOR - conversion from rational
INV - conversion from infinite
END - end execution'

RETURN
END

C

C
SUBROUTINE CREAD(P)

C
C Command routine to read and pass new values of p.
C

INTEGER STORE(5 0), P , SIZE
C
10 WRITE (5,999)
999 FORMAT (2X,'Enter PRIME')

READ (5,*) P
C
C Test of primality on p
C

to infinite p-adic'
p-adic to rational'

I = P
CALL PRMDIVd,STORE, SIZE)
IF (STORE(1).NE.P) THEN

WRITE (5,998)
998 FORMAT (2X,'THE VALUE OF PRIME ENTERED IS NOT A PRIME')

GO TO 10
ENDIF

C
RETURN
END

C

C
SUBROUTINE CFOR(P)

C
C Command routine calling tlie 'FORWARD', rational -- > p-adic conversion
C routine, FINREP, and then printing the resulting finite representation
C of the infinite expansion
C

INTEGER PCODE (5 0), P , NTJM, DEN
C

WRITE (5,999)
999 FORMAT (2X,'Enter NUM and DEN of rational')

READ (5,*) NUM,DEN

n
o

o
n

o

o
o

170

CALL FINREP(NUM,DEN,P ,PCODE,LENGTH)
CALL PRINT(PCODE,LENGTH)

RETURN
END

SUBROUTINE CINV(P)

Command routine calling the 'INVERSE', p—adic -- > rational conversion
routine, INV.

INTEGER PCODE(50),P
C

WRITE (5,999)
999 FORMAT (2X,'Enter the order N of the Farey sequence')

READ (5,*) N
C

WRITE (5,998)
998 FORMAT (2X,'Enter infinite P-ADIC CODE')

READ (5,*) PCODE(l),PC0DE(2),(PCODE(I),1=3,PC0DE(1)+PC0DE(2)+1)
C
C L and LI correspond to the p-adic period and to the first recurrent
C element respectively
C

L = PCODE(1)
LI = PCODE(2)

C
CALL INV(P,PCODE,L,LI,N)

C
RETURN
END

n
o

n

n
o

n

171

Q ************************
C * *
C * INPUT/OUTPUT modules *
C * *
Q ************************
C
c

SUBROUTINE PRINT(PCODE,LENGTH)
C
C Routine to print tlie finite representation of variable length, LENGTH,
C of the infinite p—adic expansion
C

INTEGER PC0DE(50)
C

WRITE (5,999)
999 FORMAT (IX,'FINITE p-ADIC REPRESENTATION OF THE EXPANSION:')

WRITE (5,998) (PCODE(I),1=1,LENGTH)
998 FORMAT (IX,5013)
C

RETURN
END

SUBROUTINE RATOUT(NUM,DEN)

Same routine as in program HENSEL

INTEGER NUM,DEN
C

IN = 2
IF (IABS(NUM).GT.9) IN = 3
IF (IABS(NUM).GT.99) IN = 4
IF (IABS(NUM).GT.999) IN = 5
IF (IABS(NUM).GT.9999) IN = 6

C
ID = 1
IF (DEN.GT.9) ID = 2
IF (DEN.GT.99) ID = 3
IF (DEN.GT.999) ID = 4
IF (DEN.GT.9999) ID = 5

C
WRITE (5,999)

999 FORMAT (IX,'RATIONAL EQUIVALENT:')
WRITE (5,998) NUM,DEN

998 FORMAT (1X,I<IN>, 7 M<ID>)
C

RETURN
END

o
n

n
o

o
n

n

o
n

o

n
n

m

n
o

n

172

Q **
C * *
C * RATIONAL to p-ADIC CODE CONVERSION routine *
C * and related routines *
C * *
Q *<*****«*♦*******************♦***************
C
c

SUBROUTINE FINREP(A,B,P,PADIC,SIZE)
C
C This routine implements the theoretical algorithm developed for a
C finite representation of an infinite p—adic expansion, based on
C the p-adic period computation
C

INTEGER PADIC(50),R(50),A,B,P,D,SIZE,PERIOD

Initialization

DO 10 1=1,50
R(I) = 0
PADIC(I) = 0

CONTINUE

Check if (A,B)=1 and, if not, then set the updated values of A and B

N1 = IABS(A)
N2 = IABS(B)
CALL GCD(N1,N2)
B = N2
IF (A.LT.O) THEN

A = -N1
ELSE

A = N1
ENDIF

Check the divisibility of the denominator in ALFA. B becomes D.

CALL DIVDEN(B,P,D)

Calculation of ITEMP which corresponds to r in the theoretical
development and which sets an upper bound on the computation

M = MAX(IABS(A),IABS(D))
AL0G1 = ALOG10((2. *((FLOAT(M))**2.)) + 1.)
AL0G2 = AL0G10(FLOAT(P))
TEMP = AL0G1 / AL0G2
ITEMP = IFIXCTEMP +1.)
IF (MOD(ITEMP,2).NE.0) ITEMP=ITEMP+1

Computation of the p-adic period and putting its value in the 1st
C location
C

L = PERI0D(P,D)
PADIC(1) = L

C
C Implementation of the developed algorithm. INVD is the multiplicative
C inverse of the denominator D.
C

CALL SOLVE(D ,INVD,P)

173

R (l) = A
PADICC3) = M0DF((INVD*R(1)),P)

DO 20 1=1,L+ITEMP-1
R(I+1) = (R(I) - PADIC(I+2)*D) / P
PADIC(I+3) = MODF((INVD*R(I+l)),P)

20 *CONTINUE
C
C Computation of the pointer to the 1st recurrent element and putting
C this value in the 2nd location
C

DO 30 I=2,L+ITEMP
DO 40 J=1,I-1

IF (R(I).EQ.R(J)) THEN
LI = J
PADIC(2) = LI
GO TO 50

END IF

C

40 CONTINUE
30 CONTINUE
C
50 SIZE = L + LI + 1
C

RETURN
END

C
C ---- Q
C

SUBROUTINE GCD(A,B)
C
C Same routine as in HENSEL
C

INTEGER A, B,GCDVAL
C

N1 = A
N2 = B
IF (N1.GT.N2) GO TO
K1 = N1
N1 = N2
N2 = K1

10 J = M0D(N1,N2)
IF (J.EQ.O) GO TO 20
N1 = N2
N2 = J
GO TO 10

20 GCDVAL = N2
A = A / GCDVAL
B = B / GCDVAL

C
RETURN
END

C
C ---- _______ 0 _____________

SUBROUTINE DI VDEN(VIN, P, VOUT)

C This subroutine checks the divisibility of an integer VIN by
C a prime P. The final indivisible value, VOUT, is returned.
C

INTEGER VIN,P,VOUT,TEMP
C

TEMP = VIN
10 MODP = MODF(TEMP,P)

IF (MODP.EQ.O) GO TO 20
VOUT = TEMP
GO TO 30

C
20 TEMP = TEMP / P

GO TO 10
C
30 RETURN

END
C

C
SUBROUTINE SOLVE (VIN, VOUT, P)

C
C Same routine as in HENSEL program
C

INTEGER VIN,VOUT,VALUE,P
C

DO 10 VOUT=l,P-1
VALUE = VIN * VOUT
MODP = MODF(VALUE,P)
IF (MODP.EQ.l) GO TO 20

10 CONTINUE
C
20 RETURN

END
C
C ---------- 0 -----------
C

FUNCTION MODF(VIN,P)
C
C Same function as in HENSEL program
C

INTEGER VIN,P
C

MODF = MOD(VIN,P)
10 IF (MODF.LT.O) MODF=MODF+P

IF (MODF.LT.O) GO TO 10
C

RETURN
END

C

C

no

n
o
n

175

INTEGER FUNCTION PERIOD(P,B)

C Function to compute the p-adic periodicity given the rational denominator
C B and the prime p. The computation is a direct implementation of the
C theoretical algorithm developed.
C PSTORE is a 1-d array where the odd locations contain the primes
C and the even locations contain their corresponding powers.
C NSTORE is a 1-d array where the locations contain the values of
C PSTORE(i)♦♦PSTORE(i+1)
C FSTORE is a 2-d 'matrix' where a row is allocated to each Fli and
C the column locations contain each prime factor of Fli raised
C to its power.
C

INTEGER NSTORE(50),PSTORE(100),FST0RE(50,100)
INTEGER P,B ,D ,DD,Q,PSIZE,TEMP,QUOTNT,RES,FI

For D=1 or D=2 (note: here, D=B), the period is always 1.

IF (B.EQ.1.0R.B.EQ.2) THEN
PERIOD = 1
GO TO 400

END IF

Array initialisation
C

DO 100 1=1,50
NSTORE(I) = 0

100 CONTINUE
C

DO 200 1=1,50
DO 300 J=l,100

FSTORE(I,J) = 0
300 CONTINUE
200 CONTINUE
C

D = B
DD = D

C
C Call the prime power factorization (PPF) procedure to perform the
C PPF of the denominator D. Values are stored in PSTORE then,
C subsequently, in NSTORE, after raising the primes to their powers.
C

CALL PRMFAC(DD,PSTORE,PSIZE)
C

J = 1
1 = 1
K = I + 1

10 NSTORE(J) = PSTORE(I)♦♦PSTORE(K)
IF (K.EQ.PSIZE) GO TO 20
1 = 1 + 2
K = I + 1
J = J + 1
GO TO 10

C

176

C Store FI(Pi**EPSILONi) [Refer to nomenclature in tlie theoretical
C analysis].
C
20 DO 30 1=1,J

TEMP = NSTORE(I)
NSTORE(I) = FI(TEMP)

30 CONTINUE
C

MAXSIZ = 1
C
C In the following, FSTORE is filled according to FI
C

DO 40 1=1,J
IF (NSTORE(I).GT.l) TEEN

TEMP = NSTORE(I)
CALL PRMFAC(TEMP,PSTORE,PSIZE)
FSTORE(1,1) = PSTORE(1)
IF (PSIZE.EQ.2) GO TO 40
INDEX = 0
DO 50 K=3,PSIZE—1,2

INDEX = INDEX + 1
FSTORE(I,K-INDEX) = PSTORE(X)
IF ((K-INDEX).GT.MAXSIZ) MAXSIZ=K-INDEX

50 CONTINUE
ENDIF

40 CONTINUE
C
C Assign the largest value of FI to PERIOD
C

PERIOD = NSTORE(l)
IF (J.GT.l) THEN

DO 60 1=2,J
IF (NSTORE(I).GT.PERIOD) PERIOD=NSTORE(I)

60 CONTINUE
ENDIF

C
C Compute the smallest value of PERIOD which satisfies the congruence
C P**PERIOD = 1 (mod D)
C

DO 70 1=1,J
IF (NSTORE(I).GT.l) THEN

DO 80 K=MAXSIZ,1,-1
IF (FSTORE(I,K).EQ.0) GO TO 80
QUOTNT = NSTORE(I) / FSTORE(I,K)
RES = MODULO(P,QUOTNT,D)
IF ((RES.EQ.l).AND.(QUOTNT.LE.PERIOD)) THEN

PERIOD = QUOTNT
GO TO 70

ENDIF
80 CONTINUE

ENDIF
70 CONTINUE

177

90 IF (MOD(QUOTNT, 2) .EQ.0) THEN.
QUOTNT = QUOTNT / 2
RES = MODULO(P ,QUOTNT,D)
IF (RES.EQ.l) THEN

PERIOD = QUOTNT
GO TO 90

END IF
ENDIF

C
C
400 RETURN

END
C
C ---------- 0 -----------
c

FUNCTION MODULO(X,N,P)
C
C Function to compute MOD (X**N,P) iteratively, for large values of X**N
C such that no overflow errors occur
C

INTEGER X,P,COUNT
C

MODULO = X
COUNT = 1

10 MODULO = MOD (MODULO*X,P)
COUNT = COUNT + 1
IF (COUNT.NE.N) GO TO 10

C
RETURN
END

C

C
SUBROUTINE PRMFAC(N,PSTORE,PSIZE)

C
INTEGER NSTORE(50),PSTORE(100),FLAG,POWER,PSIZE

C
C This subroutine calls the PRIME DIVISORS subroutine.
C The result is an array, NSTORE, of the prime divisors of N.
C Then, NSTORE is rearranged into another array, PSTORE, where the prime
C divisors are written into the odd-numbered locations of PSTORE and their
C corresponding powers in the adjacent even locations. Array PSTORE, so
C arranged, is the output of the subroutine.
C FLAG is an indicator of the size, NSIZE, of NSTORE
C POWER is the corresponding prime power
C
C Array initialization
C

DO 10 1=1,50
NSTORE(I) = 0

10 CONTINUE
C

DO 20 1=1,100
PSTORE(I) = 0

20 CONTINUE
C

CALL PRMDIV(N,NSTORE,NSIZE)

- 178 -

C Initialization
C

FLAG = 0
1 = 1
J =1
POWER= 1

C
C Check if NSIZE=1 (i.e., N is a prime)
C

IF (NSIZE.EQ.l) THEN
PSTORE(J) = NSTORE(I)
PSTORE(J +1) = 1
GO TO 60

ENDIF
C
30 K = 1 + 1

IF (K.EQ.NSIZE) FLAG = 1
IF (NSTORE(I).EQ.NSTORE(K)) THEN

PSTORE(J) = NSTORE(I)
POWER = POWER + 1
IF (FLAG.EQ.l) GO TO 40
I = K
GO TO 30

ELSE
PSTORE(J) = NSTORE(I)
PSTORE(J+l) = POWER
J = J + 2
POWER = 1
IF (FLAG.EQ.l) GO TO 50
I = K
GO TO 30

ENDIF
C
50 PSTORE(J) = NSTORE(K)
40 PSTORE(J+l) = POWER
C
60 PSIZE = J + 1
C

RETURN
END

C
C ---------- o -----------
C

SUBROUTINE PRMDIV(I,STORE,SIZE)
C
C The algorithm for finding the prime divisors of a composite integer
C is based on Eratosthenes sieve. The integer I is factored into its
C prime divisors and these prime divisors are written in ascending
C order in array STORE. SIZE is the actual size of STORE. If I is a
C prime, it is retuned as it is, with SIZE=1
C

INTEGER STORE(50),ROOT,SIZE
C
C Initialization
C

DO 10 SIZE =1,50
STORE(SIZE) = 0

10 CONTINUE

n
o

n

n
o

o

179

SIZE = 0

30 SIZE = SIZE + 1
ROOT = IFIX(SQRT(ABS(FLOAT(I))))
DO 20 L = 2,ROOT

K = MOD(I, L)
IF (K.NE.O) GO TO 20
STORE(SIZE) = L
NEXT = I/L
I = NEXT
GO TO 30

20 CONTINUE
C

STORE(SIZE) = I
C
50 RETURN

END

INTEGER FUNCTION FI(N)

This function computes the Euler Totient Function of any integer N.

FI = 1
DO 10 1=2,N-l

N1 = N
N2 = I

20 J = M0D(N1,N2)
IF (J.EQ.O) GO TO 10
IF (J.EQ.l) THEN

FI = FI + 1
GO TO 10

END IF
N1 = N2
N2 = J
GO TO 20

10 CONTINUE
C

RETURN
END

C

on

n
o
n

**C
C * *
C * p-ADIC CODE to RATIONAL CONVERSION routine *
C * and related routines *
C * *
C **
c
c

SUBROUTINE INV(P,PADIC,L,L1,N)
C
C This routine is an implementation of the theoretical algorithm developed.
C Given the order, N, of the Farey sequence (which may correspond to GAMA
C in the cryptographic alphabet), the rational equivalent of an infinite
C p—adic expansion (having a finite p—adic code representation) is computed
C and printed out
C

INTEGER PADIC(50),PADICT(50),P,R
C

AL0G1 = ALOGIO((2.*((FLOAT(N))**2.))+l.)
AL0G2 = ALOGIO(FLOAT(P))
REALR = AL0G1 / AL0G2
R = IFIX(REALR+1.)
IF (M0D(R,2).NE.O) R=R+1
IF (R.GT.(L+Ll-1)) THEN

INDEX = L+Ll+2
DO 10 I=INDEX,R+2

PADIC(I) = PADIC(I-L)
10 CONTINUE

END IF
C

DO 20 1=1,R
PADICT(I) = PADIC(I+2)

20 CONTINUE
C

CALL CONVRT(PADICT,P,R,NUM,DEN)
CALL RATOUT(NUM,DEN)

C
RETURN
END

SUBROUTINE CONVRT(PCODE,P,R,NUM,DEN)

Same routine as in HENSEL program but with minor modifications to
C the array structures
C

INTEGER PCODE(50),PC0DET(50),P,R,NUM,DEN,ACOUNT,NEGTV,C,CARRY
C

ACOUNT = 0
NUM = 0
DEN = 0
NEGTV = 0

C
DO 10 1=1,R

PCODET(I) = PCODE(I)
10 CONTINUE

181

70 DO 20 I=(R/2)+l,R
IF (PCODE(I).NE.O) GO TO 30

20 CONTINUE
GO TO 60

C
30 DO 40 I=(R/2)+l,R

IF (PCODE(I).NE.(P-1)) GO TO 50
40 CONTINUE

NEGTV = 1
GO TO 60

C
50 C = 0

DO 80 1=1,R
PCODE(I) = PCODE(I)+PCODET(I)+C
C = CARRY(PCODE(I),P)
PCODE(I) = MOD(PCODE(I), P)

80 CONTINUE
C

ACOUNT = ACOUNT + 1
GO TO 70

C
60 DEN = ACOUNT + 1

IF (NEGTV.EQ.O) GO TO 90
CALL PCOMP(PCODE,P,R,PCODE)

C
90 DO 100 1=1,R/2

NUM = NUM+PCODE(I)*(P**(I-l))
100 CONTINUE
C

IF (NEGTV.EQ.l) NUM=-NUM
C

RETURN
END

C

C
INTEGER FUNCTION CARRY(VIN,P)

C
C Same function as in HENSEL program
C

INTEGER VTN,P ,VTEMP,C
C

C = 0
VTEMP = VIN

20 IF (VTEMP.LT.P) GO TO 10
VTEMP = VTEMP - P
C = C + 1
GO TO 20

10 CARRY = C
C

RETURN
END

C
C ---------- o -----------

SUBROUTINE PCOMP(PCODE,P,R,PBAR)

C Same routine as in HENSEL program but with minor modifications to
C the array structures
C

INTEGER PCODE(50),PBAR(5 0), P , R
C

PBAR(1) = P - PCODE(l)
DO 10 1=2,R

PBAR(I) = P - (PCODE(I)+l)
10 CONTINUE
C

RETURN
END

C

183

APPENDIX C2
»

Program for the Finite-Segment p-adic Conversion and
Full Arithmetic Package

o
o
n

RATIONAL / HENSEL CODE CONVERSION
AND

FINITE-SEGMENT p-ADIC ARITHMETIC PACKAGE

NOTE: THIS PROGRAM IS DESIGNED SUCH THAT THE p-ADIC NUMBERS IN THE
HENSEL CODES LIE IN THE RANGE 0 TO 9. IF THIS RANGE IS TO BE
EXCEEDED, MODIFICATIONS SHOULD BE DONE TO THE I/O MODULES.

C Main program calling different subroutines from the menu
C
C

C
INTEGER PRIME,RANGE

C Reading initial values of the prime, p, and the range, r, of the
C segmented p-adic field. These values can be altered during execution
C through the command RDA.
C

CALL CREAD(PRIME,RANGE)
C
10 WRITE (5,999)
999 FORMAT (2X,'Enter command or HLP')

READ (5,998) COM
998 FORMAT (A3)
C
C These are the command routines which, in turn will call the corresponding
C operation routines.
C

IF (COM.EQ. 'HLP' .OR. COM.,EQ. 'hip')
IF (COM. EQ. 'RDA' .OR. COM.,EQ. 'rda ')
IF (COM. EQ. 'FOR' .OR. COM.,EQ. 'for')
IF (COM.EQ. 'INV' .OR. COM..EQ. 'inv')
IF (COM.EQ. 'CMP' .OR., COM..EQ. 'cmp')
IF (COM. EQ. 'ADD' .OR..COM..EQ. 'add')
IF (COM.EQ. 'SUB' .OR..COM..EQ. 'sub')
IF (COM. EQ. 'MUL' .OR..COM,.EQ. 'mul')
IF (COM.EQ. 'DIV' .OR..COM..EQ. 'div')
IF (COM.EQ. 'END' .OR..COM..EQ. 'end')
GO TO 10

CALL CHLP
CALL CREAD
CALL CFOR
CALL CINV
CALL CCMP
CALL CADD
CALL CSUB
CALL CMUL
CALL CD IV
GO TO 20

(PRIME,RANGE)
(PRIME,RANGE)
(PRIME,RANGE)
(PRIME,RANGE)
(PRIME,RANGE)
(PRIME,RANGE)
(PRIME,RANGE)
(PRIME,RANGE)

20 STOP
END

185

C
C
c
c
c
c
c

* *
* COMMAND modules *
* *

SUBROUTINE CREAD(P,R)
C
C Command routine to read and pass new values of P and R in H(P,R)
C

INTEGER STORE(IO)
INTEGER P, R,SIZE

C
10 WRITE (5,999)
999 FORMAT (2X,'Enter PRIME and RANGE')

READ (5,*) P,R
C
C Test of primality on p and check that r is even
C

I = P
DO 20 SIZE=1,10

STORE(SIZE) = 0
20 CONTINUE
C

SIZE = 0
40 SIZE = SIZE + 1

ROOT = IFIX(SORT(FLOAT(I)))
DO 30 J=2,ROOT

K = MOD(I, J)
IF (K.NE.0) GO TO 30
STORE(SIZE) = J
NEXT = I / J
I = NEXT
GO TO 40

30 CONTINUE
STORE(SIZE) = I

C
IF (STORE(1).NE.P) THEN

WRITE (5,998)
998 FORMAT (2X, 'THE VALUE OF PRIME ENTERED IS NOT A PRIME')

GO TO 10
END IF

C
IF (MOD(R ,2).NE.0) THEN

WRITE (5,997)
997 FORMAT (2X,'RANGE MUST BE EVEN')

GO TO 10
END IF

C
RETURN
END

C

186

C Command routine calling the 'FORWARD', rational ---> Hensel code conversion
C routine, HCODE, and then printing the resulting Hensel code.
C

INTEGER PCODE(0:20)
INTEGER P,R,NUM,DEN

C
WRITE (5,999)

999 FORMAT (2X,'Enter NUM and DEN of rational')
READ (5,*) NUM,DEN

C
C Test that the values of NUM and DEN are within Krishnamurthy's bounds
C

N = INT(SQRT((FLOAT(P)**FLOAT(R)—1.)/2.))
IF (NUM.GT.N.OR.DEN.GT.N) THEN

WRITE (5,998) N
998 FORMAT (2X,'WARNING - VALUES ARE OUTSIDE THE BOUND: +/-',I4)

END IF
C

CALL HCODE(NUM,DEN,P,R,PCODE)
C

CALL PRINT(PCODE,R)
C

RETURN
END

C

C
SUBROUTINE CINV(P,R)

C
C Command routine calling the 'INVERSE', Hensel code ---> rational,
C conversion routine, CONVRT, and printing the equivalent rational number.
C It uses subroutine RDCODE to read a Hensel code from the terminal.
C

INTEGER PC0DE(0:20)
INTEGER P,R,NUM,DEN

C
WRITE (5,999)

999 FORMAT (2X,'Enter Hensel code')
C

CALL RDCODE (PCODE)
CALL CONVRT(PCODE,P,R,NUM,DEN)
CALL RATOUT (NTJM, DEN)

C
RETURN
END

C
c ---------- 0 -----------

SUBROUTINE CFOR(P,R)
C

187

C Command routine calling the complementation routine, HCOMP, after some
C pre-processing on the Hensel code read in. The pre-processing is necessary
C to pass the code to HCOMP without the p-adic point. The command module,
C however, places the p-adic point hack in its position prior to the output
C stage.
C PLOC is the location of the p-adic point
C

INTEGER PCODE(0:20),PTEMP(0:20),PCOMP(0:20)
INTEGER P,R,PLOC

C
C Reading a p-adic code using RDCODE.
C

WRITE (5,999)
999 FORMAT (2X,'Enter Hensel code to be complemented')

CALL RDCODE(PCODE)
C
C Location of the p-adic point
C

DO 10 I = 0, R
IF (PCODE(I).EQ.-l) PLOC = I

10 CONTINUE
C
C Duplicating PCODE in PTEMP without the p-adic point
C

IF (PLOC.EQ.0) GO TO 20
DO 30 I = 0, PLOC-1

PTEMP(I) = PCODE(I)
30 CONTINUE
20 DO 40 I = PLOC, R-l

PTEMP(I) = PCODE(I+1)
40 CONTINUE
C
C Calling the complementation routine. The result is put back in PTEMP.
C

CALL HCOMP(PTEMP,P,R,PTEMP)
C
C Replacing the p-adic point back in its position. The complete p-adic
C complement is written onto PCOMP.

PCOMP(PLOC) = -1
IF (PLOC.EQ.0) GO TO 50
DO 60 I = 0, PLOC-1

PCOMP(I) = PTEMP(I)

SUBROUTINE CCMP(P,R)
C

60 CONTINUE
50 DO 70 I = PLOC+1, R

PCOMP(I) = PTEMP(I-l)
70 CONTINUE
C

WRITE (5,998)
998 FORMAT (IX, 'COMPLEMENT:')

CALL PRINT (PCOMP,R)
C

RETURN
END

C
C ---- ------0 -----------

SUBROUTINE CADD(P,R)

C Command routine calling the addition routine. It reads two rational numbers
C converts them into their Hensel codes and then performs the segmented p—adi
C addition. The result is output in Hensel code and rational forms.
C

INTEGER PC0DE1(0:20),PC0DE2(0:20),PCODEA(0:20)
INTEGER NUM1,DENI,NUM2,DEN2,N1,D1,N2,D2,P ,R ,NUM,DEN

C
WRITE (5,999)

999 FORMAT (2X,'Enter NUM and DEN of 1st rational')
READ (5,*) NUM1,DENI

C
WRITE (5,998)

998 FORMAT (2X,'Enter NUM and DEN of 2nd rational')
READ (5,*) NUM2,DEN2

C
N1 = NUM1
D1 = DENI
N2 = NUM2
D2 = DEN2

C

C
CALL HCODE(N1,D1,P ,R,PCODE1)
CALL HCODE(N2,D2,P ,R ,PC0DE2)

C
C The last parameter, 1, in BLADD corresponds to the addition routine
C 1 — > routine may be executed twice
C 0 — > routine executed once only
C This parameter is important in case we have leading 0's.
C

CALL HADD(NUM1,DENI,NUM2,DEN2,PCODE1,PC0DE2,PCODEA,P ,R,1)
C

WRITE (5,997)
997 FORMAT (IX,'ADDITION RESULT:')

CALL PRINT(PCODEA,R)
WRITE (5,996)

996 FORMAT (IX,'or')
CALL CONVRT(PCODEA,P ,R ,NUM,DEN)

C
CALL RATOUT(NUM,DEN)

C
RETURN
END

C
C ---------- o -----------
C

flag:

SUBROUTINE CSUB(P,R)
C
C Command routine to perform the segmented p-adic subtraction. The
C subtraction process eventually, is exactly similar to the addition.
C This command routine is mainly concerned with sending a message re.
C the format of the input data.
C

INTEGER P,R

- 189 -

WRITE (5,999)
999 FORMAT (2X,'In the following,

+ 'to be subtracted:
C
C From now on it is exactly like CADD
C

CALL CADD(P,R)
C

RETURN
END

c
c ----- ------ o -----------
c

SUBROUTINE CMUL(P,R)

assign a minus sign to tlie rational
)

C
C Command routine calling the multiplication subroutine, HMULT. It reads
C two rational numbers, +ve or —ve, converts tbem into their Hensel codes
C and then performs the segmented p—adic multiplication. The product is
C output in Hensel code and rational forms.
C

INTEGER PC0DE1(0:20),PCODE2(0:20),PC0DEM(0:20)
INTEGER NUM1,DENI,NUM2,DEN2,N1,D1,N2,D2,NUM,DEN,P ,R

C
WRITE (5,999)

999 FORMAT (2X, 'Enter NUM and DEN of 1st rational')
READ (5,*) NUM1,DENI

C
WRITE (5,998)

998 FORMAT (2X, 'Enter NUM and DEN of 2nd rational')
READ (5,*) NUM2,DEN2

C
N1 = NUM1
D1 = DENI
N2 = NUM2
D2 = DEN2

C
CALL HCODE(N1,D1,P ,R ,PCODE1)
CALL HCODE(N2,D2,P ,R ,PC0DE2)
CALL HMULT(NUM1,DENI,NUM2,DEN2,PCODEl,PC0DE2,P,R,PCODEM)

C
WRITE (5,997)

997 FORMAT (IX, 'MULTIPLICATION PRODUCT:')
CALL PRINT(PCODEM,R)
WRITE (5,996)

996 FORMAT (IX, 'or')
CALL CONVRT(PCODEM,P,R,NUM,DEN)
CALL RATOUT (NUM,DEN)

C
RETURN
END

C
C ---------- O -----------

190

C Command routine calling the division subroutine, HDIY.lt reads two
C rational numbers, +ve or -ve, converts them into their Hensel codes
C and then performs the segmented p—adic division. The quotient is
C output in Hensel code and rational forms.
C

INTEGER PCODE1(0:20),PC0DE2(0:20),PCODED(0:20)
INTEGER NTJM1,DENI,NUM2,DEN2,Nl,D1,N2,D2,NUM,DEN,P,R

C
WRITE (5,999)

999 FORMAT (2X,'Enter NUM and DEN of dividend')
READ (5,*) NUM1,DENI

C
WRITE (5,998)

998 FORMAT (2X,'Enter NUM and DEN of divisor')
READ (5,*) NUM2,DEN2

C
Nl = NTTM1
D1 = DENI
N2 = NUM2
D2 = DEN2

C
CALL HCODE(Nl,D1,P ,R ,PCODE1)
CALL HCODE(N2,D2,P ,R ,PC0DE2)
CALL HDIV(NUM1,DENI,NUM2,DEN2,PCODE1,PCODE2,P,R,PCODED)

C
WRITE (5,997)

997 FORMAT (IX,'DIVISION QUOTIENT:')
CALL PRINT(PCODED,R)
WRITE (5,996)

996 FORMAT (IX,'or')
CALL CONVRT(PCODED,P,R,NUM,DEN)
CALL RATOUT(NUM,DEN)

C
RETURN
END

C

C

SUBROUTINE CDIV(P,R)
C

c
c
c

SUBROUTINE CHLP

Command routine to display all the commands menu for novice users

WRITE <5,«) ' commands
WRITE (5,«) ' RDA -
WRITE (5,*) ' FOR -
WRITE (5.*) ' INV -
WRITE (5,«) ' CMP -
WRITE (5,*) ' ADD -
WRITE (5,*) ' SUB -
WRITE (5, *) ' MUL -
WRITE (5,*) ' DIV -
WRITE (5,») ' END -

are : '
read new values of P and R'
conversion from RATIONAL to HENSEL CODE'
conversion from HENSEL CODE TO RATIONAL'
complement of a Hensel code'
segmented p—adic addition of two rationals'
segmented p-adic subtraction of two rationals'
segmented p—adic multiplication of two rationals
segmented p-adic division of two rationals'
end execution'

C
RETURN
END

191

C ************************
C * *
C * INPUT/OUTPUT modules *
C * *
q ************************
c
c

SUBROUTINE RDCODE(CODE)
C
C Routine to read a variable-length. Hensel code. It is self formatting
C according to the number of characters, NCH, read in.
C

L0GICAL*1 IN(0:20)
INTEGER C0DE(0:20)
INTEGER RANGE

C
READ (5,999) NCH,(IN(I),I=1,NCH)

999 FORMAT (Q,22A1)
C
C Having read an alphanumeric string (the p-adic point and the code digits),
C the following converts the p-adic point to -1.
C

RANGE = NCH - 1
DO 10 I = 0, RANGE

CODE(I) = IN(I+1) - *060
IF (IN(I+1).EQ.'.') CODE(I) = -1

10 CONTINUE
C

RETURN
END

C

C
SUBROUTINE PRINT(PCODE,R)

C
C Routine to print a Hensel code of length R
C

L0GICAL*1 OUT(0:20)
INTEGER PCODE(0:20)
INTEGER R

C
C Since the p-adic point is treated as -1 in all the arithmetic, here the
C -1 in the PCODE is replace by a dot in OUT. *060 + PCODE(I) returns the
C octal value of PCODE(I), and the corresponding final format is alphanumeric.
C

DO 10 I = 0, R
OUT(I) = *060 + PCODE(I)
IF (PCODE(I).EQ.-l) OUT(I) =

10 CONTINUE

n
o
n

192

WRITE (5,999)
999 FORMAT (IX,'HENSEL CODE:')

WRITE (5,998) (OUT(I), 1=0,R)
998 FORMAT (IX,<R+1>A1,//)
C

RETURN
END

----0 -----------

SUBROUTINE RATOUT(NUM,DEN)
C
C Routine to print any rational number in the form A/B.
C Note that 1 extra location is reserved in IN to provide for the possible
C -ve sign.
C

INTEGER NUM,DEN
C

IN = 2
IF (IABS(NUM) .GT.9) IN = 3
IF (IABS(NUM).GT.99) IN = 4
IF (IABS(NUM).GT.999) IN = 5
IF (IABS(NUM).GT.9999) IN = 6

C
ID = 1
IF (DEN.GT.9) ID = 2
IF (DEN.GT.99) ID = 3
IF (DEN.GT.999) ID = 4
IF (DEN.GT.9999) ID = 5

C
WRITE (5,999)

999 FORMAT (IX,'RATIONAL EQUIVALENT:')
WRITE (5,998) NUM,DEN

998 FORMAT (IX,I<IN>,'/',I<ID>,//)
C

RETURN
END

n
o

n

n
o

n

n
o

o
o

n>
o

o
n

o
n

o
o

n
n

n

o
n

n

o
n

193

C **
C * *
C * RATIONAL to HENSEL CODE CONVERSION routine *
C * and related routines *
C * *
C **
C
c

SUBROUTINE HCODE(A,B,P,R,PADIC)
C
C given a rational number ALFA=A/B with (A,B)=1 and B.NE.O, its
C p-adic expansion is obtained through this subroutine.
C In the following analysis PADICT is a temporary array storing the
C actual integer elements of the Hensel code, while PADIC is the
C final array with the p-adic point represented as -1.
C

INTEGER PADICT(20),PADIC(0:20)
INTEGER A,B,C,D,BNEW,NUANPN,DEANPN,CGAMA,DGAMA,

+ P,R,X

Checking if (A,B) = 1 and, if not, then get the updated values of A and B.

CALL GCD(A,B)

Initialization of the p-adic index.

J = 0

STEP 1: Set C = the numerator in ALFA.
Check the divisibility of the denominator in ALFA
by the prime P. This will control the position of
the p-adic point.
Set D = the denominator in ALFA (or the new one
if divisible by P).

C = A
CALL DIVDEN(B,P,BNEW,N)
D = BNEW

J = J + 1

STEP 2: solve the congruence DX = 1 (mod P).
if X (j) is a solution, then PADIC(j) = C.X(j) (mod P).

CALL SOLVE (D,X,P)
PADICT(J) = MODF (C*X, P)

Check if we have reached the required range R.

IF (J.EQ.R) GO TO 30

STEP 3: set GAMA = (C/D) - PADIC(j).

NUANPN = PADICT(J)
DEANPN = 1
CALL RATSUB (C,D,NUANPN,DEANPN,CGAMA,DGAMA)

194

C STEP 4: Set the new value of D = DGAMA.
C The corresponding value (CGAMA) of C, however,
C will be divisible by P.
C Set C = CGAMA / (P**l).
C Go to STEP 2 after increasing the p-adic index by 1.
C

D = DGAMA
CALL DIVNUM(CGAMA,P,C)
GO TO 20

C
C Transfering the Hensel code from PADICT to PADIC with the p—adic
C point in its final position.
C
30 IF (N.EQ.O) GO TO 40

PADIC(N) = -1
DO 50 I = 0, N-l

PADIC(I) = PADICTd+1)
50 CONTINUE

DO 60 I =' N+l, R
PADIC(I) = PADICT(I)

60 CONTINUE
GO TO 80

40 PADIC(N) = -1
DO 70 I = N+l, R

PADIC(I) = PADICT(I)
70 CONTINUE
C
80 RETURN

END
C

C
SUBROUTINE GCD(A,B)

C
C Subroutine checking if (A,B) = 1. If not, then A and B are reduced
C such that A -> A/GCD and B —> B/GCD.
C

INTEGER A,B,GCDVAL
C

N1 = A
N2 = B
IF (N1.GT.N2) GO TO 10
K1 = N1
N1 = N2
N2 = K1

10 J = MOD(N1,N2)
IF (J.EQ.0) GO TO 20
N1 = N2
N2 = J
GO TO 10

20 GCDVAL = N2
A = A / GCDVAL
B = B / GCDVAL

C
RETURN
END

C

195

C subroutine for the divisibility of the numerator by P
C such that if ALFA=A/B, then A = C * P
C VIN is the value corresponding to A
C VOUT is the value corresponding to C
C

INTEGER VIN,VOUT,P
C

MODP = MODF(VIN, P)
IF (MODP.EQ.0) GO TO 10
VOUT = VIN
GO TO 20

C
10 VOUT = VIN / P
C
20 RETURN

END
C
C ---------- 0 -----------
c

SUBROUTINE DIVDEN (VIN,P,VOUT,N)
C
C Subroutine checking the divisibility of the denominator by P,
C such that if ALFA=A/B, then B = D * (P**N).
C VIN is the value corresponding to B
C VOUT is the value corresponding to D
C Unlike DIVNUM "JH, we are interested in the powers of P in this case,
C because these will control the position of the p-adic point.
C

INTEGER VIN,VOUT,P
C

N = 0
10 MODP = MODF(VIN,P)

IF (MODP.EQ.0) GO TO 20
VOUT = VIN
GO TO 30

C
20 N = N + 1

VIN = VIN / P
GO TO 10

C
30 RETURN

END
CC --------o --------
C

SUBROUTINE SOLVE (VIN,VOUT,P)
C
C Subroutine to solve the congruence DX = 1 (mod P) in STEP 2
C of the conversion algorithm.
C VTN is the value corresponding to D
C VOUT is the value corresponding to X
C

INTEGER VIN,VOUT,VALUE,P

SUBROUTINE DIYNUM (VIN, P, VOUT)
C

196

DO 10 VOUT = 1, P-1
VALUE = VIN * VOUT
MODP = MODF(VALUE, P)
IF (MODP.EQ.l) GO TO 20

10 CONTINUE
C
20 RETURN

END
C
C ---------- 0 ----------- '
c

SUBROUTINE RATSUB(NUM1,DENI,NUM2,DEN2,NUM,DEN)
C
C Subroutine to subtract 2 fractions and return the resulting value
C in fraction form (corresponding to NUM and DEN).
C

INTEGER NUM1,NUM2,NUM,DENI,DEN2,DEN
C

IF (DENI.EQ.DEN2) GO TO 10
DEN = DENI * DEN2
NUM = (NUM1 * DEN2) - (NUM2*DEN1)
GO TO 20

C
10 DEN = DENI

NUM = NUM1 - NUM2
C
20 RETURN

END
C
C ---------- O -----------
C

FUNCTION MODF (VIN, P)
C
C Function returning MOD(VIN,P) with tbe only difference that -ve
C values of MOD, which may be obtained through the usual intrinsic
C function MOD, are accounted for with their equivalent +ve values.
c

INTEGER VIN,P
c

MODF = MOD(VIN ,P)
10 IF (MODF.LT.0) MODF = MODF + P

IF (MODF.LT.O) GO TO 10
c

RETURN
END

o
o

197

Q ********* *************************** *
C * *
C * Segmented p-adic ADDITION routine *
C * and related routines *
C * *
Q *************************************
C
c

SUBROUTINE HADD (NUM1, DENI, NUM2, DEN2, HCODE1, HC0DE2, HCODEA,
+ P,R,ADFLAG)

C
C Subroutine performing the addition operation in tbe segmented p-adic
C field Qp of length R. It uses the updated addition algorithm developed
C by Gorgui-Naguib and King. The result of HC0DE1 + HC0DE2 is stored in
C HCODEA. The subroutine makes use of subroutine RSHIFT to shift right
C either HC0DE1 or HC0DE2 to align the p-adic point before adding, and
C of function CARRY to calculate carries arising from subsequent additions.
C Notice that the addition process is done over a Hensel code size of:
C SIZE = NEWR
C where NEWR is the updated range size due to a right-shift of one of the
C codes (a p-adic point misalignment).
C ADFLAG is a parameter = 0 or 1 for disabling or enabling the multiple
C (at most one more time) running of this subroutine. Initially ADFLAG is
C set to 1 so that, in case leading 0's exist, the routine may be run once
C more over an extended range (which is returned as REXT from subroutine
C LEADO)
C

INTEGER HC0DE1(0:20),HC0DE2(0:20),HCODEA(0:20),
+ HCD1S(0:20),HCD2S(0:20)

C
C PCOUNT is a counter for the number of digits (not necessarily 0's) preceding
C the p-adic point.
C PLOCK locks onto the above value of PCOUNT for further analysis of these
C digits.
C

INTEGER NUM1,DENI,NUM2,DEN2,P,R,ADFLAG,PCOUNT,PLOCK,C,CARRY

Initialize PCOUNT and carry
C

PCOUNT = 0
C = 0

C
DO 10 I = 0, R

IF (HCODEl(I).EQ.-l) N1=I
IF (HC0DE2(I).EQ.-l) N2=I

10 CONTINUE
C

IF (N1.GT.N2) GO TO 20
IF (N2.GT.N1) GO TO 40
NEWR = R
GO TO 60

198

C Shift right according to obtained valnes of N1 and N2
C
20 NEWR = R + N1 - N2

CALL RSHIFT(HC0DE2,HCD2S,N1-N2, NEWR)
DO 30 I = 0, NEWR

HC0DE2(I) = HCD2S(I)
30 CONTINUE

GO TO 60
C
40 NEWR = R + N2 - N1

CALL RSHIFT(HC0DE1 ,HCD1S ,N2-N1,NEWR)
DO 50 I = 0, NEWR

HCODE1(I) = HCDIS(I)
50 CONTINUE
C
C At this stage the p-adic point is aligned and the addition process is
C carried ont from left to right.
C Note that NEWR, which is a function of R, may be implicitely increased
C according to the number of leading 0's found during the initial run of
C the subroutine (i.e. if LEAD0 is to be called during the first run).
C
60 DO 70 I = 0, NEWR

IF (HCODEl(I).EQ.-l) GO TO 80
PCOUNT = PCOUNT + 1
HCODEA(I) = HC0DE1(I) + HC0DE2(I) + C
C = CARRY(HCODEA(I),P)
HCODEA(I) = MOD(HCODEA(I),P)
GO TO 70

80 PLOCK = PCOUNT
HCODEA(I) = -1

70 CONTINUE
C
C Check if any digits precede the p-adic point.
C

IF (PLOCK.EQ.0) GO TO 90
C
C If so, and ADFLAG is enabled, then call LEAD0 to check for leading 0's.
C

IF (ADFLAG.EQ.l) CALL LEAD0(NUM1,DENI,NUM2,DEN2,HCODEA,P,R,PLOCK)
C
C Here, a final check on 0's left of the p—adic point is performed. ‘
C If the 'most significant bit' is 0, then the whole addition result is
C 'shifted left' by 1 location until a non-zero digit is met. Note that the
C location of the p-adic point retains its relative location throughout the
C shifting process (i.e., it is also shifted along with the other digits).
C a part of the addition code).
C
90 IF (HCODEA(O).NE.0) GO TO 100

CALL LSHIFT(HCODEA,HCODEA,1,NEWR)
GO TO 90

C
100 RETURN

END
C

_] o 9 —

C
SUBROUTINE RSHIFT (SEQIN,SEQOUT,K,M)

C This subroutine shifts a given sequence SEQIN of length M by K places
C to the right and fills-in the gaps with 0's. The resulting shifted
C sequence is passed as SEQOUT.
C

INTEGER SEQIN(0:20),SEQOUT(0:20)
C

DO 10 I = 0, K-l
SEQOUT(I) = 0

10 CONTINUE
C

DO 20 I = K, M
SEQOUT(I) = SEQIN(I-K)

20 CONTINUE
C

RETURN
END

C
C ---------- 0
C

INTEGER FUNCTION CARRY(VIN,P)
C
C Function returning the carry arising from a value YIN w.r.t. P
C

INTEGER VIN,VTEMP, P , C
C

C = 0
VTEMP = VIN

20 IF (VTEMP.LT.P) GO TO 10
VTEMP = VTEMP - P
C = C + 1
GO TO 20

10 CARRY = C
C

RETURN
END

C

C
SUBROUTINE LSHIFT(SEQIN,SEQOUT,K,M)

C
C This subroutine shifts left a given sequence SEQIN of length M by K places
C to the left and fills-in the gaps with 0's. The resulting shifted sequence
C is passed as SEQOUT.
C

INTEGER SEQIN (0:20) , SEQOUT (0:20)
C

DO 10 I = 0, M-K
SEQOUT(I) = SEQIN(I+K)

10 CONTINUE
C

DO 20 I = M-K+l, M
SEQOUT(I) = 0

20 CONTINUE
C

RETURN
END

C

n
o

n

n
o

o
to

o
m

o
n

o
n

200

C This subroutine checks if some or all the digits preceding the p-adic
C point = 0. The number of leading 0's is given by ZCOUNT.
C Then, the new Hensel codes of the rationals are obtained over a range REXT
C such that REXT = R + ZCOUNT and is evenp (this is also why NUM1, DENI,
C NUM2 and DEN2 were passed all through the program).
C Then, the addition routine HADD is called again and is performed over this
C range.
C

INTEGER HCODEA(0:20),PC0DE1(0:20),PCODE2(0:20)
INTEGER NUM1,DENI,NUM2,DEN2,P,R,PLOCK,ZCOUNT,REXT

Initialize ZCOUNT

ZCOUNT = 0

DO 10 I = 1, PLOCK
IF (HCODEA(I-l).EQ.0) ZC0UNT=ZC0UNT+1
IF (HCODEA(I) .NE.0) GO TO 20

CONTINUE

REXT = R + ZCOUNT

REXT must be even
i

IF ((MOD(REXT,2)).NE.0) REXT=REXT+1

Extended Hensel codes over REXT

CALL HCODE(NUM1,DENI,P ,REXT,PC0DE1)
CALL HCODE(NUM2,DEN2,P,REXT,PC0DE2)

C
C Perform extended addition. Here, ADFLAG is passed as 0 to disable any
C further execution of HADD.
C

CALL HADD(NUM1,DENI,NUM2,DEN2,PCODE1,PC0DE2,HCODEA,P ,REXT,0)
C

RETURN
END

SUBROUTINE LEADO(NUM1,DENI,NUM2,DEN2,HCODEA,P,R,PLOCX)
C

o
o
o

201

Q **
* *
* Segmented p—adic COMPLEMENTATION routine *
* *

C **
C
c

SUBROUTINE HCOMP(HCODE,P,R,HBAR)
C
C Subroutine to complement a Hensel code, HCODE, and put the result
C in HBAR.
C NOTE: HCODE is assumed free of the p—adic point (—1) and so is HBAR
C (That is why the range is R-l and not R).
C

INTEGER HCODE(0:20), HBAR(0:20)
INTEGER P,R

C
HBAR(0) = P - HCODE(0)
DO 10 I = 1, R-l

HBAR(I) = P - (HCODE(I) + 1)
10 CONTINUE
C

RETURN
END

C
C
C
C
C
C
C
C
C
C
C

* *
* Segmented p-adic MULTIPLICATION routine *
* and related routines *
* *

SUBROUTINE HMULT(NUM1,DENI,NUM2,DEN2,HCODE1,HCODE2,P,R,HCODEM)
C
C Subroutine performing the multiplication operation in the segmented p-adic
C field Qp of length R. It uses the updated multiplication algorithm developed
C by Gorgui-Naguib and King. The product of HCODE1 * HC0DE2 is stored in
C HCODEM.
C The subroutine operates on codes devoid of the p-adic point and it restitutes
C the p-adic point in the final product according to:
C E(gama) = E(alfa) + E(beta) + k + 1
C where (k+1) denotes the amount of left-shift of one of the operand codes
C due to existing leading 0's and misalignment of the p-adic points in both
C codes.
C Subroutine CHK0 is the subroutine responsible for checking on the existence
C of such leading 0's and their removal prior to the multiplication process

n
o

n

o
n

n
o

o
m

n
o

n

202

c PL0C1 is the loaction of the p-adic point in HC0DE1
c PLOC2 HC0DE2
c PLOC the final product HCODEM
c KZERO number of leadind 0's in any, and only, one of the codes
c CA 'carry arising from addition
c
n

CM . . . multiplication
t

INTEGER HCODE1(0:20),HCODE2(0:20),HCODEM(0:20),
+ HTEMP1(0:20),HTEMP2(0:20),HTEMPM(0:20),
+ HSHIFT(0:20)

INTEGER NDM1,DENI,NUM2,DEN2,P,R,PL0C1,PL0C2,PLOC,KZERO,
+ CA,CM,CARRY

C
C Initialization.
C

KZERO = 0
CA = 0
CM = 0
DO 5 I = 0, 20

HTEMPM(I) = 0
5 CONTINUE

Locate relative positions of p-adic points

DO 10 I = 0, R
IF (HCODEl(I).EQ.-l) PL0C1 = I
IF (HC0DE2(I).EQ.-l) PL0C2 = I

I CONTINUE

The following conditions govern the necessity for checking on leading 0's
in any one (and only one) of the operand codes and also for rewriting
HC0DE1 and HC0DE2 without their p—adic point in HTEMP1 and HTEMP2.

IF (PL0C1.EQ.0.AND.PLOC2.EQ.0) GO TO 20
IF (PLOC1.EQ.O.AND.PLOC2.NE.O) GO TO 30
IF (PL0C1.NE.O.AND.PLOC2.EQ.O) GO TO 40

Case of E(alfa).NE.E(beta) and both < 0.

DO 50 I = 0, PL0C1-1
HTEMP1(I) = HC0DE1(I)

50 CONTINUE
DO 60 I = PL0C1, R-l

HTEMPl(I) = HC0DEKI+1)
60 CONTINUE
C

DO 70 I = 0, PL0C2-1
HTEMP2(I) = HC0DE2(I)

70 CONTINUE
DO 80 I = PLOC2, R-l

HTEMP2 (I) = HC0DE2(1+1)
80 CONTINUE

203

C If E(alfa) < E(beta), then check and remove any leading 0's in HTEMP2
C

IF (PLOC1.GT.PLOC2) CALL CHKO(NUM2,DEN2,P,R,HTEMP2,HTEMP2,KZERO)
C
C If E(heta) < E(alfa), then CHKO on HTEMP1
C

IF (PLOC2.GT.PLOC1) CALL CHKO(NUM1,DENI,P,R ,HTEMP1,HTEMP1,KZERO)
GO TO 100

C
C Case of E(alfa) = E(heta) = 0.
C
20 DO 90 I = PLOC1, R-l

HTEMPl(I) = HCODEKI+1)
HTEMP2(I) = HC0DE2(I+1)

90 CONTINUE
GO TO 100

C
C Case of E(alfa) = 0 and E(beta) < 0.
C
30 DO 110 I = PLOC1, R-l

HTEMPl(I) = HC0DE1(1+1)
110 CONTINUE
C

DO 120 1 = 0 , PL0C2-1
HTEMP2(I) = HC0DE2(I)

120 CONTINUE
DO 130 I = PLOC2, R-l

HTEMP2(I) = HC0DE2(1+1)
130 CONTINUE
C
C CHKO on HTEMP1
C

CALL CHKO(NUM1,DENI,P,R,HTEMP1,HTEMP1,KZERO)
GO TO 100

C
C Case of E(alfa) < 0 and E(beta) = 0.
C
40 DO 140 I = 0, PLOC1-1

HTEMP1(I) = HCODE1(I)
140 CONTINUE

DO 150 I = PLOC1, R-l
HTEMPl(I) = HCODE1(1+1)

150 CONTINUE
C

DO 160 I = PL0C2, R-l
HTEMP2(I) = HC0DE2(1+1)

160 CONTINUE
C
C CHKO on HTEMP2
C

CALL CHKO(NUM2,DEN2,P ,R,HTEMP2,HTEMP2,KZERO)
C
C Multiplication process
C
100 DO 170 I = 0, R-l
C
C form partial products for each I.

2 OA

DO 180 J = 0, R-l
HCODEM(J) = (HTEMP2(I)*HTEMP1(J)) + CM
CM = CARRY(HCODEM(J),P)
HCODEM(J) = MOD(HCODEM(J), P)

CONTINUE

shift right each partial product by I locations

CALL RSHIFT (HCODEM, HSHIFT, I, R)

final product is the sum of previous (shifted) partial products

DO 190 K = 0, R-l
HTEMPMU) = HTEMPM(K) + HSHIFT(K) + CA
CA = CARRY(HTEMPM(K),P)
HTEMPM(K) = MOD(HTEMPM(K),P)

CONTINUE

re-initialize carries

CM = 0
CA = 0

CONTINUE

C E(gama) = E(alfa) + E(beta) + k + 1
C

PLOC = PLOC1 + PL0C2 - KZERO
C
C Rewriting the final product with the resulting p-adic point in its position
C

HCODEM(PLOC) = -1
IF (PLOC.EQ.O) GO TO 200
DO 210 I = 0, PLOC-1

HCODEM(I) = HTEMPM(I)
210 CONTINUE
200 DO 220 I = PLOC+1, R

HCODEM(I) = HTEMPM(1-1)
220 CONTINUE
C

RETURN
END

C
C ---------- O ----------
C

SUBROUTINE CHK0 (NUM,DEN,P,R,PTEMP1,PTEMP2,ZCOUNT)
C
C Subroutine to check if any leading 0's exist in the code PTEMP1 (which is
C devoid of its p-adic point) and, if so, it removes them by recalculating
C the code over an extended field of length REXT = R + ZCOUNT (+ 1 in the case
C of ZCOUNT odd) and then shifting the code left by ZCOUNT positions.
C PLOC is the position of the p-adic point in the newly
C calculated code over REXT
C

INTEGER PTEMP1(0:20),PTEMP2(0:20),PCODE(0:20)
INTEGER NUM,DEN,P,R,ZCOUNT,PLOC,REXT

180
C
C
C

C
C
C

190
C
C
C

C
170
C

ZCOUNT = 0

- 7Q ̂ -

C Counting the number of leading 0's
C

DO 10 I = 1, R-l
IF ((PTEMPl(I-l).EQ.O.AND.PTEMPl(I).NE.O)

+ .OR.(PTEMPl(I-l).EQ.O.AND.PTEMPl(I).EQ.O)) GO TO 20
GO TO 30

20 Z COUNT = ZCOUNT + 1
10 CONTINUE
C
C Length, of extended field. It must be even.
C
30 REXT = R + ZCOUNT

IF (MOD(REXT,2).NE.O) REXT = REXT + 1
C
C Calculation of the extended code.
C

CALL HCODE(NUM,DEN,P,REXT,PCODE)
C
C Locate and remove the p-adic point from the extended code.
C

DO 40 I = 0, REXT
IF (PCODE(I).EQ.-l) PLOC = I

40 CONTINUE
IF (PLOC.EQ.O) GO TO 50
DO 60 I = 0, PLOC-1

PTEMP1(I) = PCODE(I)
60 CONTINUE
50 DO 70 I = PLOC, REXT-1

PTEMP1(I) = PCODE(1+1)
70 CONTINUE
C
C Remove leading 0's by left shifting PTEMP1. The final code, containing no
C leading 0's, is stored in PTEMP2.
C
90 IF (PTEMPl(O).NE.O) GO TO 80

CALL LSHIFT (PTEMP1, PTEMP2,1, REXT)
GO TO 90

C
80 RETURN

END

n
n
n

n

o
n

20 6

C
c
c
c
c
c
c
c

* *
* Segmented p—adic DIVISION routine *
* and related routines *
* *

SUBROUTINE HDIV(NUM1,DENI,NUM2,DEN2,HCODE1,HCODE2,P , R,HCODED)

Subroutine performing tbe division operation in tie segmented p—adic
field Qp of length R. The quotient HC0DE1 / HCODE2 is stored in HCODED.
The subroutine operates on codes devoid of the p—adic point and it
restitutes the p-adic point in the final result according to the
respective values of E(alfa) and E(beta).

is the extended segmented p-adic field
. . loaction of the p-adic point in HCODE1

. HCODE2
. the final quotient HCODED
. a zero counter for leading 0's in the dividend
. divisor
. . flag pointing to the existence of any leading 0's in the
divisor, in order to check on the existence of any leading 0's
in the dividend
is the result of solving HC0DE2(0)*QTEMP = HCODEl(O) MOD(P).
Its value is the result of function DSOLVE.
is an intermediate zero counter in successive remainders. It is
only needed to adjust the complementation routine in case the
remainder is all 0's. (The complement is then 00...0 and not
544...4)
is the carry arising from addition
. multiplication

HTEMP1 and HSHFT1 are equivalent in what regards the left-shift routine, and
so are HTEMP2 and HSHFT2.

c REXT
c PLOC1
c PL0C2
c PLOC
c KZEROl
c KZER02
c FLAG0
c
c
c QTEMP
c
c ZCOUNT
c
c
c
c CA
c CM

INTEGER HC0DE1(0:20),HC0DE2(0:20),HTEMP1(0:20),HTEMP2(0:20),
+ HSHFT1(0:20),HSHFT2(0:20),HTEMP (0:20),HCODED(0:20)

INTEGER NUM1,DENI,NUM2,DEN2,P ,R,PL0C1,PLOC2,PLOC,KZEROl,KZER02,
+ FLAG0,QTEMP,ZCOUNT,CA,CM,CARRY,DSOLVE,REXT

EQUIVALENCE (HTEMP1,HSHFT1)
EQUIVALENCE (HTEMP2,HSHFT2)

Initialization.

KZEROl = 0
KZER02 = 0
FLAG0 = 0
ZCOUNT = 0
CM = 0
CA = 0

Locate relative positions of p-adic points

DO 10 I = 0, R
IF (HCODEl(I).EQ.-l) PLOC1 = I
IF (HCODE2(I).EQ.-l) PL0C2 = I

10 CONTINUE

207

C Rewrite HCODE1 and HC0DE2 without their p-adic point in HTEMP1 and HTEMP2
C

IF (PLOC1.EQ.O) GO TO 20
DO 30 I = 0, PLOC1-1

HTEMP1(I) = HCODE1(I)
30 CONTINUE
C
20 DO 40 I = PLOC1, R-l

HTEMPl(I) = HCODEKI+l)
40 CONTINUE
C

IF (PLOC2.EQ.O) GO TO 50
DO 60 I = 0, PL0C2-1

HTEMP2(I) = HC0DE2(I)
60 CONTINUE
C
50 DO 70 I = PL0C2, R-l

HTEMP2(I) = HC0DE2(I+1)
70 CONTINUE
C
C Check on leading 0's in the divisor. Accordingly, KZER02 is incremented
C and the leading 0's flag is set.
C

DO 80 I = 1, R-l
IF ((HTEMP2(I-1).EQ.0.AND.HTEMP2(I).NE.O)

+ .OR.(HTEMP2CI-1).EQ.0.AND.HTEMP2(I).EQ.O)) GO TO 90
GO TO 100

90 KZER02 = KZER02 + 1
FLAGO = 1

80 CONTINUE
C
C If any leading 0's are found, an extended HCODE2 over REXT is computed.
C REXT has to be even.
C
100 IF (KZERO2.EQ.0) GO TO 110

REXT = R + KZER02
IF (MOD(REXT,2).NE.O) REXT = REXT + 1

C
CALL HCODE(NUM2,DEN2,P ,REXT,HC0DE2)

C
C Take p-adic point out of HC0DE2
C

IF (PLOC2.EQ.O) GO TO 120
DO 130 I = 0, PL0C2-1

HTEMP2(I) = HC0DE2(I)
130 CONTINUE
120 DO 140 I = PL0C2, REXT-1

HTEMP2(I) = HC0DE2(1+1)
140 CONTINUE
C
C Shift HTEMP2 left by the number of leading 0's. The shifted sequence
C is called HSHFT2.
C
160 IF (HTEMP2(0).NE.O) GO TO 150

CALL LSHIFT(HTEMP2,HSHFT2,1,REXT)
GO TO 160

1

208

150 DO 170 I = 0, R-l
HTEMP2(I) = HSHFT2(I)

170 CONTINUE
C
C If no leading 0's are found in the divisor, then proceed with the division
C directly. Otherwise, test for leading 0's in the dividend and increment
C KZEROl accordingly.
C

IF (FLAG0.EQ.0) GO TO 110
DO 180 1 = 1 , R-l

IF ((HTEMPl(I-l).EQ.O.AND.HTEMPl(I).NE.0)
+ .OR.(HTEMPl(I-l).EQ.O.AND.HTEMPl(I).EQ.0)) GO TO 190

GO TO 200
190 KZEROl = KZEROl + 1
180 CONTINUE
C
C Compute the extended HCODE1 over the same REXT above.
C
200 CALL HC0DE(NUM1,DENI,P,REXT,HCODE1)
C
C Take
C

p-adic point out of HCODE1

IF (PLOC1.EQ.0) GO TO 210
DO 220 I = 0, PLOC1-1

HTEMPl(I) = HCODEl(I)
220 CONTINUE
210 DO 230 I = PLOC1, REXT-1

HTEMPl(I) = HCODE1(1+1)
230
C

CONTINUE

C Shift HTEMP1 left by the number of leading 0's. The sifted sequence
C is called HSHFT1.
C
250 IF (HTEMPl(O).NE.O) GO TO 240

CALL LSHIFT(HTEMP1,HSHFT1,1,REXT)
GO TO 250

C
240 DO 260 I = 0, R-l

HTEMP1(I) = HSHFTl(I)
260 CONTINUE
C
C Division process
C
110 DO 270 K = 0, R-l
C
C solve beta(0)*q(0) = alfa(O) mod(p)

QTEMP = DSOLVE(HTEMPKO) ,HTEMP2(0) ,P)
HCODED(K) = QTEMP

C
C no need to go through the remaining stages
C last quotient digit
C

if we have reached the

IF (K.EQ.R-1) GO TO 300

DO 280 I = 0, R-l-K

209

C
C multiply QTEMP by divisor
C

HTEMP(I) = (QTEMP * HTEMP2(I)) + CM
CM = CARRY(HTEMP(I),P)
HTEMP(I) = MOD(HTEMP(I),P)

C
C keep count of number of 0's
C

IF (HIEMP(I).EQ.O) ZCOUNT = ZCOUNT + 1
C
280 CONTINUE
C
C if all R-K digits in the remainder are 0's, tben tbe corresponding
C complement is also 0 all over. Otherwise calculate complement.
C

IF (ZCOUNT.NE.R-K) CALL HCOMP(HTEMP,P ,R-K,HTEMP)
C
C add complement to previous HTEMP1
C

DO 290 I = 0, R-l-K
HTEMP1(I) = HTEMP1(I) + HTEMP(I) + CA
CA = CARRY(HTEMP1(I),P)
HTEMP1(I) = MOD(HTEMP1(I),P)

290 CONTINUE
C
C eliminate 1st. zero resulting from tbe 'subtraction' and
C re-initialize variables.
C

CALL LSHIFT(HTEMP1 ,HTEMP1,1, R-K)
CM = 0
CA = 0
ZCOUNT = 0

C
270 CONTINUE
C
C Duplicate HCODED in HTEMP
C
300 DO 310 I = 0, R-l

HTEMP(I) = HCODED(I)
310 CONTINUE
C
C Position of final p-adic point
C

PLOC = PLOC1 - PLOC2
C
C If E(alfa) of dividend > E(beta) of divisor, tben m(gama) is shifted right
C by a number of locations equal to the difference between E(alfa) and E(beta)
C In this case, E(gama) = E(alfa). Otherwise, E(gama) = E(alfa) - E(beta).
C Also, the number of leading 0's in the divisor contributes to the final
C positioning of the p-adic point in the quotient.
C

IF (PLOC.LT.O) GO TO 320
PLOC = PLOC + KZER02 - KZEROl
GO TO 330

320 K = IABS(PLOC)
CALL RSHIFT (HCODED, HTEMP, K , R)
PLOC = PLOC1 + KZER02 - KZEROl

C
C Rewrite tie final quotient with, tie resulting p-adic point in its position
C
330 HCODED(PLOC) = -1

IF (PLOC.EQ.O) GO TO 340
DO 350 I = 0, PLOC-1

HCODED(I) = HTEMP(I)
350 CONTINUE
340 DO 360 I = PLOC+1, R

HCODED(I) = HTEMP(1-1)
360 CONTINUE
C

RETURN
END

C

C
INTEGER FUNCTION DSOLVE(A,B,P)

C
C Function returning tie solution of
C B * DSOLVE = A (mod P)
C given A (iere, corresponding to 1st. digit in Hensel code of dividend),
C B (corresponding to 1st. digit in Hensel code of divisor) and P. Tie result
C is one of tie elements in tie quotient of alfa / ieta.
C

INTEGER A,B,P,SOL
C

DO 10 I = 0, P-1
SOL = MOD((B * I),P)
IF (SOL.NE.A) GO TO 10
DSOLVE = I
GO TO 20

10 CONTINUE
C
20 RETURN

END

**c
c * *
C * HENSEL CODE to RATIONAL CONVERSION routine *
C * and related routines *
C * *
Q **
c
c

SUBROUTINE CONVRTCHCODE,P,R,NUM,DEN)
C
C Subroutine to convert a given Hensel code, HCODE(P,R), into its rational
C equivalent by a successive addition process.
C PLOC is tbe location of the p—adic point
C ACOUNT is a counter for the number of successive additions
C performed
C NEGTV is a flag to indicate that tbe last R/2 digits = P-1 and
C hence the rational is negative
C

INTEGER HCODE (0:20), HTEMP (0:20)
INTEGER P, R,NUM,DEN,PLOC, C, CARRY,ACOUNT,NEGTV

C
C Initialization
C

ACOUNT = 0
NUM = 0
DEN = 0
NEGTV = 0

C
C Location of the p-adic point
C

DO 10 I = 0, R
IF (HCODE(I).EQ.-l) PL0C=I

10 CONTINUE
C
C Rewriting the Hensel code in HTEMP without the p-adic point
C

IF (PLOC.EQ.0) GO TO 20
DO 30 I = 0, PL0C-1

HTEMP(I) = HCODE(I)
30 CONTINUE
C
20 DO 40 I = PLOC, R-l

HTEMP(I) = HCODE(I+1)
40 CONTINUE
C
C Duplicating HTEMP by putting it in HCODE for the successive additions
C

DO 50 I = 0, R-l
HCODE(I) = HTEMP(I)

50 CONTINUE
C
C Check whether last R/2 digits = Op in which case the successive additions
C process is ended and the rational is +ve.
C
120 DO 60 I = R/2, R-l

IF (HTEMP(I).NE.0) GO TO 70
60 CONTINUE

— 21 2 —

GO TO 100
C
C Check whether last R/2 digits = P-lp in which case the successive additions
C process is ended and NEGTV is set to 1 to indicate that the rational is -ye.
C
70 DO 80 I = R/2, R-l

IF (HTEMP(I).NE.(P-1)) GO TO 90
80 CONTINUE

NEGTV = 1
GO TO 100

C
C Segmented p—adic addition similar to HADD
C
90 C = 0

DO 110 I = 0, R-l
HTEMP(I) = HCODE(I) + HTEMP(I) + C
C = CARRY(HTEMP(I),P)
HIEMP(I) = MOD(HTEMP(I),P)

110 CONTINUE
C
C Addition counter is increased by 1 for each performed addition
C

ACOUNT = ACOUNT + 1
GO TO 120

C
C Final denominator is: (number of.additions + 1) x (P ** PL0C)
C
100 DEN = (ACOUNT +1) * (P ** PLOC)
C
C If last R/2 digits = 0 (indicated by NEGTV = 0), then the final
C numerator is the +ve weighted sum of the leading R/2 digits.
C Otherwise, if last R/2 digits = P—1 (i.e., NEGTV = 1), then the
C final numerator is the -ve weighted sum of the leading R/2 digits
C in the complement of HTEMP.
C

IF (NEGTV.EQ.0) GO TO 130
CALL HCOMP(HTEMP,P,R,HTEMP)

130 DO 140 I = 0, (R/2)-l
NUM = NUM + HTEMP(I) * P**I

140 CONTINUE
IF (NEGTV.EQ.l) NUM = -NUM

C
RETURN
END

