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ABSTRACT

This thesis is concerned with a study of p-adic number theory 
and its application in developing a secure public-key cryptographic 
system.

p-adic number systems may have either an infinite or finite 
structure. First, the infinite p-adic expansion is considered with 
particular emphasis on the finite representation of such infinite 
sequences. Proof of periodicity and an algorithm for its computation 
are given. An algorithm for the conversion from these variable-length 
representations to the field of rational numbers is also developed 
based on existing algorithms for the conversion in the case of finite 
p-adic systems.

However, by considering the arithmetic in segmented p-adic 
fields based on Hensel codes, it is shown that previously derived 
algorithms tend to give erroneous results. These limitations are 
corrected and modified algorithms for closed finite p-adic arithmetic 
operations are presented.

Due to their inherent structure, finite p-adic number systems 
do not lend themselves to a secure implementation of a p-adic-based 
cryptosystem. Consequently, a new public-key encryption system based 
on variable-length p-adic number structures is proposed. The system 
has the property of combining the advantages of both the
Rivest-Shamir-Adleman (RSA) and Diffie-Hellman algorithms and of 
exploiting the pseudo-randomness of the p-adic numbers in the p-adic 
field Qp to generate the ciphertext.

This first scheme is then extended to the g-adic ring, Q_,o
where the ciphertext, now, consists of g-adic numbers. The decryption 
algorithm first converts the g-adic sequence into p-adic numbers using 
information sent by the source and based and discrete logarithms. 
Following that, a conversion back to the field of rational numbers 
enables the recipient to decipher the message.
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Cryptanalytic approaches to break the two proposed schemes 
are then considered and short and long messages are simulated, first 
on a random basis, then based on the relative frequencies of the 
alphabetic characters in the English language and the distribution of 
p-adic numbers for different primes is studied.

Authentication in this system is discussed and a new digital 
signature procedure is introduced. Finally, an overall comparison 
between the system and existing public-key cryptosystems is performed.
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CHAPTER 1 

INTRODUCTION

1.1 Historical Background of Number Theory

The theory of numbers is concerned with properties of the 

natural numbers 1 ,2,3» , also called the positive integers. These 

numbers together with the negative integers and zero, form the set of 

integers Z.

Properties of these numbers have been studied from earliest 

times. Historical records show that as early as 5700 BC, the ancient 

Sumerians kept a calendar, and so, they must have developed some form 

of arithmetic. By 2500 BC, the Sumerians had developed a number 

system using 60 as a base. The study of numbers evolved through the 

eras until around 600 BC when the Greeks started the first scientific 

approach to the study of integers. To them is attributed the true 

origin of the theory of numbers.

After Euclid, in 300 BC, no significant advances were made in 

number theory until about AD250 when another Greek mathematician, 

Diophantus of Alexandria, published 13 books where he made systematic 

use of algebraic symbols.

Again, after Diophantus, not much progress was made in the 

theory of numbers until the 1 7 th century when the subject was revived 

through the efforts of the remarkable French mathematician Pierre de 

Fermat. He was the first to discover really deep properties of

integers.



Then, followed Euler, Lagrange, Legendre, Gauss and Dirichlet 

who all contributed to the further development of the subject. At the 

turn of the 18th century, Gauss published his book "Disquisitiones 

Arithmeticae” which transformed the subject of number theory into a 

systematic and well founded science.

The field of number theory is vast and some parts require 

profound knowledge of higher mathematics. Nevertheless, there are many 

problems in number theory which are very easy to state, yet very 

difficult to solve [19]. For example, the Goldbach conjecture asserts 

that every even integer greater than 2 is the sum of two primes. This 

conjecture was verified up to 100,000 at least, yet no proof for it 

has ever been provided.

In fact, many such problems deal with prime numbers and this 

above-mentioned paradox will be reflected in our study of cryptography 

from chapter 4 onwards.

Number theory has many applications in various fields of 

science such as in physics, biology, computer science, digital 

communications, cryptography, etc... [47].

The subject of this thesis is to introduce one area of number 

theory, which deals with p-adic number systems, in the fast-growing 

subject of cryptography, thus attempting to design a secure system 

which achieves the private flow of information between two users in a

multi-user, multi-access network.
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These two areas of work are introduced in sections 1.2 and 

1.3* respectively.

1.2 Introduction to p-adic Number Theory

The set of numbers which are representable in a digital 

computer in terms of some radix, such as 2(binary), 8(octal) or 

10(decimal) is a finite subset of the field of real numbers.

For example, it is not possible to represent a rational number
£L- exactly in a radix-S machine if b has a factor relatively prime to 

B. Thus,  ̂cannot be represented exactly in a binary or decimal 

machine.

Consequently, because of the difficulties associated with 

using a finite subset to simulate the infinite field of real numbers 

and trying to solve ill-conditioned problems using inexact arithmetic, 

it is important to investigate finite number systems which perform 

exact arithmetic.

This is how attention was turned to p-adic number theory for 

its possible applications in a digital computer in order to achieve 

exact computations.

Although Kurt Hensel [21], [22] introduced the p-adic number 

fields into algebraic number theory in 1908, research into p-adic 

number systems for error-free computations was only recently initiated 

by Krishnamurthy [29],[30],[31] and Alparslan [3 ].
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The idea was to truncate the infinite p-adic expansion to a 

fixed number of digits, r, for all rational numbers in a suitable 

subset of Q. These fixed-length representations are called Hensel 

codes.

The finite number system consisting of these Hensel codes has 

recently been applied to many areas of research such as in matrix 

processors [29],[30],[31L  design of algorithms for error-free compu­

tations [18] and in digital signal processing where, very recently, 

p-adic transformations have been introduced and are currently being 

investigated [17],[32],[34],[39],[40],[41],[43].

The infinite field of p-adic numbers and the finite-segment 

p-adic number systems constitute the building blocks of this thesis. 

They will be considered in detail in chapters 2 and 3 respectively. 

And, it was found, through their study, that the features of these 

number systems lend them to a very effective application in the design 

of two secure cryptographic algorithms. This will be reflected 

throughout their study in the following chapters when they will be 

introduced into the subject of cryptography.

1 .3 Brief Introduction to Cryptography

The use of secret communications by means of coded messages 

has been a practice throughout ancient and modern history. In recent 

wars, codes and ciphers have been used to ensure that secret informa­

tion was not transmitted to the enemy.
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However, it is not only the governments, the military, the 

security agencies and the diplomatic corps who transmit secret 

communications. The art of information security is in everyday use. 

Recent developments in computer science include the concepts of 

computer-based message systems and electronic mail, amongst others. 

Modern technology has provided fast and accurate means of transmitting 

messages. However, there are situations where it is necessary to 

prevent any intruder or illegal listener from intercepting certain 

messages on a particular channel. This necessity has transformed the 

art of secret communications into the science of cryptography, where 

researchers attempt to design secure systems which prevent 

cryptanalysts from intercepting and deciphering any coded information 

being transmitted.

Cryptography relies on various sciences, namely, number 

theory, complexity theory, computer design and architecture, and the 

design and analysis of algorithms [20].

These sciences have contributed to the development of the 

public-key encryption concept where every potential recipient of 

secret messages publishes his encrypting key, but knowledge of the 

encrypting key is of no practical help in decryption.

The two schemes proposed in this thesis are based on this 

concept and will be detailed in chapters 5 and 6. The concept of

public-key cryptosystems itself will be studied in great detail in 

chapter 4.

1
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1.4 Outline of the Thesis

The problem addressed in this thesis was defined in general 

terms in sections 1.2 and 1.3. In this section, the contents of the 

thesis are briefly described.

Chapters 2 and 3 consist of a study of p-adic number systems.

In chapter 2, variable-length p-adic number -systems are

considered. After an introduction to the p-adic fields and the

formation of infinite canonic p-adic expansions, Krishnamurthyfs 

algorithm for the conversion from a rational number representation to 

a representation in the p-adic field Qp is described. Through the 

analysis of infinite p-adic sequences, it is found that part of the 

sequence is recurring. Proof of periodicity and an algorithm for the 

efficient computation of the p-adic period are provided. Finally, an 

algorithm for computing variable-length p-adic codes based on the 

aperiodic and recurrent elements is developed. The algorithm is 

deterministic in length and thus results in a finite representation of 

infinite p-adic expansions.

Chapter 3 consists of a thorough study of finite-segment 

p-adic number systems and the finite p-adic field Qp. Bounds on the 

subset of rational numbers uniquely representable in Qp are given and 

the reason for their existence is explained. Then, the different 

structures of Hensel codes are presented for different elements in Q. 

It was suggested by Krishnamurthy that it was possible to perform
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closed p-adic operations in Q Krishnamurthyfs algorithms are

presented in detail and their limitations are pointed out. Some of 

these algorithms lead to erroneous results in certain cases. Modifica­

tions to Krishnamurthyfs algorithms are suggested and, although 

it is now possible to perform arithmetic operations in Q , given the 

original bounds, the closure problem is put into perspective as a 

practical limitation of the use of finite p-adic number systems. 

Finally, the different algorithms for converting from Qp back to Q 

are presented and analysed in detail.

Chapter 4 deals with the mathematical theory of cryptographic 

systems. An introduction to cryptosystems, the need for them and 

their features are explained. The notions of authentication and 

digital signature are also introduced. Then, an introduction to 

complexity theory and the theory of NP-completeness is given. It is 

shown that modern public-key cryptosystems are based on problems drawn 

out of these classes of complexity, and the three main systems which 

fit into this category are explained in detail.

In chapter 5, the results, modifications and different 

analyses on p-adic number systems performed in chapters 2 and 3 are 

linked to the subject of cryptography. After an introduction to the 

proposed system, p-adic code structures for cryptographic implementa­

tion are introduced. This leads to a discussion of the alphabet to be 

used in the system and the entailing restrictions when generating it. 

Then, the first realization of the system is performed, based on 

p-adic fields, and the corresponding encryption and decryption 

algorithms are detailed. The second realization is based on g-adic
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rings and the previous encryption and decryption algorithms are 

extended to this scheme. However, the decryption algorithm requires 

the decomposition of g-adic rings into p-adic fields and the algorithm 

for achieving this transformation is given.

Chapter 6 deals with the detailed evaluation of the proposed
)

system. Cryptanalytic approaches attempting to break it are under­

taken. The p-adic scheme is considered first and to which theoretical 

and statistical attacks are directed. Then, the g-adic scheme is 

analysed for security and the notions of diffusion and confusion are 

presented. A new authentication and digital signature procedure is 

also suggested and, finally, the schemes put forward in this thesis 

are compared with the three main cryptosystems.

In chapter 7, the contribution made is summarized and sugges­

tions for further research are made.

The listings of computer programs are given in Appendices C1 

and C2. The programs are written in FORTRAN 77 and contain, respec­

tively, the variable length p-adic conversion techniques from Q to Qp,

and vice-versa, and a full package implementing p-adic conversion and 
ari thmetic in Qp.
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VARIABLE-LENGTH p-ADIC NUMBER SYSTEMS

CHAPTER 2

2.1 Infinite p-adic Expansions

In 1908, Hensel [21] introduced the infinite p-adic number 

system. Out of this system, emerged a major branch of modern algebra 

called valuation theory. In this section we shall introduce some 

notions relating to the p-adic valuation, or p-adic norm. However, 

for a systematic study of valuation theory and p-adic functions, the 

reader is referred to [4],[6],[27] and [35].

The ordinary absolute function |*| on the field Q has the 

following basic properties for a s Q:

|ot| >_ 0 and |ct| = 0  if and only if a = 0 (2.1)

For a and 0 e Q,

|aB| = |a||8| (2.2)
| a+B| < |a| + |0| (2.3)

It is noticed that property (2.3) is the "triangle inequality".

In the field of rational numbers Q, the absolute value mapping, 

|•|, can be shown to be norm on Q, [4]. Another norm on Q, of more 

interest to us here, can be constructed on the observation that, if a 

is a non-zero element of Q, then a can be expressed uniquely in the

form



a
a

( 2 . 4 )

- Oli. -

b Pn

where p is a prime

a ,b , n e Z, b * 0

(a ,b) = 1 and p f a, p f b.

With this definition, the p-adic norm can then be defined [27] 

such that:

if a * 0

if a = 0
(2.5)

and it should be observed that the p-adic.norm is counter-intuitive 

since a large positive integer n implies a small value for the p-adic 

norm.

The concept of the p-adic field Qp follows from the principle 

that any rational number a expressed as in (2.4) can be uniquely 

represented by an infinite series of the form:

oo
a = I an pn ; an e I (2.6)

n--m
m e Z

and this infinite series converges to a with respect to the 

p-adic norm [6].
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It is convenient to introduce a shorthand notation for (2.6) 

similar to the decimal representation used for base 10. In a conven­

tional decimal expansion, there are infinitely many digits correspond­

ing to the negative powers of the radix 10, whereas a p-adic sequence 

is composed of infinitely many digits representing the non-negative 

powers of p. For convenience in arithmetic operations, these digits 

will be written to the right of the p-adic point. Hence, the p-adic 

■series in (2.6) will be expressed in the form:

a = a- a- ... a- • a a ... (p) (2.7)-m -m+1 - 1 0 1

It .is also noted that the digit positions corresponding to the 

non-negative and negative powers of the base are reversed for p-adic 

expansions and p-ary expansions. For example, if a is a positive 

integer, then its p-adic representation is of the form:

a = *a0 a l ... ak 00 ... (p) (2.8)

while its p-ary representation is the reflection of (2.8) about the 

p-adic point:

a = [a a - ... a •]n (2.9)k k-1 0 P

Also, it is observed [29] that negative rationals occur as 

true-complement (left-to-right) of the positive number. This and 

other word formats will be discussed in more detail in chapter 3 when 

we consider segmented p-adic codes and finite-length p-adic arithme­

tic.
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In order to convert a rational number a to p-adic form, we 

will present an algorithm developed by Krishnamurthy [29] and [31].

In section 2.3, an iterative algorithm will be developed which allows 

to detect the period in the p-adic expansion and to determine the 

"aperiodic” elements in the expansion.

2.2 Krishnamurthy*3 Algorithm for Conversion from Rational Number 

to Infinite p^adic Form

Given a rational a = - with (a,b) = 1 and b * 0, then theb
p-adic expansion can be obtained by the following algorithm:

1. Set c = a

Check if pn |b. The value of n will control the position of 

the p-adic point.

Set d = b/pn.

2. Solve the congruence: 

dx = 1(mod p)

If xn is a solution, then 

an = c*xn (mod P)•

3. Set Y = --a_d n

e'
d' *

If Y - 0, set a^ _ q f0r i > n and stop.4.
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cfThe value of c' will be divisible by p. Set c = - .P

Set d = df 

Go to step 2.

Note that, contrary to the algorithm which will be presented in 

the next section, this algorithm is non-terminating since the 

convergence to the given rational can be achieved only for an infinite 

number of digits in the expansion, if the rational is neither an 

integer nor a radix fraction.

2 . 3  P e r io d  D e t e c t io n

In this section we will show that the canonical p-adic expan­

sion of a rational number is periodic (or recurring). An algorithmic 

approach to computing the period will be given, followed by an 

algorithm for the determination of the aperiodic elements and the 

elements comprised in one recurring cycle.

2 . 3 . 1  P ro o f o f  P e r i o d i c i t y  in  I n f i n i t e  p -a d l c  Number System s

If a a j where (a,b) 1, then a can be written in the form

a a

d »pk
(2.10)

where p f d and k c Z.
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Since p is relatively prime to d taken as modulus, then in 

the series of powers of p:

P = {1,p,p2,P3,...} (2.11)

all terms are relatively prime to d and, hence, are congruent to terms 

of a reduced system of residues modulo d [1],

And since any reduced system of residues modulo d contains 

(d-*i)terms

whereas the

series {P} is infinite, then there must exist two terms in {P}, say 

p1 and pJ congruent modulo d:

p* E pJ (mod d) (2.12)

Assuming i > j , then by dividing both sides of the congruence 

by pJ , which is relatively prime to d, we get

p*~^ E 1 (mod d) (2.13)

and so there are positive exponents, k, for which

pk E 1 (mod d) (2.14)

Let A be the smallest of such exponents. So, by its very 

definition, A is characterized by two properties:

*



p* E 1 (mod d) (2 .15)

_ 90 _

1 .

2. No power of p with positive  exponent < A i s  congruent 

to 1 (mod d ) .

Now, i f  k i s  any positive  exponent for which congruence

(2 .14)  i s  s a t i s f i e d ,  then

k E 0 (mod A) . ( 2 . 1 6 )

This i s  so since, i f  we assume that, conversely, k i s  not 

d i v i s i b l e  by A, then we can write

k = Aq + r (2.17)

where q e Z+ 

and 0 < r < A.

Then

p k .  p ( X q + r )

= (pX) q -pr ( 2. 18)

But, from ( 2. 15)  ,

p^ E 1 (mod d).

Hence
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p k  _ p r  = 1 ( mocj  d ) (2 .19)

and this cannot hold unless r= 0, so that k is divisible by A and 

(2.16) is true.

Hence, we can say that the elements

P = (1,P,P2,P3 A-1 ,
»• • •. P I

all different modulo d, and that the

p’ = Ip\ A+1P
2 A—1 , 

* • • •» P 1

r 2Xp." = Ip ,
2A + 1 

P
3A-1 , 

> * « »» P f

(2 .20)

and so on

are congruent modulo d to the terms in {P}, i.e. the series

r 2 A-1 ,P = i 1 , p ,p ,..., p \

is periodic with a period length A.

2.3.2 Algorithm for the Period Computation

Having established from section 2.3.1 that the infinite p-adic 

expansion of a rational number has a periodicity A, the problem now is 

to develop a practical algorithm for the solution of the congruence

p̂  = 1 (mod d)

to determine the effective value of A.



31

The following is a more detailed analysis of the properties of 

the congruence

ax E 1 (mod m) (2.21)

These properties will lead to the derivation of the required algo­

rithm.

The least positive integral solution x * k of the congruence 

(2.21) is called the exponent to which a belongs modulo m [5].

Let <f>(m) be the Euler totient function of m. The following 

properties of $ makes it possible to calculate <j>(m) [9]:

1. <(>(mn) = <|>(m) <j)(n) whenever (m,n) = 1 (2.22)

2. 4>(q) = q -1 for q prime (2.23)

k k-13. <Kqk) = q - q

k-1 (2.2U)= q (q-1 ) for q prime

= m n (1 *• 1 (2.25)4. <J>(m) - )
q I m q

We also state, without proof, Euler's theorem and Fermat's 

corollary (Fermat's little theorem). Their proofs can be found in 

[5]:

Theorem: Let a,m be integers with m > 0. If (a,m) = 1, then
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a<£(m) = 1 (mod m) (2 .26)

Corollary: I f  q i s  a prime and a i s  an integer such that q |  a,  

then

Q- 1a (mod q) (2.27)

Also, an integer a is called a primitive root modulo m 1 if x 

in (2.21) is equal to $(m) (i.e. congruence, (2.26)).

Going back to the original congruence (2.15), we can write d 

such that

2
d = P j 1

€2
P2

e
D  ^* * * pn

n c*

a * d = n P i 1 (2.28)
i = 1

where p̂  * p, Vi. This is the prime factor decomposition of d. 

Hence,

p X = 1 (mod p^1 • p22 . ...pnn ) (2.29)

The Chinese Remainder Theorem (CRT), [42], states that solving 

(2.29) is equivalent to solving the simultaneous congruences

X • e ,*p 1 = 1 (mod p^ 1 ) ; i = 1 ,2 ,...,n (2.30)

and hence,

X = Lcm(X^) (2.31)



Recalling from section 2.3.1, congruence (2.16) shows that, if

(p,d) = 1 then

pk = 1 (mod) 

if and only if A Ik.

Consequently, we can write that
X J <j>(d) (2.32)

and that

(2.33)
O *However, using (2.24), ^(p^1 ) can be factored into a product

of powers of distinct primes, say

and the algorithm is based on the above factorization procedure. The

solution.

Function ’PERIOD' in Appendix C1 reflects the theoretical 

analysis performed in this section.

Table 2.1(A) gives the different values of A for various 

combinations of the primes p and denominators d and compares 

these values with the Euler ^-function. In Table 2.1(B), larger

(2.34)

idea is to divide ^(p^1 ) by all prime factors qj such that

45(p^1 )/qj is a solution of (2.15) to obtain the least integral

values of p are considered for the various denominators d.
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Table 2.1(A): Comparison of period lengths with the Euler ^-function
for various primes p and denominators d.

d 4? (d) 5 7 11

P

13 29 37 53

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 2 2 1 2 1 2 1 2
4 2 1 2 2 1 1 1 1
5 4 1 4 1 4 2 4 4
6 2 2 1 2 1 2 1 2
7 6 6 1 3 2 1 3 3
8 4 2 2 2 2 2 2 2
9 6 6 3 6 3 6 1 2
10 4 1 4 1 4 2 4 •4
11 10 5 1 0 1 10 10 5 5
12 4 2 2 2 1 2 1 2
13 12 4 1 2 12 1 3 1 2 1
14 6 6 1 3 2 1 3 3
15 8 2 4 2 4 2 4 4
16 8 4 2 4 4 4 4 4
17 16 16 16 16 4 16 16 8
18 6 6 3 6 3 6 1 2
19 18 9 3 3 18 18 6 18
20 8 1 4 2 4 2 4 4
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Table 2.1(B): Comparison of period lengths with the Euler
^function for various larger primes p and 
the same denominators d
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2.4 Algorithm for Computing the Variable-Length p-adic Expansion

In section 2.2 we presented a non-terminating algorithm, 

developed by Krishnamurthy, for the computation of the infinite p-adic 

expansion of a rational number a.

In this section, another algorithm based on a lemma by Mahler

[35] is developed and which puts into perspective the notion of p-adic 

period presented in the previous sections. We thus obtain a varia­

ble-length p-adic expansion where the aperiodic terms are computed and 

the recurring elements are determined only once.

By the unique factorization theorem in the domain of integers, 

any rational number a can be written uniquely in the form:

a = p k • -  ( 2 .3 5 )

where k e Z ,  (a,b) = 1, p j a, p | b.

On the other hand, the infinite p-adic expansion of a p-integral 

rational number

co
“ = I an Pn » an G xp (2.36)
D n=0

can be computed iteratively using the formulas



37

a n-1 n n- = a + a p +...+ a p + —  • p“b o r  n-1 b (2 .37 )

where r0 = a

r r ., n n+1and —  = a_ + ---b n b * P

Hence,

■ = a- b + r dn n n+r

or

rn ~ anb
n+1 (2.38)

But, since our analysis is concerned with a residue system 

modulo p, then equation (2.38) can be written in the form:

<an b>p <rn - r p>_ n n+1 P

Hence ,•

<an b>p <rn>p (2.39)

Also, since b | P, the multiplicative inverse of b modulo p 

exists, and since an e Ip, we have:

“ <an>p
where

<'c *rn^p (2.40)
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c = b 1 (p ) ( 2 . 4 1 )

or

be = 1 (mod p)

Setting r0 = a and using equations (2.38) - (2.41), the 

different an are computed and then the subsequent r are computed 

from a knowledge of an and rn.

If

r = r, n+1 1

for any i = 1,2,...,n, then the terms

a , a a }0 1 i-1

are the aperiodic elements, whereas the terms

l i + 1 .an-1 a (n

represent the periodic elements with periodicity

X = n - i + 1 (2.42)

It is now clear that it is possible to obtain a deterministic 

variable-length representation of an otherwise infinite p-adic 

expansion. There remains the problem of converting such a code back 

to its rational form. We will postpone our analysis of this problem 

until we discuss finite-segment p-adic number systems and, especially 

the arithmetic in Q •

1
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CHAPTER 3

FIN ITE-SEG M EN T p -A D IC  NUMBER SYSTEMS

3.1 M a th e m a tic a l In t r o d u c t io n  to  F i n i t e  p -a d ic  Number System s

In chapter 2 an analysis of the p-adic field Qp was performed.

In this chapter we consider the segmented p-adic field Qp where a 

unique code, called Hensel code, is derived for a rational number by 

truncating its infinite p-adic expansion to a finite number of digits 

r .

The uniqueness of this code, however, spans over a certain range 

of rationals. This range is determined by the order-N Farey fractions 

[18], Fj|, where the integer N is the largest positive integer which 

satisfies the inequality

m > 2N2 + 1 (3.1)

where

m = pr (3.2)

for a prime p.

Hence

N = (3-3)

aAnd so, for a rational a = - to have a unique Hensel codeb
H(p,r,a), the following bounds must be satisfied:



(3.4)
Pr -1

< a,b < /
pr-1

where b * 0 and p { b.

These bounds were never mathematically justified [32]. However,

using Hensel codes to represent rationals is essentially the same as
_, acalculating modulo p1 . Consider the two rational numbers a = - andb

and 0 = j . If H(p,r,a) = H(p,r,0)f then

pr I(ad - be ) (3.5)

But, if a,b,c,d are bounded by (3*4), then

|ad| , |be| <
Pr-1

(3.6)

Therefore

ad - be | £ pr-1 < pr (3.7)

But (3.5) and (3.7) are contradictory statements and, in fact, the 

only integer whose absolute value is less than pr which is divisible 

by pr is zero. Hence,

, , a ead = be or - = -b d (3.8)

and the rationals a and 0 are the same.



3.2 Structure of Hensel Codes

In [29] and [31], Krishnamurthy introduced the finite-segment 

Hensel codes in Qp. Having satisfied the bounds in (3.4), the 

Hensel code is then unique. Furthermore, the individual digit 

positions have the following positive or negative fractional weights :

,r/ 2 - 1
- P r / i

.r/2 - 1

-pr/2+i -pr-l
pr/2-l 9 ••• 9 /

pr/2~
(3.9)

These fractional weights, according to [29], are necessary to 

convert Hensel codes back to their rational form. However, as will be 

described later in section 3.4, this property is not of paramount 

importance if other conversion techniques are to be used.

On the other hand, the sequence of weights (3.9) shows that the 

length, r, of any Hensel code must be even. This, again, will be put 

into perspective in section 3.4. It enables us, however, to formulate 

the structure of Hensel codes for a e F̂ .

In chapter 2, it was shown that the infinite p-adic expansion of 

a can be written as:

a = a , a ....,a  ̂*a ....,a ,a ,... (p) (3-10)-n -n+1 - 1 0  m m +1

Truncating the above expansion gives



t • • • fH(p,r,a) = a , a-n -n+1 a — a ,a , ... ,a (p ) (3.11)
- 1 0  1 m

which is of length

r = n + m + 1 (3-12)

The elements â  , i = -n,...,m can be determined according to the 

algorithm given in section 2.2, chapter 2. In this case, however, the 

algorithm is made to terminate when all r terms of the truncated 

expansion have been computed.

As a consequence of (3.4) and the fact that the total number of

digits, r, in the code must be even, positive and negative integers
rare represented by exactly - digits, assuming that the p-adic point
this to the left of the zero digit, the remaining digits being 0 or 

(p-1) respectively.

By shifting the p-adic point to the right of the
r  i.

0. 1.2....,- - 1tn position, the above integers become radix fractions,

1. e., fractions the denominator of which is divisible by pn and, 

consequently, all radix fractions whose denominators do not exceed N 

become representable. All other rationals will, in general, occupy 

all the r positions.

Hence, positive integers will be in the form:

• a , a ,...,a f 0,0,...,0 (3.13)

> r/2-1
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e.g., H(5,6,87) = .223000.

Negative integers, on the other hand, are in complement form, 

and have the following structure:

•a ,a ,...»a , (p-1),(p-1),...,(p-1) (3.14)0 1 r/2-1
r/2-1

e.g., H(5,6,-73) = .202444.

Radix fractions are obtained by moving the p-adic point of 

positive or negative integers to the right by a number of locations

e.g., H(5,6,87/5) = 2.23000

H(5,6,87/25) = 22.3000

H(5,6,-73/25) = 20.2444.

Soft and hard fractions have the general form of the segmented 

p-adic number representation given in (3.11) and the digits assume 

values between 0 and p-1.

3.3 Arithmetic Operations in Segmented p*adlc Fields

Throughout this section, and merely for convenience purposes, 

the Hensel code H(p,r,a) will be denoted as an ordered pair in 

mantissa-exponent form, (m ,ea) [31]. And, since the length of the



code is fixed to r digits, ea is allowed to have the value 0 or 

negative values.

When ea = -n, the p-adic point is then placed n digits to the 

right of the left-most digit of m . Consequently, the mantissa is of 

the form

m = 0 «a a ... a (3*15)a 0 1  r - 1

and

ea < 0 (3.16)

When performing arithmetic operations in Q , it is necessary to 

ensure that the closure property is maintained throughout our computa­

tion. That is, if the operands are within the bounds' (3.*0» then so 

must be the result of the operation.

In the following sections (3*3.1 - 3*3*J1), we present the 

algorithms developed by Krishnamurthy [29] and [31] for the four basic 

operations. In section 3*3-5 we show fundamental limitations in

Krishnamurthyfs algorithms and give our corresponding modified 

algorithms.

3*3.1 p^adic Addition in Qp

3  GGiven a = - and 6 = - , such that b,d * 0, (a,b) =1 and b d
(c,d) = 1, then the corresponding Hensel codes of a and 8 of the

same length r in the segmented p-adic field Op may be written
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respectively as:

H(p,r,a) = (ma, ea) 

H(p,r,8) = (mg, e6)

where

m„ = 0 *a a • • • cLa 0 1 r-1

3 U o % cr o b ... b1 r-1 )

(3.17)

with r even, and e and e» both satisfying the inequality:

-<■ ; ' £ ea> eg < 1 (3.18)

The algorithm for adding H(p,r,a) and H(p,r,8) retains the lower 

exponent and finds the sum digit ŝ  and carry digit c^+1 from a 

knowledge of â  , b̂  and . Thus

s i = (â  + b̂_ + ci) (mod p) (3-19)

for i = 1,2,...,r-1

with o11o
O

and C = 1 if (aL +i + 1

= 0 otherwise

and ignoring cr.

e.g., H(5,4,3/13) + H(5,4,11/13) = (0.1143,0) + (0.2430,0)

= (0.3034,0)

= H(5,4,14/13).
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3.3.2 p^adic Substraction in Qp

p-adic substraction i s  realized as a complemented p-adic addi 

t ion.  Thus, to perform the operation H(p,r,a) - H(p,r,B), we write,

H(p,r,a) - H(p,r,B) = H(p,r,a) + H(p,r,-B)

= H(p,r,a)+ H(p,r,B)

= (ma>ea ) + ( 5 g , e g) (3 .20 )

where

mfl = 0 •£ b . . .  b p 0 1  r-1
i s  the complement of

mg = 0.bQ b, . . .  br_,

and the elements 5^ are obtained through the following rules  :

1) If bi ^ 0 for 0 < i  £ ( r - 1 )

then = p-b^ for i = 0

and = (p-D-b^ for 1 < i £ (r - 1 )

2) If  bi  = 0 for 0 < i < j

then 5^ = 0 for 0 £  i £  j

and b = p - b
j + 1 j+1

= (p-1)-bj_ for (j+2) £  i £ (r-1)



3.3- 3 p-adic Multiplication in Qp

The multiplication algorithm of H(p,r,ct) and H(p,r,6) consists  

in forming the cross-products of the mantissa such that:

Pi , j  “ bi aj , for 0 £  1 £ ( r_1)

and c_j
. ii 0 T 1 ( 3 .2 1 )

and then forming the partial  products and the f in a l  product P by 

successive s h i f t s  and additions as given by:

r-1
p , « l p , i a(j) (3.22)

j- o ,J

and

r-1
P = I Pi a(i) (3.23)i=0

where A(x) denotes a right s h i f t  of the partial result  by x d ig i ts  . 

The exponent of the resu lt  i s  then (ea + e ^ ) .

A

3-3.4  p^adic Division in Qp

Consider the finite-segment p-adic divis ion of H(p, r, a) ,  the 

dividend, by H(p,r,B),  the divisor.  The quotient i s  then H(p,r,Y)  

such that:
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m n = 0 *a a . . . .  a  „CL 0 1 r - 1

rag ii o cr o b i • • •  br-1

my u o • & o • • •  V r

The division operation, therefore, is similar to p— adic multipli­

cation but for computing the multiplicative inverse of b 0 , b 01 (p). 

Algorithms for computing b 01 (p) can be found in [25].

If b 0 = 0, the divisor is shifted left, keeping count, until the 

first non-zero digit and the exponent e^ is adjusted accordingly.

The algorithm for division is then as follows:
t t lSet R 0 = m . This represents the zeroc partial remainder. Let 

R^ denote the partial remainder at the ith stage and R ^  denote its 

ith digit. Then,

qi = R ii bo1 (mod P) for i = 0,1,2, ... ,r-1 (3-24)

The next partial remainder R is then given by
i+1

R. = R, + q.- • m R • A(i) (3.25)
1+1 i  l  »

where m^ is the complement of m^ and A(i) denotes aright shift by i

digits, and the algorithm terminates when q is obtained. Ther-1
exponent ey of the result is then (ea - eg).



3.3.5 L im it a t io n s  o f  K r ls h n a m u r t h y *3 A lg o r ith m s

In this section we show that the algorithms for addition and 

multiplication (and hence, those for substraction and division) 

presented earlier do not always generate a correct result having the 

same code-word-length as the two operands. In fact, in such cases, 

confining these operations to the prescribed size without incurring 

any modifications to the algorithms, results in an incomplete code 

which is seriously erroneous [16]. After discussing these limitations 

we will present the modified complete algorithms for closed finite
A

p-adic arithmetic operations in Q

3.3.5.1 Limitations of the Addition Algorithm

The algorithm described in section 3*3*1 would always work if 

the exponents were different, that is,

ea * eg (3*26)

Alternatively, if the exponents were equal, then the algorithm 

is.guaranteed to work if they were both zero. On the other hand, if

ea and e^ were equal but are not zero, i.e., pn |b,d, then the algo­

rithm would work if and only if ŝ  | 0 (mod p), where i denotes the

position of any leading zero in the sum.

Summarizing, the algorithm for addition would yield the correct 

result in all instances except in those cases where:

ea = eS < 0

and si = 0 (mod p) , i = 0, 1 ,.. , ,k

where k < |e l-i — i a I 1
}

(3.27)



In this latter case, the resulting sum, which should correspond 

to (where Y = a+$), contains k+1 leading zeros. These leading 

zeros not only are meaningless, exactly as in p-ary arithmetic, but 

their existence leads to an entirely erroneous code. Also, in what 

regards the final exponent, e-y, it is not equal to ea or eg as shown 

in the algorithm.

If these leading zeros were simply discarded from the resulting 

mantissa, then, consequently, H(p,r,Y) is no longer a correct Hensel 

code of length r, but its effective length is r-k-1 and the missing 

digits and the correct exponent, e - y ,  are yet to be determined for a 

complete exact code.

3«3.5.2 Modified Addition Algorithm

To overcome the problem mentioned in section 3.3*5.1, in the 

case where ea = e-g < 0, the algorithm presented in section 3*3*1 

should be carried over the same range, r, until sp is reached where it 

should be extended as follows:

1. Compute cr

2. If Sj_ = 0 (mod p), i = 0,1,...,k where k < | ea| -1, 

then compute H(p,r,a) and H(p,r,S)

where r = r+2 for k = 0 

= r + k k even

r+k+1 k odd
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3. = (â  + + ĉ ) (mod p), i = r, r+1,...,r+k, taking the

value of cr, computed in (1), into consideration.

4. The resulting sequence of digits is shifted left by k+1 

locations yielding my, and ey = ea + k + 1. This code is the 

required Hensel code of size r.

1 1 1 6Example: Consider the segmented p-adic addition of —  and —  .• 1 0 15
Their corresponding Hensel codes for p = 5 and r = 4 are:

H(5,4,11/10) = (0.3322,-1)

H(5,4,16/15) = (0.2413,-1).

If we apply Krishnamurthy's algorithm of section 3.3.1, as it 

stands, the segmented p-adic operation would yield the result 

(0.0340,-1), which does not correspond to the Hensel code of T = 13/6. 

If fact, it is not a Hensel code at all.

Consider now the modified addition algorithm discussed above.

Since ea = ê  = -1 and s0 =0, where k = 0, then r = 6. Thus, 

H(5,6,11/10) + H(5,6,16/15) results in a mantissa of 0.03404 where 

the addition process is stopped after reaching i = r+k = 4 (whereas it 

was terminated at i = r-1 = 3 in Krishnamurthy’s algorithm).

Now, shifting this mantissa left by 1 location yields my =

0.3404 and ey = 0, i.e.,
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H(5,4,Y) = (0.3404,0) 

which corresponds to Y = 13/6.

3.3-5-3 Limitations of the Multiplication Algorithm

Here, again, we point out that Krishnamurthyfs algorithm for the 

p-adic multiplication in Qp, described in section 3-3*3 would perform 

correctly provided either one of the following two conditions is 

satisfied:

= e,

2. ea * eB such that ea < eg and mg does not consist of any leading 

zeros in its first r/2 digits.

If we consider now the case where

ea < e 8 

and

, rm =0, i=0,1,...,k where k £ ( - -1),
3i 2

then, unavoidably, and after performing the described algorithm, 

leading zeros will appear in the final product leaving its mantissa, 

my, incomplete, with the exponent, ey, of the product not equal to 

ea + eg as stipulated in section 3-3-3-
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3.3«5.4 Modified Multiplication Algorithm

The erroneous code resulting from applying Krishnamurthy's 

algorithm as it stands can be corrected if the following preliminary 

steps were undertaken

r1. If m =0, i = 0,1,...,k, where k < ( - - 1),
Si ~ 2

then compute H(p,r,B) where, again,

r = r + 2

= r + k

= r + k + 1

for k = 0 

k even 

k odd

2. Shift m^ of H(p,r,B) left by k+1 locations resulting in the 

temporary shifted sequence nig. It should be noted that the 

effective length of nig under consideration is taken equal to 

r, but does not correspond to the mantissa of any Hensel code.

From this point onwards, Krishnamurthy's algorithm is applied 

with the difference that the product's exponent, ey, is given by:

eY = ea + eB + k + 1

and this exponent, together with the resulting mantissa, correspond to 

the Hensel code of Y = a • B.

We illustrate the points discussed in section 3.3.5.3 and in

this section by the following example.
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Example: Assume a = 1/15 and 8 = 5/4. Then, the multiplication of

H(p,r, a) by H(p,r,Y) consists in multiplying the Hensel codes 

(0.2313,-1) and (0.0433,0) for p = 5 and r = 4.

The segmented p-adic multiplication algorithm as described in 

section 3.3.3 is depicted in Table 3.1 and the product resulting is, 

thus, H(5,4,Y) = (0.0342,-1) which, again, is obviously erroneous.

However, since ea < ê  and the first leading digit in m^ = 0, at 

k = 0, then H(5,6,5/4) = (0.043333,0) and = 0.4333.

Given this temporary value of the multiplier mantissa, the 

segmented p-adic multiplication is performed according to

Krishnamurthyfs algorithm and as depicted in Table 3.2.

Hence, my = 0.342.4

and ey  = -1 + 0 + 0 + 1  = 0

and the final product H(5,4,y ) = (0.3424,0) which corresponds to 

Y = 1 /1 2 = 1 /1 5*5/4.



- s a ­

lable 3.1: Krishnamurthyfs algorithm for segmented p-adic
1 5multiplication in the case of a = —  and 8 = -15 4

for p = 5 and r = 4

t
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Table 3.2: Modified algorithm for segmented p-adic multiplication
1 5in the case of a = rr and 0 =  ̂ for p = 5 and r = 4

i  , j 0 1 2 3

a j 2 3 1 3
b i ij 3 3 3

0̂
o o 3 1

P o , ,  . 2 2
p* 0 ( 2 14 0
P » , 3 2

Po 3 3 1 3

•

P i 1 0 0

•

p 2 1 0

•

p 3 1

p 3 4 2 14

1
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3 Conversion of Hensel Codes and Variable^Length p^adic Expansions 

to Rational Form

Having analysed the arithmetic in Q we now consider the

problem of converting a finite or infinite p-adic code to its

rational equivalent. There are three main conversion techniques [29] 

which we will analyse in turn.

3 . 1  Method of Congruences Based on p^adic Weights

In section 3.2 it was mentioned that the digit positions in a 

p-adic representation have corresponding fractional weights given by 

(3.9).

The conversion from p-adic form to rational form depends on the 

type of fraction under consideration:

a) Soft fractions: These are rational fractions a/b where

b|(pr^2—1). The weighted sum W will then be equal to the actual value 

of such particular rational and satisfies the equation:

a W

or a(pr/2 - 1) - bW = 0 (3.28)

and hence the conversion from a p-adic representation to rational form 

only involves finding this weighted sum.



b. Hard fractions; Fractions which do not have the property that 

the denominator is a divisor of pr/'2-] are called hard fractions. 

Their weighted sum will not be equal to their actual value and, 

consequently, such weights are called pseudo-weights.

, Such fractions will only satisfy the following congruence:

a(pr^2-1) - bW = 0 (mod pr) (3.29)

In this case, the conversion from p-adic code to rational form 

involves the solution of the above congruential relation. This is the 

same as solving the diophantin'e equation:

a(pr/2-1) - bW = kpr , k = ±1, ±2,... (3-30)

for various values of k, and the solution which yields an order-N 

Farey fraction is taken.

However, it is known, [29], that an equation of the form 

ma - nb = 1

has a solution a = a0 and b = ba obtained by expanding m/n as a 

continued* fraction and taking the last but one convergent which equals 

b0/a0 and, since there are many solutions to the problem, other 

solutions of the form:

+tn ±tm
a0 , b0 , for t= 0,1,2,...

have to be tried.



Alternatively, a faster procedure can be applied which considers 

the weight, W ’, of the reciprocal of the p-adic number which yields a 

value of k such that

WWf - (pr/2-1)2
k = --------------- (3.3D

Pr I

Then, a search is made for that value of t which will give the 

desired order-N Farey fraction.

However, the study of this conversion method shows that it is 

not a practically suitable technique. This is chiefly due to the fol­

lowing points:

1. Given a p-adic code, it is not known apriori whether the weight 

attributed to it is a proper weight or a pseudo-weight. This is due 

to the fact that the type of initial rational has to be determined,

1. e., soft or hard fraction, prior to its conversion to p-adic code.

2. In the case of hard fractions, particularly, solving the 

congruence (3*29) requires a great amount of computation time, even if 
the fast procedure described above were to be used.

In general, conversion of p-adic codes to rationals using the 

weight assignment technique proves to be laborious and time consuming.



3.4.2 Method of Look-up Tables

In this method, a look-up table is stored for every rational 

number occurring in the order-N Farey sequence. To every value is 

assigned the corresponding p-adic representation for the required 

value of the prime p (and length r, if we consider Hensel codes). A 

direct mapping between the fields Qp and Q (or Qp and Q) allows the 

determination of the rational number.

This technique involves the computation and storage of all the 

codes for every value of p (and r) under consideration and, although 

the mapping is fast, the table generation procedure itself is labori­

ous if various combinations of the parameters p and r are re­

quired .

3.4.3 Method of Successive Additions

Using the modified algorithm presented in section 3*3.5.2 for 

the p-adic additions, it is possible to successively add a p-adic code 

until all the last r/2 digits assume the value 0 or (p-1), therefore 

reaching the configuration of a positive or negative integer respec­

tively .

Therefore, the numerator of the corresponding rational fraction 

is the weighted power sum of the leading r/2 digits and the 

denominator is the number of additions performed to reach this con­

figuration + 1 .
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If the last r/2 digits equal 0, then the fraction is positive. 

Conversely, if they are equal to (p-1), the fraction is negative.

This method proves to be reasonably fast and extremely flexible 

since the conversion is systematically performed over any required 

value of the prime p. The ambiguity pertaining to the 

weight/pseudo-weight determination in the congruential technique and 

the complexity in generating look-up tables are thus avoided.

This technique is the one used in constructing our cryptographic 

scheme and throughout our computations.

3.5 Limitations of the Use of Segmented p^adlc Number Systems

In this chapter we presented an analysis of finite p-adic number 

systems. Arithmetic operations in Qp were considered. From this 

analysis we draw two main conclusions regarding the use of p-adic 

number systems in Qpj

1. In section 3.1 it was shown that, in order to have a unique 

Hensel code, the rational number should have its numerator and 

denominator bounded by (3.4). This presents a serious limitation of

these finite systems: closure of arithmetic operations is not
guaranteed since the mapping of the result from Q to Q may not

correspond to the order-N Farey sequence.
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2. The limitations of Krishnamurthy's algorithms for performing 

finite p-adic arithmetic present a drawback in the use of these 

algorithms, and, although we were able to modify these algorithms, a 

longer intermediate code was required to implement these 

modifications.

It is then apparent that the use of finite p-adic number systems 

confined to a fixed length r involves a constant overflow trace and a 

constant analysis of the structure of the operands prior to any finite 

p-adic operations.

i
For this reason and for other reasons which will be explained in 

chapters 5 and 6, we will consider the use of variable-length p-adic 

number systems for the implementation of our proposed cryptosystem.
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CHAPTER 4

MATHEMATICAL THEORY OF CRYPTOGRAPHIC SYSTEMS

4.1 Introduction to Cryptosystems

The main task of a cipher system is to map a plaintext message 

onto a ciphertext message to be transmitted over an insecure channel. 

This mapping should only be known to the source and receiver, such 

that any eavesdropper on the insecure channel cannot decipher the 

ciphertext to recover the original message.

Thus, the first aim of any cryptosystem is privacy. The 

second important goal is authentication, i.e., the prevention of an 

unauthorized party to inject a message into a public channel and thus 

assuring the receiver of a message of the legitimacy of its sender, 

[ 1 3 ] and [14].

In 1949, Shannon discussed the theory of secrecy systems 

through an information theoretical approach, [49]. He laid down five 

criteria for unconditional secrecy, that is, the ability of a system 

to resist any attacks by a cryptanalyst who is given unlimited time 

and computational power. For a detailed discussion and evaluation of 

those criteria, the reader is referred to Beker and Piper's paper [8 ].
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Since then, considerable advance has been achieved in the area 

of cryptography, mainly due to technological advances and to theoreti­

cal developments in information theory and computer science. As a 

consequence,- new disciplines have emerged, such as complexity theory 

and the analysis of algorithms, [28] and [15].

Since unconditional security is practically impossible to 

achieve (the only unconditionally secure system known is the one time 

pad, [24], which requires an extremely large key size), researchers 

are striving to design increasingly computationally secure 

cryptosystems. By computationally secure systems, we mean systems 

which are not vulnerable to cryptanalytic attacks subject to 

limitations in the cost and time of cryptanalysis, but which would be 

overpowered given unlimited conditions.

As a result, conventional cryptographic systems developed from 

the basic monoalphabetic ciphers, through the more recent mechanical 

cipher devices and shift registers, [7], [8] and [10], to what is now 

called public-key cryptosystems. A detailed discussion of public-key 

systems will be presented in section 4.4.

In a conventional cryptographic system (Fig. 4.1), however, 

the source and receiver both share the same key. The source first 

enciphers the message M, based on the key k, to produce the ciphertext 

C:

C = Ek (M) (4.1)



Fig. 4.1: Block Diagram of a Conventional Cryptosystem



At the receiving end, the recipient uses the same key k, but 

with a deciphering procedure which is the inverse of the enciphering 

operation, and recovers the message M:

D k (C) = Ejj(Ek (M)) = M CU.2)

The insecure channel in Fig. 4.1 is shown by the broken lines. 

A cryptanalyst with a knowledge of the key k can break into the system 

and decipher any transmitted message. For this reason, the key has to 

be securely transmitted between the legitimate users. This is usually 

done by some physical means, thus imposing unrealistic cost and delay 

problems on the system.

In the next section we discuss the important feature of 

authentication and digital signature requirement in cryptographic 

systems. Then, in section 4.3, we briefly introduce the newly 

developed science of complexity theory which leads to a presentation 

of the theory of NP-completeness of public-key cryptosystems and 

present the major schemes based on this concept. In order to show the 

potential viability of each of these schemes, it will be followed by 

some of the attacks it has been subjected to.

4.2 Authentication and Digital Signature

In section 4.1, we briefly mentioned that one of the main 

goals of a cryptosystem is to provide authentication. In fact, what 

we mentioned earlier related to message authentication, whereby 

preventing the unauthorized injection of a message in the public

c h a n n e l .
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Another feature of the authentication process is that of user 

authentication, where the task of the system is to verify that an 

individual is who he claims to be [133-

In some cryptographic applications, it may not be sufficient 

to authenticate the validity of a message or whether it has been sent 

or interfered in by a third party. One further requirement is to 

prove that:

a) the recipient has effectively received a message from the 

source a n d ,

b) the recipient has not forged or modified the message in any 

. w a y .

In cases of dispute, this feature provides the receiver of a 

message with legal proof of the Identity of the sender [14] and also 

bears an added protection for the sender who may thus prove his 

disassociation from a particular message the recipient claims to have 

r e c e i v e d .

This concept is that of digital signature where, on transmis­

sion channels, it is necessary to provide the equivalent of a written 

signature in order to settle any dispute between the sender and

receiver as to what message, if any, was sent.
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This process of signing a document entails the existence of a 

secret key known only to the sender [12]. It should not be confused 

with the public key which will be discussed in future sections. But, 

it is obvious that both the secret and public keys are interrelated in 

some m a n n e r .

4 .3  C o m p le x ity  T h eo ry  and th e  T h e o ry  o f  N P -C o m p le te n e ss
t

In section 4.1 we mentioned that the recent advances in 

technology, in general, and in computer science, in particular, have 

created new fields of research. One such field which has a direct 

bearing on cryptography is that of complexity theory.

Complexity theory is a collection of results in computer 

science which, in essence, attempts to quantify the statement, [28]:

"Problem A is harder than Problem B" .

Normally, when discussing problems in this context, we only 

consider decision problems whose solution is either 'yes’ or Tn o ?, 

[7].

A decision problem is said to belong to the complexity class P 

if it can be computed in polynomial time using a deterministic Turing 

Machine. On the other hand, if a decision problem can be solved in 

polynomial time by a non-deterministic machine, it is said to belong

to the class NP.
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One subclass of the NP problems is called the NP-complete. To 

define this class we have to introduce a well known problem in 

complexity theory which is the satisfiability problem. A full 

analysis of this problem can be found in [15]. For any given problem 

in class NP, there is a polynomial time algorithm which reduces that 

particular problem to the satisfiability problem. If the 

satisfiability problem can be solved with a polynomial time algorithm, 

this implies that every problem in NP is also in P. Conversely, if 

any problem in NP is intractable, then the satisfiability problem 

itself also must be intractable. Problems which share this property 

are the NP-complete problems.

In Fig. 4.2, we show the containment relationships between the 

classes P, NP and NP-complete. It is clear that any problem in class 

P is automatically in class N P . It is also noted that not all 

problems in NP and which do not belong to P are NP-complete.

Class N P

F i g .  4 . 2 :  C o n t a i n m e n t  R e l a t i o n s h i p s  B e t w e e n  C o m p l e x i t y  C l a s s e s
P ,  NP a n d  N P - C o m p l e t e
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Cryptography can draw directly from complexity theory, and 

particularly from the theory of NP-completeness, by attempting to 

provide algorithms which make any cryptanalytic task intractable.

The different systems which are presented in the following 

section reflect this requirement, and so does the scheme based on 

p-adic number systems which we are proposing in chapter 5.

4,4 Public-Key Cryptology

In section 4.1 we explained the flow of information in a 

conventional cipher system. The main disadvantage of such a system is 

the need for a physically secure channel to transmit the enciphering/ 

deciphering key from the sender to the receiver. This same channel 

could not itself be used to transmit the message for reasons of 

capacity and delay.

This situation creates a problem of key management. Not only 

do the sender and receiver have to wait while the keys are sent, but 

also, in a system with, say, one million users, there are almost 500 

billion possible connections, [14], and the cost of transmitting these 

keys becomes prohibitive. There is also one added risk which is that 

of the "extent of security" of the presumed secure channel.

These problems have generated the idea of public-key systems 

and, although Diffie and Heilman, [14], classify such systems into two 

categories, that of public-key distribution (as the Diffie-Hellman
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scheme itself [14] and the Merkle scheme [36]) and of public-key 

cryptosystem, we will follow Beker and Piper's nomenclature, [8], and 

group them under the same heading of public-key cryptosystems.

Such systems are based on the concept that, although a public 

entry resides in a directory and the enciphering and deciphering 

algorithms are also made public, a cryptanalyst cannot decipher a 

message since this operation requires the receiver's own secret key to 

be exerted upon the deciphering algorithm.

As indicated in Fig. 4.3, the sender also uses his own secret 

key to encipher the message. The system then becomes a two-way 

communication system whee a cryptanalyst’s task is made as hard as 

attempting to solve an NP problem: although he can access the public 

directory and use the public keys deposited, he still necessarily needs 

the secret key of the receiver in order to be able to decipher the 

encrypted message.

Three of the most realistic public-key cryptosystems which we 

shall discuss in detail over the next section are the Merkle-Hellman, 

Diffie-Hellman and Rivest-Shamir-Adleman systems.

4.4.1 The Diffie-Hellman System

The Diffie-Hellman key distribution scheme [ 1 3 ] makes use of 

the apparent difficulty of computing discrete logarithms over a finite 

Galois field GF(p) where p is a prime.



MESSAGE M 
SOURCE

Fig. 4.3s Block Diagram of a Public-Key Cryptosystem
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If a is a fixed primitive element of p, let

y E ax (mod p) ; 1 <_ x <_ p-1 (4.3)

In this case x is referred to as the logarithm of y to the base a 

modulo p:

x E loga y (mod p ) ;  1 < y < p-1 (4.4)

or, alternatively, as the index of y to the base a [5]:

x = ind'ay (4.5)

In this system, each user generates an independent random 

integer, xA (for user A), chosen uniformly from the set {1,2, ...,p— 1}. 

x A is a secret integer known only to A. But, whereas xA is secret, 

the value yA is placed in a public directory, such that,

y A = ciX a (mod p) (4.6)

Wherever two users, A and B, want to communicate privately, 

they use the key:

KAB
X X  , A B (mod p) (4.7)

User A computes K AB by obtaining yB from the public directory

and letting:



- 1U -

K
X

AB = y B
A (mod p) (4.8)

, Xb/ a(a ) (mod p) (4.9)

X AX Ba (mod p) (4.10)

In the same way, user B obtains K AB through:

KAB (mod p) (4.11)

In order to decipher any message, a cryptanalyst will have to 

compute the common secret key KAB such that:

( lo g a yB)
K AB = Ya

_ ( io ga yA)
= y B

(mod p) 

(mod p)

(4.12)

(4.13)

4.4.2 Comments on the Dlffle^-Hellman System

As mentioned in section 4.4.1, the Diffie-Hellman algorithm 

relies on the complexity of computing discrete logarithms over GF(p). 

It is quite simple to compute y from x in (4.3). This operation takes 

at most 0(21og2p) multiplications [25].
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On the other hand, computing x from y is much more 

complicated. One of the best algorithms which computes indices modulo 

p runs in exponential time 0 ( p 1//2) [26]. Another algorithm which runs 

in subexponential time, i.e., which has a running time better than

0(p£ ) for all e > 0, was developed by Adleman [2] and requires
/ logP (p)logp logp (p)0(e 9 e e ^

However, it has been shown [44], [45] that if (p-1) has at

least one large prime factor or if p is large [2] such that 

p > 200 bits, then indications show that exponentiation modulo p 

becomes a one-way function and would then fall in class NP.

The fundamental criticism to be directed to this scheme is 

that, due to the fact that both entries yA and yB reside "permanently" 

in the public file, there is great concern that the repeated use of 

the same key might severely compromise it and hence the encipherement 

protocol itself may be compromised.

In the p-adic-based cryptosystem that we propose in chapter 5 

we show how to overcome this fundamental shortcoming of the 

Diffie-Hellman algorithm.

4.4.3 The Merkle-Hellman System

Merkle and Heilman [38] have devised a cryptosystem based on 

the trapdoor knapsack problem which is known to be an NP-complete

problem.
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Generally, a trapdoor one-way function is an easily calculated 

function for which it is computationally infeasible to compute the 

inverse function unless certain specific information which was 

initially used in the design of the function is known.

Given a vector of integers, a:

a = (ax , a 2 , ... ,an ) (4.14)

and an integer c, the knapsack problem consists of finding a subset of 

the (a^[ such that the sum of elements of the subset is equal to c. In 

other words, it is required to find a binary vector x of n elements, 

such that:

c = a • x 

n
- I  a, x, (11.15)

1=1

To formulate' their cryptographic algorithm, Merkle and Heilman 

start by considering a relatively simple knapsack problem and build it 

into a more complex form.

To encrypt a message, first it is divided into n-bit blocks 

(xx , x 2 ,...,xn ), then the vector a is used to form the dot products, 

as in (4.15), thus yielding the ciphertext c.

To recover the x^ .from a knowledge of c is believed to be 

computationally infeasible if the a i and x̂ _ have been chosen randomly.
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To add one extra degree of complexity, when considering an 

effective cryptosystem, the algorithm for generating public keys first 

generates a simple random knapsack vector a ’ (with several hundred 

elements) which is kept secret. It also generates a random number m, 

such t h a t ,

n
m > T a' 

i=1 i

-1and a random pair to and to , given by

tuto = 1  (mod m)

(4.16)

(4.17)

Finally, the public knapsack vector, or enciphering key, is 

obtained by a component multiplication:

a.r = co a ’(mod m) ; i = 1 ,2 ,...,n (4.18)1 l

When a user A wishes to send a message x to B, he computes the

ciphertext c as in (4.15) and sends c to B. B uses his secret
-1

multiplicative inverse to modulo m and performs the following 

computation:

c' E a) c (mod m)

?= to 1 a i xi (mod m) 
i = 1

-1 nl { [to a.’ (mod m) ] x.- } (mod m)
_ i  i xto
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n -1 
=  X { [ o i  QJ 

i = 1
(mod m) ] X.. 

i 1
(mod m)

n
E £ a) (mod m) 

i=1 1

= aT • x (4.19)

n
since m > 7 a ’

i = 1 i

The vector a is placed in a public directory as a u s e r ’s key 

while Co 1 and m are kept secret to decipher any message which has been 

enciphered with this public key.

Fig. 4.4 shows the flow of information in the Merkle-Hellman

system.

4,4,4 Comments on the Merkle-Hellman System

Although known to be in NP-complete, the knapsack problem has

been shown [23], [48] to be solvable under some assumptions. This

fact leads to the necessity of generating specific sequences of the

vector a [37].

Furthermore, from a practical point of view, the public key

vector a is extremely large. Merkle and Heilman recommend the 

following minimum parameters of a to ensure secure communication:

*
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Fig. 4.4s Flow of Information in the Merkle-Hellman Cryptosystem



n = 100

2 . each randomly chosen a' is a (9 9+i)~bit natural number.i

These specifications, although they safeguard the 

cryptographic security of the system, the orders of magnitude involved 

are extremely impractical to be incorporated in a public directory 

which may be shared by a wide number of users.

4,4.5 The Rivest-Shamir*Adleman System

1 .

The Rivest-Shamir-Adleman [46] (RSA) system uses 

exponentiation in a different way from that used by Diffie and 

Heilman. They make use of the fact that, given the modern computer 

technology, it is computationally easy to find large prime numbers of 

the order of 100 digits. On the other hand, given the same computer 

power, it appears that factoring the product of two such primes is

computationally infeasible and hence belonging to the class NP.

In this system, user A selects two large primes p and q at

random. Then he obtains their product n:

n = p • q (4.20)

Consequently, since p and q are primes (refer to equation

(2.19) in chapter 2), the Euler totient function <j>(n) is computed as:

<j>(n) = (p- 1 ) (q- 1 ) (4.21)
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The encryption key, e, is then chosen at random from the 

interval [2 , <j>(n)-1 ], such that

(e, <f>(n)) = 1 (4.22)

The decryption key, d, is the multiplicative inverse of e 

modulo <j>(n):

ed = 1 (mod <f>(n)) (4.23)

The pair of integers (e,n) is made public while p,q, < p ( n )  and 

d are all kept secret. A message is then represented as a sequence of 

integers m x, m 2 ,..., such that

0 1  m i £  n_ 1 (4.24)

and m^ is about 700 bits.

Each block m^ is then enciphered using the public keys e and n 

of the receiver and the ciphertext, c, is produced according to:

e
c^ = (mod n) (4.25)

To decipher the message block m ^ , c^ is raised to the 

receiver's secret power d: 

d e d
c^ = (m^) (mod n)

= mi (mod n) (4.26)
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and since m^ < n, the value obtained corresponds to the originally- 

transmitted message block.

In Fig. 4.5 we describe the flow of information in the RSA

system.

4.4.6 Comments on the RSA Systems

The RSA system has, so far, withstood many attacks and, unless

large improvements are made in the factorisation problem or techniques 
e

for inverting m^ without requiring the secret decryption key d, are 

found, it remains potentially secure.

However, an algorithm for breaking the RSA system has been 

independently devised in [51]. It relies on the possibility that an 

encrypted message m can be decrypted by successively re-encrypting the 

ciphertext, c, where c = m e (mod n).

More formally, this can be shown by setting c x to c then

compute

c = ce (mod n) (4.27)
i + 1 i

Congruence (4.27) is then repeated until c = c. Then c.- = m.i + 1 1

This is illustrated in Table 4.1 where we consider the same 

example used by Rivest et. al. [46].



MESSAGE
SOURCE

RECEIVER

Fig. 4.5: Flow of Information in the Rivest-Shamir-Adleman (RSA) Cryptosystem



84

For the case p = 47 and q = 59, then n = p*q = 47.59 = 2773 

and d = 157. Consequently, <£(2773) = 46.58 = 2668 and the encrypting 

key e is the multiplicative inverse of d modulo 2668. Thus e = 17.

Rivest e t . a l ., in their example, considered the message

ITS ALL GREEK TO ME

(Julius Caesar, I, ii, 288, paraphrased)

and they encoded two letters per block, substituting a two-digit 

number for each letter: blank = 00, A = 01, B = 02 ,..., Z = 26. 

Thus the whole message is encoded as:

0920 1 900 0 1 1 2  1 2 0 0 0 7 1 8

0505 1100 2015 0013 0500

Since e = 17, then the message has the following ciphertext:

0948 2342 1084 1444 2663

2390 0778 0774 0219 1655

In Table 4.1, we consider the first block of ciphertext where 

c x = 948 and by successively raising this block to e = 17 modulo 2773, 

it is seen that it converges back to c : in 44 iterations. The 43rd 

iteration, however, is the initial encoded message, 920, corresponding 

to the first two letters I and T of the transmitted message.
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Table 4.1: Successive iterations for breaking the RSA system 
for the case e = 17, n = 2773, C = 948

ITERATION C 1 7 (MOD 2773)

948
1 1207
2 723
3 802
4 2305
5 21 51
6 2552
7 11 56
8 1 243
9 2033

10 900
11 1 5 1 0
1 2 2187
13 1679
14 251
15 2 1 2
16 299
17 2387
18 841
19 ' 2 2 1 8
20 4
21 27
22 11 36
23 21 00
24 535
25 2682
26 2493
27 271
28 2364
29 263
30 1 431
31 153
32 71 2
33 617
34 2375
35 2572
36 63
37 2092
38 487
39 507
40 653
41 1 325
42 192
43 920
44 948



Another more complicated algorithm which also attempts to 

break the RSA cryptosystem was developed by Herlestam [23]. Although 

both algorithms have a small probability of success since they depend 

on particular values of e and $(n), they offer some indications 

regarding a higher probability of breaking the system.

It should be emphasized, however, that these algorithms do not 

address the factorisation problem in any way but they rely on the 

ciphertext itself and the public information in order to recover the

corresponding plaintext.
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CHAPTER 5

A NEW PUBLIC-KEY CRYPTOGRAPHIC SCHEME BASED ON 

p-ADIC NUMBER SYSTEMS

5.1 Introduction to the Proposed System

In chapter 4 we described the mathematical theory of pub­

lic-key cryptosystems. We showed that all the algorithms developed 

for this class of security systems rely on number theoretic concepts.

In this chapter, we extend this principle by devising a new 

algorithm for public-key encryption. This algorithm is an extension 

of both, the Diffie-Hellman and RSA systems. It exploits the features 

of each system's one-way functions: in the case of the Diffie-Hellman 

system, the difficulty of computing discrete logarithms over finite 

fields and, in the case of the RSA system, the complexity of factoring 

a known integer into its prime factors.

Furthermore, the scheme makes use of the p-adic number system 

discussed in chapters 2 and 3* It is demonstrated that, by using this 

system to encipher a given alphabet, any cryptanalytic approach will 

have to consider a very large search space to determine the prime p 

which allows the decryption of the message to be performed.

To achieve this, variable-length p-adic number systems will be 

used. The structure of the corresponding p-adic codes will be given 

in section 5 . 2  and, in section 5 .3 , we discuss the problem of select­

ing the alphabet required for the proposed cryptosystem.
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The encryption and decryption algorithms are presented in 

section 5.4.

In section 5.5, a further extension of the p-adic system is 

proposed, where the algorithm is performed over a g-adic ring instead 

of a finite p-adic field. The search space then increases 

exponentially and any cryptanalytic attack will not only have to 

consider prime values but, also, any power of a prime.

The algorithms for encrypting and decrypting in this extended 

system will also be derived and the method of converting a g-adic 

sequence of integers into its corresponding p-adic sequence will be 

explained.

5.2 p^adic Code Structure for Cryptographic Implementation

In chapter 3, we pointed out some of the limitations of using 

finite-segment p-adic number systems.

To these limitations, we add one extra constraint. For 

implementation in a cryptographic scheme where the alphabet is made 

public to all users, a knowledge of the fixed finite length r of 

H(p,r,a) where a is an element of the alphabet and p is an unknown 

value, gives direct indications to the value of p. This is due to the 

inherent structure of the finite p-adic number systems and which are 

necessarily bounded by the bounds given in (3.4).

On the other hand, a knowledge of r is required in order to

perform the conversion algorithm in any decryption process to recover 

the message a.
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To solve this paradox, we suggest that, variable-length p-adic 

number systems be used. This is done as follows.

Given an alphabet set and based on a particular prime value, 

p, the sender of a message can compute the period X of the varia­

ble-length p-adic code according to the analysis reported in section

2.3 of chapter 2. Also, the aperiodic elements in this expansion can 

be computed as shown in section 2.4 of the same chapter. The algorithm 

given in section 2.4 also allows the first periodic element, a pointer 

to which will be denoted by X x, to be detected.

Hence, the structure shown in Fig. 5.1 is suggested for the 

variable-length p-adic code.

start of period

f

X *1 • « • •  • 4

Aperiodic terms Periodic terms
of length X

Fig. 5.1 Structure of the variable-length p-adic 
code based on the period X

In Appendix B we give a table of such codes for p = 5 and for 

a maximum numerator/denominator value of 1 7 , for comparison with the 

finite-segment Hensel codes with r = 4, given in Appendix A.
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To convert such a code back to its rational value a, we use

the successive addition algorithm described in section 3 . 3 *  An

integer representation is reached when, for a particular even value of 
rr, the last - digits = 0. However, to find this even value of r, we 

proceed as follows.

If T is the largest value represented in the alphabet, then 

set

T (5.1)

. . 2Y 2 = p r - 1

. . r
l o g (2 Y 2 + 1) 

log p
(5.2)

If the obtained value of r is odd, then 

r = r + 1 (5.3)

Consequently, a code corresponding to the variable-length 

p-adic code sent, but of length r, can be formed by the receiver and 

hence converted to its unique rational value in the alphabet.

Another algorithm,’ however, considers the canonic p-adic 

expansion of a:

- I
n=i n Pa (5.4)
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Since a is periodic with periodicity then we can write a in 

the form:

i i+1 i+k
a = a p  + a p +... + a p i i+1 i+k

i+k+1 i+k+2i
1 * 2

+ b 4 p + b ^ p  + ... + b A p
i+k + \

i+k+X+1 i+k+2 A+ b p  + ... + bA p

(5.5)

p 1 (a + a  p + . . . + a  pk ) i i+1 i+k

i+k+1 A- 1+ p (b 1 + b 2p + . . . + b A p )

i+k+A+1 A~1+ p  (b 1 + b 2 p + . . . + b , p  )

(5.6)

i i+k+1 \ 2 \  .
= p 1A + p B(1+pA + p + ... ) (5.7)

where

A = a + a p + . . .  + a p} i i+1 i+k

and

= b 1 + b 2 p + . . .  + b A P
A-1 } (5.8)

B
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Then, (5.7) equals

p 1 A i+k+1 „ + p B
1 - p A

s i n c e , in Q p ,

(5.9)

and

2A (n -1 )A  1 -p nA
1 + p A + p +...+ p = ----

1 - p A
(5 .10)

1 -pnA 1
--- —  — —  as n
1 - p A 1 - p A

Thus, A is the sequence of aperiodic terms in the structure, 

while B is the sequence of periodic terms (notice that b x in the 

above analysis corresponds to the element pointed at by in the 

code), and by computing (5 .8 ) and (5 .7 ), the equivalent rational value 

of a can be determined.

However, this algorithm is more complicated than the fast 

successive addition algorithm since it involves continuous 

exponentiation, multiplication and addition. Furthermore, the magni­

tude of the result of the exponentiation of the prime p can cause 

overflow problems since the above operations are no longer carried out

in a modular field.
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We thus revert to the successive addition algorithm described 

in this section and based on the proposed p-adic code structure to 

convert the codes from Qp to Q.

5.3 Choice of Alphabet

Since our proposed cryptosystem is based on p-adic number 

systems, then, initially, our alphabet will consist of rational 

numbers.

For each character, a, in the alphabet two integer values are 

assigned, one for the numerator and another for the denominator of a.

There are two considerations to be made in this respect.

First, notice that in the p-adic code structure given in 

section 5.2, the p-adic point is not considered as part of the code.

If a p-adic point were incorporated, then it is possible to deduce the 

value of p. Consequently, radix fractions corresponding to p must be 

omitted from the alphabet.

This is easily done since, once the alphabet has been generated 

and stored for public use, users of the system will select values of p 

such that

p > Y (5.11)

where Y is the largest value represented in the alphabet set.

In a typical cryptographic system, this is guaranteed because 

it is necessary to use large values-of p (of the order of 200 digits). »
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The second consideration relates to what we label "fractional
cambiguity". By fractional ambiguity we mean fractions - such that ifd

a
(c,d) > 1 they can be reduced to a fraction - where (a,b) = 1 andb
which already exits in the alphabet.

It can be ensured that this situation does not occur if the 

elements of an alphabet are drawn from an order-N Farey sequence.

5.4 Realization of the Scheme Based on p*adic Fields

In Fig. 5.2 we show the flow of information in the proposed 

cryptographic system based on p-adic number systems. The scheme 

involves two prime numbers p and These prime numbers are chosen

randomly and, as in any cryptographic scheme based on discrete 

logarithms, p must be chosen such that p-1 has at least one large 

prime factor.

The system is best described by explaining the corresponding 

encryption and decryption algorithms.

5.4.1 The p«-adic Encryption Algorithm

Suppose that A and B want to secretly communicate together, 

then in this system, as in the Diffie-Hellman system, we propose that 

p and its primitive element a be universal to all users of the system 

along with the afore-mentioned alphabet.



Fig. 5.2: Flow of Information in the p-adic-Based Cryptosystem
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A chooses a secret key, K s and places y a in a public diree 
A R

t o r y , such that:

yA = a (mod p) (5.12)

and so does B, with his secret key K :
SB

y B = a Sb  (mod p) (5.13)

Then, if A wants to send a message, m, to B, he first selects a 

prime P Ag, such that,

This prime constitutes the basis of the p-adic code in the 

ciphertext (and which, actually, corresponds to p of Qp in chapter 2 ). 

pAb  is a hidden information which will be sent to B as the header, h, 

prior to the sequence of p-adic codes of the message m. This is done 

as follows:

the ciphertext is sent over the insecure channel and is composed of 

the variable-length p-adic code of m.

5.4,2 The p'-adlc Decryption Algorithm

At the receiving end, B who is anticipating to receive a

(5.14)

(5.15)

since y B is in the public directory ahd K is known only to A. Then,

message from A, first acquires the header h. This header contains the
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necessary information which allows B to decipher the subsequent

code. To "filter” PAB from the header h, B performs the following 

computation:

K 3(yB) A • p a b ' (mod p)

K s K =, 
(a S b ) 3a P AB (mod P)

K s
(a A ) 30 P AB (mod P) (5 .1 6 )

B u t ,

Ksa A (mod p) = yA

which is in the public directory, and K is only known to B. Hence,
SB

the value

K K
k = (a A ) Sb (mod p) (5.17)

can be computed.

Since p is a prime, then k 1 (p) exists. By calculating this 

value of k 1 (p), B recovers pAB such that,

p ^  = h • k 1 (mod p) (5 . 1 8 )

and consequently B is able to decipher the encoded p-adic message 

based on this value of p ^  and according to the method reported in

section 5 .2 .



5.5 Realization of the Scheme Based on g-adic Rings

In section 5.4 we described the suggested cryptographic 

algorithm based on a prime pAB and its corresponding p-adic field 

Q
pAB

In th is  sect ion, we extend th is  concept even further with the 

view of making any cryptanalyst' s task computationally in fe a s ib le .  

For th is  purpose, we suggest the implementation of the scheme over the 

g-adic ring Q . In fa c t ,  th is  i s  a generalization of the p-adic case.

For a formal introduction to g-adic rings, we refer the reader 

to M a h l e r ’s book [35]; in this thesis we are concerned with the 

application of such rings in our cryptographic scheme. This, again, 

will be explained in more detail through the following encryption and 

decryption algorithms.

5.5.1 The g'-adlc Encryption Algorithm

As mentioned earlier, this is an extension of the previously 

detailed algorithm for the case GF(pA B ).

In the g-adic case, if A wants to send a message, m, to B, then 

the ciphertext is taken over p^ where n s Z + (and n < p, the 

universal prime in the s y s t e m ) .

A, then, transmits the first header, h : , as in (5.15):

K sh, = (yB) A • P ab (mod p) (5.19)
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and also sends a second header, h 2 , such that

K s
h 2 - (yg) A • n (mod p) (5.20)

Then, he sends the g-adic sequence of 

corresponding to Q CT whereo

integers representing m and

g = pn AB (5.21)

The computation of the g-adic sequence in Q_ is similar to theo
variable-length p-adic sequence in Q with the difference that the

PAB
modulus is the prime p^g raised to the power n.

5.5.2 The g^-adic Decryption Algorithm: The Decomposition of

Qg into Q p

To be able to decipher the received ciphertext, based on the 

g-adic ring Q , the receiver, B, first has to recover the values of 

pAB and n from the headers h t and h 2 , respectively. This is done in 

the same manner described in section 5.4.2, namely:

hj = k • p ^  (mod p)

and

(5.22)

h 2 = k • n (mod p) (5.23)

where k is given by congruence (5 .1 7 ).

H e n c e ,



(5 .24)= h 1 • k (mod p) 

and, similarly,

n E h2 • k (mod p) (5 .25)

Subsequently, based on the knowledge of p ^  and n, B can 

decipher the received sequence of g-adic numbers. This is done in two 

stages. First, the g-adic sequence is transformed into a p-adic 

sequence and, then, the usual p-adic to rational conversion, described 

in earlier sections, is performed.

The conversion from the g-adic code to the p-adic code is based 

on the following development, where p ^  is replaced by p for 

simplicity of notation (but which should not be confused with the 

universal prime of the cryptosystem).

Since we are considering the case of g = pn where n >_ 2, it can 

be shown [3 5 ] that any pn -adic number, 8 , can be expressed as a p-adic 

number. Assume

S = I (p11)1 (5.26)
i=-j

and which represents the canonic series for 8 , where j e Z and the 

coefficients 8  ̂ are pn -adic digits 0 , 1 ,2 ,...,pn- 1 .

To the basis, p, these coefficients can be written as:



b in+k (5 .27)
n - 1

;i = , I b in+k ' P 
k=0

where i = - j , - j  + 1 , - j + 2 , . . .

In (5.27), the new coefficients bin+k are p-adic digits, 

0 , 1 ,2 ,...,p— 1 . hence, S can be expressed as the p-adic number

00
B = I bm pm (5.28)

m=-jn

Consequently, B, upon receiving the sequence of pn-adic 

numbers, undergoes a decomposition of these numbers into the 

corresponding p-adic field and, finally, converts the obtained p-adic 

code into its rational equivalent, thereby recovering the original

message sent by A.
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CHAPTER 6

EVALUATION OF THE PROPOSED SYSTEM

6 .1 Cryptanalytlc Approaches to Breaking the p-adic-Based System

In the preceding chapter, a new cryptographic scheme based on 

p-adic number systems was presented. This algorithm r e l ied  on the 

discrete  logarithm problem. Breaking the system i s  equivalent to 

breaking the Diffie-Hellman distr ibution scheme. However, an improve­

ment on the Diffie-Hellman algorithm was introduced through the use of  

variable-length p-adic codes.

In th is  chapter, i t  i s  intended to subject the proposed scheme 

to different  attacks and, through these attacks, attempt to evaluate 

i t s  cryptographic v i a b i l i t y .

To study the security of the system, the following analysis

w i l l  be based on the fact  that solving discrete  logarithms, where the

modulus p is  large (> 200 b i t s )  or i f  p-1 has at lea s t  one large prime

factor,  i t  i s  computationally infe a s ib le  to calculate the secret keys

K_ and K_ from a knowledge of y* and yR (in congruences (5.12)  and 
SA SB a a

( 5 . 1 3 ) in chapter 5) and which reside in the public f i l e .

Consequently, the next step in the cryptanalytic attack is  to 

aim to recover p^g from a knowledge of the header h. To do t hi s ,  h 

should be properly factorized.
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Again, the factorization  problem appears to be an NP problem,

since factoring a number seems to be much more . difficult than

determining whether it is prime or composi te [46]. Since this

factorization problem is the basis of the RSA system which is known to 

be reasonably secure, one extra degree of complexity is even claimed 

in our scheme over the RSA system.

Whereas in this latter algorithm the problem resides in the 

ability to factorize n, where

n = p-q

into the two distinct prime factors p and q, the proposed system, on 

the other h a n d , involves the congruence

h = k*p£3 (mod p) (6 . 1 )

where there is no guarantee that k is a prime number. Hence, the 

modular factorization of h into a prime and a composite number is much 

more complicated than the decomposition into two primes.

Assuming that a cryptanalyst has available the currently 

non-existing ability to factorize a 2 0 0-digit long number into 2 

primes, it is then safe to ascertain that it is unrealistic, given a 

margin of safety against future developments, to assume that such a 

cryptanalyst can solve the even more complex problem of factorizing the 

2 0 0-digit long number into a prime and composite factors, and then 

selecting the correct prime pAB out of all the involved possibilities.



Secondly, the possibility of breaking the system based on a 

ciphertext-only analysis is considered. This, again, appears to be a 

computationally infeasible task due to the pseudo-randomness in the 

distribution of the p-adic numbers in Q
pAB

The plots given in Figs. 6.1, 6.2 and 6.3 reflect this

evidence. In these plots the prime pAB = 2909 is considered and a 

random alphabet of 26 characters, with Y = 20, is generated. Then, 

message lengths of M = 100, 1000 and 10000 characters were randomly 

simulated and the frequencies of occurrence of the p-adic numbers 

0,1,...,2908 are respectively plotted for each message length. It is 

seen from these plots that the p-adic numbers have a random 

distribution over the considered range.

However, one argument which is further investigated, claims 

that, although the p-adic numbers are randomly distributed, some of

the numbers in Q do not appear in the transmitted p-adic code.
P AB

By detecting such numbers, a cryptanalyst may have an indication, 

however extremely small, to the prime pAB and hence the ability to 

break the system.

To confirm that this argument has no chance of breaking the 

proposed scheme, entropy calculation of the p-adic numbers for 

different primes pAB was then tested. This is shown in the plots of 

Figs. 6.4, 6.5 and 6 . 6 where values of pAB in the range between 0 and 

10000 were considered. By simulating random messages of lengths
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M = 100, 1000 and 10000 characters (based on a randomly generated 

alphabet with Y = 2 0 ), the entropy of the p-adic numbers occurring in 

the corresponding codes is respectively plotted.

The curve indicated by pAB represents the upper bound for the

corrresponding entropies of the p-adic numbers. This curve is equal

to log 2 pAB and is based on the fact that, for a prime pAB , there

are actually pAB possible p-adic numbers and each of these numbers has

an equally-likely probability of — . Hence,
pAB

P AB
H(pA B ) = “ l  Pi 1 ° S 2 Pi

p AB 1o1 ~  log2 PaB
1= 1 P AB

= log 2 PAB (6.3)

The curve indicated by PAB~ RED. follows from the same reason­

ing, but additionally taking into consideration the fact that many of 

the p-adic numbers in the range 0 to pAB - 1 do not appear in the code 

and hence this curve is the reduced form of the curve PA B . Thus, it 

is shown that, even if a cryptanalyst could "filter" out the p-adic 

numbers which are not present in any length of message, all the other 

p-adic numbers occurring in the codes have an entropy approaching that 

of pAB - RED. and, hence, the information content conveyed to the 

cryptanalyst through the ciphertext is decisively extremely

uninformative.



In Figs. 6.7 - 6.12, the same analysis performed above is 

carried out but taking into consideration the relative frequencies of 

the English alphabet [7], [50] given in Table 6.1. For the prime 

PAb = 2909, frequencies of occurrence of the p-adic numbers are shown 

in Figs. 6.7, 6 . 8 and 6.9 for simulated message lengths of M = 100, 

1000 and 10000 respectively. Figs. 6.10, 6.11 and 6.12, on the other 

hand, show the entropy curves for the p-adic codes corresponding to 

various primes pAB and compared with log 2 pAB and log 2 ( P ^ q - R E D . ) .  

These 3 figures again correspond to M = 100, 1000 and 10000 charac­

ters, respectively.

The same conclusions reached previously hold in the case of the 

English alphabet, and it is apparent that a cryptanalyst's search to 

break the encryption algorithm, and based on statistical approaches is 

an infeasible task.

Furthermore, it is seen that no clear variations occur if 

longer message lengths are studied. Hence, even an attack directed at 

analysing the statistics of a "long" message will fail.

Next, we consider two specific messages in English and plot the 

frequencies of occurrence of the p-adic numbers appearing in the code 

corresponding to various values of pA B . The two messages are "Making 

confusion worse confounded" and "It is a long road that has no turn­

ing" . The plots corresponding to each of these messages are shown in 

Figs. 6.13 and 6.14 for p AB = 2909, Figs. 6.15 and 6.16 for pAB = 4001 

and Figs. 6.17 and 6.18 for pAB = 9967, respectively.

-  112 -



Table 6.1: Relative frequencies of English alphabetic
characters and space

CHARACTER RELATIVE FREQUENCY

space 19.248
A 6.595
B 1 .205
C 2.246
D 3.434
E 10.257
F 1 .799
G 1.627
H 4.921
I 5.625
J 0.124
K 0.624
L 3.251
M 1 . 9 4 3

N 5.450
0 6.062
P 1.558
Q 0.076
R 4.835
S 5.109
T 7.313
tr 2.227
V 0.790
w 1.906
X 0.122
Y 1 . 5 9 4

z 0.060
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It is shown that in each of these plots, the p-adic numbers 

which are present in the range 0 to p ^  - 1 have a random distribution 

in all cases. Such a distribution does not lend an intruder with any 

particular information and a systematic search over various p-adic

fields Q is rather a tedious task.
PAB

Moreover, it is important to take into consideration the fact 

that the randomly generated alphabet in all the previous instances 

only considered an alphabet consisting of 26 letters and a space. If 

the size of the alphabet is increased, so will increase the number of 

p-adic numbers and the additionally created elements of the code will 

contribute to the increase of the degree of randomness in the 

distribution.

Before moving to the evaluation of the g-adic scheme, one 

particular point is analysed in detail.

In the proposed p-adic code structure it was suggested that the 

first two"elements in the code refer to the periodicity and to its 

start, respectively.

When using large values of PAg, the corresponding values of X 

and X^ will generally have a much smaller magnitude than that of the 

elements in the p-adic code. Furthermore, values of X and X^ are 

repetitive in the sense that, given pA B , many denominators in the 

alphabet assume the same values of X or x (refer to Tables 2.1(A) and 

2.1(B)) and hence these values have a higher frequency of occurrence 

than that of the p-adic numbers themselves.



127

This is illustrated in the following ciphertext generated from 

the message: "Its all Greek to me" (first used by Rivest et. al. [46] 

and which was shown to be breakable under the RSA system in section 

4.4.6). Here, a randomly generated alphabet and the prime pAB = 4001 

are used. The ciphertext is then composed of blocks of 4-digit 

numbers and the markers indicate the value of X at the start of each 

sequence:
«■ » •
0 0 0 2 0 0 0 2 1 3 3 4 2 6 6 7 1 3 3 3 0 0 0 6 0 0 0 2 0 4 4 5 0 8 8 9 1 7 7 8 3 5 5 6 3 1 1 1 2 2 2 2 0 4 4 4 0 0 0 1 0 0 0 2 2 5 0 1 2 5 0 0

0 0 0 3 0 0 0 2 3 4 3 0 2 8 5 7 1 7 1 4 3 4 2 9 0 0 0 2 0 0 0 2 3 3 3 5 0 6 6 6 3 3 3 4 0 0 0 2 0 0 0 2 3 3 3 5 0 6 6 6 3 3 3 4 0 0 0 2 0 0 0 2
i • • *

2 6 6 8 1 3 3 3 2 6 6 7 0 0 0 2 0 0 0 2 0 3 3 4 1 6 6 7 0 3 3 3 0 0 0 1 0 0 0 2 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 2 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 2
i • '

3 5 0 2 3 5 0 0 0 0 0 6 0 0 0 2 0 4 4 5 0 8 8 9 1 7 7 8 3 5 5 6 3 1 1 1 2 2 2 2 0 4 4 4 0 0 0 3 0 0 0 2 1 1 4 4 2 2 8 6 0 5 7 1 1 1 4 3 0 0 0 1
t

000216021600 0 0 0 1 0 0 0 2 1 0 0 1 1 0 0 0

To emphasize this fact, the plot of Fig. 6.19 shows, although 

not very clearly, that a peak occurs, in the frequency distribution 

curve, at the values of 0001 and 0002, due to the repetitive 

occurrences of X and A . The same fact is clarified through Fig. 6.20 

where the frequency of distribution of the p-adic numbers is plotted 

against their logarithms. The above-mentioned peak is then 'clearly 

seen.

To avoid any risk that such sharp boundaries which occur 

between successive sequences may give any indications, however 

extremely small, to the value of the prime pAB, it is suggested that 

values of X and X be embedded in the code itself. This is achieved

as follows.



FR
EQ

UE
NC

Y 
OF

 O
CC

UR
EN

CE
 

FR
EQ

UE
NC

Y 
OF

 O
CC

UR
EN

CE
128

- 10 1
NUMBERS IN GFC40015

Flg.S. 13 FREQ. OF OCCURENCE OF p— RD IC
NOsa. BND PERIOD PRRRMETERS FOR
THE MESSPGEi ITS ALL GREEK TO ME
p 3  4001 AB



FR
EQ

UE
NC

Y 
OF

 O
CC

UR
EN

CE

-  12 Q -

10  10  10  10

LOG. C NUMBERS IN GFC4001) ]

Fig.6.20 FREQ. OF OCCURENCE OF p-PDIC
NOs. PND PERIOD PPR'S <L O G . SCPLE:> 
FOR THE NESSPGE j ITS PLL GREEK 
TO HE. - pPB

*

I L, 1 1 I 1

4
10

400 1



130

In the encryption algorithm, instead of sending A and Â  

explicitely in the code, it is proposed that the sender keeps a 

running counter, N, of each element in the plaintext. This element is 

increased by 1 for A, then for A^, and then consecutively for their 

next occurrences. Hence, the sender A transmits the values

and

A' = p^g • A • N (mod p)

A| .5 pAB • A1 • (N+1) (mod p)

(6.4)

(6.5)

instead of actually transmitting A and A^. The next value of N 

will then be N+2 for the following AT, and so forth.

The recipient, B, on the other hand, has already computed pAB 

from the header and, starting with a value of N = 1 , B can keep track 

of the same running counter N. Hence, B can compute A and Â  from A' 

and Aj respectively, such that:

A = A' • * n ]  ̂ (mod p) (6.6)

and

M  * [pAB * (N+1)] 1 (mod P) (6.7)

The inverse values modulo p in congruences (6.6) and (6.7) are 

guaranteed to exist since p is a prime (Euler's theorem).

Consequently, B will be the sole detector of the periodicity 

parameters through the whole of the transmitted message and thus can 

exactly and secretly determine the previously distinctive boundaries.
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In conclusion, this scheme achieves two goals:

1) As mentioned above, the sharp edges which indicate the 

start and end of a sequence of ciphertext are "smoothed” out. A 

cryptanalyst cannot derive any information regarding the structure of 

the transmitted ciphertext and, hence, the very minimal amount of 

information which was previously present in the code has now 

completely disappeared.

2) Since the values of A' and A' are computed modulo p

(and not P^g), then the numbers appearing in the ciphertext will be 

randomly distributed over the range 0 to p— 1 , thus increasing the 

search space which will have to be considered by a cryptanalyst to 

break the code.

The ideas discussed above are best described through the same 

example considered earlier. In this case, p = 7489 and p^g = 4001.

The code is then as follows:
» i •

0513102613  3426671333  64822052044508  89177  835 5 63111222204445027494325012500  

350759  693430285717143429648269953 3 3 5 0 6 6 6 3 3 3 4 0 0 1 9 0 5 3 2 3 3 3 5 0 6 6 5 3 3 3 4 2 9 1 0 3 4 2 3
9 9 9 *

2 6 6 8 1 3 3 3 2 5 6 7 3 9 3 6 4 4 4 9 0 3 3 4 1 6 6 7 0 3 3 3 2 4 8 1 5 4 7 5 1 0 0 1 1 0 0 0 2 9 9 4 6 5 0 1 1 0 0 1 1 0 0 0 3 5 0 7 1 9 0 3
f * *

3 5 0 2 3 5 0 0 5 3 8 3 2 9 2 9 0 4 4 5 0 8 8 9 1 7 7 8 3 5 5 6 3 1 1 1 2 2 2 2 0 4 4 4 2 3 5 1 3 9 5 5 1 1 4 4 2 2 8 6 0 5 7 1 1 1 4 3 6 9 1 1

49811 6 0 2 1 6 0 0 7 4 2 4 0 3 8 3 1 0 0 1 1 0 0 0

It is noticed that, although we have retained the same markers 

positions for ease of locating the start of each sequence, these 

markers now point out at the value of A' (the next value being that of

A!).



The frequencies of occurrence of the numbers present in the

ciphertext, and which are no longer in Q , but in the much larger
pAB

field of GF(P), are plotted in Fig. 6.21 for p = 7^89 and

PAB = silown that the previous peak no longer exists in

the new ciphertext and to emphasize this observation, the same

frequencies of occurrence are again plotted in Fig. 6.22, but against
*

the logarithms of the numbers occurring in the code and which belong 

to GF(P).

6.2 Attempts at Breaking the g'-adic-Based System - Diffusion and 

Confusion

Having subjected the p-adic-based cryptosystem to the attacks 

of the previous section, the g-adic scheme is now analysed for secu­

rity.

To break the scheme based on g-adic sequences, two 

factorization problems of the headers ĥ  and h^ have to be solved to 

recover the values of p^  and n. Both values are necessary to 

decipher the transmitted ciphertext.

Without the knowledge of pAB and n, if a cryptanalyst reverts

to a statistical attack on the ciphertext, then the analysis of the

g-adic system is much more complicated than that of the p-adic system.

This is due to the fact that the search space with the g-adic scheme

spans over Q where g = p1?̂. and n c Z + . In other words, the search 
o  Ad
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space increases exponentially with increasing values of n. Such a 

search is computationally infeasible since the only bound on n is that 

n < p-1 .

Furthermore, the different combinations of p ^  and n are 

unlimited in the sense of a computer search. Consequently, these 

aspects lend the proposed system to the class NP.

Shannon [49] introduced the notion of diffusion. In this 

method, the statistical structure of a message which leads to its 

redundancy is dissipated into long range statistics. A cryptanalyst 

must intercept tremendous amounts of ciphertext to be able to 

understand this structure.' Furthermore, even when he has sufficienti
material, the analytical work required is much greater since the 

redundancy has been diffused over a large number of individual 

statistics.

This notion of diffusion is achieved by both the p-adic and

g-adic-based systems (as has been shown in the entropy curves in the

previous section). The inherent structure of the p-adic field and,

more importantly, that of the g-adic ring, yields to a random

spreading of the elements of Q and Q_ over the considered range.
pAB S

As has been shown, even with a long ciphertext, a cryptanalyst still 

cannot study the structure of the corresponding codes.

Another concept, also introduced by Shannon [49] and achieved 

in the proposed systems, is that of confusion.
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Confusion attempts at making the relation between the 

statistics of the enciphered message and the key a very complex and 

involved one. This is clearer in the case of the g-adic based system 

where no deterministic link is apparent between pAB, n and the 

corresponding terms generated in Q .o

Two interleaved elements of complexity are thus achieved by 

this system: first, the diffusion over the g-adic numbers of the

ciphertext sequence which are themselves embedded into a higher class 

of confusion created by the infinitely many combination possibilities 

of the values of pAg and n .

6 .3  A u t h e n t ic a t io n  and a New D i g i t a l  S ig n a t u r e  P ro c e d u re  B ased  on 

p r a d lc  Number S ystem s

In section 4.2, it was pointed out ‘that authentication and 

digital signature represent an extremely important requirement in any 

cryptographic system.

It should be emphasized that the lack of a user authentication 

procedure in a system enables any intruder to generate illegal 

messages and send them to target recipients. However, in the proposed 

public-key cryptosystem, this problem is solved since A uses his own 

secret key to send the headers ĥ  and ĥ , and B uses A fs public key to 

decipher the message based on ĥ  and h^.

Another user, X, or an intruder,, cannot use K since it is a
SA
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secret key only known to A, and if X generated a message to B, based 

on his (i.e., X’s) secret key (or any other randcm key), then B would 

not receive the corresponding headers properly since he has to 

identify X (not A) as the sender and consequently use yx as the public 

deciphering key.

The other feature necessitated in an efficient cryptosystem is 

a secure yet adaptable signature procedure.

A signature procedure acts both ways in case of disputes. 

First, it is necessary to prevent any receiver, B, of a message from 

changing the contents of the message, or forging a message and sending 

it to himself, claiming that A has originated it. On the other hand, 

this procedure is necessary in order to confirm whether A has or has 

not effectively transmitted a certain message. In some cases, A may 

deny having sent a message and, in others, he may claim that he has 

sent a particular message while, in fact, he has not.

The signature procedure is thus required to solve such con­

flicts. It is needed to be secure such that B cannot forge it and 

such that it can only be revealed to a higher authority if and when 

the case arises. It should also be adaptable in such a way that it is 

message-dependent in order to either confirm or deny the contents of 

the ciphertext, along with identifying the message originator.

In this section a new digital signature is suggested which 

satisfies the above requirements. It is based on discrete logarithms

and is a direct function of the message.
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The method i s  d e p ic t e d  in  F i g .  6 . 2 3 .  A f t e r  th e  se n d e r A has

sent his final message block, he can send one extra enciphered code

based on Q or Q_. This is his signature S:
pAB S

K
S = (M) Sa (mod pAB) (6.8)

where M is a function of the message elements :

M = f ( m i ) ( 6 . 9 )

This function may be, for instance, the product of all numerators and 

denominators constituting the message, or part of it, according to a 

protocol agreed upon by all users of the system.

Although the value S can be. sent as an extra header at the end 

of the message (i.e., in integer form), it is suggested that it is 

preferable to send it in p-adic (or g-adic) code. In this way it will 

constitute an added proof for the values of p^ (and n) on which the 

earlier message was originally based.

The adaptability of this procedure is clear since it is

directly linked to the message, to pAB and to n. Its security is also

guaranteed since it is based on A's secret key and on discrete

logarithms. Thus B cannot compute the value of K from a knowledge
SA

of S and M.

From a cryptanalyst's point of view, he is initially faced with 

the harder problem of deciphering the p-adic or g-adic code of the

signature before even attempting to solve a discrete logarithm. In
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other words, for a cryptanalyst to break the digital signature 

procedure suggested in this section, he has to break the entire 

encryption algorithm described over the previous chapter.

6.4 Comparison with other Public-Key Encryption Systems

In the previous sections a detailed evaluation of the 

cryptographic viability of the proposed scheme was performed. This 

evaluation was based on all possible cryptanalytic approaches which 

aimed at breaking the p-adic and then the g-adic systems.

It was shown that, from the number theoretic side, breaking the 

system is equivalent to solving discrete logarithms over finite 

fields. From the statistical side, it was demonstrated that an attack 

on the system without a knowledge of p ^  and n has to consider an 

extremely large search space where the possibility of detecting useful 

information is ruled out as a possible computational undertaking by 

the cryptanalyst.

The suggested system reveals distinct advantages over the 

existing public-key systems.

First, compared with the Merkle-Hellman algorithm, it does not 

suffer from the need of selecting any particular sequences for the 

encryption process: the Merkle-Hellman algorithm was shown to be

breakable under some assumptions if care was not taken while creating 

the encrypting vector. This vector, due to its dimension and

magnitudes of its elements, proved impractical to be stored in a



public file shared by a large number of users. Also, when used for 

obtaining signatures, the trapdoor knapsack algorithm appears to be 

weak [38] in comparison with other existing public-key systems.

Secondly, compared with the Diffie-Hellman and RSA systems, the 

proposed system is shown to be more secure than either scheme. This 

is due to the fact that it uses features from both systems, namely the 

discrete logarithm and factorization problems respectively.

While in the Diffie-Hellman scheme the emphasis is solely on 

the key distribution method rather than on the encryption algorithm, 

the proposed system makes use of the key distribution scheme and 

introduces a new and secure enciphering method.

Whereas the RSA system considers sending the message directly 

over the channel by raising it to the power of the encryption key, 

the proposed system conceals the plaintext in the form of p-adic and 

g-adic codes thus making any cryptanalytic attack a highly complex 

operation.

The encryption algorithms proposed in this system, not only aim 

at generating a highly confusing and seemingly random ciphertext but, 

more importantly, they maintain a high degree of security against 

different attacks.

This has been shown (in section 4.4.6) not to be the case in 

the RSA system and which is considered to be the most practically

secure cryptosystem known to the author. Although the attacks



directed at the RSA system in section 4.4.6 are not guaranteed to 

succeed in all cases, still they do give strong indications of the 

vulnerability of such a system.

The two suggested schemes, however, have been shown , through 

the previous analyses, to safeguard the cryptographic security of the 

system against directed attacks. It has been demonstrated that, given 

that no algorithm exists which efficiently solves the discrete 

logarithm problem, the p-adic and g-adic schemes are theoretically and 

experimentally secure and that they do not share the same degree of 

vulnerability as the RSA system.

The signature procedure described in the previous section is 

totally message and sender dependent. If it is transmitted in the 

form of a p-adic or g-adic sequence, as it is suggested, it forms a 

direct unbreakable and unforgeable link between the sender, the 

message he sent, p ^  and n.

When comparing the proposed system with other cryptosystems, it 

is also important to consider the bit rate required for the efficient 

implementation of each scheme.

In this respect, the Merkle-Hellman system requires an ex­

tremely large key size: the elements of the vector a are 0(200)-bit 

natural numbers and the vector x is 0(n)-binary bits where n is the 

length of both vectors a and x* R e f e r r i n g  t o  s e c t i o n s  4.4.3 and 4.4.4, 

t he  g e n e ra te d  c i p h e r t e x t ,  c , i s  t h u s :
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n n
0( l (99 + i)) = 0( - (n + 199)) (6.10)
i=1 2

i.e., 0(15000)-bits for n s 100.

This order of magnitude is demanded in the Merkle-Hellman 

implementation to ensure maximum cryptographic security. Furthermore, 

complicated encryption algorithms to produce "safe” sets of the

extremely large vector a and to store these sets in the public 

directory are necessarily required.

The RSA system, on the other hand, is found to be very 

efficient in terms of bit rate requirements. The system is considered 

secure if the ciphertext is 0(700)-bits.

But, as has been demonstrated earlier in the thesis, the

successive encryption algorithm can break the RSA system and, 

consequently, it has to be thoroughly investigated when using such 

orders of magnitude to ensure the practical safety of its use.

In the proposed cryptsystem, however, it is shown that, 

compared with the RSA system in particular, the ciphertext is much 

longer than in the RSA case. This extended length of the code may be 

regarded as a disadvantage in the system. However, unlike the RSA

system, the proposed schemes are shown to be theoretically and

practically more secure than the RSA algorithm. Longer ciphertexts do 

not constitute a problem .in practical implementation where ̂ software



algorithms are fast and efficient. Furthermore, if the hardware 

implementation of the system can be achieved, then the speed and 

efficiency of operation will improve even more.

In conclusion, the comparison between the two systems, is, 

in fact, a tradeoff between security and practicality of

implementation. In cryptographic systems design, the chief target is 

security, and this is believed to be achieved through the schemes 

developed in this thesis.

Also, the longer codes contribute to the inherent existence of 

the concepts of diffusion and confusion discussed in section 6.2. 

These concepts, consequently, enable the users of the system to 

consider smaller orders of magnitude in the ciphertext. Prevention 

from cryptanalytic attacks is thus based on confusion rather than on 

extremely large numbers. This has an important impact where mini­

computers or, eventually,, microcomputers are to be used in a

multi-user cryptographic network.



CHAPTER 7

CONCLUSIONS

7.1 Summary of Contributions

. This thesis was concerned with the application of p-adic 

number systems in the design of a secure public-key cryptographic
ischeme.

p-adic number systems, although introduced by Hensel in 1908, 

have only recently attracted attention for their possible uses in 

exact linear computations, matrix processors and signal 

transformations.

On the other hand, the subject of cryptography with all its 

pertaining features is currently being seriously investigated by 

researchers. The tremendous developments in the areas of computer 

science, design and analysis of efficient algorithms have led to the 

consequent development of cryptology.

Although cryptology involves many ' sciences which all 

contribute to the design of secure systems, it is fundamentally based 

on number theory.

It was through the study of p-adic number systems that a link 

was made between the two areas. Due to their inherent structure and 

their seemingly random distribution, these systems were shown, in this 

thesis, to be an important tool in the design of a public-key

cryptographic system.



After a brief introduction in chapter 1 to p-adic number

systems and to cryptography, in general, chapter 2 is a detailed 

analysis of variable-length p-adic number systems. The canonic 

infinite p-adic expansions corresponding to rational numbers have been 

discussed and the algorithm proposed by Krishnamurthy for the

conversion from the rational field Q to the p-adic field Q , where, p

is a prime, was studied.

By considering infinite p-adic expansions and by detecting

the period in the recurrent elements of these expansions, a simple 

formula was derived which proved the existence of periodicity and 

which allowed the simple calculation of corresponding p-adic periods.

Although simple in form, this formula had to be

computationally efficient. A practical efficient algorithm was then

developed which computed the p-adic period, \, for any rational

number, given the prime P. Comparison between the periods

corresponding to different denominators and their Euler totient

function was also presented for different prime values.

To make use of this efficient ability to compute the p-adic 

period and with a view to using the p-adic number systems in designing 

a secure cryptographic scheme, another algorithm for the conversion 

from Q to Qp wa developed and which is considered to be better than 

Krishnamurthy's algorithm, since this latter algorithm is non 

terminating. The conversion algorithm presented in section 2.4,



however, computes all the aperiodic and periodic elements in the 

p-adic canonic expansion and terminates after one complete cycle of 

the recurring elements.

In chapter 3, finite-segment p-adic number systems calculated

over the finite field Q , were studied. Through a brief mathematical 

introduction to these systems, it was pointed out that, for rational 

values to be uniquely represented in Qp, they have to satisfy certain 

bounds. Although these bounds were never mathematically justified, an 

explanation for their existence was provided in section 3-1.

Section 3.2 dealt with the structure of Hensel codes and the 

different representations in Qp of different rational number 

structures. Then, arithmetic operations in Qp were discussed. 

Krishnamurthy1s algorithms for the four main operations were given. 

However, it is seen that these algorithms do not always generate the 

correct results and, in some cases, the obtained results do not 

correspond to any Hensel code. The algorithms which were developed in 

section 3*3.5 overcame these drawbacks in Krishnamurthy’s algorithms 

and allowed closed arithmetic operations to be performed in Q .

In section 3-4, the different methods for the inverse

conversion from Qp to Q were presented. These methods were analysed 

separately, and it is seen that the method of successive additions 

proved to be the most flexible and fastest amongst all other 

techniques and, hence, was the one to be adopted in the proposed

cryptographic algorithm.
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Finally, the limitations of using segmented p-adic number 

systems were discussed, in general, and particularly in connection 

with cryptographic usage and, consequently, it was decided to con­

struct the cryptographic scheme based on variable-length p-adic number 

systems.

In chapter 4, the mathematical theory behind cryptographic 

systems was presented and the requirements which should be met by such 

systems were detailed. A conventional cryptosystem was described and 

the practical limitations of such a system were pointed out. This led 

to the introduction of public-key cryptosystems which enabled privacy, 

security, authentication and digital signature procedures to be 

incorporated in one system. The needs for authentication and digital 

signatures were clarified in section 4.2.

It was mentioned earlier that the design of secure crypto­

graphic systems relied mainly on number theory. Nevertheless, other 

disciplines also control the efficiency of such systems. One such 

science is that of complexity theory. Problems were classified in 

complexity classes according to the degrees of difficulty in solving 

them. The hardest of these classes is the so called NP-complete 

class. Designers of cryptosystems attempt to base their algorithms on 

this class of complexity. The new algorithms presented in this thesis 

appear to belong to the class NP.

Based on all these features, the concept of public-key 

cryptosystems was then explained and, in section 4.4, the 3 main 

systems which fall into that category of cryptographic schemes were

discussed in detail.
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Chapter 5 is the actual implementation of p-adic number 

systems in the design of the proposed cryptosystem. The p-adic code 

structure to be used in this system was introduced and it was seen how 

variable-length p-adic number systems can be efficiently implemented 

in the proposed scheme. The conversion from Qp to, Q was discussed 

again based on this proposed structure. Rational values in Q would 

correspond to elements in the system’s alphabet.

The subject of alphabet generation was then discussed and the 

necessary restrictions for any ambiguity-free cryptosystem were 

presented. Practical ways of overcoming these restrictions were also 

given.

Then, in section 5.4, the first scheme based on p-adic number

fields was put forward and the corresponding encryption and decryption

algorithms were explained. The second scheme is an extension of the 
first and relies on the g-adic rings, Q_, where g is a power of ao
prime p^ (i.e., p^ ). With one extra header in the encryption 

algorithm, the security of the cryptosystem is exponentially in­

creased. However, to be able to convert the ciphertext, now in Q , to 

the rational field Q to recover the message, an algorithm was devel­

oped which first converted Q into Q and finally, elements in Q
S PAB pAB

are converted to their rational value through the usual conversion

algorithm.

The proposed system was then objectively evaluated in chapter 

6. Different cryptanalysis approaches were directed, first at the 

p-adic scheme and, secondly, to the g-adic scheme. It was shown that
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the system incorporated the two safety building blocks of the 

Diffie-Hellman and RSA systems. It relies on the difficulty of

solving discrete logarithms over GF(p) and on the difficulty of 

factorizing a number into its prime components. Considering the 

latter feature, it is thought that the factorization problem in the 

proposed system is even harder to solve than in the RSA system, since 

it invloves the decomposition of a number into two primes or more and, 

also, over GF(p), which is not the case in the RSA system.

Unless any major developments take place regarding the 

solution of the above-mentioned problems, the system is considered 

theoretically safe and practically safer than either the Diffie- 

Hellman and RSA systems. This is because of the random configuration 

of the ciphertext which follows directly from the application of 

p-adic number systems.

To prove the randomness of this structure, statistical

analysis of the distribution of these numbers in Q was performed by
pAB

calculating the frequencies of occurrence in a particular range, and 

by computing the entropy of the p-adic numbers occurring in a message. 

Entropy calculations were based on random messages of lengths 100, 

1000 and 10000 characters. The messages themselves were, first, con­

stituted of 26 random alphabet characters. Then, the analysis was 

based on an English alphabet generated by considering the relative 

frequencies of the English characters. Random messages of the above 

lengths were also simulated and the entropy studied. It was shown 

that the p-adic numbers did, in fact, occur in a random manner in the

ciphertext and, even though, a cryptanalyst could detect those numbers
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which may not be present in the ciphertext, this deduced information 

does not help the cryptanalyst in solving the problem he is faced with 

in any way.

The randomness in the distribution of p-adic numbers has also 

been tested in the case of specific English messages. Two messages 

were considered and values of p^g = 2909, 4001 and 9967 were used to 

study the frequencies of occurrence of the p-adic numbers in the 

corrresponding ciphertext.

One consideration which was then dealt with was the periodic­

ity parameters. It was shown that, although the p-adic numbers are 

randomly spread over a particular range, the periodicity parameters, 

on the other hand, tend to be small in magnitude (relative to the 

p-adic numbers) and repetitive. This leads to the possibility of 

detecting the code boundaries. And, although this fact does not 

constitute a risk to the proposed system, an algorithm was developed 

to embed the periodicity parameters in the code. Numbers occurring in 

the code, now, have the added feature of being spread over GF(p) 

instead of Q
PAB

The same approach was carried over to the second system. Only 

there, the cryptanalysis task proved to be more complex. A 

cryptanalyst, in the g-adic system, is faced with a search which 

increases exponentially with the increase of the power n. It is 

claimed that this search falls in the NP-class of complexity problems

unless otherwise proved.
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The concepts of diffusion and confusion introduced by Shannon 

were also discussed in regard to the two schemes.

In section 6.3, a new digital signature method was suggested 

which relied on discrete logarithms and p-adic number systems. In it, 

the user would sign his messages and it guaranteed the authenticity of 

the message contents in a transmitted ciphertext. The receiver could 

not initiate messages and claim they were transmitted by a certain 

sender and he could not change the contents of a received message. A 

sender could not deny having sent a message either. The signature 

procedure suggested links the sender, the message, p^g and n in one 

unbreakable unit.

Finally, a comparison was carried out, in section 6.4, between 

the proposed system and already existing cryptographic algorithms. 

According to the analysis carried out in this thesis, it was found 

that, unless an algorithm for solving discrete logarithms over GF(p) 

was developed, the p-adic and, more so, the g-adic system prove to be 

safer than the Dif f ie-Hellman and RSA systems. Breaking the two 

proposed schemes is equivalent to breaking the Diffie-Hellman system.

7.2 Suggestions for Future Research

In this section, some ideas are suggested for further 

investigation. These ideas relate to both the analysis performed in 

this thesis and to cryptography in general.
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First , regarding the analysis of the p-adic and g-adic

schemes, it was shown that these schemes were secure given any

cryptanalytic attack. This statement is made, at least, from the

author’s point of view. Methods and ways of cryptanalysis other than 

those reported in this thesis can be thought of and directed to the 

schemes. Once the method has withstood all attacks for a sufficient 

length of time, it may be practically used with a reasonable amount of 

confidence.

The number theoretic algorithms which are at the core of the 

proposed system should be further investigated. Attempts of breaking 

the system may lead to efficient algorithms for solving the discrete 

logarithm problem over finite fields or the factorization problem, 

both knowingly unsolved as yet.

From a practical side, it is suggested that these schemes be 

implemented on microprocessors for the speed and flexibility of 

operation. This would involve the implementation of p-adic arithmetic 

on'microprocessors, a very attractive project in its own right, since 

it would lead to extremely fast and error-free computations. On the 

other hand, it would involve a thorough study of finite-segment p-adic 

number systems and a further investigation of the closure of arithme-
/S

tic operations in Q .

Regarding cryptography in general, security measures should be 

studied to safeguard the information held in the public directory.



If a cryptographic system is to be of value, its keys must be 

protected. In some situations, the "loss" of cryptographic keys may 

occur. This may be due to:

a) hardware malfunction

b) software error

c) human error in handling the keys

The effects of losing a key should be studied and techniques of 

overcoming such mishaps should be investigated.

Finally, dedicated hardware for the implementation of crypto­

graphic schemes is needed. For instance, the computation involved in 

finding suitable prime numbers is heavy; exponential functions 

involved run too slowly when carried out by software; modular 

arithmetic is not yet efficiently implemented. All these factors 

determine the need for hardware designs of cryptosystems which will

run in a fast and efficient way.
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APPENDIX A

Table of H(p,r,a) Codes for p = 5, r = 4



b \
a 1 2 3 4 5 6 >

1 .1000 .2000 .3000 .4000 .0100 .1100
2 .3222 .1000 .4222 .2000 .0322 .3000
3 .2313 .4131 .1000 .3313 .0231 .2000
4 .4333 .3222 .2111 .1000 .0433 .4222
5 1.000 2.000 3.000 4.000 .1000 1.100
6 .1404 .2313 .3222 .4131 .0140 .1000
7 .3302 .1214 .4021 .2423 .0330 .3142
8 .2414 .4333 .1303 .3222 .0241 .2111
9 . .4201 .3012 .2313 .1124 .0420 .4131

10 3.222 1.000 4.222 2.000 .3222 3.000
11 .1332 .2120 .3403 .4240 .0133 .1411
12 .3424 .1404 .4333 .2313 .0342 .3222
13 .2034 .4014 .1143 .3123 .0203 .2232
14 .4101 .3302 .2013 .1214 .0410 .4021
15 2.313 4.131 1.000 3.313 .2313 2.000
16 .1234 .2414 .3104 .4333 .0123 .1303
17 .3043 .1132 .4121 .2210 .0304 .3342

b \
a 7 8 9 10 11 12

1 .2100 .3100 .4100 .0200 .1200 .2200
2 .1322 .4000 .2322 .0100 .3322 .1100
3 .4313 .1231 .3000 .0413 .2231 .4000
4 .3111 .2000 .1433 .0322 .4111 .3000
5 2.100 3.100 4.100 .2000 1.200 2.200
6 .2404 .3313 .4222 .0231 .1140 .2000
7 .1000 .4302 .2214 .0121 .3423 .1330
8 .4030 .1000 .3414 .0433 .2303 .4222
9 .3432 .2243 .1000 .0301 .4012 .3313

10 1.322 4.000 2.322 .1000 3.322 1.100
11 .2204 .3041 .4324 .0212 .1000 .2332
12 .1202 .4131 .2111 .0140 .3020 .1000
13 .4212 .1341 .3321 .0401 .2430 .4410
14 .3222 .2423 .1134 .0330 .4431 .3142
15 4.313 1.231 3.000 .4131 2.231 4.000
16 .2042 .3222 .4402 .0241 .1421 .2111
17 .1431 .4420 .2024 .0113 .3102 .1240
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b \
a 13 14 15 16 17

1 .3200 .4200 .0300 .1300 .2300
2 .4322 .2100 .0422 .3100 .1422
3 .1413 .3231 .0100 .2413 .4231
4 .2433 .1322 .0211 .4000 .3433
5 3.200 4.200 .3000 1.300 2.300
6 .3404 .4313 .0322 .1231 .2140
7 .4142 .2000 .0402 .3214 .1121
8 .1241 .3111 .0130 .2000 .4414
9 .2124 .1420 .0231 .4432 .3243 •
10 4.322 2.100 .4222 3.100 1.422
11 .3120 .4403 .0340 .1133 .2411
12 .4424 .2404 .0433 .3313 .1342
13 .1000 .3034 .0114 .2143 .4123
14 .2343 .1000 .0201 .4302 .3013
15 1.413 3.231 .1000 2.413 4.231
16 .3340 .4030 .0310 .1000 .2234
17 .4234 .2323 .0412 .3401 .1000
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APPENDIX B

Table of Variable-Length p-adic Codes for p 5 and y = 1 7



1 1 2 10 1 2 20 1 2 30
2 1 2 32 1 2 10 1 2 42
3 2 2 231 2 2 413 1 2 10
4 1 2 43 1 2 32 1 2 21
5 1 2 10 1 2 20 1 2 30
6 2 2 140 2 2 231 1 2 32
7 6 2 3302142 6 2 1214230 6 2 4021423
8 2 2 241 1 2 43 2 2 130
9 6 2 4201243 6 2 3012432 2 2 231

10 1 2 32 1 2 10 1 2 42
11 5 2 133240 5 2 212041 5 2 340332
12 2 2 342 2 2 140 1 2 43
13 4 2 20341 4 2 40143 4 2 11430
14 6 2 4101343 6 2 3302142 6 2 2013431
15 2 2 231 2 2 413 1 2 10
16 4 2 12340 2 2 241 4 2 31042
17 16 2 30431210240132342 16 2 11323420431210240 16 2 41210240132342043

6

1 1 2 40 1 3 010 1 3 110
2 1 2 20 1 3 032 1 2 30
3 2 2 331 2 3 0231 1 2 20
4 1 2 10 1 3 043 1 2 42
5 1 2 40 1 2 10 1 3 110
6 2 2 413 2 3 0140 1 2 10
7 6 2 2423021 6 3 03302142 6 2 3142302
8 1 2 32 2 3 0241 1 2 21
9 6 2 1124320 6 3 04201243 2 2 413

10 1 2 20 1 2 32 1 2 30
11 5 2 424033 5 3 0133240 5 2 141120
12 2 2 231 2 3 0342 1 2 32
13 4 2 31232 4 3 020341 4 2 22321
14 6 2 1214230 6 3 04101343 6 2 4021423
15 2 2 331 2 2 231 1 2 20
16 1 2 43 4 3 012340 2 2 130
17 16 2 22102401323420431 16 3 030431210240132342 16 2 33420431210240132
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V
a 7 8 9

1 1 3 210 1 3 310 1 3 410
2 1 3 132 1 2 40 1 3 232
3 2 2 431 2 3 1231 1 2 30
4 1 2 31 1 2 20 1 3 143
5 1 3 210 1 3 310 1 3 410
6 2 2 240 2 2 331 1 2 42
7 1 2 10 6 2 4302142 6 2 2214230
8 2 2 403 1 2 10 2 2 341
9 6 2 3432012 6 2 2243201 1 2 10
10 1 3 132 1 2 40 1 3 232
11 5 2 220411 5 2 304112 5 2 432403
12 2 2 120 2 2 413 1 2 21
13 4 2 42123 4 2 13410 4 2 33212
14 1 2 32 6 2 2423021 6 2 1134310
15 2 2 431 2 3 1231 1 2 30
16 4 2 20421 1 2 32 4 2 44023
17 16 2 14312102401323420 16 2 44204312102401323 16 2 20240132342043121

V
a 10 11 12

1 1 3 020 1 3 120 1 3 220
2 1 3 010 1 3 332 1 3 110
3 2 3 0413 2 3 2231 1 2 40
4 1 3 032 1 2 41 1 2 30
5 1 2 20 1 3 120 1 3 220
6 2 3 0231 2 3 1140 1 2 20
7 6 3 01214230 6 2 3423021 6 3 13302142
8 1 3 043 2 2 230 1 2 42
9 6 3 03012432 6 2 4012432 2 2 331

10 1 2 10 1 3 332 1 3 110
11 5 3 0212041 1 2 10 5 2 233240
12 2 3 0140 2 2 302 1 2 10
13 4 3 040143 4 2 24301 4 2 44103
14 6" 3 03302142 6 2 4431013 6 2 3142302
15 2 2 413 2 3 2231 1 2 40
16 2 3 0241 4 2 14210 1 2 21
17 16 3 011323420431210240 16 2 31024013234204312 16 2 12401323420431210
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V s
a 13 14 15

1 1 3 320 1 3 420 1 3 030
2 1 3 432 1 3 210 1 3 042
3 2 3 1413 2 3 3231 1 3 010
4 1 3 243 1 3 132 1 3 021
5 1 3 320 1 3 420 1 2 30
6 2 2 340 2 2 431 1 3 032
7 6 2 4142302 1 2 20 6 3 04021423
8 2 3 1241 1 2 31 2 3 0130
9 6 2 2124320 6 3 14201243 2 3 0231

10 1 ' 3 432 1 3 210 1 2 42
11 5 2 312041 5- 2 440332 5 3 0340332
12 2 2 442 2 2 240 1 3 043 !
13 1 2 10 4 2 30341 4 3 011430
14 6 2 2343101 1 2 10 6 3 02013431
15 2 3 1413 2 3 3231 1 2 10 I
16 4 2 33402 2 2 403 4 3 031042
17 16 2 42342043121024013 16 2 23234204312102401 16 3 041210240132342043

16 17

1 1 3 130 1 3 230
2 1 3 310 1 3 142
3 2 3 2413 2 3 4231
4 1 2 40 1 3 343
5 1 3 130 1 3 230
6 2 3 1231 2 3 2140
7 6 2 3214230 6 3 11214230
8 1 2 20 2 2 441
9 6 2 4432012 6 2 3243201

10 1 3 310 1 3 142
11 5 3 1133240 5 2 241120
12 2 2 331 2 3 1342
13 4 2 21430 4 2 41232
14 6 2 4302142 6 2 3013431
15 2 3 2413 2 3 4231
16 1 2 10 4 2 22340
17 16 2 34013234204312102 1 2 10

1
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APPENDIX Cl

Program for the Variable-Length p-adic/Rational Conversion
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C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

FINITE REPRESENTATION OF INFINITE p-ADIC EXPANSIONS

RATIONAL / INFINITE p-ADIC CONVERSION BASED ON 
-----------  THE PERIOD CALCULATION -----------

NOTE: THE STRUCTURE OF THE RESULTING CODE IN THIS PROGRAM FOLLOWS 
THE THEORETICAL DESCRIPTION.

C Main program calling different subroutines from tlie menu 
C

INTEGER P
C
C Reading the initial value of the prime p of the infinite p-adic field.
C This value can be altered during execution through the command RDA.
C

CALL CREAD(P)
C
10 WRITE (5,999)
999 FORMAT (/,2X,'Enter command or HLP')

READ (5,998) COM 
998 FORMAT (A3)
C
C These are the command routines which, in turn, will call the corresponding 
C operation routines.
C

IF (COM.EQ.'HLP'.OR.COM.EQ.'hip') 
IF (COM.EQ.'RDA'.OR.COM.EQ.'rda') 
IF (COM.EQ.'FOR'.OR.COM.EQ.'for') 
IF (COM.EQ.'INV'.OR.COM.EQ.'inv') 
IF (COM.EQ.'END'.OR.COM.EQ.'end') 
GO TO 10

CALL CHLP 
CALL CREAD(P) 
CALL CFOR(P) 
CALL CINV(P) 
GO TO, 20

C
C
c
20 STOP

END



c
c
c
c
c
c
c

************ ******* 
* *
* COMMAND modules *
*  *
*******************

SUBROUTINE CHLP
C
C Command routine to display menu items 
C

C

WRITE (5,*) 
WRITE (5,*) 
WRITE (5,*) 
WRITE (5,*) 
WRITE (5,*)

Commands are:'
RDA - read a new value of P' 
FOR - conversion from rational 
INV - conversion from infinite 
END - end execution'

RETURN
END

C

C
SUBROUTINE CREAD(P)

C
C Command routine to read and pass new values of p. 
C

INTEGER STORE(5 0), P , SIZE 
C
10 WRITE (5,999)
999 FORMAT (2X,'Enter PRIME')

READ (5,*) P 
C
C Test of primality on p 
C

to infinite p-adic' 
p-adic to rational'

I = P
CALL PRMDIVd,STORE, SIZE)
IF (STORE(1).NE.P) THEN 

WRITE (5,998)
998 FORMAT (2X,'THE VALUE OF PRIME ENTERED IS NOT A PRIME')

GO TO 10 
ENDIF 

C
RETURN
END

C

C
SUBROUTINE CFOR(P)

C
C Command routine calling tlie 'FORWARD', rational -- > p-adic conversion
C routine, FINREP, and then printing the resulting finite representation 
C of the infinite expansion 
C

INTEGER PCODE (5 0), P , NTJM, DEN 
C

WRITE (5,999)
999 FORMAT (2X,'Enter NUM and DEN of rational')

READ (5,*) NUM,DEN
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CALL FINREP(NUM,DEN,P ,PCODE,LENGTH) 
CALL PRINT(PCODE,LENGTH)

RETURN
END

SUBROUTINE CINV(P)

Command routine calling the 'INVERSE', p—adic -- > rational conversion
routine, INV.

INTEGER PCODE(50),P 
C

WRITE (5,999)
999 FORMAT (2X,'Enter the order N of the Farey sequence')

READ (5,*) N 
C

WRITE (5,998)
998 FORMAT (2X,'Enter infinite P-ADIC CODE')

READ (5,*) PCODE(l),PC0DE(2),(PCODE(I),1=3,PC0DE(1)+PC0DE(2)+1)
C
C L and LI correspond to the p-adic period and to the first recurrent 
C element respectively 
C

L = PCODE(1)
LI = PCODE(2)

C
CALL INV(P,PCODE,L,LI,N)

C
RETURN
END
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Q ************************
C * *
C * INPUT/OUTPUT modules *
C * *
Q ************************
C
c

SUBROUTINE PRINT(PCODE,LENGTH)
C
C Routine to print tlie finite representation of variable length, LENGTH, 
C of the infinite p—adic expansion 
C

INTEGER PC0DE(50)
C

WRITE (5,999)
999 FORMAT (IX,'FINITE p-ADIC REPRESENTATION OF THE EXPANSION:') 

WRITE (5,998) (PCODE(I),1=1,LENGTH)
998 FORMAT (IX,5013)
C

RETURN 
END

SUBROUTINE RATOUT(NUM,DEN)

Same routine as in program HENSEL

INTEGER NUM,DEN 
C

IN = 2
IF (IABS(NUM).GT.9) IN = 3 
IF (IABS(NUM).GT.99) IN = 4 
IF (IABS(NUM).GT.999) IN = 5 
IF (IABS(NUM).GT.9999) IN = 6 

C
ID = 1
IF (DEN.GT.9) ID = 2 
IF (DEN.GT.99) ID = 3 
IF (DEN.GT.999) ID = 4 
IF (DEN.GT.9999) ID = 5 

C
WRITE (5,999)

999 FORMAT (IX,'RATIONAL EQUIVALENT:')
WRITE (5,998) NUM,DEN

998 FORMAT (1X,I<IN>, 7  M<ID>)
C

RETURN
END



o
n
 

n
o

o
n

 
n

o
n

 
o 

n 
n 

m
 

n
o

n

172

Q **********************************************
C * *
C * RATIONAL to p-ADIC CODE CONVERSION routine *
C * and related routines *
C  * *
Q *<*****«*♦*******************♦***************
C
c

SUBROUTINE FINREP(A,B,P,PADIC,SIZE)
C
C This routine implements the theoretical algorithm developed for a 
C finite representation of an infinite p—adic expansion, based on 
C the p-adic period computation 
C

INTEGER PADIC(50),R(50),A,B,P,D,SIZE,PERIOD

Initialization

DO 10 1=1,50 
R(I) = 0 
PADIC(I) = 0 

CONTINUE

Check if (A,B)=1 and, if not, then set the updated values of A and B

N1 = IABS(A)
N2 = IABS(B)
CALL GCD(N1,N2)
B = N2
IF (A.LT.O) THEN 

A = -N1
ELSE

A = N1 
ENDIF

Check the divisibility of the denominator in ALFA. B becomes D.

CALL DIVDEN(B,P,D)

Calculation of ITEMP which corresponds to r in the theoretical 
development and which sets an upper bound on the computation

M = MAX(IABS(A),IABS(D))
AL0G1 = ALOG10((2. *((FLOAT(M))**2.)) + 1.)
AL0G2 = AL0G10(FLOAT(P))
TEMP = AL0G1 / AL0G2 
ITEMP = IFIXCTEMP +1.)
IF (MOD(ITEMP,2).NE.0) ITEMP=ITEMP+1

Computation of the p-adic period and putting its value in the 1st 
C location 
C

L = PERI0D(P,D)
PADIC(1) = L 

C
C Implementation of the developed algorithm. INVD is the multiplicative 
C inverse of the denominator D.
C

CALL SOLVE(D ,INVD,P )



173

R ( l )  =  A
PADICC3) = M0DF((INVD*R(1)),P)

DO 20 1=1,L+ITEMP-1
R(I+1) = (R(I) - PADIC(I+2)*D) / P 
PADIC(I+3) = MODF((INVD*R(I+l)),P)

20 *CONTINUE
C
C Computation of the pointer to the 1st recurrent element and putting 
C this value in the 2nd location 
C

DO 30 I=2,L+ITEMP 
DO 40 J=1,I-1

IF (R(I).EQ.R(J)) THEN 
LI = J
PADIC(2) = LI 
GO TO 50 

END IF

C

40 CONTINUE
30 CONTINUE
C
50 SIZE = L + LI + 1
C

RETURN
END

C
C ---- Q
C

SUBROUTINE GCD(A,B)
C
C Same routine as in HENSEL
C

INTEGER A, B,GCDVAL
C

N1 = A 
N2 = B
IF (N1.GT.N2) GO TO 
K1 = N1 
N1 = N2 
N2 = K1

10 J = M0D(N1,N2)
IF (J.EQ.O) GO TO 20 
N1 = N2 
N2 = J 
GO TO 10

20 GCDVAL = N2 
A = A / GCDVAL 
B = B / GCDVAL

C
RETURN
END

C
C ---- _______ 0 _____________



SUBROUTINE DI VDEN( VIN, P, VOUT)

C This subroutine checks the divisibility of an integer VIN by 
C a prime P. The final indivisible value, VOUT, is returned.
C

INTEGER VIN,P,VOUT,TEMP 
C

TEMP = VIN
10 MODP = MODF(TEMP,P)

IF (MODP.EQ.O) GO TO 20 
VOUT = TEMP 
GO TO 30 

C
20 TEMP = TEMP / P

GO TO 10 
C
30 RETURN

END 
C

C
SUBROUTINE SOLVE (VIN, VOUT, P)

C
C Same routine as in HENSEL program 
C

INTEGER VIN,VOUT,VALUE,P 
C

DO 10 VOUT=l,P-1
VALUE = VIN * VOUT 
MODP = MODF(VALUE,P)
IF (MODP.EQ.l) GO TO 20 

10 CONTINUE
C
20 RETURN

END 
C
C ---------- 0 -----------
C

FUNCTION MODF(VIN,P)
C
C Same function as in HENSEL program 
C

INTEGER VIN,P 
C

MODF = MOD(VIN,P)
10 IF (MODF.LT.O) MODF=MODF+P

IF (MODF.LT.O) GO TO 10 
C

RETURN
END

C

C
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INTEGER FUNCTION PERIOD(P,B)

C Function to compute the p-adic periodicity given the rational denominator 
C B and the prime p. The computation is a direct implementation of the 
C theoretical algorithm developed.
C PSTORE is a 1-d array where the odd locations contain the primes
C and the even locations contain their corresponding powers.
C NSTORE is a 1-d array where the locations contain the values of
C PSTORE(i)♦♦PSTORE(i+1)
C FSTORE is a 2-d 'matrix' where a row is allocated to each Fli and
C the column locations contain each prime factor of Fli raised
C to its power.
C

INTEGER NSTORE(50),PSTORE(100),FST0RE(50,100)
INTEGER P,B ,D ,DD,Q,PSIZE,TEMP,QUOTNT,RES,FI

For D=1 or D=2 (note: here, D=B), the period is always 1.

IF (B.EQ.1.0R.B.EQ.2) THEN 
PERIOD = 1 
GO TO 400 

END IF

Array initialisation 
C

DO 100 1=1,50 
NSTORE(I) = 0 

100 CONTINUE 
C

DO 200 1=1,50
DO 300 J=l,100 

FSTORE(I,J) = 0 
300 CONTINUE
200 CONTINUE
C

D = B 
DD = D 

C
C Call the prime power factorization (PPF) procedure to perform the 
C PPF of the denominator D. Values are stored in PSTORE then,
C subsequently, in NSTORE, after raising the primes to their powers.
C

CALL PRMFAC(DD,PSTORE,PSIZE)
C

J = 1 
1 =  1 
K = I + 1

10 NSTORE(J) = PSTORE(I)♦♦PSTORE(K)
IF (K.EQ.PSIZE) GO TO 20 
1 = 1 + 2  
K = I + 1 
J = J + 1 
GO TO 10

C
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C Store FI(Pi**EPSILONi) [Refer to nomenclature in tlie theoretical 
C analysis].
C
20 DO 30 1=1,J

TEMP = NSTORE(I)
NSTORE(I) = FI(TEMP)

30 CONTINUE
C

MAXSIZ = 1 
C
C In the following, FSTORE is filled according to FI 
C

DO 40 1=1,J
IF (NSTORE(I).GT.l) TEEN 

TEMP = NSTORE(I)
CALL PRMFAC(TEMP,PSTORE,PSIZE)
FSTORE(1,1) = PSTORE(1)
IF (PSIZE.EQ.2) GO TO 40 
INDEX = 0
DO 50 K=3,PSIZE—1,2 

INDEX = INDEX + 1 
FSTORE(I,K-INDEX) = PSTORE(X)
IF ((K-INDEX).GT.MAXSIZ) MAXSIZ=K-INDEX 

50 CONTINUE
ENDIF

40 CONTINUE
C
C Assign the largest value of FI to PERIOD 
C

PERIOD = NSTORE(l)
IF (J.GT.l) THEN 

DO 60 1=2,J
IF (NSTORE(I).GT.PERIOD) PERIOD=NSTORE(I)

60 CONTINUE
ENDIF 

C
C Compute the smallest value of PERIOD which satisfies the congruence 
C P**PERIOD = 1 (mod D)
C

DO 70 1=1,J
IF (NSTORE(I).GT.l) THEN 

DO 80 K=MAXSIZ,1,-1
IF (FSTORE(I,K).EQ.0) GO TO 80 
QUOTNT = NSTORE(I) / FSTORE(I,K)
RES = MODULO(P,QUOTNT,D)
IF ((RES.EQ.l).AND.(QUOTNT.LE.PERIOD)) THEN 

PERIOD = QUOTNT 
GO TO 70 

ENDIF
80 CONTINUE

ENDIF
70 CONTINUE
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90 IF (MOD(QUOTNT, 2) .EQ.0) THEN.
QUOTNT = QUOTNT / 2
RES = MODULO(P ,QUOTNT,D )
IF (RES.EQ.l) THEN

PERIOD = QUOTNT 
GO TO 90

END IF 
ENDIF 

C 
C
400 RETURN 

END 
C
C ---------- 0 -----------
c

FUNCTION MODULO(X,N,P)
C
C Function to compute MOD (X**N,P) iteratively, for large values of X**N 
C such that no overflow errors occur 
C

INTEGER X,P,COUNT 
C

MODULO = X 
COUNT = 1

10 MODULO = MOD (MODULO*X,P)
COUNT = COUNT + 1 
IF (COUNT.NE.N) GO TO 10 

C
RETURN
END

C

C
SUBROUTINE PRMFAC(N,PSTORE,PSIZE)

C
INTEGER NSTORE(50),PSTORE(100),FLAG,POWER,PSIZE 

C
C This subroutine calls the PRIME DIVISORS subroutine.
C The result is an array, NSTORE, of the prime divisors of N.
C Then, NSTORE is rearranged into another array, PSTORE, where the prime 
C divisors are written into the odd-numbered locations of PSTORE and their 
C corresponding powers in the adjacent even locations. Array PSTORE, so 
C arranged, is the output of the subroutine.
C FLAG is an indicator of the size, NSIZE, of NSTORE
C POWER is the corresponding prime power
C
C Array initialization 
C

DO 10 1=1,50 
NSTORE(I) = 0 

10 CONTINUE
C

DO 20 1=1,100 
PSTORE(I) = 0 

20 CONTINUE
C

CALL PRMDIV(N,NSTORE,NSIZE)
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C Initialization 
C

FLAG = 0 
1 = 1  
J =1 
POWER= 1 

C
C Check if NSIZE=1 (i.e., N is a prime)
C

IF (NSIZE.EQ.l) THEN 
PSTORE(J) = NSTORE(I)
PSTORE(J +1) = 1 
GO TO 60 

ENDIF 
C
30 K = 1  + 1

IF (K.EQ.NSIZE) FLAG = 1 
IF (NSTORE(I).EQ.NSTORE(K)) THEN 

PSTORE(J) = NSTORE(I)
POWER = POWER + 1 
IF (FLAG.EQ.l) GO TO 40 
I = K
GO TO 30

ELSE
PSTORE(J) = NSTORE(I)
PSTORE(J+l) = POWER 
J = J + 2 
POWER = 1
IF (FLAG.EQ.l) GO TO 50 
I = K 
GO TO 30 

ENDIF 
C
50 PSTORE(J) = NSTORE(K)
40 PSTORE(J+l) = POWER
C
60 PSIZE = J + 1
C

RETURN
END

C
C ---------- o -----------
C

SUBROUTINE PRMDIV(I,STORE,SIZE)
C
C The algorithm for finding the prime divisors of a composite integer 
C is based on Eratosthenes sieve. The integer I is factored into its 
C prime divisors and these prime divisors are written in ascending 
C order in array STORE. SIZE is the actual size of STORE. If I is a 
C prime, it is retuned as it is, with SIZE=1 
C

INTEGER STORE(50),ROOT,SIZE 
C
C Initialization 
C

DO 10 SIZE =1,50 
STORE(SIZE) = 0 

10 CONTINUE
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SIZE = 0

30 SIZE = SIZE + 1
ROOT = IFIX(SQRT(ABS(FLOAT(I))))
DO 20 L = 2,ROOT 

K = MOD(I, L )
IF (K.NE.O) GO TO 20 
STORE(SIZE) = L 
NEXT = I/L 
I = NEXT 
GO TO 30

20 CONTINUE
C

STORE(SIZE) = I
C
50 RETURN

END

INTEGER FUNCTION FI(N)

This function computes the Euler Totient Function of any integer N. 

FI = 1
DO 10 1=2,N-l 

N1 = N 
N2 = I

20 J = M0D(N1,N2)
IF (J.EQ.O) GO TO 10 
IF (J.EQ.l) THEN 

FI = FI + 1 
GO TO 10 

END IF 
N1 = N2 
N2 = J 
GO TO 20

10 CONTINUE
C

RETURN
END

C
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**********************************************C
C * *
C * p-ADIC CODE to RATIONAL CONVERSION routine *
C * and related routines *
C * *
C **********************************************
c
c

SUBROUTINE INV(P,PADIC,L,L1,N)
C
C This routine is an implementation of the theoretical algorithm developed. 
C Given the order, N, of the Farey sequence (which may correspond to GAMA 
C in the cryptographic alphabet), the rational equivalent of an infinite 
C p—adic expansion (having a finite p—adic code representation) is computed 
C and printed out 
C

INTEGER PADIC(50),PADICT(50),P,R 
C

AL0G1 = ALOGIO((2.*((FLOAT(N))**2.))+l.)
AL0G2 = ALOGIO(FLOAT(P))
REALR = AL0G1 / AL0G2 
R = IFIX(REALR+1.)
IF (M0D(R,2).NE.O) R=R+1 
IF (R.GT.(L+Ll-1)) THEN 

INDEX = L+Ll+2 
DO 10 I=INDEX,R+2

PADIC(I) = PADIC(I-L)
10 CONTINUE

END IF 
C

DO 20 1=1,R
PADICT(I) = PADIC(I+2)

20 CONTINUE
C

CALL CONVRT(PADICT,P,R,NUM,DEN)
CALL RATOUT(NUM,DEN)

C
RETURN 
END

SUBROUTINE CONVRT(PCODE,P,R,NUM,DEN)

Same routine as in HENSEL program but with minor modifications to 
C the array structures 
C

INTEGER PCODE(50),PC0DET(50),P,R,NUM,DEN,ACOUNT,NEGTV,C,CARRY 
C

ACOUNT = 0 
NUM = 0 
DEN = 0 
NEGTV = 0 

C
DO 10 1=1,R

PCODET(I) = PCODE(I)
10 CONTINUE
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70 DO 20 I=(R/2)+l,R
IF (PCODE(I).NE.O) GO TO 30 

20 CONTINUE
GO TO 60 

C
30 DO 40 I=(R/2)+l,R

IF (PCODE(I).NE.(P-1)) GO TO 50 
40 CONTINUE

NEGTV = 1 
GO TO 60 

C
50 C = 0

DO 80 1=1,R
PCODE(I) = PCODE(I)+PCODET(I)+C 
C = CARRY(PCODE(I),P)
PCODE(I) = MOD(PCODE(I), P )

80 CONTINUE
C

ACOUNT = ACOUNT + 1 
GO TO 70 

C
60 DEN = ACOUNT + 1

IF (NEGTV.EQ.O) GO TO 90 
CALL PCOMP(PCODE,P,R,PCODE)

C
90 DO 100 1=1,R/2

NUM = NUM+PCODE(I)*(P**(I-l)) 
100 CONTINUE
C

IF (NEGTV.EQ.l) NUM=-NUM 
C

RETURN
END

C

C
INTEGER FUNCTION CARRY(VIN,P)

C
C Same function as in HENSEL program 
C

INTEGER VTN,P ,VTEMP,C 
C

C = 0
VTEMP = VIN

20 IF (VTEMP.LT.P) GO TO 10
VTEMP = VTEMP - P 
C = C + 1 
GO TO 20

10 CARRY = C
C

RETURN
END

C
C ---------- o -----------



SUBROUTINE PCOMP(PCODE,P,R,PBAR)

C Same routine as in HENSEL program but with minor modifications to 
C the array structures 
C

INTEGER PCODE(50),PBAR(5 0), P , R 
C

PBAR(1) = P - PCODE(l)
DO 10 1=2,R

PBAR(I) = P - (PCODE(I)+l)
10 CONTINUE
C

RETURN
END

C
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APPENDIX C2
»

Program for the Finite-Segment p-adic Conversion and 
Full Arithmetic Package
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RATIONAL / HENSEL CODE CONVERSION 
AND

FINITE-SEGMENT p-ADIC ARITHMETIC PACKAGE

NOTE: THIS PROGRAM IS DESIGNED SUCH THAT THE p-ADIC NUMBERS IN THE 
HENSEL CODES LIE IN THE RANGE 0 TO 9. IF THIS RANGE IS TO BE 
EXCEEDED, MODIFICATIONS SHOULD BE DONE TO THE I/O MODULES.

C Main program calling different subroutines from the menu
C
C

C
INTEGER PRIME,RANGE

C Reading initial values of the prime, p, and the range, r, of the 
C segmented p-adic field. These values can be altered during execution 
C through the command RDA.
C

CALL CREAD(PRIME,RANGE)
C
10 WRITE (5,999)
999 FORMAT (2X,'Enter command or HLP')

READ (5,998) COM 
998 FORMAT (A3)
C
C These are the command routines which, in turn will call the corresponding 
C operation routines.
C

IF (COM.EQ. 'HLP' .OR. COM.,EQ. 'hip')
IF (COM. EQ. 'RDA' .OR. COM.,EQ. 'rda ')
IF (COM. EQ. 'FOR' .OR. COM.,EQ. 'for')
IF (COM.EQ. 'INV' .OR. COM..EQ. 'inv')
IF (COM.EQ. 'CMP' .OR., COM..EQ. 'cmp')
IF (COM. EQ. 'ADD' .OR..COM..EQ. 'add')
IF (COM.EQ. 'SUB' .OR..COM..EQ. 'sub')
IF (COM. EQ. 'MUL' .OR..COM,.EQ. 'mul')
IF (COM.EQ. 'DIV' .OR..COM..EQ. 'div')
IF (COM.EQ. 'END' .OR..COM..EQ. 'end')
GO TO 10

CALL CHLP 
CALL CREAD 
CALL CFOR 
CALL CINV 
CALL CCMP 
CALL CADD 
CALL CSUB 
CALL CMUL 
CALL CD IV 
GO TO 20

(PRIME,RANGE) 
(PRIME,RANGE) 
(PRIME,RANGE) 
(PRIME,RANGE) 
(PRIME,RANGE) 
(PRIME,RANGE) 
(PRIME,RANGE) 
(PRIME,RANGE)

20 STOP
END
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C
C
c
c
c
c
c

******************* 
* *
* COMMAND modules *
*  *  
*******************

SUBROUTINE CREAD(P,R)
C
C Command routine to read and pass new values of P and R in H(P,R) 
C

INTEGER STORE(IO)
INTEGER P, R,SIZE 

C
10 WRITE (5,999)
999 FORMAT (2X,'Enter PRIME and RANGE')

READ (5,*) P,R 
C
C Test of primality on p and check that r is even 
C

I = P
DO 20 SIZE=1,10 

STORE(SIZE) = 0 
20 CONTINUE
C

SIZE = 0
40 SIZE = SIZE + 1

ROOT = IFIX(SORT(FLOAT(I)))
DO 30 J=2,ROOT 

K = MOD(I, J )
IF (K.NE.0) GO TO 30 
STORE(SIZE) = J 
NEXT = I / J 
I = NEXT 
GO TO 40

30 CONTINUE
STORE(SIZE) = I 

C
IF (STORE(1).NE.P ) THEN 

WRITE (5,998)
998 FORMAT (2X, 'THE VALUE OF PRIME ENTERED IS NOT A PRIME')

GO TO 10 
END IF 

C
IF (MOD(R ,2).NE.0) THEN 

WRITE (5,997)
997 FORMAT (2X,'RANGE MUST BE EVEN')

GO TO 10 
END IF 

C
RETURN
END

C
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C Command routine calling the 'FORWARD', rational ---> Hensel code conversion
C routine, HCODE, and then printing the resulting Hensel code.
C

INTEGER PCODE(0:20)
INTEGER P,R,NUM,DEN 

C
WRITE (5,999)

999 FORMAT (2X,'Enter NUM and DEN of rational')
READ (5,*) NUM,DEN 

C
C Test that the values of NUM and DEN are within Krishnamurthy's bounds 
C

N = INT(SQRT((FLOAT(P)**FLOAT(R)—1.)/2.))
IF (NUM.GT.N.OR.DEN.GT.N) THEN 

WRITE (5,998) N
998 FORMAT (2X,'WARNING - VALUES ARE OUTSIDE THE BOUND: +/-',I4)

END IF
C

CALL HCODE(NUM,DEN,P,R,PCODE)
C

CALL PRINT(PCODE,R)
C

RETURN
END

C

C
SUBROUTINE CINV(P,R)

C
C Command routine calling the 'INVERSE', Hensel code ---> rational,
C conversion routine, CONVRT, and printing the equivalent rational number.
C It uses subroutine RDCODE to read a Hensel code from the terminal.
C

INTEGER PC0DE(0:20)
INTEGER P,R,NUM,DEN 

C
WRITE (5,999)

999 FORMAT (2X,'Enter Hensel code')
C

CALL RDCODE (PCODE)
CALL CONVRT(PCODE,P,R,NUM,DEN)
CALL RATOUT (NTJM, DEN)

C
RETURN
END

C
c ---------- 0 -----------

SUBROUTINE CFOR(P,R)
C
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C Command routine calling the complementation routine, HCOMP, after some 
C pre-processing on the Hensel code read in. The pre-processing is necessary 
C to pass the code to HCOMP without the p-adic point. The command module,
C however, places the p-adic point hack in its position prior to the output 
C stage.
C PLOC is the location of the p-adic point
C

INTEGER PCODE(0:20),PTEMP(0:20),PCOMP(0:20)
INTEGER P,R,PLOC 

C
C Reading a p-adic code using RDCODE.
C

WRITE (5,999)
999 FORMAT (2X,'Enter Hensel code to be complemented')

CALL RDCODE(PCODE)
C
C Location of the p-adic point 
C

DO 10 I = 0, R
IF (PCODE(I).EQ.-l) PLOC = I 

10 CONTINUE
C
C Duplicating PCODE in PTEMP without the p-adic point 
C

IF (PLOC.EQ.0) GO TO 20 
DO 30 I = 0, PLOC-1 

PTEMP(I) = PCODE(I)
30 CONTINUE
20 DO 40 I = PLOC, R-l

PTEMP(I) = PCODE(I+1)
40 CONTINUE
C
C Calling the complementation routine. The result is put back in PTEMP.
C

CALL HCOMP(PTEMP,P,R,PTEMP)
C
C Replacing the p-adic point back in its position. The complete p-adic 
C complement is written onto PCOMP.

PCOMP(PLOC) = -1 
IF (PLOC.EQ.0) GO TO 50 
DO 60 I = 0, PLOC-1 

PCOMP(I) = PTEMP(I)

SUBROUTINE CCMP(P,R)
C

60 CONTINUE
50 DO 70 I = PLOC+1, R

PCOMP(I) = PTEMP(I-l)
70 CONTINUE
C

WRITE (5,998)
998 FORMAT (IX, 'COMPLEMENT:') 

CALL PRINT (PCOMP,R)
C

RETURN
END

C
C ---- ------0 -----------



SUBROUTINE CADD(P,R)

C Command routine calling the addition routine. It reads two rational numbers 
C converts them into their Hensel codes and then performs the segmented p—adi 
C addition. The result is output in Hensel code and rational forms.
C

INTEGER PC0DE1(0:20),PC0DE2(0:20),PCODEA(0:20)
INTEGER NUM1,DENI,NUM2,DEN2,N1,D1,N2,D2,P ,R ,NUM,DEN 

C
WRITE (5,999)

999 FORMAT (2X,'Enter NUM and DEN of 1st rational')
READ (5,*) NUM1,DENI 

C
WRITE (5,998)

998 FORMAT (2X,'Enter NUM and DEN of 2nd rational')
READ (5,*) NUM2,DEN2 

C
N1 = NUM1 
D1 = DENI 
N2 = NUM2 
D2 = DEN2

C

C
CALL HCODE(N1,D1,P ,R,PCODE1)
CALL HCODE(N2,D2,P ,R ,PC0DE2)

C
C The last parameter, 1, in BLADD corresponds to the addition routine 
C 1 — > routine may be executed twice
C 0 — > routine executed once only
C This parameter is important in case we have leading 0's.
C

CALL HADD(NUM1,DENI,NUM2,DEN2,PCODE1,PC0DE2,PCODEA,P ,R,1)
C

WRITE (5,997)
997 FORMAT (IX,'ADDITION RESULT:')

CALL PRINT(PCODEA,R)
WRITE (5,996)

996 FORMAT (IX,'or')
CALL CONVRT(PCODEA,P ,R ,NUM,DEN) 

C
CALL RATOUT(NUM,DEN)

C
RETURN
END

C
C ---------- o -----------
C

flag:

SUBROUTINE CSUB(P,R)
C
C Command routine to perform the segmented p-adic subtraction. The 
C subtraction process eventually, is exactly similar to the addition. 
C This command routine is mainly concerned with sending a message re. 
C the format of the input data.
C

INTEGER P,R
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WRITE (5,999)
999 FORMAT (2X,'In the following,

+ 'to be subtracted:
C
C From now on it is exactly like CADD
C

CALL CADD(P,R)
C

RETURN
END

c
c ----- ------ o -----------
c

SUBROUTINE CMUL(P,R)

assign a minus sign to tlie rational
)

C
C Command routine calling the multiplication subroutine, HMULT. It reads 
C two rational numbers, +ve or —ve, converts tbem into their Hensel codes 
C and then performs the segmented p—adic multiplication. The product is 
C output in Hensel code and rational forms.
C

INTEGER PC0DE1(0:20),PCODE2(0:20),PC0DEM(0:20)
INTEGER NUM1,DENI,NUM2,DEN2,N1,D1,N2,D2,NUM,DEN,P ,R 

C
WRITE (5,999)

999 FORMAT (2X, 'Enter NUM and DEN of 1st rational')
READ (5,*) NUM1,DENI 

C
WRITE (5,998)

998 FORMAT (2X, 'Enter NUM and DEN of 2nd rational')
READ (5,*) NUM2,DEN2 

C
N1 = NUM1 
D1 = DENI 
N2 = NUM2 
D2 = DEN2 

C
CALL HCODE(N1,D1,P ,R ,PCODE1)
CALL HCODE(N2,D2,P ,R ,PC0DE2)
CALL HMULT(NUM1,DENI,NUM2,DEN2,PCODEl,PC0DE2,P,R,PCODEM)

C
WRITE (5,997)

997 FORMAT (IX, 'MULTIPLICATION PRODUCT:')
CALL PRINT(PCODEM,R)
WRITE (5,996)

996 FORMAT (IX, 'or')
CALL CONVRT(PCODEM,P,R,NUM,DEN)
CALL RATOUT (NUM,DEN)

C
RETURN
END

C
C ---------- O -----------
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C Command routine calling the division subroutine, HDIY.lt reads two 
C rational numbers, +ve or -ve, converts them into their Hensel codes 
C and then performs the segmented p—adic division. The quotient is 
C output in Hensel code and rational forms.
C

INTEGER PCODE1(0:20),PC0DE2(0:20),PCODED(0:20)
INTEGER NTJM1,DENI,NUM2,DEN2,Nl,D1,N2,D2,NUM,DEN,P,R 

C
WRITE (5,999)

999 FORMAT (2X,'Enter NUM and DEN of dividend')
READ (5,*) NUM1,DENI 

C
WRITE (5,998)

998 FORMAT (2X,'Enter NUM and DEN of divisor')
READ (5,*) NUM2,DEN2 

C
Nl = NTTM1 
D1 = DENI 
N2 = NUM2 
D2 = DEN2 

C
CALL HCODE(Nl,D1,P ,R ,PCODE1)
CALL HCODE(N2,D2,P ,R ,PC0DE2)
CALL HDIV(NUM1,DENI,NUM2,DEN2,PCODE1,PCODE2,P,R,PCODED)

C
WRITE (5,997)

997 FORMAT (IX,'DIVISION QUOTIENT:')
CALL PRINT(PCODED,R)
WRITE (5,996)

996 FORMAT (IX,'or')
CALL CONVRT(PCODED,P,R,NUM,DEN)
CALL RATOUT(NUM,DEN)

C
RETURN
END

C

C

SUBROUTINE CDIV(P,R)
C

c
c
c

SUBROUTINE CHLP

Command routine to display all the commands menu for novice users

WRITE <5,«) ' commands
WRITE (5,«) ' RDA -
WRITE (5,*) ' FOR -
WRITE (5.*) ' INV -
WRITE (5,«) ' CMP -
WRITE (5,*) ' ADD -
WRITE (5,*) ' SUB -
WRITE (5, *) ' MUL -
WRITE (5,*) ' DIV -
WRITE (5,») ' END -

are : '
read new values of P and R'
conversion from RATIONAL to HENSEL CODE'
conversion from HENSEL CODE TO RATIONAL'
complement of a Hensel code'
segmented p—adic addition of two rationals'
segmented p-adic subtraction of two rationals'
segmented p—adic multiplication of two rationals
segmented p-adic division of two rationals'
end execution'

C
RETURN
END
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C ************************
C * *
C * INPUT/OUTPUT modules *
C * *
q ************************
c
c

SUBROUTINE RDCODE(CODE)
C
C Routine to read a variable-length. Hensel code. It is self formatting 
C according to the number of characters, NCH, read in.
C

L0GICAL*1 IN(0:20)
INTEGER C0DE(0:20)
INTEGER RANGE 

C
READ (5,999) NCH,(IN(I),I=1,NCH)

999 FORMAT (Q,22A1)
C
C Having read an alphanumeric string (the p-adic point and the code digits),
C the following converts the p-adic point to -1.
C

RANGE = NCH - 1 
DO 10 I = 0, RANGE

CODE(I) = IN(I+1) - *060 
IF (IN(I+1).EQ.'.') CODE(I) = -1 

10 CONTINUE
C

RETURN
END

C

C
SUBROUTINE PRINT(PCODE,R)

C
C Routine to print a Hensel code of length R 
C

L0GICAL*1 OUT(0:20)
INTEGER PCODE(0:20)
INTEGER R 

C
C Since the p-adic point is treated as -1 in all the arithmetic, here the 
C -1 in the PCODE is replace by a dot in OUT. *060 + PCODE(I) returns the 
C octal value of PCODE(I), and the corresponding final format is alphanumeric. 
C

DO 10 I = 0, R
OUT(I) = *060 + PCODE(I)
IF (PCODE(I).EQ.-l) OUT(I) =

10 CONTINUE
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WRITE (5,999)
999 FORMAT (IX,'HENSEL CODE:')

WRITE (5,998) (OUT(I), 1=0,R)
998 FORMAT (IX,<R+1>A1,//)
C

RETURN
END

----0 -----------

SUBROUTINE RATOUT(NUM,DEN)
C
C Routine to print any rational number in the form A/B.
C Note that 1 extra location is reserved in IN to provide for the possible 
C -ve sign.
C

INTEGER NUM,DEN 
C

IN = 2
IF (IABS(NUM) .GT.9) IN = 3 
IF (IABS(NUM).GT.99) IN = 4 
IF (IABS(NUM).GT.999) IN = 5 
IF (IABS(NUM).GT.9999) IN = 6 

C
ID = 1
IF (DEN.GT.9) ID = 2 
IF (DEN.GT.99) ID = 3 
IF (DEN.GT.999) ID = 4 
IF (DEN.GT.9999) ID = 5 

C
WRITE (5,999)

999 FORMAT (IX,'RATIONAL EQUIVALENT:')
WRITE (5,998) NUM,DEN

998 FORMAT (IX,I<IN>,'/',I<ID>,//)
C

RETURN
END
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C **********************************************
C * *
C * RATIONAL to HENSEL CODE CONVERSION routine *
C * and related routines *
C * *
C **********************************************
C
c

SUBROUTINE HCODE(A,B,P,R,PADIC)
C
C given a rational number ALFA=A/B with (A,B)=1 and B.NE.O, its 
C p-adic expansion is obtained through this subroutine.
C In the following analysis PADICT is a temporary array storing the 
C actual integer elements of the Hensel code, while PADIC is the 
C final array with the p-adic point represented as -1.
C

INTEGER PADICT(20),PADIC(0:20)
INTEGER A,B,C,D,BNEW,NUANPN,DEANPN,CGAMA,DGAMA,

+ P,R,X

Checking if (A,B) = 1 and, if not, then get the updated values of A and B. 

CALL GCD(A,B)

Initialization of the p-adic index.

J = 0

STEP 1: Set C = the numerator in ALFA.
Check the divisibility of the denominator in ALFA 
by the prime P. This will control the position of 
the p-adic point.
Set D = the denominator in ALFA (or the new one 
if divisible by P).

C = A
CALL DIVDEN(B,P,BNEW,N)
D = BNEW

J = J + 1

STEP 2: solve the congruence DX = 1 (mod P).
if X (j) is a solution, then PADIC(j) = C.X(j) (mod P).

CALL SOLVE (D,X,P)
PADICT(J) = MODF (C*X, P)

Check if we have reached the required range R.

IF (J.EQ.R) GO TO 30

STEP 3: set GAMA = (C/D) - PADIC(j).

NUANPN = PADICT(J)
DEANPN = 1
CALL RATSUB (C,D,NUANPN,DEANPN,CGAMA,DGAMA)
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C STEP 4: Set the new value of D = DGAMA.
C The corresponding value (CGAMA) of C, however,
C will be divisible by P.
C Set C = CGAMA / (P**l).
C Go to STEP 2 after increasing the p-adic index by 1.
C

D = DGAMA
CALL DIVNUM(CGAMA,P,C)
GO TO 20 

C
C Transfering the Hensel code from PADICT to PADIC with the p—adic 
C point in its final position.
C
30 IF (N.EQ.O) GO TO 40

PADIC(N) = -1 
DO 50 I = 0, N-l

PADIC(I) = PADICTd+1)
50 CONTINUE

DO 60 I =' N+l, R
PADIC(I) = PADICT(I)

60 CONTINUE
GO TO 80

40 PADIC(N) = -1
DO 70 I = N+l, R

PADIC(I) = PADICT(I)
70 CONTINUE
C
80 RETURN

END 
C

C
SUBROUTINE GCD(A,B)

C
C Subroutine checking if (A,B) = 1. If not, then A and B are reduced 
C such that A -> A/GCD and B —> B/GCD.
C

INTEGER A,B,GCDVAL 
C

N1 = A 
N2 = B
IF (N1.GT.N2) GO TO 10 
K1 = N1 
N1 = N2 
N2 = K1

10 J = MOD(N1,N2)
IF (J.EQ.0) GO TO 20 
N1 = N2 
N2 = J 
GO TO 10

20 GCDVAL = N2
A = A / GCDVAL
B = B / GCDVAL

C
RETURN
END

C
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C subroutine for the divisibility of the numerator by P 
C such that if ALFA=A/B, then A = C * P 
C VIN is the value corresponding to A 
C VOUT is the value corresponding to C 
C

INTEGER VIN,VOUT,P 
C

MODP = MODF(VIN, P)
IF (MODP.EQ.0) GO TO 10 
VOUT = VIN 
GO TO 20 

C
10 VOUT = VIN / P
C
20 RETURN

END 
C
C ---------- 0 -----------
c

SUBROUTINE DIVDEN (VIN,P,VOUT,N)
C
C Subroutine checking the divisibility of the denominator by P,
C such that if ALFA=A/B, then B = D * (P**N).
C VIN is the value corresponding to B 
C VOUT is the value corresponding to D
C Unlike DIVNUM "JH, we are interested in the powers of P in this case, 
C because these will control the position of the p-adic point.
C

INTEGER VIN,VOUT,P 
C

N = 0
10 MODP = MODF(VIN,P)

IF (MODP.EQ.0) GO TO 20 
VOUT = VIN 
GO TO 30 

C
20 N = N + 1

VIN = VIN / P 
GO TO 10 

C
30 RETURN

END 
CC --------o --------
C

SUBROUTINE SOLVE (VIN,VOUT,P)
C
C Subroutine to solve the congruence DX = 1 (mod P) in STEP 2 
C of the conversion algorithm.
C VTN is the value corresponding to D 
C VOUT is the value corresponding to X 
C

INTEGER VIN,VOUT,VALUE,P

SUBROUTINE DIYNUM (VIN, P, VOUT)
C
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DO 10 VOUT = 1, P-1 
VALUE = VIN * VOUT 
MODP = MODF(VALUE, P)
IF (MODP.EQ.l) GO TO 20 

10 CONTINUE
C
20 RETURN

END 
C
C ---------- 0 ----------- '
c

SUBROUTINE RATSUB(NUM1,DENI,NUM2,DEN2,NUM,DEN)
C
C Subroutine to subtract 2 fractions and return the resulting value 
C in fraction form (corresponding to NUM and DEN).
C

INTEGER NUM1,NUM2,NUM,DENI,DEN2,DEN 
C

IF (DENI.EQ.DEN2) GO TO 10
DEN = DENI * DEN2
NUM = (NUM1 * DEN2) - (NUM2*DEN1)
GO TO 20 

C
10 DEN = DENI

NUM = NUM1 - NUM2 
C
20 RETURN

END 
C
C ---------- O -----------
C

FUNCTION MODF (VIN, P)
C
C Function returning MOD(VIN,P) with tbe only difference that -ve 
C values of MOD, which may be obtained through the usual intrinsic 
C function MOD, are accounted for with their equivalent +ve values.
c

INTEGER VIN,P
c

MODF = MOD(VIN ,P)
10 IF (MODF.LT.0) MODF = MODF + P

IF (MODF.LT.O) GO TO 10
c

RETURN
END
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Q ********* *************************** *
C * *
C * Segmented p-adic ADDITION routine *
C * and related routines *
C * *
Q *************************************
C
c

SUBROUTINE HADD (NUM1, DENI, NUM2, DEN2, HCODE1, HC0DE2, HCODEA,
+ P,R,ADFLAG)

C
C Subroutine performing the addition operation in tbe segmented p-adic 
C field Qp of length R. It uses the updated addition algorithm developed 
C by Gorgui-Naguib and King. The result of HC0DE1 + HC0DE2 is stored in 
C HCODEA. The subroutine makes use of subroutine RSHIFT to shift right 
C either HC0DE1 or HC0DE2 to align the p-adic point before adding, and 
C of function CARRY to calculate carries arising from subsequent additions.
C Notice that the addition process is done over a Hensel code size of:
C SIZE = NEWR
C where NEWR is the updated range size due to a right-shift of one of the 
C codes (a p-adic point misalignment).
C ADFLAG is a parameter = 0 or 1 for disabling or enabling the multiple 
C (at most one more time) running of this subroutine. Initially ADFLAG is 
C set to 1 so that, in case leading 0's exist, the routine may be run once 
C more over an extended range (which is returned as REXT from subroutine 
C LEADO)
C

INTEGER HC0DE1(0:20),HC0DE2(0:20),HCODEA(0:20),
+ HCD1S(0:20),HCD2S(0:20)

C
C PCOUNT is a counter for the number of digits (not necessarily 0's) preceding 
C the p-adic point.
C PLOCK locks onto the above value of PCOUNT for further analysis of these 
C digits.
C

INTEGER NUM1,DENI,NUM2,DEN2,P,R,ADFLAG,PCOUNT,PLOCK,C,CARRY

Initialize PCOUNT and carry 
C

PCOUNT = 0
C = 0

C
DO 10 I = 0, R

IF (HCODEl(I).EQ.-l) N1=I 
IF (HC0DE2(I).EQ.-l) N2=I 

10 CONTINUE
C

IF (N1.GT.N2) GO TO 20 
IF (N2.GT.N1) GO TO 40 
NEWR = R 
GO TO 60
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C Shift right according to obtained valnes of N1 and N2 
C
20 NEWR = R + N1 - N2

CALL RSHIFT(HC0DE2,HCD2S,N1-N2, NEWR)
DO 30 I = 0, NEWR

HC0DE2(I) = HCD2S(I)
30 CONTINUE

GO TO 60 
C
40 NEWR = R + N2 - N1

CALL RSHIFT(HC0DE1 ,HCD1S ,N2-N1,NEWR)
DO 50 I = 0, NEWR

HCODE1(I) = HCDIS(I)
50 CONTINUE
C
C At this stage the p-adic point is aligned and the addition process is 
C carried ont from left to right.
C Note that NEWR, which is a function of R, may be implicitely increased 
C according to the number of leading 0's found during the initial run of 
C the subroutine (i.e. if LEAD0 is to be called during the first run).
C
60 DO 70 I = 0, NEWR

IF (HCODEl(I).EQ.-l) GO TO 80 
PCOUNT = PCOUNT + 1
HCODEA(I) = HC0DE1(I) + HC0DE2(I) + C 
C = CARRY(HCODEA(I),P)
HCODEA(I) = MOD(HCODEA(I),P )
GO TO 70

80 PLOCK = PCOUNT
HCODEA(I) = -1 

70 CONTINUE
C
C Check if any digits precede the p-adic point.
C

IF (PLOCK.EQ.0) GO TO 90 
C
C If so, and ADFLAG is enabled, then call LEAD0 to check for leading 0's.
C

IF (ADFLAG.EQ.l) CALL LEAD0(NUM1,DENI,NUM2,DEN2,HCODEA,P,R,PLOCK)
C
C Here, a final check on 0's left of the p—adic point is performed. ‘
C If the 'most significant bit' is 0, then the whole addition result is 
C 'shifted left' by 1 location until a non-zero digit is met. Note that the 
C location of the p-adic point retains its relative location throughout the 
C shifting process (i.e., it is also shifted along with the other digits).
C a part of the addition code).
C
90 IF (HCODEA(O).NE.0) GO TO 100

CALL LSHIFT(HCODEA,HCODEA,1,NEWR)
GO TO 90 

C
100 RETURN

END 
C
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C
SUBROUTINE RSHIFT (SEQIN,SEQOUT,K,M)

C This subroutine shifts a given sequence SEQIN of length M by K places 
C to the right and fills-in the gaps with 0's. The resulting shifted 
C sequence is passed as SEQOUT.
C

INTEGER SEQIN(0:20),SEQOUT(0:20)
C

DO 10 I = 0, K-l 
SEQOUT(I) = 0 

10 CONTINUE
C

DO 20 I = K, M
SEQOUT(I) = SEQIN(I-K)

20 CONTINUE
C

RETURN
END

C
C ---------- 0
C

INTEGER FUNCTION CARRY(VIN,P)
C
C Function returning the carry arising from a value YIN w.r.t. P 
C

INTEGER VIN,VTEMP, P , C 
C

C = 0
VTEMP = VIN

20 IF (VTEMP.LT.P) GO TO 10
VTEMP = VTEMP - P
C = C + 1
GO TO 20

10 CARRY = C
C

RETURN
END

C

C
SUBROUTINE LSHIFT(SEQIN,SEQOUT,K,M)

C
C This subroutine shifts left a given sequence SEQIN of length M by K places 
C to the left and fills-in the gaps with 0's. The resulting shifted sequence 
C is passed as SEQOUT.
C

INTEGER SEQIN (0:20) , SEQOUT (0:20)
C

DO 10 I = 0, M-K
SEQOUT(I) = SEQIN(I+K)

10 CONTINUE
C

DO 20 I = M-K+l, M 
SEQOUT(I) = 0 

20 CONTINUE
C

RETURN
END

C
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C This subroutine checks if some or all the digits preceding the p-adic 
C point = 0. The number of leading 0's is given by ZCOUNT.
C Then, the new Hensel codes of the rationals are obtained over a range REXT 
C such that REXT = R + ZCOUNT and is evenp (this is also why NUM1, DENI,
C NUM2 and DEN2 were passed all through the program).
C Then, the addition routine HADD is called again and is performed over this 
C range.
C

INTEGER HCODEA(0:20),PC0DE1(0:20),PCODE2(0:20)
INTEGER NUM1,DENI,NUM2,DEN2,P,R,PLOCK,ZCOUNT,REXT

Initialize ZCOUNT

ZCOUNT = 0

DO 10 I = 1, PLOCK
IF (HCODEA(I-l).EQ.0) ZC0UNT=ZC0UNT+1 
IF (HCODEA(I) .NE.0) GO TO 20 

CONTINUE

REXT = R + ZCOUNT 

REXT must be even
i

IF ((MOD(REXT,2)).NE.0) REXT=REXT+1

Extended Hensel codes over REXT

CALL HCODE(NUM1,DENI,P ,REXT,PC0DE1)
CALL HCODE(NUM2,DEN2,P,REXT,PC0DE2)

C
C Perform extended addition. Here, ADFLAG is passed as 0 to disable any 
C further execution of HADD.
C

CALL HADD(NUM1,DENI,NUM2,DEN2,PCODE1,PC0DE2,HCODEA,P ,REXT,0)
C

RETURN
END

SUBROUTINE LEADO(NUM1,DENI,NUM2,DEN2,HCODEA,P,R,PLOCX)
C
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Q ********************************************
* *
* Segmented p—adic COMPLEMENTATION routine *
* *

C ********************************************
C
c

SUBROUTINE HCOMP(HCODE,P,R,HBAR)
C
C Subroutine to complement a Hensel code, HCODE, and put the result 
C in HBAR.
C NOTE: HCODE is assumed free of the p—adic point (—1) and so is HBAR 
C (That is why the range is R-l and not R).
C

INTEGER HCODE(0:20), HBAR(0:20)
INTEGER P,R 

C
HBAR(0) = P - HCODE(0)
DO 10 I = 1, R-l

HBAR(I) = P - (HCODE(I) + 1)
10 CONTINUE
C

RETURN
END

C
C
C
C
C
C
C
C
C
C
C

******************************************* 
* *
* Segmented p-adic MULTIPLICATION routine *
* and related routines *
* * 
*******************************************

SUBROUTINE HMULT(NUM1,DENI,NUM2,DEN2,HCODE1,HCODE2,P,R,HCODEM)
C
C Subroutine performing the multiplication operation in the segmented p-adic 
C field Qp of length R. It uses the updated multiplication algorithm developed 
C by Gorgui-Naguib and King. The product of HCODE1 * HC0DE2 is stored in
C HCODEM.
C The subroutine operates on codes devoid of the p-adic point and it restitutes 
C the p-adic point in the final product according to:
C E(gama) = E(alfa) + E(beta) + k + 1
C where (k+1) denotes the amount of left-shift of one of the operand codes 
C due to existing leading 0's and misalignment of the p-adic points in both 
C codes.
C Subroutine CHK0 is the subroutine responsible for checking on the existence 
C of such leading 0's and their removal prior to the multiplication process
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c PL0C1 is the loaction of the p-adic point in HC0DE1
c PLOC2 . . . . . . HC0DE2
c PLOC . . . . . . the final product HCODEM
c KZERO number of leadind 0's in any, and only, one of the codes
c CA 'carry arising from addition
c
n

CM . . . multiplication
t

INTEGER HCODE1(0:20),HCODE2(0:20),HCODEM(0:20),
+ HTEMP1(0:20),HTEMP2(0:20),HTEMPM(0:20),
+ HSHIFT(0:20)

INTEGER NDM1,DENI,NUM2,DEN2,P,R,PL0C1,PL0C2,PLOC,KZERO, 
+ CA,CM,CARRY

C
C Initialization.
C

KZERO = 0 
CA = 0
CM = 0
DO 5 I = 0, 20 

HTEMPM(I) = 0 
5 CONTINUE

Locate relative positions of p-adic points 

DO 10 I = 0, R
IF (HCODEl(I).EQ.-l) PL0C1 = I 
IF (HC0DE2(I).EQ.-l) PL0C2 = I 

I CONTINUE

The following conditions govern the necessity for checking on leading 0's 
in any one (and only one) of the operand codes and also for rewriting 
HC0DE1 and HC0DE2 without their p—adic point in HTEMP1 and HTEMP2.

IF (PL0C1.EQ.0.AND.PLOC2.EQ.0) GO TO 20 
IF (PLOC1.EQ.O.AND.PLOC2.NE.O) GO TO 30 
IF (PL0C1.NE.O.AND.PLOC2.EQ.O) GO TO 40

Case of E(alfa).NE.E(beta) and both < 0.

DO 50 I = 0, PL0C1-1 
HTEMP1(I) = HC0DE1(I)

50 CONTINUE
DO 60 I = PL0C1, R-l

HTEMPl(I) = HC0DEKI+1)
60 CONTINUE
C

DO 70 I = 0, PL0C2-1
HTEMP2(I) = HC0DE2(I)

70 CONTINUE
DO 80 I = PLOC2, R-l

HTEMP2 (I) = HC0DE2(1+1)
80 CONTINUE
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C If E(alfa) < E(beta), then check and remove any leading 0's in HTEMP2 
C

IF (PLOC1.GT.PLOC2) CALL CHKO(NUM2,DEN2,P,R,HTEMP2,HTEMP2,KZERO) 
C
C If E(heta) < E(alfa), then CHKO on HTEMP1 
C

IF (PLOC2.GT.PLOC1) CALL CHKO(NUM1,DENI,P,R ,HTEMP1,HTEMP1,KZERO) 
GO TO 100 

C
C Case of E(alfa) = E(heta) = 0.
C
20 DO 90 I = PLOC1, R-l

HTEMPl(I) = HCODEKI+1)
HTEMP2(I) = HC0DE2(I+1)

90 CONTINUE
GO TO 100 

C
C Case of E(alfa) = 0 and E(beta) < 0.
C
30 DO 110 I = PLOC1, R-l

HTEMPl(I) = HC0DE1(1+1)
110 CONTINUE
C

DO 120 1 = 0 ,  PL0C2-1 
HTEMP2(I) = HC0DE2(I)

120 CONTINUE
DO 130 I = PLOC2, R-l

HTEMP2(I) = HC0DE2(1+1)
130 CONTINUE
C
C CHKO on HTEMP1 
C

CALL CHKO(NUM1,DENI,P,R,HTEMP1,HTEMP1,KZERO)
GO TO 100 

C
C Case of E(alfa) < 0 and E(beta) = 0.
C
40 DO 140 I = 0, PLOC1-1

HTEMP1(I) = HCODE1(I)
140 CONTINUE

DO 150 I = PLOC1, R-l
HTEMPl(I) = HCODE1(1+1)

150 CONTINUE
C

DO 160 I = PL0C2, R-l
HTEMP2(I) = HC0DE2(1+1)

160 CONTINUE
C
C CHKO on HTEMP2 
C

CALL CHKO(NUM2,DEN2,P ,R,HTEMP2,HTEMP2,KZERO)
C
C Multiplication process 
C
100 DO 170 I = 0, R-l
C
C form partial products for each I.
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DO 180 J = 0, R-l
HCODEM(J) = (HTEMP2(I)*HTEMP1(J)) + CM 
CM = CARRY(HCODEM(J),P)
HCODEM(J) = MOD(HCODEM(J ), P)

CONTINUE

shift right each partial product by I locations 

CALL RSHIFT (HCODEM, HSHIFT, I, R)

final product is the sum of previous (shifted) partial products 

DO 190 K = 0, R-l
HTEMPMU) = HTEMPM(K) + HSHIFT(K) + CA 
CA = CARRY(HTEMPM(K),P)
HTEMPM(K) = MOD(HTEMPM(K),P)

CONTINUE

re-initialize carries

CM = 0 
CA = 0

CONTINUE

C E(gama) = E(alfa) + E(beta) + k + 1 
C

PLOC = PLOC1 + PL0C2 - KZERO 
C
C Rewriting the final product with the resulting p-adic point in its position 
C

HCODEM(PLOC) = -1 
IF (PLOC.EQ.O) GO TO 200 
DO 210 I = 0, PLOC-1 

HCODEM(I) = HTEMPM(I)
210 CONTINUE
200 DO 220 I = PLOC+1, R

HCODEM(I) = HTEMPM(1-1)
220 CONTINUE
C

RETURN
END

C
C ---------- O ----------
C

SUBROUTINE CHK0 (NUM,DEN,P,R,PTEMP1,PTEMP2,ZCOUNT)
C
C Subroutine to check if any leading 0's exist in the code PTEMP1 ( which is 
C devoid of its p-adic point) and, if so, it removes them by recalculating 
C the code over an extended field of length REXT = R + ZCOUNT (+ 1 in the case 
C of ZCOUNT odd) and then shifting the code left by ZCOUNT positions.
C PLOC is the position of the p-adic point in the newly
C calculated code over REXT
C

INTEGER PTEMP1(0:20),PTEMP2(0:20),PCODE(0:20)
INTEGER NUM,DEN,P,R,ZCOUNT,PLOC,REXT

180
C
C
C

C
C
C

190
C
C
C

C
170
C

ZCOUNT = 0
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C Counting the number of leading 0's 
C

DO 10 I = 1, R-l
IF ((PTEMPl(I-l).EQ.O.AND.PTEMPl(I).NE.O)

+ .OR.(PTEMPl(I-l).EQ.O.AND.PTEMPl(I).EQ.O)) GO TO 20 
GO TO 30

20 Z COUNT = ZCOUNT + 1
10 CONTINUE
C
C Length, of extended field. It must be even.
C
30 REXT = R + ZCOUNT

IF (MOD(REXT,2).NE.O) REXT = REXT + 1 
C
C Calculation of the extended code.
C

CALL HCODE(NUM,DEN,P,REXT,PCODE)
C
C Locate and remove the p-adic point from the extended code.
C

DO 40 I = 0, REXT
IF (PCODE(I).EQ.-l) PLOC = I 

40 CONTINUE
IF (PLOC.EQ.O) GO TO 50 
DO 60 I = 0, PLOC-1 

PTEMP1(I) = PCODE(I)
60 CONTINUE
50 DO 70 I = PLOC, REXT-1

PTEMP1(I) = PCODE(1+1)
70 CONTINUE
C
C Remove leading 0's by left shifting PTEMP1. The final code, containing no 
C leading 0's, is stored in PTEMP2.
C
90 IF (PTEMPl(O).NE.O) GO TO 80

CALL LSHIFT (PTEMP1, PTEMP2,1, REXT)
GO TO 90 

C
80 RETURN

END
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C
c
c
c
c
c
c
c

************************************* 
* *
* Segmented p—adic DIVISION routine *
* and related routines *
* * 
*************************************

SUBROUTINE HDIV(NUM1,DENI,NUM2,DEN2,HCODE1,HCODE2,P , R,HCODED)

Subroutine performing tbe division operation in tie segmented p—adic 
field Qp of length R. The quotient HC0DE1 / HCODE2 is stored in HCODED.
The subroutine operates on codes devoid of the p—adic point and it 
restitutes the p-adic point in the final result according to the 
respective values of E(alfa) and E(beta).

is the extended segmented p-adic field 
. . loaction of the p-adic point in HCODE1

. HCODE2
. . . . . . . . the final quotient HCODED
. a zero counter for leading 0's in the dividend 
. . . .  . . . . .  divisor
. . flag pointing to the existence of any leading 0's in the
divisor, in order to check on the existence of any leading 0's 
in the dividend
is the result of solving HC0DE2(0)*QTEMP = HCODEl(O) MOD(P).
Its value is the result of function DSOLVE.
is an intermediate zero counter in successive remainders. It is 
only needed to adjust the complementation routine in case the 
remainder is all 0's. (The complement is then 00...0 and not 
544...4)
is the carry arising from addition 
. . . . . multiplication

HTEMP1 and HSHFT1 are equivalent in what regards the left-shift routine, and 
so are HTEMP2 and HSHFT2.

c REXT
c PLOC1
c PL0C2
c PLOC
c KZEROl
c KZER02
c FLAG0
c
c
c QTEMP
c
c ZCOUNT
c
c
c
c CA
c CM

INTEGER HC0DE1(0:20),HC0DE2(0:20),HTEMP1(0:20),HTEMP2(0:20),
+ HSHFT1(0:20),HSHFT2(0:20),HTEMP (0:20),HCODED(0:20)

INTEGER NUM1,DENI,NUM2,DEN2,P ,R,PL0C1,PLOC2,PLOC,KZEROl,KZER02, 
+ FLAG0,QTEMP,ZCOUNT,CA,CM,CARRY,DSOLVE,REXT

EQUIVALENCE (HTEMP1,HSHFT1)
EQUIVALENCE (HTEMP2,HSHFT2)

Initialization.

KZEROl = 0 
KZER02 = 0 
FLAG0 = 0 
ZCOUNT = 0 
CM = 0 
CA = 0

Locate relative positions of p-adic points

DO 10 I = 0, R
IF (HCODEl(I).EQ.-l) PLOC1 = I 
IF (HCODE2(I).EQ.-l) PL0C2 = I 

10 CONTINUE
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C Rewrite HCODE1 and HC0DE2 without their p-adic point in HTEMP1 and HTEMP2 
C

IF (PLOC1.EQ.O) GO TO 20 
DO 30 I = 0, PLOC1-1 

HTEMP1(I) = HCODE1(I)
30 CONTINUE
C
20 DO 40 I = PLOC1, R-l

HTEMPl(I) = HCODEKI+l)
40 CONTINUE
C

IF (PLOC2.EQ.O) GO TO 50 
DO 60 I = 0, PL0C2-1 

HTEMP2(I) = HC0DE2(I)
60 CONTINUE
C
50 DO 70 I = PL0C2, R-l

HTEMP2(I) = HC0DE2(I+1)
70 CONTINUE
C
C Check on leading 0's in the divisor. Accordingly, KZER02 is incremented 
C and the leading 0's flag is set.
C

DO 80 I = 1, R-l
IF ((HTEMP2(I-1).EQ.0.AND.HTEMP2(I).NE.O)

+ .OR.(HTEMP2CI-1).EQ.0.AND.HTEMP2(I).EQ.O)) GO TO 90 
GO TO 100

90 KZER02 = KZER02 + 1
FLAGO = 1 

80 CONTINUE
C
C If any leading 0's are found, an extended HCODE2 over REXT is computed.
C REXT has to be even.
C
100 IF (KZERO2.EQ.0) GO TO 110

REXT = R + KZER02
IF (MOD(REXT,2).NE.O) REXT = REXT + 1 

C
CALL HCODE(NUM2,DEN2,P ,REXT,HC0DE2)

C
C Take p-adic point out of HC0DE2 
C

IF (PLOC2.EQ.O) GO TO 120 
DO 130 I = 0, PL0C2-1 

HTEMP2(I) = HC0DE2(I)
130 CONTINUE
120 DO 140 I = PL0C2, REXT-1

HTEMP2(I) = HC0DE2(1+1)
140 CONTINUE
C
C Shift HTEMP2 left by the number of leading 0's. The shifted sequence 
C is called HSHFT2.
C
160 IF (HTEMP2(0).NE.O) GO TO 150

CALL LSHIFT(HTEMP2,HSHFT2,1,REXT)
GO TO 160

1
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150 DO 170 I = 0, R-l
HTEMP2(I) = HSHFT2(I)

170 CONTINUE
C
C If no leading 0's are found in the divisor, then proceed with the division 
C directly. Otherwise, test for leading 0's in the dividend and increment 
C KZEROl accordingly.
C

IF (FLAG0.EQ.0) GO TO 110 
DO 180 1 = 1 ,  R-l

IF ((HTEMPl(I-l).EQ.O.AND.HTEMPl(I).NE.0)
+ .OR.(HTEMPl(I-l).EQ.O.AND.HTEMPl(I).EQ.0)) GO TO 190 

GO TO 200
190 KZEROl = KZEROl + 1
180 CONTINUE
C
C Compute the extended HCODE1 over the same REXT above.
C
200 CALL HC0DE(NUM1,DENI,P,REXT,HCODE1)
C
C Take 
C

p-adic point out of HCODE1

IF (PLOC1.EQ.0) GO TO 210 
DO 220 I = 0, PLOC1-1 

HTEMPl(I) = HCODEl(I)
220 CONTINUE
210 DO 230 I = PLOC1, REXT-1 

HTEMPl(I) = HCODE1(1+1)
230
C

CONTINUE

C Shift HTEMP1 left by the number of leading 0's. The sifted sequence 
C is called HSHFT1.
C
250 IF (HTEMPl(O).NE.O) GO TO 240

CALL LSHIFT(HTEMP1,HSHFT1,1,REXT)
GO TO 250

C
240 DO 260 I = 0, R-l

HTEMP1(I) = HSHFTl(I)
260 CONTINUE
C
C Division process 
C
110 DO 270 K = 0, R-l 
C
C solve beta(0)*q(0) = alfa(O) mod(p)

QTEMP = DSOLVE(HTEMPKO) ,HTEMP2(0) ,P) 
HCODED(K) = QTEMP

C
C no need to go through the remaining stages
C last quotient digit
C

if we have reached the

IF (K.EQ.R-1) GO TO 300



DO 280 I = 0, R-l-K
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C
C multiply QTEMP by divisor
C

HTEMP(I) = (QTEMP * HTEMP2(I)) + CM 
CM = CARRY(HTEMP(I),P)
HTEMP(I) = MOD(HTEMP(I),P)

C
C keep count of number of 0's
C

IF (HIEMP(I).EQ.O) ZCOUNT = ZCOUNT + 1 
C
280 CONTINUE
C
C if all R-K digits in the remainder are 0's, tben tbe corresponding
C complement is also 0 all over. Otherwise calculate complement.
C

IF (ZCOUNT.NE.R-K) CALL HCOMP(HTEMP,P ,R-K,HTEMP)
C
C add complement to previous HTEMP1
C

DO 290 I = 0, R-l-K
HTEMP1(I) = HTEMP1(I) + HTEMP(I) + CA 
CA = CARRY(HTEMP1(I),P)
HTEMP1(I) = MOD(HTEMP1(I),P)

290 CONTINUE
C
C eliminate 1st. zero resulting from tbe 'subtraction' and
C re-initialize variables.
C

CALL LSHIFT(HTEMP1 ,HTEMP1,1, R-K)
CM = 0 
CA = 0 
ZCOUNT = 0 

C
270 CONTINUE
C
C Duplicate HCODED in HTEMP 
C
300 DO 310 I = 0, R-l

HTEMP(I) = HCODED(I)
310 CONTINUE
C
C Position of final p-adic point 
C

PLOC = PLOC1 - PLOC2 
C
C If E(alfa) of dividend > E(beta) of divisor, tben m(gama) is shifted right 
C by a number of locations equal to the difference between E(alfa) and E(beta) 
C In this case, E(gama) = E(alfa). Otherwise, E(gama) = E(alfa) - E(beta).
C Also, the number of leading 0's in the divisor contributes to the final 
C positioning of the p-adic point in the quotient.
C

IF (PLOC.LT.O) GO TO 320 
PLOC = PLOC + KZER02 - KZEROl 
GO TO 330



320 K = IABS(PLOC)
CALL RSHIFT (HCODED, HTEMP, K , R )
PLOC = PLOC1 + KZER02 - KZEROl 

C
C Rewrite tie final quotient with, tie resulting p-adic point in its position 
C
330 HCODED(PLOC) = -1

IF (PLOC.EQ.O) GO TO 340 
DO 350 I = 0, PLOC-1 

HCODED(I) = HTEMP(I)
350 CONTINUE
340 DO 360 I = PLOC+1, R

HCODED(I) = HTEMP(1-1)
360 CONTINUE
C

RETURN
END

C

C
INTEGER FUNCTION DSOLVE(A,B,P)

C
C Function returning tie solution of 
C B * DSOLVE = A (mod P)
C given A (iere, corresponding to 1st. digit in Hensel code of dividend),
C B (corresponding to 1st. digit in Hensel code of divisor) and P. Tie result 
C is one of tie elements in tie quotient of alfa / ieta.
C

INTEGER A,B,P,SOL 
C

DO 10 I = 0, P-1
SOL = MOD((B * I),P)
IF (SOL.NE.A) GO TO 10 
DSOLVE = I 
GO TO 20

10 CONTINUE
C
20 RETURN

END



**********************************************c
c * *
C * HENSEL CODE to RATIONAL CONVERSION routine *
C * and related routines *
C * *
Q **********************************************
c
c

SUBROUTINE CONVRTCHCODE,P,R,NUM,DEN)
C
C Subroutine to convert a given Hensel code, HCODE(P,R), into its rational 
C equivalent by a successive addition process.
C PLOC is tbe location of the p—adic point
C ACOUNT is a counter for the number of successive additions
C performed
C NEGTV is a flag to indicate that tbe last R/2 digits = P-1 and
C hence the rational is negative
C

INTEGER HCODE (0:20), HTEMP (0:20)
INTEGER P, R,NUM,DEN,PLOC, C, CARRY,ACOUNT,NEGTV 

C
C Initialization 
C

ACOUNT = 0
NUM = 0
DEN = 0
NEGTV = 0

C
C Location of the p-adic point 
C

DO 10 I = 0, R
IF (HCODE(I).EQ.-l) PL0C=I 

10 CONTINUE
C
C Rewriting the Hensel code in HTEMP without the p-adic point 
C

IF (PLOC.EQ.0) GO TO 20 
DO 30 I = 0, PL0C-1 

HTEMP(I) = HCODE(I)
30 CONTINUE
C
20 DO 40 I = PLOC, R-l

HTEMP(I) = HCODE(I+1)
40 CONTINUE
C
C Duplicating HTEMP by putting it in HCODE for the successive additions 
C

DO 50 I = 0, R-l
HCODE(I) = HTEMP(I)

50 CONTINUE
C
C Check whether last R/2 digits = Op in which case the successive additions 
C process is ended and the rational is +ve.
C
120 DO 60 I = R/2, R-l

IF (HTEMP(I).NE.0) GO TO 70 
60 CONTINUE
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GO TO 100 
C
C Check whether last R/2 digits = P-lp in which case the successive additions 
C process is ended and NEGTV is set to 1 to indicate that the rational is -ye. 
C
70 DO 80 I = R/2, R-l

IF (HTEMP(I).NE.(P-1)) GO TO 90 
80 CONTINUE

NEGTV = 1 
GO TO 100 

C
C Segmented p—adic addition similar to HADD 
C
90 C = 0

DO 110 I = 0, R-l
HTEMP(I) = HCODE(I) + HTEMP(I) + C 
C = CARRY(HTEMP(I),P)
HIEMP(I) = MOD(HTEMP(I),P)

110 CONTINUE
C
C Addition counter is increased by 1 for each performed addition 
C

ACOUNT = ACOUNT + 1 
GO TO 120 

C
C Final denominator is: (number of.additions + 1) x (P ** PL0C)
C
100 DEN = (ACOUNT +1) * (P ** PLOC)
C
C If last R/2 digits = 0 (indicated by NEGTV = 0), then the final 
C numerator is the +ve weighted sum of the leading R/2 digits.
C Otherwise, if last R/2 digits = P—1 (i.e., NEGTV = 1), then the 
C final numerator is the -ve weighted sum of the leading R/2 digits 
C in the complement of HTEMP.
C

IF (NEGTV.EQ.0) GO TO 130 
CALL HCOMP(HTEMP,P,R,HTEMP)

130 DO 140 I = 0, (R/2)-l
NUM = NUM + HTEMP(I) * P**I 

140 CONTINUE
IF (NEGTV.EQ.l) NUM = -NUM 

C
RETURN
END


