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A B S T R A C T

f

The thesis contributes to the theory of passive mode- 
locking, the technique by which ultrashort optical pulses are 
generated in lasers containing a saturable absorber, it 
contains extensive discussion of the conditions under which 
dye lasers produce extremely short pulses.
A study of the steady state pulses compares various 

analytic treatments with results of numerical simulation. 
Evolutions are followed from the perturbed stationary field 
solution but the ultimate pulse duration is shorter than the 
recovery times of the saturable absorber dye and the laser 
dye. The effects of limited bandwidth and of noise are 
covered.

. -13The shortest pulses generated experimentally (=10 s 
duration) use the colliding-pulse mode-locking technique 
(CPML) in which two trains of pulses propagate in opposite 
senses within a ring laser. The theory of the saturable 
absorber where the pulses collide is discussed. A two-way 
absorber theory is developed that overcomes previous 
approximations concerning the saturation grating that the 
standing-wave field produces. Formulae are given for a 
number of special cases.

The limitations of existing analyses of colliding-pulse 
mode-locking are discussed and the improved two-way absorber 
theory is used within a computer model of the CPML effect. 
Extensions to the model are considered.
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1.1 Mode-locking

Instabilities in the output from lasers [1] were found as 
soon as the ruby laser was invented. Stability criteria 
still remain the subject of current research [2], Noise 
provides a statistical character to the spiking phenomena in 
the solid state lasers: only by active means may the non
linear dynamics in these systems be made to produce well 
defined transient responses [3,4]. Even if noise is 
irrelevant, we note that there are many situations in 
nonlinear optics where the evolution is so complicated that 
the apparent contradiction of "deterministic chaos" occurs. 
No matter how finely we might adjust the initial conditions 
the same evolution will never be seen again.

Passive mode-locking is the technique that has allowed 
light to be assembled into a pulse only 1 cycle long. In 
homogenously broadened lasers (usually dye as opposed to 
solid state systems but colour centre and semiconductor 
lasers too) the dynamics of this successful passive mode
locking embody the absolute reversal of optical chaos. The 
initial conditions, whether organised or noisy, always give 
way to a completely organised pulse. The ancestral 
distribution of electromagnetic radiation within the cavity 
unavoidably reshapes (self-organisation) into that pulse. 
This process requires hundreds of cavity transits.
We introduce passive mode-locking without immediately 

speaking of the modes which, in the frequency domain, get 
"locked". (The frequency domain turns out to make mode
locking theory less convenient than the time domain if many 
modes are involved). A continuously operating mode-locked

4rWe are referring to a far-infrared transient [5] generated 
from the mode-locked laser pulse. The shortest reported 
laser pulse [6] lasts 4 cycles in the visible.
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laser (CW mode-locking) holds a "bouncing" pulse inside the 
cavity. . Similar to a nonlinear optical soliton in a fibre, 
this special pulse is self-reproducing because the nonlinear 
influences upon it cancel out periodically. The period for 
passive mode-locking is very close to the small-signal cavity 
round trip time, because the nonlinear effects do not make 
much difference in a cavity that is mostly free space. 
However, the slight difference that can occur is important in 
order to understand fully a self-reproducing pulse. This 

^ effective temporal slip is one chosen by the complete
nonlinear system.

Inside the cavity of a passively mode-locked dye laser 
there are two free-flowing dye jets placed at Brewster's 
angle. For simplicity we shall assume that the cavity is a 
ring with 100% reflecting mirrors except for the output 
mirror. If in some way unidirectional lasing is forced, then 
the output mirror transmits a fraction of the trapped pulse 
when it periodically completes a round trip in the cavity. 
The active jet is pumped by a CW laser (Ar+ gas laser 
usually) and laser amplification must replenish the energy

• lost at the output mirror. By itself, amplifier saturation 
fixes the CW power of a single-frequency laser pumped above 
threshold. The additional passive dye jet for mode-locking 
is unpumped and therefore exhibits saturable absorption. The 
self-reproducing pulse covers a wide frequency bandwidth 
determined by the chemistry of the dye solutions or by the 
filtering properties of narrow band mirrors. Every round 
trip follows the same pattern: the special pulse transmitted 
by each jet is very different from the pulse that enters - 
but the correct pulse will reach the output mirror to 
continue the mode-locked pulse train and at the same time

• begin an IDENTICAL round trip.
The conditions for passive mode-locking involve the cavity

transit time (TRT) and the recovery time of the amplifying
molecules (T. ) even though the pulses are shorter than these4times by a factor of order 10 . There is feedback, upon 
entry of a pulse into the amplifier, from the time when a 
pulse saturated the amplifier on the previous transit. The

#



incomplete amplifier recovery involved here arises when 
Trt * Tia* a rate equation model [7] is used instead of 
the self-reproducing pulse model, then to every £ = TRT/Tla 
there corresponds a pulse energy such that amplifier 
saturation and subsequent recovery settle so as to cancel 
out. In this model the absorber recovery is complete: there 
is no feedback via that route. Saturation is as a function 
of pulse energy (and not pulse shape) when the pulse duration 
is short compared with both amplifier and absorber recovery 
time. Before the model's introduction it had not been 
understood how short mode-locked pulses could exist without 
equally short absorber recovery time.

Quantitative pulse-width predictions are not possible in 
the rate equation model. Either the self-reproducing pulse 
theory introduced by Haus [8] or the use of computer 
simulation is necessary in order to get this information. 
The mathematical problems increase when, to treat the case of 
colliding-pulse mode-locking, we drop the assumption that the 
ring laser operation is unidirectional.

Finally in this introduction the modes will be discussed. 
The finite output coupling means that strictly the modes 
should be calculated in a volume of which the laser cavity is 
but a part. However, for high Q cavities the quasi-modes 
discussed in [9] behave like ideal confined modes. Ignoring 
higher order transverse modes, the travelling-wave 
longitudinal nodes of an empty ring (or the Fabry Perot modes 
of linear cavities) are separated in frequency by c/TRT. 
Phase slip near the waist (where diffraction is important) of 
a Gaussian beam, and in the nonlinear media, both lead to 
complications that we leave aside entirely. The high Q 
ensures that the fields circulating inside an empty cavity 
change insignificantly from one round trip to the next. This 
is why the output pulse-repetition frequency matches the mode 
spacing above. The Fourier series expansion will express any 
periodic output as a sum over the discrete modes. It is well 
known that a "comb" of modes, locked to be in phase at t = 0, 
add to give a train of pulses whose widths decrease as more 
modes are excited. Without the nonlinear absorber, the
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homogeneously broadened laser would ideally oscillate in the 
single mode which achieves threshold. On its inclusion, 
however, we obtain parametric amplification of the 
neighbouring modes through nonlinear coupling by the time 
dependent saturation. Thousands of modes finally oscillate 
with phases locked. The same description applies in the case 
of active mode-locking except that the modulation (of gain or 
loss) required to produce sidebands is externally generated.
The theory of mode-locking is extensively reviewed 

elsewhere [10] and a recent textbook by Haus [11] also 
introduces the most basic concepts. Within the present 
thesis we specialise to one area of this enormous field.
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1.2 Recent Progress in Ultrashort Pulse 
Generation (1978-1985]

To complement the theoretical material of the remainder of 
the thesis, we outline below the recent technological 
advances. We concentrate on work carried out since 1977 and 
rely on the excellent review article by Bradley [12] for 
earlier background to the generation and measurement of 
picosecond pulses
At the start of our survey period, the shortest pulses were 

produced reliably by passively mode-locked dye lasers of the 
flashlamp pumped and continuous wave varieties. There were 
also suggestions that CW dye lasers synchronously pumped by 
actively mode-locked lasers had potential advantages (see 
below) but it is now known that the pulse-trains produced 
lack the stability associated with passive mode-locking.
The best results quoted by Bradley were obtained in two 

types of experiment. Figure 1 shows the passively mode- 
0 locked CW dye laser arrangement with a free-flowing gain jet

and a 200/im contacted flow cell for the absorber dye. 
Subpicosecond pulses could be tuned from 598-615 nm by 
rotating the tuning prism. The alternative flashlamp pumped 
systems produced longer pulses but permitted peak powers to 
reach 25MW (as opposed to lkW for CW laser pump). Apart from 
these dye systems, semiconductor diode mode-locking was in an 
early stage and mode-locking (by synchronous pumping) of 
colour centre lasers was already under development [13].

In the system of figure 1, the rhodamine6G-D0DCI dye 
combination produced 0.3ps pulses : in that laser these 

• particular dyes optimise the parameters needed for efficient
mode-locking in passive mode-locking theory. However the 
tunability of passive mode-locking arises from the wide 
choice of saturable absorbers which, unlike those employed in 
Nd:Glass lasers, need not have a rapid recovery time. Thus, 
at the right concentration, cresyl violet absorber also 
produced sub-picosecond pulses [14]. It was established that
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DYE CELL

SAMPLING *SCOPE
P assively  m ode-locked cw dye la s e r  cavity 

configuration.

Figure 1 Conventional Mode-Locked 
Dye Laser [15]

Schematic diagram of ring laser used for CPM. The focusing 
mirrors for the gain region have a 10-cm radius and those for the 
absorber have a 5-cm radius. Cavity roung-trip time was 10 nsec.

Figure 2 Colliding-Pulse Mode-Locked 
Dye Laser [19]



the autocorrelations showed no evidence of substructure in 
the pulses measured. Double jet-stream systems had not been 
optimised in this regard: this showed that use of a contacted 
absorber was beneficial.

Diels et al. [16] removed the intracavity prism 
(sacrificing experimental tunability) and relied on a 
"square” multilayer coating reflectance to prevent 
disorganised oscillation of modes outside the spectral range 
taken up by the 0.2ps mode-locked pulse. In this experiment 
both dyes were mixed in a single jet (instead of using a 
contacted absorber). As a result the mode-locking stability 
was very poor.

Mode-locking by synchronous pumping was turned to again 
because the absorber could be dispensed with. Second 
harmonic generation is most efficient for short pulses and 
therefore the doubled pulses (at 532nm) from an actively 
mode-locked CW Nd:YAG laser provided a more powerful pump 
than the Ar+ laser. Sizer et al. [17] found that there was 
sufficient power left over, after pumping the slave cavity, 
to drive a pulsed regenerative amplifier which in turn 
synchronously pumped a chain of dye amplifiers. The shortest 
pulses that were produced by this technique were 0.5ps long
[18].
Another leap was taken in 1981 when Fork, Greene and Shank 

produced 90fs pulses in a ring laser using the technique of 
colliding-pulse mode-locking, a special version of passive 
mode-locking [19]. The stability was as good as that of the 
pump Ar+ laser even though a double jet-stream cavity was 
used. The result only happened when the distance between the 
two jets was close to one quarter of the ring perimeter, as 
shown in figure 2. In the colliding-pulse mode-locking 
technique (CPML) the absorber performs a very similar 
function to the contacted absorber in figure 1 ( - the 
focussing mirrors also added around the absorber jet play the 
same role as the concentrating lens). The difference is that 
instead of facilitating a single stable pulse-train the ring 
system synchronises two counterpropagating trains of pulses 
that collide inside the absorber. When the jets are



correctly positioned this is the steady state because the 
total energy loss in saturating the absorber is minimised. A 
specially thin absorber jet (10 f*m) was used in the 
experiment.

CPML was demonstrated as well [19] using a linear cavity in 
which the pair of jet-streams was precisely placed to put the 
absorber jet half way between the cavity mirrors. Although 
pulsewidths were not as short as in the ring, the performance 
was better than had been obtained from the contacted 
configuration described before.

It is certainly the case that (symmetric and identical) 
counter-propagating pulses only make a pure standing wave 
everywhere in a cell or jet at the stage when their peaks 
superimpose perfectly. At this instant the edges of the two 
pulses are outside the jet. When the stage arrives when the 
"mirror-image" trailing edges are exiting from the two-way 
absorber it is not possible to achieve the ideal standing 
wave. Fork et al. therefore believed that, although the 
total energy loss would go up, the two-way absorber in CPML 
performed pulse shortening even when the pulse was already 
compressed towards the absorber jet thickness. The mechanism 
was the enhancement of the peaks relative to the trailing 
edges occuring since the latter were exposed to the greater 
loss in the spatially inhomogeneous absorber, (a saturation- 
induced grating) only "resonant" for pure standing-wave 
fields. There was speculation that phase conjugation effects 
would come into a CPML explanation along these lines.

The generation of two output pulse-trains from the ring 
laser is a disadvantage. Methods exist to convert a ring 
laser into a travelling wave system [20] but then the 
benefits of colliding pulses would be lost. The solution to 
this problem is to use a linear cavity with the contacted 
absorber replaced by an antiresonant ring [21,22] that 
encloses the absorber jet, as carried out in the case of a 
Nd:Glass laser by Buchert et al. [23].

Dye lasers ceased to be the only reliable source of 
ultrashort pulses when progress was reported in extracavity 
compression of longer pulses from mode-locked solid state



lasers. This was achieved by Johnson et al. [24,25] who 
generated 0.41ps pulses at 532nm. However the significance 
of "ultrashort” had already changed because the CPML dye 
laser pulses had been compressed already to 30fs [26], In 
the case of synchronously pumped mode-locked dye lasers, 
extracavity compression also solved stability problems and 
Nikolaus et al. [27] reported exceptionally clean pulse 
shapes.
The fibre compression results suggested that similar 

processes could take place inside a laser cavity. Chirp had 
already been observed in the 70fs pulses generated from a 
synchronously pumped dye laser with saturable absorber mixed 
into the gain jet [28] and in the pulses from colliding-pulse 
systems [29,30]. Compensating for a downchirp by use of the 
positive (normal) group velocity dispersion of an intracavity 
prism, Dietel et al. [31] found that there was an optimum 
glass thickness for the colliding-pulse cavity. The chirp 
was attributed to self-phase modulation in the saturable 
absorber. However, the most favourable regime for mode
locking occurs when the saturable absorber is strongly 
saturated by the leading edge of the pulse [32]: the 
remaining self-phase modulation [33] due to the intensity 
dependent refractive index of the solvent used in the jets 
will cause up-chirp instead of down-chirp.

More effective intracavity pulse compression is carried out 
by soliton pulse shaping [34]. The up-chirp effect is 
compensated for by anomalous group velocity dispersion, just 
as in the colour-centre soliton laser [35] based on an 
extracavity fibre. The technique has produced 27fs pulses 
directly from a colliding-pulse mode-locked laser 
incorporating an arrangement of prisms that provides 
adjustable negative dispersion [36,37]. Very recently high- 
order soliton-like pulses were directly generated by a 
similar system [38]: the pulses performed a characteristic 
high-order soliton evolution with a period of 2400 cavity 
round trips and the change could be seen in the 
autocorrelations and spectra taken "stroboscopically" using a 
sampler averager. High-order solitons may allow enhanced



intracavity compression. (Already the shortest pulses 
produced using extracavitv fibre compression are only 4 
optical cycles long [6]).
The special benefit of colliding-pulse absorber saturation 

still remains important in the femtosecond passively mode- 
locked lasers that utilise soliton shaping. The extension to 
synchronously pumped colliding-pulse ring lasers has also 
been accomplished [39]. Clearly the motivation to develop a 
model of colliding pulses is now very strong indeed.



CHAPTER 2

PASSIVE MODE-LOCKING THEORY



2.1 Self-reproducing laser pulses

Mode-locking theory was first studied using a frequency 
domain approach. The aim was to show how the mutual phases 
of a small number of oscillating modes attain a fixed 
relationship that results in pulsed output from the laser. 
However, as explained in the introduction, the temporal 
approach to mode-locking provides the more natural 
description - particularly when the number of modes concerned 
is large.
Cutler [40] laid the foundations of the time-domain 

approach to active mode-locking [3] some years before the 
laser, let alone laser mode-locking, was thought of! The 
context was a microwave device known as a regenerative pulse 
generator. The circuit consisted of a feedback loop around 
which the pulse re-circulates indefinitely, at each traversal 
giving response at the output terminals. The re-circulating 
pulse is not degraded if, in addition to a loop gain of unity 
at its peak, the effects of noise are counteracted. The 
passive "expandor" plays the required role in the loop by 
providing less attenuation for a high field amplitude than a 
low one. A self-reproducing pulse is generated, resulting 
from the competition between sharpening in the expandor and 
broadening in a filter. The filter represents the limited 
frequency response of the circuit that prevents an evolving 
pulse from indefinite shortening.

Laser mode-locking has recently been reviewed by New [10]. 
From the enormous field that has developed, only the 
passively mode-locked CW lasers are our concern here. The 
dye laser, in particular, is able to operate continuously 
(i.e. without Q-switching) because the system has an 
amplifier recovery time (Tla) commensurate with a single 
cavity transit period (TcAV^' therefore damping out 
relaxation oscillations. We describe this type of behaviour 
as "soft" because when short laser pulses saturate the 
population inversion the recovery within a single round trip 
is sufficient for every pulse to control its own gain 
modulation.



In the dye laser a small number of dye molecules must be 
pumped to the upper laser level, owing to a large cross 
section for stimulated emission from the upper level compared 
with the reabsorption from the ground state (happening at 
shorter wavelengths) . In the "soft" system this small 
population readily undergoes deep saturation and a strong 
recovery all in the space of one transit. The theory of 
passive mode-locking must take this into account, as well as 
the absorber saturation. The aim is to predict the self- 
reproducing pulse.

Laser systems with "hard'* saturation (Tia>> tcav  ̂ are 
unreliable at producing passively mode-locked pulses because 
the random initial conditions control the outcome of any shot 
(The stored energy, proportional to Tla, is released in a 
time less than Tla as a giant pulse: mode-locking occurs 
"underneath" this giant pulse envelope). Active mode-locking 
is attractive in the solid state lasers because it overcomes 
the stability problems otherwise associated with a "hard" 
laser system. Instead of relying on survival of a single 
peak from the intra-cavity flux acted upon by the passive 
saturable absorber, the stable active modulation is there to 
provide the (round trip) synchronised "shutter" from the 
outset.

In the case of dye lasers, active modulation is produced by 
pumping using a mode-locked laser. Recent research [10] on 
mode-locking by synchronous pumping has shown that the self- 
reproducing pulses are rather different to those in "hard" 
laser systems. In particular, the mismatch between master 
and slave laser transit times is very important in 
determining pulse widths. However, no such problem applies 
in the case of passive mode-locking in a dye laser which is 
very much closer to Cutler*s early device where the self- 
reproducing pulse concept originated.

Cutler*s device was explained in language very similar to 
the modern concept [41] of "pulse shortening rate", which we 
shall discuss later on. Note, however, that the pulse 
stability in the microwave device was brought about by an 
automatic gain control for the nonlinear element in the



circuit and not from the "soft" saturation dynamics as in the 
optics case.
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2.2 The "bouncing ball11 model [7]

The "bouncing ball" model applies to the pulse re-circulating 
in a passively mode-locked dye laser if the pulse length is 
already short in comparison with the recovery times of both 
absorber and amplifier, but not so short as to be affected by 
the filter. It is a model based simply on energy 
conservation and this section explains how zones of stability 
(in a parameter space representing experimental adjustments) 
for the ultrashort pulses may be deduced [7].
The equations describing the saturable amplification are 

derived in Appendix B. The population inversion density and 
the laser intensity (normalised for the amplifier) obey the 
following coupled rate equations:

an.
at

nao - na 
Tla - V . (1)

axa 1 sxa
az c at naoXa (2)

In the "bouncing ball" model we neglect the first term on 
the right hand side of equation (1) during the ultrashort 
pulse (the SLOW AMPLIFIER approximation) and neglect the 
second (saturation) term during the remaining time (x_ « 0) 
in order to allow for gain recovery. The assumption is that 
the recovery term plays no role on the right hand side of (1) 
on a timescale short compared with Tla. Since in a dye laser 
Tla > Ins and TpUlse < 1*)S is an excellent
approximation.
The same argument will be used (shortly) for the saturable 

absorber, making it clear that a fast absorber is not 
necessary in passively mode-locked dye lasers. Note, 
however, that Tlb «  TRT so that there is full absorber 
recovery between round trips (in summary:
Tpulse<< Tlb< Tla~ TRT*’

In the local time co-ordinates x = z and r = t - z/c, the 
governing equations equations during the ultrashort pulse
are:
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an.
ar
ax.
ax

" V a

naaaXa

x: pulse being amplified

and during the recovery period:

an.
a r 
ax.
ax

ao____a
la

=  0

x : amplifier
recovering

(la)

(2a)

(lb)
(2b)

The exact solution of the coupled equations (la) and (2a) 
will be quoted in Chapter 2 ? it is only the growth in energy 
of the pulse which is required here. Define the normalised 
energy "dose",

j = | X adr
“ CO

In terms of j, the slow amplifier performs the operation

W  - m { i  + .W [ > - x ] }  O)
where 1 is the amplifier length and jQut and j^n are the 
values of j at the output and input respectively.

The proof of (3) is given implicitly by several authors
[42-46] and we shall give a derivation towards the end of
this section only in order to make more explicit the unique 
characteristics of "slow" absorption and amplification.

Introducing the gain coefficient (Appendix B) we write (3) 
in the abbreviated form

w  = M 1 + eAu (4a>
A

where the factor of e u is also known as (The u reminds
us that the coefficient or factor containing naQ is for the 
unsaturated gain).
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The slow saturable absorber obeys a similar law

r sj

■ W = ^  + e U [* “  - !]} (5)

-B.
where sj = j x^dr is the absorber "dose" and e u = 0u .

In the "bouncing ball" model the initial gain is not the 

full amount Au (= naoal) but the incompletely recovered 
coefficient

= fo “
INITIAL (x) o dx ' a

which means that a more general amplifier law (see section 
2.3) replaces equation (4a), namely:

w  - W 1 + eAL [•■** - *]} <4b>

By integrating the pure recovery equation (lb) for the 
amplifier population we may write down a gain "feedback" 
condition covering the period from the end of saturation by 
the energy j until just before the next saturation a round 

trip later. Specifically,

A L ~ ^T (1 “ H) A,u (6)

where H = exp (- / ) has to be non-zero becauseRT 7 ‘la-
incomplete amplifier recovery is essential for stability: 
this is the sign of a "soft" nonlinearity for timescales that 

exceed TR T .

Experimental details might lead to complications in the 
equations assembled above. For example, unless the cavity 

geometry is an idealized unidirectional ring, the location of 
the nonlinear elements in the laser cavity (Fabry Perot) is 
also important. The amplifier might be placed away from the 
centre of the cavity, in which case unequal recovery
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parameters E must be allowed in two parts of the round trip 
double saturation cycle. Absorber recovery is so rapid that 
the same effect only matters when the absorber is close to a 
mirror? the more important case is when there is no gap 
whatsoever and the two-way slow absorber theory (chapter 4) 
is needed. Colliding pulse mode-locking exhibits the same 
dependence on absorber jet positioning that the Fabry Perot 
has upon absorber cell contacting.

An approximation that applies when the changes to the pulse 
and to the saturable elements are small is:

“jinA t  = A L e in (7a)

~sjinBT = BL e in (7b)

However, we can obtain the exact results by writing (4) and

(5) in differential form

in ~ 3 out
dW  - e e d3in

dj out
”Bu s ^ i n  ” W *

= e e d3 .n

from which the true coefficients are seen to be as follows

A L " ^ o u t  ~ ^in* (8a)

BT 55 BL s ^ o u t  " ^in^

Equations (8) can be regarded as energy conservation laws. 
(Equations (7) do apply exactly in a composite cavity model 
in which A and B are distributed coefficients per unit 
length, but the discrete model is normally closer to 
experiment.)

The proof of (3) makes use of the energy conservation 
condition. Integrating the equality + b \ / b x  = 0 wecl cl a
obtain an equation for the variation of j with x,



dj/dx = aa n̂aL ” naT) • We obtain (3) if we use naL = naQ and
n m = n e”  ̂ and integrate over a thickness 1. aT ao 3

As an example of the "bouncing ball" treatment of a mode- 
locked ring laser, values of s = 5, aru = 25, 0U = O . 2 ,  
7 = 0.4 were taken together with an amplifier incomplete 
recovery Ea = exp(-0.8). An effectively complete absorber

recovery was used: E^ = e x p (-4). The result, when an initial 
starting energy was taken through sequential amplification, 
absorption and linear loss (y) followed by the same processes 
on the next round trips taking incomplete recovery into 
account, was convergence to a stable cycle. With the 
parameter values above, the prediction was:

AMPLIFIER - f*L = 7.4 ^in = .787 <*T 88 1*6

ABSORBER - 0L = 0.21 3in = 2.3 0T = 0.999

LINEAR LOSS - ^in = 2 ' ^out = 0.787

The point is that as well as the stable pulse energy being 
repeated, the recovery of <*T and 0T reproduces the same 
leading edge conditions for the recirculating pulse. This is 
the "bouncing ball"!

Once the energy of an evolving pulse is stable, the pulse 
shape may still change. The study of the effect requires 
numerical simulation of the pulse evolution, as outlined in 
the next section. However, it is well known in practice that 
the pulse compression rate (the term "pulse compression 
velocity" is used in [41]) is only sufficiently large to 
allow ultrashort pulses to be achieved if there is loss on 
the leading and trailing edges of the pulse. In the end the 
pulse will become so short that the rate equations (1) and 
(2) break down.

In (1) and (2) the limited bandwidth of the amplifying 
(absorbing) molecules is entirely ignored. This is valid as 
long as collisions between dye and solvent molecules are so 
frequent that the microscopic polarisations are "thermalised" 
much more quickly than the photon flux is changing.



Statistically this means that the recovery rate (T”1) of the 
off-diagonal density matrix element must be large, as assumed 
in Appendix B. There are no steady state pulses in 
numerical simulations unless bandwidth limitation is also put 
in. There is, however, a correlation between rapid 
unrestrained pulse compression and finding short stable 
pulses when the filter limits the process.

The regime where ctjp^y and gTs a^Q^y are simultaneously 
less than one (i.e. where there is net loss on both the 
leading and trailing edges of the pulse) is called the static 
pulse compression regime. To find the boundaries of this 
regime one simply searches for the values of which 

(keeping 0L and y as above) result in aL£L7 - 1 or a^Q^y = 1. 
A particular value may be obtained either by adjusting the 
cavity length (E_, S O  or the laser pumping (A ) and the two 
boundaries are therefore lines of constant pulse energy in 
this parameter space. For the parameter values used above, 
the extreme input energies at the amplifier are given by 
0.293 < j^n< 1.269 so that the chosen parameters should lead 
to strong compression of the pulse with energy 0.787. What 
actually happens in the presence of bandwidth limitation is 
shown in the next section. From the numbers already given, 
the net gain factors must be gL« 0.6 and gT « 0.65 whilst in 
the rate equation regime. In this case the peak (static in 
local time) has to sharpen if the pulse energy remains 
conserved.



2.3 Computer model including bandwidth limitation

This section describes the numerical method used to 
simulate passive mode-locking. As well as demonstrating the 
features predicted by the "bouncing ball" model, simulation 
reveals to us how a steady state is attained when bandwidth 
limitation is included. The remaining sections in this 
chapter contain the results of numerical evolutions carried 
out by the method described here.

The entire cavity is represented by a mesh of equally 
spaced samples of the electric field. Only a small fraction 
of these meshpoints ultimately convey the ultrashort pulse - 
elsewhere the flux is close to zero. Although this is 
inefficient (in computing terms), the advantage is that 
evolutions may be started from a smooth initial disturbance 
so that the onset of mode-locking can be traced before the

"bouncing ball" stage (t p u l s e << Tla' Tlb^ * since we do not 
assume that an ultrashort pulse will be produced, both the 
assumptions and the quantitative predictions of 
analytic theories are tested.

In the computer program used to study the evolution in time 
of the mode-locked emission, the entire gain at the amplifier 
is applied in one step. Hence the physical thickness of the 
amplifying jet is not one of the inputs to the program. The 
same applies in the case of the absorber, which may be 
treated in the equivalent •lumped* manner.
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We shall now integrate over the amplifying medium rate 
equation in order to obtain the results used for the computer 
simulation. These results are amenable to a modified Runge- 
Kutta numerical approximation scheme.

The amplifier is described locally by n , the population-
cl

difference density, obeying

ana
at

n a
5T (1 + x)
A

(1 )

where n is the long-time steady state value of n (z) which

is achieved by the pumping mechanism in the absence of any 
laser action (x = 0). The normalised flux X has an

interpretation as photons per molecule and it follows that 
stimulated emission and absorption enhance the total decay

rate to t ”1 ^  + x) compared with the purely spontaneous rate,

T-1 1 *
The action of the lumped amplifier on the flux at the input 

•  (z = 0) is (after propagating z)

x(z,t) = x(0,t - §) eA ( z 'tJ

where A(z,t) is referred to as a gain coefficient. The total 
gain in the amplifier of thickness £ will be abbreviated 
A(£ ,t) - A(t) .

From Beer*s law an expression for A(z,t) which links up 
with (1) may be written down at once, namely

z

A(z,t) = <r|n(£',t - Z ^-LL) d*' 
o
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where a is, by definition, the gain cross section. An 
integrated version of (1) is obtained by applying the 

*
operation aj d £ 1 to both sides: 

o

§)x(z,t) dz ( 2 )

where A Q = anu£ .

The integrand is the same as the •lumped* quantity:

X(0,t - §) (eA(Z,t)) <rn(z,t _ Z) eA(z,t) x(0,t - %)

= an(z,t - | ) X(z,t)

Therefore:

(eA(Z,t)} dz

- X(0,t)
11

[ e * ™  - 1] (3)

The Runge-Kutta method was used to evaluate this result for 
A(t). In terms of the mesh step 5t the fourth-order 
calculation of A(t + 5t) is as follows [90]:

Yasa and Teschke ([47],1975) employ a formula similar to (3) 
in work on synchronous pumping.
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Cl = R( A(t), X(0,t)) . 6t

C2 = R( A(t) + “  Cl, X(0,t + ̂ f)) • 5t

C3 = R ( A(t) + |  C 2 , X(0,t + ̂ f)) • 5t

C4 = R( A(t) + C 3 , X(0,t + fit)) . fit

•  We used R  to denote the right hand side of (3) and it is now
Cl + C4the average of C2, C3 and -----^---  that is used to step

A(t + 5t) - A(t). In this form, however, this Runge-Kutta

method can not be used because the input field x(o) is 
defined only at the meshpoints: if known at t and t + fit, 
then X (0,t + -^) is absent. In order to calculate C2 and C3, 
however, it was decided to use linear interpolation to 
provide an estimate of the required flux value. Results show 
improved convergence, when using this method, over results 
obtained using R(x(0,t)) everywhere.

The evolution of a flux pattern known initially at all 
meshpoints (typically M = 1024) of a ring cavity is now 
simple to follow. For each meshpoint the flux value is 
multiplied by eA ^ e ~ B ^ e ”r to represent passage through the 
saturable gain, saturable absorption and constant loss of the 
cavity components. Before proceeding to the next meshpoint 
the saturation of A(t) is evaluated as described above, and 
that of B(t) follows from a result analagous to (3):

It B <t ) = t 7T (b o “ B + sx(0,t)[e"B(t) -1])

•  where T lb is now the lifetime of the absorber and the factor

s = a. /a allows for the fact that X was defined in terms of b' a
the amplification cross-section rather than that of the 
absorber. The process is repeated for many circuits of the 
whole-cavity mesh.



Steady state pulses do not exist in the absence of ac
filter. The filter algorithm, based on a model Fabry-Perot 
etalon was placed after the linear loss in the simulations. 
It performs the following mathematical function:

E (t) <- R E(t - 5t) + TE (t)

The phase delay in the filter has been assumed equal to the 
mesh spacing used in the program (etalon thickness 5t/2) and 
the optical carrier frequency coincides with an Airy 
transmission maximum so that R is real. Notice that

E(t - 5t) is the previous OUTPUT field from the etalon as set 
by the preceding application of this reassignment rule. 
Since the transmission (T = 1 - R) of the etalon is therefore 
included implicitly it is only R which multiplies this filter 
memory term. Whilst phase information is completely ignored 
when stepping the rate-equations for A(t) and B(t) - these 
contain X = |E|2 driving terms - it is essential to the 
correct operation of the filter. With E(t) replacing x(t)

for this reason, the amplitude gains eA t̂ ^//2e_ B ^ ^ 2e”r/ 2 
were used for the calculations described above. One 
advantage of treating fields directly was that a complex 
random number might be added to the fields upon every step to 
simulate incoherent noise (possibly arising from spontaneous 
emission).

Note that the filter removes energy from a rapidly varying 
pulse by reflecting the portion that is not transmitted. In 
a two-level medium with finite bandwidth, however, the energy 
’loss' is simply associated in the frequency domain with 
reduced utilisation of the inversion by off-resonant 
stimulating photons: the idea of reflection has then no

place. We deliberately avoid the complications (saturation) 
of that nonlinear filter by using the separate Fabry-Perot. 
It is interesting to note, however, that finite absorber 
bandwidth also contributes an opposing energy 'gain* so that 
the overall behaviour would be of some interest.
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10 ns is a typical cavity round-trip time in a ring dye 
laser. Therefore in order to resolve well a 1 ps optical 
pulse the number of meshpoints in the whole cavity must be 
about 5 x 104. This type of accuracy is impractical and 
therefore we restrict the number of points to 1024 so that 
our model will only be capable of making qualitative 
predictions. By specifying a filter memory time of about 5 
meshpoints the pulse was prevented from narrowing below, 
typically, 20 meshpoints. Mode-locked pulses from the cw dye 

laser were recognised [48] early on to have durations far 
shorter than the saturable absorber lifetime (300 ps in the 
case of the dye DODCI). We mentioned this in connection with 
the compression zone theory of New [49]. For the numerical 
simulation it was decided to compress slightly the ’space' 
between the T lb value and the expected pulsewidths in mesh

points. For example, the settings

m = 1024 t = lb

'la
=  0.2 S =

CAV

’la
= 1.3

were often used, meaning that TCAV “ 1024, T la = 788 and 
T ^  = 158 meshpoints.

Confidence in the model was enhanced when the filter 
strength was varied: behaviour was always unchanged except

for the expected 
controlled in the 
Perot etalon.

scaling. The filter memory time is 
program by the transmission of the Fabry



2.4 Computed behaviour

Figure 1 shows the evolution of the intra-cavity flux over 
twenty five transits, in a simulation begun from a constant 
flux (defined by the unstable equilibrium solution to the 
model equations with time derivatives set to zero) with a 
small added sinusoidal perturbation which grows exponentially 
in the first stages of mode-locking. The horizontal 
coordinate is local time: the observer is at the input side of 
the amplifier. After the initial growth (which agrees with 
the perturbative description of New and Rea [50]) saturates, 
the next stage where we can simplify the analysis comes once a 
single pulse short compared with T la and T lb circulates in the

laser. The slow absorber and slow amplifier approximations 
made in section 2.2 are then valid, until the filter finally 
limits the indefinite pulse compression of the "bouncing ball" 

theory.

The limit to the pulse compression when the filter was 
excluded from the computer model was found only to arise from 
the coarseness of the numerical mesh. The compression occurs 
without the pulse slipping in local time and is known as 
static pulse compression. It was verified that the net gain 
factors on the edges of the pulse were less than unity and 
that they were the same all through the later evolution. The 
energy in the pulse also became stable. This is what the 
"bouncing ball" model predicted.

The most interesting information was obtained when the 
filter was made effective. Instead of indefinite compression, 
the pulse width stabilised. At the same time the gain factors 
and pulse energy settled at stable values different from those 
earlier on. This indicated that a self-reproducing pulse was 

forming.

In figure 2 we measure the logarithm of the minimum flux 

between the filter-limited pulses on every round trip. The 
computational cost of obtaining a true self-reproducing flux 
profile is high because the "trough" continues to deepen long 
after the pulse compression ceases. The evolution was
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FIGURE 1 STATIC COMPRESSION no filter
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followed to completion in this particular example - 140 round 
trips were required. This state would not be reached in 
practice in the presence of noise, when the (smoothed) pattern 
becomes stable much earlier.

For the same run as in figure 2, the pulse energy is 
plotted in figure 3 to show how large a drop in energy is 
caused by the filter. This also accounts for the changes in 
net gains on the leading and trailing edges of the pulse. The 
change is as important whatever the strength of the filter. 
Only the timescales of the whole evolution and of the pulse 
change; not the energy balance. We take this up in section 
2 .6 .

When the pulse shortens to the point where the filter 
starts to have an effect, the pulse starts to drift in local 
time. This observation leads us to consider how the steady 
state pulse is determined by the filter in the computer model: 
drift in local time must play a role.

Haus' model [8] of the stationary state achieved in passive 
mode-locking with a slow saturable absorber takes the filter 
into account. The main result (see section 2.6) states:

(1)
t f w h m
1.76

vr
^ ;b l

Here T-pvjHM. the intensity formula sech2(t/tp) 
and Bl  = “ln0u and r = ”lnY mean the same as in section 2.2. 
The main conclusion is simply that the pulses are shorter 
(relative to tF ) when absorber saturation sj is big.

The meaning of tF must be considered. In the present 
computer model the etalon, implemented in the time domain, 
operates on the discrete mesh of field values to provide a 
dispersive effect. The theoretical approach used by Haus 

(introduced in the next two sections) augments the 
(intensity) loss coefficient r  = -ln7 by an amount r t F (a> - 
wQ) 2 in the frequency domain or r t Fd2/ d t2 in the time domain. 
It is only possible to use equation (1) when these responses 
are an adequate description of the filter used. As the
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FIGURE 2 THE EVOLUTION OF THE MINIMUM FLUX

FIGURE 3 PULSE ENERGY EVOLUTION



etalon thickness (half t̂ . the mesh spacing) in the program is 
reduced to zero the required transmittance (TRANS) becomes 
small for a given filter strength. We assume that this limit 
applies, in which case H a u s 1 filter description holds where 
yrtF = t^/TRANS. In the simulations TRANS = 0.181 so *

5. Note that the computer program measures to the

nearest integer.

Despite the fact that (1) may be derived only under severe

approximations, the literature contains no test of the

prediction for real operating parameters. Our simulations

produced a stable pulsewidth of 19 meshpoints. On the

basis of (1), then, j should be « 0.3. This is not far

outside the results of the simulation which gave j. = 0.58,m
2.0 and 1.7 at the three measuring locations. All energies 
are lower than in section 2.2 because of an extra energy loss 
from bandwidth limitation.

In the next sections it will become clear how equation (1) 
is connected with the drift of the pulse. Then in section

2.8 we will study the system in a way that is more applicable 
to the Fabry Perot filter actually used in the simulations.



2.5 H a u s 1 parabolic o M )  theory of 
slow-absorber mode-locking.

It must be stressed that the "bouncing ball" theory

discussed earlier is of no help in predicting the pulse- 

widths a particular amount of bandwidth limitation produces. 
This problem was first overcome by Haus, as described

below.

Haus included the competing effects of the gain dynamics 
and a generalised filter term in the defining equation for a 
steady state pulse:

[ G(t) - 6T d/dt + rtp d2/dt2 1 V(t) = 0

The middle term in this equation removes the slip from the

small modifications made to a pulse by the other two terms on 
every round trip. The equation states that the field V(t) 
reproduces exactly after a round trip. A solution consists 
of a function V(t) and an "eigenvalue" 5T. The change to the 
pulse from each term must be small to justify the use of V(t) 
and its derivatives instead of several functions, one for

each place in the cavity. The filter is represented by the
2 2 2r t F d /dt temporal spreading operator, the equivalent of a 

spatial diffusion operator. The filter term shows there to 
be a characteristic diffusion time t£ = Jr tF depending on 
the amount of linear loss r and the actual filter time t„. 
The possibility of group delay in the filter is not relevant 
because it would only lead to a d/dt term, which has the same 
effect as a redefined slip eigenvalue.

In H a u s 1 equation discussed above, as in our numerical 
calculations, the (limited) bandwidth potentially available 
enters solely via the curvature at the centre of the 
frequency-domain filter response. This applies to present 
dye lasers because the rate of static pulse compression is 
only sufficient to generate pulses which utilise a small 
proportion of the CW lasing bandwidth. (Frequency tuning of 
picosecond pulses - by changing absorber dyes - is feasible



.39.

for this very reason.) Stix and Ippen [41] quantified the 
pulse compression rate, showing that an added filter provides 
a cancelling pulse broadening rate in the time-domain. This 
means that the solution for the steady state pulse should be 
"elastic", making it always possible to obtain shorter pulses 
by increasing the effectiveness of the "bouncing ball" 
shortening or by providing extra bandwidth.

We finally explain the essential feature of Haus' theory 
[8,51] which reduces the problem of solving the equation 
above to simple algebra. The "bouncing ball" physics is 
simplified so as to represent saturation by a parabolic law:

G(U) = x + 7q yU - | qU2

, r 2
where the variables U(t) = |V| dt and constants x, y and

0
q will be related to the physical parameters in the next 

#  section, after the consequences of the parabolic assumption

have been explored.

It is remarkable that without any further details being 
. 2 .needed one finds the sech intensity solution for the model. 

The solution of Haus* equation is:

V(t) sech
'q

< 3 €• )F

where z is the larger root of the quadratic equation
2 . . .-3/8 z + y z  + 2 x = 0 .  The solution may be verified by

using the definition of G(U) to obtain G(t) for substitution

in the steady state pulse equation. The associated

eigenvalue is:

5T = (z - 2y) t£



Even though we have postponed much of the detail of this

theory (for example the definition of x, y and q) we may draw

the following conclusions: first, the "elasticity" has

appeared in terms of the combination z/t' for the pulse- 
, , o

width? secondly, the pulse-shape has become fixed (sech ) and

thirdly, the normalised energy [ U(t=co) = z/7q ] and the

pulse-width are determined by the same derived parameter z.
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2.6 Discussion in terms of llbouncinq ball” model with extra 
energy loss in the filter

The equation solved in the last section shows that the 
parameters of the steady-state (sech2) pulse satisfy a 
quadratic equation. The physical interpretation of the 
results is provided here.

Before defining x, y and q we must first decide what 
normalised measure of electric field V(t) is desirable: there 
is a choice to be made because Haus' model is a nonlinear

model in which we want to end up with no more variables than

are necessary.

In the "bouncing ball" model we worked in terms of the 
normalised flux in the amplifier xa - We now choose a field 
V(t) = 7X . and therefore (7a) and (7b) in section 2.2 become

cl

A(t) = ALe-u(t) (la)

B(t) = BLe-sU(t) (lb)

r  is the linear loss coefficient, A  and B are the nonlinear

slow-amplification and slow-absorption and U(t) was defined 
. 2as the integral U(t) = |V| dt m  the previous section.

J —oo
The complete absorber recovery assumption simplifies the 

analysis because B^ = Bu in that case. However A L in (la) is 
determined in practice by the recovery law which was quoted 
in section 2.2 (equation (6)). The net gain coefficient for 
use in Haus' model is now given by:

G = A(t) - (B(t) + T) (2)

Expanding the exponentials in (1) allowing for s > 1 but 
assuming U «  1 leads to the parabolic approximation:

G - A L - <Bu + r > + <sBu - A L )U - f  BuU ’ (3)



The definition of q = s 2 Bu leads to the following 
interpretation of x and y of the previous section:

x - AL - <BU + r> (4)

(5)

The hyperbolic secant formula that gives V(t) from these 
parameters has been proved already. Now we shall demonstrate 
the consistency of the normalised results in section 2.5 with 
the much simpler energy conservation approach of section 2.2. 
The total energy in the pulse is given by U(t = co) = z/7q and 
therefore from (3) , (4) and (5) the energy that the entire 
pulse gains from a round trip without including bandwidth 
limitation is:

The energy balance is achieved by an equal loss of energy 
in the filter. The fractional loss depends on the shape of 
the pulse as well as its duration. .The net result must be

AU + U FILTER OUTPUT " UFILTER INPUT 0 ^

and this suggests the physical origin of the quadratic 
equation used by Haus. The first term above comes from (6) , 
the second equals z/7q (because V(t) is a self-reproducing 
pulse) and the last term is easily calculated using the 
inverse filter operator method (see [10], equation 5.7):

CO

AU = | |V|2 G(t) dt

z/7q

| GdU 
0

(6)
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CO

U — f |V + t* |^dtuFILTER INPUT J |V + 7  dt 1 Qt
“ CO

z
J g

i + 4
3t

2

2

P

where the factor 3 comes simply by assuming a pulse shape 
sech(t/tp), where t is finally fixed using (7):

1_ 
J q

(xz + |  y z 3 - ^ z 3) o

In order to complete the discussion we need to connect t
P

with z. This is outside the power of the "bouncing ball"

approach, but if we take t/t dependence (1/4) z (t/t') found
P -f

in the last section we obtain:

27i <2X + YZ - 3 z ’> - 7i «  = 0

and duplicate the original definition that z is the root of 
— ^ z 2 + y z + 2 x = 0 .

Since t£ = z/Jq = j and q = s 2Bu we find the

essential physics of passive mode-locking in the t -» z
Xr

relationship, written now as:

t  = (A t  _jr 
p ls ; F jVB,u

This result was tested in section 2.4. The effect of the 
parabolic gain approximation was found to be significant.

The stability zones in the present model are shifted 
slightly compared with those which occur during the static 
pulse compression without bandwidth limitation. Following 
Haus [8] we define the stability condition as a net loss on 
the leading and trailing edges of the pulse for the noise



which the filter does not remove. With the gain parabola
. . 1 2 (section 2.5) we find that G^ = x and GT = x + yz - ^ z .

If a graph is plotted of jVBu against y then the stability

boundaries appear as straight lines through the origin. One

can easily prove that the stability condition is met when 
3 5 .
a z <  y  <  —  z from which the slopes of the boundary lines are
®  O  Q  C

found to be —  and —  . This shows that the stability region

is wider when s is made large (for example in colliding-pulse

arrangements). Once the parameters allow the system to

operate outside the stability zone, the pulses may be

seriously perturbed by noise (see section 2.7). Notice that

for the laser to attain threshold Au > Bu + r is necessary,

but for stable passive mode-locking A_ < B„ + r  which (sinceJ_i u
y > 0 in equation (5) gives s > A L/ BU ) requires that we

choose s > 1 + r/Bu whatever the amplification may be

[49].

We can conclude that a large value of s is beneficial from 
both the pulse compression and stability points of view. The 
absorber then very readily saturates.



2.7 Effects of noise for dynamic pulse compression

The "deepening" of the trough between successive mode- 
locked pulses is prevented from continuing to the steady 
state limit because of noise. This was introduced into the 
simulations as an injected constant signal and we thus ignore 
the stochastic structure of the source. The "filling in" of 
the trough occurs once the main part of the pulse is 
established. In figure 2 the dotted curve shows, (for a 
particular injection level), the disappearance of the trough 
which would otherwise get deeper for the next hundred round 
trips.

For a laser operating outside the static compression zone, 
the effect of injection is found to depend strongly on the 
bandwidth of the filter. If the bandwidth is wide then the 
pulse-width that is achieved from dynamic compression is very 
sensitive to the level of the noise. This differs markedly 
from the static pulse compression results where the noise 
which causes the depth of trough to be limited has no effect 
upon pulse-width.

Figure 4 shows profiles after 40 round trips when E wasa
decreased (e.g. by lengthening TRT) enough to operate with

gain on the leading edge in the model of section 2.2. For
—6example (4a) the injection is set at 3 x 10 (with the same 

normalisation as x ) and the bandwidth increases from left to 
right: tR = 4.5, 2, 0 meshpoints. Dynamic compression is a

slow process and for tR = 0 the pulse was still narrowing 
after 40 round trips. However the other curves do represent 
steady states and the widths are very much larger than those 
of pulses inside the compression zone for these filter memory 
times.

In the absence of noise the final trough for logx had 
-33reached 6 x 10



The effect of increasing the injected signal by factors of 
10 and 100 is shown in figures 4b and 4c. The steady state 
pulses, now occurring already at 40 transits even in the 
absense of any bandwidth limitation, are controlled by the 
strength of the noise.

These results indicate that operation outside the regime 
where gL and gT are simultaneously less than 1 will lead to 

longer pulses which will not usually be shortened by an 
increase in available bandwidth if the effects of noise are 
included.



maximum = 80.0

FIGURE 4a DYNAMIC PULSE COMPRESSION INCLUDING INJECTION



FIGURE 4b INJECTION X 10
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FIGURE 4c INJECTION X 100
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2.8 Slipping pulses; relationship between rise and fall 
times and the net gain.

Steady state pulses in Haus' model have exponential wings. 
In the original equation in section 2.5 the absense of gain 
modulation for weak fields always leads to such solutions. 
Below, we show that the profile of any steady state pulse may 
be analysed simply everywhere except close to the peak. We 
allow for the gradual variation of the logarithmic slope in 
local time.

Taking the flux to consist of a slowly varying exponential 
exp(kt) where k is locally time-independent, we may assume 
the electric field to obey

E(t-t) = E(t) e-(k/2)e

for small delays (e). The loss in a Fabry Perot filter will 
simply shift an exponential E(t) in this same fashion, as 
will a locally constant net gain .

A  steady state profile by definition may only suffer a 
constant slip after a cavity transit. This is true despite 
the fact that the shifts by the filter and by the net gain 
depend on k which is time varying. The condition for a 

steady state pulse is that net gain g(t) and logarithmic 
slope k(t) must be linked so that the combined effects, just 
mentioned, supply the constant slip e.

For the steady state pulse obtained after 140 transits 
figure 5a shows the "theoretical" net gain versus logarithmic 
slope graph for the measured slip of e= 3.2. The operating 
parameters are those of section 2.2 (static pulse 
compression) so that there was no slip at all until the
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FIGURE 5 STEADY STATE PULSE BEHAVIOUR



filter affected the evolution. The theory is dealt with in 
appendix I. The comparison with simulation (figure 5b) is 
very good except near the peak of the pulse (where the upper 
curve cuts the axis).

Figure 5b contains information about the steady state 
solution, which must now be described. The gap in the plot 
is where the calculation happened to pass the 140th cavity 
period from the start of the calculation. The gain is 
defined as the ratio, with the filter imagined switched off, 
of the fluxes on the 141st and 140th transits measured at the 
same local time modulo TCAV. The slope could not easily be 
measured at the end points and the distortion is an artefact. 
However, the gap is real: more than 512 meshpoints (1 cavity 
snapshot) are needed to complete the figure - because the 
slip (6=3.2) delays the repetition. If the figure was 
displayed in "real-time" as an evolution approached the 
steady state from the earlier static pulse compression phase, 
the gap would grow on each round trip as the filter 
introduced the slip. Thereafter the gap travels in a 
clockwise direction around the figure, which develops the 
sharp "corners" predicted by figure 5a as time goes on.

Figure 5b records the sequence of events during the 140th 
transit if the curve is traced in a counter-clockwise sense. 
The horizontal line, traced over at the foot of the trough, 
separates the trailing and leading edges (on the left and the 
right). Most of the 512 points are densely gathered close to 
the ends of this line, confirming that the wings are 
exponential and that the leading edge of the pulse is steeper 
than the trailing edge. From the leading edge, continuing 
amplifier recovery first raises the gain factor gradually ; 
the exponential rising edge continues almost without 
saturating whilst this happens. The gain begins to increase



more rapidly when the absorber saturates, reaching a peak 
before the flux has reached the peak of the ultrafast pulse 
(the slope of log{flux} is still positive in the figure). 
Gain saturation dominates the fast descent on the left hand 
half of the figure, but in the trailing edge of the pulse 
absorber recovery causes a further drop, which is slowly 
reversed when amplifier recovery is the only remaining force.

The agreement with theory at the slowly traced out regions 
in the space of figure 5b indicates that the computer 
simulation is reliable. The portion of the plot where there 
is disagreement could be studied in order to improve the 
test. Haus* approximate theory, though not able to improve 
the agreement, does indicate a parabolic shape for the entire 
figure (section 2.5 and appendix I). This is approximately 
what we have in figure 5b.



CHAPTER 3

TWO-WAY ABSORBER SATURATION



3.1 Introduction

The description of a two-way absorber which can be applied to 
the study of passive mode-locking must include the following 
three processes: transient buildup and decay of fields in
time and space, highly non-linear saturation by the 
concentrated mode-locked laser pulses and self-phase 
modulation (chirping). It is the purpose of this chapter to 
see how these requirements may be met.

It is not necessary to include relaxation processes in 
detail because the pulse durations occurring are far shorter 
than T1 (longitudinal relaxation time) and far longer than T2
(transverse relaxation time) for many of the dye solutions 
used. This makes it possible to ignore T1 processes (and to
treat T2 processes in a rate-equation approximation). For
the sake of completeness, however, comparison will be drawn 
between the present 'slow absorber' and the other extreme 
case of a 'fast absorber' with T1 and T2 both small compared
with the pulse durations.

The first two processes mentioned above are greatly 
affected by the population grating which arises in the 
absorber from spatial hole-burning, and which is not present 
when only a single beam is involved at once. Experimentally, 
one finds for the conventional passively mode-locked dye 
laser (unidirectional travelling wave saturation of the 
absorber) little dependence upon the thickness of the dye 
cell or jet. However when there is two-beam saturation (as 
in colliding-pulse systems) one finds that the shortest 
pulses obtained are determined by the absorber thickness. 
This is due to the grating? the mechanism responsible is the 
prime concern of this thesis.

Self-phase modulation is responsible for the chirp 
sometimes measured in the pulses from mode-locked lasers, as 
we discussed in section 1.2. The fact that such pulses are
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not bandwidth limited can be used to advantage by using 
linear dispersion inside or outside the cavity to compress 
the pulses further. Colliding-pulse lasers may well owe 
their success partly to fortuitous linear dispersion of the 
correct sign in the dielectrically coated mirrors of the 
cavity.

The plan for this chapter is to review first the uni
directional absorber and finally tackle the two-way absorber. 
The inclusion of self-phase modulation is left for future 
work.
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3.2 The conventional absorber

In the appendix the rate equations describing a 
homogeneously broadened two level system are derived from 
basic principles. The equations also describe three-level 
and four-level systems in which rapid thermalisation means 
that only two levels are important: both a dye amplifier and 
a saturable absorber dye are in this category.

Taking the case of the absorber (but a change of sign in 
the population difference leads to all the results for the 
amplifier) we have:

where, at this stage, no account is taken of population 
recovery in equation 1. The meanings of the symbols are:

coordinates? I - normalised intensity in photons/m2/s (photon 
flux) travelling in the +z direction; a - stimulated 
transition cross section and n is the population density 
difference between the lower and upper levels.

In this slow absorber limit, there is an analytic solution 
for the transmitted pulse which was originally used in the 
case of high energy amplifiers in the 1960's. Standard 
techniques lead to the following results [42,43]:

(1 )

(2)

t' = t (z/c) and z* = z, local time transformed

n(z,t)
J £ n (z ' , - co )d z '
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I(Z,t) _________ I(0.,t'.)__________ ___________

e a f l n (z ',-co)dz' i e-ff|^l(0,t)dt

To help make these results plausible note that letting the
t*pulse energy <7 r l(0,t)dt remain small yields

J — oo

n(z,t) * n(z,-co) and the degree of saturation is also small; 
the flux I then obeys Beer*s law for linear absorption. 
Similarly taking L sufficiently short that Ifl^t1) « l(0,t') 
we find an exponential saturation

-<7
e

I (o, t) dt
9

propagation effects are absent in this case since the 
solution is also a formal solution to (1) with z-dependence 
suppressed (a/at* -> d/dt1).

These solutions contain some quite surprising physics. 
Super-luminary propagation of the peak of a pulse travelling 
in a nonlinear medium caused interest to workers on 
amplifier theory. In fact, this effect only involves the 
continuous reshaping of the pulse as its leading edge 
saturates the gain available later in local time. Even 
though a new peak may appear on the profile in this process, 
no information has been transmitted faster than the speed of 
light.



3.3 Fleck Hierarchy T521

The slowly varying population density difference in the 
one-way absorber is replaced by a rapid grating (real time 
hologram) structure when there is a second saturating field to 
form interference fringes. The modulation impressed on a two- 
way absorber has a period of half a wavelength. Therefore we 
may carry out the Fourier decomposition,

CO

(BIO) n(z,t) ® n + E [n exp{-2pikz} + c.c.]
p=l p

where k = 2x/x and the coefficients n and n_ are allowed toPvary SLOWLY with z as the local grating "shape" changes after 
a large number of periods. We find below that fields and not 
just intensity (used in section 3.2) determine the effect of a 
two-way absorber.

Gratings in laser physics have been studied extensively and 
Appendix A refers to the background of our subject.

We show in appendix B that the transport equations for 
counter-propagating laser fields depend only on the 
fundamental and first spatial Fourier components of the 
population difference intensity n(z,t). From (B8)

[c tt + tl] E+ - - f ("E+ + nlE"> <la>

[c ft - « ]  E" = - f <5e‘ + n!E+> <lb>

The reason that the higher Fourier components do not cause 
scattering is that the Bragg condition is violated (there is a 
large phase-mismatch). Appendix B provides the rate equation 
for n whereas it is the specific behaviour just of ii and n1 
which will now complete our two-way absorber description. 
Fleck [52] introduced a hierarchy of coupled equations, 
rederived below, which describe the evolution of all the 
Fourier components. The coupling means that n2 appears in the
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driving term for n^, and so on - this fact unfortunately means 
that a large number of Fourier components, not otherwise 
required, must all be followed.

We next substitute (BIO) into (B7) and equate the slowly- 
varying coefficients of like exponents coming from n(z,t) and 
F(z,t). The result is the infinite Fleck hierarchy.

an u
at T1
sn1 -nl
dt T1

dn2 -n2
dt T1

---4a[n(|E+ |2+ |E“ |2) + (n1E+*E“+ c.c.)]

-4a[n(|E+ |2+ iE” |2) + nE+*E“ + n2E+*E“] 

-4a[n2 (|E+ |2+ |E” |2) + n1E+E~* + n3E+*E-]

(2a)

(2b)

(2c)

The truncation which Fleck employed in order to use this 
formulation sets n2 = 0 in (2b), thus closing the system of 
equations (la), (lb), (2a) and (2b) at the expense of major
approximation.

—  1 / 2  . . . +  — Note that the factor (eQ/hk) ' which multiplied E and E
in the appendix has been dropped since it is convenient from
now on to work with normalised fields. Since the photon flux
becomes F = 2(|E+ |2+ |E~|2 + E+E~*e“2lkz + E+*E~e+2lkz) the
doses with each pulse are

j* = 2 | | E V dt.
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3.4 Perturbation Expansion of the Fleck Equations

When the non-linearity is not too strong, a few terms in a 
perturbation expansion can be sufficient to approximate the 
solution to a nonlinear problem. The approach to be 
presented here makes use of a dimensionless combination of 
parameters, a, which has to be large for the method to be of 
use.

The results are not used elsewhere in this thesis because, 
as we shall soon see, large a is not a correct assumption for 
the saturable absorber problems of interest. Nevertheless, 
the method provides some extra insight into the basic physics 
embodied in the exact equations.

We define

1 ' u 1a =  ------ z--------------
2 i)

Here nu represents the unsaturated population difference 
density? that is the negative equilibrium value to which the 

•  absorber will return in the absence of any applied light.
The relaxation time is denoted as usual by the "spin- 
lattice" or longitudinal damping time. The speed of light 
inside the medium is c / tj, and the interaction strength 
between photons and population is contained in the cross 
section a. Using the values in the table, which appear in

gFleck*s work, we find a * 4 for the absorber and a « 10 for 
the case of the amplifier.
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T
1

a I V

absorber 1 ns 8 x 10~16cm2 0.35 x 1015cm
(CRYPTOCYANINE)

amplifier 3 x 10“3s 2.5 x 10“20cm2 2.6 x 1018cm'
(RUBY)

Table of data used to calculate CL [52]
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We shall now define normalised variables for the fields, 
material parameters, timescale and distance scale in which 
the perturbation expansion is presented.

Normalised Variables

A steady photon flux |E | in one direction with magnitude 
1

4aT.
nu - nleads to a degree of saturation ------  of unity. This

1 n
is the reason for using the following normalised fields:

A = 2 J a?1 E
B = 2 1  aT1 E~

In order that all the variables should be dimensionless we 
make the substitutions

a c T.
r T

a c T.
— T T

n

n (p — 1, 2, ....)

X
2 »n u

T
2 'n ul v t

Besides A, B, a , a , X and T the normalised equations 
contain only one constant, which turns out to be a.

At T=0 we assume the following initial conditions:

A = A_ ? B = B_ ; an= -a and a = 0 for all p > 0 o o o  p

Perturbation Expansion

The series expansions,
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are

A II > O + - a ta 1 + 1
2Of A2 + • • ••

B = Bo + ~ B,a 1 + 1
2a B2 + • • ••

ao = - a + aoo + 1
a aoi + 1

2a a02

3P = aPo + 1
a “pi + 1

2a
a _ P2

(P — 1 / 2, ••••)

substituted into the normalised Fleck equations:

a raA[aT + ^ 1  axj aoA + alB

or raB 1 aT aB]aX = a0B + *a1 A

a + (aQ + a) = -{aQ (|A|2 + |B|2) + a ^ B  + a1*AB* J

“ It + aP = " lap-i AB + aP (|A|2 + |B|2) + V i A B}
(P = 1/2 ••••)

Referring to Appendix C , where successive powers of a are 
equated separately in these equations, one finds

am  = 0 for all q < p - 1pqThe first non-zero terms in the "a" expansions are found in 
terms of A Q and BQ alone, namely

00

a10

T
| |Aq |2 + |B0 |2 dT'
0

T
| A0 Bq* dT'
0

1
- 1 ap/p-l

-a
Pi (a l 0  / (p = 2,3 ....)
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The approximations to the fields A, B corresponding to AQ and 
Bq turn out to be the fields which would be present if the 
absorber were transparent, multiplied by a temporal weighting 
function.

A o
= —T »e 1 f (X

B o
= (D

1 »-3 iQ

The next terms in A and B
the reaction of the absorber

T
A i

= e’T J * T '<aooA o +
0

T
B i = e-T f e T ’ <a o o B o +

0

-  T ' )
+ T ' )

are the first ones which involve 
back on the fields

a 10  V  (X -  T + T ' ,  T»)  d T ' 

a10 V  (X + T -  T ' ,  T ' )  dT'

where the subscripts in parenthesis indicate the values of X" 
and T" at which a00(X,,,T") etc. have to be evaluated.
Although similar formulae may easily be generated for as many 
terms in the expansions as is desired, these integrals become 
impossible to perform analytically even for the simplest of 
input pulse-shapes.

The main objection to the perturbation expansion method is 
that it can not be valid if successive terms are similar in 
size. Comparing a with aQ0 leads to the restriction to 
"large" a . For a « 4 and pulse energies sufficient to
saturate the absorber strongly, the method cannot be used.

Next, we examine the population grating by the methods
. . . -or Pdeveloped m  this section. We showed that a = (a_0/-a)

rn  hr hr m x  v
A *+ other terms where a1Q = j A^B^dT1. It is instructive
0

to note -alp(-2a10/a) has exactly the same type of expansion 
in 1/a. In a later chapter we show that this Bessel Function 
result arises naturally from a nonperturbative calculation 
for a "slow" absorber. This means that, for a particular
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case, the "other terms" just mentioned are actually known 
precisely.

A possible interpretation of a is realised by viewing the 
nonlinear system in terms of coupled "reactions". Photons 
interact with molecules (stimulated emission or absorption 
processes) and molecules interact with a reservoir (recovery 
processes). The ratio of these interaction strengths follows 
from the Fleck equations of the previous section, as follows:

. + 2 ~ —  rate of reaction upon photons fE~) at
rate of recovery * _-l

il

« a

A consequence of the interpretation is that steady-state 
saturation of the transition occurs when the total reaction 
rates are equal in magnitude. This is consistent with the 
formal identity:

a = * V  = inversion density.
f rc_] m l-l photon density at 
l [2y\ ° 11 1 saturation.

A large value of a would mean that saturation could not be 
very great and that any population grating formed would be 
entirely sinusoidal.
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3.5 Special Cases
Two special cases can be treated without recourse either to 

a perturbation expansion or to numerical solution on a 
computer.

The first case to be discussed is an implicit analytic 
solution for the “fast” absorber in the presence of standing 
waves. The solution is well known in closely related work 
[85], but has not previously been mentioned in the context of 
the Fleck equations.

The "slow" absorber is the other special case, where an 
analytic solution would be most valuable to us. Such a 
solution does not exist so far as is known. For this case, 
however, a new result will be derived which is exact when the 
wave in one direction is weak compared with the opposite 
wave. The new result indicates one characteristic property 
of the two-way absorber which could effect mode-locking in 
colliding-pulse ring cavities but not in contacted absorber 
cavities. Finally (section 3.5c) the situation with two 
strong waves is considered.

a) The Fast Absorber

The field propagation equations which have to be solved
are:

1
V + +at

1E+
bZ

a
2 (n E+ + n^E")

1 aE~ aE~ o_ (n E+ + n1*E+)V at bZ 2

The fast absorber (also known as an inertialess absorber)
is defined to reach equilibrium with the applied field so
rapidly that n and n. in these equations are determined by

+  —the instantaneous values of E and E .
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Thus

H (t) = n ( E+ (t), E"(t))
n;L(t) = n;L( E+ (t), E"(t)).

The form of these function is made explicit below. Note that
+ , ,the arguments E~ (t) m  fact contain a z dependence as a 

result of propagation effects: for this reason a further
approximation is introduced next.

If the absorber is concentrated into a short distance the 
z-partial derivatives become large in the propagation 
equations. These terms also become dominant in the limit 
when the incident fields are made to vary with time very 
slowly, which corresponds to a long optical pulse. The thin 
absorber approximation consists of removing the t-partial 
derivatives altogether and is justified when the pulse-width 
is much greater than the cell-width.

We now have the differential equations

dE+dz = - 2.2 (n E+ + n ^ ”) (la)

dE”
dz = + 0.

2 (n E~ + n*E+) (lb)

Even before specifying n (E+ , E~) and n1 (E+ , E”) some
general features are apparent in these nonlinear coupled wave 
equations.

. E+ and e ” at any point in the absorber determine each 
other through a conservation law containing a constant 
which must be chosen to satisfy the boundary conditions.

. This conservation law is a solution of

dE
dE

+ n E+ + n1E~
—  —  * +n E + n1 E
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. Only in very rare cases does an analytic solution to the 
equations (1) result when the conservation law is used to 
eliminate one of the fields.

The inertialess population equations are,

0 =
nu - n ,+ . 2- 4<7[n(|E'|‘ + |E“ |2) + (nxE ‘ E + c.c)] (2a)+ *  -

0 = =r “ 4a [n-, (|E+ | 2 + | E“ I 2) + n E+ E“*+ n_ E+*E“] (2b)

and an infinite series of similar equations for the higher 
order population terms.

If we use the Fleck truncation (setting n2 = 0 in 2b) then
n and n1 are particularly easily extracted. However, a set
of difference equations can be solved without difficulty and
therefore we shall retain all the equations - but quote the
results of the truncation as well, for comparison.

The phases of n and n1 can be stated without any
calculation. n is real and positive, by definition, but -n.

+  — *has the same phase as the standing wave, namely arg(E E ). 
This phase is invariant during propagation and so we can take 

as real without loss of generality.nv  E+ , E
The solution of the difference equations takes the form 

n^ = n (f) where f is determined from a characteristic 
equation, and the knowledge that n^ 4 0 as k ■» «. From (2a) 
we have the normalisation n = n„/(a + 2bf), where
a = 1 + 4aT1 (|E+ |2 u  ++ |E~|2) and b = 4aT,E E". The

Ja 2 - 4b2 - acharacteristic equation gives f =
The n and n 1 functions are now known (Table 1), so we may 

proceed to look for the conservation law.



EXACT 1 1

FLECK
TRUNCATION

n u J 1 -

n u

71 - x

1 -  —  x 2 
* 2 x

x -

x
2

Populations as a function of the normalised 
parameters a and x = 2b/a

Table 1

The conservation law, in the two cases, is:

EXACT

FLECK
TRUNCATION

y/l - x 2 - 1 
x

const
E+E~

const
E+E~

/
(3)

The proof is given in appendix (D), but it is possible that 
equations (3) have a more fundamental status than this 
mathematical route suggests. Notice the •coincidence* that 
both the two cases imply the proportionality

n. n
E+ E“

However, recognising that the constant of proportionality 
depends on the boundary conditions, the physics involved will 
not be studied here.

The next and final step in solving the fast absorber is to 
use the conservation laws in either of eqns. 1. As shown in 
the appendix we need to solve, for example
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EXACT

FLECK
TRUNCATION

E+ E+ = bz a n
(E+2 - 2

2 U E+4 + (1 - 2d) E+2 + d2

E+ E+ = -1bZ an. (Et 2_ ^ c ) 2

(4)

2 U E+4 + (1 - 2c) E+2 + 2c2

and this turns out to be straightforward. We reiterate that 
it is not normally the case that a nonlinear propagation 
problem can be solved analytically. Indeed, Fleck [52] only 

q  states in passing the expressions for n and n^, proceeding
then to a numerical solution of the differential equations. 
Note that his program does not assume a fast absorber as we 
have to, but it employs the truncation (n2 = 0) which we 
avoid.

From the results in this section it should be possible to 
compare, for the fast absorber, true behaviour with that 
obtained for n2 = 0 truncation. Hence the importance of the 
higher grating harmonics would be tested. This is one level 
advanced from a test already carried out by Fleck, who 
compared the above approximation (sinusoidal standing wave) 

•  with a truncation giving n1 = 0 and corresponding to neglect
of grating coupling altogether. He found that pulse 
evolution in passive mode-locking was slowed down, which is 
due to the fact that saturation power goes up when there is 
no grating.

The Fleck truncation is only truly correct in the limit of 
vanishingly small grating effects, which is the case when 
x -*• 0. For this limit, the equations of this section can be 
rewritten in the form used by Borisov et A1 [54] to plot 
detailed graphs showing the behaviour of a "phototropic 
valve" in a standing light wave. Taking the appropriate 

®  combination of (la) and (lb):

. rdEl _ 1 dE
a [dz 2 x dz 1 - - ^ a(nE+ + n^*” + ^xnE~ + ^xn^"1*)

g _
2 n u

1 - x 2/4 

1 - x2/2 n u
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and we note that the E terms on the RHS cancelled on
substituting for n and n1 from the table. In terms of 
normalised intensities U* = 4aT1 |E*|2 we obtain the 
indicated equations:

(1 + U+ + iT) + u.+ du_ dz a nu U

and, (using a second combination of la, lb)

(1 + U+ + U") 5?- - u- ^dz dz -a nu U

The authors of [54] found that these equations only agreed 
with their experimental data for x small, as we would 
expect.

To conclude this section we shall mention some closely 
related publications concerned with resonant standing wave 
saturators. Macomber [55] studied a two-way saturable 
absorber slab with different boundary conditions to those 
suggested here (appendix D): the backward wave was not 
provided externally but consisted of the reflection produced 
at the change in average refractive index at the slab 
boundary. In that study of saturable reflection, however, 
the incorrect conclusion was drawn that E+E~ is z- 
independent. The source of this discrepancy is that the 
slowly varying equations derived from Maxwell's equations 
were found there without proper selection of phase-matched 
driving terms. In section 3.3, Fleck's results rightly treat 
by SVEA only terms that actually are phase-matched. More 
recently Gruneisen et A1 [56] used the same exact approach 
discussed here to calculate in great generality the steady 
state phase-conjugate reflectivity of saturable absorbers.

In a Fabry-Perot laser a high power CW theory has to take 
into account the same types of effect which arise in the two- 
way saturable absorber. This explains the appearance of 
similar exact averaging methods in a much earlier paper on



laser amplifiers by Ostrovoskii and Yakubovich [57] that is 
rarely quoted.
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b) The Slow Absorber

Under the assumption that e+ dominates e” , the Fleck 
equations reduce to the following four nonlinear equations:

a t

+  +  
2L +  .̂ .C—c at az

+
€

(1)

(2)

jl a 6 
c at az

- 4a[nl£+2 + n eV ]

- f  [» e"  + nl'+]

(3)

(4)

Relaxation terms are absent because the equations apply to 
a “slow" absorber. Due to the "strong wave/weak wave" 
assumption e~ and n1 are very small: this allows all higher 
order terms involving these quantities to be omitted. Higher 
order gratings n2 etc. also play no role under these 

•  circumstances.
In order to simplify the calculations, it is being assumed 

that the fields are real. e* represent real variables in 
contrast to E* appearing in section 3.3. This assumption 
might not be necessary, but that idea is not pursued here.

The method which we now adopt is very simple. Since n-ĵ and 
e~ play no role in equations (1) and (2), we have the 
solutions for n and e+ already from section 3.2. On 
substituting those results explicity into (3) and (4) we 
obtain coupled LINEAR equations to solve for n1 and e~ 
(admittedly these equations have non-constant coefficients; 

®  this particular problem is tractable nonetheless).
In a convenient notation, e+ and n will be written as

( * V
______Li_____
1 + 5 (r -  1)

1 +  5

n u
(t 1)



in which;

t
r e4<T J ( V * ’ - dt1

0

Eq is the (possibly time-dependent) input amplitude of the 
strong wave at z=0.

Now we specialise to a thin absorber so that the spatial 
derivatives in (2) and (4) are extremely large compared with 
the other term on the left in these equations. In Appendix 
F this approximation will be lifted.

The trick now needed to make progress with n1 and e ~  is to 
transform to new variables G and H defined below. The 
coupled linear equations with which we are faced become;

£H = G
& T  T

1 G

[1 + £(r ~ l)]2

T

where

n
1H

n

nx Eq2 (1 + $(r - 1))

G

>/£ T

[ 1  + £ ( r  ~ D ] 1 / 2

In appendix E these equations are 
appropriate boundary conditions spelt out.

solved with the
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The solution El is most interesting when applied to a 
situation where the total absorption is small ($R « l) 
because a rigorous study of the effect of allowing for n1 is 
easily accomplished.

Let
* R

1
1
A

where A is a large number.
The appendix gives a solution (equation E2) for h l e FT(t) in

terms of A and p ( = In t ). The subscript on H refers to
the side of the absorber where the strong beam enters and the
weak beam leaves. Since G = t we differentiate E2

& t a p
to obtain

LEFT
n U  E0 nu Eo

LEFT
dP

1
2 A

(e ^ - pe P) ]
Initially (p=0) absorption means that e leaves the two-way 

absorber with a value smaller than on entry (tEq ). The 
formula shows that this absorption can be converted into 
amplification when n1 has built up ( p>l ).

This is a dynamic energy transfer from the strong beam to 
the weak beam via the saturation grating, as discussed in 
general terms by Vinetskii et al. [58].

When p oo ,the strong beam has entirely bleached the 
absorber, energy transfer ceases and consequently e” = yEq.
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c) The propagation problem
The logical next step is to replace the weak probe e" by a 

strong one. Consider the case (e real) of a thin slow 
absorber with identical step function inputs £ (0) = e” (L) = e 
that reach the absorber on opposite sides at t = 0. The 
symmetry of this arrangement is expected to result in a time 
dependence of the transmitted fields which does not change 
with increasing e, apart from a normalising factor in the time 
coordinate. In chapter 4 we will show that the accumulated

f +2 —2 r + _dose e + £ dt and "cross-dose” £ £ dt at positions
inside the absorber completely determine the saturated 
absorption. This results from the slow-absorber's infinite 
memory and immunity from recovery. Even without taking the 
symmetric arrangement, a change in £+ and e~ (by the same 
factor) in both the above integrals is equivalent to a change 
in the units used for t. The field equations

2L
C

b £ 
bt + b z ii i

to 
|Q P e+ + ni f"

• Tl b £ d  6 a r- +
c bt bZ 2 r £ + ni £

are linear in £+ and £~, but the presence of the temporal 
partial derivatives unfortunately means that any rescaling of 
t will totally change the nonlinear problem as a whole. Thus, 
a doubling of the input fields will not mean that the fields 
appearing in the integrals double: propagation effects are 
more complicated than this. Importantly, however, on neglect 
of the temporal partial derivatives (the argument is: for a 
thin absorber - which does not at the same time become a weak 
absorber - the z derivative must dominate) the propagation 
equations obviously respond to the doubling in a linear and 
global manner with the temporal renormalisation serving to 
preserve the coefficients n and n1 without "side-effects".

The conclusion to be drawn from extension of these 
arguments is that a two-way absorber, very thin in comparison 
with the symmetrically incident pulses, responds purely to



|e2dt whatever the pulse shape. This specialized two-way 
slow-absorber thus shares the one-way slow-absorber attribute 
(saturation by dose) but only the latter problem permits 
analytic solution.

Since no simple solutions of the two-way absorber problem 
allow for the change in shape of the propagating pulses within 
the material, it is instructive to deal with the problem from 
a perturbative point of view.

In the limit of a very weak absorber, k * 0 where k =  n u a L  

and the changes to the pulses are tiny. However it is not 
required that the change to the absorber molecules be small as 
well. In fact, we shall now use the Bessel function results 
of section 4.2 to give the amount of saturation, possibly 
total, that the weak absorber undergoes.

Invoking energy conservation (i.e. that the energy gain 
represented by excitation out of absorber ground state must 
have come from the saturating pulses) we can write the change 
in pulse energy in the following perturbative manner;

and the simplest case where identical symmetric pulses cross 
the two-way absorber has been selected.

It is also necessary for these pulses to be long compared 
with the propagation distance. This thin absorber restriction 
can be circumvented by dividing a thick absorber into the 
regions where two pulses do and do not respectively overlap 
for more than half the total timescale: Bradley, New and 
Caughey [59] have adopted such an approach for square pulses.



CHAPTER 4

A NEW TREATMENT FOR THE SLOW TWO-WAY ABSORBER



4.1 Introduction

In chapter 3, two-way absorber saturation was analysed in 
two special cases. In neither case was one important feature 
of the Fleck equations of section 3.3 manifested: that is, 
the repeated coupling between higher and higher spatial 
Fourier components of the population (as described by the 
infinite Fleck hierarchy). This is connected with the fact 
that only n and n1 appear in the propagation equations, as we 
shall now refer to the pair of equations (la) and (2a) 
obtained in section 3.3 from Maxwell*s equations for the 
electromagnetic fields, and with a feature of each case 
chosen for study.

The fast absorber treatment (section 3.5a), culminating in 
a full solution of the propagation problem when the absorber 
is thin, or the pulse almost flat, began with the assumption 
that the population (equally, every component in the Fourier 
expansion) remains at its equilibrium value with the 
instantaneous field at all times. In other words, the 
saturating intensity changes so slowly in comparison with T1 
(the time to reach equilibrium) that the steady state result 
for the population applies. Although we calculated the 
values of n and n1 from the hierarchy of difference equations 
(page 69), this was just another method of finding the zero 
and first Fourier components of the steady state population.

1 + 4 a Tx ( [E+ ]2+ [E~]2 + 2E+E~cos(2kz) )

For the second special case (section 3.5b) matters are more 
complicated. It would certainly have been impossible to 
solve the propagation problem if the full Fleck system had 
been used. However, as it was necessary to assume that one 
of the two waves was extremely weak (c”) the effect of n2 in 
the rate equation for n1 was vanishingly small. This meant



that the repeated coupling between components was not 
featured, as a •side-effect' of the weak e"approximation.

Although the contribution from all the components, for the 
general case, is known about, they are never all taken into 
account. Instead, a truncation is often made after n1 in all 
cases. Fleck has pointed out that when similar 
approximations are made in the theory of neutron scattering 
the consequences of arbitrary truncation are surprisingly 
small. It is quite usual to make the truncation even in the 
fast absorber case, where it is unnecessary.

Since it is unsatisfactory to make an assumption which is 
hard to justify, as is the case whenever the saturation is 
large, the present work attempts to avoid the truncation 
entirely. Surprisingly, this is not difficult for the slow 
absorber. Furthermore, given that with both pulses strong, 
the propagation problem has to be solved by numerical 
integration and not as in section 3.5(b), the exact equations 
for n and n^ are as easy to use as the truncated versions 
which have previously been used.



4.2 Solution for the slow absorber

The Fleck hierarchy (section 3.3) of equations came about 
from a spatial Fourier expansion of the population rate 
equation derived earlier:

at 4an[|E+ |2+ |E~|2+ (E W 2 i k z + c.c, >] (1 )

Although other authors always apply Fleck1s analysis to 
this equation (since the rapidly varying exponential terms 
are removed in the resulting equations), we have found the 
method to be undesirable in the slow absorber case. This is 
because Fleck's analysis suggests that all the equations in 
the infinite set matter? in fact, this section shows that 
they do not. The new result is central to the computer model 
of CPML which we will develop.

The slow absorber version of (1),

= -4an[|E+ |2 + |E“ |2 + (E+E“*e"2lkz + c.c.)j (la)

is integrated by inspection, without the rapidly varying 
terms posing any problem, and gives

n(t) = n(0) exp
{- -  [

a + be-2ikz .* +2ikz d e ]} (2)

where

t
a = | |E+ |2 + |E~|2 dt' 

0

t
and b = j E+E“* dt'. 

0

n(0) is the population initially (t 
rapidly with z if a spatial hole-burning 
present at t = 0.

Writing b = 
expression

10 we replace (2) by

= 0) and could vary 
grating was already

the more convenient
0
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n(t) = n(0) exp {-4a(a + 2 |b| cos (2kz - 0))} (3 )

• ifConsidering the case where n(0) is slowly varying , a 
Fourier expansion (BIO) of eqn (3) yields

n = n(0) exp {ipfl - 4<ra} I (-8<r |b|) (4)

where I are modified pth order Bessel functions.PHence the field-history integrals a(z) and b(z) determine
the population, and in particular its Fourier components
therefore follow without using the Fleck hierarchy. In our
treatment, the change in ‘dose* a and 1 cross-dose' b
determine the motion of any n , whereas in the conventional

Ptheory, neighbouring Fourier components drive each other's 
motion according to coupled equations (section 3.3). The 
latter (coupled equations) approach, though mathematically 
correct, is clearly a poorer physical description of a 
saturation process.

•ftUnder this assumption, where n(0) hardly varies with z over 
distances of a few wavelengths we have initially n = n(0) and 
n = 0 (P > 0). Expression (4) applies to this case.

h r — —More generally, n(0) includes gratings and we have n = n|Q, 
n = n |Q initially. From (3) we get

h r h r w

• F'o * ! j v °  •'apU“ ♦ H }

• e“4<7a{l0 (-8<7|b|) + E [elp5Ip (-8<T|b|)e"2p;L,C2: + c.c]}
P i

If we collect terms of the type e12311̂ 2 
(BIO), it follows that

and compare with
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CO
n = E n |Q exp(ipe - 4aa)I (-8a|b|) (5a)

p—“oo * ^

COnm = f "m-plo " 4<ra)Ip (-8<j|b|) (5b)

w ith n-ml 0 = nm 'o*(s H 'o fo r  m = ° ) '

Note that I = I for all integers p. To check consistency, 
let us saturate the initially unmodulated absorber in two 
stages, using eqns (5) for the second step. If the original 
doses are a1 and b1 respectively, we use the values

-4aa_
n| 0 = n(0) e I0 (-8<j ib;,̂ i)

npi o = n (°) exp(ip«x - 4 ^ )  Ip (-8o |bx |)

a = a0
i 0 2b = b2 = ,b2 , e

in step 2. If the results reduce to

n = n(0)exp(ips - 4a(az + a2)) I (-8a|b^ + b2 |) 

where e = arg(b1 + b2) then consistency with (4) is shown.

The above relation is in fact easily demonstrated by 
applying the sum rule:

E ei(P« + IP)i (|X |)I (|y|) = e ^ ^ d z D  
p+q=m ^ ^

where |Z|e1(̂  = |X|elQf + lyie1^.
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Recognising that the n component is obtained by setting p = 
0 in eq (4), we use the recurrence relation 
Ij_x (z) - Ij+1(z) = (2j/z)Ij (z) to obtain

i»2 “ [ n -  i n ^ a b i ]  e2ie (6)

This key result allows the hierarchy of section 3.3 to be 
terminated without approximation. Higher equations do not 
matter, in modelling the evolution of n and because n2 
appearing on page 60 in (2b) is already determined.

For the purposes of a computer model of a two-way absorber 
we need only to provide equations governing n, n1# E+ and E~. 
First we shall construct these equations using the theory 
above, taking the opportunity to express them in a form 
convenient to use. The equations will then be analysed
explicitly, for it should not be necessary to involve 
1hidden* features such as the Bessel functions when asking 
what goes on.

The representation chosen for the complex variables will be 
polar, since (4) shows that the arguments of the n can be

B  h rdeduced easily. Whilst n is real (as also apparent from eqn.
i 6(BIO), we can write n1 = — |n^|e where the minus sign allows

for the fact that I (-|x|) has polarity of (-)^. Setting 
+ + P _ i  (<P+ ~  A) _E = e e and E = e e = e e we have from

equations (la) and (lb) on page 59 t

1 SillV bt

+
+

bZ
a
2 ["fi ”

in-jj e+ cos (e - A)j (7a)

1 b<p± 
V at

b<p ++ — — 
bZ

= + ° " 2
+

lnl 1 ^
€

sin (e - A) (7b)

where, to recapitulate:
t

e = arg (b) = arg f +e e e dt
0

A = arg (5) = arg E+E“* = <p+ -



86

The description is completed with equations for n, |n1 | and 
cos(8 - A), sin(0 - A) appearing on the right hand sides of 
(7a) and (7b) and for |b|, needed in (7g) below. After 
differentiating |b|e10 = je+ e~e1^ dt, we can show that

b | b | _ + -' 1 =  e ebt € € C O S (0  - A)

+  -

(7c)

and we use ^  € sin(0 - A) where A = <p+ - <p_ to write

b<Pj_ 5

* C ° S l t  "  A) -  s i n ( s  "  A > I t *  +  s i n ( 9  "  A) a t

= |b|”1 e+ e”sin2(0 - A) (7d)

~ s~̂ i t ~ A 1  +  c o s ^e -

b i bip

A> I t "  “ cos(® "  A> if'

= - |b | ”1e + e"”sin( 0 - A)cos(0 - A) (7e)

Finally, from the two
• absorber) come

an _ 
bt -4a jn (e+2 + f’2)

*|nx |
bt — -4a { 1 1 («+2 +

+  - (0 - A)]

+  -

(7f)

[2n - |n1/4ab|j| (7g)

Note that (6) has been used as promised, in the n1 equation, 
which was therefore expressed

i0, +2 , -2. , - + - iAb r i  01i . r id
bt [”

a)rHG ii i 1 3 H (D

. f“ i n i  n 2 i 0 + -  - i A  1
+ n  - 4ab 1 e e e e \

leading to the intermediate result,
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+ i|ni' t t = -4<'{+in 1 i (£+2 + £-2) - " £+£“

[ei(A- e) + e-i(A- 9)] + l ^ l e V e " 1 ^ - * 5}

whose real part was (7g) and imaginary part simply reduced to 
the formula for already obtained.

Equations 7a - 7g were expressed as finite difference 
equations, taking the first order approximation for all 
derivatives, when implementing this method on the computer in 
Pascal. In all, there are 9 separate equations. For the 
purposes of this section a simpler subset of the equations 
will be discussed - (7a), (7c), (7f) and (7g) - which results 
if e = A for all z, t.

Consider the case where unchirped pulses collide in the 
two-way absorber. Since A is then constant we may remove elA 
from the integral Je+ e”elA so that e = A results. Without 
loss of generality, the subset equations

+ +
1 3 6 ~ + a e ~

•  v at “ az - f  [» £± - ' ni '  t ?] ( 8 )

»|b.l
at

+€ 6 (9)

an = _ 
at 4 a r 2 )

a |nx 1
at = - 4 a [in;ii(«+2+ r 2 ) - + —€ e 2n

(10)

|n1/4<jb|jJ (11)

now apply. It is these equations which we now propose to 
analyse.

In (8) there is a reflection term which has the opposite 
effect of the natural absorption, n, term. The light 
scattered into one beam from the other by the periodic 
structure created during the mutual interaction of both beams 
adds up in phase with the unscattered light in that 
direction. Hence there appears to be reduced absorption. In 
an amplifying medium analogous theory would show that the
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scattered light has the opposite phase and subtracts 
intensity from the beams. Both these results depend 
physically on the fact that energy in the overlapping 
electric fields is concentrated at the field anti-nodes 
where, * fortuitously1, the amount of saturation also is
larger than average (e.g. population minima, in the case of 
the absorber). For the region where e « e” the largest 
effect (| |  = ^ n since population can not go negative in
(BIO) as there is nothing physically left to saturate at the 
dips in such an extreme) if n2 and higher components are 
ignored is found to be a quartering of intensity absorption 
coefficient.

With the presence of a growing |n1 | term, it is apparent
that the absorber saturates earlier than it does with the

+2 —2 . + — same dose-rate (e + e ) but zero interference term, e e .

This enhanced saturation, central to CPML, persists only as
long as the counterpropagating pulses coincide in the
absorber. Equation (11) contains the terms driving the
growth of |n1 | and also has a mechanism to prevent the rise
from continuing indefinitely. Considering the early stages
and noting that |n1/4crb| « n while |n. | itself is still
negligible (set |b| 0 m  (4) and use I1 (x) « — x to first
order) this equation becomes

^In lI - + .--^ « + 4ane e , solution 4an|b|, using (9)

but once |b| is significant these approximations break down 
and |n1 | will significantly exceed 4an|b|. The term |n1/4ab|

a runaway growth from
oo all |n | have equal values (which

kr

in (11) is then able to prevent 
occurring. For |b|
approach zero), so the right hand sides of (10) and (11) both

. +2 —2 + - . , contain the factor -4a(e +e - 2e e ) which is definitely
negative showing that the compensation mechanism worked.

The equations which have been developed in this section
describe the two-way absorber exactly. We now show how to
obtain the approximate rule used by other authors [60,61].
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A weak absorber that is thin enough for the saturating 
pulses (which must be mirror images of each other) to have
envelopes that are constant over the thickness L, has
£ = e”= £(t) where £ is independent of z. For this
mathematical limit the effective absorption, before
saturation and afterwards is given as:

ABSORPTION BEFORE: nuaL

#  SATURATED ABSORPTION: [n-|nx |]ah
- nuaL e“2J[lQ (2J)-I1 (2J)]

t
where J = J 4<j£2(t)

“CO

The rule covers only the case where J «  1, so we expand the
fttranscendental functions obtaining for the saturated 

absorption nuaL.[l 3J + 5J2 ....]• This will now be
compared with the conventional absorber.

•  Approximating equation 5 (page 23) we have

*e_x = 1-x + |x3 - ^x3 + 0 (x4); IQ (x) = 1 + |x2 + 0(x4); 

I^x) = fx + ^ x 3 + 0(x5).



90

- n  a h  l  2 1 3

W  = l n ^  + e ( 3 + j J  + 1  i •■■•))

= ln( 1 + j(l - nuaL)(l + \ j + § j 2)

+ 0([nuaL]J) + 0(j4)

= j(l - lyrL) (1 + \ j + | j 2)

- \ j 2 (1 - 2nuaL) (1 + j)

+ j j 3 (1 - 3nuaL) + ---

« j Cl ~ nuaL(l - | j + f j 2)] (12)

This is a special case (slow absorber extreme) of an 
expansion provided by Bradley, New and Caughey [59] and can 
be verified by setting T ' = 0 in their eqn. (6). To obtain 
the instantaneous absorption we must differentiate (jout~ j) 
with respect to j which yields the result -n <jL. [1 - j + ij2]IX M
which was used by Haus [8] and later authors in the study of 
conventional passive mode-locking. Note that terms 
0([nu<jL]2) would allow for the reduction in saturation rate 
away from the entrance to a strong absorber, as is the case 
both in practice and with the computations of Ch2 and Ch5. 
Returning to the two-way absorber theory we find that [59] 
provides the result from replacing j by 4jsin2kz everywhere 
in (12) and then spatially averaging across this interference 
pattern: the instantaneous absorption -nuaL[l - 3j + 5j2] is 
confirmed by that approach.

If we just increase the energy j in Haus* result by a 
factor of three, the wrong j 2 term for the two-way 
instantaneous absorption is used. This reveals an error in 
[62].



4.3 On the general solution.

The very useful equation (6) connecting the population 
Fourier components can only be extended to include relaxation 
(see(l)) if special choices for the time-variation of the 
saturating fields are made.

As an example, consider the case where saturation occurs 
rapidly compared with T1 but then we wish to know how the 
population structure has developed after a further interval, 
t, without any applied fields but lasting long enough for 
significant recovery. During the interval t each component 
relaxes independently since the coupling terms in the Fleck 
hierarchy are zero, and the result is

-t/T.
n = "slow e nu (i -

-t/T 
e ■*•)

nP
slow -t/Ti 

np 6 (P > 0)

where nglow/ n^ are independent of t and were fixed by the 
initial rapid saturation that is described by the results of 
the previous section. From the fact that (6) applied at t=0, 
we therefore have as our result,

-t/T
n2 - [n - nu (l - e x) !*>]/4ob| ]e^iS.

The point which must be recognised is that it is not a 
general result since there should be no applied fields while 
this formula applies.

In the rest of this section we give a general solution for
n and n^ which is free from the above restrictions. It will Pthen become clear that an extension of (6) to cover these 
answers is impossible. This important conclusion may be 
interpreted as a 'lack of sufficient information' that n and 
n1 possess about the saturating fields which existed at past 
times: n2 cannot be specified without that missing additional
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information, which is absent even in extensions of (6) that 
one might imagine - e.g. with use of

As well as proving these observations, the general formula 
(equation (15) below) will be useful in its own right for 
those saturation grating calculations, outside mode-locking 
theory, where the field history is a known quantity from the 
outset.

As in Section 4.2 and as in an early work on two-way 
amplifiers [63], we use a solution of (1) as the starting 
point and find it unnecessary to work from the infinite set 
of Fleck equations.

Separating off an integrating factor, the trial solution is 

n(t) = A(t)exp{-4a(a + 2|b|Cos(2kz - 0)) - t/T1). (13)

Substituting into (1) and integrating, we obtain

t
b' = | E+E 

0

*e (t'-t)/Tl t
dt1 instead of b = J E+E~* dt'.

0

A(t) = A (0) +

1
exp{-4a(a"+2|b"|cos(2kz-0n))}dt" (14)

0

where a", b", 0" are now evaluated at t".
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We may now combine (13) and (14) to yield

-t/T
n(t) = [n(0) exp{-4a(a + 2|b|cos (2kz - 0)}]e

^ -(t-t")/T
+ | nue 1exp{-4a(a - a" + (b - b")

1 0

+  ( b  -  b " ) * e + 2 i k z ) }

-2ikze

after some rearrangement.
It is easy now to evaluate the Fourier components of this 

solution in a precisely similar manner to the previous 
section [see (2)-(5)] on the slow absorber, obtaining

slownp = np1°W (t )e

+ j V t ' t ")
- ( t - f ) / ^

dt" (15)

slowwith n given by the incomplete (because relaxation is
h tnow important) results for n , (4) or (5) as appropriate forhrthe choice of initial conditions. The second term involves 

C (t,t") which is defined by the right hand side of (4) with
hrthe lower limits on the integrals a and b changed to t" and 

n(0) replaced by nu -
When the new result is applied to the earlier example of

slowthe slow absorber, then n (t) is obtained by taking the
h ilimit of (15) as T^ co. As T1 is decreased, we can see how

the effects of relaxation gradually set in. Considering the
example introduced at the start of this section, where pure
recovery is assumed we have C = 0 for p > 0 and C. = np o u
whereupon (15) with p = 0 is seen to account correctly for
the more complicated behaviour of n.

The general solution (15) demonstrates that 'doses’ over
subintervals t" to t each contribute to the current value of
n , although the exponential multiplying C reduces the P P
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influence of those contributions starting far in the past 
(compared with T1).
Consequently the field history long ago does not matter,

the first term in (15) also ceasing to be important for t»T.
sloweven though n (t) itself never recovers from earlier 

saturation. Obviously for t » T ^  it is still possible for the 
absorber, having undergone some recovery, to be saturated 
again by short pulses and be thought of as a slow absorber 
again between times t and t+At. In this case the general 
formula becomes:

n f t  + At) 
P

t+At
-  0 + | cp (t + At,t")e

1 0

(t+At-t")/T.
1 dt"

S3

-(t-t")/T
Cp (t + At,t")e x dt"

where At «  T1« Here we have been careful still to include 
in Cp the extra * doses' during At which cause rapid 
saturation with n (t) turning to n (t+At). From the sum rule 
in section 4.2 (footnote) we may expand

C (t + At,t") = E C (t,t») C (t + At,t)
y r=-oo u F

so therefore, (exchanging the order of J and E)

np (t+At) . E [He
r— oo x . dt"][n  Cp (t+At,t)

« E I W W  • f^- C (t+At,t) 1 r=-oo p L u J

which has exactly the form of the results derived already for 
the slow absorber (5) except that a and b appearing there
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must be integrals over the new period t to t+At and not 0 to 
t.

The purpose of the general solution is of course to treat 
the more complicated cases where relaxation and saturation 
occur simultaneously. It is easily shown that (15) in fact 
constitutes the limit, as N «>, of a series of steps each
covering a time interval At (= t/N) in which a pure 
saturation (slow absorber description) precedes a 'lumped' 
recovery using the pure relaxation formulae. Here we shall 
indicate a typical one of these steps, the final step t-At-»t 
which is

-At/T.
np (t) = J E np_r (t - At).[J- Cr (t,t-At)]j e 1

, . _ At
+ 5op nu Tx (16)

The term in curly brackets is equivalent to (5b) and the 
remaining operations then describe the relaxation which 
occurred. Appendix H makes the connection with (15), using 
the principle of induction.

The general formula, (15) solves the Fleck equations with
recovery included. It is unlikely that this would be
'guessed' if those equations (and not (1)) were our original
concern in this section. In the previous section we could at
this point simplify the Fleck system (without recovery) using
a recursion relation involving n, n2 and b, since only
the total doses a and b affected each of the n . ThePspecific field history was irrelevant in that case. In
general, however, (15) shows that an infinity of
instantaneous doses Cp(t,t") is required that covers every
starting point (t”) in the past. Here, the full details of
the field history are involved in n_ behaviour (apart from a

P -(t-t»)/T
limited 'long-term memory' in the system since e 
multiplies Cp).



4.4 The example of a step function.

In this example both fields are taken as switched off until 
t=0. Then both e+ and e” have constant equal values for all 
t>0. The behaviour after a time r «  T.̂  must follow the slow 
absorber result? that for r »  T1 becomes the same as a fast 
absorber. By applying the general solution to this case, the 
intermediate change-over is clarified.

Solving (1) we have, for the total absorber population,

1 t < 0
- f - ( i  + ( i / i j )

1 + ( V 1,) e 1___________  t > o
i + d / i s )

Where I = (e+)2 + (e~)2 + 2e+ e”cos 2kz, I = l/4aTn and c+ =s ±
e” = const. Since the fields are time independent they have
been taken to be real without loss of generality. Note that
I independent of time is essential here.

To calculate the Fourier components of this result as a
function of time is one way to proceed. Silberberg and
Bar-Joseph [64], in work on phase conjugation, essentially
carry out such a step when numerically evaluating certain
time-dependent spatial averages which arise. The general
solution to be applied shortly leads to a time-dependent
recursion relation between the required Fourier components,
without actually going to the trouble of calculating them.

Unfortunately the following discussion does not readily
extend to other pulse shapes, for reasons which will become
clear. This is a serious problem because, except when the

£absorber is optically thin (i.e. small modifications to the

for example Silberberg and Bar-Joseph used a thin coating on 
glass of eosin dye dispersed in gelatin [64].

nftl _
nu
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pulses while saturating the matter which they traverse), 
pulses of width similar to the absorber undergo significant 
changes in shape: they could not be taken to be square pulses 
even if it were a good approximation on entry. The
calculations later in this thesis for CPML are based on the 
slow absorber (which is appropriate to practical systems) 
reduction of the Fleck hierarchy which is not restricted to a 
particular pulse shape.

From the general solution, the population may be written in 
the form

" "p
slow -t/T.

+ fp '

where F^ = T x | e x C (t,t")dt».P 1 J P
0

(17)

Consider the equation of motion for F :P

_ d_ r_ Slow "t/T
dt - dt [np np e l\

„ slow ^
_ i _____ -

-t/T.
dn -t/T., dn
dt e

slow
Z1IEdt

_ 2 b
slow -t/T.

5^ n„ - n op u____ p _
8c e V

F + F lP-=l_ P+1

where we have used the equations on page 60 with e+ - e” = e,
and 5^ = 0 unless p = o when it is 1 and n = n. op p

The terms in brackets all cancel for the special case of 
e = constant considered here, as shown below.

Integrate (17) by parts using

dc_
dt n  = 8 a 6 cp  +

c p - i  +  c p + i to obtain
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-t/T.
Fp = cp (t,t) " * 1 cp (t,0) “ le

t dC
dt" dt"

slow 2- 5onni, “ n®low e 1 - 8ae2T op u p  ± if p  +

F + F lP-1 P+1

Using this recursion relation to simplify the previous 
result leads to the following equation of motion:

nslow
-t/T.

(18)

Note that we have assumed n(0) = n because we used
slow . , .C (t, 0) = n (t) which only applies m  that case (C is P P Pdefined immediately below equation 15 ). More general

initial conditions can however be taken (see appendix G).
Result (18) is intuitively sensible. For example when t >

T,, F « n and we have a steady state saturation. It is 1 P Pclear that e = constant (for t > 0) is necessary for such 
behaviour, and so it is explained why this constraint was 
needed in the preceeding derivation. For t «  T. F is very

_t/Tl slowsmall (see (17)) and e * 1 so that n = n , the slow
tr krabsorber case, is approached.

From our intermediate results in this calculation it is now 
extremely easy to obtain a recursion formula for elimination 
of n2 in the spirit of the method already developed in the 
slow absorber case. As already indicated, the closed system 
of equations to be given can apply only for the square pulse 
assumed in this section.

The resulting system is as follows (see Appendix G)

dF
dt

1 F1

dn
dt

nu - n
8a e2(n + n 1)

(19a)

(19b)



99

dn.
dt

-n.
■- 8 a e

n + n.
n i +

and, to close the system:

n2 = n +
4 a e

nl - F1 n - nu - nl

(19c)

(19d)

Compared with the slow absorber analysis there appears to
be an extra equation (19a). This is used to supply F1 which
is now required in the recursion relation. In the slow
absorber limit t «  T. and we have said already that F * 0.1 2 PThen n0 « n + (nn/4<7£ t) which is the same as (6) with
+ - *L

e = e ~  e .

Another case where F^ is unnecessary is that of the fast 
absorber, for which we have

n_ = n + ------------ .
2 4o c 2T 1

This relationship is indeed satisfied by the Fourier 
components which were calculated in chapter 3.

To summarise, mathematically all that has been achieved by 
this example is to obtain differential equations for the 
time-dependent Fourier coefficients of the n(t) which is 
specified at the start of this section. In doing so, the 
interesting recursion relation 19d was discovered; it bridges 
the two limits normally assumed, for the special case of 
square pulses (of equal amplitude) from both directions.
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CHAPTER 5

COMPUTER MODEL OF COLLIDING-PULSE MODE-LOCKING



5.1 Introduction

This chapter is concerned with a computer model of 
colliding-pulse mode-locking. The main advance over previous 
treatments of CPML is that it is no longer necessary to 
assume that the pulse-lengths are wide in comparison with the 
thickness of the saturable absorber jet. The two-way 
absorber theory of chapter 4 is used in the model.

Analytic predictions concerning CPML have been given [61] 
using Haus* model (see chapter 2) but the two-way absorber 
was assumed to be thin. The gain parabola then involves the 
approximate absorption term nuaL [1 - 3J + 5J2] which 
appeared in section 4.2 after a whole series of 
approximations had been made. The differences between 
conventional passive mode-locking, colliding-pulse mode
locking and contacted absorber [62] mode-locking have been 
studied in detail within the above context.

From the results given in chapter 2 we know that numerical 
simulations using rate equations with a bandwidth limiting 
element included do allow more realistic calculations of 
passive mode-locking to be carried out. The price, however, 
of the whole-cavity simulation approach (section 2.3) is that 
the main feature of mode-locking - which is the presence of 
pulses much shorter than the cavity transit time - is not 
included due to the very large number of meshpoints that 
would be required. In any event, since the two-way absorber 
theory takes on a simple form for the slow absorber, we do 
not wish to use a technique in which recovery has to be 
included in the material rate equations while the pulse 
propagates.

A partial-cavity simulation approach is introduced in this 
chapter. It is very close in spirit to the original 
"bouncing ball” approach: recovery between transits is 
calculated in one go. Special care has been taken to compute 
consistent values for the fields in the exponential wings of 
the pulse. This is important because, outside the 
compression zone, we found that a continuous injection signal 
(which an error in the boundary value would be like)



seriously affects the pulse-shape - we do not want to mask 
the two-way absorber performance under study. Note that the 
concern about boundary conditions stems from related work on 
mode-locking by synchronous pumping [65], where if there were 
not noise injected no steady state would even exist. This is 
not the case in passive mode-locking (section 2.8).

Recently Yoshizawa and Kobayashi [66] carried out the 
first computer simulations of CPML, improving upon the 
approximate treatments. They used a partial-cavity 
simulation and predicted that the pulses have steeper leading 
edges than trailing edges. It was still assumed in this work 
that the two-way absorber was thin.

In the sections to follow, we discuss the design of the 
computer model and present preliminary findings. A novel 
solution to the boundary condition problem has been to 
measure the slip of the entire pulse in local time in order 
to determine the trailing edge by the consistency technique 
which proved successful in section 2.8.



5.2 Treatment of colliding pulses

The two-way absorber (figure lb) may be modelled using 
equations 7a - 7g as discussed in great detail in section 
4.2. It is assumed that no recovery takes place during the 
interaction (slow absorber approximation). For this 
absorber, propagation effects and Bragg scattering from the 
induced grating are exactly taken into account. In the 
conventional case (figure la) the physical thickness of the 
element is not important (a "lumped" absorption coefficient 
appeared in section 2.3): apart from the transit time within 
the absorber, the effect is to multiply the incident field by
e This is not the case when there is a grating and 
therefore the thickness needs to be divided up by the 
numerical mesh. This would have been very difficult to 
implement without the new partial-cavity approach in which 
the mesh is only required in the vicinity of the pulse. The 
pulse width can be of the same order as the absorber 
thickness.

For convenience we shall assume that the colliding pulses 
are identical and meet exactly at the centre of the absorber. 
This is discussed in the next section. The hybrid absorber 
in figure lc could not exist in practice but it exactly 
models one "channel" of the absorber in figure lb. We shall 
not model the mirror-image channel because it is assumed to 
be identical. The advantage of making the absorber take this 
form is that the program will look similar when absorbers A 
and C are exchanged. Note that they are distinguishable even 
for a short pulse (compared with thickness d) which does not 
overlap with itself in C to produce a saturation grating. If 
it was important to study case B explicitly (for CPML with 
non-identical pulses) the program would not be difficult to 
expand.

We can speculate that the pulse-widths in a CPML 
simulation will scale not only with the bandwidth of the 
filter but also with the thickness of the absorber. Our 
program is the first to make this interesting possibility
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accessible for study. The compression zones may also be 
significantly perturbed away from the "bouncing ball" 
predictions.
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5.3 Partial cavity simulations

Simulations commence from a hyperbolic secant pulse that 
is about five times shorter than the amount of local-time 
mesh provided (typically ” 100 meshpoints) . It is 
assumed throughout the subsequent evolution that the edges of 
the frame are exactly exponential functions, but the 
logarithmic slopes are allowed to evolve.

At the start of a transit there are no existing field 
values inside the hybrid absorber. However since the 
earliest fields are not sufficiently intense to cause any 
saturation in the time taken to propagate through the 
element, the internal field values are passed into their 
positions as if the absorber were a linear element. Note 
that the fields inside the absorber are recorded in the 
program using a separate length of (equally spaced) numerical 
mesh in which both forward and backward propagating fields 
are stored (length typically 10 to 30 meshpoints): this is 
"invisible" to the main (unidirectional) mesh. Before 
collecting any output from the absorber its internal mesh is 
"filled" using points from the extreme leading edge of the 
pulse represented in the main mesh. They are all given equal 
amplification but only receive (varying) proportions of the 
full absorption depending on the point reached in the 
absorber mesh when the initialisation phase ends. In order 
that the pulse in the main mesh always keeps away from the 
edges (see below), only some of the leading edge is used to 
fill the absorber mesh. To initialise the fields between the 
point reached by the "filling" process and the output point 
of the absorber, backwards extrapolation is made by assuming 
that inputs before the start of the leading edge had the same 
exponential growth as that measured later on.

At the start of every cavity transit the main mesh is 
checked to see whether the peak of the pulse has slipped away 
from the centre of the frame. As well as the nonlinear slip 
there is always a delay of 2d which is the interval between 
input and output from the absorber element. The combined 
slip (SL) determines how many leading edge points may be used



in the absorber initialisation, discussed above. A simple 
choice of definition, that the output E[l] is the field at 
the ouput of the absorber even though the field at the input 
is E[SL], ensures that slip is fully compensated for on the 
next round trip. This prevents the pulse from moving far 
from the centre of the main mesh.

All the remaining input points are now passed through 
ampifier, absorber, linear loss and filter. The amplifier 
saturation and the stepping of difference equations within 
the absorber are carried out after each timestep. Due to the 
slip compensating definition, the final (trailing edge) input 
E[TMAX] is processed before the need for inputs has ceased. 
The remaining values are generated in a manner that hopefully 
does not prejudice the system's choice of trailing edge 
boundary condition. The method is to use the slip of the 
peak and the gain for the final input field 
(E[TMAX] E[TMAX - SL]) to determine the exponential slope 
to use for extrapolation. As the steady state is gradually 
approached by the peak this will ensure that the consistent 
boundary condition is reached which we studied in chapter 2. 
The logarithmic slope is just ln(g')/SL where g' is taken 
here to include everything affecting the profile. The 
filter, for example, does not have to be considered 
separately. (The ratio g* is obviously not the same as the 
physical gain which determines stability and which is the one 
discussed up until now.)

The filter is implemented in the same way as in the whole- 
cavity work of section 2.3. The problem of finding the first 
output from the filter was solved in a similar way to that of 
"filling" the absorber: the analytic result for an 
exponential rising edge was used.

The specialised methodology described in this section and 
in appendix J (where the modular Pascal implementation is 
described) made possible the first realistic model of 
colliding pulse mode-locking, to be described next. Future 
work would benefit from more elegant formulations of the 
partial cavity approach, which perhaps will be found now that 
the present work has shown the principle to be good.



5.4 Computer model of collidina-pulse mode-locking

As mentioned in chapter 1, the positioning of the absorber 
jet in a ring cavity one quarter of the total perimeter away 
from the amplifier jet leads to counter-propagating mode- 
locked pulses timed to meet in the two-way absorber.

Figure 2 shows the locations of the cavity elements in the 
opened out ring. The times and distances are in cavity 
transit units. It is clear that the amplifier is crossed by 
a single pulse every half CPML cycle whereas the absorber is 
crossed by the colliding pulses once per cycle. Thus the 
maximum absorber saturation, but the least amplifier 
saturation (since recovery between pulses is allowed by the 
timing) affects the pulses.

The other (linear) losses in the ring (7 1 and y2 in figure 
2 ) determine whether both pulse trains are the same. 
Symmetry will allow the hybrid absorber to be used in a 
hypothetical unidirectional model (outlined by the dotted 
line in figure 2). One pulse, however, always sees y^a y2 
where the other meets these elements in the reverse order - 
not equivalent, because the amplification a is saturable. We 
must assume that 7 ^  y2 to give identical pulse trains.

In the unidirectional computer model the amplifier (a) is 
handled in the normal way. It is not important that half way 
through the element attention is changed to the identical 
counter-propagating pulse that arrives half a cycle later, 
except that the perimeter of the model ring must be half that 
of the actual ring. In the diagram we see that the correct 
arrangement of the losses is now y2a y2 , but in fact we have 
kept the arrangement ya which is compatible with the computer 
simulation work on conventional mode-locking, although not so 
exact. The entire cavity losses 7 and the bandwidth limiting 
Fabry-Perot filter are therefore included after the 
amplification (a) and two-way absorption (0 ).

The two ingredients essential for the development of the 
computer program (PMLFINAL) were the partial-cavity approach 
and the two-way absorber theory which have already been
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discussed. An implementation using the structured programming 
language Pascal is described in appendix J. Further work is 
required to devise stringent checks that each procedure is 
correct, but some confidence was encouraged when the complete 
program ran successfully. The model shows the types of 
effect that it was written to study and the preliminary 
results will be discussed below.
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5.5 Preliminary findings

Figures 3a-3c show the logarithmic flux profiles 
calculated for increasing values of the filter bandwidth 
whilst the absorber thickness (d = 12 meshpoints) and the 
other passive mode-locking parameters («u =25, 0 = 0.2, y = 
0.4, E& = 1.1 and s = 1.667) are constant. Note that the 
total timescale studied (100 meshpoints) on each transit is 
so short compared with and T ^  that the slow absorber and 
slow amplifier assumptions apply exactly. (This regime could 
only be reached approximately by the whole-cavity simulations 
in chapter 2.) Each of the figures superimposes several 
transits (lettered A-I) beginning 22 transits after a seed 
pulse was injected (width = 2 6  meshpoints, j = 0.4).

The bandwidth is set as usual by the Fabry-Perot 
transmission, listed below together with the observed final 
pulse-widths and energies:

TRANS 7 FWHM j

• Figure- 3a 1.0 4 0.84

3b 0.5 9 0.72

3c 0.15 35 0.76

The higher energy of the short pulse is due to the lack of 
bandwidth limitation. It is not a steady state pulse, as is 
shown by the continued drop of the logarithmic wings during 
the evolution of figure 3a. In the presence of the filter 
(TRANS < 1), however, the development of a steady state is

•  revealed by the fact that later curves partially cover the
earlier curves in figures 3b and 3c. The broader pulse has 
the higher energy : this may be due to a reduced energy loss 
in saturating the two-way absorber for pulses longer than 2d 
(24 meshpoints).



The next step that must be taken with the computer program 
is to plot the events inside the hybrid absorber during the 
passage of the pulse. The detailed study of the properties 
of the model may lead to an improved understanding of 
colliding-pulse mode-locking.
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5.6 Other CPML simulations and results

The theoretical evidence that a thin absorber jet may be 
necessary to produce ultrashort passively mode-locked laser 
pulses comes from a few studies which we shall now discuss. 
To make further progress we suggest the use of the partial- 
cavity computer simulation program developed here.

Diels et al. [67] first studied a linear cavity in which 
both absorber and amplifier dyes were mixed in a single jet. 
Bandwidth limitation was provided by the cavity mirrors. The 
mutual coupling between the two pulses which interfere in the 
jet could be artificially reduced for simulation purposes. 
It was found that steady state pulse widths were not affected 
by the induced gratings, but that the coupling did encourage 
the interwoven pulse trains to become identical (the shorter 
one becoming longer; the longer shorter). Separating the 
absorber jet from the gain jet, however, Diels et al. [68] 
subsequently simulated colliding-pulse mode-locking finding 
that in the absence of dispersion the pulse duration was 
limited by the jet thickness (35 fs pulses with a 10 ft 
absorber dye jet were predicted). This suggests that we 
search for a regime where our model produces steady state 
pulses in the absence of the Fabry-Perot filter (by setting 
TRANS = 1.0), but so far this regime has not been located.

Stix and Ippen [41] have studied the passage of pulses 
through a two-way absorber thicker than the region of pulse 
overlap. Using approximate evolution equations for the 
population grating (based on the Fleck truncation discussed 
in chapter 3) they found that there is a reduced enhancement 
in pulse shortening velocity for such short pulses. When the 
pulses are much longer than the absorber thickness, the 
colliding pulse laser produces pulses up to three times 
shorter than an identical, but unidirectional, ring laser.

The influence of soliton shaping mechanisms in recent 
colliding-pulse mode-locked dye lasers [36] suggests that the 
use of a thin jet may also reduce the Kerr nonlinearities 
(arising from the solvent) that may be detrimental to 
achievement of the shortest pulses [69].



CHAPTER 6

CONCLUSIONS AND FURTHER WORK



6 Conclusions and further work

By studying evolving passively mode-locked pulses 
numerically, we have avoided making the restrictive 
assumptions that are necessary in analytic treatments. The 
intracavity Fabry-Perot etalon provided the bandwidth 
limitation required by Haus* analytic theory, which was also 
interpreted in terms of energy conservation in the "bouncing 
ball" model. The effect of noise and the connection between 
net gain and logarithmic slope for a steady state pulse were 
studied in detail for the first time.

In order to extend passive mode-locking theory to 
colliding pulse systems, the two-way saturable absorber was 
studied using a number of approaches. The techniques may 
also be relevant in other areas of quantum electronics where 
dynamic population gratings occur, such as optical 
bistability, the distributed feedback laser and phase 
conjugation (e.g. using the dye jet of a ring laser [70]). 
The most interesting result for passive mode-locking theory 
concerns the slow two-way absorber, for which a recursion 
relationship amongst the grating Fourier components was 
discovered. This allowed the unsatisfactory truncation of 
the Fleck hierarchy to be dispensed with.

The efficient partial-cavity simulation method was 
designed specifically to use the slow two-way absorber 
equations, using the experience gained already in whole- 
cavity simulations of conventional passive mode-locking. The 
new tool will allow a detailed numerical study of colliding- 
pulse mode-locking to be undertaken.

As a suggestion for further work, the effect of noise on 
the behaviour of a two-way absorber could be studied. Pulses 
with a reduced coherence length are not able to form the 
grating which reduces the energy loss in the absorber. This 
could mean that the noise component of the pulses is 
discriminated against in colliding-pulse lasers, by the 
absorption remaining at the minima of the standing-wave 
saturation field.



For an i n i t i a l  num erical study  o f s o l i to n  shaping  e f f e c t s  
in  p a s s iv e  m ode-locking, we su g g est t h a t  a s im p lif ie d  
num erical approach should  be developed u sin g  th e  p a r t i a l -  
c a v i ty  method fo r  im pem entation on a m icrocom puter. I t  would 
be v ery  easy  to  in c lu d e  group v e lo c i ty  d is p e rs io n  in  a manner 
s im i la r  to  th e  use  o f th e  F ab ry -P ero t e ta lo n  which provided 
bandw idth l im i ta t io n  w ith o u t le a v in g  th e  tim e domain. The 
elem ent t h a t  we would s im u la te  i s  th e  G ires-T ourno is 
in te r fe ro m e te r  [7 1 ,7 2 ,7 3 ]. S e lf  phase m odulation  would be 
c a r r ie d  o u t by a f u r th e r  elem ent w ith  an in t e n s i ty  dependent 
r e f r a c t iv e  index . The re c e n t th e o r ie s  based on h y p erb o lic  
se c a n t p u lse s  [34 ,69 ,74] cou ld  th en  be te s t e d .

The a n a ly s is  o f wave p ack e ts  c o n ta in in g  many w avelengths 
s im p l i f ie s  o p to e le c tro n ic s  [ 1 1 ] by a llow ing  th e  slow ly 
v a ry in g  approxim ations to  be used and a ls o  making i t  p o s s ib le  
to  use  a s c a la r  r a th e r  th an  a v e c to r  wave am plitude [71]. 
The approach to  n e a r ly  c a r r i e r - f r e e  p u lse s  may be 
e x tra p o la te d  from th e  p ro g re ss  in  m ode-locking to  d a te . This 
w i l l  le a d  to  com plete ly  new p h y s ic s , b u t i t  would a ls o  be 
in t e r e s t in g  now to  c o n s id e r  m odelling  p a s s iv e  m ode-locking 
w ith o u t th e  use  o f th e  s in u s o id a l c a r r i e r .
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Appendix A Literature on spatial hole burning

N onlinear o p t ic s  w ith  a p p lie d  f i e l d s  t h a t  i n t e r f e r e  to  
produce a s ta n d in g  wave in  an ab so rb er were re p o r te d  in  1968 
by H arriso n  e t  a l  [75] who ex p la in ed  th e  o b se rv a tio n s  th a t  
s a tu ra b le  ab so rb er Q -sw itch ing  and p a ss iv e  m ode-locking in  
p u lsed  s o l i d - s t a t e  l a s e r s  could  ta k e  p la c e  a t  r e l a t iv e ly  low 
la s e r  i n t e n s i ty ,  by p o s tu la t in g  th e  p resen ce  o f a "Lippman 
p l a t e ” . The new id ea  was th a t  t h i s  g ra t in g  (which s e le c ts  
c a v i ty  modes whose p e r io d ic i ty  m atches i t s  own) e x is t s  
because s ta n d in g  wave l a s e r  o s c i l l a t io n  b leach es  a s p a t i a l l y  
v a ry in g  p o p u la tio n  in to  th e  ab so rb er c e l l .  This 
(homogeneous) p ro cess  was d e sc rib e d  as 's p a t i a l  h o le  b u rn in g ' 
because 's p e c t r a l  h o le  b u rn in g ' had been invoked p rev io u s ly  
as th e  mechanism allow ing  s tro n g  s a tu r a t io n  on 
inhomogeneously broadened t r a n s i t io n s  [76 ].

H arrison  e t  a l  proved th e  e x is te n c e  o f a volume g ra t in g  by 
Bragg r e f l e c t in g  an e x te rn a l ly  g en era ted  second harmonic 
probe beam o f f  th e  Q -sw itching l iq u id  o f a Ruby l a s e r .  The 
g r e a te s t  r e f l e c t io n  occu rred  fo r  a delayed  probe and th i s  
could  be ex p la in ed  by th e  growth o f a therm al phase g ra tin g  
r a th e r  th an  a p o p u la tio n  g ra t in g .  More r e c e n t ly ,  however, in  
an experim ent on p h ase -co n ju g a tio n  w ith  ps p u ls e s , Tocho e t  
a l  [77] found evidence o f bo th  therm al and p o p u la tio n  
g ra t in g s  in  a s a tu ra b le  ab so rb er t h a t  i s  used to  mode-lock 
th e  cw dye l a s e r  (DODCI). When th e  dye c e l l  [78] o r j e t  
[70] i s  p la ced  in s id e  th e  c a v ity  o f a l a s e r  i t  i s  p o s s ib le  
th a t  th e  p o p u la tio n  g ra t in g  i s  enhanced r e l a t i v e  to  th e  
therm al g ra t in g .  I t  i s  th e  p o p u la tio n  g ra t in g  which we 
c o n s id e r  in  th e  p re se n t work.

In  th e  th e o ry  o f standing-w ave l a s e r  o s c i l l a t io n  p o p u la tio n  
g ra t in g s  were considered  as e a r ly  as 1964 [8 0 ]. In s te a d  of 
tem poral b ehav iou r, most subsequent study  o f th e  n o n lin ea r 
e f f e c t s  was in  spectroscopy  (see S argen t [81] fo r  a rev ie w ). 
As an example, th e  ab so rp tio n  o f a probe a t  frequency v ' by a 
gas o f tw o -le v e l atoms where s tro n g  co u n te r-ru n n in g  waves



s a tu r a te  a t  frequency v has been s tu d ie d  approxim ately  by 
K yrola [8 2 ]. In  t h i s  work only  a one-d im ensional in te r a c t io n  
i s  considered? i f  th e  probe beam e n te re d  a t  an ang le  th en  th e  
geom etry becomes th a t  o f phase co n ju g a tio n  where th e  th e o r ie s  
a re  s t i l l  n o t so com plete as in  one dim ension.

P o p u la tio n  g ra t in g s  t h a t  in f lu e n c e  th e  dynamics o f p ass iv e  
m ode-locking a re  one concern o f t h i s  t h e s i s .  In  th e  next 
pages we s h a l l  s t a r t  from a d e s c r ip t io n  co n ta in ed  in  th e  1968 
paper by F leck  [52].

F leck*s work i s  based  on th e  r a t e  eq u a tio n  approxim ation 
(REA) -  see  eqn (B6 ) -  and s u rp r is in g ly  [81] t h i s  makes i t  
more u s e fu l in  i t s  tre a tm e n t o f g ra t in g s  th an  methods based 
on t h i r d  o rd e r l a s e r  th e o ry , which would only  model f in a l  
Bragg s c a t te r in g  o f f  a ready-made g ra t in g  (made by th e  waves 
t h a t  would have been p re s e n t were s c a t te r in g  ig n o re d ) .

For s o l id  s t a t e  l a s e r s ,  m ode-locking i s  now much b e t te r  
understood  ex p e rim en ta lly  th an  i t  was when H arriso n  e t  a l  
p u b lish ed  t h e i r  1968 p ap er. The in f lu e n c e  o f p o p u la tio n  
g ra t in g s  in  th e  co n tac ted  dye c e l l  has been s tu d ie d , fo r  
example, by B radley , New and Caughey [59] who were ab le  to  
match th e o ry  and experim ent. Whereas Schwartz and Tan 
[76] had c a lc u la te d  th e  power removed from a c.w . s tan d in g  
wave by a s a tu ra b le  ab so rb er c e l l ,  th e  a p p ro p r ia te  q u a n tity  
in  a tim e-dom ain study  o f m ode-locking i s  th e  energy which i s  
removed from th e  s h o r t  p u lse  [83 and 84]: t h a t  lo s s  has to  be 
m inim ised.

In  th e  CPML dye l a s e r  p o p u la tio n  g ra t in g s  aga in  probably  
cause th e  la rg e  re d u c tio n s  in  p u lse -w id th  o b ta in a b le , bu t 
t h i s  i s  n o t c e r ta in .  A f u l l  tre a tm e n t o f p o p u la tio n  g ra tin g s  
i s  th e re fo re  very  much needed.



131

Appendix B
SEMICLASSICAL THEORY AND THE RATE EQUATION APPROXIMATION

In  a reg io n  f r e e  from c u r re n ts  Maxwell*s eq u a tio n s  fo r  one 
d im ensional e lec tro m ag n e tic  waves s t a t e :

bZ a t E —  fi itlP
° a t 2 (Bl)

The p o la r iz a t io n  appearing  on th e  r ig h t  hand s id e  o f t h i s  
c l a s s i c a l  equ a tio n  i s  o b ta in ed  by summing th e  c o n tr ib u tio n s  
from in d iv id u a l atoms. The quantum m echanical s id e  to  th e  
problem i s  to  c a lc u la te  th e  atom ic response to  th e  c l a s s i c a l  
f i e l d ;  t h i s  response r e a c ts  on th e  f i e l d .  The se m ic la s s ic a l  
th e o ry  i s  com pleted by s e t t in g  P = N<p> where N i s  th e  atomic 
d e n s ity , p th e  atom ic d ip o le  o p e ra to r  and th e  b ra c k e ts  cause 
th e  e x p e c ta tio n  v a lu e  to  be tak en .

From th e  L io u v ille  e v o lu tio n  eq u a tio n  fo r  th e  2 x 2  d e n s ity  
m a trix  o f tw o -lev e l system s in te r a c t in g  w ith  an e l e c t r i c  
f i e l d  th e  (m acroscopic) P may be d e riv e d . In c lu d in g  th e  
damping term s as w e ll, th e  re q u ire d  r e s u l t s  a re  as fo llow s:

P = N<p> = N/ip1 2  + c .c .

f t  «»PX2 > + (
oan n -  n a t

i<j + T2 1 )Nf’i 2  = (i/l*)/«nE 

^  E(N,.p1 2  -  o .c . )

(B2)

(B3)

(B4)

where th e  r e a l  q u a n ti ty  n = N(p2 2  -  p11) i s  th e  p o p u la tio n  
d if f e re n c e .

We ex p ress  th e  f i e l d  as th e  sum o f two co u n te r p ropagatin g
p lan e  waves,

*
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E ( z ,t )  = E+ ( z , t )  ^ ( ^ - k z )  + E ^ Z j t J e 1 ^ 4* 2) + c .c .  (B5) 

= Ewe icot + c .c .

and th e  o ff-d ia g o n a l m a trix  elem ent as  a s in g le  ro ta t in g  
"wave” ,

® ■ / * \ J.O)tP1 2  = P (Z /t) e

We s h a l l  assume th a t  E and E vary  slow ly w ith  z and t  bu t 
only  s p e c ify  p 1 and n = N(p 2 2  ~ pll^  to  v a ry slow ly  w ith  t .  
In  what fo llo w s, F o u rie r  a n a ly s is  o f th e  rem aining p o p u la tio n  
g ra t in g s  w i l l  be re q u ire d .

The ex p re ss io n  fo r  p1 2  s u b s t i tu te d  in to  (B3) r e s u l t s  in :

d i r  + = - ( i / f c J ^ P u  -  P2 2 >Ee" i “t

#  For la rg e  T^com pared w ith  th e  d e r iv a t iv e  th e  RATE EQUATION
APPROXIMATION allow s th e  s tead y  s t a t e  s o lu tio n  to  be used, 
which s t a t e s :

Np1 2  = ( i /h )T 2/i nE^e10*  (B6 )

In  t h i s  approxim ation th e re  a re  no d is p e rs iv e  e f f e c t s .

T here fo re  th e  o p t ic a l  f i e l d s  in  (B5) occupy a narrow 
bandw idth n ea r th e  resonance ( a t  a>) w ith  th e  t r a n s i t i o n .
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We can now combine (B6 ) w ith  (B4) to  o b ta in  th e  r a te  
eq u a tio n

=
at 2naF (B7)

where a = w/t2T2 /h c e Q i s  th e  ab so rp tio n  c ro ss  s e c tio n  and 
F = eqE2/h k  i s  th e  r a t e  a t  which photons s t r i k e  u n i t  a rea . 
(The momentum p e r  photon i s  hk and th e  energy p e r  u n i t  volume 
eqE2 i s  " c a r r ie d ” by th e  t o t a l  p re s su re  F hk).

Using (B5) and n e g le c tin g  term s which o s c i l l a t e  a t  2 we 
re p la c e  E2 (appearing  in  F) by th e  slow ly tim e-v a ry in g  term

E+e“ ikz  + E“e+ ik z | 2= 2 ( |E + | 2 + |E~ | 2 + E+E~*e~2ikz

+ E+V e + 2 ikz)

E quation  (B6 ) w ith  (B2) a llow s us to  re w r ite  (Bl) as 
fo llow s

az
1_ b__

c 2 a t (E^ela)t + c .c . )

r a
jrn o c i l_  a__

2 .2

2 ,
,— oj iw t .(E e -  c .c . )c a t

b u t u s in g  th e  slow ly v a ry in g  approxim ation to  n e g le c t 
a 2Ec*,/ a t 2 and to  match s e p a ra te ly  th e  c o e f f i c ie n t s  o f e ±lwt 
g iv e s :

a 2e0) 
a z 2

= -  k
l 1  +  i {

1 aE0).

A pplying th e  same approxim ations on th e  l e f t  hand s id e , where .. •lkz 4* 1 Tc 7E = E e + E e and we a re  n e g le c tin g  th e  product
term* on th e  r ig h t  hand s id e  which in v o lv es  (n a /k ) ( a E ^ /a t) , 
th e  p a i r  o f r e s u l t in g  eq u a tio n s  i s :
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1 a_ c a t E" a_
2 <n e ±ikzEw> (B8)

The an g u la r b ra c k e ts  remind th a t  th e  s p a t i a l  average i s  
ta k e n , s in c e  only  d r iv in g  term s th a t  a re  phase-m atched a re  
tak en  in  th e  slow ly v ary in g  approxim ation -  fo r  th e  two-way 
ab so rb e r n i t s e l f  i s  n o t slow ly  v ary in g .

I f  we c o n s id e r  a one-way ab so rb er (E~ = 0) th en  a s in g le  
t r a n s p o r t  eq u a tio n  rem ains

aEaz - + 1  aE c a t -  = f  n E
aF + I aF___ n iaz + c a t (B9)

In  g e n e ra l, however, we do n o t o b ta in  t h i s  f a m ilia r  
eq u a tio n  which r e s u l t s  in  B e e r 's  law. In  o rd e r to  e v a lu a te  
th e  s p a t i a l  averages we must exp ress  n ( z , t )  by th e  F o u rie r 
s e r ie s :

COn ( z , t )  = n + E [n exp{- 2pikz> + c .c ]  (BIO)
P = 1 P

Then we o b ta in
+ikz„w <ne E >
-ikz„o> <ne E >

nE+ + n1 E~
— — * +nE + n1E

In  th e  main t e x t  th e se  r e s u l t s  le ad  to  th e  F leck  H ierarchy  
(S ec tio n  3 .3 ) .

* I f  E^ r e a l ly  i s  slow ly v ary in g  w ith  z th en  th e  ab so rp tio n  
over one w avelength (na/k) has to  be sm all: th e  p roduct term  
th en  v an ish es  a t  th e  same tim e as th e  second o rd er 
d e r iv a t iv e s .
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The 2 appearing  in  eq u a tio n s  (B4) and (B7) i s  ab sen t when a 
fo u r le v e l  scheme i s  used in s te a d  o f th e  p re s e n t two le v e l 
system . Four le v e l  schemes apply  to  dye l a s e r  a m p lif ie rs  
(whereas we were co n s id e rin g  s a tu ra b le  a b s o rb e rs ) . P assive 
m ode-locking th e o ry  uses r a t e  eq u a tio n s  o f bo th  ty p es , 
however, and to  re so lv e  th e  n o ta tio n  we modify th e  a c ro ss 
s e c tio n  d e f in i t io n  in  th e  tw o -lev e l case  and w r ite

*na na 0  - na " naffaFd t Tla
anb nb 0  " nb “ V b *d t Tlb

AMPLIFIER

ABSORBER

The r e s u l t  i s  t h a t  th e  c o e f f ic ie n ts  A = n a 1 and B = - in , a, 1a a 2 b bo f a m p lif ic a tio n  and a b so rp tio n  a lso  obey s im i la r  looking  
e q u a tio n s . We need to  remember th a t  t h e i r  d e f in i t io n s  
d i f f e r ,  s in c e  th e  th e o ry  w i l l  be fo rm ulated  n o t only  in  term s 

•  o f A, B and a norm alised  in te n s i ty  Xa = aaF o r xfa = o ^ F  bu t
a ls o  w i l l  invo lve  s = where i s  n o t th e  u su a l c ro s s -
s e c tio n .

Note t h a t  th e  background r e f r a c t iv e  index ( 17) o f th e  medium 
may be taken  in to  account by re p la c in g  c by v = c/rj in  a l l  
th e  eq u a tio n s  o f t h i s  appendix.
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Appendix C

FORMAL SOLUTION OF THE FLECK EQUATIONS

T his appendix c o n ta in s  d e t a i l s  o f th e  p e r tu rb a t iv e  so lu tio n  
o f th e  norm alised  eq u a tio n s  o f s e c tio n  3 .4 . We re p la c e  A, B, 
a Q and ap (p = 1 , 2 , . . . )  everywhere in  th e  eq u a tio n s  by th e i r

itexpansions , which a re :

A = An + An + A_ + . . . .0 a 1 2 2cx

B = Bn + “  Bn + -  + ___0 a 1 2 2a

“ Of t  a nn t  a ni t  a n_ 4* . . .  .00 or 01 2 02a

a - "t“ a - t  a .  t  . . .pO a  p i  ^ 2  p2

(P — i  / 2 , • • •)

This le a d s  to  th e  fo llow ing  f i e l d  eq u a tio n s

N otice  th a t  a^ co n ta in s  th e  le ad in g  c o e f f i c ie n t  -or sin ce  
t h i s  i s  i t s  u n sa tu ra te d  v a lu e , whereas th e  o th e r  ap d esc rib e  
g ra t in g  e f f e c t s  th a t  only appear w ith  s a tu r a t io n .
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C1 “{It + tx} [A0 + a A1 + ^  A2 + •••]

= <- “ + a 00 + a a01 + •••>[A 0 + a A 1 + ^  A 2 +
L a

+ (alO + a all + •••) [B0 + a B1 + "•]

“ {
iL_ _
ST aXI +  -  B  

a  1 +  —  B  2 2 
a

+
•••]

+  —  
0 0  a a o i  +  • [»o + i

*

a l l  + •••) A q + -  A n +  . 
a  1

a 2 2

and now i t  i s  easy  to  e x t r a c t  s im p le r eq u a tio n s  by equating
th e  c o e f f ic ie n t s  o f a , 1 , — , —  e tc .a 2 aFor example th e  0(a) and 0(1) problem s a re :

[bT + fx ]Ao ~A0 and [bT “ ax]Bo “B0

[It + l^ ]Ai  = "Ai  + aooAo + aioBo
and [aT ax]Bi  “Bi  + aooBo + aioAo
The s o lu tio n s  f o r  AQ and BQ may be w r i t te n  down a t  once 

because no f u r th e r  p o p u la tio n  v a r ia b le s  appear. The r e s u l t s  
a re  AQ = e~xf(X -  T )? BQ = exg(X + T) where th e  fu n c tio n s  f  
and g a re  e n t i r e ly  determ ined by th e  p u lse s  e n te r in g  a t  X = 0 
and X = L. O utside th e  ab so rb er AQ and BQ a re  ze ro . The 
p a r t i a l  d i f f e r e n t i a l  eq u a tio n s  fo r  A  ̂ and B1  a re  inhomogenous 
b u t l i n e a r :  th e se  eq u a tio n s  a re  n o t coupled to g e th e r  because 
AQ, Bq and a lso  a Q0, a io  a re  ^nown (from 0(a) r e s u l ts )  
d r iv in g  term s by th e  tim e 0 (1 ) c o n tr ib u tio n s  a re  ev a lu a ted . 
The r e s u l t s  needed fo r  a QQ and a1Q w il l  be g iven  l a t e r  in  
t h i s  appendix. By employing c h a r a c te r i s t i c s  u = T -  X; v = T  
th e  A1  equ a tio n  ( a t  c o n s ta n t u) becomes,
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a A, = -A , + a^«A« + a,av 1 1 00 0 10 0

> H II e~v f eV faooAlc o n s ta n tu
■o]

=> AX(X,T) = e -T J eT ' ( a 0 0 A0  + a 1 0 B0) (X - d T 'T + T' , T ') 1

•  where th e  c o n s tr a in t  T* -  X* = T -  X was used and th e
in te g r a t io n  l im i t s  s e le c te d  so t h a t  A1  = 0 a t  T = 0. The 
e v a lu a tio n  o f B1  fo llow s th e  same method, as  does th e  f i e ld  
s o lu t io n  in  a l l  o rd e rs  PROVIDED THAT THE DRIVING TERMS ARE 
KNOWN.

In  o rd e r to  e v a lu a te  a l l  th e  d r iv in g  te rm s, we n ex t expand 
th e  p o p u la tio n  eq u a tio n s  in  e x a c tly  th e  same manner as th e  
f i e l d  eq u a tio n s  above. From a Q and ap eq u a tio n s  g iven on 
p64 th e  expansions a re :
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The c o e f f ic ie n ts  whose ev o lu tio n  i s  g iven by eq u a tio n  (C3) do
n o t e n te r  in to  th e  expansions o f a Q and a 1  which a re  th e  only
p ro p e r t ie s  o f th e  s a tu ra te d  ab so rb er f e l t  by th e  f ie ld s  in  Cl
and C2. However, in  o rd e r to  use (C4) and (C5) we re q u ire
knowledge o f a l l  th e se  c o e f f ic ie n ts  because (a2Q + . . . )  on
th e  r ig h t  hand s id e  o f (C4) re p re s e n ts  a coupling  th a t
e v e n tu a lly  b r in g s  in  e f f e c t s  from a l l  p o p u la tio n  g ra tin g
harm onics. One im portan t co n c lu sio n  which we s h a l l  make upon
eq u a tin g  c o e f f i c ie n t s  o f a in  th e  p re s e n t approach, i s  th a t
tru n c a t in g  a t  0 (1 / a?”1) i s  s im i la r  to  a tru n c a t io n  o f th e
o r ig in a l  F leck  h ie ra rc h y  (page 64) a t  th e  a term . ForPs u f f i c i e n t ly  la rg e  a , th e re fo re ,  h ig h e r o rd e r  p o p u la tio n  
F o u rie r  components a re  n o t very  s ig n i f i c a n t .

To v e r i f y  th e se  s ta tem en ts  we co n sid e r f i r s t  th e  r e s u l t s  of 
eq u a tin g  0(a) c o e f f ic ie n ts .  With (C3-C5) we f in d :

b
bT apo =  0 (P — 2,3,4...)

bT aio *= AoBo
iL _
bT aoo =  l A o l 2 + i V 2

From th e se  eq u a tio n s  we im m ediately o b ta in  th e  in te g r a ls
quoted on page 64. The c o e f f ic ie n ts  a QQ and a 1Q a re  th e  only
ones th a t  e x i s t  a t  t h i s  le v e l .  I t  a lso  fo llow s from (C3)
th a t  a ............ a^ ^ .  in  tu rn  remain zero  j u s t  as a doesp i  P/P-2 J pOabove.

The f i r s t  non-zero  term  fo r  th e  p F o u rie r  component 
obeys:

b T  p ,p - l  
which occurs a t  0 ( 1 / a ? ”2) in  (C3).

ap - l , p - 2  A0 B 0
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I f  we s to p  th e  s e r ie s  fo r  A, B, a Q, a 1  and a 2 a f t e r  th e  1 / a  

term s th en  th e re  a re  only  th re e  more p o p u la tio n  eq u a tio n s  to  
c o n s id e r . They a re :

C6 b
b T a21 =

aio
a

b T  10

C7
b T ai l + aio

*
A0B1 +

*
A1 B0 " [a00 ST ai0 + al0 a

b T  00
C8

b T aoi + aoo = AqA* + A0A1 + B oB l +  B0B1

[a00 b T  a00 + ai0 b T  ai0 + ai0 b T  aio]
These eq u a tio n s  may be in te g ra te d  e x p l i c i t l y  because a l l  

th e  d r iv in g  term s a re  known as a r e s u l t  o f p rev io u s  s ta g e s  of 
th e  c a lc u la t io n .  Then a Q 1  and a 1 1  may be used to  improve 
upon th e  approxim ation to  th e  f i e l d s  A,B by e v a lu a tin g  A2 and 
B2 . N otice  th a t  a 2 1  i s  n o t redundant because i t  w i l l  appear 
i f  th e  c a lc u la t io n  of a Q 2  and a 1 2  i s  c a r r ie d  o u t ( to  appear 
in  A3 and B3) .

Recovery o f  a Q 0  and a 1Q was n o t co n ta in ed  in  th e  0(a) 
c a lc u la t io n .  However th e  s t r u c tu r e  o f th e  l e f t  hand s id e s  of 
C8  and C7 in d ic a te s  th a t  i t  i s  added in  as p a r t  o f th e  nex t 
term  in  th e  p e r tu rb a tio n  s e r ie s

, a , "01 
Oi + ann + ---00 a o r *10 + —  10 a
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Appendix D C o n se rv a tio n  Lav1 a n a ly s is  fo r  F a s t Absorber

U sing norm alised  i n t e n s i t i e s ,  U" = 4aT1 (E_) we must so lve

1. dU
dU*

U+ + n ^ n  7U+U" 
u” + n . /n  7U+U~

in  o rd e r  to  o b ta in  th e  co n se rv a tio n  law. Here n and n /n n 
have a lre a d y  been ta b u la te d  m  term s o f x = 2iU U / a  and 
a = 1 + U+ + u” fo r  th e  two cases  where th e  F leck  tru n c a tio n  
and th e  ex ac t tre a tm e n t a p p lie d . Using th e  form ulae in  ta b le  
1  we f in d :

2a. (EXACT) - dU
dU'

2U '+ >f( l  + u++ u” ) 2- 4U+U* +

2U
-  (1 + U + U )

1  + U++ u” ) 2-  4U+U‘ - (1 + U + U )

2b. (TRUNC) dU* _ u+ n  + U+)
dU U (1 + U )

S ince (2a) i s  n o t sep a rab le  we fo llow  Hermann [85] in  using
§ 4" •  4*v a r ia b le s  0 = U  + U , = U -  U , and r e a d i ly  o b ta in

dff =  fdU /dU ) + 1
d<p

-J2_
(dU'/dU ) -  1 yfi + 2 0  + ^  -  lth e  unexpected e x p l i c i t  s o lu tio n  <p2 = (D + 0 ) 2 -  (1 + 20).

To see  t h i s  i s  c o r r e c t ,  u se  i t  to  re w r ite  th e  d i f f e r e n t i a l
eq u a tio n  above as = (D + 0 ) -  1 which t h i s  s o lu tio n
a u to m a tic a lly  s a t i s f i e s .  Transform ing back to  th e  o r ig in a l
p h y s ic a l v a r ia b le s  th e  co n se rv a tio n  law which r e s u l t s  i s :

which g ives

3a. (D + a -  1) 2 = (a71 -  x 2 ) 2

s in c e  J 1 + 2 0 + <p2 = / ( 1  + U+ + U~) 2 
T his s im p l i f ie s  to  g ive

4U+U* = a71 -  x .

4a. X - 1x D - 1 
27U+U~as quoted p re v io u s ly  [(3) in  s e c t .  3 .5a  ] .
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For th e  tru n c a te d  problem (2b) in te g ra t io n  u s in g  se p a ra tio n
.+o f v a r ia b le s  le a d s  to 1 + U 

UH
1 + u 

u”
1 + c so

5b. U“ = 1  + U . C U -  C U+ = 1  . Cu“ -  c
o r a l t e r n a t iv e ly

x = 7U+U~
1 + U + U

2C
7U+U" as quoted in  th e  main te x t

The c o n s ta n ts  C o r D co n ta in  in fo rm atio n  about th e  boundary 
c o n d itio n s , which in  normal cases  would be s p l i t  between two 
lo c a tio n s  e .g .  E+ (0) and E~(L). Thus we can only  'g u e s s ' a t  
th e  c o n s ta n ts , so lv e  th e  p ro p ag a tio n  eq u a tio n s  over a l l  
lo c a tio n s  and th en  see w hether a p lo t  o f th e  f i e l d s  has th e  
" in p u t f i e ld s "  th a t  were w anted. We s h a l l  now show th a t  th e  
p ro p ag a tio n  eq u a tio n s  perm it an a n a ly t ic  im p l ic i t  s o lu tio n  of 
much use in  such a c a lc u la t io n .

For t h i s  purpose we f in d  i t  most conven ien t to  co n tinue  by 
u s in g  th e  transfo rm ed  v a r ia b le s  0 , <p s in c e  th e  p ropagatio n  
eq u a tio n  f o r  e ta k e s  th e  sim ple form (see l a ,  b)

dfl _  -dz -  •  * n
where

yjl. + 20 + ip2

(1  + a ) (1  -  \  x 2)

S ince <p2 = (D + 8) 2 -  (1 + 20) in  th e  EXACT case th e  term s
in v o lv in g  <p may be removed, le av in g

d_0 _ VTD + 0 -  1) 2 + 2(D -  1)dz ~ anu D + 0

EXACT 
6 . o r

•  FLECKTRUNCATION
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-u  du=> o n  dz = ..V(u -  1) 2 + 2(D -  1)
w ith  u = (D + e) and t h i s  i s  a s tan d a rd  in te g r a l  w ith  which 
th e  im p l ic i t  s o lu tio n  may be com pleted. In  term s o f <p one 
has

EXACT -  anuz -  <p +  cosh •1 r  + ----- s a l -I 2(1 -  D) + co n s t.

However th e  a lg eb ra  becomes more com plicated  th an  t h i s  in  th e  
o th e r  example fo r  n . We th e re fo re  t r e a t  th e  F leck  tru n c a tio n  
case  u s in g  U+ (o r E+) as th e  dependent v a r ia b le .

From la ,
r+dUdz -a (n  U+ + n 1 7U+u")

f *  -  - 2
which, u s in g  (5b) expressed  as U U = Ca,

-<mu (U+ -  C ) /a ( l  -  |  x 2)

Now we w r ite  th e  denom inator in  term s o f U :

a ( l  -  x  x 2) a - 7U+U~ X
a - 2C

1 + u+1  + U + u+ -  c
u+ 2 + ( 1 -  2C^U+

.C -  2C

U+ -  C
Hence we a r r iv e  a t  th e  second o f eqns (4 ):

FLECKTRUNCATION
dUdz = -a n fu+ -  C ) 2

U U+ 2  + (1 -  2C)U+ + 2C2



145

=> -an  dz = — -U  2—----- [ (U+ -  C) 2 + U+ + C2](U' -  C)

> -an  z = U+ + f l o g (U+ -  C) -  C |  -  —^ —  +
1 u -  CJ u -  c

const

A s o lu tio n  in  t h i s  form, w ith o u t e x p l i c i t  m ention o f u” , has 
th e  advantage th a t  fo r  C * 0 i t  i s  a lre a d y  in  th e  form o f th e  
w ell known one-way ab so rb er s o lu tio n  (H erch e r 's  f a s t  
s a tu ra b le  ab so rb er [8 6 ] -  a s im i la r  a m p lif ie r  r e s u l t  i s  
d iscu ssed  in  tex tbooks [8 7 ]) , shown below:

-an uz = U+ + log(U+) + c o n s t.

The companion equ a tio n  fo r  th e  ex ac t tre a tm e n t (a lso  quoted 
in  (3)) o f n and n^ i s  o b ta in ed  in  j u s t  th e  same way, except 
t h a t  when th e  denom inator (a 71 -  x 2) has to  be s im p lif ie d  one 
needs to  know th a t  (4a) w ith  a l o t  o f a lg eb ra  becomes

U
E_±_i + u+
U+ -

(1 - D) 
2 Thus th e  s o lu tio n  to  th e

p ro p ag a tio n  eq u a tio n  i s  found to  be:

(8 ) EXACT -an  z = U+ + flog(U + -  d ) ---- 77-^— ) + c o n s t.
1 U -  d J

where th e  c o n s ta n t d re p la c e s  D = 1 -  2d. In  c a lc u la t io n s  of 
t h i s  ty p e  we conclude t h a t  no th ing  i s  ev er gained  by 
employing th e  tru n c a tio n :  (7) i s  in  f a c t  s l i g h t l y  more
com plicated  th an  (8 )!

From th e  d e f in i t io n  x = 27U+U" — i t  t r a n s p i r e s  th a t  x
1 + T,J + Uhas an upper bound o f 1  when u * u” « U bo th  become la rg e . 

From (4a) we f in d  1 -  2U < D < 1. Hence (U+ -  d) remains 
p o s i t iv e  even in  a very  extrem e case .
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Appendix E S o lu tio n  o f a p a r t i a l  d i f f e r e n t i a l  eq u a tio n  
fo r  th e  slow ab so rb er case .

In  th e  1958 paper by COPSON [8 8 ] th e  s o lu tio n s  to  a number of 
second o rd e r p a r t i a l  d i f f e r e n t i a l  eq u a tio n s  a re  review ed. In 
p a r t i c u la r ,

U . (1 - r) fs - a) I 
(1 + rs) (1 + a) J

i s  shown to  be a p a r t i c u la r  s o lu tio n  o f th e  eq u a tio n

a 2 U a ra s 1 U
2  (1  + r s ) 2

which may be ob ta in ed  from s e c tio n  3 .5b w ith  U = H, r  = $ and 
s = t -  1. P^ i s  th e  Legendre fu n c tio n .

The s o lu tio n  U s a t i s f i e s  th e  co n d itio n s  U = 1 when r  = 1 or a
•  s = a r a th e r  th an  th e  re q u ire d  boundary c o n d itio n s  which a re :

H = 0 when s=0 ; H = h (s) when r=£R

In  o rd e r to  o b ta in  th e  d e s ire d  s o lu tio n  fo r  H (r,s )  a t  
r= l one u ses th e  Riemann-Green form ula [88,89] which p rov ides 
th e  ex p ress io n

H(- 1 , s )
(El)

= 1/2 h (s) + 1/2 |  [ Ua (SRfs ) h ' (a)

h(a) ^  « R 'S> da



147

I f  th e  s tro n g  wave e n te rs  th e  ab so rb e r, o f le n g th  L, from 
th e  l e f t  a t  r= l  and th e  weak wave e n te r s  from th e  r ig h t  a t  

-a  n Lr  = £_= e th en  th e  form ulae above exp ress  H____(7-) ( =
H ( l ,s )  ) in  term s o f ( = h ( s ) )  and ( =
h ' ( s ) ) .

We now c a lc u la te  Hr ig h t^  f o r  th e  Problem of in t e r e s t .  
From s e c tio n  3 .5b :

B right _ gr i g h t ^7 *_  nu 7  _______dr 7  [ r ( T + jr -  1  ) ] 1 / 2* R

The weak wave a t  th e  r ig h t  hand o f th e  ab so rb er has am plitude 
y E Q w h ils t  th e  s tro n g  wave a t  th e  l e f t  hand end has am plitude
Eq (where y  «  1 ) .

Assuming y  to  be tim e-in dependen t and u sin g  H=0 (no 
g ra tin g )  when r = 1 , we o b ta in

nRIGHT 2 nu 7  <E0 > In rl/2 + (T+1 .1}l/2 1
* R
r W 2

( f >*r

We s h a l l  only  e v a lu a te  (El) to  f i r s t  o rd e r  in  1/A , where 
$R = 1 -  1/A.

In  t h i s  approxim ation one f in d s :

Ua « r > - 1  - (e“P- e " ^2A

nu 7 <E0>
e - q .  §"2q2Ah*
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dU /a a  = e ^ aU /a q  « a' a' ^ - »-2qe2A

h(q) nu 7 (E0)2 [ q ~ |A ( 1 - e‘P) ]

where p = In  (s+1 ) = In  (r) and q = In  (a+l) a re
in tro d u ced  in  o rd e r to  s im p lify  th e  a lg eb ra  below.

F in a l ly ,  u s in g  (El)

HL E F T ^ 1 / 2  h(p)

+ ^ 2  f [Ua h ' -  h f l  ] e<3

nu y (E o> p -  2 A P e -p + ° (  p  ) (E2)

T his sim ple r e s u l t  i s  used in  c h ap te r  3. I t  may be 
p o s s ib le  to  s im p lify  th e  in teg ran d  in  th e  ex ac t case  using  
th e  Riemann P fu n c tio n s  and tra n s fo rm a tio n s  g iven in  
Abramowitz and Stegun [9 0 ] ( a r t i c l e  1 5 .6 ) .

More work i s  re q u ire d  to  f in d  ou t w hether th e  exac t 
approach i s  u s e fu l .  We agree w ith  Lax [79] t h a t  an a n a ly tic  
r e s u l t  o f f e r s  th e  b e s t  way to  t e s t  a g e n e ra l num erical 
s o lu t io n . Our two-way ab so rb er p rocedure in  th e  model of 
c o l l id in g -p u ls e  m ode-locking (ch ap te r 5) can be te s te d  in  
p r in c ip le  u s in g  E l.

can



Appendix F G en era lised  eq uation  fo r  th ic k  a b so rb e r .

Here we confirm  th a t  th e  s im p l i f ic a t io n  used in  3 .5c , 
co rrespond ing  to  a th in  ab so rb er, may be l i f t e d  w ith o u t g re a t 
c o m p lic a tio n s .

F u ll  in c lu s io n  o f p ro p ag a tio n  e f f e c t s  means th a t  i sd Z

re p la c e d  by [2 c f t  ” fss} fo r  th e  l e f t  s id e  o f equation
(4) on page 74, b u t t h a t  th e  e+ equ a tio n  i s  unchanged because 
z , t  a re  to  be tak en  now as th e  " lo c a l- tim e "  transform ed  
c o o rd in a te s  fo r  th e  • + ' d i r e c t io n  o f p ro p ag a tio n .

In s te a d  o f th e  r e s u l t  in  th e  main t e x t  we have:

<F1> 2 l  = “ nl  2  (f * + 2 i  £
“  ̂€ 

b t

+ i

where G = nu e+€” as ke f ° r e r and (2) and (4) were used as 
m odified  above to g e th e r  w ith  th e  ru le  fo r  d i f f e r e n t i a t io n  of 
a p ro d u c t.

From s e c tio n  3 .5b ,

a 6
+ br

1 r!
2 [r 1 + £ (r - 1) ] + term  in dE,

dr

• & . _ and u s in g  -Jj: -  4 orEQ —  r e s u l t s ,  a f t e r  some s im p l i f ic a t io n ,
in :

+ .  £ ,
1  + Hr -  1 ) J

2 b

<F2> v ' f t 4 <rrE0 2 • G • f  F1

The eq u a tio n  which occurs fo r  G i s  th e re fo re

2 c {4 V T 3  + d G  _  ,1-j r
anu * [1 + £(r - 1) ']

+ * 4aE0 2 . G . 1 - i_L
1 + H r  “ 1)

I t  i s  c e r ta in ly  p o s s ib le  to  e lim in a te  G from t h i s  equation  
u s in g  th e  sH/ar eq u a tio n  which i s  unchanged. The l in e a r



p .d .e .  in  H which r e s u l t s  i s  more com plica ted  than  th a t  
so lved  in  appendix E, b u t i t  i s  p o s s ib le  th a t  i t  can s t i l l  be 
so lv ed  e .g .  by th e  tech n iq u es  in  [89 ]. W ithout pu rsu in g  th i s  
f u r th e r ,  i t  w i l l  sim ply be noted  th a t  an approxim ate so lu tio n  
to  th e  eq u a tio n  in  H could  a lso  be o b ta in ed  w ith o u t g re a t 
d i f f i c u l t y .
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Recursion formula for saturation bv a square pulse

Appendix G

Here we use the general theory of chapter 4 to obtain 
results mentioned in section 4.4. 

slow “^/^lAs n = n e + F . the known slow absorber recursion
P P P t/T

relation provides information about e (n - F ) in the
hr hr

present case.

. . . slow . . .Substituting in (6) for n and dividing by e gives,
h r

for p = 1:

(Gl) (n - Fn ) - (n0 - F0) -1
4(7 e t (n i -  F i>

In order 
to eliminate 
same n

to use this formula to obtain n2 it is essential

2'
This is

whose evolution (eqn. 18) depends on the 
2 . xuj.9 o-o achieved through the recursion relation 

found previously by integration of equation (17). We shall 
make use of the first two such relations, which are

n
(G2)

(G3)

Fo nu

F 1 -

u
n(0) [" “ F o] - 8^ 2t i {F0 + F l} 

] - 8«"’Ti {F1
nu

n(0) n i - F i
F + F 0 r 2

These results are slightly more general than those in the 
main text since n(0) is not necessarily equal to nu . 
Consequently they apply when an absorber is first saturated 
by e+ alone with no standing wave and subsequently by 

= e” = c together, as in the case of regions some distance 
away from the mirror at the end of a contacted absorber.

We rearrange (Gl) to yield

n. - F.
n 0 = n + (Fn + 2F. + F_) - 2(Fft + F-) +

4a e
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Substituting for both the combinations of F from G 2 , G3 

gives:

(G4) n2 = n +
4 a e

n 1~ (1 - nu/n(0)) { (F0- n) - (F1- n 1)}

+ Tl

+
n - nu

T.

n 1

For nu = n(0) this reduces to 19d as required. The

presence of FQ as well as F1 in the second term can be 
overcome using G2. In the form given here it is easy to see 
that this term vanishes for the slow (T^ -> co) and fast (FQ ■» 

n, F 1 n 1) extremes; furthermore it is straightforward to 
monitor the evolution of both FQ and F1 using the result

d F « nn
dt n(0) n̂p *p'

which is the generalisation of (18).
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An inductive proof of equation (15)

Appendix H

Applying an analogous description to (16) but covering the 
previous timestep we write

CO .
np _r (t-At) = {^r np _r_s (t-2At).[*- Cs (t-At,t-2At)]| 

-At/T±
x e + 6o(p-r)nu T x

Using this result (16) itself becomes,

n (t) - E
p  r=-oo

+ 5

At)

E V r - s (t"2At)*S— —co
n. At

o(p-r) u T1 —  c (t,t-At)e 
u

1 1 "At / T 1
n Cs (t-At,t-2At) e

u + , _ L  *op u T 1

= f ^ n__u (t-2At) . [iT  ̂ (t-At,t-2At)lU = “co F  L U  r=-co u

-2At -At

x Cr (t,t-At)]J ■ e T1 + «opnu^  + T 1 Cp (t,t

(having set u = r + s and noting E 5 , .C = C )o(p-r) r pr=-oo

= 1J L  np - U (t_2At) • Cu (t,t-2At)]}
-2At/T1

A+. a+- -At/T.
+ {opnu ^  + r x Cp (t,t-At)e (HI)

Comparing with (16) we note that the expressions are very 
similar (setting the step to 2At) apart from the residue
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-At/T
(At/T1) Cp(t,t-At)e . This suggests that we will find

that this process may be repeated in order to obtain the same 
form of result for 3At etc. with further extra terms of

-2At/T
exactly the same type e.g. (2At/T1) C (t,t-2At)e . The

proof in this appendix will work for every case, so that by 
induction the following discrete version of (15) is 
generated:

(H2) np (t)
-t/T

e 1

. N-l .
5 n ^  ^ ^  C (t,t-kAt) eop u T. Z T. p v ' 1

1 k=l ±

-kAt/T1

The first term is equivalent to the first term in the general 
result derived in the normal fashion in section 4.3. The 
second term vanishes in the limit At-»0 (NAt = constant,t) and 

#  the residual sum in (H2) tends to the integral

1
T 1

t • -(t-t")/T
C (t,t")e dt"

0 p

required in (15).

It is clear now that this integral accounts for the special

behaviour of n during recovery (p = 0 in (16) picks out extra 
term involving nu ) and the consequent cumulative effects which

feed through to the other grating components.
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Appendix I Connection between net gain and 
Logarithmic slope profile.

As explained in section 2.8, the effects of net gain g(t) 
and the Fabry-Perot transmission must add together to produce 
a common slip throughout the reproduced pulse-profile which we 
refer to as the self-reproducing pulse.

If the self-reproducing pulse embarking on the round trip 
is denoted by E(r) this is subsequently "processed" to become 

E (7 - 7 s h i f t ) which requires:

g1/2 (l-R) {e (r) + R ECr-tjj) + R2E(r-2tM ) + ...]

E t̂“tSHIFT^ (II)

where ^  is the mesh spacing. The etalon, as in section 2.3, 

has plate spacing tj^/2 and power reflectivity R for each 

plate.

The logarithmic slope, k, is now used to evaluate the field 
at times other than r in terms of E(r):

E(r-e) = E (t ) e“ (k/2* c (12)

Substituting 12 into II, treating k and g as if they were 
time invariant we obtain the relation

“kTSHIFT^2 e

This result was used to predict the graph of g versus kTetrT„mbnlri
in section 2.8. (The range of calculation, the slip value 

7 SHIFT/ and value of R were all known.)

g 1/2 (l-R) 1 - R e- * V 2
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Near the peak of the pulse our approach fails, for it 
clearly predicts g=l. The formulae of section 2.5 give us an 
alternative approach if Hau s 1 approximations are adopted. 
With some algebra one finds the following parabola for the

coefficient G as a function of k = d ln|vf /dt :

( &  )2 + ( )

The exponential wings of Hau s ' solution have the 
logarithmic slopes k = ± ik i where k can be deduced from the

CO CO

sech pulse formula in section 2.5. It is not for the wings, 
but in the neighbourhood of the peak where the parabola now 
proves to be a useful tool. The gain at the peak of the pulse 
can be predicted, namely:

G ( k=0 ) = (|z )2 (13)

This is the most direct way to fit the z parameter to the data 
in figure 5b. The net gains when k = ±|k | / J2 satisfy :

1  CO

G ( k=k±) + Z 5T
' 472 tF

This result may prove useful as an empirical definition for 
k . The combined influences of gain (G), filter (t„) and slipco r
(5T) are all summarised in this approximate formula (exact for 
a sech pulse).



Appendix J Design of Pascal program PMLFINAL.

The Pascal modular diagram (figure Jl) shows the overall 
structure of the colliding-pulse mode-locking simulation 
program PMLFINAL. Routines at any level in the diagram are 
accessible only to the next routine to the left, which is 
identified by the bracketing. For example the program 
PMLFINAL uses the three procedures TABULATE, RECONFIGURE and 
PML.

In this section we shall describe each routine shown in 
figure Jl. (The advantage of the modular approach is that 
complexity is dealt with at the earliest design stages 
possible, with the result that the final coding is kept simple 
enough to be done very accurately at all the levels.)

The total length of the program is under five hundred 
lines, and there is scope for simplification of several 
procedures which will result in a compact and readable second 
version if required. It is inappropriate to document the 
program completely here, but it is hoped that the information 
which does follow provides insight.

Since STEP and FIRSTSTEP constitute the kernel of the 
computer model we shall describe them first. Their use is to 
compute one output sample of a pulse from an input sample, 

taking into account circulation of the laser cavity once.



TABULATE
RECONFIGURE

PMLFINAL
PML GENERATE

VIEWE
FIRSTSTEP

STEP { PDESTEP

Figure J1 Modular program design
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EXPLANATION OF STEP:

absorber mesh

etml

Figure J2 STEP procedure.

The figure above shows how the instruction STEP(y,x) would 
use an input field sample x and supply an output y.

The input boundary field in the absorber is called PL[0]. 
It is calculated by amplifying x, as follows:

PL[0] := Js * Jga * x ?

ga := ga * ( 1 - [ga-1] x2/2 ) ?

Note that x is normalised so that saturation of ga takes this 
simple form. The s parameter, discussed in chapter 2, is 
needed in the (more saturable) absorber mesh.

It was decided to use the simplest possible first order 
scheme to carry out the step in the absorber. PDESTEP is 
responsible for the implementation of the required finite 
difference equations.



PDESTEP updates the fields stored in the absorber, PL[0] to 
PL[L] and MI[0] to MI[L] by using equations 7a and 7b of 
section 4.2. Then it updates the slab data m.. to m T which

J .  X J

consist of the values of n , |n1 | , |b|, cos(0-A) and sin(0-A)

for which the evolution equations are also given in the same 
section. Note that the grating is not taken into account 
until |b| > 0.01, to avoid an attempt at division by zero in

these equations.

Finally STEP is able to compute an output field y in terms 
of the field at the exit of the two-way absorber MI[0]. The 
linear loss and the filter operation are performed at this 
stage. The formulae governing this process are:

y := R  * etml + T * Jy * MI[0] / Js ? 

etml := y ?

where etml "remembers” the previous y, y is the (intensity) 
loss factor and R,T are the Fabry-Perot etalon reflectance and 
transmission.

EXPLANATION OF FIRSTSTEP:

The FIRSTSTEP circulation "machinery" is the same as in 
figure J2, but the initialisation of ga, m 1 to m L , etml, PL[0]

to PL[L] and MI[0] to MI[L] must take place before x comes in.

The gain (ga) is set with the recovery law for the depleted 
value at the end of the previous transit:

ga := e x p ( s * In(ga) + (1-E) * A^)

(This is equivalent to equation 6 in section 2.2, because the 
"bouncing ball" model represents our partial-cavity method 
exactly.)

The absorber slabs are given a complete recovery and do not 
saturate at all during FIRSTSTEP, but the fields in the



absorber mesh (and etml) still need to be provided. FIRSTSTEP 
looks at the leading edge logarithmic slope of the input pulse 
and sets up the required fields as if an exponential edge with 
that slope had been applied since t= -oo. FIRSTSTEP also 
applies (prior to arrival of x) the leading portion of the 
pulse ( E[0] to E[SL] ) to figure J2, which means that most of 
the samples propagated into the absorber mesh do not depend on 
the extrapolation just mentioned. SL is a deliberate slip of 
the partial-cavity "window” to keep it centred on the pulse.

Only when E[SL] reaches the input "terminal" is y computed. 
The output formula is the same as in STEP.

EXPLANATION OF PML:

PML uses GENERATE to provide a starting pulse which is then 
subjected to a specified number of round trips of the cavity. 
Each such round trip involves calling FIRSTSTEP once and STEP 
repeatedly (when the "machinery" has been primed). The 
partial-cavity approach requires that FIRSTSTEP takes care of 
amplifier and (total) two-way absorber recovery at the start 
of every trip.

Because the local procedures used by PML are powerful, its 
main block is kept simple. It includes the slip-compensating 
feature mentioned in section 5.3, which is designed to keep 
the pulse near the centre of the calculation's "window".

A  typical round trip (not the first) involves the code 
shown in figure J3. Notice the use of the steady state 
constraint to supply missing inputs necessary because of slip 
compensation (section 5.3).



THE PURPOSE OF THE FOLLOWING CODE IS TO UPDATE PARTIAL CAVITY E[0] . . .E[SLIP] 

begin

viewe( SLIP ) ; { measure the pulse }

{ E[SLIP] goes round cavity first ; E[0] comes out] } 
firststep( E[0], E[SLIP] ) ;

for m ( SLIP + 1 ) to estop 
do step( E[M-SLIP], E[M] ) ;

fullGT is set 
by

step( y, x ) 
as the ratio y/x.

S'
slope LN( fullGT ) / SLIP ;

for q ( estop - SLIP + 1 ) to estop 
do step( E[q], Etrailing * EXP(-slope 

{ E[estop] is last out }
*

{ steady state constraint } 

( SLIP + q - estop ) ) ;

Etrailing E[estop] 

end ;

FIGURE J3 Pulse round-trip within the procedure PML.
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EXPLANATIONS OF VIEWE, TABULATE, RECONFIGURE AND GENERATE:

These routines need little description. VIEWE records 
details of the pulse between round trips, such as energy and 
width. The slip (SL) of the peak of the pulse in the partial- 
cavity "window” , required elsewhere in the program, is also 
measured. TABULATE is a routine which makes PML repeat 
automatically with changing laser parameter values (absorber 
length or E for example) to explore trends in the model. 
RECONFIGURE allows the interactive user to change preset 
parameters and to control lineprinter graphics.

GENERATE provides the start pulse that evolves in PML for a 
specified number of round trips.
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