
THE EFFECTIVENESS OF FEATURES IN PATTERN RECOGNITION

by
SIDDHESWAR RAT

A Thesis Submitted for the Degree of 
Doctor of Philosophy 

of the University of London

Department of Electrical Engineering 
Imperial College of Science and Technology 

University of London

November 1984



- 2 -

To my
Dada and Bandi



- 3 - 

ABSTRACT

Feature evaluation criteria are investigated in the context of 
pattern recognition. This investigation is composed of three broad 
parts: critical examination of the existing methods, proposition of 
new methods based on the Mahalanobis distance, and empirical study of 
existing and proposed methods.

Various two-class and multiclass probabilistic criteria, most of 
which originate from the concepts of overlap and/or distance between 
classes, are examined for their comparative assessment as measures of 
feature effectiveness. Bayesian error probability being an optimum 
measure of the performance of a pattern recognition system, the 
different methods are judged depending on their relationship with this 
error probability. The ‘two-class measures considered include the 
Bhattacharyya coefficient, the Matusita distance, the divergence 
function, the Kolmogorov variational distance, the generalized 
separability measure of Lissack and Fu and the Mahalanobis distance. 
The multiclass measures include Matusita's measure of affinity. 
Shannon's conditional entropy, the Bayesian distance of Devijver, the 
conditional quadratic entropy of Vajda and Minkowski's measures of 
nonuniformity. Apart from these direct multiclass measures 
investigation is also made of the indirect multiclass generalizations 
of the aforesaid two-class measures obtained by averaging them over 
different class-pairs. Since none of the available measures, except 
the two-class Kolmogorov variational distance, has exact relationship 
with the Bayesian error probability, they are judged with reference to 
their lower and upper error probability bounds.

In contrast to the other feature evaluation methods mentioned 
above, the Mahalanobis distance does not require information about the 
probability structure. On the other hand, it shares with them the 
property of providing distribution-free probability of error upper 
bound. On account of this and other aspects the Mahalanobis distance 
is proposed as a feature evaluation criterion. Transformations on



Mahalanobis distance are put forward which lead to the avoidance of 
certain difficulties that arise when using a two-class measure in a 
multiclass situation.

Finally the existing and the proposed methods are applied to the 
problem of the recognition of handwritten numerals. Feature set 
considered for evaluation purposes consists of 20 'normalized 
frequency' features and 81 'normalized characteristic loci' features. 
The suggested transformations on Mahalanobis distance are shown to 
improve the feature evaluation process.
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CHAPTER 1 

INTRODUCTION

1.1 Description of the Problen and Objectives of the Thesis

Pattern recognition can be viewed as a three-stage process 

involving pattern representation, feature selection and 

classification. Pattern representation is the process of transforming 

an input pattern into a form suitable for computer processing. The 

output of this process would be a set of measurements representing the 

input pattern. This set of measurements constitutes, what is often 

called, a 'measurement vector'. Feature selection is the process of 

reduction of dimensionality of the measurement vector. This 

dimensionality reduction is achieved either by discarding the 

redundant and less relevant measurements or by combining the original 

measurements to form a set of characteristics representing the input 

pattern or by both. These new characteristics are said to constitute

a 'feature vector'. In the classification stage a decision as to
■iowhich category the input pattern may belong^is then made based on the 

value of the feature vector.

Usually the elements of the measurement vector represent some 

physical properties of the input pattern whereas the elements of the 

feature vector are mathematical in nature. Therefore, in contrast to 

the process of pattern representation, feature selection and

classification methodologies can be developed without being
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constrained by their applications. This works as an encouragement for 

more research in these two areas.

The criterion for measuring the performance of a pattern 

recognition system depends on its ultimate objective. Minimization of 

cost of classification, maximization of classification accuracy, 

description and analysis of the input data for the purpose of their 

reproduction, and measurement of distance between the pattern classes 

are some of the objectives. For the purpose of the present study it 

is assumed that the underlying objective is to maximize the 

classification accuracy.

The feature selector and the classifier are jointly responsible 

for the performance of a pattern recognition system. Accuracy of one 

affects that of the other. Considerable success has already been 

achieved in the design of pattern classifier. Design of feature 

selector, i.e., selection of features to be used in a pattern 

recognition problem, is a comparatively difficult task. Though some 

efforts have been made in the past, a satisfactory answer to the 

problem of optimum feature selection is still not available. In the 

present study the concentration is on the methods of feature 

evaluation used for the purpose of selection of effective features.

Since the performance of a pattern recognition system depends on 

the classifier also, the assumption of Bayesian clssifier with (0,1) 

cost function seems to be ideal for comparing the effectiveness of 

various feature subsets. In this case the resultant Bayesian error 

probability (Pg, say) would indicate how well a subset of features can
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describe the input patterns from the point of view of their

recognition. An alternative view of the effectiveness of a set of 

features relates to the ease with which optimum or near optimum 

decision-making can be performed. This is an aspect that will not be 

considered in this study.

Although the Bayesian error probability is usually considered to

be an optimum measure of the effectiveness of features, in most cases

either a closed-form expression cannot be obtained for it or it is too
*difficult to compute numerically . Owing to these difficulties

various indirect methods of evaluation and selection of features have

been developed during the past twenty five years. Most of these

methods fall under two broad types of approaches. The first type

consists of measures of feature effectiveness which are expressed in

terms of the probability distributions characterizing the pattern
♦ ♦

classes and may, therefore, be termed as 'probabilistic measures' 

They include various information, distance and dependence measures. 

Though these criteria do not bear any exact relationship with P , 

they approximate it by providing lower and upper bounds to P .

* These problems will be discussed in detail in the introductory 
section of chapter 2.

** The term 'probabilistic measure' is used in this thesis in a 
general sense and should not be confused with the term 'probability 
measure' found in the Statistics literature.
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The second type consists of mathematical mapping criteria which
*transform a feature vector , into another feature vector of lower 

dimensionality. From the point of view of pattern recognition an 

ideal transformation would lead to optimum reduction in the number of 

features together with the minimization of Bayesian probability of 

error. Unfortunately, in most cases, the existing mapping criteria do 

not fulfil this optimality condition. In the next section a 

comparative analysis of the above two approaches will be made. At 

this point it may be mentioned that in the first approach different 

feature subsets are evaluated to decide which one of them to select 

whereas in the second approach the process of feature evaluation is

not required and a mapping criterion leads to a smaller set of
afeatures straightway.

The purpose of the present study is to make a critical review of 

the existing probabilistic criteria of feature evaluation, the first 

of the two approaches mentioned above, and then to propose some new 

Mahalanobis distance-based criteria. The justification for 

concentrating on the Mahalanobis distance lies in its advantage over 

the approaches mentioned above. It is computationally less complex 

than the probabilistic criteria but provides probability of error 

bound which is lacking in the mathematical techniques.

* Measurement vector may be considered to be the initial feature 
vector, thus generalizing the concept of a 'feature vector'.

** If the features are Gaussianly distributed then most of the 
mathematical techniques also provide bounds to the probability of 
error.
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The probabilistic measures and the proposed Mahalanobis 

distance-based criteria are first examined on the basis of their Pe
bounds. They are then applied to the problem of recognition of 

handprinted numerals as a means of comparing them experimentally. It 

may be mentioned here that the application area of handprinted numeral 

recognition is chosen simply for the purpose of comparison of 

different feature evaluation methods, and the recognition accuracy of 

handprinted numerals should not be considered as the goal of the 

present study. Two types of experimental comparison are made. 

Firstly, various feature evaluation methods are applied to arrange a 

set of features chosen for recognition of numerals and then rank 

correlations between pairs of feature orderings are computed. These 

correlation values give an idea about the conformity of the orderings. 

The criterion whose feature ordering has maximum rank correlation with 

the ordering by the Bayesian error criterion is expected to perform 

better than the other measures. Secondly, recognition experiments are 

performed based on the feature sets selected by various criteria. 

This is repeated for different feature set sizes. The resultant 

recognition accuracier will enable a comparison of the performances of 

various feature evaluation criteria with respect to one another for

different feature set sizes.
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1.2 A Brief Historical Background

With the advent of digital computers pattern recognition research 

began during the late 1950's. An account of the early works may be 

obtained from Unger's paper [1], Soon there was a great demand for 

the development of pattern recognition methodology. As is evident 

from the survey papers of Wee [2], Nagy [3], and Ho and Agrawala [4], 

during 1960's the main focus of research was on designing the 

classifier. This is not at all surprising because, although all the 

three stages of representation, feature selection and classification 

are responsible for the performance of a pattern recognition system, 

classification is the stage in which the final decision-making takes 

place. Nevertheless, the problem of feature selection was not totally 

ignored during those days. As early as in 1962 Lewis produced a paper 

[5] which is considered to be pioneering in the field. He proposed 

the use of mutual information as a feature evaluation measure and gave 

theoretical justifications in its support. In his experiments an 

approximation of the above measure was used. Lewis's work was 

followed by Kamentsky and Liu [6], [7] who applied the mutual 

information criterion to evaluate various logic circuits for the 

purpose of designing multifont character recognition logics. Marill 

and Green [8] were probably the first to suggest the use of the 

divergence measure as a feature evaluation criterion. This measure 

was initially proposed by Jeffreys [9] and several of its properties 

were derived by Kullback [10]. The paper of Kailath [11] was another 

landmark in the history of development of feature evaluation

methodology. In this paper he defined a new distance measure based on
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the Bhattacharyya coefficient [12] and called it the Bhattacharyya 

distance. He compared the properties of the new measure with those of 

the divergence function from the poi :-.t of view of optimum signal 

selection. He also derived some relationships of the Bhattacharyya 

distance and the divergence function with the Bayesian probability of 

error. The above mentioned papers formed the basis of future 

developments in information and distance measures and their use in 

feature evaluation. An early work to expedite the potentials of the 

Karhunen-Loeve expansion in feature selection was that of Watanabe

[13] . His work has played an important role in the development of 

mathematical mapping criteria of feature selection. Fu, Min and Li

[14] reviewed the contributions made in the first decade of research 

in the area of feature selection.

Pattern recognition literature published in seventies reflected 

an increased emphasis on the development of methods of feature 

selection. This was well deserved. Contributions in the area of 

feature evaluation included the work of Vilmansen who proposed the ust, 

of probabilistic dependence measures in feature evaluation [15]. He 

also developed some new dependence measures [16]. A fairly exhaustive 

survey of the contributions to major topics in pattern recognition was 

made by Kanal [17]. Kittler [18] visualized the mathematical feature 

selection techniques as belonging to one of two major categories: 

feature selection in the measurement space and feature selection in 

the transformed space. Under these two categories he reviewed the 

roles of probabilistic measures and mathematical mapping methods in 

feature selection. The survey paper of Chen [19] provided a fairly
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complete list of probabilistic measures of feature evaluation and 

discussed their relationships with the Bayesian error probability.

measures will be made in chapter 2 where these measures are studied 

individually. Study of mathematical mapping methods is beyond the 

scope of this thesis. However, in view of the important role played 

by them in feature selection, here a brief account of the development 

of the mathematical mapping methods is given and their advantages and 

disadvantages are compared with that of the probabilistic measures. 

Because of the simplicity in their implementation the present 

discussion is confined to linear mapping methods only.

Suppose there is a set of n features from which a subset of r 

(1 _< r _< n) features is to be selected. In order to do this using a 

probabilistic feature evaluation criterion one has to integrate 

various multivariate probability density functions (involving r 

features) which themselves are to be estimated from the training data. 

For r > 1 the estimation of a probability density function is a very 

difficult task. Moreover, one has to repeat the above process of 

estimation and integration of probability density functions for nCr
subsets of features. This makes the use of probabilistic measures 

computationally very demanding.

mapping method can be described as a process of transformation which,

is worthwhile to note here that, unlike in the case of application of 

a probabilistic criterion, these r features may not constitute a

References to specific contributions in the area of probabilistic

A

applied on n features, straightaway leads to a set of r features. It
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subset of the original n features.

An ideal optimality criterion, on the basis of which to derive

the transformation procedure, would be the minimization of the

Bayesian error probability . Due to difficulty involved in the

evaluation of P some other heuristic criteria are used which are e
easily amenable to mathematical treatment. For example, the criteria 

of minimization of mean square error of representation and

maximization of Fisher's discriminant ratio form the basis for the 

development of a number of wellknown linear mapping methods of feature 

selection. Mention may be made of Karhunen-Loeve expansion [13], 

Generalized K-L expansion of Chien and Fu [20], Fukunaga-Koontz 

transform [21], Discriminant vectors of Foley and Sammon [22]-[24], 

Kittler-Young criterion [25], [26], Kazakos's criterion [27] and

Extended Fisher criterion of Maliua [28]. All these measures make use 

of only the first and the second order moments of the features in 

different classes.

Because of their computational simplicity the mathematical 

mapping techniques have been applied in pattern recognition. Though 

some satisfactory results have been observed in practical

applications, the fact remains that, unlike the probabilistic 

criteria, the mathematical mapping techniques do not have any 

relationship with the error probability. On the other hand, because 

of computational difficulties and other estimation problems the 

probabilistic criteria have remained, except in the case of feature 

subsets of size 1, more like a subject of theoretical discussion.
''f -7'  <z- |^WV> K ^ . C  y  i V-e_  ̂ i_£\

~2jẐ  Vuj t r r ^  eo-oi. .
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In recent years some efforts have been made to obtain 

mathematical transformations using the probability of error and other 

probabilistic measures like the Bhattacharyya coefficient and the 

divergence function as the optimality criteria [29]— [343 . Though some 

satisfactory results have been obtained, it is worth noting that in 

most of these studies Gaussianly distributed features have been 

considered, in which case the first and the second order moments are 

sufficient to describe the distributions. In the case of Gaussianly 

distributed patterns some probabilistic criteria assume closed-form 

expressions. This makes their computation much simpler because 

integration is no more involved. These criteria can , therefore, be 

used for feature evaluation, leading to feature selection, without 

much difficulty. In the distribution-free case the practical solution 

to feature selection lies in actually experimenting with various 

methods to decide which one to choose.

When there is a large number of features to select from, it may 

be a practical idea to adopt a two-stage process wherein in the first 

stage a subset of features is selected using a probabilistic criterion 

evaluating individual features and then, in the second stage, applying 

a mathmatical mapping criterion on the subset of features selected in 

the previous stage. The hope is that the use of a mapping criterion 

in the second stage will give better results than those obtained by 

the use of a probabilistic criterion evaluating individual features 

because, in the former method, the interactions between features are 

also taken into account by way of considering the second order

moments.



- 27 -

Because of their relationships with the probability of error the 

probabilistic criteria have, quite understandably, received a great 

deal of attention in pattern recognition research. From an analysis 

of the previous work it is seen that the trend of research has been 

towards defining new distance functions in order to tighten the 

existing error bounds or to generalize the existing distance 

functions. Though some success has been achieved from the point of 

view of these two objectives, almost all the suggested measures appear 

to suffer from the same fundamental difficulties that are associated 

with the direct computation (or estimation) of P . In the light of 

the above difficulties, in the present study more attention has been 

devoted to search for simple techniques which has led to proposing 

some Mahalanobis distance-based criteria for feature evaluation.

1.3 Outline of the Thesis

In the present chapter the problem of feature selection is 

described in the context of pattern recognition and objectives of the 

thesis are indicated. The chapter continues with a brief account of 

the early works on probabilistic measures and mathematical mapping 

methods as used in feature selection. Although the feature selection 

usually involves both searching and evaluation, searching strategies 

are considered to be beyond the scope of the present study.

In chapter 2 a critical analysis of the existing probabilistic 

feature evaluation criteria and their associated error bounds is 

presented. At the outset it may look like a catalogue of the existing
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probabilistic measures. But this cataloging is necessary for an 

understanding of the trend of research in the development of feature 

evaluation methodology. Moreover, for a fruitful theoretical 

comparison of various measures their explicit expressions are needed. 

This is again true for their experimental investigation. The 

two-class and the multiclass measures are treated separately. Since, 

in many cases, the two-class measures form the basis for the 

development of the multiclass measures, the two-class measures are 

discussed in greater details.

In chapter 3 the role of the Mahalanobis distance in feature 

selection is discussed. Following its definition and properties 

relevant in feature selection two new measures based on the 

Mahalanobis distance are proposed. In a multiclass pattern 

recognition problem these new measures are expected to perform better 

than the direct use of the two-class Mahalanobis distance. Suggestion 

is also made of the use of some Mahalanobis distance-based statistics 

in feature selection which have their origin in classical statistical 

theory of testing of hypothesis.

Chapters 4, 5 and 6 relate to the application of various existing 

and proposed measures of feature effectiveness in the area of 

recognition of handprinted numerals.

Chapter 4 deals with the preprocessing steps required for 

transforming the numerals into a form suitable for implementation of 

feature evaluation criteria. This includes digitization of data, 

binarization of character matrices, reduction of noise from the pixels
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and extraction of features from the matrices representing the 

numerals. A preliminary analysis of the extracted features is also 

made in this chapter which enables discarding the most obvious 

redundant features.

Chapter 5 deals with feature ordering experiments. To take care 

of the differences in styles of writing certain numerals these 

numerals are treated as composed of more than one class, implying that 

they will require special dealing in the feature ordering and the 

recognition experiments to follow. To apply the probabilistic 

measures of feature effectiveness one needs to estimate the 

class-conditional probability density functions (p.d.f.s) of feature 

subsets under study. In view of the limited number of character 

samples in hand, to avoid the estimation problems and to suit the 

storage requirements, feaure subsets of size one are considered. The 

class-conditional p.d.f.s for each feature are estimated. All the 

features are then arranged in decreasing order of their effectiveness, 

different probabilistic measures leading to different orderings. 

Feature orderings are also obtained by applying the new Mahalanobis 

distance-based criteria in two stages. In the first stage the 

features are arranged by making the simplifying assumption of 

independence of features and thus computing the values of the 

Mahalanobis distance only from the means and the standard deviations 

of the features. A few of the leading features in the above 

arrangement are then dealt with in the second stage. In this stage 

the features are rearranged, again by the Mahalanobis distance

criteria, but this time taking into account the covariances of the
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features. The number of features in the second stage is largely- 

determined by the computational requirements. Rank correlation 

coefficients between various pairs of feature orderings are computed 

to get an idea about the conformity of the orderings.

In chapter 6 recognition experiments are described in which 

different feature orderings obtained in the previous chapter are used. 

A simple Bayesian classifier, with the assumption of independence of 

features, is used. Two sets of recognition experiments are 

considered: in the first all the data are used as both the training 

data and the test data, and in the second the leave-one-out principle 

is followed. Analysis of the recognition results leads to a 

comparative assessment of the methods employed for ordering the 

features.

In chapter 7 the contrbution made is summarized and suggestions 

for further research are made. It is emphasized that the Mahalanobis 

distance, with its computational ease and performance accuracy, 

deserves more importance in pattern recognition.

Appendices A and B contain the handprinted numeral data and the 

listings of a number of computer programs, respectively. The programs

are written in FORTRAN 77.



31 -

CHAPTER 2

PROBABILISTIC MEASURES OF FEATURE EFFECTIVENESS

2.1 Introduction

Pattern classification is a decision-making process in which an

input pattern is assigned to one of a number of possible classes

depending on the value of the feature vector representing (hopefully!)

the input pattern. Suppose there are m (2 _< m < °°) possible classes

C, , C_ , ... , C whose a'priori probabilities are ti , tt_ , ..., n , 1 2 m  1 2 m
respectively. Suppose the value of the feature vector

*X = (X., X„, ...» X )', assumed to be continuous , taken by the input1 2  n
pattern under consideration is x = (x. , x„ , ..., x )'. Let denote1 2  n a

the n-dimensional sample space of X, p(x|C^) and P(C^|x) denote the

class-conditional probability density function of X given and the

a'posteriori probability of class C. given X=x, respectively, and le^ 
m

p(x) = ^ TT^.p(xlC^) denote the mixture density of X. Then the 
i=l

Bayesian decision procedure [35], which leads to minimum

♦If X is discrete then also all the results in the thesis will be 
valid. The only changes to be made then will be to replace the 
integration sign by the summation sign in the definitions of various 
measures and to consider probability mass functions instead of 
probability density functions.
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classification error, assigns an input pattern with feature vector

value x to class C. if x e fi. where 
1 1

S2. = { x e fiv I P(C. |x) > P(C. lx), l X l j

j = 1,2,...,m; j £ i},

i = 1,2 , . . . ,m (2.1)

The corresponding error of misclassification, known as the Bayesian 

error probability, is given by one of the following 

expressions:

P = 1 - E{maX[P(C.|X)]} (2.2a)e i i

= 1 - f m®X[P(C.U)]p(i)dx (2.2b)

= 1 - f ”*x[it.p(xlC.)]di (2.2c)J 1 1 1

where the expectation and the integration are over the sample space

°r

With a feature vector X the minimum achievable error of

misclassification is given by P . In other words, P is an optimume e
measure of effectiveness of the feature vector X. The question arises

as to how (2.2) can be evaluated to yield P . There are three obviouse
alternatives:

(i) the classifier can be built and tested using actual patterns,
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or (ii) the integral (2.2) can be evaluated from the probability

distributions P(C.|x), i=l,2, ...,m,1

or (iii) if the probability distributions are unknown then some 

methods such as, for example, curve fitting can be applied to measured 

data to obtain the forms of P(C.|x) after which the expression (2.2)l
is evaluated.

The first alternative involves designing the classifier followed 

by conducting the classification experiments, thus making the 

evaluation process slow and costly. In order to avoid this one might 

think of pursuing either alternative (ii) or alternative (iii). They, 

however, suffer from the following difficulties:

(i) a closed-form expression of P is often not available,e
(ii) numerical techniques are often very complex with respect to 

time and computational needs, and

(iii) partitioning of the feature space ft into ft., £L , ..., ft ,A 1 2  m
which is an indirect prerequisite for performing the integrations of 

(2.2), is again difficult.

Because of these difficulties various indirect measures have been 

proposed as a means of approximating P^ and thereby evaluating the 

effectiveness of a set of features. Most of these indirect measures 

have been developed based on the concepts of distance, separability, 

overlap or dependence between the probability distributions 

characterizing the pattern classes. Some measures have been developed 

based on information-theoretic considerations. All these measures are 

expressed in terms of the a'priori probabilities and the probability 

density functions of the classes. In general they may, therefore, be



34 -

termed as probabilistic measures. These measures do not usually bear

any exact relationship to P and hence upper and lower bounds,e
expressed in terms of these measures, have been derived to provide an

indication of how well they approximate . At this point, it is

worth noting that though both the upper and the lower bounds are

indicative of how closely a measure approximates P , the upper bounde
is in a sense more useful from the point of view of pattern

recognition. If the resulting upper bound is sufficiently low then

the pattern recognition system under consideration is 'acceptable'.

On the otherhand, lower bound is useful only in the negative sense

that if it is sufficiently high then it can lead to a 'rejection'

decision. Difference between the upper bound and the lower bound is

an indicator of the overall closeness of a measure to P .e

Many papers dealing with the development of various probabilistic 

measures and their properties, including relationships with P , have 

appeared during the last two decades. To mention a few, the works of 

Vajda [36] - [38], Lainiotis [39], [40], Chen [41],[42],

Toussaint [43], Vilmansen [15],[16], Chittineni [44]— [48] and

Devijver [49],[50] have made a significant contribution to the 

theoretical development of probabilistic feature evaluation criteria. 

The following is a list of two-class and multiclass measures that have 

been suggested as an aid to feature evaluation:

(A) Two-class measures : the Bhattacharyya distance

[11], [12],[42]; Jeffreys-Matusita distance function [9], [51]; the 

Chernoff bound [52], [53]; the Kullback-Leibler numbers [10], [54]; the 

divergence function [10],[55]; the transformed divergence function 

[56],[57]; the Kolmogorov variational distance [11]; the generalized
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separability measure of Lissack and Fu [58]; the separability measure 

of Patrick and Fischer [59]; Ito's family of approximating functions 

[60]; Toussaint's measure of affinity [61], [62]; the f-divergence of 

Csiszar [63] and the X a-divergence of Vajda [64].

(B) Multiclass measures : Matusita's measure of affinity 

[65]— [69]; Devijver's generalized divergence measure [70]; Toussaint's 

generalized Kolmogorov variational distance [71]; Shannon's 

conditional entropy (or Equivocation) [53], [72], [73] ; Mutual 

information [5]-[7], [42], [74]-[79]; the Bayesian distance of Devijver 

[49]; the conditional quadratic entropy of Vajda [36],[80]; the 

conditional cubic entropy of Chen [19]; Renyi's conditional entropy of 

order a [81], [82]; Minkowski's measure of nonuniformity [43],[49]; 

probabilistic dependence measures of Vilmansen [15],[16],[18]; and 

generalized distance measures of Backer, etal. [83],[84].

The above list is by no means exhaustive . Any well-behaved 

function of the probability density functions of the classes which 

provides some measure of separability between the classes may be 

considered for feature evaluation. In the following four sections of 

this chapter a theoretical study of the probabilistic measures is 

presented, concentrating only on those measures that are widely used 

and/or appear to be of most value.
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2.2 Two—class Measures and Their Associated Error Bounds

2.2.1 The Bhattacharyya Distance

The Bhattacharyya distance, b, proposed by Kailath [11], is 

defined in terms of the Bhattacharyya coefficient [12], p, as follows:

b = - In p (2.3)

where
1

p = J [p(x IĈ ) .p(x |C2 ) ]2dx (2.4)

Clearly, 0 p .< 1 and so 0 _< b <_ °°. On taking the a'priori 

probabilities into account, the Bhattacharyya coefficient can be 

generalized so that it becomes [55],[60]

*
P J [jt1p (x Iĉ ) .7T2p (x Iĉ  ) ]1/̂2dx (2.5a)

= E j [P (C 1 IX ) .P (C 2 I X ) ] 1/2 \ (2.5b)

*It is easy to see that p and p are related by the following exact 

relationship:

P = V v T  • p (2 .6)



The results given in terms of p can, therefore, also be expressed in 
*terms of p .

Hudimoto [85],[86] showed that is bounded above and below by 

the following relationships:

nl V 2 1 \ ' \ V  1 " 4V 2 p2 1 Pe 1 J V l  P (2.7)

The difference between the upper and the tighter lower bound is given 

by

6
V 4V 2

~1P (2 .8 )

In the following theorem an interesting property of 6 is proved for 

the first time.

Theorem 2.1 Whatever be the values of the a'priori probabilities 

and , (i) the maximum value of 5 i& ^(V2-l) and (ii) this maximum

cannot be attained for values (and so values) lying outside the

interval 2 -/2  24 n
4 ' 4

Proof (i) Taking the first derivative of 6 with respect to p one
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Equating the above expression to 0 leads to

1

V  8 V 2

(2.9)

Thus the maximum value of 8 is attained at the above value of p. 

Substituting this value of p in equation (2.8) gives,

8max v nln2

_1
V8

2 + 2V*

1
2

1).

Hence the first part of the theorem is proved.

(ii) The above mentioned maximum value occurs at p = - ] = = = . .  But 

p is restricted by the condition p 1. Solution of the inequality 

p <_ 1 leads to the desired result. Q.E.D.

In Figures 2.1a to 2.Id the P bounds for different values of ,e 1
namely, = 0.500, 0.625, 0.750 and 0.875, are shown. It can be seen

from these figures that the value of p for which the maximum value of

8 ( =£ ( \/2-l) = 0.2071) is attained gets shifted towards the right
2 + \/2with increases in the value of 7T„ . For values of jt„ >— ---  the1 1 4

maximum occurs at a value of p outside its range (Fig. 2.Id).

Use of an indirect measure as an alternative to P is justifiede J
provided (i) its bounds are sufficiently close to P and (ii) it ise
easier to compute than P . As shown above, the maximum differencee
between the two bounds can be as large as 0.2071. Therefore, from the
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BHBTTflCHPRVYfl COEFFICIENT Cp)

Fig. 2.1a Prob. of error (P ) bounds in terms 
of the Bhattacharyya coefficient (p) 
for Jt1=n2=0.500
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BHBTTPCHPRVYfl COEFFICIENT Cp)

Fig. 2.1b Prob. of error (P ) bounds in terms £of the Bhattacharyya coefficient (p)
for rr̂ =0.625, tt2 =0.375
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Fig. 2.1c Prob. of error (P ) bounds in terms£of the Bhattacharyya coefficient (p) 
for n^=0.750 and n^=0.250
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BHflTTflCHPRYYfl COEFFICIENT Cp>

Fig. 2.Id Prob. of error (P ) bounds in terms 
of the Bhattacharyya coefficient (p) 
for n^=0.875 and jt̂ =0.125
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point of view of pattern recognition, one may not like to consider the 

Bhattacharyya distance b to be a close approximation to P^. But b has 

a computational advantage over P . For the exponential family of 

distributions b assumes a closed-form expression. In this case, 

therefore, numerical integration is not involved in the computation of 

b. Explicit expressions of b are available [11] for the general

exponential family and also for a few special cases of this family,
inamely, the Multinomial distr^ution, the Poisson distribution, and the 

Gaussian distribution. For the Gaussian distributions described by 

p(x|C^) = N(|ju,V^), i=l,2 b assumes the following expression:

8(|11 V_1 (fil " ^  + i  ln
det (V)

det (V1) det (V2 )

where

y = (V + V ) / 2 (2 .10)

In most cases, however, a closed-form expression does not exist

and therefore the computation of b becomes as difficult as that of P .e
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2.2.2 The Jeffreys—Matusita Distance Function [9],[51]

The Jeffreys-Matusita distance function, y, is defined to be

y = £ J { y  p(x I ) - y  p (x IC2 ) }2dx J 1 2̂ (2.11)

and when the a'priori probabilities are taken into account

*r £ J ( y  7T1p(x|C1) - y  TT̂ p (x I ĉ  ) }2dx J 1/2 (2.12a)

1/2 (2.12b)

Though, apparently, the Jeffreys-Matusita distance was defined 

without the knowledge of the existence of the Bhattacharyya 

coefficient, they bear the following exact relationships:

Y v
2 (1 - p) (2.13a)

and

*
r (2.13b)

From these exact functional relationships it can be seen that 

they are two different versions of the same measure and, hence, there 

is no need to consider separately the properties of the
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Jeffreys-Matusita distance function. It is only necessary to note 

that this distance function has the same advantages and disadvantages 

as are associated with the Bhattacharyya coefficient.

2.2.3 The Divergence Function

The divergence function was first introduced by 

Jeffreys [9], [87], It is defined by

p(x|C^)] In
p(x IĈ ) - 

p ( x IC2 ) _
dx (2.14)

and can be looked upon as a symmetrical form of the two 

Kullback-Leibler numbers [88] obtained from the addition of the 

numbers. The following modified version of the divergence function, 

incorporating the a'priori probabilities, has been provided by 

Toussaint [55]:

J = J ĵTr1p(x |C1) - tt2p (x |C2 )J In (x I )
_ 7T2p(x|C2 )

dx (2.15a)

E [P(C1 |X) - P(C2 IX)] In
P(C,|X)

L p (c2 Ix )
i IX)1
. lx) J (2.15b)

It is easy to see that both J and J can have values in the 

interval [0,®) and that they are related by J^l/2,1/2) = J/2. A
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number of lower bounds to P , expressed in terms of J and J , havee
been discovered by Kailath [11] and Toussaint [55]. Among those

*bounds which can be expressed in terms of J the following bound of 

Toussain* [40] is the tightest:

Pe
1
2 ^ 1 - 4 exp [-2H(n) - J*] (2.16)

where

H(n) = In 7t̂ - rr̂ In (2.17)

Fig. 2.2 gives the diagrammatic representation of (2.16) for 

different values of n1 (and jt ) .X Zr

For ~ n2 = (2.16) reduces to

Pe
1
2-y/1 - exp(- J/2 ) (2.18)

Toussaint [55] also derived the following inequality between J and

P : e

J* > (2 P — e 1). In [
Pe

1 - P J e
(2.19)
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*
J

*Fig. 2.2 Prob. of error (P ) lower bounds versus J 
for different values of
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For equal a'priori prababilities (2.19) reduces to

r P
J > 2 (2 P - 1). In ~ e 1 - P J e

(2 .20)

(2.20) provides the tightest inequality between J and P^ but has the 

drawback that P^ cannot be expressed in terms of J. Fig. 2.3 

illustrates the improved tightness of (2.20) over (2.18).

It is understood that there cannot be a general distribution-free 

upper bound of P^ which is expressable in terms of the divergence 

function [89]. For the Gaussian distribution an upper bound is 

available [90] and this is given by

i \ T v ^ 4
1 fJv-1/4
2 V (2 .21)

As for b, J can also be expressed in closed-form expression for 

the exponential family of distributions. For p(x|C.) = N(u.,V.),i=l#2i l l
it reduces to

J ■ \ tr [T^\ ♦ V ^ \  - 2 I]

+ \ tr[(V1_1 + V2_1) - n2 ) - (^)M (2.22)

In those cases for which a closed-form expression can be found 

for J, it provides an effective feature evaluation criterion.
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Fie. 2.3 Prob. of error (P ) lower bounds versus Je
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In the case of multivariate Gaussian distribution the computational 

complexities of the Bhattacharyya distance and the divergence function 

can be compared from the expressions (2.10) and (2.22).

Computationally, the determination of V * is the same as the 

determination of det(V). Apart from matrix inversion and determinant 

calculation, all other arithmetic operations present in (2.10) and 

(2.22) are computationally less complex. The number of computationlly 

complex operations present in (2.10) is three, namely, det(V^), 

det(V^) and det(V) whereas the computation of J involves only two, 

namely, and V^. The conclusion can thus be drawn that in the

case of the Gaussian distribution the divergence function is 

computationally more effective than the Bhattacharyya distance. 

However, the upper bound of P in terms of p and the upper bound in 

terms of J are related as follows:

Pe 1 V V 2 P 1 ̂  V 2 (f )_1/4 (2'23)

It can thus be seen that J provides a less tight upper bound than 

p, which offsets its computational advantage.

2.2.4 Transformed Divergence

The transformed divergence, J^, defined by Swain etal. [56],[57], 

is given by

Jr- = 2 [ 1 - exp(- ]T 8' J (2.24)

Because of the exact relationship between J and Xp, the error
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bounds expressed in terms of J can also be expressed in terms of J^.

In Fig. 2.4 the relationship between J_ and the lower bounds of P is1 e
shown. This diagram is plotted using the equation (2.24) and the 

following inequality:

Pe exp(- -) (2.25)

which is obtained by putting n^=-n^=l/2 in (2.16).

For increasing separability between classes the divergence J 

increases in an unbounded fashion whereas increases in a bounded 

manner, with its maximum value being equal to 2. Although multiclass 

systems are to be considered later, it is appropriate to remark at 

this point that in a multiclass problem, solved through the use of an 

average of the pairwise values of Ĵ ., this bounded characteristics 

helps to prevent highly separable class-pairs from making an undue 

contribution to the average separability criterion. Therefore, in a 

multiclass situation the use of J^, rather than J, is recommended. In 

a two-class case, however, the unbounded nature of J with increasing 

separability does not affect the feature ordering.
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Fig. 2.4 Prob of error (P ) lower bound e versus J_ T
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2.2.5 Kolmogorov Variational Distance

The Kolmogorov variational distance [11], K, is defined to be

K = Ĵ* 17Tip C x 1 Ci) - 7̂  p (x 1 )  1 dx (2.26a)

= ^E{|P(C^IX) - P(C2 IX)|} (2.26b)

It can be shown [91] that

P = £ - K e 2 (2.27)

Thus from the variational distance of Kolmogorov the Bayesian 

probability of error can be determined exactly. But the difficulty

associated with the use of K is that its

precisely the same as that of P .e

computational complexity is
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2.2.6 Generalized Separability Measure of Lissack and Fn

The generalized separability measure proposed by Lissack and Fu 

[58] is defined as

K = EflPtC, \X) - P(C. |x)|a}, 0 < a < ®. (2.28)a 1 l

This is a straightforward generalization of the Kolmogorov 

variational distance, and for a = 1 the measure reduces to 2K. In 

this case, therefore,

K = 2K = 1 - 2P (2.29)1 e

Error bounds for different values of a are as follows:

For 0 < a <. 1,

r {1 - K } _< P < 1  (1 - [K ]1/a} (2.30)2 a e 2 a

and for 1 <_ a < «>,

£ {1 - [K ]1/a} < P < | {1 - K } (2.31)2 a e ~ 2 a

For a = 1 the lower and the upper bounds coincide and an increase 

or decrease in its value loosens the bounds. From the following 

theorem, proved for the first time, one can obtain information about

the magnitude of the loosening of the bounds for a > 1.
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Theorem 2.2 (i) For a given a > 1 the maximum

6 ( = upper bound - lower bound ) is given by

5max
1
2

1
a-1 }

and (ii) the value of 6 increases with increase in a.max

Proof (i) For a > 1,

5 = i(l-K ) - |{1-[K ]1/o) 2 a 2 a

= r ([K ]1/a - K )2 a a

Differentiating 

to zero gives

6 with respect to Ka and equating the

K
a

a

a
a-1

Thus the maximum value of 5 occurs for the above value of KI
this value of K in (2.32) gives

__a_ __a_
r a-1 ,1/a a-1[a J - a

value of

(2.32)

derivative

(2.33)

. Putting



56 -

(ii) Differentiating 8 with respect to a,hihx

d6
da
max _ 1 

" 2

1 a |—

a-l log a 1 a-l log a 1
.2 & , .2(a-l) (a-l)a (a-l) a-l

log a 

(a-l)2 L

r 1 a - r a 1 -|
a-l a-l i a-l 1 a-la - a + — a - - aa-l aL. J L J

(2.34)

Using the identity = 1 + ~̂ ~z in (2.34) leads toa— 1 a— 1

d8 1 \ 1 imax _ 1 \ log a a-l
da ~ 2 ) , ,,2 Q(a-l)

(1 - -) + -±- 
a a-l

1
1 a-l 1 a-l- a - - aa a

1 \ log a
1
a-l

(1 - ± ) a (2.35)
(a-l)

It is easy to see that the expression in the right hand side of 

(2.35) is +ve. Hence the desired result is proved. Q.E.D.

For a given a > 1 the upper and the lower hounds of 

corresponding to the maximum difference between the two bounds are 

given by

a

a-l } (2.36)

and

pt " I  ' 1 - »

1
a-l } (2.37)

Fig. 2.5 shows how the values of and P^ vary with a. It may

be noted that as a increases from 1 to 00 the maximum difference

between the two bounds increases from 0 to 0.5. This shows how the
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a

Fig. 2.5 Looseness in prob. of error (P ) bounds
given by for different values of a ) 1
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bounds loosen with increasing a. Moreover, with increasing a the

computation of K becomes more demanding. Therefore, it appears that a
there is no advantage in going for high values of a. The bounds 

corresponding to (a=2) are tighter than most of the existing bounds 

associated with the other two-class measures. As can be seen from 

Fig. 2.5, the maximum difference between the two bounds in this case 

is 0.125. K̂  has the advantage over in that involves the

operation of raising P(C^|X) - P(C^|X) to the power of 2 which is 

mathematically more handy to deal with than the difference operation 

involved in . But as is the case with also cannot be

expressed in a closed-form even for the Gaussian distribution. This 

renders computationally ineffective.

2.2.7 Ito's Family of Approximating Functions

The approximating functions of Ito [60] are defined as

Qr
1 1 
2 ”  2

, 2 (r+1)
E | [ P(CX IX) - P(C2 IX) ] 2r+1

r = 0, 1,2, ... (2.38)

Ito has 

relationship:

shown that Pe is upper bounded by the following

P < Q < ... < CL (2.39)e — r — — 0

Though Q provides tighter upper bounds for larger values of r, r
it cannot be expressed in closed-form even for Gaussian distribution 

and hence it suffers from the same computational difficulties as

mentioned previously.
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Except for r = 0 the function does not provide a lower bound 

to . It is easy to see that

% - b 1 -  v (2.40)

Using this relationship and putting a = 2 in (2.31) gives the

following P bounds in terms of GL: e 0

It may be noted that the upper bound in (2.41) coincides with 

that in (2.39). In Fig. 2.6 the bounds mentioned in (2.41) are 

depicted. The maximum difference of 0.125 between the two bounds 

occurs at = 0.375.

Ito proved that

decision rule of Cover and Hart [92]. This result is interesting

(2.41)

(2.42)

where is the error probability of the first Nearest Neighbor (INN)

because, in the nonparametrie case, Qq can be estimated by classifying 

the sample data with INN rule, thus making a useful nonparametric

feature evaluation criterion.
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1 - 2V

F ig . 2.6 Prob. of error (P ) bounds versus Ito's Q -function e 0
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2.2.8 Toussaint's Measures of Affinity

Toussaint's affinity measure [62], which is analogous to the 

Bhattacharyya coefficient, is defined by

(2.43)

The associated distance function is

T = - In (2t ) r r (2.44)

Toussaint [62] showed that

P = t < ... < x < ... <T1 (2.45)

Thus by increasing the value of r tighter upper bounds can be 

obtained. The difficulty of computation remains, however, since 

does not simplify for parametric cases.
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The following result of Toussaint shows that is more closely-

related to P than is the Bhattacharyya coefficient p:e

(2.46)

As is the case with Q^, is also equal to INN error rate, thus

making it useful in a nonparametrie situation.

2.3 Multiclass Measures and Their Associated Error Bounds

2.3.1 Matusita's Measure of Affinity

Matusita's measure of affinity [66] is an m-class generalization 

of the Bhattacharyya coefficient and is defined by

Taking into account the a'priori probabilities the measure of affinity 

can be generalized [68] as follows:

P,m (2.47)

P,m (2.48a)

E j [  P(C1 |X) P(C2 l x ) . . .P (C jX )  ]1/m } (2 .48b)
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Clearly,

Pm = ["l*2
1/mft J p m m (2.49)

♦Since p is explicitly expressable in terms of p , error bounds can. m m
also be given in terms of p .m

Toussaint [69] obtained the following upper bound of Pe ’

. m , xl/m ,< r [ l + ( n 1n0 ...jr) p ] - l  ~ 2 1 2  m m

This appears to be the only upper bound 

available in the literature. For m = 2 it reduces 

Hudimoto upper bound given in (2.7).

(2.50)

in terms of p , m
to the wellknown

Toussaint [68] has shown that P can be lower bounded as follows:e

Pe 4(m-l)m ^ ft* ft*> • • • ft 1 2  m (2.51)

The form of this bound is similar to the tighter lower bound in (2.7) 

and for m = 2 it reduces to that bound.

Since for m = 2 the bounds given by (2.50) and (2.51) coincide 

with the bounds mentioned in (2.7), for their graphical representation, 

reference may be made to Figures 2.1a to 2.Id shown earlier. For 

higher values of m the upper bound (2.50) becomes loose very rapidly

and for m > 4 it becomes useless because then its value exceeds 1.0.
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If the a'priori probabilities are equal then from (2.50) and (2.51) 

one gets

1
2 i  V 7 7

4(m-1)m-1 m
mm

p i Pm [1 + - m
m ] - 1 (2.52)

In Fig. 2.7 the above bounds are plotted for m = 3. It is easy to see 

that in Ji-class situation with equal a'priori probabilities the 

error probability is bounded above as follows:

Pe < 1 - ± — m
(2.53)

Comparing the upper bound mentioned in (2.52) with the trivial upper

bound (2.53) one can see that even for m = 3 the upper bound in (2.52)

becomes useless when p (m = 3) exceeds the value of 1/3. The trivialm
upper bound is shown in dotted line in Fig. 2.7. As can be seen in 

this diagram, the gap between the upper and the lower bound is quite 

large.
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F ig . 2.7 Prob. of error (P ) bounds versus Matusita'sqm-class affinity (p ) for m=3 and n . = n  =1/3
m 1 2 3
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2.3.2 Shannon's Conditional Entropy

With C denoting the set of classes C1, C , ...» C thel l m
equivocation or Shannon's conditional entropy [72], [73] of C given X 

*is defined by

H = H(C|X) f
m

- ^ P(C.U) In P(C.lx) L x  l
i=l

p(x) dx (2.54a)

= E
m
]> P(C£IX) 
i=l

In P(C.IX) i (2.54b)

The wellknown [93] upper bound on P^ in terms of H is

1
P <. -----  H, m 2 2
6 2 In 2

(2.55)

For m = 2 it can be shown [41] that

1
P 2 -----  H
6 2 In 2

(2.56)

Thus H gives tighter upper bound than p. But H is computationally 

less efficient than p.

* In this thesis natural logarithm is used instead of logarithm to 
the base 2 considered by Shannon.
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A piecewise linear upper bound, obtained apparently independently 

by Kovalevsky [73] and Tebbe and Dwyer [94], gives a tighter bound 

than that given by (2.55) above. This piecewise linear bound is given 

by

r+1 ,H > In (r) + r(r+1) (In —  ) ( P - —  ), m > 2~ r e r — (2.57)

wh^re r is such an integer that

r — 1 r-— - 1 p < -4-1r e r + 1 (2.58)

For P < 0.5 (2.57) reduces to (2.55). In a two-class situatione “
the condition P < 0.5 is always true. In this case therefore the two e —
upper bounds coincide.

A lower bound on Pg is provided by the wellknown Fano [95] bound:

H < -P In P - (1-P ) ln(l-P ) + P ln(m-l) — e e e e e (2.59)

It can be shown [89] that there cannot be any tighter lower bound than 

(2.59).

Both (2.57) and (2.59) suffer from the difficulty that P cannote
be solved in terms of H. But, still, error bounds can be obtained by

considering ra^es of possible values of H for different values of P .e
For a given value of Pg equalities in (2.57) and (2.59) correspond to

H . and H , respectively. In Fig. 2.8 the P bounds arem m  max e
illustrated by plotting H . and H against P , subject to themin max e
condition that P < 1 - 1/m. Curves showing He ~ max values are plotted
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Fi§« 2.8 Prob. of error (P ) bounds versus 
Shannon's entropy (H)
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for m = 2,3,5 and 10. H . is shown by a dotted line in the diagram.m m
As can be seen from the diagram, the Fano bound becomes loose with 

increasing m. This is due to the fact that ln(m-l) is a monotonically 

increasing function of m.

2.3.3 Mutual Information

The mutual information function [74] is defined by

I(X,C)
m
^ ni J P (̂  I ) *n
i-1

fP ( x l C . ) - i____l
p(x) dx (2.60)

Mutual information can be expressed 

conditional entropy and it can be shown that

in terms of Shannon's

I(X,C) = H(C) - H(C|X) (2.61)

where

H(C) =
m

i=l
In tt .l (2.62 )

H(C) is the a'priori entropy of the classes and H(C|X) is 

Shannon's conditional entropy as defined in (2.54). Thus, I(X,C) may 

be interpreted as the average decrease of entropy (or uncertainty) 

concerning C which results if X is observed. For H(C) = H(C|X) one 

has I(X,C) = 0. This 'no information' situation indicates that the 

knowledge of X does not lead to reduction in the uncertainty regarding 

C. This simple interpretation has led to a widespread use of mutual



70 -

information as a feature evaluation criterion [5]-[7], [75]-[79].

For a particular pattern recognition problem the a'priori 

probabilities of the classes are generally fixed. If the a'priori 

probabilities are fixed then, from the point of view of pattern 

recognition, contribution of H(C) is unimportant and H(C|X) is the 

only factor that matters. In this case, therefore, I(X,C) has the 

same advantages and disadvantages as are associated with the Shannon's 

entropy measure.

2.3.4 Bayesian Distance of Devijver [49]

The Bayesian distance is defined to be

Devijver has derived the following inequalities between the 

Bayesian distance and the Bayesian probability of error:

B = B(C|X) = E [ P(C.IX) ]2l (2.63)

| [ 1 - B ] P < 1 - Be

(2.64)
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The difference between the upper bound and the tightest lower bound is

5 = (1 - B )  - -----m 1 V mB - 1
m - 1 (2.65)

By differentiating with respect to B and equating the derivative 

to zero it is seen that the maximum value of 8 occurs at

m + 3
4 m (2 . 66 )

and the corresponding maximum 8-value is

8max
1 ___1_
4 4 m (2.67)

Therefore

1
8 < 8max (2.68)

Thus with increase in number of classes from 2 to 00 the maximum 

difference between the two error bounds increases from 1/8 to 1/4.

It should be pointed out here that Devijver [49] also derived the

results mentioned in (2.66), (2.67) and (2.68).
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For m = 2 the Bayesian distance is related to the Ito's - function

and to Lissack and Fu's K - function by the relationshipa

Q0 (2.69)

It is thus clear that the computational difficulties are the same for 

these measures.

In passing it may be noted that though the Bayesian distance does 

not assume a closed-form expression for the Gaussian distribution, it 

assumes [19] a closed-form expression for Laplacian-type 

distributions.

2.3.5 Conditional Quadratic Entropy of Vajda

The conditional quadratic entropy of Vajda [36] is defined to be

h = h(C|X)
m

P(C.IX) [ 1l P(C.|X) ] 1
4=1

(2.70)

This measure may be obtained from H by replacing -In P(C^IX) with

1 - P(C. |X) .l
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The probability of error bounds are given [19] by 

h
.... .......  < P _< h (2.71)
1 + y  1 - 2h 6

It is easy to see that

B = 1 - h (2.72)

and thus, effectively, the Bayesian distance and the conditional 

quadratic entropy are two forms of the same measure.

2.3.6 Minkowski's Measures of Nonuniformity

Minkowski's measures of nonuniformity, proposed by 

Toussaint [43], are defined to be

Mk = Mk(C*X) P(C.|X)l

2 (k+1) 
1 | 2k+1

k = 0, 1, 2, (2.73)
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The following result proved by Toussaint provides Pg bounds for 

different values of k:

^1^r(k) 
m

r (k)
-i 2

> M, > P m
m—1) Pe (2.74)

where

r (k) 2 (k+1) 
2k+l (2.75)

The inequality in the 

following Pg upper bound:

left hand side of (2.74) yields the

Pe < m-1
m

r(k) 
m

- 1
(2.76)

An analysis of (2.76) indicates that the bound becomes loose with an 

increase either in m or in k. It is again obvious from the right hand 

side inequality of (2.74) that the lower bound on P^ becomes loose

with increasing m.
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The tightest bounds are provided by which is related to the

quadratic entropy of Vajda and to the Bayesian distance of Devijver. 

The relationship is

—  - M = h = 1 - B (2.77)m 0

which implies that is as effective (or ineffective!) a feature 

evaluation criterion as are h and B.

2.4 Use of a Two-Class Measure in a Multiclass Problem

There are two approaches to solving a multiclass problem with the 

help of a two-class measure. These are known as the 'expected value' 

approach and the 'maximin' approach. In the first approach an average 

value of the 2-class measure is calculated from its values for 

different pairs of classes. The feature subset leading to maximum (or 

minimum, depending on the measure) average value is then selected for 

use in the recognition stage. In the second approach minimum values 

are considered instead of averages.

Ease of mathematical treatment has led to the preference of the 

expected value approach over the maximin approach. Results showing 

the relationships of the m-class probability of error with various

2-class measures have been established.
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It is wellknown [96] that the error probability involved in an m-class 

problem is bounded above by the following inequality

Pe

m-1 m

* 5 1
i=l j=i+l

pea.j> (2.78)

where P (i,j) is the pairwise error probability between the classes C.C X
and Cj. Using the above inequality Lainiotis [39] obtained a class of

upper bounds on P , a particular case of which gives the bound in e
terms of the pairwise Bhattacharyya coefficients. This bound is given 

by

m-1 m
D , Y \ , x1/2 p.. (2.79)P 1  > > (tt.jt.) * ije “ L  L i j

i=l j=i+l

Toussaint [68],[97], [98] obtained bounds to P in terms of thee
Kolmogorov variational distance and the divergence measures, and 

Lissack and Fu [58] derived error bounds in terms of the pairwise 

separability measure K^ (for a = 1 and 2). Rather than going into the 

details of these bounds it is only necessary to comment here that, in 

their own right, the two-class measures have established their 

usefulness in the solution of an m-class problem.

2.5 Comparative Review of Measures

In the case of two-class measures the equations (2.13a) and 

(2.13b) show that the Bhattacharyya coefficient and the Matusita

distance are basically two different versions of the same measure.
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The inequality (2.23) suggests that the divergence function is less 

effective than the Bhattacharyya coefficient. From (2.10) and (2.22) 

it can be said that the Bhattacharyya distance is simpler to compute 

for the Gaussian processes with unequal covariances but equal means 

whereas, for the Gaussian processes with distinct means and equal 

covariances, the divergence function is easier to compute. The 

Kolmogorov variational distance has exactly the same computational 

difficulties as those of the probability of error.

For m = 2 one has,

Q0 ■ 1 - B - h - I - M0 - 5 [ 1 - *2 3 (2-80)

This relationship indicates that, in a two-class situation, Ito's Qr
function (for r = 0), the Bayesian distance, the conditional quadratic 

entropy, Minkowski's measure of nonuniformity M (for k = 0), andiC
Lissack and Fu's separability measure (for a = 2) are equally

effective measures. Though they provide tighter error bounds than the 

Bhattacharyya coefficient and the divergence function, they are

difficult to compute. Toussaint's measure of affinity x^ also suffers

from the same difficulty. x
H*_ iaâ  Su.res ^  ■ £c>)

o L
the computational

advantage in that can be estimated by classifying the sample data

with the INN rule.

It was pointed out in section 2.1 that though both the upper and 

the lower bounds are required for approximating P , the upper bound is 

of more positive value as an aid to feature assessment. In the 

two-class situation an indication of the comparative effectiveness of
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various measures may be obtained from tbe following inequality 

relating various upper bounds:

P = £ - K < Q <e 2 —  x ~
< Q 0 = 1 -  B = b

1
2 M0 * 2 In 2 H V 2

For m classes (m >. 2) the relationship given 

that the conditional quadratic entropy of Vajda 

distance of Devijver are in fact a special case 

measure of nonuniformity. For m ) 2 the following 

between various upper and lower bounds:

1
2 [ 1 - K„ ]

2
( 1 - -f ) (2.81)

in (2.77) indicates 

and the Bayesian 

of the Minkowski's 

inequality holds

\ (1 - B) <. 1 - V~b" <
1 + V l  -  2h

m - 1 I” / mB - 1 ~1
1_1 " p t  I

< P  < h = 1 - B = m - 1 
m - M0 “ 2 In 2 H (2.82)

The ordering of the different measures present in the above 

inequality, from the point of view of accuracy, is self-explanatory 

apart from the fact that because of the exact relationships between 

some measures the bounds in terms of one may be expressed in terms of 

the others.

It is difficult to give a comparative picture of the 

computational complexities of the various multiclass measures. 

Closed-form expressions for most of the measures do not exist, 

rendering them difficult to compute. In the nonparametrie case 

usually the computation of a probabilistic distance measure has to be
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preceded by the estimation of the class-conditional probability 

density functions. Probability density function estimation itself is 

a computationally complex task. Compared to this the differences in 

the computational complexities of various multiclass measures are 

quite small. This makes the comparison of the computational 

complexities less important.

From the above analysis and discussions it may be noted that the 

Bayesian distance (and the measures exactly related to it) has tighter 

error bounds than most of the other measures. But even with this 

measure, and for m = 2, the difference between the upper and the lower 

error bounds can be as large as 0.125. This difference increases with 

increasing m and approaches 0.250 as m tends to 00, which, in practice, 

is likely to be too large. Thus, even with a 'difficult to compute' 

measure like the Bayesian distance the accuracy of the method is less 

than satisfactory. Therefore, with the exception of certain 

parametric cases where some measures assume closed-form expressions, 

it may be better to estimate the error by a direct method instead of 

employing the computation of the probabilistic measures, unless, of 

course, an easy method exists for estimating the probabilistic 

measures.
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NEW MAHALANOBIS DISTANCE-BASED FEATURE EVALUATION CRITERIA

CHAPTER 3

3.1 Introduc t ion

Information on the probability structure is a prerequisite for 

obtaining the probabilistic separability measures. Computation of 

these measures usually involves integration of multivariate density 

functions which themselves **ave to be estimated from the training 

data. Computational complexity increases exponentially with increases 

in the dimension of the feature vector. Moreover, in a real-life 

situation the size of the training set is sometimes too small for 

estimation of higher order interactions of the features because one 

would then face the wellknown 'curse of dimensionality' problem [99].

In the past, researchers quite often assumed the independence of

features in order to implement various feature evaluation measures.

This was probably because they wanted to avoid the estimation and the

computational needs involved in a higher dimensional analysis. With

the decreasing cost of data storage and the increasing computational

speeds of the present day computers it is sometimes worthwhile to take

into account the higher order interactions of the features. The

Mahalanobis distance is a simple measure which takes into account the

effects of correlations between the features. This, togethc .* with the

fact that it provides a distribution-free upper bound to P , indicatese
the potentiality of the Mahalanobis distance as a feature evaluation 

criterion. Though the application of the Mahalanobis distance in 

pattern recognition is not new, it deserves further attention.
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In the present chapter certain theoretical properties of the 

Mahalanobis distance are investigated which are relevant in the 

context of feature evaluation. The Mahalanobis distance is defined 

first. Its relationships with the Bayesian probability of error are 

then discussed, both in the distribution-free case and in the case 

when the feature vector follows a Gaussian distribution. Sample-based 

Mahalanobis distance is then described. This is followed by the 

development of two functions of the Mahalanobis distance and it is 

proposed that they be used as feature evaluation criteria. As will be 

shown later in this chapter, these two new criteria can have values in 

the range 0 to 1. It is expected that, in a muliclass situation, this 

boundedness will result in their better performance as compared with 

the direct use of the Mahalanobis distance. In the present chapter 

discussions on some Mahalanobis distance-based statistics are included 

which have their origin in the statistical theory of testing of 

hypothesis and are thought to be useful in feature evaluation in the 

context of pattern recognition.
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3.2 Definition and Properties of the Mahalanobis Distance

3.2.1 Definition

Mahalanobis distance between two classes and is defined by

A2 = (fi1 - ji2 )' V 1 (p̂  - n2 ) (3.1)

where

V = nlVl + "2V2 (3.2)

where and P2 are the mean vectors and and V2 are the dispersion

matrices of X in ci and C2 , and jt1 and jt2 are the a'priori

probabilities of the two classes.

2It should be noted here that A is a generalization [100] of the 

original distance function of Mahalanobis [101] which was defined as 

the distance between two Gaussian distributions with a common 

dispersion matrix V. The only assumption required is that of 

nonsingularity of V defined in (3.2).
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3.2.2 Relationships Between A and

3.2.2.1 Distribution-free relationship

In the distribution-free case there cannot be any exact
2relationship between A and P^. In this case, however, is upper 

bounded by the following relationship:

2

P < e ~
2 nl n2

1 + nl *2 4
(3.3)

For a proof of the above result reference may be made to chapters 2 

and 4 of the book by Devijver and Kittler [100].

For equal a'priori probabilities of the classes the inequality 

(3.3) reduces to

Pe (3.4)

It may be noted that the upper bound (3.4) holds good for any values 

of the a'priori prababilities. Though (3.4) is a loose bound it is 

useful when the a'priori probabilities are either unknown or equal. 

In Fig. 3.1 a diagrammatic representation of the upper bound (3.3) is 

given for = 0.fDO, 0.625, 0.750 and 0.875.
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HPHPLPNOBIS DISTPNCE ( A2 )

Fig. 3.1 Distribution-free prob. of error (P̂ ) upper
bounds in terms of tbe Mahalanobis distance (A ) 
for different a'priori probabilities
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3.2.2.2 Relationship for GaussianlyHDistributed. Features

If X follows a Gaussian distribution with a common dispersion

matrix V for the two classes and C^, then the relationship between 
2A and is exact. This exact relatioship is given by the following 

wellknown [35] equation:

Pe 1 - $> (3.5)

where

(y) (3.6)

and

a = In (—  )

For ^  equation (3.5) reduces to

P^ = $  ( - 5* ) 6 Z

(3.7)

(3.8)

The relationship (3.8) is illustrated in Fig. 3.2. It is observed
2that P , a monotonically decreasing function of A , becomes less than

2 2 5% for A =11 and becomes less than 1% for A =22. In a later

section (section 3.3.3.2) discussion will be made of the question of
2how well the existing P^ upper bounds, expressed in terms of A , 

compare with the above exact relationship.
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Fig.3.2 Exact relationship between the Mahalanobis
distance (A ) and the prob. of error (P ) in 
the Gaussian case with common dispersion matrix 
and equal a'priori probabilities
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3.2.3 Mahalanobis Distance as a Special Case of the 

Divergence Function

As mentioned in section 2.2.3 of the previous chapter, in the 

case of the Gaussian feature vector the divergence function takes the 

closed-form expression given by (2.22). If it is further assumed that 

the two dispersion matrices and are equal then (2.22) reduces to 

(3.1) confirming the wellknown [102] fact that the Mah”lanobis 

distance, in its restricted sense of definition, is a particular case 

of the divergence function.

3.2.4 Sample—Based Mahalanobis Distance

2The Mahalanobis distance A is defined in terms of the population 

parameters p^, p^, and . In real-life problems these population 

parameters are usually not available and are, therefore, estimated 

from the sample data. Replacing the population parameters by the 

corresponding sample statistics in (3.1) the following sample-based 

Mahalanobis distance is obtained:

D2 = - 1 2 )' S_1 - I2 ) (3.9)
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where

S =
( Nx -  1 ) Sx + ( N2 -  1 ) S2 

N1 + N2 ' 2
(3.10)

N.

- i  I
1 i=i

a (3.11)

N„

= 1 } N„ L
2 i-1

X .  . 21 (3.12)

N.

!1 = N ^ I  1 ( xli " *1 ) ( xli ' *1 V
i=l

N„

N„ - 1 ^ ( X2i X2 ) ( X2i X2 )
i-1

(3.13)

(3.14)

and where (x11' ±2' IN. ) and (x21* x22'* *‘' X2N  ̂ are tlie2
samples of sizes and from the classes and » respectively, 

x^ and x̂  are unbiassed estimates of and p^, respectively. S is 

unbiassed for V under the assumption of common dispersion matrix for 

the two classes.
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3.3 Two New Mahalanobis Distance—Based Feature Evaluation Criteria

3.3.1 Introduction

2The Mahalanobis distance A takes on values in the range of 0 to

00, the higher values representing greater separability of the class
2means. This unbounded increase in the value of A with increasing

separability is not unwelcome in a two-class pattern recognition

problem because it does not pose any difficulty in the comparison of

different feature sets. But, the unboundedness poses a serious

difficulty when the expected value approach is adopted and the

Mahalanobis distance (a two-class measure) is applied in a multiclass
% x&problem. Just one exceptionally large value of A in the set of

values would lead to a high value of the average which would then fail

to represent the average separability of the m classes. One way to
2reduce this drawback would be to transform the A -values, before

averaging them, in such a way that the transformed measure lies within
2a finite range. In the present section two such transformations on A 

are obtained. They are given below:

2̂ _ *1 *2 A 
A 1 + ”1 "2 i2

.2 . i f
Aj) = 1 -  « P  < -  g

(3.15)

(3.16)

In the next two subsections (subsections 3.3.2 and 3.3.3) the 

derivations and some useful properties associated with the new 

measures will be described.
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2 23.3.2 Derivations of A^ and Ag

3.3.2.1 Derivation of A.

The inequality (3.3) gives a distrihution-free upper hound of
2expressed in terms of A (it is believed that this is the only

2distrihution-free upper hound available in terms of A ). Let this 

upper hound he denoted by P^(A) as follows:

PC (A) = e
2 ^  *2

1 + "i *2 A
(3.17)

It is easy to see that

PU (A) e [0, 27T1n/>] 
© X 4*

To make the range of values of P^A) independent of and divide 

P^(A) by Now

PD (A)e
2 "l*2

6 [0,1]

2 Uand as A increases from 0 to 08 the value of P (A) / 2jt„7T« decreasese 1 2
from 1 to 0. To bring the changes in the same direction P^(A) /

2is subtracted from 1. Call it A.. Thus,A

2 Pe(A)A. = 1 ---
2,l"2

V 2 A

1 + V 24

such that A^ 8 [0,1]. In other words, it is a normalizing
2transformation on A e [0,»). This completes the derivation of A

defined in (3.15).

> 
to
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3.3.2.2 Derivation of

An upper bound of expressed in terms of the Bhattacharyya

coefficient, p, is given by

Pe < p (3.18)

In the case of Gaussian distributions with a common dispersion matrix 

the Mahalanobis distance and the Bhattacharyya coefficient are related 

as follows:

A2/8 = - In p (3.19)

In this case, therefore, the upper bound mentioned above can be 

written as

Pe exp(- A2/8) (3.20)
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Let this upper bound be denoted by P^(B). It is easy to see that

P (B) e [0, e 1 2

Therefore

PC (B)e

■ ^ V * 2
£ [0,1]

Following the same arguments as in the case of leads to the 

criterion

o PU (B) .2
Ag = 1 ------- = 1 - exp ( - - )

^ 2

which can have values in the range [0,1], Thus the derivation of A
B

is completed.

3.3.3 Properties

3.3.3.1 Boundedness and Monotonicity

2 2As is obvious from the derivations of A. and A^, both of them are
A B

2bounded by [0,1] whereas the range of A is [O,00). Usefulness of this

boundedness in an m-class situation has already been discussed in the
2 2section 3.3.1. Both A^ and Ag are monotonically increasing functions 

2 2of A . Their relationships with A are illustrated diagrammatically

in Fig. 3.3. It is observed that Ag approaches the upper limit of 1.0 
2faster than Aa.
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Fig. 3.3 Showing A. (for n1 = 0.50 and 0.75)
2 A 1 2 and Ag in terms of A
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3.3.3.2 Relationships with P

2 2 2Since A. and are such functions of the Mahalanobis distance A A B
2that A can be solved in terms of them, the distribution-free upper

bound (3.3) and the upper bound in the Gaussian case (3.20), which are
2 2expressed in terms of A , can also be expressed in terms of both A^

2 2 2 and Ag. This implies that the error bounds associated with A^ and Ag
2are the same as those associated with A . Strictly speaking,

therefore, in a two-class situation one cannot differentiate between 
2 2A^ and Ag from the point of view of tightness of bounds provided by

2 2them. In view of the functional behaviours of A. and A„ illustratedA B
in Fig. 3.3, in a multiclass situation they would lead to different

approximations to P , because in this case, for each of the two 

criteria, one has to combine the criterion values for different pairs 

of classes. In absence of useful multiclass bounds one has to depend 

on the experimental results. The experimental findings will be 

discussed in chapter 6.

It may be noted that A. and A_, have been developed based on theA B
Pg upper bounds given by the inequalities (3.3) and (3.20),

respectively. Therefore, a comparison of these two upper bounds would
2 2give some insight into the comparative effectiveness of A^ and Ag as

feature evaluation criteria. In Fig. 3.4 the P^ bounds given by (3.3)

and (3.20) are plotted for rr̂ = = * As a reference for

comparison (3.8) is also plotted which gives the exact value of Pg as 
2a function of A for Gaussian distributions with common dispersion

matrix. It is observed that for A^ < io (roughly) the

distribution-free upper bound ( P^(A) ) gives a closer approximation
2 D  2than the bound corresponding to A_ ( P (B) ) and for A >10 theD 6



PR
O

B.
 

O
F 

ER
RO

R 
<P

95

Fig. 3.4 Prob. of error (P ) versus Mahalanobis distance (A ) 
for equal a'priori6probabilities of the two classes
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latter approaches P faster than the earlier. Taking intoe
consideration the fact that P^(A) is a distrihut ion-free bound, frome
Fig. 3.4 it may be commented that pj|(A) is a reasonably good

2 Uapproximation to Pg. For A > 10, Pfi(B) provides tighter bound but it

is more difficult to compute than P^(A). Moreover, unlike P^(A),e e
U 2P (B) is not a distribution-free bound. Therefore the criterion A. e A

2seems to have a preference over Ag.

As mentioned earlier, as far as the multiclass pattern

recognition problem is concerned, decision as to which of the criteria 

to select will ultimately depend on their experimental performance.

23.3.3.3 Ag and Ĵ ,: An Observation

It is an interesting coincidence that the functional structures 
2of the 4. criterion and the transformed divergence function J of 
B T

Swain, etal. [56],[57] are very much similar to each other. For the

ease of comparison they are written together below:

Ag = 1 - exp(-A^/8)

JT = 2[ 1 - exp(-J/8)]

As mentioned earlier, in the case of Gaussian distributions with

common dispersion matrix the divergence function J reduces to the
2Mahalanobis distance function A . In this case, therefore, the only 

difference between Ag and would be the presence of the multiplying 

constant 2 in the expression for J .
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2 23.3.4 Sample Analogues of and Ag

2 2 2 2 Replacing A by D in the expressions for and Ag the following

sample analogues of them are obtained:

D *1 *2 °
^ 1 + 71̂

(3.21)

and

Dg = 1 - exp( -D2/8) (3.22)

where D is the sample-based Mahalanobis distance defined in (3.9).

3.4 Use of Some Existing Mahalanobis Distance-Based Statistics 

in Feature Evaluation

23.4.1 Two D —Based Statistics

2Two D -based statistics, one for testing the between-class 

differences and the ocher for testing the sufficiency of a subset of 

'features' (usually known as 'variables' in the Statistics

literature), have been used in the past as a means of evaluating the 

performance of a discriminant function. In the present section

(section 3.4) they will first be described and then the possibility of 

their use as feature evaluation criteria will be looked into. It is 

worth pointing out here that for the purpose of the present section

the knowledge of the a'priori probabilities will be assumed to be
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absent and the sample dispersion matrix S will be estimated using the 

equation (3.10).

3.4.2 Test of Between—Class Differences

For a given set of features the objective of this test is to 

decide whether the differences between the two classes are 

significant. The test statistic is defined [103] to be

Ni  N, ( Nf + n 2 - n - ! ) ^
( Nx + N2 ) ( Nx + N2 - 2 ) n

(3.23)

where and N2 are the sizes of the samples from the two classes, n
2is the number of features under consideration and D is the

sample-based Mahalanobis distance as defined in (3.9).

The test statistic follows F-distribution with (n, N^+I^-n-l) 

degrees of freedom for data coming from Gaussian distributions with 

common dispersion matrix. It is actually a test statistic for testing 

the equality of the two mean sectors. The test determines if the 

present set of features has 'significant' discriminating ability to

ensure classification of future observations.
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3.4.3 Test of Sufficiency of a Subset of Features

Partition X = (X„ , X., ..., X )' into X. = (X.1 2  n 1 1
X^ = (Xr+ ,̂ . .., Xn)'. Test of sufficiency of X^ 

between and is made using the following test

N1 + N2 ” n ~ 1
2 2C ( D - D ) n r

n - r 1 + C.D

, X., ..., X )' and 
2 r

for discrimination 

statistic [104] :

(3.24)

where D and D are the Mahalanobis D -statistics on the full set and n r
the subset, respectively,

and

C

follows F-distribution with n-r and N^+N^-n-l degrees of freedom 

for Gaussian distributions with common dispersion matrix.

For r = n-1 the test statistic F^ indicates if a single specified 

feature has any discriminating power. In this case F^ reduces to

N + N - n - 1 C ( D2 - D2 )
F' = ----i-----------------2----Ell (3 .26)

1 1 + C.Dn-1

F’ gives a measure of usefulness of the nth feature over (n-1)4*

N1 N2

( N1 + N2 ) ( Nx + N2 -  2 )
(3.25)

features.
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3.4.4 Use of u —Based Statistics in Feature Evaluation

From the above discussion it is apparent that F^, F^ and F^ can 

be used in feature evaluation. F^ is a measure of the discriminatory- 

ability of a set of n features. F̂, gives the amount of decrease in 

the discriminatory ability when a subset of r features are discarded 

from the full set of n features. F^, which is a special case of F^ , 

gives a measure of effectiveness of one (nth) feature. This criterion 

can, therefore, be used in successive inclusion or deletion of 

features.

Since the criteria F^ and F^ take into account the sample sizes, 

they are expected to perform well as feature evaluation criteria in 

small sample situations. This is, however, subject to experimental 

verification because, for the non-Gaussian data, the criteria F^ and 

F^ will not have the nice distributional properties mentioned above.
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CHAPTER 4

CHARACTER RECOGNITION: PREPROCESSING AND FEATURE EXTRACTION

4.1 Introduction

The computer recognition of characters has been a challenging 

problem to the researchers since the reporting of some early works in 

this field in late 1950's [1], [105]— [108]. Evergrowing interest in 

this field has been reflected through the publication of a large 

number of papers, books and special issues of journals, devoted sclely 

to character recognition, during the last twenty five years. For 

up-to-date information on the state of advancement in this field 

reference may be made to the survey papers [109], [110] and [111].

In the present chapter and the next two chapters various feature 

evaluation criteria are applied to the problem of the recognition of 

isolated handprinted numeric characters. As mentioned in the 

introductory chapter (chapter 1), the purpose of this experimental 

study is to compare the existing and the proposed featu-e evaluation 

criteria, and the development of a character recognition system is not 

of prime concern.

This chapter deals with the preprocessing of data which leads to 

the representation of a numeral by a set of features. In chapters 5 

and 6 the feature ordering experiments and the recognition experiments 

are performed. These experiments will lead to a comparative

assessment cf the feature evaluation criteria.
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In section 4.2 of the present chapter the data set used in the 

study is described. Section 4.3 deals with the representation of data 

which consists of the processes of digitization, binarization and 

noise reduction. Application of these three processes on a numeric 

character leads to its representation by a matrix of '0's and 'l's, 

with 'l's representing the contour of the character and '0's 

representing the background. Let this matrix be called a 

'character matrix'. The size of this matrix is determined by the 

resolution used during the digitization process. In section 4.4 two 

sets of features are extracted from the character matrix obtained in 

section 4.3. For reasons mentioned later (in section 4.4) these two 

sets of features are designated as the 'normalized frequency' features 

and the 'normalized chararcteristic loci' features. In section 4.5 a 

preliminary analysis of the data is provided for the detection of 

redundant features. These redundant features are excluded from 

further analysis to follow in chapters 5 and 6.

4.2 Data set

The data set consisted of 1000 isolated handprinted numerals 

written by 10 members of the Communication Section of the Department 

of Electrical Engineering, Imperial College of Science and Technology, 

London. Each member wrote 10 repetitions of each of the 10 numerals 

0,1,2,...,9. The writing was done on transparent sheets using a black 

inked felt pen. The only restriction imposed on writing was to put 

each character in a square of size 12mm x 12mm. To facilitate this a
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white paper with square boxes of size 12mm x 12mm drawn on it was put 

underneath the transparency as a guide. A copy of the data set is 

given in Appendix A.

4.3 Representation of Data

4.3.1 Digitization and Unpacking

The data were digitized by using a SCANDIG 3 scanner controlled 

by a NOVA 3 computer with magnetic tape facility, the system being 

installed in the Biophysics Department of the Imperial College. 

SCANDIG 3 is a powerful instrument with scan increment options of 25, 

50, 100 and 200 microns and density resolution of 1 part in 256.

Keeping in mind the storage requirements it was decided to select the 

scan increment option of 200 microns. This meant that each square of 

size 12mm x 12mm, within which a numeral was written, would be 

represented by a matrix of 60 pixels x 60 pixels, each of the pixels 

assuming a value in the grey level range of 0 to 255, the lower grey 

levels corresponding to the background pixels and the higher grey 

levels corresponding to the path of the character.

It is worthwhile mentioning that the characters were not 

digitized individually. As can be seen from Appendix A, each page of 

data contained 100 characters written within a square of size 

120 mm x 120mm. This whole square was scanned as one image and stored 

on magnetic tape in 'packed' form. Thus, at the end of the scanning 

process the data set consisted of 10 digitized images stored on a
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magnetic tape. For further analysis of the data the Imperial College 

computers Cyber 174 and Cyber 855 were used. To obtain the matrix 

representations of the individual characters, and for the convenience 

of further data handling to follow, the unpacking program listed in 

Appendix B 1 was used. This program took care of the compatibility 

requirements of a magnetic tape created on NOVA 3 but analyzed on the 

Cyber computers.

To summarize, at the end of the processes of digitization and 

unpacking, it was possible to represent each of the 1000 characters by 

a matrix of order 60 x 60 wherein each pixel could assume a value in 

the range of 0 to 255.

The digitized grey-tone representations of the character samples 

were identified by Z0011, Z0012, ..., Z0110; Z1011, ..., Z1110; Z9011, 

..., Z9110.

4.3.2 Binarization

Though the character data under consideration were basically 

binary in nature, that is, black characters on a white background, due 

to differences in 'whiteness' and 'blackness' of different parts of an 

image the pixels could assume values in the range of 0 to 255. Unlike 

some image processing problems, for the purpose of character 

recognition it was not necessary to have the detailed grey level 

differences of the pixels. Binary representation was thought to be

ideal.
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Conversion from the multi-level representation (grey-tone image) 

to the binary representation (two-tone image) of a character matrix 

required a grey level threshold to be chosen which would enable one to 

decide whether a pixel belonged to the background or to the character 

locus. The choice of this grey level threshold was made on the basis 

of an analysis of the frequency distributions of grey levels of pixels 

in the character matrices. Though the possible range of grey level 

values was from 0 to 255, hardly any grey level value greater than 60 

occured. This was probably due to some prior biasing in the scanner 

setting. However, it was not difficult to choose an acceptable 

threshold. As expected, bimodality was observed in the frequency 

distributions. Inspection of the frequency distributions suggested 

that the grey level values of 7 or less could be considered as 

belonging to the background. The threshold value of 7 was further 

justified by binarizing a few character matrices with different 

threshold values and visually comparing the binary images with the 

original writings. As an illustration of the binarization process, in 

Fig. 4.1a and Fig. 4.1b the grey-tone and the two-tone representations 

of the numeral '8' (encircled with a square in the Appendix A) are 

given.

A program for the grey-tone to two-tone conversion of character 

matrices is given in Appendix B.2. The actual conversion process 

takes place in the subroutine. The program is written in such a way 

that it can deal with more than one character matrix.

The binarized character samples were identified by B0011, B0012,
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Fig. 4.1a Grey^tone representation of a numeral '8'
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B8033

Fig. 4.1b Two-tone (binary) representation of the 
numeral of Fig. 4.1a
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..., B0110; B1011, , B1110; ..., B9011, ..., B9110.

4.3.3 Noise Reduction: A Heuristic Scheme

Binarization error and spattering of ink sometimes lead to the 

presence of isolated blocks of pixels of value '1' (black pixels) in 

the background, or contain 'O'-pixels which should ideally be '1', in 

the binary representation of a character matrix (for illustration see 

Figures 4.2a and 4.2b).

Various smoothing techniques have been used in the past [1], 

[112], [113] in order to reduce the 'noisy' pixels. In most of these 

techniques a 3 x 3 window has been considered and some logical (or 

averaging) rules applied to the pixel appearing in the middle of the 

window. From a visual inspection of the binarized characters under 

consideration it was apparent that a 3 x 3 window was not good enough 

to eliminate the noisy 'l's. It was also observed that the occurence 

of noisy 'l's was rather low in the character matrices. Moreover, the 

features to be considered will not be as greatly affected by the 

presence of noisy '0's as by the presence of the noisy 'l's. It was, 

therefore, decided to develop a noise reduction algorithm to remove 

the isolated blocks of noisy 'l's. An algorithm based on windows of 

different sizes varying from 3 x 3  to 5 x 5  was developed. 

Consideration of higher order windows enabled the elimination of

bigger noise specks.
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B3045

□

Fig. 4.2a Binary representation of a numeral '3'
before noise reduction
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B4086

Fig. 4.2b Binary representation of a numeral '4'
before noise reduction
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The Algorithm

Let A = (a..) denote the character matrix under consideration. 

In the present case A is of order 60 x 60. To remove the noise specks 

from A the following steps are followed:

Step 1 Augment the matrix by adding three rows in the end, two

columns in the beginning and two columns in the end such that all the

elements of these added rows and columns are 0's. Thus A = (a..) is
ij

now a matrix of order 63 x 64 with i = 1,2,...,63 and 

j = -1,0,1,...,62.

Step 2 Equate all the elements of the first row to 0, i.e.,

a_ = 0, j = -1,0,1, ... ,62.

Step 3 For each i = 2,3,...,60 and j = 1,2,...,60 check whether

a.. = 0 or 1. If a.. = 0 then goto next element. If a.. = 1 then 
ij iJ ij

check for conditions (1) to (14) given in Fig. 4.3. If any of these

conditions is true then make a.. =0, otherwise no operation. Then go
ij

to next element.

The matrix augmentation made in step 1 is required for checking 

the conditions mentioned in step 3. In step 2 all the elements of the

first row are made equal to 0. This is based on the assumption that

while writing a character the author usually leaves some blank space

on the top. In the case of doubt about the validity of this

assumption it can be easily avoided by adding a 'O'-row in the 

beginning of the matrix A. In step 3 the 14 conditions regarding the 

sum of boundary elements in windows of different sizes are checked.
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Fig. 4.3 Noise conditions for a black ('1') element (the term 'Sum' 
stands for the snm of connected elements).
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Fig. 4.3 is more or less self-explanatory. The '1' inside a window 

represents the element under consideration. The boundary elements 

denoted by 'x' and connected by straight line segments are summed up 

to decide whether '1' forms a part of the character or it is a noise. 

Elements marked as 'x' in Fig. 4.3 could be either 'O' or '1'. In 

condition (1) it is checked if all the six elements in the previous 

and the following rows are 'O'. In condition (2) similar check is 

made for columns. In conditions (3) to (10) it is checked if at the 

most one of the surrounding 'x'-elements is '1'. In conditions (11) 

to (14) it is checked if the sum of the surrounding 'x'-elements is 

less than or equal to 2. If any of the above fourteen conditions 

holds then it is highly unlikely that the element under consideration 

constitutes a part of the character. In this case, therefore, it is 

replaced by 'O'.

The program incorporating the above noise reduction algorithm is 

listed in Appendix B 3. Some idea about the effectiveness of the 

algorithm can be had from Figures 4.4a and 4.4b which show the 

representations of the numerals of Figures 4.2a and 4.2b after the 

application of the algorithm.

After the application of the noise reduction algorithm , the 

character samples were identified by C0011, C0012, ..., COHO; C1011,

• • • 9 C1110; C9011, ..., C9110.
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C3045

Fig. 4.4a Binary representation of the numeral '3'
of Fig. 4.2a after noise reduction
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C4086

Fig. 4.4b Binary representation of the numeral '4'
of Fig. 4.2b after noise reduction



116 -

Feature extraction poses the most serious problem in the design 

of a system intended to recognize handprinted characters. There are 

at least two reasons for this: (i) it is not clearly known what

features are used by a human being who is capable of recognizing 

characters so accarately in spite of the*r variations in shape and 

size, and (ii) though it is believed that the curvature of line 

segments,the gap bet; een lines, the slant, geometry and topology of 

the character, linguistic information, etc. form some useful cues, 

computerization of them is not easy. In an attempt to overcome the 

above difficulties, various features have been suggested by researchers 

in the past. An excellent review of features used in the recognition 

of handprinted characters has been made by Suen [114] who has 

categorized the features into two broad groups, namely, global 

features and structural features. Global features are those which are 

extracted from every element which lies within a rectangle 

circumscribing the character. They do not reflect any local, 

geometrical or topological properties of the drawing itself [110], 

Global features include n-tuples [6], [107], [115], [116], moments 

[117], [118], frequencies (i.e., numbers) of occurences of black 

elements in different regions of the rectangle containing a character 

[119], crossings and distances [5], characteristic loci [120] - [123] 

and transformations and series expansions [124] - [130]. Structural 

features include edges and line segments [131] - [133] and features 

generated by various contour tracing methods [134] - [140],

4.4 Feature Extraction
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Since the structural features, also known as syntactic features

[141] , are derived from the topology of a handprinted character, they 

have gained more popularity than the global features. In their paper

[142] , which won the Seventh Annual Pattern Recognition Society Award, 

Duerr, etal. have proposed a hierarchically structured system for 

recognition of unconstrained handwritten numerals which consists of a 

conventional statistical classifier and a structural classifier 

analyzing the topological composition of patterns. In the present 

study, however, two sets of global features, designated as the 

'normalized frequency' features and the 'normalized characteristic 

loci' features, were used for the recognition of handprinted numerals. 

The features chosen for study in this thesis were not intended mainly 

to form the basis of a practical scheme but more, as mentioned in the 

introductory section of the present chapter, they were chosen as an 

aid to the comparison of existing and proposed feature evaluation 

methods. The above mentioned two sets of features were well suited 

for the implementation of the feature evaluation methods under 

investigation, and, they were easy to extract. Nevertheless, 

experimental results obtained in the present study have shown that in 

character recognition these features are, however, quite effective.

Development of the features will now be discussed.
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From each character matrix (of order 60 x 60) the rectangle 

circumscribing the numeral was determined by locating the minimum row 

number, the maximum row number, the minimum column number and the 

maximum column number having 'l's present in them. This rectangle, 

which henceforth will be called the 'character rectangle', was then 

subdivided into 20 rectangular boxes by making 4 equal vertical 

divisions and 5 equal horizontal divisions. When the number of rows 

was not divisible by 5, extra rows containing '0's were added at the 

beginning and at the end of the character rectangle and the next 

higher multiple of 5 was considered as the number of rows. Similar 

modifications were made for columns. The frequency of 'l's present in 

each of these 20 boxes was then counted. Several authors [43], [143] 

have used similar frequency counts as features. But they dealt with a 

fixed size of the rectangle for all the characters under

consideration. To reduce the effect of the size of a character on its 

feature values each of the 20 frequencies was divided by the total (of 

the 20 frequencies). The resulting 20 proportions constituted, what 

was called, the normalized frequency features.

The program for extraction of the normalized frquency features is 

listed in Appendix B 4.

4.4.1 'Normalized Frequency' Features
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The 'characteristic loci' features were devised by Glucksman 

[120] for the recognition of machine printed characters. Knoll [122], 

Michael and Lin [123], Spanjersberg [117], and Kwan etal. [144] applied 

them for the recognition of handprinted characters.

'Characteristic loci' are a set of 4-digit codes generated from 

the white points ('O'-valued pixels) contained in the character 

rectangle. For a white point each of these four digits contains the 

number of line crossings from the point to one of the four 

perpendicular directions: left, top, right and bottom. The count is 

restricted to 2 for two or more crossings in any one direction. The 

four digits form a ternary code. For example, in Fig. 4.5 the white 

point A has ternary code 0112 while the point B gives rise to the code 

1101. The total number of points in the character rectangle matching 

a given code determines the value of the feature corresponding to that 

code. Since a four digit ternary code can have values in the range 0 

to 80, the above feature generation procedure leads to a maximum of 81 

'characteristic loci' features.

The sum of the above 81 features will be equal to the number of 

'O'-pixels in a character rectangle. To reduce the effect of the size 

of a character on its feature values each characteristic loci feature 

was divided by the above sum. The resulting proportions constituted, 

what was called, the 'normalized characteristic loci' features.

4.4.2 'Normalized Characteristic Loci' Features
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Fig. 4.5 Characteristic loci codes for points A and B 
in a sample character *3'
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The program for the development of the characteristic loci features is 

given in Appendix B 5,

4.5 Deletion of Redundant Features

Initially 20 normalized frequency features and 81 normalized 

characteristic loci features , that is, a total of 101 features were 

considered. Some of these features would be redundant because, for 

example, as the characteristic loci features were calculated only on 

the basis of white points lying within the character rectangle, the 

codes with three or four '0's in them could not occur at all. To 

mention more explicitly, the nine codes 0000, 0001, 00002, 0010, 0020, 

0100, 0200, 1000 and 2000 could not occur for any character.

For the detection of redundant features a simple procedure was 

followed: for each of the 101 features all its values were added over 

the whole data set of 1000 characters and the features with zero sums 

were decided to be redundant.

As can be seen from Table 4.1, 23 characteristic loci features, 

including the nine mentioned above, turned out to be redundant. It 

may also be noted from Table 4.1 that another 25 features made very 

little contribution to the grand total of 1000.000 in the sense that 

each of them had a sum value of less than 1.000. Though this raised 

some doubt about their usefulness, at this stage there was no reason

to consider them to be redundant.
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Table 4.1
Feature sum over 1000 character 
loci codes

samples for each of the 81 characterist:

Serial
No.

Code Sum Serial
No.

Code Sum Serial 
No.

Code Sum

1 0000 0 28 1000 0 55 2000 0
2 0001 0 29 1001 73.026 56 2001 19.316
3 0002 0 30 1002 17.958 57 2002 1.049
4 0010 0 31 1010 0 58 2010 0
5 0011 114.389 32 1011 2.911 59 2011 0.164
6 0012 48.479 33 1012 1.200 60 2012 0.023
7 0020 0 34 1020 0 61 2020 0
8 0021 26.201 35 1021 0.086 62 2021 0
9 0022 5.049 36 1022 0.016 63 2022 0
10 0100 0 37 1100 149.591 64 2100 28.046
11 0101 0 38 1101 42.923 65 2101 5.277
12 0102 0 39 1102 23.411 66 2102 0.430
13 0110 75.074 40 1110 1.324 67 2110 0.142
14 0111 55.549 41 1111 81.118 68 2111 2.471
15 0112 17.083 42 1112 27.247 69 2112 0.395
16 0120 6.270 43 1120 0.195 70 2120 0
17 0121 2.831 44 1121 1.476 71 2121 0.009
18 0122 0.370 45 1122 0.682 72 2122 0
19 0200 0 46 1200 63.683 73 2200 5.846
20 0201 0 47 1201 6.559 74 2201 0.424
21 0202 0 48 1202 1.084 75 2202 0.048
22 0210 28.232 49 1210 1.936 76 2210 0.063
23 0211 29.110 50 1211 28.863 77 2211 0.590
24 0212 0.546 51 1212 0.187 78 2212 0.004
25 0220 0.448 52 1220 0.100 79 2220 0
26 0221 0.298 53 1221 0.186 80 2221 0.004
27 0222 0.008 54 1222 0.005 81 2222 0

Total 1000.000
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Since none of the 20 normalized frequency features gave rise to a zero 

sum, a total of 78 (= 101 - 23) features were considered for further 

analysis discussed in chapters 5 and 6,
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CHAPTER 5

FEATURE ORDERING EXPERIMENTS

5.1 Introduction

This chapter is concerned with feature orderings obtained by the 

employment of the two-class and the multiclass probabilistic criteria 

discussed in chapter 2 and the Mahalanobis distance-based criteria 

discussed in chapter 3.

Section 5.2 deals with the implementation of probabilistic 

feature evaluation criteria. Estimation of class-conditional 

probability distributions, a prerequisite for their implementation, is 

discussed in subsection 5.2.1. Feature ordering experiments are then 

conducted in subsection 5.2.2.

Section 5.3 deals with the implementation of Mahalanobis

distance-based criteria. Estimation of means and covariances,

required for the implementation of the criteria, is dealt with in

subsection 5.3.1. Subsection 5.3.2 deals with the feature ordering
V>experiments based on Mahalanc^is distance-based criteria.

In section 5.4 the feature orderings are compared by analyzing 

the rank correlation coefficients between various pairs of orderings. 

The rank correlation coefficients are tested for their statistical 

significance. Significance of a rank correlation coefficient between 

two orderings would indicate their conformity with each other. To get 

a clearer picture of the extent of conformity between orderings, in 

addition to the orderings obtained by various feature evaluation
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criteria, a random ordering of the features is also included in the 

rank correlation analysis.

The features dealt with were the normalized frequency features 

and the normalized characteristic loci features extracted from the 

data on ten numeric characters 0, 1, 9. To take into account the

style variations in writing the numerals 1, 4 and 7, each of them was 

treated to be composed of two different scripts. Considering each 

script as a separate class, therefore, there were a total of 13 

classes. Table 5.1 shows the frequency distribution of the data set 

of 1000 numeral samples in these 13 classes. Both the classes 2 and 3 

represented the same numeral rl'. Similar was the case with the 

class-pairs (6,7) and (10,11) which represented the numerals '4' and 

'7', respectively. In employing a two-class feature evaluation 

criterion for measuring the effectiveness of features in the 13-class 

numeral recognition problem the contributions of the above three 

class-pairs were ignored. By this the contributions coming out of the 

discrimination between classes representing the same numeral could be 

avoided.

5.2 Feature Orderings by Probabilistic Criteria

5.2.1 Estimation of Class—conditional Probability Distributions

In view of the limited size of the data set the features were 

assumed to be independent. This was necessary to avoid inaccuracies 

involved in a small sample estimation problem. Under the assumption 

of independence of features the number of class-conditional 

probability distributions required to be estimated was 78 x 13 = 1014.
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Table 5.1 Frequency distribution of 1000 character samples 
in 13 script classes

Numera1 Script Class Character identifiers No. of 
obs.

(1) (2) (3) (4) (5)

0 0 1 coon, C0012, . . . , C0110 100

1 1 2 C1011, 
C1051,

..., C1020, 

..., C1110
C1031, ..., C1040, 80

1 3 C1021, ..., C1030, C1041, ..., C1050 20

2 2 4 C2011, C2012, ..., C2110 100

3 3 5 C3011, C3012, ..., C3110 100

4 4 6 C4011, 
C4071,

..., C4040, 

..., C4110
C4055, C4060, 72

4 7 C4041, 
C4061,

..., C4054, 

..., C4070
C4056, ..., C4059, 28

5 S' 8 C5011, C5012, ..., C5110 100

6 9 C6011, C6012, ..., C6110 100

7 7 10 C7011 , ...» C7020, C7041, ..., C7090 60
7- 11 C7021, ..., C7040, C7091, ..., C7110 40

8 & 12 C8011, C8012, ..., C8110 100

9 ? 13 C9011, C9012, ..., C9110 100
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In general, for an m-class problem with n features, the number of 

distributions is n.m.

A histogram approach with equal intervals [91] was used for 

estimation of probability distributions. Computational simplicity and 

distribution-free nature of the approach were the justifications for 

its use. The range of values of a feature (over all classes) was 

divided into a number of mutually exclusive intervals of equal length. 

For each class the proportion of observations lying in each of these 

intervals was then obtained. These proportions gave the estimates of 

proabilities corresponding to the above intervals. The intervals were 

represented by their mid-points. Effectively, a 'discrete' 

approximation of a probability distribution of 'continuous' type was 

obtained. The procedure was repeated for all the 78 features.

A computer program for the estimation procedure described above 

is listed in Appendix B 6. The program is designed to work for one 

set of observations, that is, observations belonging to one class. To 

obtain the estimates for different classes the program was executed 

repeatedly. It is easy to generalize the program to work for any 

number of classes. The number of features, the number of observations 

on the basis of which the estimation is to be made, and the number of 

intervals are supplied interactively. In the experiments under 

consideration the number of intervals was taken to be equal to 10. 

Minimum and maximum values of each feature obtained from the whole 

data set of 1000 observations were used in the program as the range of

values of the feature.



A drawback of the histogram approach with equal intervals is that 

it requires too much storage. Even in the case of independent 

features an array of size m.n.v is needed to store probability 

estimates in an m-class problem with n features and v intervals. In 

absence of the assumption of independence of features the storage 

requirement increases rapidly to m.v11. In this case, therefore, it is 

not advisable to use this approach. Further details about the 

approaches of estimation of probability distributions are beyond the 

scope of the present study. Some of the suggested readings in this 

area are [91], [100] and [145] - [150].

5.2.2 Implementation of Probabilistic Criteria

Experimental investigation included the following 2-class and 

m-class criteria:

2-class criteria: the Bayesian probability of error (2-class); 

the Bhattacharyya coefficient; Jeffreys-Matusita distance function and 

the divergence function.

m-class criteria: the Bayesian probability of error (m-class);

Matusita's measure of affinity; Shannon's conditional entropy and the 

Bayesian distance of Devijver.

Application of a 2-class criterion in an m-class problem is not 

straightforward and there are at least two approaches for this 

purpose. These two approaches are commonly known as the maximum 

expected value approach and the maximin approach. With m classes 

there can be mĈ  class-pairs. In the expected value approach, for 

each feature set to be evaluated, the average of all the mC values of
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the 2-class feature evaluation criterion under consideration are 

computed, and the feature set with the maximum average value is 

considered to be the best feature set. In the maximin approach, for 

each feature set, the minimum of the mC criterion values is obtained. 

Then the feature set with the maximum of the above minimum values is 

considered to be the best feature set.

The above two approaches apply if the criterion under 

consideration is such that higher criterion value corresponds to more 

class separa tion. If higher criterion value corresponds to less 

class separation then the approaches followed are the minimum expected 

value approach and the minimax approach.

In the present experiments with 2-class criteria the expected

value approach was used. This approach is found to be more

popular [71] of the two approaches described above. For reasons

mentioned earlier, the three class-pairs (2,3), (6,7) and (10,11) were

excluded from the computation of the average value of a criterion.
13The average value was computed based on the remaining - 3, that

is, 75 class-pairs.

Criterion values for class-pairs (C^,C^) were computed assuming 

the a'priori probabilities of the classes to be the same. For a 

feature, say X, the 2-class probabilistic criteria, defined in 

continuous form in chapter 2, were computed using the following

discrete approximations:
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Bayesian probability of error (2-class)

P . .eij ■  l 1
U=1

min { p(x |C.), p(x |C.) } u 1 n j

Bhattacharyya coefficient

= 3  [ p(x IC.) . p(x |C.)ij L u i u j
1/2

u=l

(5.1)

(5.2)

Jeffreys-Matusita distance function

y. • ij (5.3)

Divergence function

J . .ij ^ [ p ( x  l c . ) - p ( x  |C.) ] 
L u l u j
u=l

p(x C.)u l

p(x C.)u J
(5.4)

In the above equations v is the number of intervals in which the

range of values of X is divided, x^ is the representative of the uth

interval, and p(x |C.) is the (estimate of the) class-conditional u 1

probability of X corresponding to the uth interval. It may be noted 

here that the equations (5.1), (5.2) and (5.4) are obtained by

replacing the integrations with summations and by putting 

= jtj = 1/2 (applicable to 5.1 only) in the equations (2.2c), (2.4)
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and (2.14), respectively.

The program for ordering the features in decreasing order of 

effectiveness using the above criteria is listed in Appendix B 7. 

This program also includes the ordering by the Kolmogorov variational 

distance. However, results obtained by the application of this 

criterion will not be reported here because, due to its exact linear 

relationship with the Bayesian error criterion, the feature ordering 

will be the same as that by the Bayesian error criterion.

Equations used for the discrete approximations of the m-class 

measures are given below:

Bayesian probability of error (m-class)

v
Pe

u=l

Matusita's measure of affinity

1 v 1
P,m

u=l

(5.6)
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Shannon's conditional entropy

V / r  m _ m

H - } \ l
n .  p ( x  | C . )1 U 1 . I n y  7T . p ( X |c.) 

L i  u  i
u = l  \ -  i = l - i = l  -*

m \
- 3 [ ir. p(x |C.) ] . In [ n.p(x |C.) ] / (5.7)

L x n i  i u l V
i = l  '

Deviiver's Bayesian distance

B [ 7T. p (X |C. ) 1 U 1

m
[ i r . p ( x  I C . )  ] 

1 u  1
(5.8)

i = l

The program for arranging the features in decreasing order of 

effectiveness using the equations (5.5) to (5.8) is listed in the 

Appendix B 8. The program works for any values of the a'priori 

probabilities. In the present experiments they were assumed to be 

equal. In addition to giving the orderings of the features the 

program also gives the values of the criteria for different features.

Table 5.2 shows the feature orderings obtained by various 2-class 

and m-class probabilistic criteria. To indicate the adoption of the 

expected value approach, a bar ('-') is put on the symbols denoting 

the 2-class criteria. Further analysis of these orderings will be

made in sction 5.4, and also in the next chapter.
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T a b le  5 .2
F e a tu r e  o r d e r in g s  ( in  descend ing  o rd e r  o f  e f f e c t i v e n e s s )  by p r o b a b i l i s t i c  c r i t e r i a

Rank Pe2 P r J Pe pm H B

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 13 13 13 13 18 47 13 43
2 17 17 17 17 43 43 43 47
3 2 26 2 26 11 20 17 18
4 43 1 11 2 13 18 18 1
5 26 2 18 1 9 17 1 13
6 11 18 43 43 2 13 2 31
7 18 11 26 18 3 12 26 25
8 9 43 1 11 10 11 20 20
9 12 20 9 9 4 9 11 2

10 10 9 21 20 1 8 25 11

11 21 21 10 8 7 1 9 17
12 1 12 20 12 21 5 31 9
13 16 8 12 10 12 2 21 37
14 25 25 8 25 8 7 10 21
15 8 10 23 21 25 10 12 26
16 14 23 16 31 6 22 8 10
17 20 31 25 23 19 6 16 3
18 23 16 14 16 16 14 23 16
19 22 7 7 47 17 26 3 7
20 19 14 3 14 22 21 7 8

21 7 3 31 7 20 15 14 45
22 6 61 6 3 31 16 47 12
23 3 22 5 61 52 19 61 6
24 4 47 19 22 •14 25 22 32
25 52 5 22 5 26 4 6 61
26 31 6 52 6 5 3 19 14
27 5 19 4 44 37 23 37 22
28 44 44 61 19 47 61 52 4
29 15 52 44 52 23 31 4 27
30 37 4 15 4 15 52 44 56

31 61 65 37 32 65 44 5 23
32 65 37 65 65 61 37 32 52
33 47 56 47 37 44 65 65 19
34 48 32 48 56 27 48 56 44
35 56 27 56 27 32 27 27 65
36 27 48 27 15 45 56 45 5
37 32 15 32 48 56 32 48 48
38 45 45 29 45 48 45 15 15
39 29 29 66 29 28 28 29 55
40 55 55 72 55 66 29 55 39

41 66 66 55 66 55 72 66 53
42 72 72 53 72 • 29 66 53 29
43 28 53 45 53 72 53 72 66
44 53 28 28 28 53 55 28 69
45 46 46 46 46 39 38 39 72
46 24 24 24 24 62 46 46 28
47 62 39 62 62 24 24 24 24
48 38 62 38 38 46 62 69 46
49 39 38 40 39 69 39 62 62
50 30 69 39 69 38 40 30 68

51 69 30 67 30 30 30 38 30
52 40 40 30 40 40 69 67 73
53 67 67 34 50 67 67 68 67
54 50 54 50 67 68 50 40 54
55 54 50 69 54 50 34 54 49
56 34 68 54 68 73 54 50 38
57 68 73 33 73 54 68 73 58
58 73 34 57 34 59 73 51 51
59 51 33 73 51 33 33 49 40
60 33 61 59 33 51 51 33 50

61 49 49 68 70 58 49 58 70
62 70 70 49 49 63 70 34 33
63 63 58 63 58 34 63 70 63
64 58 63 70 63 70 59 63 41
65 59 57 35 59 59 57 59 59
66 57 59 51 76 57 58 57 75
67 76 76 58 57 76 35 76 76
68 35 75 75 75 75 76 75 57
69 75 35 76 35 41 75 41 34
70 41 41 41 41 35 41 35 74

71 74 74 64 74 74 74 74 35
72 64 64 74 71 64 64 64 64
73 42 42 42 64 71 42 71 71
74 71 71 71 42 42 71 42 42
75 36 36 36 36 36 36 36 36
76 77 77 77 77 77 77 77 77
77 60 60 60 60 60 60 60 60
78 78 78 78 78 78 78 78 78
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5.3 Feature Orderings by Mahalanobis Distance—Based Criteria

5.3.1 Estimation of Means and Covariances

Estimation of these parameters is required for the implementation 

of the Mahalanobis distance-based criteria. Unbiassed estimates of 

the mean vector and the dispersion matrix of the feature vector X in 

class i (i = 1,2,...,m) are given by

N.x
X . 1 x .. l k (5.9)

k=l

and

N.l
». = T i-- ^ — 7 ^  (x “ X.) (X - X.)i  N . - 1 Z .  l k  l  l k  l (5.10)

k=l

where x.„, x._, ...» x..T are the N. sample observations (observation ll i2 lN. ll
vectors) from the ith class. The n diagonal elements of represent 

the estimates of the variances of the n features in the ith class. In 

the case of independence of features the above estimation problem 

reduces to the problem of estimation of means and standard deviations 

of the features in different classes.

5.3.2 Implementation of Mahalanobis Distance—Based Criteria

2Implementation of the Mahalanobis distance — based criterion D^,

defined in chapter 3 (Equation 3.21), will be described in details.
2 2Implementation of Dg (Equation 3.22) and D (Equation 3.9) will



135

require similar steps.

(5.11)

As with the probabilistic criteria, the expected value approach 

described in the previous section are used to obtain a combined

In the present experiments the features were ordered in two

stages. In the first stage all the 78 features were arranged assuming

them to be independent. In the second stage the first 25 features

were rearranged by taking into account their covariance terms and

following a step-by-step procedure of inclusion of features starting

with one feature. The decision to deal with 25 features in the second

stage was made on the basis of computer memory and computational

requirements. The following is a brief account of the tasks involved
2in the above mentioned stages for the implementation of the

criterion value. Thus, is obtained by using the following

equation:

m-1 m
(5.12)

2 i=l j=i+l

criterion.
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Stage I

The features are assumed to be independent and they are dealt

with individually. Let X be a feature 'o be evaluated. It may be

noted here that for notational simplicity the same symbol X is used to

represent a feature which was earlier used to represent a feature

vector. The Mahalanobis distance for a class-pair (C.,C.) is theni J
obtained by using

D2 . =1J

( x .  -  X . ) 21 J
2s . . ij

(5.13)

where x. and x. are 

ij
2 .variances. s.. is ij

the sample means 

is the average 

given by

of

of

the

the

feature X in the two 

two within-class sample

N. + N. - 2 i J
(N.-l) s2 + (N -1) s2 ] 1 1 J J (5.14)

where

2 s . i

N.l
(5.15)

and

S2
J

1
N . - lJ

x .) J
2 (5.16)
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The above value of D.. is put in the equation (5.11) to get theij2 2of D,, The values of D.. are then put in the equation (5.12) Aij A1J
2the combined criterion value D..
A

2 value 

to get

As in the case of probabilistic measures, in the actual

experiments 3 class-pairs were excluded and the above combined

criterion value was obtained on the basis of the remaining 75

class-pairs. The above process was repeated to obtain the values of 
2the D. criterion for all the 78 features. The features were then A

2arranged in decreasing order of their values.

The program for the implementation of the above procedure is

listed in Appendix B 9. Feature orderings obtained are given in
2column (2) of Table 5.3. The values of the D. criterion for the
A

features are shown in column (3) of the table in order to give a 

comparative picture of their effectiveness. As can be seen from the 

table, the top ranking feature (feature no. 13) has a criterion value 

of 0.363. The minimum possible value of 0 is taken by the features 

36,77 and 78, showing their total uselessness for the purpose of 

numeral classification.

Orderings by D criterion and D criterion, also with the B
assumption of indepenence of features, are shown in the same table.

2 2 2 2 2 2 The orderings by D., and D are denoted by D.(l), D_(l) and D (1), A B A B
respectively. This is to distinguish them from further orderings to 

be made in stage II wherein the features are no more assumed to be

independent.
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Table 5 .3
F e a tu re  o r d e r in g s  by 
f e a t u r e s

Mahalanobis d i s t a n c e - b a s e d  c r i t e r i a under the assum ption o f independenci

2D. c r i t e r i o n »2n c r i t e r i o n
2

D c r i t e r i o n A random
Rank o r d e r in g

Ordering C r i t e r i o n Ordering C r i t e r i o n Ordering C r i t e r i o n

(D2 ( 1 ) )  A va lu e (db ( 1 ) ) va lue (D2 ( l ) ) va lue (R)

(1) (2) (3) (4) (5) (6) (7) (8)

1 13 .363 13 .317 13 6 .91 46
2 26 .353 26 .303 20 6 .37 53
3 2 .322 1 .290 1 5 .7 0 73
4 17 .320 2 .268 18 5 .08 3
5 1 .319 17 .267 47 4 .9 7 32
6 9 .317 9 . 2 1>2 11 4 .5 9 4
7 18 .307 20 .256 26 4 .59 57
8 43 .304 18 .255 9 4 .09 14
9 44 .298 43 .246 17 4 .0 9 68

10 20 .296 44 .242 12 3 .87 59
11 11 .290 47 .241 8 3 .41 10
12 21 .286 11 .240 2 3.33 63
13 8 .286 31 .236 43 2 .8 9 78
14 12 .281 8 .235 31 2 .8 7 56
15 23 .273 12 .226 44 2 .8 7 58
16 31 .2 72 21 .224 21 2 .4 6 27
17 47 .270 25 .215 25 2 .4 5 16
18 25 .267 14 .210 14 2 .3 9 29
19 14 .266 23 .204 10 2 .3 6 52
20 16 .258 10 .203 61 2 .1 7 1
21 10 .255 61 .199 23 2 .1 7 74
22 61 .255 16 .196 22 2 .1 0 17
23 32 .250 22 .183 16 2 .0 9 30
24 22 .244 32 .183 3 1.92 76
25 52 .219 3 .169 32 1 .80 75
26 3 .219 52 .155 5 1.64 70
27 37 .209 37 .150 52 1.53 6
28 56 .209 5 .146 37 1 .47 9
29 5 .198 56 .137 7 1 .38 18
30 6 .193 7 .136 6 1 .31 67
31 65 .189 6 .135 4 1 .29 61
32 7 .188 65 .132 65 1 .28 31
33 4 .188 4 .132 56 1 .25 44
34 27 .187 27 .130 27 1.25 77
35 19 .177 45 .118 45 1.13 45
36 48 .173 19 .116 19 1 .07 5
37 45 .167 48 .108 48 .959 50
38 55 .143 55 .0897 55 .796 20
39 66 .138 66 .0857 66 .759 11
40 15 .121 15 .0770 15 .697 23
41 72 .104 72 .0606 72 .518 38
42 29 .101 29 .0585 29 .495 25
43 53 .0883 53 .0511 . 53 .434 64
44 38 .0837 38 .0499 38 .431 72
45 28 .0738 28 .0421 28 .355 71
46 46 .0731 46 .0407 46 .339 34
47 24 .0691 24 .0377 24 .312 69
48 69 .0634 39 .0358 39 .308 65
49 62 .062 8 62 .0353 62 .296 22
50 39 .0605 69 .0353 69 .294 15
51 50 .0440 50 .0234 34 .195 13
52 34 .0408 34 .0231 50 .191 2
53 40 .0376 30 .0200 30 .167 41
54 30 .0364 40 .0198 40 .161 62
55 51 .0328 51 .0172 51 .140 47
56 68 .0306 68 .0163 68 .134 24
57 35 .0304 35 .0161 35 .131 42
58 67 .0277 67 .0145 67 .118 39
59 49 .0246 49 .0130 49 .106 55
60 54 .0238 54 .012 4 54 .101 21
61 70 .0224 58 .0117 58 .0953 54
62 58 .0224 70 .0116 70 .0944 8
63 73 .0222 73 .0115 73 .0935 60
64 75 .0196 75 .0102 75 .0830 12
65 63 .0175 63 .00912 63 .0739 35
66 33 .0172 33 .00880 33 .0710 26
67 76 .0148 76 .00756 76 .0610 33
68 59 .0120 59 .00614 59 .0495 36
69 57 .0112 57 .00571 57 .0459 7
70 41 .00933 41 .00482 41 .0390 66
71 74 .00533 74 .00273 74 .0221 40
72 60 .00523 60 .00268 60 .0216 43
73 42 .00454 42 .00230 42 .0185 51
74 64 .00444 64 .00225 64 .0181 19
75 71 .00375 71 .00191 71 .0154 49
76 78 0 78 0 78 0 28
77 77 0 77 0 77 0 48
78 36 0 36 0 3 6 0 37
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Further analysis of the above orderings is postponed till the next 

section.

Stage II

Unlike in stage I, in this stage the covariances between the

features are taken into account for the computation of the Mahalanobis

distance-based criteria. For a feature vector X the sample
2Mahalanobis distance D is given by equation (3.9). For a class-pair

(C.,C.) the distance function can be written as 
i  J

D2 . = ( x. - x. )' ST1 ( x. - x. ) (5.17)
i j  1 J iJ i  J

where the notations have the meanings similar to those in equations 

(3.10) to (3.14).

It may be worthwhile to mention here that in actual computations

S.^ is replaced by S.., the generalized inverse of S.. [151],[152]. ij ij ij
By this the computational problems arising out of attempts to compute 

the inverse of a singular matrix could be avoided.

To select a feature subset of size r, say, from a set of n 
2features using the criterion the following step-by-step procedure 

is followed:

Step 1 Evaluate all the n features X„, X„, ...» X using the criterion ---—  1 2  n
2D. (averaged over all the class-pairs as in stage I) . Select the A

2feature with the maximum value. Suppose X^ gets selected by this

process.
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Step 2 Evaluate all the n-1 feature subsets of size 2 whose first

feature is . They are (X̂ . , X^), (X^ , X^),
l l *1 ’ ^k -1 ̂ ' 1 1

(X., X ). k^ n(Xk ’ Xk +1)(
1 12maximum D value. Suppose it is (X , X ).

A k x k2

Select the feature subset with the

Step r Evaluate all the (n-r+1) feature subsets of size r whose first

r-1 features are X, , X, , ..., X, . Select the feature subsetk„ k„ k „
1 2 r_1 2(X, , X, , ...» X. , X ) having the maximum D -value.

JC ̂  J£ ^ JC a1 2 r-1 r

The program for the above procedure is listed in Appendix B 10. 
2The program uses the criterion. It can easily be modified to work 

2for any other D -based criterion. Input and output files used and/or 

created in the program are shown in Fig. 5.1. The program selects 

feature subsets of all the sizes l,2,...,n.

2In the presell experiments the D -based criteria were implemented
2in stage II using the 25 features obtained by criterion in stage I

as the initial set. Then, by taking n = 25, feature subsets of

sizes 1, 2, , ..., 25 were selected. Tables 5.4a and 5.4b illustrate
2 2the results obtained by using the criterion and the Dg criterion, 

respectively. The feature subsets and the corresponding criterion 

values are both shown in the tables.

The increases in values of D. and with increase in number ofA B
features are illustrated in Fig. 5.2. It will be noted from this

2 2diagram that the increases in values of and Dg, in relation to each 

conformity with those shown in Fig. 3.3 of chapter 3.other, are in
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INF1

r  EXTRA OUTPUT:
FEATURE SUBSETS CONSIDERED 
(BOTH SELECTED AND UNSELECTED) 
AND THEIR CRITERION VALUES

m

i l i i
OUTF3

Fig. 5.1 Input and output files of Mahalanobis distance-based 
step-by-step feature ordering program
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hUnBER OF FEATURES

Fig. 5.2 2 2Values of and Dg for different 
feature subset sizes
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Table 5.4a Stepwise feature selection by D2
A

2Step Feature subset selected Value of D.A

(1) (2) (3)

1 13 0.363
2 13, 17 0.564
3 13, 17, 14 0.671
4 13, 17, 14, 43 0.745
5 13, 17, 14, 43, 1 0.795
6 13, 17, 14, 43, 1, 18 0.832
7 13, 17, 14, 43, 1, 18, 8 0.857
8 13, 17, 14, 43, 1, 18, 8, 52 0.876
9 13, 17, 14, 43, 1, 18, 8, 52, 11 0.892

10 13, 17, 14, 43, 1, 18, 8, 52, 11, 44 0.904
11 13, 17, 14, 43, 1, 18, 8, 52, 11, 44, 26 0.913
12 13, 17, 14, ,44, 26, 61 0.921
13 13, 17, 14, ,26, 61, 12 0.926
14 13, 17, 14, ,61, 12, 2 0.930
15 13, 17, 14, ,12, 2, 23 0.934
16 13, 17, 14, , 2, 23, 9 0.938
17 13, 17, 14, ,23, 9, 32 0.942
18 13, 17, 14, ,9, 32, 25 0.945
19 13, 17, 14, ,32, 25, 31 0.947
20 13, 17, 14, ,25, 31, 20 0.949
21 13, 17, 14, ,31, 20, 47 0.951
22 13, 17, 14, ,20, 47, 16 0.953
23 13, 17, 14, ,47, 16, 10 0,955
24 13, 17, 14, ,16, 10, 21 0.957
25 13, 17, 14, ,10, 21, 22 0.959
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Table 5.4b Stepwise feature selection by D!B

Step Feature subset selected Value of B
(1) (2) (3)

1 13 0.317
2 13, 17 0.528
3 13, 17, 43 0.658
4 13, 17, 43, 14 0.761
5 13, 17, 43, 14, 1 0.835
6 13, 17, 43, 14, 1, 18 0.885
7 13, 17, 43, 14, 1, 18, 23 0.917
8 13, 17, 43, 14, 1, 18, 23, 9 0.942
9 13, 17, 43, 14, 1, 18, 23, 9, 52 0.960
10 13, 17, 43, 14, 1, 18, 23, 9, 52, 10 0.970
11 13, 17, 43, 14, 1, 18, 23, 9, 52, 10, 44 0.977
12 13, 17, 43, ,10, 44, 11 0.982
13 13, 17, 43, ,44, 11, 32 0.985
14 13, 17, 43, ,11, 32, 8 0.988
15 13, 17, 43, ,32, 8, 21 0.991
16 13, 17, 43, , 8, 21, 22 0.992
17 13, 17, 43, ,21, 22, 25 0.993
18 13, 17, 43, ,22, 25, 26 0.994
19 13, 17, 43, ,25, 26, 12 0.995
20 13, 17, 43, ,26, 12, 20 0.996
21 13, 17, 43, ,12, 20, 47 0.996
22 13, 17, 43, ,20, 47, 16 0.996
23 13, 17, 43, ,47, 16, 31 0.997
24 13, 17, 43, ,16, 31, 61 0.997
25 13, 17, 43, ,31, 61, 2 0.997
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2 2 2 2In the lower range of values of D (and D ) D. is greater than D and
A 15 A B

2 2as their values increase D approaches 1.0 much faster than D. . The
B A

reorderings of the above mentioned 25 features obtained by the
2 2 2 2 2 2 criteria D. , D_ and D are denoted by D.(2), D_(2) and D (2),
A B A B

respectively. They are reported in Table 5.5. '(2)' indicates that

the orderings refer to the second stage.

Conformity of the orderings and the recognition results obtained 

by their use will be the topics of investigation of the next section 

and the next chapter,respectively.

5.4 Correlation Analysis of Orderings

5.4.1 Correlation Coefficient Used

Kendall's rank correlation coefficient (r, ) and Spearman's rankk
correlation coefficient (r̂ ) are widely used for measuring the

conformity of two sets of ranks(i.e., orderings). As is the case with

the ordinary cross-correlation coefficient, both of these coefficients

can have values in the range -1 to +1. A value of 0 indicates that

there is no relationship between the two sets of ranks whereas the

values of -1 and +1 represent perfect disagreement and perfect

agreement, respectively. Several authors [43],[143] have used

Spearman's r^ for analyzing the feature orderings. In general r^ is

easier to calculate than r, . But in view of certain distributional ask
well as computational advantages of Kendall's r, over Spearman's r 

(pp. 11-12 and p. 46 of [153]) the present analysis will be made on 

the basis of r, . Some of the advantages of r over r are:
J£ JC S
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Table 5.5
Reordering of 25 features by the Mahalanobis distance-based criteria 
taking into account the covariances of the features

Rank Dl (2> D2b <2) D2 (2)

(1) (2) (3) (4)

1 13 13 13
2 17 17 20
3 14 43 17
4 43 14 1
5 1 1 26
6 18 18 18
7 8 23 9
8 52 9 8
9 11 52 21
10 44 10 23
11 26 44 22
12 61 11 12
13 12 32 11
14 2 8 14
15 23 21 25
16 9 22 43
17 32 25 52
18 25 26 10
19 31 12 31
20 20 20 16
21 47 47 44
22 16 16 61
23 10 31 32
24 21 61 47
25 22 2 2



147 -

(i) the distribution of r, is much easier to ascertain,k

(ii) the distribution of r, tends to normality much faster thank
that of r , and s

(iii) addition of new members to a ranking does not require a

complete recalculation of r^ whereas this will require complete

recalculation of r .s

It is worthwhile mentioning here that when neither coefficient is

too close to +1 or -1, r is often about 50 percent greater than r, ins k
absolute value but this will give rise to no difficulty because r^ 

will be used throughout the present analysis.

Kendall's rank correlation coefficient between two sets of ranks 

of n values (features) is defined by [153]

T
r = -------------  (5.18)
k i- n ( n - 1 )

where

T = number of rank-pairs having same order in both the 

rankings minus number of rank-pairs having opposite order in the two 

rankings.

The computer program developed for the computation of r^ is 

listed in Appendix B 11. Though r^ is not used in the present 

analysis, its computation is included in the program for completeness.
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5.4.2 Significance Tests of Correlation Values

the

Statistical tests of significance of r, values are made based onk
following properties of r̂ :

(i) the standard deviation of r, is k given by

2 ( 2n + 5 )

9n ( n - 1 )
(5.19)

and

(n) the standardized value of r, , i.e., r, /a is distributed,k h r ,k
approximately, as a normal deviate (Gaussian variable with mean 0 and 

standard deviation 1).

At 0.01 level of significance the value of the normal deviate is 

2.58. For n = 78 the corresponding value of r^ will be

2.58 x
2 ( 2 x 78 + 5 )

9 x 78 x ( 78 - 1 )

= 0.199

Thus, for n = 78, if |r, | > 0.199 then r, is considered to bek k
significantly different from 0 at 1% level of significance.

Values of r^ between pairs of feature orderings obtained in 

stage I are shown in Table 5.6. All the tabulated r^ values, except 

those in the last row showing the correlation coefficients of 

different orderings with the random ordering R, are larger than 0.199. 

It can, therefore, be inferred that the feature orderings obtained by



149 -

Table 5.6
Values of the Kendall's rank correlation coefficient (r̂ ) between 
various pairs of orderings (stage I: n = 78)

2-class
probabilistic
criteria

m- c1a s s
probabilistic
criteria

Mahalanobis
distance-based
criteria

_ _ _ _ * 2 , „ 2 2
Pe2 P Y J Pe pm H B da (1) db (1) DZ (1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

p .46

r .56 .41
j .42 .58 .47
p .42 .53 .42 .51e*
p .51 .56 .42 .46 .52m
H .39 .50 .39 .48 .58 .54
B .35 .31 .35 .39 .41 .37 .41

d2a (D .34 .44 .33 .29 .45 .38 .41 .2-

db (1) .31 .34 .42 .36 .35 .31 .31 .32 .53
D2 (l) .39 .34 .39 .36 .44 .38 .36 .31 .55 .63

R -.07 - .15 - .07 -.06 -.09 - .12 - .04 + .13 -.12 -.09 -.17

Theoretical value of r^ at 1% level of significance: 0.199
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various probabilistic and Mahalanobis distance-based criteria are in 

significant agreement with one another. The values of r^ between 

various feature orderings and the random ordering R are, as expected, 

small enough to be taken as 0.

In theory the implementation of the m-class Bayesian error

probability criterion should lead to optimum feature ordering.

Other feature orderings can then be judged by comparing the r values

between them and the ordering by . From Table 5.6 it can be seen

that with P , H has the highest r value of 0.58, p having the next6 1C
highest r^ value of 0.53. One would, therefore, expect the features

selected by H and p to be more effective than those selected by the

other criteria. However, in view of the fact that the

interrelationships between the features have not been taken into

account in stage I, it is difficult to make such a strong

recommendation on the basis of so little differences between various

r, values, k

Values of r^ between pairs of feature oxderings obtained by the 
2implementation of D -based criteria in stage II are shown in

Table 5.7. As mentioned earlier, in stage II the top 25 features 
2selected by criterion in stage I were the initial set. Column 1 of

2the table (with the heading D^(l)) refers to the correlation values

with this initial ordering. For n = 25 the theoretical value of r^ at

1% level of significance is 0.368. Four out of the six tabulated r,k
values are greater than 0.368. The corresponding feature orderings

are therefore in significant agreement with each other at 1% level.
2 2The largest r, value of 0.513 is observed between D.(2) and D„(2), an k A B

indication of more agreement between them compared to any other pair
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Table 5.7
Values of the Kendall's rank correlation coefficient (r ) between pairs 
of feature orderings obtained by Mahalanobis distance— oased criteria 
(stage II: n = 25)

Da (1)A d2 (2) Dl<2 >

(1) (2) (3) (4)

Di (2) .373
D2 (2) .247 .513
D2 (2) .433 .260 .387

Theoretical value of r, at 1% level of k significance: 0.368
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of orderings. This is expected because both of them are normalized 

versions of the Mahalanobis distance. Though some of the other r^ 

values are significant at 1% level, a general observation is that the 

correlation values are not large enough to ascertain close agreement 

between the feature orderings.

5.5 Some Remarks on Feature Ordering Experiments

The feature ordering experiments described in sections 5.2 and

5.3 suffer from certain design limitations. For the implementation of 

a probabilistic criterion (see section 5.2) the features were treated 

individually. For the selection of the best individual feature this 

procedure may be applied. But, since the interactions between the 

features are ignored, the above procedure is likely to fail in a 

situation where one is interested in selecting a subset of features 

containing more than one feature. For the implementation of the 

Mahalanobis distance-based criteria (see section 5.3) a step-by-step 

feature selection procedure was applied. This procedure does not lead 

to optimum selection of features because, for feature subsets of size 

greater than 1, all the possible feature subsets are not considered 

for evaluation. Therefore, in either of the above two approaches, it 

is difficult to draw conclusions regarding the comparative 

effectiveness of different feature evaluation criteria based on the 

comparison of the feature orderings obtained by the use of these 

criteria. It is therefore suggested that for the selection of 

features in a practical pattern recognition problem care should be

taken to reduce the effects of the above limitations.
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CHAPTER 6

RECOGNITION EXPERIMENTS

6.1 Introduction

In this chapter recognition experiments are conducted using 

features selected in the previous chapter. Analysis of recognition 

accuracies obtained by the use of features selected by different 

feature evaluation criteria enables a comparative assessment to be 

made of these criteria.

In section 6.2 the classification criterion used in the 

recognition experiments is stated. Section 6.3 deals with the 

experimental procedures and the recognition results. Two sets of 

experiments are conducted, one with the same training and test data 

and the other following the leave-one-out principle of Lachenbruch and 

Mickey [154]. These two sets of experiments are the subjects of study 

of subsections 6.3.1 and 6.3.2, respectively. In section 6.4 some 

two-class recognition experiments are conducted taking the numerals 

'3' and '5' as the two classes. In section 6.5 the experimental

results are summarized.
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6.2 Classification Criterion Used

According to the Bayesian decision procedure stated in chapter 2 

(section 2.1), a pattern with the value of its feature vector X = x is 

assigned to class C., i=l,2,...,m ifl

7T.p(x 1C.) > jr.p(x 1C.) , 
i  i  J J

j=l,2,...,m; j ^ i (6.1)

In other words, the Bayesian procedure assigns x to C^ if for

all j ^ i where

R. = it . p(x I C . ),i l l i=l,2, . . . ,m (6 .2 )

If the features X., , X_ , ..., X are independent then (6.2) reduces to 1 2  n

R. = n. I [ p(x, I C . ) , i=l,2,..., l l I I k l K. = l
m (6.3a)

Because of the monotonici-fcy property of the logarithmic

function, maximization of R^ given by (6.3a) is equivalent to 

maximization of R' given byl

R'. = In j t . +  ^ In [ p(x. |C.) ],l l L k l
k=l

i=l,2,...,m (6.3b)
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In the above expressions and p(x^|C^) denote the a'priori

probability of the class and the ith class-conditional probability 

density function of the feature X^ at = x^» respectively.

In real-life applications the criterion R^ suffers from the

drawback that its value becomes 0 if (the estimate of) one of the n

p(x^|Ci)'s, k=l,2,...,n is equal to 0 for all i=l,2,...,m. This means

that inclusion of only one useless feature would be enough to spoil

the applicability of the criterion R^. Similar computational problem

arises if R'. is used because, for p(x, |C.) = 0, the value of l k l
ln[p(x^|C^)] becomes undefined. The problem, however, can be tackled 

by assigning a reasonably small value to ln[p(x^|C^)].

In the present numeral recognition experiments using the whole 

data set for both training and testing the criterion R^ was applied 

and in the case of leave-one-out principle Rt was used. The 

assumption of independence of features, implicit in the use of R^ or 

R^ as the classification criterion, resulted in the simplification of 

implementation of the criterion and reduction in storage and 

computational requirements.

In the two sets of classification experiments to be dealt with in 

the next section each of the 1000 numeral samples was classified in 

one of 13 classes. For further analysis of the classification results 

the classes representing the same numeral were combined to get back to 

the original 10 class situation. A confusion matrix of order 10 x 10 

was then obtained whose (i,j)th element, f ̂ ., was the number of 

observations actually belonging to the numeral category i but 

recognized as belonging to the category j (i=0,1,2,...,9; 

j=0,1,2,...,9). Recognition accuracy was then computed using the
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following equation:

Correct classification rate

I
i=0

f . .11

100 (per cent)

(6.4)

Since all the 1000 numerals underwent the classificatory analysis, the 

denominator of (6.4) is equal to 1000.

6.3 Experiments and Essnlts

6.3.1 Recognition with the Same Training and Test Data

Each of the 1000 numeral samples was recognized using the 

criterion (Equation 6.3a). Implementation of the recognition 

procedure was quite straightforward. The estimates of the a'priori 

probabilities of the 13 classes under consideration were 0.100, 0.080, 

0.020, 0.100, 0.100, 0.072, 0.028, 0.100, 0.100, 0.060, 0.040, 0.100

and 0.100 (based on Table 5.1). The estimates of the 

class-conditional probability densities, in fact discrete 

approximations to them, were those obtained in chapter 5

(section 5.2.1). Given a set of features on the basis of which to 

recognize the numerals, for each numeral the intervals in which the 

values of its above features were lying wtr« determined. The estimates 

of class-conditional probabilities corresponding to these intervals
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and the estimates of a'priori probabilities were then put in the

equation (6.3a) to compute the values for i=l,2,...,13. The class

associated with the maximum R. value was then considered as thex
recognized class. After completion of the recognition procedure for 

all the 1000 numeral samples the confusion matrix was generated which 

was then followed by the computation of the correct classification 

rate using the equation (6.4).

A program developed for the implementation of the above procedure 

is given in Appendix B 12. The program works for a number of feature

subsets. From a list of features, supplied as an input f ile, the

program obtains information on which features to use and then

recognizes each numeral sample on the basis of the values of these

features.

The recognition results obtained by using various feature

orderings reported in the previous chapter will now be analyzed.

Percentages of correct classification achieved by using the features

selected by various probabilistic criteria are shown in Table 6.1.

Feature subset sizes considered were 1,2,...,15,20,...,75 and 78. For

features used in arriving at the results of Table 6.1 refer to

Table 5.2 (chapter 5). Out of the eight probabilistic criteria

experimented five chose the feature number 13 to be the best feature.
*Use of this feature led to a recognition accuracy of 29.5%. P , pe m

and B selected the features 18, 47 and 43, respectively. The

corresponding recognition accuracies were 27.6%, 24.5% and 28%,

respectively. Recognition results obtained by the use of features 
2arranged by D -based criteria (for feature orderings see Table 5.3)

2 2 2are shown in Table 6.2. All the D -based criteria, namely, D., DI! and
A B
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Table 6.1
Percentages of correct recognition with 'same training and test data' and 
using features selected by probabilistic criteria

Serial No. of Feature ordering used
number features

5e2 P r J
*

P P e m H B

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 1 29.5 29.5 29.5 29.5 27.6 24.5 29.5 28.0
2 2 45.4 45.4 45.4 45.4 38.6 39.2 44.7 39.23 3 57.9 54.7 57.9 54.7 56.0 45.9 56.0 50.94 4 67.2 58.8 63.7 63.2 67.3 56.6 62.8 63.25 5 73.2 66.0 67.5 66.0 73.8 62.7 69.5 72.96 6 79.6 71.2 77.4 75.7 80.7 74.7 76.9 74.3
7 7 82.2 76.0 82 .2 81.2 82.3 78.2 81.2 76.3
8 8 84.7 85.0 85.0 85.0 83.8 80.4 84.5 80.9
9 9 88.4 87.5 86.1 86.1 85.0 83.8 87.5 84.4
10 10 88.4 88.3 87.5 88.3 88.6 85.2 88.4 87.6
11 11 89.0 89.3 88.9 90.7 88.9 88.1 88.3 87.9
12 12 90.8 90.2 90.4 91.2 90.0 88.3 88.8 89.9
13 13 91.4 91.9 91.5 91.7 91.8 91.0 89.0 90.8
14 14 91.7 91.7 92.6 91.7 92.9 92.5 90.5 91.4
15 15 92.6 92.2 93.3 92.2 93.0 93.4 91.8 91.5
16 20 95.3 94.9 95.8 94.4 94.6 95.5 95.5 95.2
17 25 96.4 96.3 96.3 96.3 96.2 95.5 96.1 96.1
18 30 97.4 97.0 97.4 97.0 96.9 97.0 96.9 96.8
19 35 98.0 98.2 98.0 98.2 98.3 98.3 98.2 98.5
20 40 98.3 98.3 98.4 98.3 98.4 98.4 98.3 98.3
21 45 98.7 98.7 98.7 98.7 98.8 98.8 98.8 98.6
22 50 98.7 98.7 98.8 98.7 98.7 98.8 98.7 98.7
23 55 98.9 98.9 98.8 98.9 98.8 98.8 98.9 98.8
24 60 99.0 99.0 99.0 99.0 99.0 99.0 99.0 98.9
25 65 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0
26 70 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0
27 75 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0
28 78 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0
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Table 6.2
Percentages of correct recognition with 'same training and test data' and2using features selected by D -based criteria in stage I (also included 
the recognition scores for a random ordering, R, of features)

Feature ordering used
numb e r features D2 (l)A D2b U) D2 (l) R

(1) (2) (3) (4) (5) (6)

1 1 29.5 29.5 29.5 13.2
2 2 39.7 39.7 42.6 19.4
3 3 51.5 48.5 53.8 21.3
4 4 63.2 58.1 65.4 31.5
5 5 66.0 66.0 71.3 41.3
6 6 71.1 71.1 77.8 50.1
7 7 76.7 78.9 80.8 50.9
8 8 84.0 81.8 83.3 58.7
9 9 86.7 86.8 84.3 59.0
10 10 89.1 89.1 85.4 59.8
11 11 90.7 90.4 86.7 64.0
12 12 90.7 91.4 89.2 64.1
13 13 92.3 91.6 91.1 64.0
14 14 93.3 92.7 91.5 71.1
15 15 94.1 93.1 93.1 70.8
16 20 95.3 95.5 94.8 85.5
17 25 96.3 96.3 96.3 89.4
18 30 97.0 97.1 97.4 90.8
19 35 98.2 98.4 98.4 94.5
20 40 98.1 98.1 98.1 96.4
21 45 98.8 98.8 98.8 96.6
22 50 98.7 98.7 98.7 98.0
23 55 98.8 98.8 98.8 98.4
24 60 98.9 98.9 98.9 98.2
25 65 98.9 98.9 98.9 98.3
26 70 99.0 99.0 99.0 98.7
27 75 99.0 99.0 99.0 98.8
28 78 99.0 99.0 99.0 99.0
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D , selected the feature 13, the feature leading to the recognition

accuracy of 29.5% which was maximum of all the entries shown in the

first row of Table 6.1 and Table 6.2. In other words, all the 
2D -based criteria selected the single best feature. As expected, with

increase in the number of features the recognition accuracy increased,

the rate of increase going down for a larger number of features. This

was true irrespective of whatever feature ordering was used. By using

only 14 features out of 78 features more than 90% correct recognition

could be obtained. With most of the orderings, use of 20 features led

to a recognition accuracy of more than 95%. To achieve a recognition

accuracy of 99% at least 60 features were needed. Even by using all

the 78 features more than 99% accuracy could not be obtained.

Compared to R, a random ordering, all other orderings led to a much

better recognition performance. This is, indeed, an indication of the

usefulness of the feature ordering criteria in genaral. From Tables

6.1 and 6.2 it may be noted that the recognition accuracies do not

vary much from ordering to ordering. This is a very strong point in
2favour of using the D -based criteria because, for the evaluation of

individual features by them, one needs to estimate only the means and
2the standard deviations of the features. Amon;st the D -based 

2 2criteria, D. performed better than D_. For smaller number of features A B
2 2 2 (upto 7 features) D performed better than both D and D but for more

A  D

2than 7 features, in most of the cases, performance of was better 
2than that of D .

The recognition results obtained by using various subsets of 25 

features reordered in stage II, and taking into account the 

covariances between the features, will now be analyzed. For the 

reorderings obtained by &nd p2 criteria refer to Table 5.5.
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Corresponding recognition results, for feature subsets of sizes

1,2,...,20 and 25, are presented in Table 6.3. Both and
B

performed better than D for all the feature subset sizes. This
2 2conformed well with the expectation that D. and D , being normalized
A B

2criteria, they should perform better than D in a multiclass

situation. Fig. 6.1 illustrates the improvement gained in stage II,
2over stage I, with as the evaluation criterion. For a combination

of two features the recognition accuracy increased from 39.7% to

45.4%. For three features the corresponding values were 51.5% and

58.6%, respectively. Thus, a set of 3 features selected taking into

account the covariances between features gave rise to 7.1% more

recognition accuracy compared to the set of 3 individually best

features. This is, indeed, a remarkable improvement. Improvements

were observed for higher number of features also. From Tables 6.1 and
2 26.3 it can be seen that D^(2), the ordering by criterion in

stage II, gave rise to much better recognition scores than those by

the probabilistic criteria. For most of the feature subset sizes 
2 , .D (2) also performed better than the probabilistic criteria. One may 
B

argue that the probabilistic criteria were applied without any 

consideration to the interactions between the features. But it sh uld 

be noted that the storage requirement for their implementation was 

quite high because one had to consider a number of intervals, for each 

feature, for the estimation of class-conditional probabilities.

On the basis of the experimental results with the same training
2

and test data one can therefore consider and Tp' to be two useful 

feature evaluation criteria.

4
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0.00 S.00 10.00 I S . 00 20.00 25.00

NUnBER OF FEATURES

Fig. 6.1 Recognition accuracies in stages I and II, with 
the same training and test data, for features 

2selected by criterion
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Percentages of correct recognition with 'same training and
2test data' and using features reordered by D -based criteria 

in stage II

Table 6.3

Serial No. of Feature ordering used
number features D2a (2) db (2) D2 (2)

(1) (2) (3) (4) (5)

1 1 29.5 29.5 29.5
2 2 45.4 45.4 42.6
3 3 58.6 56.0 55.6
4 4 68.3 68.3 66.4
5 5 74.1 74.1 69.5
6 6 78.4 78.4 75.1
7 7 83.9 81.4 78.5
8 8 85.2 86.5 84.0
9 9 89.1 87.5 87.2

10 10 90.4 90.3 88.2
11 11 92.1 91.6 90.0
12 12 93.0 93.0 90.8
13 13 93.2 93.4 91.3
14 14 94.4 93.2 92.5
15 15 94.9 94.4 92.5
16 20 95.4 95.9 95.2
17 25 96.3 96.3 96.3
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6.3.2 Recognition by Leave—One—Out Principle

The wellknown drawback in using the same data set for both 

training and testing is that it has a tendency towards overestimating 

the recognition accuracy [91], [154]. If the available data set is 

large then this drawback can be avoided by dividing the data into 

separate training and test sets. Since there were only 1000 

observations for the experimentation of a 13-class problem with 78 

features, the leave-one-out principle was adopted. Implementation of 

this approach helps in two ways: (i) it gives a more realistic 

estimate of the recognition accuracy and (ii) it enables one to study 

the severity of the problem of using the same training and test data.

A program developed for the implementation of the leave-one-out 

principle is listed in Appendix B 13. The major functional steps 

involved in the program will now be described. The estimates of the 

a'priori probabilities are the same as those used previously in the 

case of same training and test data. To start with, consider the 

class-condition..! probabilities of different features in different 

classes estimated on the basis of the whole data set. These 

probability estimates are modified before using them for the 

recognition of each numeral. The modification procedure used will now 

be described using the same notations as those in the program.

Let M be the number of classes and N be the number of features. 

Let SIZE(I), 1=1,2,... ,M be the number of observations from the I*th 

class in the whole data set. Suppose P(K,I,J) is the proportion of 

values in the whole data set, taken by the K-th feature in the I-th 

class, which lie in the J-th interval. Then P(K,I,J)'s are the 

starting estimates of the class-conditional probabilities.
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Suppose, in a cycle of recognition process, it is required to 

recognize an observation which comes from the class INEW and whose 

feature values are XNEW(l), XNEW(2), ..., XNEW(N). Suppose the 

observation recognized at the previous cycle of recognition came from 

the class IOLD and its feature values were X0LD(1), X0LD(2), . .., 

XOLD(N). For each of the N features determine the interval containing 

XNEW(K), K=1,2,...,N. Suppose it is JNEW(K). Suppose the interval 

containing XOLD(K) is JOLD(K). Then the previous P(K,I,J)'s are 

modified to new P(K,I,J)'s by making the following substitutions:

( P(K,IOLD,J) . [SIZE(IOLD) - 1]
P(K,IOLD,J) for J t JOLD(K)

SIZE(IOLD)

P(K,IOLD,J) .[ SIZE(IOLD) - 1] + 1
for J = JOLD(K)

SIZE(IOLD)

(6.5a)

and

f  P(K,INEW,J) . SIZE(INEW)
P(K,INEW,J) for J t JNEW(K)

SIZE(INEW) - 1

SIZE(INEW) - 1 for J = JNEW(K)
SIZE(INEW) - 1

(6.5b)
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It is worth mentioning here that while recognizing the first 

observation, only (6.5b) is implemented and for all other observations 

both (6.5a) and (6.5b) are implemented* Once the P(K,I,J)'s are 

modified as above, the observation under consideration is recognized 

using the criterion R' of equation (6.3b). Depending on the number of 

features to be used decision is made about which features to include 

in the computation of R'. As before, the class corresponding to the 

maximum R'-value is then decided to be the recognized class.

Percentages of correct classification achieved by using the 

features selected by the probabilistic criteria and following the 

leave-one-out principle are shown in Table 6.4. All the entries in 

Table 6.4 are considerably lower than the corresponding entries in 

Table 6.1. This indicates that the use of the same data for both 

training and testing introduces a considerable positive bias in the 

recognition accuracy. This point is illustrated in Fig. 6.2 wherein 

the recognition accuracies achieved by the two methods using the 

features selected by the m-class Bayesian error criterion P^ are 

plotted. For the other probabilistic criteria diagrammatic 

representations of the results achieved by the two methods are not 

given in the thesis, but from a comparison of Tables 6.1 and 6.4 it 

can be seen that the use of leave-one-out principle resulted in 

similar reduction in recognition accuracy for all of them.

The results of Table 6.4 will now be analyzed to get a 

comparative picture of different probabilistic criteria. It is 

interesting to note that the recognition scores achieved by the use of 

features selected by different criteria compared with one another, 

more or less in the same way, as they did in the case of same training
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Feature ordering used: P -------------- 2----  e

Using same training and test data

NUITBER OF FEATURES

Recognition accuracies by 'same training and
test data approach' and 'leave—one—out approach'
for features selected by P criterion

J e

Fig. 6.2
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Table 6.4
Percentages of correct recognition by leave-one-out method and using 
features selected by probabilistic criteria

Feature ordering used
number features

~Pe2 P r J Pe
*
P_m H B

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 1 28.3 28.3 28.3 28.3 26.0 23.3 28.3 25.6
2 2 41.0 41.0 41.0 41.0 32.8 37.2 42.4 37.2
3 3 53.7 49.5 53.7 49.5 51.8 42.3 50.9 46.7
4 4 63.0 54.1 57.8 58.2 61.0 52.2 57.0 60.3
5 5 67.0 60.4 61.3 60.4 67.6 58.3 63.4 68.5
6 6 72.5 64.2 71.0 69.6 73.8 70.0 69.8 68.9
7 7 75.7 67.7 75.7 73.1 73.6 71.1 73.1 70.6
8 8 77.9 77.1 77.1 77.1 77.8 73.3 77.3 74.5
9 9 82.1 80.4 78.2 78.2 76.2 77.2 80.4 77.4
10 10 82.0 80.3 79.2 80.3 79.8 77.6 80.6 80.4
11 11 81.3 81.5 81.9 83.0 80.8 80.9 80.7 80.0
12 12 83.4 83.2 83.7 83.7 81.0 82.4 80.1 81.6
13 13 85.7 85.0 85.4 85.4 84.1 84.3 81.8 82.4
14 14 85.4 84.6 85.8 85.3 85.3 85.4 83.1 82.5
15 15 85.7 84.8 86.3 84.8 84.8 86.7 84.9 84.2
16 20 89.2 89.4 90.5 88.8 87.1 89.8 89.6 87.5
17 25 89.9 90.3 90.2 90.3 90.1 89.4 90.0 90.9
18 30 91.3 91.5 92.0 91.5 90.7 90.8 91.1 91.0
19 35 92.6 92.1 92.6 92.1 92.4 92.2 92.1 92.6
20 40 93.0 93.0 92.9 93.0 92.9 92.6 93.0 93.0
21 45 93.5 93.5 93.5 93.5 93.6 93.3 93.6 93.5
22 50 93.5 93.7 93.6 93.7 93.7 93.6 93.8 93.9
23 55 93.7 93.7 93.8 93.7 93.7 93.8 93.6 93.7
24 60 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.6
25 65 93.8 93.7 93.7 93.8 93.8 93.8 93.8 93.8
26 70 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8
27 75 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8
28 78 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8
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and test data. For most of the feature subset sizes P _ performedeZ
better than P . Performances of the two criteria were, in general, e
better than those of the other indirect criteria. Amongst others, r

performed better than the rest. For smaller number of features
*(upto 5) p showed the worst m performance but for higher number of

features its performance was very similar to those of others.

Recognition results, by leave-one-out method, using features 
2selected by D -based criteria in stage I are shown in Table 6.5.

Comparison of Tables 6.2 and 6.5 shows that the leave-one-out

principle resulted in remarkable decrease in recognition accuracy. As

in the case of probabilistic criteria, the extent of the decrease was

greater for higher numbers of features. The nature of reduction for

various feature set sizes is illustrated in Fig. 6.3 wherein the

plotted recognition rates were obtained by using the features selected
2by the criterion D^. Recognition results obtained by using the 

2D -based criteria compared well with the results of most of the 

probabilistic criteria. It was observed that for smaller number of 

features their performances were not as good as those of P ^  and P^ 

but the gap was negligible for 10 or more features.

On the basis of the recognition results shown in Table 6.5 it is
2difficult to compare the performances of the three D -based criteria.

2For a number of features upto 8, D performed slightly better than 
2 2both D. and D_ but the situation was reversed when the number of A B

features was between 9 and 15. For more features the differences 

between them were small. This was in fact the case with the 

probabilistic criteria also.
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Feature ordering used Dl (1)

Using same training and test data

NUMBER OF FEATURES

Recognition accuracies by 'same training and test 
data approach' and 'leave-one-ont approach' for

2features selected by criterion in stage I

Fig. 6.3
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Table 6 . 5
Percentages of correct recognition by leave-one-ont method and using2features selected by D -based criteria in stage I (also included the 
recognition scores for a random ordering, R, of features)

Feature ordering used
numb e r features Di (i) D*(l> D2 (l) R

(1) (2) (3) (4) (5) (6)

1 1 28.3 28.3 28.3 12.8
2 2 37.4 37.4 38.8 18.8
3 3 46.1 46.4 48.6 20.1
4 4 58.2 51.8 61.0 29.6
5 5 60.4 60.4 65.8 38.0
6 6 64.4 64.4 71.1 43.7
7 7 69.8 70.5 75.0 43.5
8 8 76.2 75.0 77.4 51.7
9 9 78.7 79.6 78.1 51.3
10 10 79.8 79.8 78.3 51.6
11 11 81.9 82.3 78.8 56.4
12 12 82.7 84.0 81.8 56.9
13 13 84.4 84.3 83.6 56.9
14 14 86.9 84.1 83.9 62.5
15 15 86.9 85.0 85.0 62 .4
16 20 89.0 89.7 89.9 77.4
17 25 90.9 91.3 91.3 81.0
18 30 91.2 91.5 92.0 84.2
19 35 92.1 92.3 92.3 88.7
20 40 93.0 93.0 93.0 91.4
21 45 93.3 93.3 93.3 90.7
22 50 93.7 93.7 93.7 92.0
23 55 93.8 93.8 93.8 92.3
24 60 93.8 93.8 93.8 92.3
25 65 93.6 93.6 93.6 92.4
26 70 93.8 93.8 93.8 93.1
27 75 93.8 93.8 93.8 93.5
28 78 93.8 93.8 93.8 93.8
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The recognition results obtained by using the features selected

in stage II will now be analyzed. The results are shown in Table 6.6.
2 2 2The superiority of D. and D over D is evident from the recognition
A B

scores. For pictorial representation of the performances of these
2 2three criteria refer to Fig. 6.4. D and D produced better results
A B

2 2 2 than D for all sizes of feature subsets. Results by D. and did
A B

2 2not differ much. In general, D. performed better than D .
A B

The improvement gained by the implementation of stage II is shown
2in Fig. 6.5 wherein the recognition scores obtained by in stages I

2and II are plotted for various feature subset sizes upto 25. D^(2)
2resulted in much better performance than D.(l). For 5 features the
A

recognition accuracy increased from 60.4% to 69.6%, a remarkable 

increase of 9.2%. For higher number of features the increase was 

less. This is expected because the selection was made from a set of 

25 features only.

In Fig. 6.6 the recognition scores for features selected by
2anJ for features selected by in stage II are plotted. It is very

2encouraging to note that the recognition scores of D ^(2) were better

than those of P . As mentioned earlier, Pe performed slightly better 
2than D ^(1). But the implementation of stage II made such remarkable

2improvements that D.(2) gave better results than P .
A  6

6.4 Results of a Set of 2—Class Experiments

Some 2-class recognition experiments were conducted with the 

numerals '3' and '5' as the two classes. Selection of the numerals

was based on two reasons. Firstly, from an analysis of the confusion
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NUITBER OF FEATURES

Fig.6.4 Recognition accuracies for features selected by 
2D -based criteria in stage II following 
leave-one-out approach
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NUnBER OF FEATURES

Recognition accuracies in stages I and II, 
by leave-one-out method, for features 

2selected by criterion

Fig. 6.5
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Recognition accuracies, by leave-one-out method,
2for features selected by P and D. (in stage II)

6 A

Fig.6.6
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Percentages of correct recognition by leave-one-out method
2and using features reordered by D -based criteria in stage II

Table 6.6

Serial No. of Feature ordering used
number features D^(2) db (2> D2 (2)

(1) (2) (3) (4) (5)

1 1 28.3 28.3 28.3
2 2 41.0 41.0 38.8
3 3 55.3 50.9 50.8
4 4 64.0 64.0 59.6
5 5 69.6 69.6 63.7
6 6 71.9 71.9 66.7
7 7 78.2 74.8 71.9
8 8 78.1 79.5 77.4
9 9 81.6 80.9 80.5
10 10 82.8 84.3 81.9
11 11 85.8 85.1 82.6
12 12 86.4 86.5 84.3
13 13 86.4 85.9 84.1
14 14 87.9 86.3 86.1
15 15 88.2 87.5 87.0
16 20 91.0 89.4 88.8
17 25 90.9 90.9 90.9
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matrices obtained in the experiments conducted in the previous section

it was found that the numerals '3' and '5' were highly confused* This

is illustrated in Table 6.7 showing the confusion matrix obtained by
2using the first 15 features from the ordering D^(2) and adopting the 

leave-one-out principle. Secondly, each of the two classes had 100 

observations in it, thus making the sample size reasonably big for the 

analysis.

As in the case of 13-class experiments, all the redundant

features were first discarded. 66 features were then left for further

study. The orderings of these features were then obtained by the

Bayesian error probability (P^), the Bhattacharyya coefficient (p),

and the divergence function (J) on the assumption of independence of

features. An ordering was also obtained by the Mahalanobis distance 
2criterion in two stages, first considering individual features and

then, in stage II, rearranging the top 25 features taking into account

their covariances. It may be noted here that since only one

class-pair was dealt with, the 2results by D^, 2 2 DI and D are the same.

Similarly, p and y give rise to the same ordering of features.

Recognition experiments were then conducted , for feature subsets of

various sizes, using the above four feature orderings, namely, D^(2), 

P , p and J. Leave-one-out principle was adopted in these 

experiments. Fig. 6.7 gives a diagrammatic representation of the 

recognition results. As in the case of 13-class problem, all the 

probabilistic criteria resulted in similar recognition accuracies. It 

is interesting to note that the best feature selected by all the 

criteria was the same which resulted in a recognition accuracy of 

90.5%. Addition of further features had hardly any positive impact on 

the recognition score. Ignoring the small variations in recognition
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Criteria used:

&
0 Pe
+ P
X J

NUMBER OF FEATURES

Fig. 6.7 Recognition accuracies in a 2-class situation
(numerals '3' and '5'), by^leave-one-out method,
for features selected by D. (in two stages),
P , p and J e r
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Table 6.7
Confusion matrix 

2ordering D^(2) and
obtained by using the first 15 features 
adopting the leave-one-out principle

of the

Actual Recognized as Total
U U li l& X d l  q 1 2 3 4 5 6 7 8 9

0 97 0 0 0 0 0 0 0 3 0 100
1 0 83 7 1 0 1 2 2 3 1 100
2 3 0 91 3 0 2 0 0 1 0 100
3 0 0 0 87 0 4 0 3 3 3 100
4 0 1 0 0 97 0 1 0 1 0 100
5 0 2 0 14 0 77 3 0 3 1 100
6 0 6 0 0 1 1 90 0 2 0 100
7 0 0 0 0 1 2 0 86 0 11 100
8 1 2 0 5 1 3 2 0 84 2 100
9 0 0 0 5 0 4 0 0 1 90 100

Correct recognition rate: 88.2%
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scores one can say that, in the case of probabilistic criteria, with 

increase in feature subset size from 1 to 66 the recognition accuracy 

increased from 90.5% to 94.5%. In the case of the Mahalanobis 

distance the recognition accuracy rose to 98.0% for only 5 features. 

This shows the significance of the role played by the interactions of 

features in improving the recognition accuracy. Moreover, this result 

also reflects the usefulness of a simple feature evaluation criterion 

like the Mahalanobis distance. For higher number of features, 

however, the recognition accuracy decreased. This was probably due to 

the wellknown 'dimensionality problem', a topic not of interest as far 

as the present work is concerned.

6.5 Summary of Experimental Results

All the feature evaluation criteria led to quite similar 

recognition results. Recognition scores obtained by the leave-one-out 

principle were much less than those obtained by using the same data 

s~L for both training and testing. Depending on the feature 

evaluation criterion used and the number of features used, the 

difference between the two recognition scores was sometimes found to 

be more than 9%. Whether the same data were used for training and 

testing or the leave-one-out principle was adopted, the recognition 

results obtained by the use of features selected by different criteria 

were quite close to one another. In both cases Pg and P produced 

slightly better results than the other probabilistic criteria. 

Though, in Stage I, the Mahalanobis distance-based criteria made use 

of only the means and the standard deviations of the features, the 

resulting recognition scores were comparable with those by the
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probabilistic methods. Reordering of features in stage II by and
2Dg, taking into account the covariances of features, resulted in

2remarkable improvement in the recognition accuracy but D failed to

produce good results. This was in conformity with the speculation
2 2made in chapter 3 about the effectiveness of D. and D compared to
A 3

that of D2 .

At this point it is worthwhile to make some comments on the

validity of the conclusions drawn on the basis of the recognition 

experiments. In all the recognition experiments the Bayesian

classification criterion was used and, to avoid computational

difficulties, the features were assumed to be independent. Though the 

classification criterion used was optimum from the point of view of 

recognition accuracy, the assumption of independence of features is 

unlikely to be true. Therefore the findings of the experiments cannot 

be taken as conclusive. There are two ways in which this situation 

could be improved. One way would be to work with a synthetic

distribution such that the assumption of independence of features is 

assured. In this case the findings would be conclusive but only for 

the data which fit the distribution. The second alternative would be 

to take into account the interactions of features. But this is not an 

easy task. Estimation of higher order interactions would require a 

large-size data set. Another limitation involved in the present 

experiments was the use of features selected by a suboptimal procedure 

(see section 5.4). An exhaustive search would be needed to remove 

this limitation.

In the light of the above comments it is suggested that, though

the experimental findings conform well with the conjectures made

earlier about the effectiveness of various feature evaluation criteria 
2 2including and Dg, more controlled experiments are required to reach 

decisive conclusions.

2
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CHAPTER 7 

CONCLUSIONS

7.1 Summary of Contributions

Criteria for the evaluation of effectiveness of features in

pattern recognition werestudied both theoretically and experimentally.

Theoretical study consisted of (i) a comparative analysis of various

probabilistic separability/distance measures from the point of view of

their relationship with the Bayesian error probability (P̂ ) and (ii)

the development of two Mahalanobis distance-based criteria. The

experimental study consisted of applying some of the existing criteria 
and. -tke -Hoo proposeek c-yilc-zia

^in the problem of recognition of isolated handprinted numerals.

Since, in many cases, the two-class measures form the basis for 

the development of multiclass measures, the two-class measures were 

discussed in some detail. In the consideration of two-class measures 

particular attention was given to the Bhattacharyya distance and the 

divergence function since they assume closed-form expressions in the 

main family of exponential distributions. It was shown that the 

maximum difference between the existing upper and (tighter) lower 

bounds provided by the Bhattacharyya coefficient cannot exceed 

2 - 1 ) whatever be the a'priori probabilities of the classes (see

section 2.2.1) .
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From the analysis of the development of the probabilistic 

measures it was understood that the trend of research was towards 

defining r^w measures in order to tighten the existing error 

probability bounds or to generalize the existing measures. Though 

some success has been achieved from the point of view of the above two 

objectives, all the suggested measures appear to suffer from the same 

fundamental difficulties that are associated with the direct 

computation of P^. It was found that the Bayesian distance has 

tighter error bounds than most of the other existing measures. But 

even with this measure, for m = 2, the difference between the upper 

and the lower bounds can be as large as 0.125 which, in practical 

pattern recognition problems, is likely to be too large (see section 

2.3.4).

The Mahalanobis distance (A ) is a simple measure defined in

terms of the first and the second order moments only. Existence of a
2distribution-free upper bound on in terms of A has led to the

present investigation of the usefulness of .he Mahalanobis distance as
2 2 a feature evaluation criterion. Two new A -based criteria, namely A,A

2and A , were proposed for feature evalvation. They increaseD
2 2monotonically with increase in A . A increases unboundedly but both 

2 2A. and Aw are upper bounded by 1. Because of this boundedness they A B
2are expected to perform better than A in a multiclass pattern

recognition problem (for details see section 3.3.1). It was

conjectured that the two Mahalanobis distance-based F-statistics used 

for testing the difference between class means and for testing the

sufficiency of a subset of features, respectively, may be applied for
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evaluation of features.

Various probabilistic and Mahalanobis aistance-based criteria 

bave been applied for evaluation of features in the context of 

recognition of handprinted numerals. Though the application area of 

handprinted numeral recognition was chosen for the purpose of 

experimental comparison of various feature evaluation measures, the 

study was also a contribution to the character recognition research 

itself. A heuristic noise reduction scheme was developed for the 

removal of isolated noise specks from the character images. This 

scheme makes use of window sizes varying between 3 x 3  and 5 x 5 .  

Uses of features like 'counts of 'l'-valued pixels in subimages' and 

'characteristic loci' are not new in character recognition. In this 

study the above features were normalized with a view to making them 

less susceptible to variations in character size.

Of the initial 101 featurs extracted from the characters 23 

features were eliminated by a simple preliminary analysis which, in 

line with the terminology of Toussaint [80], may be called a 

'pre-evaluation process'. The remaining 78 features were used in the 

feature ordering experiments.

For the selection of features on the basis of the Mahalanobis

distance-based criteria a two-stage procedure was followed. In the

first stage the features were evaluated individually, thus the 
2computation of D requiring information on only the means and the 

standard deviations of the features. The top 25 features obtained in 

the first stage were rearranged in the second stage by taking into
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account their covariances and following a step-by-step procedure of

inclusion of features starting with one feature. To get a better
2 2 2comparative picture of the three criteria, namely D. , D and D , they
A B

were applied, in stage II, on the same 25 features. The top 25
2features selected by in stage I were used for this purpose.

_ 2Computation of D involves inversion of the covariance matrices. 

Likely computational problems, arising out of attempts to compute the 

inverse of a singular matrix, were avoided by considering the 

generalized inverse. In order to measure the conformity of a pair of 

feature orderings, Kendall's rank correlation coefficient was used 

instead of more widely used Spearman's rank correlation coefficient. 

This was on account of certain distributional as well as computational 

advantages of the former over the latter (see section 5.4.1).

Bayesian decision procedure, simplified under the assumption of 

independence of features, was used as the classification criterion in 

the recognition experiments. Recognition results were obtained by two 

approaches: (i) using the same training and test data, (ii) following

the leave-one-out principle. In each of the two approaches an 

analysis of the recognition results obtained by the use of features 

selected by different feature evaluation criteria leads to a 

comparative assesment of the criteria. As far as the comparison of 

feature evaluation criteria is considered, the above two approches 

produced similar results. In addition, comparison of the two sets of 

results established the existence of severe overestimation of 

recognition accuracy in the case of the use of the same data for both 

training and testing.
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In the second stage the selection of features was made from 25

features only. Moreover, in the step-by-step procedure followed for

the selection of a subset of features all the possible combinations

were not considered. Still the improvement gained in stage II was

quite remarkable (see Figs. 6.1 and 6.5). In view of the fact that

the implementation of a Mahalanobis distance-based criterion is much

simpler than the implementation of a probabilistic criterion, the

experimental results were very encouraging. Experimental results
2 2 2indicated the superiority of and over D (see Fig. 6.4). This

was in line with the conjecture made in section 3.3.1. In general,
2 2 2D. showed better performance than D_. D. is derived on the basis of a A B A

2distribution-free P upper bound whereas derivation of D involves
6 B

2assumption of Gaussian distribution. Moreover, is computationally
2 2 2 simpler than D^. From all these is favoured over as a feature

evaluation criterion.

7.2 Suggestions for Further Research

Further research aimed at defining new probabilistic criteria for

the purposes of generalization of existing criteria and tightening of

existing P bounds does not seem to be of much value as far as the e
solution of a practical pattern recognition problem is concerned. 

Instead, more emphasis should be given to finite sample estimation of 

the existing criteria. So far, in most of the real life applications 

of the probabilistic criteria either the features have been assumed to 

follow Gaussian distribution or, in the nonparametrie cases, the 

features have been assumed to be independent. Nonparametrie
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estimation procedures are required in which higher order interactions 

can be taken into account.

In the present thesis emphasis was devoted to the development of 

simple feature evaluation criteria. Experimental results are quite 

encouraging. Effort is needed to derive theoretical properties of the 

proposed Mahalanobis distance-based criteria. Attempts should be made 

to develop similar criteria which would work directly for m classes.

The two F-statistics described in section 3.4 were not 

investigated experimentally. In a multiclass problem with varying 

sample sizes the degrees of freedom of these statistics would vary 

from class-pair to class-pair, thus making the application of a 

straightforward expected value approach unjustified. Experimental 

investigation of the two statistics should be made after arriving at a 

solution to the above mentioned difficulty.

In this thesis recognition experiments were conducted using the 

Bayesian classifier. Though the Bayesian classifier is an optimum 

classification criterion, the assumption of independence of features 

made in the experiments would have some adverse effect on the 

recognition scores. Therefore it would be interesting to perform the 

recognition experiments using classifiers such as K-Nearest Neighbour 

and minimum distance classifiers.

In the present study experimental comparison 

evaluation methods was made by applying them on a

of various feature 

particular data set,

namely, a set of numeric characters. It might be worth applying them
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on different types of data to see if the comparative picture remained 

the same.

It was argued in this thesis that the 'normalization' process 

applied on the two sets of features extracted from the numeric 

characters should make the features less susceptible to variation in 

character size. Recognition experiments need to be conducted with 

'unnormalized' features to examine the impact of the above 

normalization process.

In this thesis experimental comparison of the feature evaluation 

criteria was made in a distribution-free situation. As pointed out in 

sections 5.5 and 6.5 (pages 152 and 181), experimental comparisons 

were carried out under conditions which are not likely to be valid in 

practice. In view of this, as suggested in the above sections, 

further experiments are necessary to reach decisive conclusions about 

the effectiveness of various feature evaluation criteria.

The main focus of the present study was to make a comparative

assessment of feature evaluation criteria in a multiclass pattern
#

recognition environment, whereas most of the investigated criteria are 

basically of two-class type. The relationship between the 

experimental values of a feature evaluation criterion and the error 

probability was not verified with the theoretical probability of error 

bounds. Two-class experiments should be conducted to study this

important aspect.



189 -

In the present experiments statistical features were considered. 

Research should be pursued to extend the applicability of various 

feature evaluation criteria, more particularly the simple criteria 

like those derived based on the Mahalanobis distance, to syntactic 

features also. Success in this effort would lead to a much wider 

application area of the criteria.
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APPENDIX B1

UNPACK: PROGRAM FOR UNPACKING OF DIGITIZED IMAGES

PROGRAM UNPACK(INPUT,OUTPUT,NOVA,D1,D2,D3,D4,D5,D6,D7,D8,D9,DIO, 
TAPE5=INPUT,TAPE6 =0UTPUT,TAPE7 =N0VA,TAPE11=D1,TAPE12 =D2,
TAPE13 =D3,TAPE14=D4,TAPE15 =D5,TAPE16=D6,TAPE17 =D7,TAPE18=D8, 
TAPE19=D9,TAPE20=D10)

INPUT FILE:
NOVA: DIGITIZED IMAGE CONTAINING 100 NUMERAL SAMPLES

OUTPUT FILES:
Dl, D2, DIO: UNPACKED VERSIONS OF 10 NUMERAL

SAMPLES OBTAINED FROM A SPECIFIED 
FRAME (OUT OF 10 FRAMES)

DIMENSION INOVA(612),INCDC(100)

IMAGE SIZE BEFORE UNPACKING (100 NUMERALS):

IY=608 
IX=600

IMAGE SIZE AFTER UNPACKING (EACH NUMERAL):

IYSIZE=60 
IXSIZE=60

PAIRS OF (AND NO. OF) CDC WORDS USED FOR UNPACKING:

IPAIRS=(IY+4)/15+l 
NUM=INT(FLOAT(IY+4)/7.5)+1 

C
C SPECIFY THE LOCATION OF THE FRAM.1 (CONTAINING 10 NUMERALS)
C TO BE PROCESSED IN ONE RUN (TO UNPACK 100 NUMERALS WRITTEN IN 
C ONE PAGE THE PROGRAM IS EXECUTED 10 TIMES WITH FRAME LOCATIONS 
C 1, 2, 10):
C

PRINT*,'FRAME LOCATION:INX'
READ(5, *)INX
IF(INX*IXSIZE.GT.IX)THEN 
PRINT*,'LOCATION BEYOND RANGE!r 
GO TO 500 
END IF 

C
C READ THE ABOVE SPECIFIED FRAME OF THE IMAGE IN MEMORY 
C AND DO THE UNPACKING 
C

NUNIT=7
IF(INX.EQ.1)GOTO 90 
DO 10 1=1,(INX-1)*IXSIZE
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BUFFER IN(NUNIT,1),(INCDC(1),INCDC(NUM)) 
IF(UNIT(NUNIT))10,30,40 

40 PRINT*,'TAPE PARITY ERROR!'
GO TO 500

30 PRINT*RECORD TOO SHORT!'
GO TO 500 

10 CONTINUE
90 IYl=IY+4

DO 400 1=1,IXSIZE 
C
C CALL THE UNPACKING ROUTINE 
C

CALL TRANSL(NUNIT,INOVA,IY1,IPAIRS,NUM,INCDC)
C
C WRITE THE DATA RECORDS RELATING TO 10 NUMERALS IN THE 
C 10 FILES Dl, D2, ..., DIO.
C

DO 399 IUNIT=11,20 
ILOW=(IUNIT-11)*IYSIZE+5 
IHIGH=ILOW+IYSIZE-l
WRITE(IUNIT.250)(INOVA(K),K=ILOW,IHIGH)

399 CONTINUE 
250 FORMAT(60Z2)
400 CONTINUE 
500 STOP

END
C
C UNPACKING SUBROUTINE 
C

SUBROUTINE TRANSL(IUNIT,INOVA,IROW,IPAIRS,NUM,INCDC) 
DIMENSION INCDC(NUM),INOVA(IROW)
BUFFER IN(IUNIT,1),(INCDC(1),INCDC(NUM))
IF (UNIT(IUNIT))110,150,120 

120 INOVA(1)=111 
RETURN

150 LEN=LENGIH(IUNIT)
IF(LEN.EQ.NUM)GO TO 130
INOVA(1)=3 3 3
RETURN

110 LEN=LENGTH(IUNIT)
IF(LEN.EQ.NUM)GO TO 130 
INOVA(l)=222 
RETURN 

C
130 IT=0 

NP=0
DO 140 1=1,IPAIRS 
IT=IT+1
INOVA(NP+1)=AND(SHIFT(INCDC(IT),-52),377B)
INOVA(NP+2)=AND(SHIFT(INCDC(IT),-44),377B)
INOVA(NP+3)=AND(SHIFT(INCDC(IT),-36),377B)
INOVA(NP+4)=AND(SHIFT(INCDC(IT),-28),377B)
INOVA(NP+5)=AND(SHIFT(INCDC(IT),-2 0),3 77B)
INOVA(NP+6)=AND(SHIFT(INCDC(IT),-12),377B)
INOVA(NP+7)=AND(SHIFT(INCDC(IT),-4), 377B)
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INOVA(NP+8)=OR(AND(SHIFT(INCDC(IT),4),360B),
+ AND(SHIFT(INCDC(IT+1),-56),17B))
C

IT=IT+1
INOVA(NP+9)=AND(SHIFT(INCDC(IT),-48),377B)
INOVA(NP+10)=AND(SHIFT(INCDC(IT),-40),3 77B)
INOVA(NP+11)=AND(SHIFT(INCDC(IT),-32),3 77B)
INOVA(NP+12)=AND(SHIFT(INCDC(IT),-2 4),3 7 7B)
INOVA(NP+13)=AND(SHIFT(INCDC(IT),-16),377B)
INOVA(NP+14)=AND(SHIFT(INCDC(IT),-8), 377B)
INOVA(NP+15)=AND(INCDC(IT),377B)
NP=NP+15 

140 CONTINUE 
RETURN 
END



n
o
n
 

n
o
n

- 203

APPENDIX B2

C
C CONV: PROGRAM FOR GREY-TONE TO TWO-TONE CONVERSION OF CHARACTER 
C MATRICES (THIS PROGRAM CAN GET, PROCESS AND REPLACE A NO.
C OF FILES, STORED IN PERMANENT FILE BASE, FROM WITHIN A
C FORTRAN PROGRAM)
C

PROGRAM CONV(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,
+ TAPE10,TAPE20,TAPE1)
C
C
C INPUT FILE:
C TAPE10: GREY-TONE IMAGE
C OUTPUT FILES:
C TAPE20: TWO-TONE IMAGE
C WORKING FILES:
C 
C 
C

599 

2
600

601

500

604

602

PROCESSING OF THE SPECIFIED NO. OF FILES STARTS HERE:

DO 1 1=1,NFL

GENERATE THE NAME OF THE INPUT FILE AND WRITE IT ON TAPE1

NPF=NPF+1 
REWIND 1
IF(NPF.LE.9)THEN

TAPE1: USED TO GENERATE THE NAMES OF INPUT AND
OUTPUT FILES

DIMENSION IA(60,60)
INTEGER CODE
CHARACTER PFCMD1*80,MSG*40,CCODEI*2,CCODEO*2 
CHARACTER PFCMD2*80 
CHARACTER NMFLI*5,NMFLO*5,MRFILES*3 
WRITE(6,599)
FORMAT(//IX,'ENTER INPUT MATRIX SIZE:NROWS,NCOLS')
READ(5,*)NROWS,NCOLS 
WRITE(6,600)
FORMAT(/IX,'ENTER NO. OF FILES TO BE PROCESSED?')
READ(5,*)NFL 
WRITE(6,601)
FORMAT(/IX,'ENTER CHARACTER CODE FOR INPUT FILES?')
READ(5,500)CCODEI 
FORMAT(1A2)
WRITE(6,604)
FORMAT(/IX,'ENTER CHARACTER CODE FOR OUTPUT FILES?')
READ(5,500)CCODEO 
WRITE(6,602)
FORMAT(/IX,'ENTER NUMERIC PART OF 1ST FILE TO BE PROCESSED?')
READ(5,*)N1F
NPF=N1F-1
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WRITE(1,100)CCODEI,NPF
100 FORMAT(1A2,'00M l )

ELSE IF(NPF.GT.9.AND.NPF.LE.99)THEN 
WRITE(1,101)CCODEI,NPF

101 FORMAT(1A2,'0',12)
ELSE IF(NPF.GT.99)THEN 
WRITE(1,102)CCODEI,NPF

102 FORMAT(1A2,13)
END IF 
REWIND 1
READ(1,103)NMFLI

103 FORMAT(1A5)
PFCMD2='RETURN,TAPE10.'
CALL PFREQ(PFCMD2,MSG,CODE)
PFCMD2='RETURN,TAPE20.'
CALL PFREQ(PFCMD2,MSG,CODE)

OBTAIN, IN TAPE10, THE ABOVE INPUT FILE FROM THE PERMANENT 
FILE BASE

PFCMD1='GET,TAPE10='//NMFLI//'
CALL PFREQ(PFCMD1,MSG,CODE)
IF(CODE.NE.O)THEN 
PRINT*,MSG 
STOP 
END IF 
REWIND 10

CALL THE SUBROUTINE 'BINCON' WHICH DOES THE GREY-TONE TO 
TWO-TONE CONVERSION AND THEN PUTS THE OUTPUT FILE IN TAPE20

CALL BINCON(IA,NROWS,NCOLS,10,20,7)
TAPE20 CREATED!

GENERATE THE NAME OF THE OUTPUT FILE AND WRITE IT ON TAPE1 

REWIND 1
IF(NPF.LE.9)THEN
WRITE(1,100)CCODEO,NPF
ELSE IF(NPF.GT.9.AND.NPF.LE.99)THEN
WRITE(1,101)CCODEO,NPF
ELSE IF(NPF.GT.99)THEN
WRITE(1,102)CCODEO,NPF
END IF
REWIND 1
READ(1,103)NMFLO 
REWIND 1 
REWIND 20

STORE THE OUTPUT FILE IN PERMANENT FILE BASE UNDER THE ABOVE NAME

PFCMD1='REPLACE,TAPE20='//NMFLO//'.'
CALL PFREQ(PFCMD1,MSG,CODE)
IF(CODE.NE.O)THEN 
PRINT*,MSG
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STOP 
END IF 

1 CONTINUE 
WRITE(6,605)

605 FORMAT(/IX,'REQUESTED NO. OF FILES HAVE BEEN PROCESSED'/ 
+ IX,'DO YOU WISH TO PROCESS MORE FILES ?')

READ(5,503)MRFILES 
503 FORMAT(1A3)

IF(MRFILES.EQ.'YES')THEN 
GOTO 2 
END IF 
STOP 
END 

C
SUBROUTINE BINCON(IA,NROWS,NCOLS,TAPEIN,TAPEOUT,ITHRS)

C
INTEGER TAPEIN,TAPEOUT 
DIMENSION IA(100)
REWIND TAPEIN 
REWIND TAPEOUT 
DO 10 1=1,NROWS
READ(TAPEIN,100)(IA(K),K=1,NCOLS)

100 FORMAT(60Z2)
DO 20 K=l,NCOLS 
IF(IA(K).LE.ITHRS)THEN 
IA(K)=0 
ELSE 
IA(K)=1 
END IF 

20 CONTINUE
WRITE(TAPEOUT,200)(IA(K),K=1,NCOLS)

200 FORMAT(IX,6011)
10 CONTINUE 

RETURN 
END
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APPENDIX B3

C
C
C
C

MULTNS: THIS PROGRAM CLEANS NOISE FROM A SPECIFIED 
NUMBER OF FILES

+
PROGRAM MULTNS(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT 
TAPE10,TAPE20,TAPE1)

C
C INPUT FILE:
C
C OUTPUT FILE:
C
C WORKING FILE:

TAPE10: BINARY IMAGE TO BE CLEANED

TAPE20: BINARY IMAGE AFTER CLEANING OF NOISE

C
C
c

TAPE1: USED TO GENERATE THE NAMES OF INPUT AND 
OUTPUT FILES

DIMENSION IA(0:63,-1:62)
INTEGER CODE
CHARACTER PFCMD1*80,MSG*40,CCODEI*2,CC0DE0*2 
CHARACTER PFCMD2*80 
CHARACTER NMFLI*5,NMFLO*5,MRFILES*3 
WRITE(6,599)

599 FORMAT(//IX,'ENTER INPUT MATRIX SIZE:NROWS,NCOLS')
READ(5,*)NROWS,NCOLS

2 WRITE(6,600)
600 FORMAT(/IX,'ENTER NO. OF FILES TO BE PROCESSED?')

READ(5,*)NFL
WRITE(6,601)

601 FORMAT(/IX,'ENTER CHARACTER CODE FOR INPUT FILES?')
READ(5,500)CCODEI

500 FORMAT(1A2)
WRITE(6,604)

604 FORMAT(/IX,'ENTER CHARACTER CODE FOR OUTPUT FILES?')
READ(5,500)CCODEO 
WRITE(6,602)

602 FORMAT(/IX,'ENTER NUMERIC PART OF 1ST FILE TO BE PROCESSED?') 
READ(5,*)N1F
NPF=N1F-1 
DO 1 11=1,NFL

GENERATE THE NAME OF THE INPUT FILE AND WRITE IT ON TAPE1

NPF=NPF+1 
REWIND 1
IF(NPF.LE.9)THEN 
WRITE(1,100)CCODEI,NPF

100 FORMAT(1A2,'00',11)
ELSE IF(NPF.GT.9.AND.NPF.LE.99)THEN 
WRITE(1,101)CCODEI,NPF

101 F0RMAT(1A2,'0',12)
ELSE IF(NPF.GT.99)THEN
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WRITE(1,102)CCODEI,NPF
102 FORMAT(1A2,13)

ENDIF 
REWIND 1
READ(1,103)NMFLI

103 FORMAT(1A5)
PFCMD2='RETURN,TAPE10.'
CALL PFREQ(PFCMD2,MSG,CODE)
PFCMD2='RETURN,TAPE20.'

C
C OBTAIN, IN TAPE10, THE ABOVE INPUT FILE FROM THE PERMANENT 
C FILE BASE 
C

CALL PFREQ(PFCMD2,MSG,CODE)
PFCMD1='GET,TAPE10='//NMFLI//'.'
CALL PFREQ(PFCMD1,MSG,CODE)
IF(CODE.NE.O)THEN 
PRINT*,MSG 
STOP 
ENDIF 
REWIND 10

READ THE CONTENTS OF INPUT FILE (TAPE10) IN MATRIX IA 

DO 15 1=1,NROWS
READ(10,200)(IA(I,J),J=l,NCOLS)

200 F0RMAT(1X,6011)
15 CONTINUE

CALL NRSUB(IA,NROWS,NCOLS)

WRITE THE CONTENTS OF PROCESSED MATRIX ON OUTPUT FILE TAPE20

REWIND 20 
DO 16 1=1,NROWS
WRITE (20,200)(IA(I,J),J=1,NCOLS)

16 CONTINUE
C TAPE20 CREATED!

REWIND 1
IF(NPF.LE.9)THEN
WRITE(1,100)CCODEO,NPF
ELSE IF(NPF.GT.9.AND.NPF.LE.9 9)THEN
WRITE(1,101)CCODEO,NPF
ELSE IF(NPF.GT.9 9)THEN
WRITE(1,102)CCODEO,NPF
ENDIF
PEWIND 1
READ(1,103)NMFLO 
REWIND 1 
REWIND 20
PFCMD1='REPLACE,TAPE2 0='//NMFLO//'.'
CALL PFREQ(PFCMD1,MSG,CODE)
IF(CODE.NE.O)THEN 
PRINT*,MSG 
STOP 
ELSE
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WRITE(6,607)NMFL0
607 FORMAT(IX,'OUTPUT FILE SAVED UNDER THE NAME',3X,,A5) 

ENDIF 
1 CONTINUE 
WRITE(6,605)

605 F0RMAT(/IX,'REQUESTED NO. OF FILES HAVE BEEN PROCESSED'/ 
+ IX,'DO YOU WISH TO PROCESS MORE FILES ?')

READ(5,503)MRFILES 
503 FORMAT(1A3)

IF(MRFILES.EQ.'YES')THEN 
GOTO 2 
ENDIF 
STOP 
END

SUBROUTINE INCORPORATING THE NOISE REDUCTION ALGORITHM

SUBROUTINE NRSUB(A,NROWS,NCOLS)
INTEGER A,SUM
DIMENSION A(0:NROWS+3,-l:NCOLS+2)
DIMENSION SUM(20)

MATRIX A(NROWS,NCOLS) CONTAINS THE ORIGINAL MATRIX

ADD EXTRA ROWS AND COLS CONTAINING ZEROES WHICH WILL BE 
USED BY THE NOISE REDUCTION ALGORITHM

DO 10 J=-l,NCOLS+2 
A (0,J)=0 

10 CONTINUE
DO 1 1=1,NROWS 
A(I,-l)=0 
A (1,0) =0 
A(I,NCOLS+1)=0 
A (I,NCOLS+2)=0

1 CONTINUE
DO 2 I=NROWS+l,NROWS+3 
DO 3 J=-l,NCOLS+2 
A(I,J)=0 

3 CONTINUE
2 CONTINUE

APPLY NOISE REDUCTION ALGORITHM ON MATRIX A

DO 5 1=1,NROWS 
DO 6 J=1,NC0LS 
IF(A(I,J) .EQ. 0)GOTO 6

CHECK FOR CONDITION 1:
SUM OF PREVIOUS AND NEXT ROWS (6 PTS) =0

ISMPR=A(1-1,J-l)+A(1-1,J)+A(1-1,J+l)
ISMNR=A(I+1,J-l)+A(1+1,J)+A(I+1,J+l)
SUM(1)=1SMPR+ISMNR 
IF(SUM(1) .EQ. 0)GOTO 7



o
n

 
o

o
o

o
 

n
o

o
n

 
n

o
o

n
 

n
o

o
n

 
n

o
o

n
 

n
o

o
n

 
n

o
o

n
 

n
o

o
n

- 209 -

CHECK FOR CONDITION 2:
SUM OF PREVIOUS AND NEXT COLS (6 PTS) =0

ISMPC=A(I-1,J-1)tA(I,J-1)+A(I+1,J-1)
ISMNC=A(I-1,J+l)+A(I,J+l)+A(1+1,J+l)
SUM(2)=ISMPC+ISMNC 
IF(SUM(2) .EQ. 0)GOTO 7

CHECK FOR CONDITION 3:
SUM OF SURROUNDING 8 PTS =0 OR 1

SUM(3)=SUM(1)+A(I,J-l)+A(I,J+l)
IF (SUM (3 ) .LE. UGOTO 7

CHECK FOR CONDITION 4:
SUM OF 1-1,1+1,J-l,J+2 (10 PTS) =0 OR 1

ISM2NC=A(I-1,J+2)+A(I,J+2)+A(1+1,J+2)
SUM(4)=SUM(3)-A(I,J+l)+ISM2NC 
IF(SUM(4) .LE. l)GOTO 7

CHECK FOR CONDITION 5:
SUM OF 1-1,1+1,J-2,J+l (10 PTS) =0 OR 1

ISM2PC=A(I-1,J-2)+A(I,J-2)+A(I+l,J-2) 
SUM(5)=SUM(3)-A(I, J-D+ISM2PC 
IF(SUM(5) .LE. 1)GOTO 7

CHECK FOR CONDITION 6:
SUM OF 1-1,1+2,J-l,J+l (10 PTS) =0 OR 1

ISM2NR=A(1+2,J-l)+A(1+2,J)+A(1+2,J+l)
SUM(6)=SUM(3)-A(I+l,JJ+ISM2NR 
IF(SUM(6 ) .LE. l)GOTO 7

CHECK FOR CONDITION 7:
SUM OF I-1,1+1,J-2,J+2 (12 PTS) =0 OR 1

SUM(7)=ISMPR+ISMNR+ISM2PC+ISM2NC 
IF(SUM(7) .LE. 1)GOTO 7

CHECK FOR CONDITION 8:
SUM OF 1-1 1+2,J-l,J+2 (12 PTS) =0 OR 1

SUM(8) =1SMPR+ISM2NR+ISMPC-A(1-1, J-D+ISM2NC+A(1+2 , J+2 ) 
IF(SUM(8) .LE. 1)GOTO 7

CHECK FOR CONDITION 9:
SUM OF 1-1,1+2,J-2,J+l (12 PTS) =0 OR 1

SUM(9)=ISMPR+ISM2NR+ISM2PC+ISMNC-A(1-1,J+l)+A(1+2,J-2) 
IF(SUM(9) .LE. 1)GOTO 7

CHECK FOR CONDITION 10:
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SUM OF 1-1,1+3,J-l,J+l (12 PTS) =0 OR 1

ISM3NR=A(1+3,J-l)+A(1+3,J)+A(1+3,J+l)
ITPC=A(I,J-l)+A(1+1,J-l)+A(1+2,J-1)
ITNC=A(I,J+l)+A(1+1,J+l)+A(1+2,J+l)
SUM(10)=TSMPR+ISM3NR+ITPC+ITNC 
IF(SUM(10) .LE. 1)GOTO 7 

C
C CHECK FOR CONDITION 11:
C SUM OF 1-1,1+2,J-2,J+2 (14 PTS) =0,1, OR 2
C

SUM(ll)=ISMPR+ISM2NR+ISM2PC+ISM2NC+A(I+2,J-2)+A(I+2,J+2) 
IF(SUM(11) .LE. 2)GOTO 7 

C
C CHECK FOR CONDITION 12:
C SUM OF 1-1,1+3,J-l,J+2 (14 PTS) =0,1, OR 2
C

SUM(12)=ISMPR+ISM3NR+ITPC+ISM2NC+A(I+2,J+2)+A(I+3,J+2)
IF(SUM(12) .LE. 2)GOTO 7 

C
C CHECK FOR CONDITION 13:
C SUM OF I-1,1+3,J-2,J+l (14 PTS) =0,1, OR 2
C

SUM(13)=1SMPR+ISM3 NR+ISM2 PC+A(1+2,J-2)+A(1+3,J-2)+ITNC 
IF(SUM(13) .LE. 2)GOTO 7 

C
C CHECK FOR CONDITION 14:
C SUM OF I-1,1+3,J-2,J+2 (16 PTS) =0,1, OR 2
C

SUM(14)=1SMPR+ISM3NR+ISM2 PC+ISM2NC+A(1+2,J-2)+A(1+3,J-2) + 
+ A (1+2,J+2)+A(1+3,J+2)

IF(SUM(14) .GT. 2)GOTO 6 
7 A (I, J) =0 
6 CONTINUE 
5 CONTINUE 
RETURN 
END
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APPENDIX B4

FREQ: PROGRAM FOR EXTRACTION OF 'NORMALIZED FREQUENCY' FEATURES

PROGRAM FREQ(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT,
TAPE10,OUTF,TAPE20=OUTF,TAPE1)

INPUT FILE:
TAPE10: TEMPORARY FILE TO STORE CHARACTER MATRICES, 

ONE AT A TIME, FROM WHICH FEATURES ARE TO 
BE EXTRACTED

OUTPUT FILE: OUTF: NORMALIZED FREQUENCY FEATURES OF THE INPUT
CHARACTER MATRICES

WORKING FILE: TAPE1: USED TO GENERATE THE NAMES OF THE INPUT FILES

INTEGER A(-l:62,-l:62)
DIMENSION IX(20),X(20)
CHARACTER MRFILES*3,CCODEI*2,NMFLI*5

WRITE(6,600)
600 FORMAT(/IX,'ENTER NBI: NO. OF BLOCKS IN VERTICAL (I) DIRECTION?') 

READ(5,*)NBI
WRITE(6,601)

601 FORMAT(/IX,'ENTER NBJ: NO OF BLOCKS IN HORIZ. (J) DIRECTION?') 
READ(5,*)NBJ
REWIND 20 

2 WRITE(6,602)
602 FORMAT(/IX,'ENTER NO. OF FILES TO BE PROCESSED?')

READ(5,*)NFL
WRITE(6,603)

603 FORMAT(/IX,'ENTER CHARACTER CODE FOR INPUT FILES?')
READ(5,500)CCODEI

500 FORMAT(A2)
WRITE(6,604)

604 FORMAT (/ IX, ' ENTER NUMERIC PART OF .-ST FILE TO BE PROCESSED?')
READ(5,*)N1F
NROWS=60
NCOLS=60
N=NBI*NBJ
NPF=N1F-1
DO 1 LL=1,NFL
NPF=NPF+1

GET AN INPUT FILE IN TAPE10 FROM PERMANENT FILE BASE 

CALL GETINF(CCODEI,NPF,NMFLI)

READ THE INPUT FILE IN THE MATRIX A

C
CALL RDMAT(A,NROWS,NCOLS)
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ADD EXTRA ROWS AND COLUMNS TO MATRIX A 

CALL ADDRC(A ,NROWS,NCOLS)

DETERMINE THE CHARACTER RECTANGLE

CALL NUMRECT(A,NROWS,NCOLS,IMIN,IMAX,JMIN,JMAX,IL,JL,KTOT) 

DEVELOP THE FETURES

CALL DEVX(A ,N,NBI,NBJ,KTOT,IL,JL,IMIN,IMAX,JMIN,JMAX,X,SUMX, 
NROWS,NCOLS)

WRITE(20,200)NMFLI,SUMX,(X(I),I=1,N)
200 FORMAT(IX,A5,F10.4,4F10.5/4(16X,4F10.5/))

1 CONTINUE

MITE(6,605)
605 FORMAT(/IX,'REQUESTED NO. OF FILES HAVE BEEN PROCESSED'/ 

IX,'DO YOU WISH TO PROCESS MORE FILES?')
READ(5,501)MRFILES 

501 FORMAT(A3)
IF(MRFILES.EQ.'YES')THEN
GOTO 2
ELSE
CLOSE(20)
ENDIF
STOP
END

SUBROUTINE RDMAT(A,M,N)

THIS SUBROUTINE READS A CHARACTER MATRIX IN THE MATRIX A 

INTEGER A
DIMENSION A(-l:M+2,-l:N+2)
DO 1 1=1,M
READ(10,100)(A(I,J),J=1,N)

100 FORMAT(IX,6011)
1 CONTINUE 
RETURN 
END

SUBROUTINE ADDRC(A,NROWS,NCOLS)

THIS SUBROUTINE ADDS 4 EXTRA ROWS AND 4 EXTRA COLUMNS TO A MATRIX

INTEGER A(-l:NROWS+2,-l:NCOLS+2)
DO 1 J=-l,NCOLS+2 
A(-l,J)=0 
A(0,J)=0 
A (NROWS+1,J)=0 
A(NROWS+2,J)=0
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1 CONTINUE
DO 2 1=1,NROWS 
A(I,-1)=0 
A(I,0)=0 
A (I,NCOLS+1)=0 
A (I,NCOLS+2)=0

2 CONTINUE 
RETURN 
END

SUBROUTINE NUMRECT(A,M,N,II,12,J1,J2,IL,JL,KT0T)
C
C THIS SUBROUTINE OBTAINS THE TWO ROWS AND TWO COLS SURROUNDING
C A NUMERAL
C

INTEGER A,S
DIMENSION A(-l:M+2,-l:N+2),S(60)
KTOT=0
DO 1 1=1,M
S(I)=0
DO 2 J=1,N
S(I)=S(I)+A(I,J)
KTOT=KTOT+A(I,J)

2 CONTINUE 
1 CONTINUE
CALL MNMX (S,M,II,12 )
DO 3 J=1,N 
S(J)=0 
DO 4 1=1,M 
S(J)=S(J)+A(I,J)

4 CONTINUE
3 CONTINUE

CALL MNMX(S,N,J1,J2)
IL=I2-I1+1
JL=J2-J1+1
RETURN
END

SUBROUTINE DEVX(A,N,NBI,NBJ,KTOT,IL,JL,IMIN,IMAX,JMIN,JMAX,X,SUMX, 
NROWS,NCOLS)

THIS SUBROUTINE DEVELOPS THE NORMALIZED FREQUENCY FEATURES

INTEGER A (-1:NROWS+2,-l:NCOLS+2)
DIMENSION X(20),IX(20)

SUBDIVIDE THE CHARACTER RECTANGLE INTO SMALL RECTANGULAR BOXES

NVPBI=IL/NBI 
IREM=IL-NVPBI*NBI 
IF(IREM.GT.0)THEN 
NVPBI=NVPBI+1 
ENDIF
NVPBJ=JL/NBJ
JREM=JL-NVPBJ*NBJ
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IF(JREM.GT.O)THEN 
NVPBJ=NVPBJ+1 
ENDIF 

C
C DEPENDING ON THE NO. OF ROWS PER BOX, ADD EXTRA ROWS TO THE 
C CHARACTER RECTANGLE 
C

IF(IREM.EQ.0)THEN
ISTRT=IMIN
IEND=IMAX
ELSEIF(IREM.EQ.1)THEN 
ISTRT=IMIN-2 
IEND=IMAX+2 
ELSEIF(IREM.EQ.2)THEN 
ISTRT=IMIN-2 
IEND=IMAX+1 
ELSEIF(IREM.EQ.3)THEN 
ISTRT=IMIN-1 
IEND=IMAX+1 
ELSEIF(IREM.EQ.4)THEN 
ISTRT=IMIN-1 
IEND-IMAX 
ENDIF 

C
C DEPENDING ON THE NO. OF COLUMNS PER BOX, ADD EXTRA COLUMNS TO THE 
C CHARACTER RECTANGLE 
C

IF(JREM.EQ.O)THEN 
JSTRT=JMIN 
JEND=JMAX
ELSEIF(JREM.EQ.1)THEN 
JSTRT=JMIN-2 
JEND=JMAX+1 
ELSEIF(JREM.EQ.2)THEN 
JSTRT=JMIN-1 
JEND=JMAX+1 
ELSEIF(JREM.EQ.3)THEN 
JSTRT=JMIN-1 
JEND=JMAX 
ENDIF

DETERMINE THE FREQUENCIES OF 'l'S IN THE BOXES

DO 2 1=1,NBI 
DO 3 J=1,NBJ 
K=(1-1)*NBJ+J 
IX(K)=0
DO 4 I1=ISTRT+(I-1)*NVPBI,ISTRT+I*NVPBI-1 
DO 5 J1=JSTRT+(J-1)*NVPBJ,J STRT+J*NVPBJ-1 
IX(K)=IX(K)+A(II,J1)

5 CONTINUE 
4 CONTINUE 
3 CONTINUE 
2 CONTINUE 

C
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C DETERMINE THE NORMALIZED FREQUENCY FEATURES 
C

SUMX=0 
DO 6 K=1,N
X (K)=REAL(IX(K))/REAL(KTOT) 
SUMX=SUMX+X(K)

6 CONTINUE 
RETURN 
END

SUBROUTINE GETINF(CCODEI,NPF,NMFLI)

THIS SUBROUTINE GETS AN INPUT FILE IN TAPE10 

INTEGER CODE
CHARACTER PFCMD1*80,PFCMD2*80,MSG*40 
CHARACTER CCODEI*2,NMFLI*5 
REWIND 1
IF(NPF.LE.9)THEN 
WRITE(1,100)CCODEI,NPF

100 FORMAT(1A2,'00',11)
ELSE IF(NPF.GT.9.AND.NPF.LE.9 9)THEN 
WRITE(1,101)CCODEI,NPF

101 FORMAT(1A2,'0',12)
ELSE IF(NPF.GT.99)THEN 
WRITE (1,102 ) CCODEI, NPF

102 FORMAT(1A2,13)
ENDIF
REWIND 1
READ(1,103)NMFLI

103 FORMAT(1A5)
PFCMD2='RETURN,TAPE10.'
CALL PFREQ(PFCMD2,MSG,CODE)
?FCMD1='GET,TAPE10='//NMFLI//'.'
CALL PFREQ(PFCMD1,MSG,CODE)
IF(CODE.NE.O)THEN
PRINT*,MSG
STOP
ENDIF
REWIND 10
RETURN
END

SUBROUTINE MNMX(S,N,MIN,MAX)
C
C GIVEN A STRING OF NUMBERS THIS SUBROUTINE OBTAINS THE
C MINIMUM AND MAXIMUM LOCATIONS HAVING NONZERO VALUES
C

INTEGER S(60)
MIN=1
MAX=N
DO 1 1=2,N-l 
IF(S(I).GT.0)THEN 
IF(S(I-1).EQ.0)THEN 
MIN=I



ENDIF 
IF (S(1+1) 
MAX=I 
ENDIF 
ENDIF

1 CONTINUE 
RETURN 
END

.EQ.0)THEN
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APPENDIX B5

C
C CLOCI: PROGRAM FOR EXTRACTION OF NORMALIZED CHARACTERISTIC LOCI 
C FEATURES
C

c
c
c
c
c
c
c
c
c
c

c

PROGRAM CLOCI (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT, 
TAPE10,OUTF,TAPE20=OUTF,TAPE1)

INPUT FILE:
TAPE10: TEMPORARY FILE TO STORE CHARACTER MATRICES, 

ONE AT A TIME, FROM WHICH FEATURES ARE TO 
BE ESTIMATED

OUTPUT FILE:
OUTF: NORMALIZED CHARACTERISTIC LOCI FEATURES OF

THE INPUT CHARACTER MATRICES
WORKING FILE: TAPE1: USED TO GENERATE THE NAMES OF THE INPUT FILES

INTEGER A(-l:62,-l:62)
DIMENSION IFRQ(0:80),X(0:80)
CHARACTER MRFILES*3,CCODEI*2,NKFLI*5

REWIND 20 
2 WRITE(6,602)

602 FORMAT(/IX,'ENTER NO. OF FILES TO BE PROCESSED?')
READ(5,♦)NFL
WRITE(6,603)

603 FORMAT(/IX,'ENTER CHARACTER CODE FOR INPUT FILES?')
READ(5,500)CCODEI

500 FORMAT(A2)
WRITE(6,604)

604 FORMAT(/IX,'ENTER NUMERIC PART OF 1ST FILE TO BE PROCESSED?') 
READ(5,*)N1F
NROWS=60 
NCOLS=60 
NPF=N .F-l 
DO 1 LL=1,NFL 
NPF=NPF+1

GET AN INPUT FILE IN TAPE10 FROM PERMANENT FILE BASE

CALL GETINF(CCODEI,NPF,NMFLI) 

READ THE INPUT FILE IN MATRIX A

CALL RDMAT(A ,NROWS,NCOLS) 

DETERMINE THE CHARACTER RECTANGLE

CALL NUMRECT(A ,NROWS,NCOLS,IMIN,IMAX,JMIN,JMAX,IL,JL,KTOT) 

DEVELOP THE FEATURES
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CALL LCROSS(A,IMIN,IMAX,JMIN,JMAX,IFRQ,ITFRQ,NMFLI)
TFRQ=ITFRQ 
DO 3 1=0,80
X(I)=REAL(IFRQ(I))/TFRQ 

3 CONTINUE
WRITE(20,200)NMFLI,ITFRQ,(X(K),K=0,80)

200 FORMAT(IX,A5,5X,110/(IX,9F8.4))
1 CONTINUE 
WRITE(6,605)

605 FORMAT(/IX,'REQUESTED NO. OF FILES HAVE BEEN PROCESSED'/ 
+ IX,'DO YOU WISH TO PROCESS MORE FILES?')

READ(5,501)MRFILES 
501 FORMAT(A3)

IF(MRFILES.EQ.'YES')THEN
GOTO 2
ELSE
CLOSE(20)
ENDIF
STOP
END

SUBROUTINE GETINF(CCODEI,NPF,NMFLI)

THIS SUBROUTINE GETS AN INPUT FILE IN TAPE10 

INTEGER CODE
CHARACTER PFCMD1*80,PFCMD2*80,MSG*40 
CHARACTER CCODEI*2,NMFLI♦5 
REWIND 1
IF(NPF.LE.9)THEN 
WRITE(1,100)CCODEI,NPF

100 FORMAT(1A2,'00',11)
ELSE IF(NPF.GT.9.AND.NPF.LE.9 9)THEN 
WRITE(1,101)CCODEI,NPF

101 FORMAT(1A2,'0',12)
ELSE IF(NPF.GT.99)T :EN 
WRITE(1,102)CCODEI,NPF

102 FORMAT(1A2,13)
ENDIF 
REWIND 1
READ(1,103)NMFLI

103 FORMAT(1A5)
PFCMD2='RETURN,TAPE10.'
CALL PFREQ(PFCMD2,MSG,CODE) 
PFCMD1='GET,TAPE10='//NMFLI//'.'
CALL PFREQ(PFCMD1,MSG,CODE)
IF(CODE.NE.O)THEN
PRINT*,MSG
STOP
ENDIF
REWIND 10
RETURN
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END
SUBROUTINE RDMAT(A,M,N)

THIS SUBROUTINE READS THE CHARACTER MATRIX IN A 

INTEGER A
DIMENSION A(-l:M+2,-l:N+2)
DO 1 1=1,M
READ(10,100)(A(I,J),J=1,N)

100 FORMAT(IX,6011)
1 CONTINUE 
RETURN 
END

SUBROUTINE NUMRECT(A,M,N,II,12,J1,J2,IL,JL,KTOT)

THIS SUBROUTINE OBTAINS THE TWO ROWS AND TWO COLS SURROUNDING 
A NUMERAL

INTEGER A,S
DIMENSION A(-l:62,-1:62),S(60)
KTOT=0
DO 1 1=1,M
s(I)=0
DO 2 J=1 ,N
S(I)=S(I)+A(I,J)
KTOT=KTOT+A(I,J)

2 CONTINUE 
1 CONTINUE
CALL MNMX(S,M,I1,I2)
DO 3 J=1,N 
S(J)=0 
DO 4 1=1,M 
S(J)=S(J)+A(I,J)

4 CONTINUE
3 CONTINUE

CALL MNMX(S,N,J1,J2)
IL=I2-I1+1
JL=J2-J1+1
RETURN
END

SUBROUTINE LCROSS(A,IMIN,IMAX,JMIN,JMAX,IFRQ,ITFRQ,NMFLI)

THIS SUBROUTINE DEVELOPS THE NORMALIZED CHARACTERISTIC LOCI 
FEATURES

INTEGER A(-l:62,-l:62) 
CHARACTER NMFLI*5 
DIMENSION IFRQ(0:80)

INITIALIZATION OF FREQUENCIES

NZEROS=0 
DO 50 K=0,80
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IFRQ(K)=0 
50 CONTINUE

COMPUTATIONS

DO 1 I=IMIN,IMAX 
DO 2 J=JMIN,JMAX

IF(A(I,J).EQ.0)THEN 
NZER0S=NZER0S+1

COMPUTE THE FOUR LINE CROSSINGS 

COMPUTE NCL: NO. OF CROSSINGS TOWARDS LEFT 

NCL=0
IF(J.GT.JMIN)THEN 
DO 3 J1=J,JMIN+1,-l
IF(A(I, J D  .EQ.0.AND.A(I, Jl-1) .EQ.DTHEN
NCL=NCL+1
END IF

3 CONTINUE

FOR NCL GREATER THAN 2 MAKE IT EQUAL TO 2

IF(NCL.GT.2)THEN
NCL=2
END IF
END IF

COMPUTE NCT: NO. OF CROSSINGS TOWARDS TOP 
NCT=0
IF(I.GT.IMIN)THEN 
DO 6 11=1,IMIN+1,-l
IF(A(I1, J) .EQ.0 .AND. A (11-1, J) .EQ.DTHEN 
NCT=NCT+1 
END IF 

6 CONTINUE
IF(NCT.GT.2 )THEN
NCT=2
END IF
END IF

COMPUTE NCR: NO. OF CROSSINGS TOWARDS RIGHT 

NCR=0
IF(J.LT.JMAX)THEN 
DO 8 J1=J,JMAX-1
IF(A(I,J1) .EQ.O.AND.A(I,J1+1) .EQ.DTHEN
NCR=NCR+1
END IF

8 CONTINUE
IF(NCR.GT.2)THEN 
NCR=2



n
 n

 n
 

n
o

n
 

n
o

n
 

n
o

n

- 221 -

ENDIF 
END IF

COMPUTE NCB: NO. OF CROSSINGS TOWARDS BOTTOM

NCB=0
IF(I.LT.IMAX)THEN 
DO 10 11=1,IMAX-1
IF(A(I1,J).EQ.O.AND.A(11+1,J).EQ.l)THEN
NCB=NCB+1
ENDIF

10 CONTINUE
IF(NCB.GT.2)THEN
NCB =2
ENDIF
ENDIF

COMPUTE FREQUENCIES OF CODES 0,1,2, ...,80

KVAL=2 7 *NCL+9*NCT+3♦NCR+NCB 
IFRQ(KVAL)=IFRQ(KVAL)+1 
ENDIF

2 CONTINUE 
1 CONTINUE

CALCULATE ITFRQ: TOTAL FREQUENCY

ITFRQ=0 
DO 51 K=0,80 
ITFRQ=ITFRQ+IFRQ(K)

51 CONTINUE

CROSS-CHECK TOTAL FREQUENCY

IF(NZEROS.NE.ITFRQ)THEN 
WRITE(6,601)NMFLI

601 FORMAT(/IX,'FILE ',A5,': CALCULATION DOUBTFUL')
STOP 
ENDIF 
RETURN 
END

SUBROUTINE MNMX(S,N,MIN,MAX)
C
C GIVEN A STRING OF NUMBERS THIS SUBROUTINE OBTAINS THE
C MINIMUM AND MAXIMUM LOCATIONS HAVING NONZERO VALUES
C

INTEGER S(60)
MIN=1
MAX=N
DO 1 1=2,N-l
IF(S(I).GT.0)THEN
IF(S(1-1).EQ.0)THEN
MIN=I
ENDIF
IF(S(I+1).EQ.OJTHEN



MAX=I 
END IF 
END IF

1 CONTINUE 
RETURN 
END
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APPENDIX B6

C
C

C
C
C

HISPDF: PROGRAM FOR ESIMATION OF CLASS-CONDITIONAL PROBABILITIES BY 
HISTOGRAM APPROACH

PROGRAM HISPDF(INPUT,OUTPUT,INF1,INF2,OUTF,TAPE5=INPUT,
+ TAPE6=OUTPUT,TAPE10=INF1,TAPE11=INF2,TAPE20=OUTF)
C
C INPUT FILES:
C INF1:
C
C INF2:
C
C OUTPUT FILE:
C OUTF:
C
c 
c

DIMENSION X(100),XMIN(100),XMAX(100),FRQ*100,15)
DIMENSION XSAMPL(100,20),H(100).XRANGE(IOO)

C

FEATURE VALUES OF DIFFERENT CHARACTER SAMPLES
BELONGING TO A NUMERAL CLASS
MINIMUM AND MAXIMUM VALUES OF FEATURES

ESTIMATED VALUES OF THE CLASS-CONDITIONAL 
PROBABILITIES

WRITE(6,600)
600 FORMAT(IX,'ENTER NO. 

READ(5,*)N
WRITE(6,601)

601 FORMAT*IX,'ENTER NO. 
READ(5,*)NOBS 
WRITE(6,607)

607 FORMAT*IX,'ENTER NO. 
READ(5,*)NSKIP 
WRITE(6,602)

602 FORMAT(IX,'ENTER NO. 
READ(5,*)NPNTS 
REWIND 10
REWIND 11 
REWIND 20

OF FEATURES: N ?')

OF OBSERVATIONS: NOBS ? ' )

OF OBS. TO SKIP: NSKIP ?')

OF SAMPLING POINTS: NPNTS ?')

READ IRE MINIMUM AND MAXIMUM VALUES OF FEATURES

READ(11,110)(XMIN(I),XMAX(I),1=1,N) 
110 FORMAT(IX,8F8.4)

COMPUTE RANGES OF FEATURES

ISWITCH=1 
DO 11 1=1,N
XRANGE(I)=XMAX(I)-XMIN(I) 
IF(XRANGE(I).LT.1.0E-10)IREN 
ISWITCH=0
WRITE(6,603)I,XRANGE(I)
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603 FORMAT(IX,'FEATURE NO. ',14/ HAS VERY SMALL RANGE:',E14.7) 
ENDIF

11 CONTINUE
IF(ISWITCH.EQ.0)THEN 
WRITE(6,604)

604 FORMAT(IX,'DISCARD THE ABOVE FEATURES FROM INPUT LIST')
STOP 
ELSE

COMPUTE (INTERVAL LENGTH)/2 FOR THE FEATURES

XNP=NPNTS 
DO 1 1=1,N
H (I)=XRANGE(I)/(XNP*2.0)

1 CONTINUE

COMPUTE POINTS REPRESENTING SAMPLING INTERVALS

DO 2 1=1,N 
DO 3 J=1,NPNTS 
FRQ(I,J)=0
XSAMPL(I,J)=XMIN(I)+H(I)*(2.0*REAL(J)-l.0)

3 CONTINUE
2 CONTINUE

SKIP DESIRED NO. OF OBSERVATIONS

IF(NSKIP.GT.0)THEN 
DO 13 L=1,NSKIP 
READ(10,101)
READ(10,102)(X(I),1=1,N)

13 CONTINUE 
ENDIF

DETERMINE NO. OF OBS. FALLING IN DIFFERENT SAMPLING INTERVALS

DO 4 L=1,NOBS 
READ(10,101)

101 FORMAT( )
READ(10,102)(X(I),I=1,N)

102 FORMAT(IX,8F8.4)
DO 5 1=1,N
IF(X(I).LT.(XSAMPL(I,1)+H(I)))THEN 
FRQ(1,1)=FRQ(I,1)+1.0 
GOTO 5
ELSE IF(X(I).GE.(XSAMPL(I,NPNTS)-H(I)))1HEN 
FRQ(I,NPNTS)=FRQ(I,NPNTS)+1.0 
GOTO 5 
ELSE
DO 6 J=2,NPNTS-1
IF((X(I).GE.(XSAMPL(I,J)-H(I))).AND.(X(I).LT.(XSAMPL(I,J)

+ +H(I))))THEN
FRQ(I,J)=FRQ(I,J)+1.0
GOTO 5
ENDIF
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6 CONTINUE 
END IF

5 CONTINUE 
4 CONTINUE

ESTIMATE PROBS. OF SAMPLING INTERVALS

XNOBS=NOBS
DO 7 1=1,N
DO 8 J=1,NPNTS
FRQ(I, J)=FRQ(I,J)/XNOBS

8 CONTINUE
7 CONTINUE

WRITE THE ESTMATED PROBS. IN OUTPUT FILE:OUTF 

DO 9 1=1,N
WRITE(20,201)(FRQ(I,J),J=1,NPNTS)

201 F0RMAT(1X,5F8.4)
9 CONTINUE 
END IF 
STOP 
END
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APPENDIX B7

C
C AVDIST:
C FOR EACH OF A NO. OF FEATURES THIS PROGRAM CALCULATES THE VALUES 
C TAKEN BY A SPECIFIED PROBABILISTIC DISTANCE CRITERION BETWEEN 
C DIFFERENT CLASS-PAIRS,ITS AVERAGE OVER ALL CLASS-PAIRS, AND THEN 
C ARRANGES THE FEATURES IN DESCENDING/ASCENDING ORDER OF THE VALUES 
C

PROGRAM AVDIST(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,INF,OUTF1, 
+ OUTF2,TAPE10=INF,TAPE2l=OUTFl,TAPE22=0UTF2)
C
C NOTE: APRIORI PROBABILITIES ARE TAKEN TO BE EQUAL 
C
C INPUT FILE:
C INF: CLASS-CONDITIONAL PROBABILITIES OF DIFFERENT

FEATURES
C
C
C
C
C
C
C
C
C

C

OUTPUT FILES:
OUTF1: VALUES, BETWEEN VARIOUS CLASS-PAIRS AND FOR 

EACH FEATURE, THE VALUES OF THE SPECIFIED 
CRITERION

OUTF2: FEATURES ARRANGED IN DECREASING ORDER OF THEIR
EFFECTIVENESS (TOGETHER WITH THE CRITERION-VALUES)

DIMENSION P(13,10),D(13,13),AVD(78),AVDW(78),
ILOC(78),ILOCW(78)

INTEGER U 
REAL KOLMS,MATUS 
CHARACTER IGNORE*3 
DATA MAXM/13/,MAXPNTS/10/

REWIND 10 
REWIND 21 
REWIND 22 
WRITE(6,605)

605 FORMAT(IX,'REFER TO THE FOLLOWING LIST TO SELECT DISTANCE'/
+ IX,'CRITERION IDENTIFICATION CODE:')

WRITE(6,606)
606 FORMAT(/12X,'BAYESIAN PROB. OF ERROR: 1'/

+ 12X,'KOLMOGOROV VARIATIONAL DIST.: 2'/
+ 12X,'BHATTACHARYYA COEFFICIENT: 3'/
+ 12X,'MATUSITA DISTANCE: 4'/
+ 12X,'DIVERGENCE FUNCTION: 5')

SPECIFY THE FEATURE EVALUATION CRITERION TO BE USED

WRITE(6,651)
651 FORMATS/IX,'ENTER DIST. CRITERION IDENT. CODE: ICRIT') 

READ(5,*)ICRIT 
GOTO(11,12,13,14,15), ICRIT
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11 WRITE(21,215)
215 FORMAT(///IX,'BAYESIAN ERROR PROBS FOR DIFFERENT CLASS-PAIRS'/

+ IX,'WITH ASSUMPTION OF EQUAL APRIORI PROBS.')
WRITE(22,225)

225 FORMAT(///IX,'FEATURE ORDERING BY 2-CLASS BAYESIAN ERROR'/IX,
+ 'PROBABILITY METHOD, WITH EQUAL APRIORI PROBS.')

GOTO 20
12 WRITE(21,216)

216 FORMAT(///IX,'KOLM. VAR. DISTANCES FOR DIFFERENT CLASS-PAIRS'/
+ IX,'WITH ASSUMPTION OF EQUAL APRIORI PROBS.')

WRITE(22,226)
226 FORMAT(///IX,'FEATURE ORDERING BY KOLM. VAR. DIST.,'/1X,

+ 'WITH EQUAL APRIORI PROBABILITIES')
GOTO 20

13 WRITE(21,217)
217 FORMAT(///IX,'BHATTACHARYYA COEFFS FOR DIFFERENT CLASS-PAIRS'/

+ IX,'WITH ASSUMPTION OF EQUAL APRIORI PROBS.')
WRITE(22,227)

227 FORMATS//IX,'FEATURE ORDERING BY BHATTACHARYYA COEFFS.,'/IX, 
+ 'WITH EQUAL APRIORI PROBABILITIES')

GOTO 20
14 WRITE(21,218)

218 FORMAT(///IX,'MATUSITA DISTANCES FOR DIFFERENT CLASS-PAIRS'/
+ IX,'WITH ASSUMPTION OF EQUAL APRIORI PROBS.')

WRITE(22,228)
228 FORMAT(///IX,'FEATURE ORDERING BY MATUSITA DISTANCE,'/IX,

+ 'WITH EQUAL APRIORI PROBABILITIES')
GOTO 20

15 WRITE(21,219)
219 FORMATS//IX,'VALUES OF DIV. FN. FOR DIFFERENT CLASS-PAIRS'/

+ IX,'WITH ASSN. OF EQUAL APRIORI PROBS.')
WRITE(22,229)

229 FORMATS//IX,'FEATURE ORDERING BY DIVERGENCE FUNCTION,'/IX,
+ 'WITH EQUAL APRIORI PROBABILITIES')

20 WRITE(6,601)
601 FORMAT(IX,'ENTER NO. OF FEATURES: N')

READ(5,*)N
WRITE(6,602)

602 FORMAT(IX,'ENTER NO. OF CLASSES: M')
READ(5,*)M
WRITE(6,603)

603 FORMAT(IX,'ENTER NO. OF SAMPLING POINTS: NPNTS')
READ(5,*)NPNTS
WRITE(6,*)' DO YOU NEED TO IGNORE SOME CLASS-PAIRS?'
READ(5,*)IGNORE 
PAIRS=M*(M-l)/2 
IF(IGNORE.EQ.'YES')THEN 
PAIRS=PAIRS-3.0 
ENDIF 

C
C FOR EACH OF THE N FEATURES DETERMINE THE VALUE OF THE 
C SPECIFIED CRITERION FUNCTION 
C 
C

DO 1 K=1,N
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C READ THE (ESTIMATES OF) M CLASS-CONDITIONAL PROBABILITIES 
C FOR THE FEATURE UNDER CONSIDERATION FROM INF 
C

DO 2 1=1,M
READ(10,101)(P(I,U),U=1,NPNTS)

101 FORMAT(9X,10F8.4)
2 CONTINUE 

C
C
C COMPUTE THE VALUES OF THE SPECIFIED DISTANCE CRITERION 
C BETWEEN VARIOUS CLASS-PAIRS 
C

DO 3 1=1,M-l 
DO 4 J=I+1,M
GOTO(31,32,33,34,35),ICRIT

31 D(I,J)=PERRS(P,M,MAXM,NPNTS,MAXPNTS,I,J)
GOTO 40

32 D(I,J)=KOLMS(P,M,MAXM,NPNTS,MAXPNTS,I,J)
GOTO 40

33 D(I,J)=BHATS(P,M,MAXM,NPNTS,MAXPNTS,I,J)
GOTO 40

34 D(I,J)=MATUS(P,M,MAXM,NPNTS,MAXPNTS,I,J)
GOTO 40

35 D(I,J)=DIVER(P,M,MAXM,NPNTS,MAXPNTS,I,J)
40 CONTINUE
4 CONTINUE
3 CONTINUE 

C
C WRITE THE VALUES OF THE CRITERION FUNCTION UNDER CONSIDERATION 
C ON THE OUTPUT FILE OUTF1 
C

WRITE(21,211)K
211 FORMAT(IX,'FEATURE NO. =',I5)

DO 5 1=1,M-l
WRITE(21,212)(D(I,J),J=I+1,M)

212 FORMAT(IX,6E13.6)
5 CONTINUE 

C
C IGNORE THE VALUES (OF THE CRITERION FUNCTION) FOR CLASS-PAIRS 
C REPRESENTING THE SAME NUMERAL 
C

IF(IGNORE.EQ.'YES')THEN 
D(2,3)=0 
D(6,7)=0 
D(10,11)=0 
END IF 

C
C (FOR THE FEATURE UNDER CONSIDERATION) COMPUTE THE AVERAGE VALUE 
C OF THE CRITERION FUNCTION OVER ALL THE CLASS-PAIRS (EXCEPT THOSE 
C REPRESENTING THE SAME NUMERAL)
C

AVD(K)=0 
DO 6 1=1,M-l 
DO 7 J=I+1,M
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AVD(K)=AVD(K) +D (I, J)
7 CONTINUE 
6 CONTINUE
AVD(K)=AVD(K)/PAIRS
IF(ICRIT.EQ.1.OR.ICRIT.EQ.3)THEN
TEMP=-AVD(K)
AVD(K)=TEMP
ENDIF

C
1 CONTINUE 

C 
C
C ARRANGE THE FEATURES IN DECREASING ORDER OF EFFECTIVENESS 
C BY ARRANGING THE VALUES OBTAINED ABOVE (USING THE 'NAG'
C ROUTINE M01AKF)
C

NW=N
IFAIL=1
CALL M01AKF(AVD,AVDW,ILOC,ILOCW,N,NW,IFAIL)
IF(ICRIT.EQ.1.OR.ICRIT.EQ.3)THEN
DO 9 K=1,N
AVD(K)=-AVD(K)

9 CONTINUE 
ENDIF 

C
C WRITE THE FEATURE NUMBERS IN THE ORDER OBTAINED ABOVE TOGETHER 
C WITH THEIR CRITERION-VALUES)
C

WRITE(22,221)(AVD(K),ILOC(K),K=1,N)
221 F0RMAT(4(1X,E13.6,2X,I4))

C
CLOSE(21)
CLOSE(22)
STOP
END

C
FUNCTION PERRS(P,M,MAXM,NPNTS,MAXPNTS,IROW1,IROW2)

C
C THIS FUNCTION SUBPROGRAM CALCULATES THE BAYESIAN PROBABILITY 
C OF ERROR BETWEEN TWO ARRAYS OF PROBABILITIES 
C

REAL P(MAXM,MAXPNTS)
PERRS=0
DO 1 IU=1,NPNTS
PERRS=PERRS+MIN(P(IROW1,IU),P(IROW2,IU))

1 CONTINUE
PERRS=0.5 0*PERRS 
END 

C
FUNCTION KOLMS(P,M,MAXM,NPNTS,MAXPNTS,IROW1,IROW2)

REAL KOLMS 
C
C THIS FUNCTION SUBPROGRAM CALCULATES THE KOLMOGOROV 
C VARIATIONAL DISTANCE BETWEEN TWO ARRAYS OF PROBABILITIES 
C
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REAL P(MAXM,MAXPNTS)
KOLMS=0
DO 1 IU=1,NPNTS
KOLMS=KOLMS+ABS(P(IROW1,IU)-P(IROW2, IU))

1 CONTINUE
KOLMS=0.25*KOLMS
END

C
FUNCTION BHATS(P,M,MAXM,NPNTS,MAXPNTS,IROW1,IROW2)

C
C THIS FUNCTION SUBPROGRAM CALCULATES THE BIIATTACIIARYYA 
C COEFFICIENT BETWEEN TWO ARRAYS OF PROBABILITIES 
C

REAL P(MAXM,MAXPNTS)
BHATS=0
DO 1 IU=1,NPNTS
BHATS=BHATS+SQRT(P(IROW1,IU)*P(IROW2, IU))

1 CONTINUE 
END 

C
FUNCTION MATUS(P,M,MAXM,NPNTS,MAXPNTS,IROW1,IROW2)

C
C THIS FUNCTION SUBPROGRAM CALCULATES THE MATUSITA 
C DISTANCE BETWEEN TWO ARRAYS OF PROBABILITIES 
C

REAL P(MAXM,MAXPNTS),MATUS 
BHATS=0
DO 1 IU=1,NPNTS
BHATS=BHATS+SQRT(P(IROW1,IU)*P(IROW2,IU))

1 CONTINUE
MATUS=SQRT(2.0*(1.0-BHATS))
END

C
FUNCTION DIVER(P,M,MAXM,NPNTS,MAXPNTS,IROW1,IROW2)

C
C THIS FUNCTION SUBPROGRAM CALCULATES THE DIVERGENCE FUNCTION 
C BETWEEN TWO ARRAYS OF PROBABILITIES 
C

REAL P(MAXM,MAXPNTS)
DATA ZEROLOG/-6.192/
DIVER=0.0
DO 1 IU=1,NPNTS
PI=P(IROW1,IU)
P2 =P(IROW2,IU)
DIFF=P1-P2
IF(ABS(DIFF) .GE.0.000DTHEN 
IF(PI.GE.0.01)THEN 
P1L0G=L0G(P1)
ELSE
PlLOG=ZEROLOG 
END IF
IF(P2 .GE.O.ODTHEN 
P2LOG=LOG(P2)
ELSE
P2 LOG=ZEROLOG
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ENDIF
DIVER=DIVER+(P1-P2)*(P1L0G-P2 LOG) 
ENDIF 

1 CONTINUE 
END
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APPENDIX B8

C
C MCLASS:
C FOR EACH OF A NO. OF FEATURES THIS PROGRAM CALCULATES THE VALUES 
C OF A SPECIFIED PROBABILISTIC DISTANCE CRITERION, AND THEN 
C ARRANGES THE FEATURES IN ASCENDING/DESCENDING ORDER OF THESE 
C VALUES 
C
C NOTE: THIS PROGRAM WORKS FOR BOTH EQUAL AND UNEQUAL APRIORI 
C PROBABILITIES
C

C
C
C
C
C
C
C
C
C
C

PROGRAM MCLASS(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT, 
INF,OUTF,TAPE10=INF,TAPE20=OUTF)

INPUT FILE:
INF: CLASS-CONDITIONAL PROBABILITIES OF DIFFERENT 

FEATURES

OUTPUT FILE:
OUT?: FEATURES ARRANGED IN DECREASING ORDER OF THEIR 

EFFECTIVENESS AND THE VALUES OF THE FEATURE 
EVALUATION CRITERION USED

DIMENSION P(13,10),AP(13),D(78),DW(78),ILOC(78),ILOCW(78) 
INTEGER U 
REAL MATUMS 
CHARACTER PRIOR*3
CHARACTER HDR1*2 7,HDR2*13,HDR3 *13,HDR4 *2 2 
CHARACTER *32 HDR51,HDR52,HDR53,HDR54 
PARAMETER(HDR1='FEATURE ORDERING BY M-CLASS')
PARAMETER(HPR2 ='WITH EQUAL ')
PARAMETER(HDR3 =' WITH UNEQUAL')
PARAMETER(HDR4=' APRIORI PROBABILITIES')
PARAMETER(HDR51=' BAYESIAN PROBABILITY OF ERROR ')
PARAMETER(HDR52=' AFFINITY MEASURE OF MATUSITA ')
PARAMETER(HDR53=’ CONDITIONAL ENTROPY OF SHANNON')
PARAMETER'HDR54=' BAYESIAN DISTANCE OF DEVIJVER ')

C
REWIND 10 
REWIND 20 

C
WRITE(6,605)

605 FORMAT(IX,'REFER TO THE FOLLOWING CODE-LIST TO SELECT THE'/
+ IX,'DESIRED M-CLASS DISTANCE CRITERION:')

WRITE(6,606)
606 F0RMAT(/12X,'BAYESIAN PROBABILITY OF ERROR : l'/lX,

+ 1IX,'MATUSITA" S MEASURE OF AFFINITY: 2 '/
+ 12X,'SHANNON''S CONDITIONAL ENTROPY: 3'/
+ 12X,'BAYESIAN DISTANCE OF DEVIJVER: 4')

SPECIFY THE FEATURE EVALUATION CRITERION TO BE USED
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C
WRITE(6,607)

607 FORMAT(//IX,'ENTER THE CRITERION ID. CODE: ICRIT')
READ(5,*)ICRIT
WRITE(6,601)

601 FORMAT(IX,'ENTER NO. OF FEATURES: N ')
READ(5,*)N
WRITE(6,602)

602 FORMAT(IX,'ENTER NO. OF CLASSES: M ')
READ(5, *)M
WRITE(6,603)

603 FORMAT(IX,'ENTER NO. OF SAMPLING POINTS: NPNTS ')
READ(5,*)NPNTS
WRITE(6,608)

608 FORMAT(IX,'ARE THE APRIORI PROBS. UNEQUAL ?')
READ(5,501)PRIOR

501 FORMAT(A3)
IF(PRIOR.EQ.'YES')THEN 
WRITE(6,604)

604 FORMAT(IX,'ENTER APRIORI PROBABILITIES: AP(I)"S')
READ(5,*)(AP(I),1=1,M)
GOTO(11,12,13,14),ICRIT

11 WRITE(20,212)HDR1,HDR51,HDR3,HDR4 
GOTO 20

12 WRITE (2 0,212 ) HDR1, HDR52 , HDR3 , HDR4 
212 FORMAT(///2X,A27,A32/2X,A13,A22)

GOTO 20
13 WRITE(2 0,212)HDR1,HDR53,HDR3,HDR4 

GOTO 20
14 WRITE(20,212)HDR1,HDR54,HDR3,HDR4 

C
ELSE 
REALM=M 
DO 10 1=1,M 
AP (I) =1.0 / REALM 

10 CONTINUE
GOTO(21,22,23,24),ICRIT

21 WRITE(2 0,212)HDR1,HDR51,HDR2,HDR4 
GOYO 20

22 WRITE(20,212 )HDR1 ,HDR52 ,HPR2 ,HDR4 
GOTO 20

2 3 WRITE (2 0,212 ) HDR1, HDR5 3 , HDR2 , HDR4 
GOTO 20

24 WRITE (2 0,212 ) HDR.1, HDR5 4, HDR2 , HDR4 
C

ENDIF
C
C FOR EACH OF THE N FEATURES DETERMINE THE VALUE OF THE SPECIFIED 
C CRITERION FUNCTION 
C

20 DO 1 K=1,N 
C
C READ THE (ESTIMATES OF) M CLASS-CONDITIONAL PROBABILITIES FOR 
C THE FEATURE UNDER CONSIDERATION FROM INF 
C
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DO 2 1=1,M
READ(10,101)(P(I,U),U=1,NPNTS)

101 FORMAT(9X,10F8.4)
2 CONTINUE

COMPUTE THE VALUE OF THE CRITERION FUNCTION UNDER CONSIDERATION

GOTO(31,32,33,34),ICRIT
31 D(K)=PERRMS(M,NPNTS,AP,P)

GOTO 30
32 D(K)=MATUMS(M,NPNTS,AP,P)

GOTO 30
33 D(K)=EQUIMS(M,NPNTS,AP,P)

GOTO 30
34 D(K)=DEVIMS(M,NPNTS,AP,P)

GOTO 1
30 D(K)=-D(K)

C
1 CONTINUE 

C
C ARRANGE THE FEATURES IN DECREASING ORDER OF EFFECTIVENESS 
C BY ARRANGING THE CRITERION-VALUES OBTAINED ABOVE 
C

NW=N
IFAIL=1
CALL MO1AKF(D,DW,ILOC,ILOCW,N,NW,IFAIL)
IF(ICRIT.NE.4)THEN 
DO 9 K=1,N 
D(K)=-D(K)

9 CONTINUE 
ENDIF 

C
C WRITE THE FEATURE NUMBERS IN THE ORDER OBTAINED ABOVE, TOGETHER 
C WITH THEIR CRITERION-VALUES, ON OUTF 
C

WRITE(20,201)(D(K),ILOC(K),K=1,N)
201 FORMAT(4(1X,E13.6,2X, 14))

C
CLOSE(20)
STOP
END

C
FUNCTION PERRMS(M,NPNTS,AP,P)

C
C THIS FUNCTION SUBPROGRAM CALCULATES THE BAYESISN ERROR 
C PROBABILITY IN AN M-CLASS SITUATION 
C

DIMENSION AP(M),P(M,NPNTS)
INTEGER U 
PERRMS=1.0 
DO 1 U=l,NPNTS 
PMAX=AP(1)*P(1,U)
DO 2 1=2,M 
PROD=AP(I)*P(I,U)
IF(PMAX.LT.PROD)THEN
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PMAX=PROD 
END IF

2 CONTINUE
PERRMS=PERRMS-PBIAX 

1 CONTINUE 
END 

C
FUNCTION MATUMS(M,NPNTS,AP,P)

C
C THIS FUNCCTION SUBPROGRAM CALCULATES THE BP-CLASS 
C AFFINITY OF MATUSITA 
C

REAL MATUMS, AP(M),P(M,NPNTS)
INTEGER U 

C
POWER=l.0/REAL(M)
EPS=1.0E-260 
TERM1=1.0 
DO 1 1=1,M 
TERM1=TERM1*AP(I)

1 CONTINUE
IF(TERM1.GT.EPS)THEN
TERM1=TERM1* * POWER
ELSE
TERM1=0
END IF
TERM2 =0
DO 3 U=1,NPNTS 
PROD=l 
DO 4 1=1,M 
PROD=PROD* P(I, U)

4 CONTINUE
IF(PROD.GT.EPS)THEN 
PROD=PROD**POWER 
TERM2 =TERM2 +PROD 
ENDIF

3 CONTINUE
BIATUBI S=TERM 1 * TERM2 
END 

C
FUNCTION EQUIMS(M,NPNTS,AP,P)

C
C THIS FUNCTION SUBPROGRAM CALCULATES THE BP-CLASS CONDITIONAL 
C ENTROPY ( EQUIVOCATION ) OF SHANNON 
C

REAL AP(M),P(M,NPNTS)
INTEGER U
EPS=1.OE-260
EQUIMS=0
DO 1 U=l,NPNTS
TERBI1=0
DO 2 1=1,M
TERM1=TERBI1 +AP(I)*P(I,U)

2 CONTINUE
IF(TERM1.GT.EPS)THEN
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TERM1=TERM1* LOG(TERM1)
ELSE
TERM1=0
END IF
TERM2=0
DO 3 1=1,M
PROD=AP(I)*P(I,U)
IF(PROD.GT.EPS)THEN 
TERM2=TERM2+PROD*LOG(PROD)
END IF 

3 CONTINUE
EQUIM S=EQUIMS +TERM1-TERM2 

1 CONTINUE 
END 

C
FUNCTION DEVIMS(M,NPNTS,AP,P)

C
C THIS FUNCTION SUBPROGRAM CALCULATES M-CLASS BAYESIAN 
C DISTANCE OF DEVIJVER 
C

REAL AP(M),P(M,NPNTS)
INTEGER U
EPS=1.OE-2 60
DEVIMS=0
DO 1 U=1,NPNTS
XNUM=0
XDEN=0
DO 2 1=1,M
PROD=AP(I)*P(I,U)
XDEN=XDEN+PROD 
PRODSQ=PROD*PROD 
XNUM=XNUM+PROD SQ 

2 CONTINUE
IF(XDEN.GT.EPS)THEN 
DEVIMS=DEVIMS+XNUM/XDEN 
END IF 

1 CONTINUE 
END
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APPENDIX B9

C
C MAHAL1:
C FOR EACH OF A NO. OF FEATURES THIS PROGRAM CALCULATES THE VALUES 
C TAKEN BY MAHALANOBIS DISTANCE BETWEEN DIFFERENT CLASS-PAIRS(WITH 
C ASSUMPTION OF INDEPENDENT FEATURES), ITS AVERAGE OVER ALL 
C CLASS-PAIRS, AND THEN ARRANGES THE FEATURES IN DESCENDING ORDER 
C OF THE AVERAGE VALUES 
C

PROGRAM MAHAL1(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,
+ INF,OUTF1,OUTF2,TAPE10=INF,TAPE2l=OUTFl,TAPE22 =0UTF2,
+ OUTF3,TAPE23 =OUTF3)
C
C NOTE: APRIORI PROBABILITIES ARE TAKEN TO BE EQUAL 
C
C INPUT FILE:
C INF:
C 
C
C OUTPUT FILES:
C OUTF1:
C 
C
C OUTF2:
C
c
C OUTF3:
C

DIMENSION NOBS(13),AM(13,78),SD(13,78),AVD(78),AVDW(78) 
DIMENSION ILOC(78),ILOCW(78)
DIMENSION XNOBS(13)

C
CHARACTER*3 IGNORE

C STATEMENT FUNCTION DEFINING THE CRITERION 
FUNC(DD)=1.O-EXP(-DD/8.0)

C
REWIND 10 
REWIND 21 
REWIND 22 
REWIND 23 

C
WRITE(22,222)

222 FORMAT(///IX,'FEATURE ORDERING BY MAHALANOBIS DISTANCE'/
+ IX,'WITH ASSUMPTION OF INDEPENDENT FEATURES')

WRITE(21,212)
212 F0RMAT(///1X,'FEATURE',2X,'CL1',3X,'CL2’,5X,'VARIANCE',1X,

+ 'MAHAL. DIST.')
WRITE(6,600)

600 FORMAT(IX,'ENTER NO. OF FEATURES ?')
READ(5,*)N 
WRITE(6,601)

ARITHMETIC MEANS AND STANDARD DEVIATIONS OF 
DIFFERENT FEATURES IN DIFFERENT CLASSES

VALUES OF THE SAMPLE MAHALANOBIS DISTANCE 
BETWEEN VARIOUS CLASS-PAIRS FOR DIFFERENT 
FEATURES
FEATURES ARRANGED IN DECREASING ORDER OF THEIR 
AVERAGE CRITERION VALUES (TOGETHER WITH THESE 
CRITERION-VALUES)
FEATURES WITH VERY SMALL VARIANCE-VALUES
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601 FORMAT(IX,'ENTER NO. OF CLASSES ?')
READ(5, ♦) M 
WRITE(6,603)

603 F0RMAT(1X,'IS THERE ANY REDUCTION IN NO. OF CLASS-PAIRS?')
READ(5,500)IGNORE 

500 FORMAT(A3)
WRITE(6,602)

602 FORMAT(IX,'ENTER NO. OF OBS. IN DIFFERENT CLASSES ?')
READ(5,*)(NOBS(I),I=1,M)

READ THE ARITHMETIC MEANS AND STANDARD DEVIATIONS FROM INF

DO 1 1=1,M 
DO 2 K=1,N
READ(10,100)AM(I, K),SD(I,K)

100 FORMAT(1IX,FI0.4,1X,E14.7)
2 CONTINUE 
1 CONTINUE

DO 8 1=1,M 
XNOBS(I)=NOBS(I)

8 CONTINUE

EPS=1.0E-260

CALCULATE THE EFFECTIVE NUMBER OF CLASS-PAIRS

PAIRS=M*(M-l)/2 
IF(IGNORE.EQ.'YES')THEN 
PAIRS=PAIRS-3.0 
ENDIF

FOR EACH OF THE N FEATURES COMPUTE THE VALUES OF THE SPECIFIED 
CRITERION AND THEN AVERAGE THEM OVER THE EFFECTIVE NO. OF CLASS-PAIRS

DO 3 K=1,N 
AVD(K)=0 
DO 4 1=1,M-l 
DO 5 J=I+1,M 
IF(IGNORE.EQ.'YES')THEN

IGNORE CLASS-PAIR (I,J) IF THEY REPRESENT THE SAME CLASS 
C

IF((I.EQ.2.AND.J.EQ.3).OR.(I.EQ.6.AND.J.EQ.7).OR.
+ (I.EQ.10.AND.J.EQ.ll))THEN

WRITE(23,230)K,I,J
230 FORMAT(IX,'FEATURE',14,' CLASS-PAIR:',213,' :COMP. IGNORED')

GOTO 5 
ELSE
SSI=(XNOBS(I)-l.0)*SD(I,K)**2 
SSJ=(XNOBS(J)-1.0)*SD(J,K)**2 
VAR=(SSI+SSJ)/(XNOBS(I)+XNOBS(J)-2.0)
DIFF2 = (AM(I,K)-AM(J,K))**2 
IF(DIFF2.GE.EPS)THEN 
IF(VAR.LT.EPS)THEN
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AVD(K)=AVD(K)+1.0

C WRITE 0UTF3 
C

WRITE(23,231)K,I,J,DIFF2,VAR
2 31 FORMAT(IX,'FEATURE',14,' CLASS-PAIR: ' ,213 ,' NUMERATORS ,

+ E13. 6,' DENOMINATOR=',E13,6/
+ IX,'DENOMINATOR TOO SMALL, VALUE OF CRITERION= 1 ')

GOTO 5 
ELSE
D2=DIFF2/VAR 

WRITE OUTF1

WRITE(21,211)K,I,J,VAR,D2 
211 F0RMAT(1X,3I6,2E13.6)

AVD(K)=AVD(K)+FUNC(D2)
END IF 
ELSE
WRITE(23,232)K,I,J,DIFF2

232 FORMAT(IX,'FEATURE',14,' CLASS-PAIR:',213,' NUMERATORS, 
E13.6/IX,'NUMERATOR TOO SMALL, VALUE OF CRITERION= 0 ') 
END IF 
END IF 
END IF 

5 CONTINUE 
4 CONTINUE
AVD(K)=AVD(K)/PAIRS 

3 CONTINUE

ARRANGE TEE FEATURES IN ORDER USING TEE 'NAG' ROUTINE M01AKF

C

NW=N
IFAIL=1
CALL MO1AKF(AVD,AVDW,ILOC,ILOCW,N,NW,IFAIL)

C
C WRITE TEE FEATURE NUMBERS IN TEE ORDER OBTAINED ABOVE, TOGETEER 
C WITS THEIR AVERAGE CRITERION-VALUES, ON OUTF2 
C

WRITE(22,221)(AVD(K),ILOC(K),K=1,N)
221 FORMAT(4(IX,E13.6,2X,14))

CLOSE (21)
CLOSE (22)
CLOSE (23)
STOP
END



n
o
 

n
o

o
n

- 240 -

APPENDIX BIO

C MAHAL2:
C THIS PROGRAM PERFORMS STEPWISE FEATURE SUBSET SELECTION IN A 
C MULTICLASS ENVIRONMENT USING TWO-CLASS MAHALANOBIS DISTANCE 
C CRITERION : D2/ (4 + D2)
C
C NOTES: G-INVERSE ROUTINE USED, ALL CLASS-PAIRS CONSIDERED,
C TO CHANGE THE CRITERION WE NEED CHANGE ONLY THE STATEMENT
C FUNCTION
C

PROGRAM MAHAL2(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT, INF1,INF2,
+ INF3,0UTF1,OUTF2,OUTF3,TAPE11=INF1,TAPE12=INF2,TAPE13=INF3,
+ TAPE21=OUTF1,TAPE2 2 =0UTF2,TAPE2 3=OUTF3)
C 
C
C INPUT FILES:
C INF1:
C INF2:
C INF3:
C 
C
C OUTPUT FILES:
C OUTF1:
C OUTF2:
C
C OUTF3:
C 
C

DIMENSION NOBS(2),AM(2,25),COV(2,25,25),CRIT(25),
+ KSEL(25),NSEL(25),XIBAR(25),XJBAR(25),SI(25,25),SJ(25,25),
+ DIFF(2^) , SIJ(2 5,2 5) ,KOLD(25) ,AIJMX(2 5) ,D(25) ,U(25,25),
+ DU(25),INC(25),XNOBS(2)
C

CHARACTER*3 IGNORE 
C

DATA IA/25/ , IU/25/
DATA NMAX / 25 /

STATEMENT FUNCTION DEEFINING THE CRITERION

FUNC(DD)=DD/(4.0+DD)

REWIND 11 
REWIND 12 
REWIND 13 
REWIND 21 
REWIND 22 
REWIND 23 
REWIND 24

FOLLOWING PARAMETERS ARE REQUIRED BY THE G-INVERSE ROUTINE

NO. OF OBSERVATIONS IN DIFFERRENT CLASSES 
INITIAL ORDERING OF FEATURES
MEANS AND COVARIANCES OF FEATURES IN DIFFERENT 
CLASSES

FEATURE SUBSETS SELECTED IN STEPS 1,2,...,N 
ABOVE FEATURE SUBSETS TOGETHER WITH THE 
CORRESPONDING CRITERION-VALUES 
BOTH SELECTED AND UNSELECTED FEATURE SUBSETS 
WITH THEIR CRITERION-VALUES
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EPS=X02AAF(4321)
IFAIL=0

WRITE(24,*)'VALUES OF: KSTEP,KSET,I,J,DIJ2,T,CONDITION NO.' 

WRITE(6,600)
600 FORMAT(IX,'ENTER NO. OF CLASSES')

READ(5,*)M
WRITE(6,601)

601 FORMAT(IX,'ENTER NO. OF FEATURES')
READ(5,*)N
WRITE(6,602)

602 FORMATUX, 'IS THERE ANY REDUCTION IN NO. OF CLASS-PAIRS?') 
READ(5,500)IGNORE

500 FORMAT(A3)

READ NO. OF OBS. IN DIFFERENT CLASSES FROM INF1

READ(11,*)(NOBS(I),1=1,M)

DO 22 I = 1,M 
XNOBS(I) = NOBS(I)

22 CONTINUE

CALCULATE THE EFFECTIVE NO. OF CLASS-PAIRS

PAIRS=M*(M-l)/2 
IF(IGNORE.EQ.'YES')THEN 
PAIRS = PAIRS-3.0 
END IF

READ THE MEAN VECTORS AND THE COVARIANCE MATRICES FROM INF3

DO 1 1=1,M 
DO 2 K1=1,N
READ(13,130)AM(I,K1),(C0V(I,K1,K2),K2=K1,N)

130 FORMAT(1IX,FI0.4/(IX,5E14.7))
2 CONTINUE 
1 CONTINUE

FILL IN THE LOWER TRIANGLES OF THE COVARIANCE MATRICES 
DO 40 1=1,M 
DO 41 K1=2,N 
DO 42 K2 =1,Kl-1 
C0V(I,K1,K2) = COV(I,K2,K1)

42 CONTINUE 
41 CONTINUE 
40 CONTINUE

READ THE CORRESPONDENCE BETN. NEW AND OLD FEATURES FROM INF2

READ(12,12 9)
129 FORMATO

READ(12,120)(KOLD(K),K=1,N)
120 FORMAT(6(6X,14,3X))



o
o

o
o

n
o

 
n

n
o

o
 

n
o

n
 

n
o

n
o

o
n

n

- 242

C INITIALIZE THE TWO INTEGER ARRAYS KSEL ( LIST OF FEATURES SELECTED 
C IN THE PREVIOUS STEP ) AND NSEL ( LIST OF FEATURES FROM WHICH THE 
C NEXT FEATURE TO BE SELECTED )
C

DO 3 K = 1,N 
KSEL(K) = 0 
NSEL(K) = K 

3 CONTINUE

N FEATURE EVALUATION STEPS START HERE 

DO 4 KSTEP = 1, N 

IF ( KSTEP.GT.l ) THEN

LOCATE THE FEATURES NOT YET SELECTED : ARRAY NSEL

DO 5 KK = 1., N-KSTEP+1 
NSEL(KK) = 0

5 CONTINUE 
KK=1
DO 6 K = 1 ,N 
DO 7 L = 1, KSTEP-1 
IF ( K.EQ.KSEL(L)) GOTO 6

7 CONTINUE 
DO 8 L = 1, KK 
IF ( K.EQ.NSEL(L)) GOTO 6

8 CONTINUE 
NSEL(KK) = K 
KK = KK + 1

6 CONTINUE 
END IF

WRITE STEP NO. IN OUTPUT FILE OUTF3 

WRITE(23>231)KSTEP
231 FORMAT(IX,'SELECTION STEP : ',14)

OBTAIN THE CRITERION VALUES FOR N - KSTEP + 1 FEATURE SUBSETS 
EACH OF WHICH INCLUDES THE PREVIOUSLY SELECTED KSTEP -1 FEATURES

DO 9 KSET = 1, N-KSTEP+1 
CRIT(KSET) =0.0

DO 10 I = 1,M-1

DO 11 J = 1+1, M

IF(IGNORE.EQ.'YES')THEN

OMIT CLASS-PAIR ( I,J ) IF THEY REPRESENT THE SAME CLASS

IF((I.EQ.2.AND.J.EQ.3).OR.(I.EQ.6.AND.J.EQ.7).OR.
+ (I.EQ.10.AND.J.EQ.ll)) GOTO 11

C
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END IF 
C

IF ( KSTEP.GT.l ) THEN 
C
C OBTAIN MEAN VECTORS AND COVARIANCE MATRICES OF PREVIOUSLY SELECTED 
C FEATURES FOR I-TH AND J-TH CLASSES 
C

DO 12 K1 = 1, KSTEP-1 
XIBAR(Kl) = AM(I,KSEL(K1))
XJBAR(Kl) = AM(J ,KSEL(K1))

C
DO 13 K2 = Kl, KSTEP-1
SI(K1,K2) = COV(I,KSEL(Kl),KSEL(K2))
SJ(Kl ,K2) = COV(J,KSEL(K1),KSEL(K2))

13 CONTINUE 
C
C OBTAIN COVARIANCES OF PREVIOUSLY SELECTED FEATURES WITH THE 
C NEW FEATURE 
C

SI(Kl ,KSTEP) = COV(I,KSEL(Kl),NSEL(KSET))
SJ(Kl,KSTEP) = COV(J,KSEL(K1),NSEL(KSET))

C
12 CONTINUE 

C
END IF

OBTAIN MEANS AND VARIANCES ( IN TWO CLASSES ) OF THE NEW FEATURE

XIBAR(KSTEP) = AM(I,NSEL(KSET))
XJBAR(KSTEP) = AM(J,NSEL(KSET))
SI(KSTEP,KSTEP) = COV(I,NSEL(KSET),NSEL(KSET))
SJ(KSTEP,KSTEP) = COV(J,NSEL(KSET),NSEL(KSET))

C
C COMPUTE THE DIFFERENCE OF THE TWO MEAN VECTORS AND THE AVERAGE OF 
C THE TWO COVARIANCE MATRICES 
C

DO 14 Kl = 1, KSTEP
DIFF(Kl) = XIBAR(Kl) - XJBAR(Kl)
DO 15 K2 = Kl, KSTEP
SIJ(Kl ,K2) =(SI(Kl,K2) ♦ (XNOBS(I)-l.0) + SJ(K1,K2) *

+ (XNOBS(J)-1.0)) / (XNOBS(I)+XNOBS(J)-2.0)
15 CONTINUE
14 CONTINUE 

C
C OBTAIN THE COVARIANCE VALUES IN THE LOWER TRIANGLE OF THE 
C COVARIANCE MATRIX BY TRANSPOSING THE UPPER TRIANGLE 
C

IF ( KSTEP.GT.l ) THEN 
DO 16 Kl = 2, KSTEP 
DO 17 K2 = 1,Kl-1 
SIJ(Kl ,K2) = SIJ(K2,K1)

17 CONTINUE
16 CONTINUE 

C

C
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ENDIF

C CHECK IF THE VARIANCE TERMS IN THE COVARIANCE MATRIX UNDER 
C CONSIDERATION ARE ALL EQUAL TO ZERO 
C

DO 18 K = 1, KSTEP 
IF ( SIJ(K,K).GT.EPS ; GOTO 19

18 CONTINUE

IF ALL ARE ZERO THEN GO TO NEXT J ( CLASS J)

GO TO 11

OTHERWISE CALCULATE THE G-INVERSE OF THE COVARIANCE MATRIX SIJ 
USING THE NAG ROUTINE

19 CONTINUE

DETERMINE THE NORM OF THE MATRIX SIJ (SNORM) AND THEN DECIDE T

DO 31 Kl=l,KSTEP 
D(K1)=0
DO 32 K2 =1,KSTEP 
D(K1)=D(K1)+ABS(SIJ(K1,K2))

32 CONTINUE 
31 CONTINUE

LOCNORM=LOCMAX(KSTEP,NMAX,D)
VALNORM=D(LOCNORM)
CXIX=REAL(KSTEP)*VALNORM 
T=CXIX*EPS

CALL F01BLF(KSTEP,KSTEP,T,SIJ,IA,AIJMX,IRANK,INC,D,U,IU,DU,IFAIL)

COMPUTE MAHALANOBIS DISTANCE ( DIJ2 ) BETWEEN I-TH AND J-TH CLASSES 
USING FUNCTION SUBPROGRAM QUADR

DIJ2 = QUADR ( KSTEP,NMAX,DIFF,SIJ )

ADD THE CONTRIBUTION OF DIJ2 TO THE CRITERION VALUE

CRIT (KSET) = CRIT (KSET) + FUNC(DIJ2)

11 CONTINUE 
10 CONTINUE

COMPUTE THE AVERAGE CRITERION VALUE 

CRIT (KSET) = CRIT (KSET) / PAIRS 

CREATE FILE OUTF3 WHICH CONTAINS VERY DETAILED OUTPUT 

WRITE(23,232)
232 FORMAT(IX,'FEATURE SET UNDER CONSIDERATION : ')

C
IF ( KSTEP.GT.l ) THEN
WRITE (2 3,233)(KOLD(KSEL(K)),K=1,KSTEP-1),KOLD(NSEL(KSET))

C
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233 FORMAT(IX,1316)
ELSE
WRITE(23,233)KOLD(NSEL(KSET))
END IF 

C
WRITE(23,234) CRIT(KSET)

234 FORMAT(IX,'CRITERION VALUE = ',E14.7)

9 CONTINUE

SELECT THE FEATURE SET ( OF SIZE KSTEP ) WITH MAXIMUM CRITERION 
VALUE USING FUNCTION SUBPROGRAM LOCMAX

MAXK = LOCMAX ( N-KSTEP+1, NMAX, CRIT )
KSEL (KSTEP) = NSEL (MAXK)

CREATE FILE OUTF2 WHICH CONTAINS SELECTED FEATURE SET AND THE 
CORRESPONDING CRITERION VALUE

WRITE(22,221) KSTEP
221 FORMAT(5X,'SELECTED FEATURES IN STEP : ',16)

WRITE(22,222) ( KOLD(KSEL(K)),K=1,KSTEP )
222 FORMAT ( IX, 1316 )

WRITE(22,223) CRIT(MAXK)
223 FORMAT(IX,'CRITERION VALUE = ', E14.7)

CREATE FILE OUTF1 CONTAINING LIST OF SELECTED FEATURES ( OUTF1 IS 
IS A SUBSET OF OUTF2 )

WRITE(21,211) KSTEP
211 FORMAT(5X,'SELECTED FEATURES IN STEP : ',16)

WRITE(21,212) (KOLD(KSEL(K)),K=1,KSTEP)
212 FORMAT( IX,1316 )

4 CONTINUE

CLOSE (21)
CLOSE(22)
CLOSE(23)

C
STOP
END

C
FUNCTION QUADR (N,NMAX,X,A)

C
C THIS FUNCTION SUBPROGRAM DETERMINES THE QUADRATIC FORM OF 
C A VECTOR AND A MATRIX 
C

DIMENSION X(NMAX),A(NMAX,NMAX)
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QUADR=0.0 
DO 1 1=1,N 
DO 2 J=1,N
QUADR=QUADR+X(I)*X(J)*A(I,J)

2 CONTINUE 
1 CONTINUE 
END 

C
FUNCTION LOCMAX (N,NMAX,X)

C
C THIS FUNCTION SUBPROGRAM DETERMINES THE LOCATION OF THE 
C MAXIMUM ELEMENT OF AN ARRAY 
C

DIMENSION X(NMAX)
C

LOCMAX=l 
XMAX=X(1)
IF (N.GT.l) THEN 
DO 1 K = 2,N 
IF (XMAX.LT.X(K)) THEN 
XMAX=X(K)
LOCMAX = K 
END IF 

1 CONTINUE 
END IF 
END
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APPENDIX Bll

c
C RANKCOR:
C THIS PROGRAM COMPUTES THE RANK CORRELATION BETWEEN TWO SETS
C OF FEATURE ORDERINGS
C

c
c
c
c
c
c
c
c
c
c

c

PROGRAM RANKCOR(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,INF1,INF2, 
TAPE11=INF1,TAPE12=INF2,OUTF,TAPE20=OUTF)

INPUT FILES:
INF1: 
INF2 :

FIRST SET OF FEATURE ORDERINGS 
SECOND SET OF FEATURE ORDERINGS

OUTPUT FILE:
OUTF: VALUE OF THE SPECIFIED RANK CORRELATION 

COEFFICIENT (ALSO INCLUDED THE TWO SETS OF 
FEATURE ORDERINGS SUPPLIED AS INPUT)

DIMENSION IR1(78) ,IR2(78)
REAL KENDAL 
DATA NMAX/78/

REWIND 11 
REWIND 12 
REWIND 20 

C
WRITE(6,600)

600 FORMAT(IX, 'REFER TO THE FOLLOWING LIST TO SELECT'/
+ IX,'THE CORRELATION CRITERION')

WRITE(6,601)
601 FORMAT(/12X,'KENDAL''S TAU-CRITERION : 1'/

SPECIFY THE RANK CORRELATION COEFFICIENT TO BE USED

12X,'SPEARMAN''S RHO-CRITERION : 2')
WRITE(6,602)

602 FORMAT(//IX,'ENTER CRITERION IDENTIFICATION CODE: ICRIT') 
READ(5,*)ICRIT

WRITE(6,603)
603 FORMAT(IX,'ENTER THE NO. OF FEATURES: N')

READ(5,*)N

READ THE TWO SETS OF FEATURE ORDERINGS

READ(11,110)(IR1(I),1=1,N)
110 FORMAT(/////(4(16X,I4)))

READ(12,120)(IR2(I),I=1,N)
120 FORMAT(/////(4(16X,I4)))

WRITE THE TWO SETS OF FEATURE ORDERINGS ON OUTF
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WRITE(20,200)
200 FORMAT(IX,'SET 1 :')

WRITE(20,201)(IR1(I),I=1,N)
201 FORMATUX, 6(1316/))

WRITE(20,202)
202 FORMAT(IX,'SET 2 :')

WRITE(20,201)(IR2(I),1=1,N)

COMPUTE THE CRITERION VALUE AND WRITE IT ON OUTF

GOTO(1,2),ICRIT
1 CORR=KENDAL(N,NMAX,IR1,IR2)
WRITE(20,204)CORR

204 FORMAT(//IX,'KENDAL" S CORR. COEFF. =',E14.6)
WRITE(6,204)CORR
CLOSE (20)
STOP

2 CORR=SPEAR(N,NMAX,IR1,IR2)
WRITE(20,205)CORR

205 FORMAT(//IX,'SPEARMAN" S CORR. COEFF. =',E14.6)
WRITE(6,205)CORR
CLOSE (20)
STOP
END

FUNCTION KENDAL(N,NMAX,IR1,IR2)

THIS FUNCTION SUBPROGRAM COMPUTES KENDAL'S RANK CORRELATION 
COEFFICIENT, USUALLY DENOTED BY GREEK LETTER TOU

DIMENSION IR1(NMAX),IR2(NMAX)
REAL KENDAL

SUM=0
DO 1 1=1,N-l 
DO 2 J=I+1,N
IPR0D=(IR1(I)-IR1(J))*(IR2(I)-IR2(J))
IF(IPROD.GT.0)THEN 
SUM=SUM+1.0 
GOTO 2
ELSE IF(IPROD.LT.O)THEN 
SUM=SUM-1.0 
END IF

2 CONTINUE 
1 CONTINUE
KENDAL=2.0*SUM/REAL(N*(N-1))
END

FUNCTION SPEAR(N,NMAX,IR1,IR2 )

THIS FUNCTION SUBPROGRAM COMPUTES SPEARMAN'S RANK CORRELATION

C
DIMENSION IRl(NMAX),IR2(NMAX)
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ISSQ=0 
DO 1 1=1,N
ISSQ=ISSQ+(IR1(I)-IR2(I))**2 

1 CONTINUE 
SSQ=ISSQ 
DEN=N*N*N-N
SPEAR=1.0-(6.0*SSQ)/DEN 
END
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APPENDIX B12

C
C REC0G1:
C PROGRAM FOR RECOGNITION OF NUMERALS USING NONPARAMETRIC
C BAYESIAN APPROACH WITH THE ASSUMPTION OF INDEPENDENCE OF
C FEATURES
C
PROGRAM REC0G1(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,

+ INF1,INF2,INF3,INF4,INF5,TAPE11=INF1,TAPE12=INF2,TAPE13=INF3,
+ TAPE14=INF4,TAPE15=INF5,TAPE22)
C
C INPUT FILES 
C 
C 
C 
C 
C 
C
C OUTPUT FILE 
C
c 
c

DIMENSION P(78,13,10), XMIN(78), XMAX(78), H(78), AP(13),
+ R(13),X(78), IFEAT(78), IFR(0:9,14), NFSIZE(40)
C

CHARACTER PFCMD*80, MSG*40 
CHARACTER OUTFNM*7

INF1
INF2
INF3
INF4
INF5

MIN. AND MAX. OF THE FEATURES 
PDF'S OF CLASSES 
FEATURE VALUES
FEATURES IN DESCENDING ORDER OF EFFECTIVENESS 
APRIORI PROBABILITIES OF CLASSES

TAPE22: CONFUSION MATRIX ( SAVED AS 'CONFMAT' )

DATA M/13/, N/78/, NPNTS/10/, MMAX/13/
DATA OUTFNM/'CONFMAT'/

WRITER,*)'ENTER NO. OF FEATURE SETS: NFSETS' 
READ(5,*)NFSETS
WRITL(6,*)'ENTER SIZES OF THESE FEATURE SETS' 
READ(5,*)(NFSIZE(KK),KK=1,NFSETS)
WRITE(6,*)'ENTER NO. OF OBS. TO BE RECOGNIZED' 
READ(5,*)NOBS

REWIND 11 
REWIND 12 
REWIND 15

READ THE APRIORI PROBABILITIES OF CLASSES FROM INF5 

READ(15,*)(AP(I),1=1,M)

READ THE ESTIMATED PROB. VALUES, IN DIFFERENT SAMPLING INTERVALS (J) 
OF DIFFERENT FEATURES (K), FOR DIFFERENT CLASSES (I)
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DO 1 K=1,N 
DO 2 1=1,M
READ(12,12 0)(P(K,I,J),J=1,NPNTS)

120 FORMAT(9X,10F8.4)
2 CONTINUE 
1 CONTP^JE

READ THE MINIMUM AND MAXIMUM VALUES OF DIFFERENT FEATURES

READ(11,110)(XMIN(K),XMAX(K),K=1,N)
110 FORMAT(IX,8F8.4)

COMPUTE (SAMPLING INTERVAL)/2 FOR DIFFERENT FEATURES

XNP=NPNTS 
DO 3 K = 1,N
H(K) = (XMAX(K) - XMIN(K)) / (2.0*XNP)

3 CONTINUE

REWIND 22

DO 17 KK = 1,NFSETS

N1 = NFSIZE(KK)

REWIND 13 
REWIND 14

READ THE FEATURE NO.S TO USE FOR RECOGNITION FROM INF4

READ(14,141)(IFEAT(Kl),K1=1,N1)
141 F0RMAT(/////(4(16X,I4)))

WRITE THE LIST OF FEATURES ON OUTF2

WRITE(22,226)N1
226 FORMAT(IX,'NO.OF FEATURES USED = ',14//)

WRITE(2 2,2 2 5)(IFEAT(K1), K1 =1, N1)
225 FORMAT(IX,'FEATURES USED: '/(1515))

INITIALIZE THE CELLS OF THE CONFUSION MATRIX

DO 10 11=0,9 
DO 11 12=1,M+1 
IFR(I1,12)=0 

11 CONTINUE 
10 CONTINUE

RECOGNITION PROCESS STARTS HERE

DO 14 L = 1,NOBS 
C

READ(13,130)NUMID,(X(K),K=1,N)
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130 FORMAT(2X,14/(IX,8F8.4))
ITRU = NTJMID/1000

DO 4 I = 1,M 
R(I) = AP(I)

4 CONTINUE

DO 5 K1 = 1,N1

Y = X(IFEAT(K1))
YMIN = XMIN(IFEAT(K1))
HK1 = H(IFEAT(K1))

IF(Y.LT.(YMIN+2.0*HK1))THEN 
INTV = 1 
GOTO 6
ELSE IF (Y.GE.(YMIN+2.0*(XNP-1.0)*HK1))THEN 
INTV = NPNTS 
GOTO 6 
ELSE
DO 7 J = 2,NPNTS-1 
XJ = J
IF((Y.GE.(YMIN+2.0*(XJ-1.0)*HK1)).AND.(Y.LT.(YMIN+2.0*XJ*HK1)))THEN 
INTV = J 
GOTO 6 
ENDIF

7 CONTINUE 
ENDIF

6 CONTINUE

COMPUTE THE VALUES OF THE CLASSIFICATION CRITERION R(I)

DO 8 I = 1,M
R(I) = R(I)*P(IFEAT(K1),I,INTV)

8 CONTINUE

5 CONTINUE

OBTAIN THE CLASS WITH MAXIMUM R-VALJE

IREC = LOCMAX(M,MMAX,R)
IF(R(IREC).LT.1.OE-2 5 0)THEN 
IREC=14 
ENDIF
IFR(ITRU,IREC) = IFR(ITRU,IREC) +1 

14 CONTINUE

COMPUTE THE RECOGNITION ACCURACY AND CREATE THE OUTPUT FILES

CORCT=IFR(0,1)+IFR(l,2)+IFR(l,3)+IFR(2,4)+IFR(3,5)+IFR(4,6)+
+ IFR(4,7)+IFR(5,8)+IFR(6,9)+IFR(7,10)+IFR(7,11)+IFR(8,12)+
+ IFR(9,13)

CRATE = CORCT/REAL(NOBS)*100.0 
WRITE(22,223)
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223 FORMAT(IX,'CONFUSION MATRIX :')
WRITE(22,224)

224 FORMAT(5X,'NUMERAL',2X,24('-'),'RECOGNIZED AS',27('-')) 
WRITE(22,222)

222 FORMAT(14X,'O',4X,'1',4X,'1',4X,'2',4X,'3',4X,'4',4X,'4', 
+ 4 X,'5',4X,'6',4X,'7',4X,'7',4X,'8',4X,'9',2X,'REJ')

DO 15 11=0,9
WRITE(22,220)11,(IFRCIl,12),12=1,M+l)

220 FORMAT(3X,17,1415)
15 CONTINUE

WRITE(22,221)CRATE
221 FORMAT(///IX,'CORRECT CLASSIFICATION RATE = ',F8.2)

C
WRITE(6,600)N1

600 FORMAT(IX,'NO. OF FEATURES USED = ',14)
WRITE(6,221)CRATE 
WRITE(22,227)

227 FORMAT('1')

17 CONTINUE

REWIND 22
PFCMD = 'REPLACE,TAPE22='//OUTFNM//'.'
CALL PFREQ(PFCMD,MSG,ICODE)
IF (ICODE.NE.O) THEN 
PRINT*,MSG 
STOP 
ENDIF 

C
STOP
END

C
FUNCTION LOCMAX (N,NMAX,X)

C
C THIS FUNCTION SUBPROGRAM DETERMINES THE LOCATION OF THE MAXIMUM 
C ELEMENT OF AN ARRAY 
C

DIMENSION X(NMAX)
C

LOCMAX=l 
XMAX=X(1)
IF (N.GT.l) THEN 
DO 1 K = 2,N 
IF (XMAX.LT.X(K)) THEN 
XMAX=X(K)
LOCMAX = K 
ENDIF 

1 CONTINUE 
ENDIF 
END
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APPENDIX B13

C
C REC0G2:
C PROGRAM FOR RECOGNITION OF NUMERALS USING NONPARAMETRIC
C B^ESIAN APPROACH WITH THE ASSUMPTION OF INDEPENDENCE OF
C FEATURES
C

+
+
C
c
c
c
c
c
c
c
c
c
c
c

+

c

c

PROGRAM RECOG2(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,
INF1,INF2,INF3,INF4,INF5,TAPE11=INF1,TAPE12=INF2,TAPE13=INF3, 
TAPE14=INF4,TAPE15=INF5,TAPE22,OUTF,TAPE20=OUTF)

INPUT FILES :
INF1: MIN. AND MAX. OF THE FEATURES
INF2: PDF'S OF CLASSES ( DIRECT ACCESS FILE )
INF3: FEATURE VALUES
INF4: FEATURES IN DESCENDING ORDER OF EFFECTIVENESS 
INF5: SIZES OF THE CLASSES

OUTPUT FILES :
TAPE22: CONFUSION MATRIX ( SAVED AS 'CONFMAT' )
OUTF : WRONGLY CLASSIFIED NUMERALS

DIMENSION P(78,13,10), XMIN(78), XMAX(78), H(78), AP(13),
R(13),X(78), IFEAT(78), IFR(0:9,14), NFSIZE(40) 

DIMENSION SIZE(13), XOLD(78), XNEW(78),JOLD(78), JNEW(78)

CHARACTER PFCMD*80, MSG*40 
CHARACTER OUTFNM*7 
EQUIVALENCE (X,XNEW)

DATA M/13/, N/78/, NPNTS/10/, MMAX/13/, TSIZE/1000.0/ 
DATA OUTFNM/'CONFMAT'/
DATA ZEROLOG/-6.1920/

WRITE(6,*)'ENTER NO. OF FEATURE SETS: NFSETS' 
READ(5,*)NFSETS
WRITE(6,*)'ENTER SIZES OF THESE FEATURE SETS' 
READ(5 , *)(NFSIZE(KK),KK=1,NFSETS)
WRITE(6,*)'ENTER NO. OF OBS. TO BE RECOGNIZED' 
READ(5,*)NOBS

REWIND 11 
REWIND 15

READ THE NO. OF OBS. IN DIFFERENT CLASSES FROM INF5 

READ(15,*)(SIZE(I),I=1,M)

DETERMINE THE APRIORI PROBABILITIES

DO 21 I = 1,M
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READ THE MINIMUM AND MAXIMUM VALUES OF DIFFERENT FEATURES

READ(11,110)(XMIN(K),XMAX(K),K=1,N)
110 F0RMAT(1X,8F8.4)

COMPUTE (SAMPLING INTERVAL)/2 FOR DIFFERENT FEATURES

XNP=NPNTS 
DO 3 K = 1,N
H(K) = (XMAX(K) - XMIN(K)) / (2.0*XNP)

3 CONTINUE

REWIND 22 
REWIND 20

AP(I) = SIZE(I)/TSIZE
21 CONTINUE

DO 17 KK = 1,NFSETS

READ THE ESTIMATED PROB. VALUES, IN DIFFERENT SAMPLING INTERVALS (J) 
OF DIFFERENT FEATURES (K), FOR DIFFERENT CLASSES (I)

REWIND 12 
DO 1 K = 1,N 
DO 2 I =1,M
READ(12,120)(P(K,I,J),J=1,NPNTS)

120 FORMAT(9X,10F8.4)
2 CONTINUE 
1 CONTINUE

N1 = NFSIZE(KK)

REWIND 13 
REWIND 14

READ THE FEATURE NO.S TO USE FOR RECOGNITION FROM INF4

READC14,141)(IFEAT(Kl),K1=1,N1)
141 FORMAT(/////(4(16X,14)))

WRITE THE LIST OF FEATURES ON OUTF2

WRITE(22,226)N1
226 FORMAT(IX,'NO.OF FEATURES USED = ',14//)

WRITE(22,225)(IFEAT(K1),Kl=l,N1)
225 FORMAT(IX,'FEATURES USED: '/(1515))

INITIALIZE THE CELLS OF THE CONFUSION MATRIX

DO 10 11=0,9 
DO 11 12=1,M+1 
IFR(I1,12)=0
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RECOGNITION PROCESS STARTS HERE

11 CONTINUE
10 CONTINUE

DO 14 L = 1,N0BS

READ(13,130)NUMID,INEW,(X(K),K=1,N) 
130 FORMAT(2X, 14 , IX, 12 / (IX, 8F8.4))

MODIFY THE VALUES OF P(K,I,J)

DO 22 K = 1,N

DETERMINE JNEW(K): THE SAMPLING INTERVAL CONTAINING XNEW(K)

JNEW(K) = JINTV( XNEW(K),XMIN(K),H(K),NPNTS )

IF (L.GT.l) THEN 
DO 23 J = l.NPNTS 
IF (J.EQ.JOLD(K)) THEN
P(K,IOLD,J) = (P(K,IOLD,J)*(SIZE(IOLD)-l.0)+l.0)/SIZE(IOLD) 

ELSE
P(K,IOLD,J) = (P(K,IOLD,J)*(SIZE(IOLD)-1.0))/SIZE(IOLD) 
ENDIF
IF ( P(K,IOLD,J).LT.1.0E-13 ) THEN
P(K,IOLD,J) = 0
ENDIF

23 CONTINUE 
ENDIF
DO 24 J = 1 ,NPNTS 
IF (J.EQ.JNEW(K)) THEN
P(K,INEW,J) = (P(K,INEW,J)*SIZE(INEW)-1.0)/(SIZE(INEW)-l.O) 
ELSE
P(K,INEW,J) = P(K,INEW,J)*SIZE(INEW)/(SIZE(INEW)-1.0)
ENDIF
IF ( P(K,INEW,J).LT.1.OE-13 ) THEN
P(K,INEW,J) = 0
ENDIF

24 CONTINUE 
22 CONTINUE

STORE VALUES OF SOME VARIABLES FOR USE IN THE NEXT RECOGNITION CYCLE

IOLD = INEW 
DO 25 K = 1,N 
JOLD(K) = JNEW(K)
XOLD(K) = XNEW(K)

25 CONTINUE 
C

ITRU = NUMID/1000 
C

DO 4 I =1,M 
R(I) = LOG(AP(I))
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COMPUTE THE VALUES OF THE CLASSIFICATION CRITERION R(I) 
DO 5 K1 = 1,N1

KVAL=IFEAT(K1)
INTV=JNEW(KVAL)

4 CONTINUE

DO 8 I = 1 ,M
IF(P(KVAL,I,INTV).LT.1.OE-13)THEN
R(I)=R(I)+ZEROLOG
ELSE
R (I)=R(I)+LOG(P(KVAL,I,INTV))
END IF 

8 CONTINUE

5 CONTINUE

OBTAIN THE CLASS WITH MAXIMUM R-VALUE

IREC = LOCMAX(M,MMAX,R) 
IF(ABS(R(IREC)).LT.l.0E-250)THEN 
IREC=14 
ENDIF
IFR(ITRU,IREC) = IFR(ITRU,IREC) +1

IDEC=ICONV(IREC)
IF(ITRU.NE.IDEC)THEN 
WRITE(2 0,200)NUMID,ITRU,IDEC 

200 FORMAT(IX,316)
ENDIF

14 CONTINUE

COMPUTE THE RECOGNITION ACCURACY AND CREATE THE OUTPUT FILES

CORCT=IFR(0,1)+IFR(l,2)+IFR(l,3)+IFR(2,4)+IFR(3,5)+IFR(4,6)+ 
+ IFR(4,7)+IFR(5,8)+IFR(6,9)+IFR(7,10)+IFR(7,11)+IFR(8,12)+
+ IFR(9,13)

CRATE = CORCT/REAL(NOBS)*100.0 
WRITE(22,223)

223 FORMAT(IX,'CONFUSION MATRIX :')
WRITE(22,224)

224 FORMAT(5X,'NUMERAL',2X,24('-'),'RECOGNIZED AS',27('-'))
WRITE(22,222)

222 FORMAT(14X,'0',4X,'1',4X,'1',4X,'2',4X,'3',4X,'4',4X,'4',
+ 4X,'5',4X,'6',4X,'7',4X,'7',4X,'8',4X,'9',2X,'REJ')

DO 15 11=0,9
WRITE(22,22 0)II,(IFR(II,12),12 =1,M+1)

220 FORMAT(3X,17,1415)
15 CONTINUE

WRITE(22,221)CRATE
221 FORMAT(///IX,'CORRECT CLASSIFICATION RATE = \F8.2)
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WRITE(6,600)N1
600 FORMAT(IX,'NO. OF FEATURES USED = ',14) 

WRITE(6,221)CRATE 
WRITE(22,227)

227 FORMAT('1')

17 CONTINUE

REWIND 22
PFCMD = 'REPLACE,TAPE22 ='//OUTFNM//' . '
CALL PFREQ(PFCMD,MSG,ICODE)
IF (ICODE.NE.O) THEN 
PRINT*,MSG 
STOP 
END IF

STOP
END

FUNCTION LOCMAX (N,NMAX,X)

DETERMINE THE LOCATION OF THE MAXIMUM ELEMENT OF AN ARRAY

DIMENSION X(NMAX)

LOCMAX=l 
XMAX=X(1)
IF (N.GT.l) THEN 
DO 1 K =2,N 
IF (XMAX.LT.X(K)) THEN 
XMAX=X(K)
LOCMAX = K 
END IF 

1 CONTINUE 
ENDIF 
ENT

FUNCTION JINTV(Y,YMIN,H ,NPNTS)

DETERMINES THE SAMPLING INTERVAL CONTAINING A FEATURE VALUE 

XNP = NPNTS
IF(Y.LT.(YMIN+2.0*H))THEN 
JINTV = 1 
GOTO 6
ELSEIF(Y.GE.(YMIN+2.0*(XNP-1.0)*H))THEN 
JINTV = NPNTS 
GOTO 6 
ELSE
DO 7 J = 2,NPNTS-1 
XJ = J
IF((Y.GE.(YMIN+2.0*(XJ-1.0)*H)).AND.(Y.LT.(YMIN+2.0*XJ*H)))THEN
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JINTV = J 
GOTO 6 
ENDIF 

7 CONTINUE 
ENDIF

6 CONTINUE 
END 

C
FUNCTION ICONV (IREC)

CONVERT SUBCLASS ID. ( 1 TO 13 ) TO CLASS ID. ( 0 TO 9 )
C

IF(IREC.EQ.l)THEN 
IC0NV=0
ELSEIF(IREC.EQ.2.OR.IREC.EQ.3)THEN 
ICONV=l
ELSEIF(IREC.EQ.4.OR.IREC.EQ.5)THEN 
ICONV=IREC-2
ELSEIF(IREC.EQ.6.OR.IREQ.EQ.7)THEN 
ICONV=4
ELSEIF(IREC.EQ.8.OR.IREC.EQ.9)THEN 
ICONV=IREC-3
ELSEIF(IREC.EQ.10.OR.IREC.EQ.11)THEN 
ICONV=7
ELSEIF(IREC.EQ.12.OR.IREC.EQ.13.OR.IREC.EQ.14)THEN
ICONV=IREC-4
ELSEIF(IREC.GE.15)THEN
WRITE(6,609)NUMID,ITRU,IREC

609 F0RMAT(1X,3I6,' : OCCURENCE OF IMPOSSIBLE IREC VALUE')
STOP 
ENDIF 
RETURN 
END
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