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ABSTRACT

Classically, low frequency filters have been realised
as a network of lumped element inductors and capacitors
inserted between resistive source and load impedances.
These LC filters, however, are unsuited to modern
microelectronic technology as inductors of suitable
value and guality factor cannot be realised in this
way. Since microelectronic circuits have very
desirable features such as small size and weight, and
potential low cost, alternative designs using active
units, resistors and capacitors have been advanced.
Some important objectives in the design of active-RC
filters are to produce circuits whose responses are
relatively insensitive to changes in component values,
and to reduce the DC power consumption caused by the
inclusion of active units. Another objective might
be to compensate for the effects of imperfections in
the active units used. In this thesis we investigate
active-RC filters which achieve the above objects in

the following way.

The active-RC filter is designed to simulate a suitably
designed LC filter, in such a way that the inherently
low sensitivity of the LC network is retained. This is’
achieved by replacing the inductors in the LC filter by
active-RC networks which simulate the inductive
impedances. To minimise power consumption in the filter
we are concerned with simulated inductance circuits
which use a minimum number of active units. Some new
networks for simulating a grounded inductance are
proposed which contain only a single operational
amplifier. A novel way of compensating the active-RC
filter for the effects of non-ideal amplifier gain is

also presented.
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ABBREVIATIONS

S.TI. - Simulated Inductor

N.I.C. - Negative Impedance Converter

P.I.C. - Positive Impedance Converter
F.D.N.R. - Frequency Dependent Negative Resistor
S.B.I. - Simulated Biquadratic Impedance

S.A. - Single Amplifier

S.C. - Single Capacitor

C/L - Cheng/Lim

o/wW - Orchard/Wilson

S/L - Schmidt/Lee

L(w) - Inductance (frequency dependent)
Q(aﬁ - Quality factor (frequency dependent)
RE«») - Real Part of Impedance

IM(w) - Imaginary Part of Impedance

w.C. - Worst Case

R.H.S. - Right Hand Side

F - Farads

H - Henries

N - Ohms

25 - Mhos

D.C. - Direct Current

p - Laplace transform

fT - Gain/Bandwidth Product for Amplifier
o - Inverse of D.C. gain of Amplifier
/) - Amplifier Gain

r.m.s. - Root Mean Square

w.r.t. - With Respect to



dy - Derivative of ¥ w.r.t. X

ax

%: - Relative Sensitivity dY
dXx

bl - frequency (Hz)

w - frequency (r/s)

Z - Impedance

min - Minimum Value

max - Maximum Value

Gi - Conductance Value

Ri - Resistance Value

Ci - Capacitance Value

L - Inductance Value
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CHAPTER I

INTRODUCTION

1.1 PRELIMINARY CONSIDERATIONS

An electrical filter is best defined using the
frequency domain description for electrical signals and
networks.. In this domain a 2-port network is described
by its transfer function T(p) which is defined as the ratio
of the response of the network measured at one port, and
the input excitation at the other port. The response and
input excitation can be either current or voltage signals
I(p) and V(p) where p is the complex frequency variable.

A filter can now be defined as a 2-port network which passes
electrical signals in a certain portion of the frequency
spectrum and blocks signals in the remainder of the spectrum.
By "blocking" we mean that the magnitude response |T(jw) |

of the filter is approximately zero for that frequency range.
In applications that require frequency selective networks,
it is usual to first of all determine the transfer function
T(p) which meets the particular requirements. The problem,
then, is to find a suitable practical filter network that
can realise this function.

The classical approach to filter design is to
realise the transfer function T(p) by a passive circuit
consisting of a network of inductors and capacitors inserted

between a resistive source and a resistive load. This type



of filter is generally referred to as an LC filter. Due to
manufactoring tolerances and ageing , the values of the components

in an LC filter will not be exactly equal to the nominal values and

this causes the response of the filter to deviate from the
required characteristic. LC filters have the feature that
the sensitivity of their response to changes in the

component values can be low (1) and this makes these circuits
particularly attractive in practice.

LC filters, however, are not suited to modern
microelectronic technology. Although resistors and
capacitors can easily be realised in microelectronic form,
inductors of sufficiently high quality factor and inductance
value cannot be realised in this way. It is not possible
to use networks having resistors and capacitors only because
the transfer function of an RC network can have poles only
on the negative real p axis, whereas for efficient filter
design transfer functions with complex conjugate poles are
required. Since microelectronic circuits have
very desirable features such as small size and weight,
potentially low cost, and increased reliability, alternative
approaches to the synthesis of filters have been advanced.

A modern approach to filter design is to realise
the transfer function T(p) by an active -RC network; i.e.

a network consisting of resistors, capacitors, and active
units, namely, operational amplifiers and/or transistors
( recently another active unit has been proposed , i.e. ,

the current conveyor (2,3) ). These components are all



suited to miniaturisation and microelectronic realisation
becomes possible.

Unfortunately, filters realised using active- RC
networks were soon found not to possess the good sensitivity
properties of their LC predecessors and the sensitivity
aspects of the various synthesis methods became a major
consideration in deciding the merits of the different
methods.

Also, unlike LC filters, active -RC filters require
power supplies for the correct operation of the active units.
Not only are the active units generally the most expensive
components in the filter but the cost of the power supplies
can also be an important factor. To reduce these costs
it is desirable that the number of active units in the
filters is as small as possible.

Another reason for reducing the number of active
units is that less heat is dissipated in the filters. The
active units generate most of the heat in the active filters
and this can affect the response. When the filter is built
as a discrete component model the heat generated can easily
be dissipated into the surroundings and the behaviour of
the filter is not much affected. However, when the filter
is realised microelectronically, and many of these filters
are grouped together, the dissipation of heat becomes a
problem. Fans to cool the filters may be required and this

increases the overall cost and size.
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Many synthesis methods for active -RC filters
have appeared in the literature over the years, and a short
survey of some of these methods will be presented in sections
1.2 and 1.3. The sensitivity aspects of the various methods,
and the number of amplifiers that are required, are considered
to be particularly important and will be outlined in the
survey. After the survey we will then discuss in detail
the approach to filter design taken in this thesis; this 1is
done in Section 1.4. Finally, in Section 1.5, we state our

specific aims and give an outline of the  thesis.

1.2 SURVEY OF ACTIVE -RC FILTERS

The first general methods proposed for the
realisation of active -RC filters were based on the use of
only one active unit. Linvill in 1954 (4) showed that
any arbitrary transfer function can be realsied using a
negative impedance converter (N.I.C.)t the active unit,
embedded between two passive RC two-ports as shown in Fig.1.1.
Other synthesis methods using a single active unit have
also appeared in the literature, for instance,the methods
proposed by Yanagisawa (5) and Mitra (6).

It was soon found, however, that these single
active-unit networks were unsuitable for the realisation
of high order filters (i.e., of degree > 2 or 3) as the
sensitivity of the response of the filter to changes in the

component values was found to be very large (7), and the

*An N.I.C. is a 2-port which when terminated at one of the ports
in an impedance g gives rise to an impedance -KZ at the other port,
where K is a positive constant.



circuits were totally unsuited to practical application.
The inability of the single active unit networks to realise
practical filters led to the exploration of alternative
methods for the synthesis of active-RC filters.

Perhaps the earliest successful approach to the
design of active-RC filters that produced filters with
acceptable sensitivities was the 'cascade method". In this
method the required transfer function T(p) is factorised
into 2nd order factors which have complex conjugate poles,
and a factor containing any real poles that may occur.

Each 2nd order factor is realised as the voltage transfer
function of an active-RC 2-port, and the factor containing
the recal poles can in general be realised by a passive RC
2-port. The active -RC filter is then obtained by cascading
the individual 2-ports as shown in Fig.1.2Z. Many active
-RC circuits, using a single amplifier, that realise 2Znd
order sections have been proposed (8) and extensive study
has shown that filters can be realised that have

sensitivity features acceptable for many applications
(9,10,11). Some two-amplifier networks
for realising 2nd order sections have also been proposed

(12 ).

Although filters with cascaded sections can have
acceptable sensitivity properties, they suffer from the
inherent disadvantage that the sensitivity of the filters’
responses, to changes in the resonance frequencies of the

sections, can be very large, particularly when the required
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Q-values for the sections are large. For some
specifications the cascade approach to filter design can
therefore be unacceptable.

In 1966 Orchard (1) suggested a possible solution
to the sensitivity problem in active-RC filter design that
has since been found to be very satisfactory. Rather
than directly designing the active-RC filter to realise
the transfer function T(p) Orchard proposes, instead,
designing the active filter from a low sensitivity LC filter
having that transfer function. The active filter is
obtained by retaining the capacitors and terminating
resistors of the LC filter, and using active-RC networks
to simulate the inductors. In this way he suggests that
it might be possible to obtain an active filter that
retains the low sensitivity properties of the original LC
filter. Orchard also points out that a suitable LC filter
to start from is one whose loss/frequency response,in the
passband,contains points at which maximum possible transfer
of power takes place from source to load. He shows that,
at these frequencies,the 1lst order differential sensitivities
of the loss to the reactive component values are zero, and he
also suggests that these sensitivities are low throughout
the passband. Various other simulations methods stemming
from Orchard's approach have since been proposed and
intensively studied in recent years; a short survey of these

simulation methods will be given later in Section 1.3.



Another approach to filter design , which has
recently recieved some attention , is the multifeedback
method (14,15). In this approach the active - RC filter
once again consists of a cascade of 2nd order sections
but in addition feedback , and sometimes also feed forward ,
is applied to the network. In this way it was hoped
to overcome the sensitivity problem arising in the cascade
method. Multifeedback filters have been intensively
studied and the results seem to show that active-RC filters
with sensitivities comparable to LC filters can be obtained
(16,17,18). The active-RC networks used in the cascade
approach for the realisation of the 2nd order sections can
be used in this method , however , additional active units
may be required to achieve the correct feedback or feedforward
although in some cases this 1s not necessary (18).

One type of multifeedback filter , called the leapfrog feedback
filter (14) , has the feature that it can be designed from the signal flow
graph of an LC filter. This particular circuit will be discussed in more

detail in section 1.3 which deals with the simulation of LC filters.

1.3 SIMULATION OF DOUBLY TERMINATED LC LADDER FILTERS

Many of the simulation methods make use of positive
immittance inverter and converter circuits. The properties
and definitions of these circuits are first of all described
in section 1.3.1 The various simulation methods are then

outlined in sections 1.3.2 , 1.3.3 , and 1.3.4.



1.3.1 Positive Immittance Inverters and Converters

1.3.1.1 The positive immittance inverter

The positive immittance inverter (P.I.I.) is a
2-port network which, when terminated at one port in an
impedance Z,presents at the other port an impedance K/Z
where K is a positive constant and depends only on the 2-
port (/9). Thus if port 1 is grounded (by ''grounded" we mean where
one terminal of the port is connected to ground ) and port 2 is
terminated in a capacitor , the network can simulate a grounded
inductor as shown in Fig. 1.3 (a). When both ports 1 and 2
are grounded , two P.I.I.s and a single capacifor may be used
to form a floating inductor in the way indicated in Fig. 1.3 (b).

An interesting feature of a P.I.I. network is that
its ports 1 and 2 can be relabelled as ports 2 and 1 and a

P.I.I. network still Tesults.

1.3.1.2 The positive immittance converter

The positive immittance converter (P.I.C.) is a
2-port network which, when terminated at port 2 in an
impedance Z, presents at port 1 and impedance KZ where K
depends only on the 2Z-port network (/9). If K is equal to Np,
where N is a positive constant and p is the complex frequency
variable, and if port 1 is grounded and port 2 is terminated

in a resistor, then a grounded inductor is realised as shown



in Fig.1.3 (c). When both ports 1 and 2 are grounded,
two P.I.C.s (having K=Np) and a resistor may be used to
form a floating inductor in the way shown in Fig.1.3(d).
P.I.C.s can also be used to obtain frequency
dependent negative resistors (F.D.N.R.s) having impedances
of the forms D/p2 and Mp2 where D and M are positive constants.
The D/p2 type F.D.N.R. is obtained if a resistor is used to
terminate port 2 of a P.I.C. having K = N/pz. Alternatively,
one can use a P.I.C. having K = N/p, which is terminated in
a capacitor. To obtain the Mp2 type F.D.N.R. we can
terminate port 2 of a P.I.C.,with K= sz, in a resistor.
As in the P.I.I. case, ports 1 and 2 of a P.I.C.
network can = Dbe relabelled as ports 2 and 1 to give a
P.I.C. network. This time, however, the parameter K

associated with the new network is equal to the inverse of

that of the original network.

1.3.2 Filter Design by Inductor Simulation

The first methods proposed for the simulation of
LC filters by active RC networks may be classified as
inductor simulating methods. This approach consists of
simply retaining the resistors and capacitors in the LC
filter and using active-RC circuits to simulate the
inductors (1,20,21)

Grounded inductors may be simulated by terminating
a P.I.I. or a P.I1.C. circuit in the ways shown in Figs.1.3(a)
and (c). Some simulated inductor circuits of this type,
which use P.I.I and P.I.C. networks consisting of two

amplifiers and a number of resistors, have been published by
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Riordan (22) and Antoniou (23). Some single-amplifier RC
circuits for the simulation of grounded inductors have also
appeared in the literature (24,25,26,27). Two of these
single-amplifier circuits, i.e., the Orchard/Willson circuit
(26) and the Schmidt/Lee circuit (27), make use of single-
amplifier P.I.I. networks.

To simulate a floating inductor we can again make
use of P.I.I. and P.I.C. networks, i.e., in the ways shown
in Figs. 1.3(b) and (d)(30). M. Silva ,however , has shown
that ports 1 and 2 of a single-amplifier P.I.I. network
cannot both be grounded (28) , and these networks
are therefore unsuited to the method shown in Fig.1.3(b).
Another way to simulate a floating inductor is to use a
floating gyrator circuit terminated in a capacitor (29).
An example of a simulated floating inductor of a different
type 1s Deboo's circuit (31).

In the above methods the inductors are
individually replaced by an active -RC circuit. However,
it is also possible to replace the whole inductor subnetwork
by an appropriate active -RC network. This apprcach was
proposed by Gorski - Popei who suggested using a multi-
terminal P.I.C. network (resistively terminated) to replace
the inductor network (32). A similar method, using a
multiterminal P.I.I. network, has also been described by
Holt and Linggard (33,34).

The inductor simulation method ensures that the

capacitors of the active-RC filter corresponding to the capacitors of the



original LC filter , will have equally good sensitivities - this is

also true for the terminating resistors . However, the
components in the active -RC networks used to simulate the
original inductors may introduce new sensitivities intc the
filter that are not present in the original LC filter.
Care must therefore be taken that these new sensitivities
are acceptably low. In Chapter 2 we will present a
survey of the active-RC simulation networks used in the
design of active filters. This survey will include the

simulated inductance circuits mentioned in this section.

1.3.3 Impedance Scaling Method

Another method of simulating doubly terminated

LC ladder filters is the impedance scaling method, proposed

originaliy by Bruton (35,36). This method 1is
based on the fact that the voltage transfer function of a
filter, being a nondimensional quantity, is unaffected if
the impedances of all the components in the filter are
multiplied by the same factor. Consider, for example, the
lowpass LC filter shown in Fig.l.4(a). If the impedances
in this filter are multiplied by e/p, where e is a positive
constant and p is the complex frequency variable, we find
that the source and load resistors R, and R; become capacitors
of value Cé = 1/eRS and C1= 1/eR1, the inductors Li become
resistors of value eLi, and the capacitors Cj become
impedances of the form Ki/p2 where Kj is equal to e/Cj.

The new impedances Ki/p2 are frequently called supercapacitors.



As a result of impedance scaling, the network in Fig.l.4(a)
becomes the network in Figl.4(b) which retains, in principal,
the low sensitivity properties of the original LC filter.

The method of impedance scaling by e/p is
particularly suited to LC low-pass filters in which all
the capacitors are grounded and hence where the remaining
sub-network consists solely of inductors. After scaling,
the inductive sub-network becomes a resistive network,which
is attractive in practice as close tolerance resistors can
be used in the design. Also, the impedance scaling method
avoids the problem arising in the inductor simulation
methods of having to use active -RC circuits to simulate
the floating inductors. The grounded capacitors in the
LC lowpass filter all become grounded supercapacitors and
these can be realised using both single - amplifier and two-
amplifier RC networks (35,37,25,27).

Impedance scaling by ep (instead of e/p) is also
useful especially in connection with LC networks in which
all the inductors are grounded (the remaining sub-network
consisting only of capacitors). In this method the
capacitors Ci become resistors of value e/Ci, and the
grounded inductors Li are transformed to grounded impedances
of the form Mip2 where M.1 = eLi. These new impedances
are called superinductors and they can be realised using both
single-amplifier and two-amplifier RC networks (35,37,27)

Some details of the F.D.N.R. circuits mentioned in
this section will be given later in the survey of simulation

networks in chapter 2.



A plausible application of the method of
impedance scaling by ep is for LC highpass filters where
all the inductors are grounded. The method has the advantage
that after impedance scaling the capacitor sub-network
becomes a resistive network and close tolerance resistors
can be used. However, a drawback of the method is that
the terminating resistors cf the original LC highpass filter
are transformed to inductors and additional active =-RC
circuits are required to simulate these inductors. This
is a disadvantage which does not arise in the impedance
scaling by e/p method for LC lowpass filters.

Impedance scaling techniques are also suited to
the realisation of active -RC bandpass filters (38,39,40).
In one method the original LC bandpass filter is modified
so that it consists of a cascade of two sections; one
section in which all the capacitors are grounded, and the
other section having all its inductors grounded. Appropriate
scaling is then applied individually to each section, and
the two impedance scaled sections are matched using a

suitable type of P.I.C. (38,39).

1.3.4 Resonator Simulation Method

Many LC filters contain series LC resonator circuits.
To obtain the active -RC filter one method is to realise
these resonator circuits (and their impedance scaled
counterparts) by active -RC networks. Some single-amplifier
RC resonator circuits have been proposed by Schmidt and
Lee (27), and also by Cheng and Lim (41). (their
simulation networks will be discussed in more detail in

Chapter 2).

D
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1.3.5 Other Approaches

A rather different approach to active filter
design has been to represent the relationships between
the voltages and currents of the LC filter by a signal
flow graph. The variables of the signal flow graph are
then regarded as voltages and the relationships between
these voltages are rcecalised by suitable active -RC networks.
One type of filter which can be considered in this way 1s

the leapfrog feedback filter, proposed originally by

Girling and Good (14). It should be mentioned, however,
that this filter can also be considered as a multifeedback
filter. This method does indeed give rise to active =-RC
filters that have good sensitivity properties (18).
Similar relationships between LC ladder filters and other
multifeedback filters have not yet been derived.

Recently other approaches to active-RC filter
design have been proposed, mnamely, the 'wave active filter"
(42,43,44,45) and the "linear transformation filter" (46,
47 ) methods. In these methods the voltage and current
variables of the original LC filter are transformed to new
variables. The active filter is then obtained by
realising the relationships between the new variables with
suitable active -RC networks, sSo that the overall transfer
function is the same as that of the LC prototype. There
is again some evidence that filters having acceptable

sensitivity properties can be obtained in this way (43).

o
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1.4 APPROACH USED IN THIS THESIS TO DESIGN ACTIVE-RC FILTERS

The approach to filter design adopted in this
thesis is based on the inductor simulation technique
described in Section 1.3.2. As mentioned in Section 1.3.2
there are a number of both two-amplifier and single-
amplifier RC networks for the simulation of grounded
inductors. The particular simulated inductor circuits we
will consider, here, are of the type which are obtained
by terminating a single-amplifier P.I.I. network in a
capacitor, e.g., the Orchard/Willson circuit (26) and the
Schmidt/Lee circuit (27). Simulated inductors of this
type have the interesting feature that they use the minimum
number of amplifiers and capacitors (i.e, 1 amplifier and
1 capacitor) needed for inductor simulation. The Orchard/
Willson circuit and Schmidt/Lee circuit are described in
detail in Chapter 2 (Chapter 2 also contains descriptions
of other S.I. circuits). In Chapter 3 we will present some
novel S.I. circuits that are similar to the above circuits
in that they also contain only 1 amplifier and 1 capacitor,
and can be regarded as single-amplifier P.I.I.s that have
been terminated in a capacitor. Henceforward we will
refer to simulated inductors of this type as S.A. S.C. S.I.s.

As single-amplifier P.I.I. networks are unsuited
to floating inductor simulation (28) we will be concerned
only with the active -RC realisation of LC filters in which

all the inductors are grounded. This restriction seems

’}\)
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at first to be rather severe , however , all highpass
filters and a wide range of bandpass filters are still
realisable. Examples of these highpass and bandpass
filters are shown in Figs. 1.5 (a) to (d), alongwith
their typical loss/frequency behaviour. LC lowpass
filters require floating inductors , and cannot therefore

be simulated using the approach described in this section.

1.5 SPECIFIC AIMS AND OUTLINE OF THESIS

There are two main purposes of this thesis. One
is to present some new single-amplifier , single-capacitor ,
resistor networks for the simulation of a grounded lossless
inductor. The other purpose is to present a study of S.I.s
of this type (i.e., 1A and 1C ) , and also to present a
study of active-RC filters that use these S.I. circuits
(see section 1.4 ). In particular we will describe a
completely novel approach to compensation for the effects
of the finite gainbandwidth products of the amplifiers on
the response of active-RC filters that use single-amplifier,
single-capacitor , S.I.s. A detailed outline of the
thesis follows.

We begin in chapter 2 with a survey of known
active-RC simulation networks. This survey includes the
S.A. S.C. S.I. circuit due to Orchard and Willson (26) ,
and the other known circuit of this type due to Schmidt
and Lee (27). As general background the survey also
covers other S.I. circuits and circuits which realise

2

impedances of the form K/p2 , Mp®™ , R + K/p2 ,and pL + 1/pC.

™
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The new simulated inductor circuits are described
in chapter 3. In common with other S.A. S.C. S.I.s the
new circuits rely on precise relationships between their
component values in order to achieve the simulation of a
lossless inductor. Deviations of the actual component
values from the nominal values cause these relationships
not to be satisfied exactly and the simulation is not
accurate. A model for evaluating the effects of component
tolerances on the impedance of the S.I.s is presented. We
also present a model for evaluating the effects of the
finite gainbandwidth product of the amplifier on the impedance
of the S.I.s.

In chapter 4 we present a detailed investigation of
one of the new S.I. circuits proposed in chapter 3. We will
show how to design this circuit so that the effects of
component manufacturing tolerances on the impedance are
reduced. We also derive expressions for the inductance L (w)
and Q-factor Q(w) behaviour when the finite gainbandwidth
product of the amplifier is taken into consideration. A
design procedure for improving the Q(w) behaviour will be
presented. The L(w) and improved Q(w) behaviour is then
compared with that for two other S.I. circuits , i.e. ,
Orchard and Willsons' circuit (26) , and Antoniou's two-
amplifier S.I. circuit (23). The sensitivities of L (w)
and Q(w) to changes in the component values for the new
circuit are also investigated and compared with the

sensitivities for the other S.I. circuits.



In chapter 5 we describe a completely novel
compensation procedure for overcoming the effects of
the finite gainbandwidth of the amplifiers in active-RC
filters that contain S.A. S.C. S.I. circuits.In contrast
to conventional compensation methods the new procedure
does not seek to improve the inductance and Q-factor
behaviour of the S.I. circuits , but deliberately designs
the simulating networks to have a specific biquadratic
impedance function. We then choose an LC filter circuit
which can be modified by appropriate transformations so
that 1t produces the required loss/frequency response
(apart from an increased basic loss in the highpass filter
case) using these biquadratic impedances instead of the
original inductors. In this way we can compensate for
the effects of the finite gainbandwidth products of the
amplifiers - indeed , in the case of highpass filters
complete compensation for finite fT can be obtained over
the entire frequency range in which the non-ideal gain of
the amplifiers can be adequately described by a single-
pole model. The simulated biquadratic impedances required
in the new compensation method have been called S.B.I.
circuits to distinguish them from S.I. circuits designed
using conventional approaches. Design procedures for
some S.B.I. circuits will also be presented in chapter 5.

Chapter 6 is concerned with the sensitivity
properties of the compensated active-RC filters described

in chapter 5. The active filters which use S.B.I.



circuits are designed from original LC filters that have
parallel RC terminations instead of purely resistive
terminations. The sensitivity properties of LC filters
with parallel RC terminations are investigated and compared
with those for resistively terminated LC filters. We also
investigate the effects of variations in fT on the
impedance of S.B.I. circuits.

Chapter 7 contains the computational and
experimental work of the thesis. Various filter examples ,
highpass and bandpass , have been studied and their computed
and measured loss/frequency responses will be given.
Functional adjustment procedures for overcoming the effects
of component manufacturing tolerances on the response of
the filters are presented. We also show how the response
of each filter changes when the component values for the
filter change.

Finally in chapter 8 we conclude with a summary
of the work presented in this thesis and some conclusions
are made concerning the practical feasibility of active-RC
filters that use S.A. S.C. S.I.s. A recent and very
interesting S.A. S.C. S.I. circuit , discovered by the
author , is also presented and some suggestions for further
work are made. Some of the results of the work presented in this

thesis have been published previously by the author (59, 60).



CHAPTER 2

ACTIVE-RC SIMULATION NETWORKS

2.1 INTRODUCTION

In this chapter we make a survey of the active-RC

networks that are available for simulating grounded impedances

2 2

of the form pL , K/p” , Mp®“ , R + K/p2 , and pL + 1/pC . The
survey is mainly concerned with simulation networks that have
only one amplifier (the theoretical minimum) , however , some
two-amplifier circuits will also be described so that we can
compare the various single-amplifier circuits with their

two-amplifier counterparts.

In general,manufacturing , ageing , and environmental

tolerances on the values of the passive components in the
circuits give rise to inexact simulation. The passive
sensitivity properties of the networks will therefore be
discussed in the survey. A possible way of overcoming the
problem of manufacturing tolerances is to adjust the values
of the resistors in the simulation network (capacitance
adjustment 1is not feasible ) until the correct impedance is
obtained. The suitability of the networks to adjustment
procedures will also be discussed.

Even if we assume the passive component values to
be exact , the impedance of the active-RC simulation networks
will still be affected by the non-ideal behaviour of the
amplifiers. One amplifier imperfection , in particular ,

is the non-ideal voltage gain p . Ideally N should be

W



infinite at all frequencies but in practice it is finite
and becomes less as the frequency of operation is increased.
Also , the phase difference between the output voltage of
the amplifier and the differential input voltage is
approximately 90° except at very low frequencies. A simple

expression for the gain of the amplifier is:

1
A/ = —_—
&K+ p/(,()-r
where & = 1inverse of the D.C. gain
W+ = finite gainbandwidth product (r/s)

The effects of non-ideal amplifier gain on the impedance
of some of the simulation networks will be discussed in

the survey.



2.2 CIRCUITS WHICH SIMULATE GROUNDED INDUCTORS

2.2.1 Two-amplifier Circuit

An example of a two-amplifier simulated inductor,
due to Antoniou (23), is shown in Fig.Z2.1. This circuit
can be regarded as either a P.I.I. or a p-type P.I.C. network
having port 2 suitably terminated , see Figs. 1.3 (a) and (c).
Considering the amplifiers to be ideal,the
impedance of the circuit is given by the expression

pPC,R{R-R

1734 (2.1)

Zinp = P = g5

The expression in (2.1) shows that this S.I. circuit
retains its inductance behaviour with arbitrary positive
values for its components. Furthermore, a relative change
in the value of each component, taken individually, gives
rise to the same relative change in either the value of L
or 1/L. Since thé loss/frequency response of an LC filter
can have low sensitivities to the inductance values , we
conclude that active-RC filters with equally low sensitivities
can be obtained using this S.I. circuit.

To take into consideration the non-ideal behaviour
of the amplifiers in the S.I. the general procedure is to

represent the circuit's non-ideal impedance as the series

combination of a resistance R(w) and an inductance L(w),i.e.,

IND



The performance of the non-ideal S.I. is then measured
in terms of the inductance L(w) and the Q-factor Q(w)

which is defined as

wl(w)
R(w)

Qw) =

Ideally the Q-factor should be infinite at all frequencies
and the inductance constant with frequency. However, in
practice the non-ideal gain of the amplifiers cause the
Q-factor to have finite values and become frequency dependent
- L(w) also becomes frequency dependent. Bruton has shown
how to design the S.I. circuit so that the Q-factor
behaviour is improved (49) ; some work on additionally
improving L(w) has also been described by Haigh and Kunes (50).

Because of manufacturing tolerances on the values
of the components in the circuit, the inductance value
will not be exactly equal to the specified value
and thg Q-factor will not have its nominal behaviour.
The circuit is particularly suited to resistor adjustments
for overcoming both these problems (37) and a wide tolerance
capacitor can be used in the design. Furthermore, the
adjustment procedure is well suited to microelectonic
technology in which the values of the adjusting resistors
can only be increased.

The properties of the circuit mentioned above make
it particularly attractive for practical filter design.

Perhaps the only disadvantage of the circuit is that it uses



two amplifiers which is not the minimum required for

inductor simulation.

2.2.2 Saraga Circuit

A circuit which simulates a grounded inductor
using only one amplifier is shown in Fig.2.2. This
circuit is due to Saraga (25) and was derived using his
synthesis procedure for active -RC impedances (51).
Although the circuit uses only one amplifier, three
capacitors are required compared to one in the Antoniou
circuit. Furthermore the circuit cannot be regarded as
a P.I.I. or P.I.C. which has been suitably terminated.

Assuming the amplifier to be ideal, the impedance
of the circuit .in Fig.2.2 can be expressed as a biquadratic
impedance function in p, the complex frequency variable, as
shown in (2.2) (this is somewhat unusual as we would expect
the circuit to have a 3rd order impedance function in p as
it contains 3 capacitors).

Ay * Agp + App’

7 - (2.2)
IND 2
Bo + Blp + sz

where
Ay = R3Rg-R4Ry
A; = RyR5(RcC,-R,C3)- RyR4RC
A, = -CqCiR R R R,
o = - gy
By = R(ReC,-R,C;)- RyR,C,
B, = CgRyRy(RgC,-R,Cy)

AN
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To obtain lossless inductor simulation with this circuit

the conditions

A.=0 ; B,=0 (2.3)

must first of all be satisfied* so that ZIND can be
expressed as
PA; (1 + PA,/AL)

Zoan = (2.4)
IND
Bo(1 + PB;/Bg)

The correct simulation is then obtained by choosing

= = .—; —>O (2'5)

so that a pole and a zero of the impedance expression in
(2.4) cancel and ZIND has the impedance of a positive
inductor. One way to satisfy the conditions in (2.3) and

(2.5) is to choose

~

Ce
_I = 6; ;  and C6 C2 (2.6)

4 _ C2
C

(93]

The inductance value L is then given by

L = RSRSCS (2.7)

The method of obtaining inductor simulation with

this circuit is very different to that for the Antoniou
It is worth mentioning that Saraga uses a direct
synthesis method (51).



circuit and relies not only on coefficient cancellations,

i.e., see (2.3), but also on a pole/zero cancellation in
the expression for its impedance. Small errors in the
component values give rise to inexact coefficient and
pole/zero cancellations and the simulation becomes inexact.
Not only will these errors affect the constancy of the
inductance value with frequency but the Q factor will also
be affected even when the amplifier is assumed to be ideal;
we will find later on in the survey that this is also true
for other single-amplifier S.I.s. We would expect active
filters using Saraga's S.I. circuit to have worse passive
sensitivities than for filters using Antoniou's two-amplifier
S.I. circuit. This is because tolerances on the component
values for Antoniou's circuit affect only the inductance
value, and not the Q-factor.

A way of overcoming the problems due to manufacturing
errors in the component values is to adjust the values
of the resistors in the circuit so that the conditions for
lossless inductor simulation are satisfied. The first two
conditions in (2.6) and the inductance value condition in
(2.7) can be satisfied by resistor adjustment even
if wide tolerance capacitors are used. However, the
condition Cg=C, given in (2.6) requires capacitor adjustment
and this is not feasible nowadays. Nevertheless, Saraga
has shown that the effects of errors in the condition
C.=C

6 72
made large (25). The effect of amplifier imperfections upon

can be reduced if the ratio B = RS/R1 = R4/R3 is

the impedance of the circuit has not yet been investigated.

-



2.2.3 Sipress circuit

A single-amplifier S.I. circuit that uses two
capacitors is shown in Fig. 2.3. The circuit is due to
Sipress,and it was derived using his driving point
synthesis method which uses a single N.I.C. as the active
unit (24). The circuit is similar to Saraga's S.I. circuit
in that it cannot be regarded as a P.I.I. or a P.I.C. network
having port 2 terminated in the ways shown in Figs.l1.3(a) and (c).
Assuming the amplifier to be ideal,the impedance of

Sipress' S.I. circuit 1is given by the expression

2
_Ag * AP+ Agp
Zinp = 7 (2.8)
BO + Blp + sz

where

1}

A G

0 46

Re - Gz(l + G4R3)

65

Ay = C,(GgRe = G,Rg) + C1(G,G,R{Re - G,G,RyRy - G,Ry - G,Ry - 1)

A, = C1C2(G6R1R5 - GZRlR3 - RS)

By = -G,
By = C,(G4GcRe = G,G4R5) = Cq(G,G,Rs + G,G4R; + G)
BZ = C1C2(G4G6R1R5 - G2G4R1R3 + GGRS - GZR3 - G4R3)
and G, = l/Ri i=1, ....6

N
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Inductor simulation is achieved with this circuit in

exactly the same way as for the Saraga circuit. \ That is,two
coefficient cancellations Ay = O and B2 = 0 are first of all
needed. The condition AZ/AI = Bl/BO is then required

so that a pole and a zero of the impedance expression cancel,
and finally we require Al/BO > 0 so that positive inductor
simulation occurs. One set of component values which
satisfies these conditions and gives rise to an inductance
value of 1.0 H is: R1 = Ry = R4 = 28, R5 = R6 =148, R2 = 4R,
C, = 0.125 F and C, = 0.25 F.

Because the Sipress and the Saraga S.I. circuits
both have 2nd order impedance functions (in p) and achieve
inductor simulation in the same way, we would expect the
sensitivity properties of the Sipress circuit to be similiar
to those for the Saraga circuit. This is interesting
because the Saraga circuit uses three capacitors compared
to two for the Sipress circuit. A detailed comparison of
the sensitivity properties of both circuits is, however,
outside the scope of this thesis. Adjustment procedures
for overcoming the effects of manufacturing tolerances on
the impedance of the Sipress circuit, and an analysis of

the effects of amplifier imperfections, have not appeared

in the literature.



2.2.4 Orchard/Willson Circuit

An example of a single-amplifier S.I. which uses
only one capacitor is shown in Fig.2.4. The circuit is
due to .Orchard and Willson and was the first circuit of
its type to be published (26). Although Orchard and Willson
do not indicate how the circuit was derived, it is under-

stood from their publication that a sequence of such

circuits was found that culminated in the circuit of Fig.Z2.4.

The circuit uses the theoretical minimum number of
amplifiers and capacitors , and it can be regarded as a
single~amplifier P.I.I. network with port 2 terminated in
the capacitor CO'
Assuming the amplifier to be ideal, the impedance

of the circuit can be expressed as a bilinear function in

p, i.e.,
7 = éQ_i_ﬁlE (2.9)
IND BO * Byp )

where

Ay = G,G.RiRc - (1 + RyG,) (1 + RgGy)

Ay = Cu(GgRyRg = G RjRg = Ry)

(2.10)

BO = G4G6RS - G2(1+ R3G4)

Bl = Culhg * 1 - RsG,y)
and Gi = l/Ri i=1, 6



The impedance ZIND will be that of an ideal positive

inductance if

Ap =0, By =0, and A;/By> O (2.11)

The conditions in (2.11) are satisfied by choosing

G4GgRiRe = (1 + RyG,) (1 + R

4GR1Rs (2.12)

G

3G4)

The inductance value L is then given by the expression

RiRyCo (I + GyRy)
(T + G,R;)

L =

One set of resistance values that satisfies the conditions
in (2.11) to give L = 4CO is : R, = R, =R, =R, =28,

R5 = 49, and R6 = 18.

The circuit achieves inductor simulation by means
of two coefficient cancellations and is unlike both the
Saraga and Sipress circuits which additionally require a
pole/zero cancellétion. Small errors in the resistance
values in the circuit give rise to inexact cancellations
and both the Q-factor and inductance value are affected.
One would therefore expect active-RC filters containing
the S.I. circuit to have worse passive component sensitivities
than filters using Antoniou's S.I. circuit, however, the

sensitivities rnay be better than those obtained



by wusing the Saraga and Sipress S.I. «circuits

as fewer cancellations are required to achieve the correct
simulation of inductance. This conjecture will

have to be left unstudied as a detailed investigation of
the sensitivity properties of the various simulation
networks is outside the scope of the thesis.

Orchard and Willson have investigated the effects
of non-ideal amplifier gain on the impedance of their
circuit and they have suggested a design procedure
for improving its non-ideal performance (26) (some computed
inductance and Q-factor curves showing this performance
will be given later on in the thesis). An adjustment
procedure for overcoming the effects of component
manufacturing tolerances on the impedance has not been

proposed.

2.2.5 Schmidt and Lee Circuit

Another example of a single - amplifier, single-
capacitor, S.I., which was obtained by Schmidt and Lee
using their multipurpose simulation network (27), is shown
in Fig.2.5. This circuit uses seven resistors (compared
to six for the Orchard/Willson circuit) and can be regarded
as a P.I.I. network having port 2 terminated in a capacitor.

Assuming the amplifier to be ideal the impedance
of the circuit in Fig.2.5 can be expressed as

R M L4 (2.13)

IND BO + Blp



where

Ay = G,(GsGg - G,Gg - G,G,)
A, = Co(G,Gy *+ G5G, = G,G¢ - G;G,)
By = G,G4 (665 + GG, + G5G,) - G,G,Gc(G, * Gy)
B, = ¢, Gg(G1G3 + G167 *+ G367 + G,65)
G (6,6, *+ G,6, + G,G, + G,G.)

and G. = 1/R.
i i

The circuit achieves inductor simulation in the same way

as the Orchard/Willson circuit; that is by means of two
coefficient cancellations AO = 0 and Bl = 0 , and by ensuring
Al/BO> 0O so that a positive inductance 1s realised. We
would therefore expect the sensitivities properties for

both these circuits to be similar. Adjustment procedures

for overcoming the effects of component manufacturing
tolerances on the impedance , and the effects of amplifier

imperfections on the impedance of the Schmidt/Lee S.I.

circuit,have not yet been investigated.

2.2.6 Imperfect (lossy) Inductor Simulation

Some examples of lossy inductor simulation are

shown in Fig. 2.6 (a),(b), and (c). The circuit in Fig. 2.6(a)



is due to Ford and Girling (52), the circuit in Fig.2.6(b)
is due to Prescott (53), and the circuit in Fig.2.6(c) is
due to D. Berndt and S.C.Dutta Roy (54).

Assuming the amplifier to be ideal, the impedance

of the circuit in Fig.2.6(a) is

7 = Pe1 %27 (2.14)
T+ B0 (R, ¥ K3)

which is the impedance of an ideal inductor in parallel with
a resistor. The impedance of the circuit in Fig.2.6(b) is

given by
zZ = R, + Rg + PC1R2R3 (2.15)

which is the impedance of an ideal inductor in series with
a resistor as shown in Fig.2.6(b). The Berndt/Dutta Roy
circuit has an impedance

Ry * PGHR1R,

| * PR,

(2.16)

and its equivalent circuit is shown in Fig.2.6(c).

The expressions in (2.14), (2.15) and (2.16) show
that the impedances of the circuits do not depend upon
coefficient cancellations. However, the circuits are not
suitable for incorporation into conventional LC filters
where lossless inductors are required. Instead, specially
designed filters called '"lossy ladder filters', which have
worse sensitivity properties than LC ladder filters, have

to be used. Nevertheless, Rollett has shown that good



performance can still be achieved , and that in some cases
the active-RC lossy ladder filters can be significantly

less sensitive than cascade filters (55).

2.3 CIRCUITS WHICH SIMULATE GROUNDED F.D.N.Rs

In this section we describe some two-amplifier
and single-amplifier networks for the realisation of grounded
F.D.N.Rs , i.e. , impedances of the form Mp2 and K/p2 . All
the single-amplifier circuits make use of coefficient
cancellations in their impedance expressions to achieve the
correct impedance (one circuit , the Saraga K/p2 circuit ,
additionally requires a pole/zero cancellation) . 1In this
respect these circuits are similar to the single-amplifier

S.I. circuits described previously.

2.3.1 Two-amplifier F.D.N.R. circuits

Examples of two-amplifier F.D.N.R. circuits for
the realisation of K/p2 and Mp2 impedances are shown in
Figs. 2.7 (a) and (b) alongwith their impedance expressions
These circults have the same network topology as the two-
amplifier S.I. circuit described in section 2.2.1 , and they
also have the same good sensitivity properties. Adjustment
procedures have been developed for the circuits to overcome
the effects of both component manufacturing tolerances and
the finite fT of the amplifiers on their impedances (37).
Large tolerance capacitors can be used in the design of the
circuits , and they are well suited to microelectronic

technology (%56).
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2.3.2 Saraga Circuit (K/pz)

A circuit which simulates a K/p2 type impedance
using one amplifier and three capacitors is shown in
Fig.2.8. The circuit is due to Saraga (25) and was
derived using his synthesis procedure given in (51).

Assuming the amplifier to be ideal, the impedance

of the circuit in Fig.2.8 is

2

Any + Ajp *+ A,p
g - _0 1 2 . (2.17)
p(B;+ Byp + Bzp™)

where

>
o
1l
=

A; = R;R.C, + R,R.C, - R,R,C

By = CaRg - C3Ry
By = C,CiRiR¢ + CLCoRR. - C(CiRiR,
By = C,CyC4RiRsR,

An impedance of the form K/p2 is achieved by first of all

satisfying the conditions A2 = 0 and B1 = 0 so that Z becomes

Ag(1 -+ PAJ/AG) (2.18)
p’B,(1 + pBy/B,)

G,



The condition Al/AO = BS/BZ is then required Y]
that a pole and a zero of the expression in (2.18) cancel,
and finally K will be positive if A /B,> O.

The circuit achieves the correct impedance in
the same way as the Saraga and Sipress S.I. circuits
achieve - lossless inductor simualtion, that is, by
means of two coefficient cancellations and one pole/zero
cancellation. We would therefore expect the sensitivity
properties of the present circuit to be similar to those
for the S.I. circuits mentioned. Some detailed
work on the sensitivity properties of this circuit, and
its performance when the non-ideal behaviour of the
amplifier is taken into consideration, has been carried out

by Hooshvar (57).

2.3.3 Schmidt/Lee Circuit (K/pz)

The multipurpose simulation network mentioned
in Section 2.2.5 can also be used to obtain a circuit that
has an impedance of the form K/pz. This circuit is shown
in Fig.2.9 and it has the interesting feature that it
contains only one amplifier and two capacitors ( the
theoretical minimum ).

Assuming the amplifier to be ideal, the impedance
of the circuit in Fig. 2.9 is

Ag * AqP

Z = 5 (2.19)
BO + Blp + sz

—~



where

Ay = 65(6, + Go) - G,G;
A = C4(G, *+ Gg) - C,G,

By = G,6;G4 *+ G,6:Gg *+ G;GGg - G,6,Gc - G,G Cg

By = C1(G3Gg - GyGg - GyGg) + C3(G,Gg + GGy + GgGg)
B, = C,C;0

and G. = 1/R.
i i

To obtain the impedance Z = K/p2 the coefficient
cancellations Al =0, BO =0, Bl = 0, are required and
for K to be positive we need AO/B2 7 0. The Schmidt/Lee
K/p2 circuit therefore requires three coefficient
cancellations to achieve the correct impedance , and
differs from the Saraga circuit which requires two coefficient
cancellations and one pole/zero cancellation. Some work
on a comparision of the sensitivity properties of both these
circuits has been carried out by Hooshvar (57) - it appears
that the sensitivities of the F.D.N.R. constant K to the

passive component values are similar for both circuits , also ,

the Q-factor sensitivities (Q

Re(Z)/Im(Z) ) are similar

for both circuits.



2.3.4 Schmidt/Lee circuit (MpE)

Schmidt and Lee have also used their multipurpose
simulation network (27) to realise an ideal superinductor -
this circuit is shown in Fig. 2.10. The circuit uses the
theoretical minimum number of amplifiers and capacitors ,
i.e. , 1A and 2 Cs.

Assuming the amplifier to be ideal,the impedance
of the circuit can be expressed as:

Ag * AqP * Ap’

Z= - > (2.20)
BO + Blp + sz

where

Ay = 6165(6,6, - 6,G.) = G.6,(GG, + G Gy + GGy)

A, = C5(646Gg + GGG, + GGG, + G5G,G.)
~C4(6,6,Gg + G,G.Gg + G6,G¢ + 6,6.G,)
=€, (656,65 *+ G3GgGy)

Ay = C,Cq(G5Gg *+ G:Gg = G,Gg - GgGy)

By = G3Gg(6G1G64G6; - G1G,Gg - G4G56,)

B, = C4Gg(G 056, + G GxG, + G566, = G466, - G1G,Gy)
~C,63GGg (G, + G;)

B, = C,C365(65G5 - G4Gg - GgGy)

and G = 1/R;

)



The circuit  has the impedance of a positive ideal

superinductor , i.e. Z = Mp~, if AO =0, A1 =0,

B1 =0 , B2 =0 , and AZ/BO > 0. One set of component

values which satisfy these conditions to give M = 3C§

1S = = = = = = 1 =
is: Ry R, R5 R, 152,R3 252,R6 4SZ,R8 18,

and C

I
(o)
(@]

2
A sensitivity study for the Schmidt/Lee Mp2 circuit

has not been carried out but we would expect the sensitivity
properties to be bad as four coefficient cancellations are
required in the impedance expression. Other single-amplifier
circuits for the realisation of superinductors have not

appeared in the literature.

2.3.5 Imperfect F.D.N.R. simulation

Some active-RC networks that simulate imperfect
F.D.N.R.s are shown in Figs. 2.11 (a) and (b) alongwith
their equivalent circuits. vThe networks were derived from
the lossy inductor circuits shown in Figs. 2.6 (a) and (b)
merely by an RC-CR interchange (this transformation converts
a p type impedance into a 1/p2 type impedance ). The
imperfect F.D.N.R.s can be used in filter design in a way

similar to that described in section 2.2.6 for lossy inductors.



2.4 SIMULATED RESONATOR CIRCUITS

As mentioned in Chapter 1 , many LC filters have
grounded inductors in series with a resonating capacitor.
Similarly grounded F.D.N.R. circuits often occur in filters
in series with a resonating resistor. Some single-amplifier
RC networks simulating these grounded resonators will now

be described.

2.4.1 Cheng/Lim circuit (z = pL + 1/pC)

A circuit , due to Cheng and Lim (4| ) , which
simulates a series LC shunt branch for use in an LC ladder
filter, is shown in Fig. 2.12 . The circuit uses one
amplifier and two capacitors which is the theoretical
minimum.

Assuming the amplifier to be ideal the impedance

of the circuit 1is

2
AO + Alp + Azp

7 = (2.21)
Blp
where
Ay = 6,6,(G. + G)
Ap = CgGs(Gy + Gg) + C,(G6,65 + G,G; - GyGy)

* C4G,G65R (G + Gg) + CyG,G,Re (G + Gg)

o
|

2 T CuCGsR, (G, + Go)

&
|

C4GZG7(G1 + GS) note : G. = l/Ri

Uy



The correct simulation of a series LC resonator , whose
impedance is Z = pL + 1/pC , is achieved by first of all

satisfying the condition A1 = 0 so that Z in (2.21) becomes

2
Ag(1 + pZA,/A)

Blp

The further conditions Bl/AO > 0 and AZ/AO > O are then
required to ensure that the simulated inductance and
capacitance values are positive.

The simulated resonator circuit described above
is very interesting as it requires only one coefficient
cancellation for correct simulation compared to other circuits
such as the Orchard/Willson S.I. circuit and the Schmidt/Lee
S.I. circuit which require two coefficient cancellations. We
would expect this circuit to give rise to active-RC filters
with better sensitivity properties than filters which used
other single-amplifier simulation networks. However , we
would still not expect to obtain sensitivities as good as
those for the two-amplifier simulation networks mentioned
in previous sections.

Cheng and Lim have proposed an adjustment procedure
for their simulated resonator circuit for overcoming the
effects of component manufacturing tolerances on the impedance
(41). They have also shown how to choose the nominal component
values for the circuit so that the effects of the non-ideal

gain of the amplifier on the impedance are minimised.

i
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2.4.2 Schmidt and Lee circuit (Z = R + K/p?)

A circuit which realises the impedance of a grounded
F.D.N.R. (K/p2 type) 1in series with a resonating resistor , 1is
shown in Fig. 2.13. This circuit is due to Schmidt and Lee
(27) , and it uses the theoretical minimum number of amplifiers
and capacitors.

Assuming the amplifier to be ideal the impedance of

the circuit 1is

2
A, + A.p + A,p
z = 9 1 2 5 (2.22)
Blp + sz
where
Ag = 6,636,
A1 = C6GSG4 + C4(GZG3 - GlG4 - G4GS)
Ay = CyCeGs
B1 = C6G3G4(G1 + Gz) - C4G4G5(G1 + Gz)
B2 = C4C663G4(G1 + GZ) note Gi = l/R.l
To obtain an impedance Z = R + K/p2 we need two
coefficient cancellations Al = 0 and B1 = 0 so that Z in
(2.22) becomes
AL+ pZA
7 - 0 2
——

The values for R and K are given by the ratios AZ/BZ and AO/B2
respectively - obviously these ratios must be greater than O

so that R and K are positive.

W
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2.4.3 Cheng/Lim circuit (R + K/p%)

An alternate circuit for the realisation of a
series F.D.N.R./resistor resonator is shown in Fig. 2.14.
This circuit is due to Cheng and Lim (4/) and , like the
Schmidt/Lee circuit of section 2.4.2 , it uses the
theoretical minimum number of amplifiers and capacitors

Assuming an ideal amplifier , the impedance of

the circuit 1is

2
AO + Alp + Azp

Z = 5 (2.23)
sz

where

Ag = 6,656

Ap = C4g(Gy65 - G1Gg) + Cy6,G5

A2 = C4C7G2(1 + Gle + GSRS)

B2 = C4C7GZ(G1 + GS) note : Gi = l/Ri

The circuit achieves the desired impedance

Z = R + K/p2 , where R and K are positive , by means of
the coefficient cancellation Al = 0 and the conditions
AZ/BZ > 0 and AO/BZ > 0. As only one coefficient

cancellation 1s required in the impedance expression ,
we would expect this circuit to have better sensitivity

properties than Schmidt and Lees' resonator circuit



which requires two coefficient cancellations.

An adjustment procedure for overcoming the
effects of component manufacturing tolerances on the
impedance of the circuit has been proposed by Cheng
and Lim (4}). They have also shown how to design the
circuit so that the effects of amplifier imperfections

on the impedance are reduced.



2.5 SUMMARY AND CONCLUSIONS

The Table in Fig. 2.15 summarises the number of
amplifiers , capacitors , coefficient and pole/zero
cancellations that are required for the simulation networks
to achieve their correct impedances.

As mentioned in Chapter 1,LC filters can be
designed to have good sensitivity properties , however ,
when the simulating networks are included in the filters
new sensitivities are introduced by the additional
components in the simulating networks. In the case of two-
amplifier simulation networks the new passive sensitivities
introduced are low as these circuits retain their ideal
simulation behaviour for arbitrary positive values for
their passive components . Single-amplifier simulation
networks , however , require coefficient cancellations
(and possibly also pole/zero cancellations) in their
impedance expressions , and we would expect the new
sensitivities to be larger. Furthermore , we might expéct
the sensitivity properties of the single-amplifier networks
to become worse as the number of cancellations required
becomes greater.

Many of the single-amplifier simulation networks
do not have adjustment procedures for overcoming the effects
of component manufacturing tolerances on their impedances.
Indeed , inspection of their impedance expressions shows
that in many cases there 1s no straightforward method of

adjusting the circuits. Also , for many of the single-



amplifier networks the effects of amplifier imperfections
on the impedance have not been investigated.

In some filter applications where the number
of amplifiers is at a premium it is thought that the
resonator circuits proposed by Cheng and Lim will offer
better results than the other single-amplifier networks.
This 1is because these circuits use a minimum number of
amplifiers and capacitors , and require only one coefficient
cancellation in their impedance expressions. Also ,
adjustment procedures for these circuits have been proposed.
However , the Cheng/Lim circuits are not suitable for LC
filters where the shunt arms consist solely of grounded
inductors and other simulation networks , such as the
Orchard/Willson S.I. circuit and the Schmidt/Lee S.I. circuit,

would have to be used.
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CHAPTER 3

SOME NOVEL SIMULATED INDUCTOR CIRCUITS

3.1 INTRODUCTION

In this chapter we present some novel S.I.
circuits. Each new circuit contains only one amplifier
and one capacitor, andcan be regarded as a single-amplifier
P.I.I. network having port 2 terminated in a capacitor.
In this respect the new circuits are similar to the
Orchard/Willson S.I. circuit and the Schmidt/Lee circuit
described previously in Sections 2.2.4 and 2.2.5

After describing the new S.I. circuits we
investigate the effects of passive component tolerances
on the impedance of S.A. S.C. S.I.s . Models which
show how the impedance is affected will be described ,
and we will also describe a model which additionally
takes into consideration the effects of the non-ideal

gain of the amplifier on the impedance of the S.I.s

3.2 DESCRIPTION OF CIRCUITS

Before describing the new S.I. circults 1in
detail , it is 1interesting to mention how many resistors
they contain and also to point out a few properties of
some of the circuits that the O0/W and S/L circuits do not

have (note from Sections 2.2.4 and 2.2.5 that the O/W
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circuit contains six resistors , and the S/L

circuit contains seven resistors)

One of the new circuits, referred to as S.I.
circuit A ,see Fig.3.1(a), uses seven resistors and it has
the interesting feature that its inductance value can be
varied by altering the value of a single resistor without
affecting the conditions required for lossless inductor
simulation. The other new circuits and the O/W and S/L
circuits do not pogess this property. Furthermore, the
inductance value for S.I. circuit A can be varied over a
positive and negative range, and the circuit appears to be
suited to an adjustment procedure for overcoming manufacturing
tolerances on the values of its passive components. Another
new circuit, called S.I. circuit B ,see Fig.3.3 , uses only
six resistors,which is the same number as for the O/W circuit,
and it has the interesting feature that it is a special
case of S.I. circuit A. The remaining new S.I. circuits,

circuits C,D,E and F, are shown in Figs.3.4 to 3.7; these
networks use seven or more resistors and they have no
obvious advantages over the O/W and S/L circuits , nor the
new S.I. circuits A and B.

As S.I. circuits A and B are considered to be the
most important of the new circuits presented in this Chapter,
a detailed analysis of the impedance presented by these
circuits, for both the ideal and non-ideal amplifier cases,
will be presented. Impedance expressions for S.I. circuits

C and D, for the ideal amplifier case only, will also be



presented, however, the expressions for circuits E and F

are not given as these circuits contain a large number of

resistors and are unlikely to be useful in practice.

3.2.1 Circuit A

The impedance presented by the circuit in Fig.3.1(a),

for both the ideal amplifier and non-ideal amplifier cases,

will now be determined.

.Firstly, for the purposes of analysis, the amplifier

is removed from

remaining RC network is labelled in the way shown in

Fig.3.1(b).

describing the network in Fig.

Now, taking the amplifier into consideration,

Fig. 3.1(b) that the voltages v,

By inspection the

3.1(b) are

1] (G;+G,) 0 -G
1, 0 (PC §+G,+Gy) 0
I, =| -G 0 (G4+Gs+Gy)
I, 0 -G -G
15 | -6; -pC, 0

(G

we note from

7

admittance equations

*pCy*Gg)

(3.1)

are related

the circuit in Fig.3.1(a) and the




by the expression:

= w(V,-Vy) (3.2)

where r is the voltage gain for the amplifier. Substituting

this expression for V4 into eqns. (3.1) gives

S i i ~
(@ (1] [(61%6)) 0 Gy G, [vq]
(b) I2 0 (pCO+G2+G3—uG3) uG3 -pCO V2

X (3.3)
© |I3]=|-6G, -G, (GGG, +1G,) 0 Vs
@ |1, 0 (-G5#u(Gg*G5+G,))  (-G,-uG*G+G,) -G Vs
(e) IS 'G7 _(pCO+UG6) UG6 (G +pC 6)

From Figs. 3.1 (a) and (b) we also note

I, =1, =1I.=20 (3.4)

as no current is taken from nodes 2,3 and 5 (nodes 2 and 3
are connected to the amplifier inputs for which we assume an
infinite input impedance). These values for I, I and I5
may be substituted into eqns.(3.3) (b), (c) and (e) to give

the following set of equations



0 RPC0+G2+G3‘“G3) uGsg 6, ] [V,

G, |= G, (G,+G5+Gy*uGy) 0 X |V

EIJ ~—(pCOﬁJG6) uG6 (G7+pC0+Gé)d LYSJ
(3.5)

The voltages V3 and V5 can be expressed in terms of

Vl , the voltage across the Simulated Inductor network ,

by solving this set of linear equations using

Cramer’s rule. ,i.e. ,

1 D,
Vi = ot Vs Ve = o V (3.6)

where the expressions for DO,D1 and D, are

(pCu*G,*G3-nuG3) HG; Py

D= uG, (G4*Gc+Gy*uG,) 0 (3.7)

-(pCO+uG6) UG6 (G7+pCO+G6)




(pcO+GZ+G3-uG3) 0] -pCO

D, = ~uG, G, 0 (3.8)
- (PCy*uGe) Gy (Gy*pCy+Ge)
(pCO+GZ+G3~uG3) uGq 0
D, =| -uG, (Gg*Gg+Gy+uGy) Gy (3.9)
_ nG G
(pCo*1Gg) 6 7

From eqn. (3.3) (a) we have

I, = (6;+6,)V, - (6)Vg - (G,)V, (3.10)

Substituting the expressions for Vs and Ve given 1in

(3.6) into (3.10) gives:

! 2y (3.11
Iy = (G +G) -6 -6 "1 -11)
0 0
and from this expression Zyyp = V1/I; 1is found to be
Do
A = (3.12)
IND (G, * 6,0 - 6,0, - G,D,

The expressions for DO’Dl and D, given in (3.7), (3.8) and

(3.9),may now be substituted into (3.12) and with some



re-arranging of terms the impedance ZIND can be expressed as:

) (AO + SAZ) + p(A1 + EAS)
ZIND = (3.13)
(BO + EBZ) + p(B1 + eB3)

where

AN = (G6 + G7)(G4G2 - G365 - GSGl)

+

A= Gy {G4(Gz v Gy) - (G *+ Gg)(Gg o+ 66)}

Ay = (G3 * G (Gy + G5 + G)(Gg + G)
(3.14)
Ag = ColGy *+ Gy + G1) (G, + Gy + G+ Gy)
By = 16,666, + (GG, - G3Gg) (G646, + GG, + Gy Gy)
By = CplGy * G;)(G,6, - GG = GgGig)
By = (G + Gg) (G *+ Gg) (6,65 + GGy + GGy + GGGy
By = G {Gl(GA + Gl (Gy + Gy + Gy + Gy) *+ Go(G) *+ Gy + Gg) (G, + G + 66)}
and € = U7l = a p/wy where @« 1is the inverse

of the D.C. gain , and Wy = ZﬁfT where fT is the finite
gainbandwidth product for the amplifier.
In the ideal amplifier case when the gain 1s

infinite , i.e. € = 0 , the impedance in (3.13) reduces to:



/\O + pA 1

7 = J ~
IND By * PB (3.15)

For lossless inductor simulation the cocfficient

cancellations

0 and B, =0 (3.16)

=
H

are requirced. The inductance value L = Al/BO is then

given by the expression

. ﬁl i CO {G4(G2 + G7) - (GLM+ GS)(G3 + G )}
ip : . < - v © G
0 (G4Gy = GG (GG, + GG+ GG.) + GG,G46,
(3.17)
For arbitrary values for CO’ GS’ G4, GS, 66 and 67 the
conditions Ny =0 and B] = 0 may be satislied Dby
choosing Gl and Gz as:
G1 = RSG()G5
(3.18)

Substituting these expressions for G1 and GZ into (3.17)

gives

'5)
RiR,(Gy *+ G

N 2n
) C0(6407 G5Gg GoRs
P G(G. + G.G.R. + G.G.R.) + G CZ 2
57677 5061 1508 3) 170605

6)
(3.19)

This cxpression shows that S.T. circuit A can be designed

to have either a negative or a positive inductance value



unlike previously published circuits. TFor ideal positive

inductor simulation we require the incquality

G4G; > R3GGe(G+Gy) (3.20)

S.I. circuit A is similar to the O/W and S/L
circuits in that tolerances on the values of its conduct-
ances causec the coefficients Ag and B1 to be non-zero,
and the circuit no longer simulates a lossless inductor
exactly. However, inspection of the expressions for A,
and Bl in (3.17) show the following:

(1) The condition AO = 0 1s independent
of the values for G6 and G7
(2) The condition B1 = 0 is independent

of the values for Cl and G7

These properties of S.I. circuit A suggest the
following straightforward functional adjustment
procedurce for overcoming the effects of passive component

tolerances on the impedance for S.I. circuit A.

(1) Adjust G] to give AO=O and G6 to give B1=O.

(2) Then adjust G7 to obtain the desired inductance value LN'

The last adjustment for Ly does not affect either of the

conditions AO=O and B1=O. Furthermore, the conductance G7



can be adjusted over a positive range of values to give

both a positive and negative range for the inductance value.
For example, if we choose G1=15 G2=20, G3=1B, G4=lU, G5=16,
G6=1U and CO=1F, then the variation in inductance value with
G7 is that shown in Fig.3.2. Other known S.I. circuits,
both single-amplifier and two-amplifier circuits, do not
have this property.

The 0/W and S/L circuits, and the remaining S.I.
circuits to be dascribed in this Chapter, are all unsuited
to a straightforward adjustment procedure of the kind
described here for S.I. circuit A. This is so because the
value of each resistor in these circuits simultaneously affects
the value of the inductance L and at least one of the two
coefficient cancellations required for lossless inductor

simulation.

3.2.2 Circuit B

S.I. «circuit B is shown in Fig.3.3.

This circuit is a special case of S.I. circuit A obtained
by replacing the conductance G7 by a short circuit , see
Fig.3.1(a).The impedance presented by S.I. «circuit B
can therefore be obtained simply by letting G7+w
in the impedance expression for S.I. circuit A and
collecting the remaining terms . In this way we obtain
for S.I. circuit B

(Ag + €A,) + p(A; + ¢£AQ) .

- (:)-L.L)

(BO + EBZ) + p(B1 + 533)

“IND



where

1 = Coly
Ay = (G + G3)(Gy + Gy + Gg)
A, = C(G. + G, + G.)

3 01 4 ) (3.22)
By = (G + Gg) (GG, - G3Gg) + GG,Gg

B, = Cq(6,6, = GG, - G.G,)
B, = (G, + Gs){(G4 v Ge) (G + Gg) + 6166}

Bs = Cp {(Gl v Gy Gy + Gg)(Gy * Gg) + GGy + Gy G6)}

and ¢ = U = o + pkoT
In the ideal amplifier case when M=o, i.e. € =0,
the impedance ZIND in (3.21) becomes that of an ideal
inductance , i.e. ZIND = pL , if
AO =0 and Bl =0 (3.23)

The inductance L = Al/BO is given by the expression

A C.G
L= & = 0 4 (3.24)

t Gg) (6,6, - G3Gc) + G G,G¢

For arbitrary values for G G G. and G, the conditions

37 747 7S 6
AO = 0 and Bl = 0 may be achieved by choosing G] and
G, in the same way as for S.I. circuit A , i.e.,

2



G R3

(3.25)

(%)
|

7 = GgRy (G5 + Gp)

Substitution of these expressions for G1 and G2 into

the expression for L in (3.24) gives

Lo 0%
2
GgOs( 1 * GgRg + GoRy + GGeR3R,) (3.26)
(note that L is always positive). One set of component

values that satisfies the conditions AO = 0 and B1 = 0 to

give L = 0.25 H 1is: G1 = 18 , G2 =28, G3 = G4 = GS = 1%,

G, =18, C, 1 F

0
Two coefficient cancellations are again needed

6

to achieve inductance simulation and we would expect this
circuit to have sensitivity properties similar to those

for the 0/W circuit, the S/L circuit, and the new S.I.
circuit A outlined previously in Section 3.2.1

S.I. circuit B is interesting because it is a special

case of S.I. circuit A . Also, S.I. circuit B uses only
six resistors which is the same number as for the O/W
circuit, and the fewest number of resistors so far found
necessary to achieve lossless positive inductance simulation

using one amplifier and one capacitor



3.2.8 Circuit C

The impedance presented by the new S.I. circuit in
Fig.3.4(a) will now be determined for the ideal amplifier
case only. From Fig. 3.5(b) we find that the admittance
equations describing the passive component part of the

simulation network are

_{ _ ) )

I, pC,  (pCy*G5+G,) -G, 0 o v

14 -Gl 0 0 (G1+G6+G7) —G6 Vv

IS 0 0 -GS —G6 (G5+G6) \Y

L - - _ L
(3.27)

Now, taking the amplifier into consideration, we note that

the voltages V3 and V4 are equal , i.e.,
Vy = Vg (3.28)
Making the substitution V4 = V3 in eqns. (3.27) gives
@[1,] [G*6,4pc,) P, -(6*G)) O 1A
(b) I, —pCO (pCO+G3+G4) —G4 0 V2
() Iz|= -G, -Gy (G2+G4+GS) ~Ge X Vg (3.29)
(d) I4 —Gl 0 (Gl+G6+G7) —G6
\%
L 5_




The values of IZ’ Is and I4 are zero as no current is taken
from nodes 2, 3 and 5 (nodes 3 and 4 are connected to the
amplifier inputs). Egqns. (3.29) (b),(c) and (d) can

therefore be rewritten as:

el T ] v, ]

rCy, (pCO+G3+G4) -Gy ,O v,
vy G, |= -G, (G,+G,+Gg) -Gy X |vs (3.30)
61J ] 0 (G +6¢+G,) -G6J LYS_

The voltages v, and V3 can be expressed in terms of V the

1 b
voltage across the simulation network, by solving the set

of linear equations in (3.30) using Cramer’s rule, i.e.,

D,
' V, = =% vV (3.31)
0 1 ’ 3 DO 1

where the expressions for Do, D4 and D, are

(pCO+G3+G4) -G4 0
Dy = -G, (G,+G,+Ge) -G (3.32)
0 (G +G+G-) -Gy

= PCH(GyGg *+ GGy - GG = G4Gp)

+ Gg(G) *+ G) (G + Gy) - Go(G,G; + G

(3.33)

G, + G

264 364)



pC, -G, 0

(G,+6,+G) -G

4 5

G (G, +G +G7) -G

1 76 6

= pCO(GlG + G.G, - G,G

5 57 286 = G4Gg) * G4(GyGg - GG

5 - G,6¢)

(PCH*G5*G,) PCo 0
D2 = —G4 G2 —G5
0 Gl —G6

= PCH(GGg = 6,65 = 6,64) + (Gg *+ Gy) (G165 - G,Gp)

From equation (3.29) (a) we have

I = (6 # Gy + pCuVy = (pCHIV, - (G + Gy)Vg

Substituting the expressions for V2 and V3 in (3.31)

into (3.38) gives

(3.

(3.

(3.

(3.

Dl DZ
I, = (6 + Gy #pCy) - pCy = - (G + Gy 5=V
0 0
and from (3.39) the impedance ZIND = Vl/I1 is found to be

34)

35)

36)

37)

.38)

.39).



D
Z . = 0 (3.40)

IND :
(G + G, *+ pCyIDy - pCuDy - (G + Gy)D,

The expressions for DO’ D1 and D2 given in (3.33), (3.35),

and (3.37) may now be substituted into (3.40}) and with some

re-arranging of terms the impedance ZIND can be expressed as

Z = — 1 (3.41)

where

Ry = Gg(6) + G) (G, + G;) = G(G6,G5 *+ 636, + G,G,)
AL = C(6,6¢ + GGy = G,G = G,Gy)
(3.42)
By = (6 + G5)(G564G; + 6,GGy - G3G,Gg)
B, = & {G5G7(G1 v Gy * Gy o+ Gy) *+ GyGgGs - GG (G, + G4)}

Once again two coefficient cancellations are required to
achieve lossless inductance simulation. One set of conductance
values which satisfy these conditions to give the inductance
value L = CO/27 is Gl=GZ=G4=G5=G6=G7=1U, GS=6B, and G4=QB.

3.2.4 Circuit D

The impedance presented by the S.I. circuit shown
in Fig. 3.5(a) , for the ideal amplifier case, was obtained

in the following way.



The admittance equations describing the RC
network are first of all determined by inspection of

Fig.3.5(b), i.e.,

1,]  [e6,+6,) -G, 0 -G, o ]
I, -G, (Gl+G3+pCO) -pCy 0 -Gz
I-| = 0 —pCO (G6+G7+pCO) 0 -Gg X
I, -G, 0 0 (GZ+G4+G5) -Gy
LIS_ i 0 -Gs -Gg =Gy (G3+G4+G6{
(3.43)
Now, taking the amplifier into consideration, we note from
Fig. 3.5(a) that the voltages V4 and_V2 are equal, i.e.,
Vy =V, (3.44)

Making this substitution for V

@ (1] [6,#6,) -(6,46,) 0 0 v,
®) 11, BT G ). PG ~Gs V2
() 13 = 0 | —pCO (G6+G7+pCo) —G6 X V3
@ |1, 6, (6,%G,*Gy) 0 -G, v,
@ |1, [ o - (65+G,) -Gy (65G,+Gg)| ]

4 in equations (3.43) gives

(3.45)




The currents IZ’ 13 and I4 are equal to zero and eqns.(3.45)

(b),(c) and (d) can therefore be rewritten as:

G, (G;+65+pCy)  -pC, 6. | [v,
v, |0 |= -pC, (Gg+G,+pCq) =G| X |Vs (3.46)
_GZJ FG2+G4+GS) 0 —G4 VSJ
The voltage v, can be expressed in terms of V; by

solving the set of linear equations given in (3.46) using

Cramer's rule, i.e.,

D,
V, = 5= Vg (3.47)

Do

where the expressions for Dy, and D1 are

(G1+G3+pCh) -PCo ~Gs3
D = -pCO (G6+G7+pCO) 66 (3.48)
(GZ+G4+G5) 0 -Gy
= (G, + G,)(G,G, + G,G. - G,G,) +
6 7742273 375 174 (3.49)
PCo[ (65 + Gg) (G, *+ G5) - G, (G + G7)}
Gy “PCy -Gy
D, = |0 (Gg+G,+pCy) -Gy (3.50)




= (G * G7) (6,65 - G64) + pCy(G,G5 + GG = G;Gy)
(3.51)

From equation (3.45)(a) we have:

I. = (G

1 + G,)Vy - (G + GV, (3.52)

1

and substituting the expression for V2 in (3.47) gives

I, = (6, * G,)(1 - Dy/Dy) Vy

The impedance Z = Vl/Il is therefore given by

IND

D
Z = 0 (3.53)

IND
(Gp + 60 (Dg - Dy)

The cxpressions for DO and D1 given in (3.49) and (3.51)
may now be substituted into (3.53) and with some re-arranging

of terms we obtain

A, + PA
Zinp = 0o "1 (3.54)
By * PBy
where
Ag = (Gg + G7) (6,65 + G3Gg - GyGy)

Ay = Co{(Gs ¥ Gl (G, + Gg) - GGy + G7)}
(3.55)

By = GSGS(Gl + GZ)(G6 + G7)

B, = C

1 0(Gp * G) (G565 + GG

56 = G4Gy)
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The circuit achieves lossless inductor simulation in the
same way as the previously mentioned circuits, i.e., by
means of the conditions AO=O, B1=O, and Al/BO> 0. One set
of component values which satisfy these conditions to give
an inductance value L=CO/15 is: Gy = G, = 28, G, = 3%,

G, = G, = G, = G5 = 18 .

3.2.5 Circuits E and F

Two more S.A. S.C. S.I. circuits were discovered
by the author, but these circuits contain a large number of
resistors and have no obvious advantages over the other S.I.s
mentioned in this Chapter. The two circuits are shown in
Figs.3.6 and 3.7 alongwith sets of resistance values which
gives rise to lossless positive inductor simulation. These
resistance values were found by matrix manipulation without
fully deriving explicit impedance expressions, but the
simulation of a lossless inductor was verified by computer

analysis of the circuits.



3.3 EFFECTS OF PASSIVE COMPONENT TOLERANCES

In this Section we investigate the effects of
passive component tolerances on the impedance of the
single-amplifier, single-capacitor, S.I.s discussed in

this thesis.

Assuming the amplifiers to be ideal,the S.I.

circuits all have impedance expressions of the form

56)

;. Moty
IND 3.
Bop * PBy (
and the expressions for AO, Al, BO, and B1 for each circuit

have been given previously. To obtain lossless positive

inductor simulation it is necessary to choose nominal values

for the passive components in each circuit so that the
nominal values for the coefficients in (3.56) , which we

shall call A A B and B

oN’ 1N’ Pone IN satisfy the following

conditions.

A, =0 , B, =0, A, /B..> 0 (3.

lN/ ON
Equation (3.56) then becomes ZIND = pLN where the nomina

inductance value L,, is equal to A Tolerances on

N lN/BON
the passive component values for each circuit, however ,
cause the actual values for the coefficients in (3.56) not

to be equal to their nominal values ,i.e.,

)
)

57)

1



0 ON 0 0
A1 = A1N + AAl
(3.58)
BO = BON +ABO
B1 = BlN + ABl = ABl

and the simulation is no longer that of a lossless inductor.
The actual impedance presented by the non-ideal S.I. circuits
is easily found by substituting the expressions in (3.58)

into (3.56) , i.e., we obtain

_ o BAG (A DAY
ZIND = (3.59)
BON +-ABO + pAB1
(note that AON and BlN are zero and do not appear in (3.59)).

Two different models which both describe this impedance

function will now be presented.

3.3.1 MODEL 1

One way of describing the impedance in (3.59) is
by the well known model in Fig. 3.8 (a). For p = jw , we
consider the impedance ZIND in (3.59) as the series
combination of a frequency dependent resistance R(w) and
an inductor whose inductance value L{(w) 1is also frequency

dependent, i.e.,

Zinp = R@) + L) (3.60)

The frequency behaviour of ZIND is then described by L(w)



and the Q-factor Q(w) which is defined as
Qw) = L@)/R(w) (3.61)

For an i1deal lossless inductor L(w) 1s constant with
frequency and Q(w) is infinite at all frequencies.
However, for the S.I.s under study, whose coefficients have
the small errors shown in (3.58) , we find that L(w) is
frequency dependent and Q(w) has finite values which are
also frequency dependent. Expressions for L(w) and Q(w)

may be obtained from eqns. (3.59), (3.60), and (3.61), i.e.,

L) = AlNBON + BONAA1 + AlNABO + AAlABO - AAOABl
2 2 2,52
BON + ZBONABO + ABO +coABl
(3.62)
Q) = (“(AlNBON + BONAA1 + AlNABO +zkA1ABO - AAOABl)
2 2
AAOBON + u;ABlAlN +‘AAOABO + W ABrﬁAl
(3.63)
Simpler expressions for L(w) and Q(w) , than those in
(3.62) and (3.63) , are obtained if we neglect second order

effects, i.e., L(w) becomes

AnBon * Bon®hp + ApN®Bg

L{w) ~ 5
BON + ZBONABO

= Ly(1 + AL /Ay - BBG/Byy) (3.64)



where LN is the nominal inductance value AlN/BON . The
expression in (3.64) does not contain any terms due to

AAO andAB1 asthese errors have only a second order effect

on Lw). The simplified expression for Q(w) 1is
0(w) ~ «A1Bon
< - 2

AhoBon T @ aBiAy
wlL
- N (3.65)
AAO \ Q}Lﬁ ABl
Bon AN

This expression shows that the error5¢SAO andJABl have

st

al order effect on Qw). We also note that the errors

AA and AB are mainly due to tolerances on the conduct-

0 1
ances in the S.I. circuits and not the capacitor tolerance.

This is because AO is independent of the capacitance value

C and because B, is independent of CO when Bl has 1its

0’ 1
nominal value BlN = 0. For example , for S.I. circuit B

(see Section 3.2.2) AO is given by the expression

2 375 371

and B, 1s given by

1
Bl= CO(G4G2 - GSGS - GSGG)

The expression for Blshows that the tolerance on CO can
7

only have a second order effect on the value for Bl when



the tolerances on G2, G3, G4, G5 and G6 are taken into

consideration.
The frequency behaviour for p(w)l ,as determined
from (3.65) , is shown in Fig. 3.8 (c). We find that two types of
behaviour are possible depending upon the signs forzSAO and
AB, . For both the maximum value for

1
‘Q(wﬂ occurs at the frequency

(3.66)

When AA and AB have opposite signs the value for

0 1

p(w)l is infinite at W=W and when they have the

M’

same sign the maximum value for p(wﬂ is

(3.67)

Unfortunately , in practice , the values for the
conductances in the S.I. circuits are not known accurately,

and the exact values for AA and AB will therefore

0 1
be unknown. Hence it is not possible to predict the values
for p(wﬂ nax and Wy that one would obtain. However , for

the given tolerances on the conductances for the S.I.s we
can determine the worst possible values for AAO and ABl
and hence determine the worst case behaviour for 'Q(wn

Consider , for example, S.I. circuit B for the case where

oo



the amplifier is ideal and the passive components in the
circuit have values within 1% of the following nominal
values: G1 =18, G2 =28, G3 = G4 = G5 = 66 = 1Y ,CO= 1 F.
From (3.22) we find that for this design the values for

A and B

1N onN ar¢€

Ay = 1 3 Boy o= b (3.68)

and the worst case values for ‘QAO and ¢QB1 are

AA. = AB, =~ 8/100 (3.69)

The worst case (w.c.) behaviour for lQG»H can now be determined
by substituting these values into eqns. (3.66) and (3.67).

In this case we obtain

IQ(w” max(w.c.)= 12-5
and this occurs at
LOM(W.C.) = 2.01/s
An accurate plot of the worst case bechaviour for p(w)| R

calculated from equation (3.65) , is shown in Fig. 3.8 (d).
To conclude we can say that in practice the actual [Q(wﬂ
values , due to the 1% conductance .tolerances, must lie

somewhere on the shaded areca shown in this diagram.



3.3.2 MODEL 2

Rather than describing the non-ideal impedance
of the S.I.s (see (3.59)) as the series combination.of a
frequency dependent resistance and an inductor whose
inductance value is also frequency dependent, an alternative
model is that shown in Fig. 3.9. For the circuit in

Fig. 3.9 we have

R,R,, + pLR
;= XY Y (3.70)

RX + RY + pL

This expression is of the same form as the expression in
(3.59) for the non-ideal impedance of the S.I.s, i.e., a
bilinear expression in p. Expressions for the resistances
RX and RY and the inductance L for the model in Fig. 3.9
are obtained by equating the impedance expression in (3.70)
to the non-ideal impedance in (3.59). Before doing this,
however, it is convenient to re-express eqns. (3.70) and

(3.59) in the following way.

RyRy  PLRy
Ry * Ry Ry * Ry
;- (3.71)
1 * pL
Ry * Ry
& Aq . Py v aAy)
Bon * 2By Bon * 2Bg
Zinp T (3.72)
1 + PA B,
Boy * ABg

NS
g



Now we note that the impedance expressions in (3.71) and

(3.72) are equal for the following relationships

Ry Ry ) ah,
Ry + Ry Bon * 2B
L Ao+ AA
s S 1N 1 (3.73)
Ry * Ry Bon * 2B
v 25
Ry * Ry Bon 2By

From these relationships

for RX’ RY’ and L

we obtain the following expressions

Ry = Ay P84
AR,
ARG (A +AA1)2
R, = (3.74)
(Apy *8A)) (Byy * ABy) - AAAB,
(A, +AA )2
Lo IN 1
(AN *AD By * ABy) - BALE,

These equations show that when the impedance of the non-ideal
S.I.s is represented by the the circuit in Fig. 3.9 , the
component values RX’ RY’ and L for the model are all

frequency independent In this respect the alternative

model differs from MODEL 1 which has frequency dependent



component values. When the effects of an order changes

are neglected from the expressions in (3.74) we obtain

R ~= AIN/AB1

Y

Ry ~ AAL/Byy (3.75)

L

U

LN(l +Z§A1/A1N —ZSBO/BON)

where LN = AlN/BON

in (3.75) is the same as that for MODEL 1 when 2

Note that the inductance expression

d order

changes are ignored, see (3.64)
In the ideal case , when the conductances in the

S.I.s have their nominal values so that:ﬁAO and ABl are

zero , Ry will be infinite and RY will be zero as expected
(see (3.74)). However, in the practical case, when the

conductances have tolerances causing:ﬁAO and ABl to be

non-zero , RY becomes finite and RY becomes non-zero.

Futhermore, the values for AA and ABl will not be known

0
accurately and it is not possible to predict the values

for Ry and R that are obtained. However, for given

X

tolerances on the conductances we can calculate the

maximum possible values for VSAOl and \ABll and hence
find the worst case values for |R and IRd using
eqns. (3.75). Consider, for example, S.I. circuit B for

the case where the passive components in the circuit have

values within 1% of the following nominal values: G1 =10,

=18, and C, =1 F. The

= 25 = = = 3
G 28, G G G G 0

2 3 4 5 6



values for AlN and BON for this choice of component values
have been calculated previously and are shown in (3.68)
The worst case values for IAAOI and |AB1| have also been
calculated previously and are shown in (3.69). Making use

of the values in (3.68) and (3.69) in equation (3.75) we

obtain

|R 12:5 &

Yl(w. c)

Rby.cy = 0.0z &



3.4 EFFECTS OF NON-IDEAL AMPLIFIER GAIN (A GENERAL DISCUSSION)

Even if the passive components in the S.I. circuits
have zero tolerances the impedance of the circuits will
still be that of a lossy inductance due to amplifier
imperfections. These imperfections include the non-infinite
input resistances for the amplifier, the non-zero output
resistance, the non-zero input capacitances, and the non-
ideal voltage gain i for the amplifier which, to a 15t
order approximation is given by u = (a + pﬂuT)_l.
Taking into consideration the non-ideal gain M , and
ignoring other amplifier imperfections , we find that the

impedance presented by the non-ideal S.I. circuits has the

general form of a biquadratic in p, i.e.,

ag + ajp + azp?

Z = .~
.76
IND by + byp + b2p2 (3 )

This form of impedance is not only confirmed by the impedance
expressions in (3.13) and (3.21) for S.I. circuits A and B,
but it 1s to be expected as each S.I. circuit has two
frequency dependent parameters, namely the impedance of

the capacitor C and secondly the gain M of the non-ideal

0’
amplifier. To investigate the quality of inductance
simulation due to the non-ideal gain , we can use the same
approaches as used in Section 3.3 for investigating the

effects of passive component tolerances on the impedance

of the S.I.s.



One of these approaches is to model the non-ideal
impedance of the S.I. by the series combination of a
frequency dependent resistance and an inductance whose
inductance value 1s also frequency dependent. For p = jw ,
the impedance expression in (3.76) can be used with eqns.
(3.60) and (3.61) to determine expressions for the inductance
and Q-factor behaviour. This approach has been used by
Orchard and Willson for their S.I. circuit and detailed
results of their investigations may be found in (26).
The same approach will also be adopted by the author for
S.I. circuit B and the results of this work will be
presented in Chapter 4.

The other approach used in Section 3.3 was to

model the impedance of the non-ideal S.I. by the circuit
in Fig. 3.9. The impedance of the circuit in Fig. 3.9
was given previously in (3.70),but it is convenient here
to make the substitution p = jw in (3.70) and re-express

the impedance as

RyRy . JoLRy
Ry + R Ry + R
. ) X Y X Y (3.77)
1 N jwL
RX + RY

Similarly, for p = jw , it is convenient to re-express
the - impedance in (3.76) for the non-ideal S.TI.

circuit as



0 2, 1
b. - b b - ob
. _ 0 2 0 2 (3.78)
IND
Jwbl
1 + —
bO - uJbz

For the circuit in Fig. 3.9 to model the non-ideal impedance
of the S.I. it is now obvious from eqns. (3.77) and (3.78)

that the following relationships must hold

2
RXRY i} ay - wa,
2
RX + RY bO - “)bz
LR a
Y - L. (3.79)
RX + RY bO - u)b2
L i bl
2
RX + RY bO - W b2

From these relationships we now obtain the following

expressions for RX’ RY’ and L

Ry@) = (3.80)

2
(albo - blao) - Wwi(bja; - bjas,)

When the non-ideal amplifier gain is taken into consideration

90



we therefore find that for the model of Fig. 3.9 the
resistance RY remains frequency independent, and the values
for RX and L both become frequency dependent. The frequency
dependent inductance , however, may be replaced by the
parallel combination of a frequency independent inductance L'
and a frequency independent capacitance C' if

2

a
L' = L

(3.81)
(a;bg - byjag)(bja; - byaj)
7
1

a

This gives rise to the new model in Fig. 3.10 for which

the only frequency dependent component is the resistance RX(w).
With the help of the model in Fig. 3.10 the

author was able to develope a novel compensation procedure

for overcoming the effects of the non-ideal amplifier

gain on the 1loss/frequency response of active filters

containing S.A. S.C. S.I.s - this compensation procedure

will be described later in Chapter S.



3.5 SUMMARY AND CONCLUSIONS

In this chapter we presented some new circuits
which simulate the impedance of a lossless positive
grounded inductor using only one amplifier, one capacitor,
and a number of resistors. As an alternative to the O/W
and S/L circuits , one of the new circuits, circuit A, has
the interesting feature that its inductance value can be
varied over a positive and negative range by means of a
single resistor, without affecting the conditions required
for lossless inductor simulation. Futhermore , this new
circult is well suited to a straightforward functional
adjustment procedure for overcoming the effects of passive
component tolerances on the impedance. Another new
circuit, circuit B, uses only six resistors , which is the
same number as for the O/W circuit , and it has the feature
that 1t is a special case of S.I. circuit A.

All the new S.I. circuits rely on two coefficient
cancellations in their impedance expressions to obtain the
correct simulation. Tolerances on the resistance values
for the circuits cause these cancellations to be inexact
and the simulation is no longer that of a lossless inductor.
The impedance for the S.I. circuits under these conditions
has been discussed in Section 3.3. The effects of the
non-ideal voltage gain of the amplifier on the impedance

of the S.I. circuits were briefly discussed in Section 3.4.



CHAPTER 4

A STUDY OF SIMULATED INDUCTOR CIRCUIT B

4.1 INTRODUCTION

In this chapter we carry out a study of one of
the new S.I. circuits presented in Chapter 3, namely , S.I.
circuit B.

In Section 4.2 we consider the amplifier in S.I.
circuit B to be ideal and investigate the effects of passive
component tolerances on the impedance. We then show how
to choose the nominal component values for the circuit so
that the effects of resistance tolerances on the impedance
are reduced.

In Section 4.3 we consider the passive components
in the S.I. circuit to have exactly their nominal values,
i.e. zero tolerances, and investigate the effects of the
non-ideal voltage gain of the amplifier on the imnedance.
Expressions for the L(w) and Q(w) behaviour are derived,
and we showk?g design the S.I. circuit so that the Q(w)
behaviour is improved.

In Section 4.4 we make a sensitivity study for
S.I. circuit B. We take into consideration the non-ideal
voltage gain of the amplifier and show how the L(w) and

Q(w) behaviour change when the passive component values

change from the nominal values.



In Section 4.5 we compare S.I. circuit B with
two other S.I. circuits, namely , the Orchard/Willson
circuit (see Section 2.3.1) and Antoniou’s two-amplifier
circuit (see Section 2.3.2). This comparison includes
the L(w) and Q(w) behaviour for the circuits due to the
non-ideal voltage gains for their amplifiers, and the
sensitivities of the L{w) and Q(w) behaviour to the
component values for the circuits.

A summary of the work presented in this chapter

is given in Section 4.6.



4.2 EFFECTS OF PASSIVE COMPONENT TOLERANCES

In this section we consider the amplifier in S.I.
circuit B to be ideal and investigate the effects of passive

component tolerances on the impedance for the circuit.

4.2.1 TYPICAL EFFECTS OF PASSIVE COMPONENT TOLERANCES

In the ideal amplifier case S.I. circuit B has

an impedance
A, + pA
7 = o 1 (4.1)
Bo * PBy

where

A1 = COG4
(4.2)
By = (G * Gg)(GyG, - G5Gg) + G1G,Gg
B1 = CO(G4G2 - G365 - GSG6)
Let us now choose the following nominal values for the
passive components in the S.I. circuit:
Ry Ron Ran Rgn Rsn Ren Con
VALUE 10 5 10 10 10 10 4 (4.3)
UNITS KR K& K2 K& K& K& nF

Note that the subscript N has been used in ,(4.3) to denote



nominal capacitance and resistance values. The nominal
conductance values GiN may be calculated from the
relationship GiN = 1/RiN and then used in (4.2),

along with the value for C to obtain the following

ON”?

nominal coefficient values:

AoN AN Bon Bin

17 (4.4)

13

VALUE 0 4.10° 4,10

From (4.1) we now find that the impedance is that of a

lossless inductance having the nominal value LN = AlN/BON

= 100 mH.

Tolerances on the capacitance and resistance
values for the S.I. circuit B will cause the coefficients
in (4.1) not to have the nominal values in (4.4) , and
the impedance will no longer be that of a lossless
inductance of value LN' Various models which show the
typical effects of the component tolerances were described
in Section 3.3. One model, shown in Fig.3.8(a) , likens
the non-ideal impedance to that of a frequency dependent
resistance in series with a frequency dependent inductance.
An alternative model is shown in Fig. 3.9 , and this model
has no frequency dependent component values. We will now adopt
the model in Fig. 3.9 and give values for its components
when each passive component in S.I. circuit B has, in turn,
a 1% tolerance from its nominal value in (4.3). Note

that for the model in Fig. 3.9 Ry should be ideally infinite,

R should be zero, and L equal to L

X N



From (4.2) we accurately calculate the values

for AO, A B and B, due to each component tolerance,

1 70’ 1
and hence determine the errors éle,zSAl, ABO, and ABl
from the nominal coefficient values in (4.4). Then the

values RX’ RY’ and L for the model in Fig. 3.9 are

calculated from eqns. (3.74). In this way we obtain the
values shown in the Table in Fig. 4.1 (for convenience
we show % changes in L due to each component tolerance
instead of the actual inductance value). The largest
value for [RX| is 508 and this occurs for a 1%

33 and R4 for

the S.I. circuit. The smallest value for |R

change in any one of the resistances RZ’ R

Yl is
0.5 M® and this occurs for 1% changes in RZ’ R4, and

RS - The % changes in the inductance value Ly due to

the 1% component tolerances lie in the region 1.5%.

Note also, that the 1% changes in C, affect only the

0
inductance value

So far we have considered only the effects of
individual tolerances, however, in practice the actual

values for R and L are due to a combination of

xRy
component tolerances. Although we do not know accurately
each component value for S.I. circuit B, and hence the
accurate values for RX, RY, and L , we can still calculate
the worst possible values for |RX| R ]RYI , and L due
to the tolerances. The worst possible values for IRXI and

|RY| occur when the values for VSAOI and VkBﬂ are the

largest possible, see equation (3.75). From the expressions



for A and B in (4.2) we see that this is the case when

0 1

the conductances G2 and G4 have a * 1% change and the

conductances Gl’ G3, GS’ and G6 have a ¥ 1% change. The

worst case (w.c) values calculated using (3.75) are then

lRXIW.C = 200 &

(4.5)

!RY(W.C = 125 k&

The changes shown in Fig. 4.1 suggest that the largest

change in L occurs when Rys R, R and CO have a t 1%
change, and R3 and R5 have a ¥ 1% change. For this case
we obtain the values for AO and B1 using (4.2), and

then from (3.75) we find that the largest error in L is
approx. * 5,0 %.

The model in Fig. 3.8 may also be used to describe
the non-ideal impedance for S.I. circuit B due to 1%
component tolerances. From (3.65) we see that the IQ(wﬂ
behaviour is worst when the values forzsAO and ABl are
as large as possible. Once again, this occurs when the

conductances G G G and G, have a ; 1% change, and

1> 73> °5? 6
G, and G, have * 1% changes. Calculating AAy and ABy
from (4.2) , and then making use of (3.65) , we obtain the
woTrst case IQ(wH behaviour shown in Fig. 4.2. This

behaviour shows that at 7.96 kHz the value for ]Q@uﬂ

cannot be less than 12.5



4.2.2 REDUCING THE EFFECTS OF COMPONENT TOLERANCES

For the model in Fig. 3.9 RX should ideally be
zero, RY should be infinite, and L should be equal to the
specified inductance value LN. However , due to tolerances
on the passive components for S.I. circuit B , the value
will be non-zero, R will be finite, and L will

X Y
not be exactly equal to LN' In this section we show how

for R

to choose the nominal component values for S.I. circuit B
so that the worst possible values for |RX| and [RY] due
to component tolerances are minimised and maximised
accordingly.

Previously in Section 3.3 we derived expressions

for R and R due to the coefficient errors AO’ Al’

X Y
By s and B, for the impedance expression in (4.1). The
exact expressions for RX and RY are given in (3.74), and

approximations,which ignore second order effects, are

given in (3.75). For convenience the approximate

expressions are again repeated here, i.e.,

RX ~ AAO/BON
(4.6)

Ry = Ajn/ABy

Assuming RX and RY to be given by the above approximations,

the worst possible values for |RX| and IRYI occur when

the values for AAO and ABI are the largest possible.



The expressions for A and B, in (4.2) show that this 1is

0 1
the case when the conductances G4 and G, differ by the

fractional changes ¥ x from their nominal values, and the

G G. and G

12 737 75 6
changes. Note from (4.2) that a small fractional

conductances G differ by ¥ x fractional

change x for the value for CO does not affect the value

for AA , and it has only a second order effect on the

0
value for ABl

Let us now denote the nominal conductance values
as GiN

fractional changes * x , are given by

so that the actual conductance values Gi due to

G. = (1% x)Gyy (4.7)

Substituting the conductance values in (4.7), with the
appropriate signs for x mentioned above, into the expression
for AO in (4.2) gives

Ay = Gu(l % X)6

0 1+x) - GBN(l ¥ X) GSN(I FX) O+ GlN(l 3 X)

ZN(
(4.8)

. . 2 .
and for small values for x we can 1gnore terms in X to give

= - +
Ag = GypGay ~ Gan(Gy + Gy 2 2x(Gyp Gy + GGy + GGy
(4.9)

We now note from (4.2) that the nominal value for AO is

given by the expression

Aoy = GanGan = Gan(Goy + G = O (4.10)



and we also note that the coefficient error ‘AAO is given

by the expression
ANy = Ay - Ay (4.11)

Making use of eqns. (4.11) , (4.10) and (4.9) gives the

following expression for the largest possible value forlAAOI

[#80 max = 2X(GGay * CanBoy * GG (4.12)
In a similar way we can show that the largest possible
value for AB1 , due to the fractional changes * x for the
conductance values , is given by the expression
[2B) I max = 2XCon(GanCan * CsnOsn * CsnGen) (4.13)

ON is the nominal value for CO.

Expressions for the nominal values for A1 and B

Note that C

0

may be obtained from (4.2), i.e. we obtain

IN ~ “ONV4N
(4.14)

GG

Bon = SonC6N

ON Gy * Gend (GypGan ~ GanGoy) * Gy

Now, substituting the expressions in (4.14), (4.13) and

[/



(4.12) into (4.6) we obtain the following expressions

for the worst case (w.c) values for |RX| and [RY] due

to the fractional changes ¥ x for the conductance values

R ) 2x(GypGoy * GanBoy * GapnCry) (4.15)

Xlw.c

Gy * Gepd (GynGay = GanGon) + GinCanGen
G
Ry [y.c - 2%(G . G 42 6.6 (4.16)
X(GynGan * GanGsy * GonCen
In Section 3.2.2 we showed that the nominal

values GSN’ G4N’ GSN and G6N for S.I. circuit B could be
chosen arbitrarily and the conditions A = 0 and B =0

ON 1IN

satisfied by choosing

G =G

IN eNCsn/ Gz

(4.17)

Gon = Cgn(Gay + Gyl /Gyy

Also, the specified inductance value L, can always be

N

obtained by choosing the nominal value for CO as

2
LNBonCsn (CanCGan * CanCsn * CanGon * Gonlen)

ON 7
G3nCaN

(4.18)



We will now show how to choose the values for GSN’ GAN ,

G and G so that IR

5N 6N

possible for any given values for x, and so that ’R

X|w c in (4.15) is as small as

Ylw.c
in (4.16) is as large as possible.

Substituting the expressions for GlN and G2N in

(4.17) into eqns. (4.15) and (4.16) gives

4xG + G

3nCan(G3n * Gen)

+ GanGyn * OsnCGsy * GsnCen)

R

| Xlw.c 2

Gen (GynCon
(4.19)

GaN

4xGgy (Ggy + Gop)

Ry lw.c (4.20)

Inspection of these expressions suggested that one way to

achieve our objective is to choose large values for G

4N
and GSN , and to choose small values for G3N and GSN' For
example let us choose G4N = G6N = GL and G3N = GSN = GS‘
Substituting these values in (4.19) and (4.20) gives
4x(Ge + G,;)
IRXlw.c - . - (4.21)
GL(SGL + GS)
G
IRY[w c - (4.22)
4xGS(GS + GL)

These expressions show clearly that for large values for GL



and small values for GS

’

|RX|w c becomes small and ,R

becomes large, i.e. from (4.21) and (4.22) we obtain

Ylw.c

Rx|w.c = 4736,

,RYIW.C = 1/ﬂ'XGS
The values for GlN’ GZN and CON that are required when GSN’
G G and G are chosen in the way described previously,

4N’ TSN 6N

may be obtained from eqns.

set of component values which achieves our

therefore

1IN

2N

3N

4N

5N

6N

ON ~

where GL is large and

G

Ly

S

GSGL(S + GS/GL)

is small.

(4.17) and (4.18).

objective

The entire

is

(4.23)



To show the advantages to be gained by designing

S.I. circuit B in the way shown in (4.23) let us choose

= 100 mH, G = 107> and Gg = 107°. Making use of (4.23)

and the relationship RiN = 1/GiN , we obtain the following

L

nominal component values for S.I. circuit B

Rin Ron Ray o Rgw Ry Rey Con

VALUE 1 99.01 100 1 100 1 332.2

UNITS K8 K8 K8 KR K8 KS DE
(4.24)

We now investigate how the impedance for S.I. circuit B
changes, when each passive component value changes by ¥ 1.0 %
(i.e., x = 0.01) from the nominal value in (4.24). Making

use of eqns. (4.2) and (3.74) we calculate the values for

RX’ RY and the % change in L for the model in Fig. 3.9.

In this way we obtain the values shown in Fig. 4.3. We

find that the values for R, and R, are much closer to their

X Y

ideal values , i.e. RY = 0 and RY = oo , than the values

shown in Fig. 4.1 for the design example of Section 4.2.1,
also, the % changes in L for the new design still lie in
approximately the same range of values as for our previous

example. The worst case values for |R and ]RY, due

X|

to combined tolerances were found to be

|
p—
(93]
]
(93]
QO

IRXIW.C -

(4.25)

]R 2.50 M§

Ylw.c



These values were calculated in the same way as the values
in (4.5) for our previous design example, see Section 4.2.1.
Note that the values in (4.25) are a significant improvement
on those in (4.5). The worst case |Q(w)| behaviour for
the new design was also calculated in the way described in
Section 4.2.1 for the previous design, and is shown in Fig. 4.4.
At the frequency 8.0 kHz we find that IQQO” cannot be
less than 200 -despite the 1.0 % component tolerances for

S.I. circuit B.



for S.I. circuit B , when the non-ideal voltage gain u

EFFECT OF NON-IDEAL AMPLIFIER GAIN

In Section 3.2.2 we showed that the impedance

of the amplifier is taken into consideration, is given by

the expression

where

In the following section we investigate the typical effects

VA =

(Ag * EA,) + D(A] + £AJ)

IND
(B,

G462 - G3G - G,G
CAG

(G, + G5)(Gy *+ G, + G

2 4 * Gg)

CA(G, + G

1 4 * Gg)

0
(Gy * Gg) (GG, - G3Gg) + G16,G¢

- G.G

Co(64Gp = G3G5 = G5Gy)

2

Gy + Gs){(G4 v Gg) (G + Gg) o+ GlG6}

+ EBZ) + p(B1 + EBS)

Co{ (G + Gy * Gg + Gg)(Gy *+ Gg) + Gy(Gy + Gy + Ge)}

€ = M = d + plog

(4.26)



of the non-ideal voltage gain on the L(w) and Q(w)
behaviour for S.I. circuit B. Then, in later sections,
we will make use of eqns. (4.26) and (4.27) to derive
expressions for this L(w) and Q(w) behaviour, and we will
also describe a method of choosing the nominal passive
component values for S.I. circuit B so that the Q(w)
behaviour due to the non-ideal gain is improved. As we
are interested here only in the effects of the non-ideal
voltage gain of the amplifier , we shall assume that the
passive components in the S.I. circuit have exactly their
nominal values, so that AO and Bl in (4.26) are exactly

zero as required for lossless inductor simulation in the

ideal amplifier case.



4.3.1 TYPICAL EFFECTS OF NON-IDEAL AMPLIFIER GAIN

For the passive components in S.I. circuit B
we chose the nominal values shown in Table (a) of

Fig. 4.5, and for the non-ideal amplifier gain u we

-5 and fT = 106

and L(w) behaviour for this design were then evaluated

chose @ = 10 Hz (see (4.27)). The Q(w)
at a number of frequencies using a computer analysis
program. L(w) is shown as curve 1 in Fig. 4.6 (a), and
Q(w) 1is shown as curve 1 in Fig. 4.6 (b). 1Ideally the
inductance value should be 100 mH , however, we find that
this is only approximately the case at low frequencies,
and at higher frequencies the inductance value becomes
larger. The largest value for Q(w) is approximately 2000

and this occurs at about 300 Hz.



4.3.2 EXPRESSIONS FOR L (w)

4.3.2.1 EXACT EXPRESSION FOR L (w)

To derive an expression for L(w) it is convenient
to first of all express ZIND in (4.26) in the form shown

below where the substitution p = jw has been made

2 )
(OLA2 - wAS/wT) + Jw(Al +0£A3 + AZ/wT)

A (4.28)

IND 7 )
(BO + “BZ = wBZ)/wT) + Jw(a’BS + BZ/“JT)

As the passive components for S.I. circuit B are assumed

to have exactly their nominal values, we have not included
the coefficients AO and B1 in (4.28) as these are nominally
zero. Strictly speaking, the subscript N should be used

for the coefficients in (4.28) to denote nominal values,
however, the subscripts have been omitted to avoid
complexity in the mathematical expressions which follow.
When Z in (4.28) 1is rewritten in the form

IND

Zinp = R@) + Jwl(w) ’ (4.29)

we obtain the following expression for L(w)

2 2
(By + By - WBs/wp) (A + ahg + Ajfuop) = (A, - Wig/op) 6By + B,/eap)

L) = 7 7 2
(By + @B, - WBg/op)™ + w (@Bg + B, fop)

(4.30)



When the expression in (4.30) is expanded, we find that the

terms in mﬂoT appearing in the numerator have the coefficient

_ 2 2
E = BZAZ + wBSA3 - BZAZ - W BSAS

which is exactly zero. Similarly, when the cx/wT terms in
the denominator of (4.30) are collected together we find
that these also cancel. OQOur expression for L(w) therefore

reduces to

ABy + a(BAL + BA) + (AR, - B A fo + «? + u>ﬁ» ) (B,A, - AB.)
L(w) = , 3 2P3
BO + ZmBOB2 2cuBOB3ku + (n” o+ u)/ )(B + u)BB)
(4.31)

4.3.2.2  APPROXIMATION FOR L(w)

An approximation for the L(w) behaviour in (4.31)
can be obtained in the following way. For both the numerator
and denominator in (4.31) we ignore the an order terms 1in
« and lﬂuT but retain all the remaining terms. In this

way we obtain

L) = AlBO + ok(BzA1 + BOA3) + (AZBO - u)B A )/éoT
2 2 (4.32)

BO + ZaBOBZ - ZQ)BOBSKUT

To show that this expression approximates the actual
inductance behaviour, we evaluated (4.32) at a number of
frequencies . Choosing the values in Table (a) of Fig. 4.5

for the passive components in S.I. circuit B, and « = 10_5



and fT = 106 Hz for the non-ideal amplifier gain, we

calculate the values for the coefficients in (4.27), and
then from (4.32) we obtain the approximated L(w) behaviour
shown as curve 2 in Fig. 4.6 (a). We find that the
expression in (4.32) is, indeed, a very good approximation
to the actual inductance behaviour which is shown as curve 1

in Fig. 4.6 (a).



4.3.3 EXPRESSIONS FOR Q(w)

4.3.3.1 EXACT EXPRESSION FOR Q(w)

The impedance expression in (4.28) may be re-written
in the form ZIND = RW) + jwL(w) and then , making use

of the definition for Qw) , i.e.,

Q(w) = wL(w)/R(w) (4.33)
we obtain

2 2 }
w{ (BO + WBZ - wBs/(oT) (A1 + o(,AS + Az/wT) - (OLAZ - wAB/wT) (oLB3 + BZ/wT)

Q((‘)) = i 2 7
(BO + dBZ - Q)BSAoT)OXAZ - u)AsﬂpT) + w(Al + mAS + AzﬂqT)GnBS + BzﬂvT)

(4.34)
When the numerator and denominator of the expression in
(4.34) are expanded we find, once again, that the terms in

a/wT cancel. Equation (4.34) therefore becomes

2 2 2,2
) - _
{AlBO + a(AlBZ + BOAS) + (BOA2 u)AlBS)AuT+(m +0)ﬂ»T)(B2A3 AzBs)}

2 2 2 2,2 2
a(BOAZ + u)AlBB) + a>(A1B - BOAS)ADT + (o~ o+ u)ka)(AZBZ + W ASBS)

Q) =

2

(4.35)
For the passive component values in Table (a) of Fig. 4.5 ,

-5 §)

and « = 10 and f.. = 10~ Hz, we calculated the values for

T
the the coefficients in (4.27), and then (4.35) was evaluated
at a number of frequencies. The Q(w) behaviour obtained

in this way was found to be identical to the Q(w) behaviour

obtained using a computer analysis program, i.e. see curve 1

in Fig. 4.6 (b).



4.3.3.2 APPROXIMATION FOR QW)

An approximation for the Q-factor expression in
(4.35) can be obtained in the following way. For the
numerator in (4.35) we retain the term that is independent
of & and 1ﬁDT, and ignore the 15t and an order terms 1in
o and 1ﬂuT - for the denominator we retain the 1St order
terms in o and 1ADT and ignore the an order terms. In

this way we obtain

Q)AlBO
Qw) = > 5 (4.36)
OC(BOA2 + QJAlBS) + Q)(AlB2 - BOAS)/(A),T

For a specified frequency range this expression can always
be made valid by choosing sufficiently small values for & and
1ADT - at higher frequencies the approximation breaks down
as shown by the exact expression for Q(w) in (4.35).

It is interesting to determine the Q(w) values
that are obtained from the approximation in (4.36) when the
passive components in the S.I. circuit have the nominal

-5

values shown in Table (a) of Fig. 4.5, and « = 10 and

fT = 106 Hz. Calculating the coefficient values from (4.27),

and then using the expression in (4.36), we obtain the
approximated Q(w) behaviour shown as curve 2 in Fig. 4.6 (b).
The agreement with the actual Q(w) behaviour, curve 1 in

Fig. 4.6 (b), is quite close over the frequency range 0.0 Hz

to about 2.0 kHz when the discrepancy is approximately 10 %

of the actual Q(w) value.



4.3.4 DESIGN FOR IMPROVING Q(w)

Inspection of the approximation in (4.36) suggested
that the actual Q(w) behaviour might be improved by designing
the S.I. circuit B so that the term in <UzkuT in (4.36)
was zero. We will, of course, still have to design the
S.I. circuit so that it has the nominal inductance value LN’
and so that the coefficients AO and B1 are both zero as
required for lossless inductor simulation in the ideal
amplifier case. The coefficient for the (UzkuT term in
(4.36) , which we shall now call T , can be made to be

zero in the following way.

From (4.36) we note that T is given by the expression

T = A.B, - B.A (4.37)
and substituting for A BZ’ BO and A3 from (4.27) we obtain

1’

G, (G, * Gs)[FG4 * Gg) (G + Gg) + 66| -

T = (4.38)
(6 *+ Gy * G) [(G} + Gg) (GG, - G3Gg) + GleGé}
In Section 3.2.2 we showed that for arbitrary values for
GS’ G4, GS and GG , the coefficients AO and B1 could be
made zero by choosing G1 and G2 as
Gy = G5G4/63
(4.39)
G, = Gg(Gg + Ge) /Gy



We also showed that the desired inductance value LN could

be obtained by choosing CO as

2
o - (G3 4 g * G3G4 + G,G. + G_G
2

G354

6)

(4.40)

When the expressions for G1 and G2 in (4.39) are substituted

into (4.38) we obtain

N

- 3 655 * GCg(Gs * Gp) - G5, (6, + Gg) (G5 + Gs)}
;

G5

Co(G5Gy + G5Gc + G Gé){

(4.41)
This expression shows that for any arbitrary positive values

for G G, and G T can be made to be zero by choosing G6

3’ 74 5°
to have the positive value that is obtained as a solution

of the following quadratic in G6'

= 0 (4.42)

+ Gy G’ < (s GG, (G, + G) (G5 + G

4) - 5)

Note that the solution of this equation always leads to one
positive value for G6' Hence, our proposed design procedure
is to choose arbitrary positive values for GS’ G4 and GS’

then solve the quadratic in G6 in (4.42) to make T = 0, and

finally the conditions AO = 0, Bl = 0, and L = LN are
achieved by choosing Gl’ G2 and CO in the way shown in (4.39)
and (4.40). We should remember , however, that when CO is

chosen in the way shown in (4.40) the actual L(w) values will

only be approximately equal to L, because of the non-ideal

N



voltage gain for the amplifier.

To show the improvement in Q(w) when the above
approach is used , we designed S.I. circuit B in the following
way. First of all the component values GS’ G4 and G5 were
chosen as in Table (a) of Fig. 4.5, i.e., the same as for
the design example studied in Section 4.3.1. The conductances
G

G and G2 were then calculated using eqns. (4.42) and

6’ 71
(4.39), and CO was determined from (4.40) using the same value
for LN as in our previous design example,i.e., LN = 100 mH.

In this way we obtained the set of nominal passive component
values shown in Table (b) of Fig. 4.5. Once again we

chose « = 10_5 and fT = 106 Hz for the non-ideal amplifier
gain, see (4.27), and then we determined the L(w) and Q(w)
behaviour using a circuit analysis program. The inductance
behaviour for the new design is shown in

Fig. 4.7 (a), and we find that it is very similar to the
behaviour for the design example of Section 4.3.1, i.e.,

see curve 1 in Fig. 4.6 (a). The new Q(w) behaviour 1s

shown as curve 1 in Fig. 4.7 (b), and we find that this is

a significant improvement on the previous behaviour shown

as curve 1 in Fig. 4.6 (b).

When the o;/wT term in (4.36) is zero our

approximation for Q(w) reduces to

wA.B
Q) = L (4.43)

“(Bphy * w AyBg)

It is of interest to compare the approximate Q(w) values



obtained from this expression with the actual Q(w) values.

By numerical evaluation of (4.43) wé obtain curve‘2 in

Fig. 4.7 (b). Comparing this curve with curve 1 in Fig.4.7(b)
we find that the approximation is still valid at 1low

frequencies but at high frequencies it breaks down.



4.3.5 DESIGN FOR OBTAINING Q(w) AT A SPECIFIED FREQUENCY

max

In this section we discuss how to choose the

nominal passive component values for S.I. circuit B so that

the Q-factor has its maximun value Q(w) at a specified

max
operating frequency fop'

4.3.5.1 INITIAL ASSUMPTIONS

Let . us assume that in the frequency
range of interest the inductance behaviour L(w) can be
approximated by the expression in (3.24) for the ideal

amplifier case, i.e.,

C .G
Lw) = L 0_4 (4.44)

- G.G
(G) + Gl (646G, - G3Gg) + GG Gy

Let us also assume that the design procedure of Section 4.3.4
has been carried out, and that the Q(w) behaviour can be

approximated by the expression in (4.43), i.e.,

WA, B
Qw) = LY (4.45)

2
a(ByA, + w A B:)

The largest value for the Q-factor expression

in (4.45) is

QW) pax = — [ —— (4.46)



and this occurs at the frequency Woax given by

- |02 (4.47)

When the expressions for Al’ AZ’ BO and B3 in (4.27) are

substituted into (4.46) and (4.47) we obtain

G4{(62 + G3) (6,6, ~ G369 + G,6,G¢ }

1
Q) =~
20 (G, + G (G, + G, + Gy + G)
(G, + G)(G, + G, + G.)
2 T 0z b 6y Gy
+ G (G, + G5 + Gp)
(4.48)
1 (G #Gg)(Gy + Gy + Gg) { (6, * Gg) (646, - G56c) + G;G,G¢ |}
Wmax - c. G (G, + G.)(G, + G, + G. + G,) + G, (G, + G, + G,)
0 4 { gt Bl (6 Gyt Gt Gy 186 * G+ G }

(4.49)

4.3.5.2 QUTLINE OF DESIGN PROCEDURE

First of all we introduce a reference conductance

GO so that we obtain the normalised conductance values

K. = G;/G (4.59)

where 1 =1 to 6. Rewriting (4.39) in normalised form we

find that the coefficients AO and B1 will be zero if we choose

~
1l

KK/ K5
(4.51)

K, = K_(K

2 5 v Kol /K,

3

-
VAN



Also, condition (4.42) for improving Q(w) becomes a quadratic

in K6’ i.e.,

2.2 2 -
KeKe + KKKy + K,) = KoK, (K, + KD (Kg + K) = 0 (4.52)

and eqns. (4.44) and (4.49) for | and O)max become

_ 2
L = M;C4/Gj (4.53)
Wy = EQ Jq;ﬂ (4.54)
m . ’
0
where
K
_ 4
Ml = (4.55)
(Ky + Kg) (KyKp = KKe) + Ky KoK
L = (K, + K (K + K, + K { (K] + KO (KK, - KK+ thzhe}
2 ' d ’ ’
Ky { (K, + K (K + Ky + K+ Ko) + K (K, + Ky + hé)}
(4.56)
Note that the values for M1 and MZ in (4.55) and (4.50)
depend only on the normalised conductance values and not
on the values for GO and CO. The conditions in (4.51) and
(4.52) also depend only on the Ki values and not on GO nor CO.

The following procedure can now be used to design
the S.I. circuit B so that W ax the frequency at which

Q&o)max occurs , is equal to the desired frequency wop. We
start by assuming that the values for KS’ K4 and KS are

given ( the best choice for these values will be discussed

later in Section 4.3.6.2). TFor these values we solve the



quadratic in (4.52) to obtain the value for K6. Then the

values for K1 and KZ are found from (4.51), and this enables

us to evaluate Ml and M2 using eqns. (4.55) and (4.56).

From eqns. (4.53) and (4.54) we now find that the values for

GO and CO which give rise to L = LN and Woax - u%p are

o - MlMZ

0 (4.57)
wopLN
M, M2

c = L2

0 2y (4.58)
wop N

Having found GO we can obtain the actual conductance values

G.1 using (4.50).



4.3.6 SOME DESIGN EXAMPLES

To demonstrate the design procedure of Section
4.3.5 let us consider the following example. We shall
specify that the S.I. circuit is to have an inductance
value LN = 100 mH, and that Q(w) is to occur for
max
fop = 1.0 kHz. For the non-ideal amplifier gain we
will choose @= 107> and £, = 10° Hz,as in the design

examples of Sections 4.3.1 and 4.3.4.

4.3.6.1 INITIAL DESIGN

Previously, in Section 4.3.5.2, we mentioned that
the values for K3, K4, and K5 could be chosen arbitrarily
in the design procedure for obtaining Q(w)max at a specified
frequency. The best choice for these values will be discussed
later in Section 4.3.6.1 but, as an initial design example,
let us choose here K3 = K4 = KS = 1. For these values we
1.23607, and then from (4.51) we

obtain from (4.52) K6

obtain Kl = 1.23607 and Kz = 2.23607. Using the values

for Kl to K6 in eqns. (4.55) and (4.56) gives M1 = 0.154508

and MZ = 2.000000, and then from eqns. (4.57) and (4.58) we

obtain G, = 4.91816 10"%%5 , and Cp = 1.56550 1077 E.

Finally, the actual conductance values Gi are obtained from
(4.50) , and making use of the relationship Ri = 1/Gi we

we obtain the set of nominal passive component values shown

in the Table in Fig. 4.8.

The L(w) and Q(w) behaviour for the above design



were determined by a computer circuit analysis program and

are shown in Figs. 4.9 (a) and (b). We find that the actual
Q(w) behaviour reaches its largest value at approximately

800 Hz instead of the specified frequency of 1.0 kHz. This
error arises because we used the approximations for L (w)

and Q(w) in (4.44) and (4.45) in the design of the S.I. circuit.
A design based on more accurate approximation for L(w) and

Q(w) has not been attempted.

4.3.6.2  IMPROVING L(w) AND Q(w) BY INTRODUCING A

LARGER RESISTANCE SPREAD

For the design example of Section 4.3.6.1 we

specified LN = 100 mH, £ = 1.0 kHz, and we chose K_,, K
op 3 4

and K5 to be equal to unity. By retaining K3 = K5 = 1 and

choosing K4 = m, where m is large compared to one, we

found that the overall behaviour for both L(w) and Q(w)
were improved. Computed L(w) and Q) curves for m = 1,
5, 10 and 100 are shown in Figs. 4.10 and 4.11. The
component values for S.I. circuit B corresponding to these
values for m are shown in the Tables in Fig. 4.12.

The curves in Figs. 4.10 and 4.11 show clearly
that there is some advantage in choosing a reasonably
large value for m. However, we should note that as m is
made large the resistance spread for the S.I. circuit is
increased (see Fig. 4.12) and in some cases this may be
undesirable. Note also that for values of m larger than

10,the L(w) and Q(w) behaviour are not much more improved.



4.3.6.3 DESIGNS FOR DIFFERENT OPERATING FREQUENCIES

For the design example of Section 4.3.6.1 we

specified LN

procedure of Section 4.3.5 was carried out using

= 100 mH and fop = 1.0 kHz, and the design

K3 = K4 = K5 = 1.0. For the example of Section 4.3.6.2
the design specification was the same but different
values for K4 were used. In this Section we will keep
LN = 100 mH , choose K3 = K5 = 1 and R4 = 10, and
investigate the design procedure of Section 4.3.5 for

three different operating frequencies, i.e., fop = 100 Hz,
1.0 kHz and 10.0 kHz.

The component values which are obtained when
S.I. circuit B is designed in the way mentioned above,
are shown in the Tables in Fig. 4.13. Once again, the
L(w) and Q(w) behaviour for the designs were determined
using a computer circuit analysis program. The curves in
Fig. 4.14 show the Q(w) behaviour plotted against a
normalised frequency f/fop. The curve for fop = 100 Hz
shows that Q(w) reaches its largest value exactly at
the specified operating frequency. This suggests that the
design procedure of Section 4.3.5 is successful for low
operating frequencies. For higher operating frequencies,
i.e. fop = 1.0 kHz, the design procedure still works
reasonably well and the Q-factor rcaches its peak at a
frequency close to the specified operating frequency.

However , for high values for fo l.c. fop = 10 kHz, we

p’



find that the design procedure of Section 4.3.5 1is
unsatisfactory.

It is interesting to show the variation of
inductance by two different representations. Fig. 4.15
shows the L(w) behaviour for each design example plotted
against f/fop , and Fig. 4.16 shows the L(w) behaviour
plotted against frequency f. The curves in Fig. 4.15 show
that the actual inductance value is closer to the specified
value for designs based on a low operating frequency.
However, when S.I. circuit B is designed using a high value
for fop we find that the inductance value remains more
constant over a greater range of frequency as shown by

the curves in Fig. 4.16.



4.4 COMBINED EFFECTS OF NON-IDEAL AMPLIFIER GAIN

AND COMPONENT TOLERANCES

In this Section we investigate how the L(w) and
Q(w) behaviour, due to the non-ideal amplifier gain, are
affected when the passive component values for S.I. circuit
B change from their nominal values. We will also investigate
how the L(w) and Q(w) behaviour change when the fT value
for the amplifier changes from its nominal value. As an
example for study we will choose the values in Fig. 4.8

for the passive components in the S.I. circuit, with « = 10‘5

and fT = 106 Hz for the non-ideal amplifier gain. These
values are for the design example studied in Section 4.3.6.1
where we specified LN = 100 mH and fop = 1.0 kHz, and chose
K3 = K4 = K5 = 1; the nominal L(w) and Q(w) behaviour for
this design are shown in Figs. 4.9 (a) and (b).

We now investigated the effects of ¥ 1.0 % changes
in the passive component values on the L(w) behaviour.
Using a computer circuit analysis program , we found that,
at the operating frequency fop = 1.0 kHz, the * 1.0 %
passive component changes produce the % changes in L (w)
shown in the Table in Fig. 4.17. The changes in L(w) are
all reasonably small, i.e., the magnitude for the largest
% change in L(w) is only 1.4. We also investigated the
effects of * 10.0 % changes in fT’ but we found that the

% changes in L(w) for f = fop were extremely small.

Rather than determining the % changes in Q(w)



produced by the component tolerances, for f = fop’ it is
more interesting to show the actual changes produced in
the overall Q(w) behaviour. When the resistance values
Rl to R 6

%, we obtain the changes in

5

are altered by ¥ 0.001% and * 1.0 %, and R is
altered by ¥ 0.01 % and ¥ 1.0

Q(w) shown in Figs. 4.18 (a) to (f). The effects of * 10.0
% changes in CO and fT are shown in Figs. 4.18 (g) and (h).

We find that the 1.0 changes in the resistance values

4]

cause large changes in Q(w) whereas the 10.0 % changes 1in

C. and fT have only a small effect on the Q(w) values.

0
This i1s because the resistance changes cause the coefficients
AO and B1 in (4.26) not to be nominally zero, whereas the
changes in CO and fT do not affect the values for AO and
B1 , see (4.27)(note that the general Q(w) behaviour due

to the coefficient errors AAO and ABl has been previously
investigated in Section 3.3).

For the small changes in the resistance values,
i.e. 0.001 %, we find from Figs. 4.18 (a) to (f) that the
changes in Q(w) are very much smaller as expected.
Nevertheless, these small resistance changes can still
give rise to significant changes in the frequency at which
the maximum value for Q(w) occurs. This shows that the
design procedure in Section 4.3.5, for obtaining Q@u)max
at a specified frequency, depends on extremely close
matching of the resistance values in the circuit( Orchard

and Willson have pointed out (26) that this is also true

for their S.I. circuit). In view of this, the design



procedure of Section 4.3.5 is very unlikely to be of use
in practice.

Although small variations in the values for the
resistors in S.I. circuit B can give rise to large changes
in Q(w), the changes they produce in the loss/frequency
response of active filters containing these S.I. circuits
may be very much smaller. Later on in the thesis , 1.e.
in Chapter 7, we will show that this is indeed the case,
and that one can obtain active-RC filters which are suitable

for practical realisation.



4.5 COMPARISION WITH OTHER SIMULATED INDUCTOR CIRCUITS

In this Section we compare S.I. circuit B with
two other S.I. circuits, namely, the Orchard/Willson
circuit of Section 2.2.1, and Antoniou’s two-amplifier
circuilt described in Section 2.2.2. We will compare the
L(w) and Q(w) behaviour for these circuits due to the non-
ideal voltage gain for their amplifiers, and we will also
compare the sensitivities of the L(w) and Q(w) values to
the passive component values and the fT values for the

circuilts.

4.5.1 L(w) AND Q(w) BEHAVIOUR

All three S.I. circuits mentioned above were
designed to meet the same specification, i.e. LN = 100 mH
and fop = 1.0 kHz. For the non-ideal voltage gain for

the amplifiers in the circuits we chose « = 107> and

fT = 106 Hz. The Orchard/Willson circuit was designed in
the way suggested by the originators in (26) and the
Antoniou circuit was designed in the way suggested by
Bruton in (49). The component values that’arise from these
design procedures are given in Tables (a) and (b) of Fig. 4.19.
In the design procedure for the O/W circuit the spread in
the resistance values was restricted to 100 : 1. S.T.
circuit B has already been designed to meet the above

specification for a similar resistance spread, see Section

4.3.6.2, and for comparision purposes its component values



are shown again in Table (c) of Fig. 4.109.

The L(w) and Q(w) behaviour for all three S.I.s
were obtained by computational circuit analysis and are
shown in Figs. 4.20 and 4.21. We find that S.I. circuit B
has slightly higher Q(w) values than the Orchard/Willson
circuit, and slightly worse values than those for Antoniou’s
circuit. Also, the L(w) behaviour S.I. circuit B is
practically identical to the behaviour for Antoniou’s
circuit, and more constant with frequency than the L (w)
behaviour for Orchard and Willsons’ circuit(recently Haigh
and Kunes have pointed out.that the inductance behaviour
for Antoniou’s circuit can be made more constant with
frequency by introducing a larger resistance spread into

its design (50)).

4.5.2 L(w) AND Q(w) SENSITIVITIES

The changes in L(w) and Q(w) for S.I. circuit B
due to changes in its component values, have already been
investigated in Section 4.4. For the design example studied
in that section we found that for f = fop = 1.0 kHz, and
for 1.0 % changes in the passive component values, we obtain
the % changes in L(w) shown in the Table in Fig. 4.17. The
magnitude for the largest % change in L(w) 1is only 1.4. The
effects of changes -~ in the passive component values

on the Q(w) behaviour are shown in Figs. 4.18 (a) to (g),

and the effects on Q(w) of changes in the fT value are shown



in Fig. 4.18 (h). We pointed out in Section 4.4 that the

large changes in Q(w) produced by the 1.0

changes, arise because of the errors AA

and AB

resistance

1

“in the

impedance expression for S.I. circuit B, see (4.26) and (4.27).

The impedance for Antoniou’s S.I.

the ideal amplifier case , is given by

PCHRIRHR,

R

Z = pL =

4

circuit, for

This expression shows that 1.0 % changes in the passive

component values give rise to either *

o

- 0

or ¥ 1.0 %

changes in the inductance value L. When the non-ideal

(4.59)

voltage gains for the amplifiers in Antoniou’s circuit are

[}

taken into consideration, we would expect similar % changes

for L(w). The % changes in L(w) for Antoniou’s circuit

should therefore be similar to those in Fig. 4.17 for S.I.

circult B. However, unlike S.I. circuit B,
circuit does not make use of coefficient cancellations in
its impedance expression, and we would expect the effects
of component tolerances on its Q(w) behaviour to be very

much smaller than the effects shown in Figs.

the Antoniou

4.18 (a) to (h).

To show this we chose the values in Table (b) of Fig. 4.

for the passive components in Antoniou’s circuit, and we
| b

19

investigated the effects of *# 1.0 % changes in these values

on the nominal Q(w) behaviour. The nominal Q(w) behaviour

is shown 1in Fig. 4.21 and this is for amplifiers having

6

& = 10_5 and f., = 10" Hz. Using a computer circuit analysis

T



program we found that the changes in R1 do not affect Q(w).

The changes in R2 and R3 produce the curves in Figs. 4.22
(a) and (b), and for the changes in R4 and CO’ Qw) is
affected so 1little that the Q(w) changes are not shown. The

largest changes produced in Q(w) are for R, and R, and, as

2 3
expected, they are very much smaller than the changes shown
in Figs. 4.18 (a) to (f) for S.I. <circuit B.

The effects of component tolerances on the L (w)
and Q(w) behaviour for the Orchard/Willson S.I. <circuit
have not been determined, however, we would expect these
effects to be similar to those for S.I. circuit B as both
circuits achieve inductor simulation in the same way, i.e.

>

by means of the conditions AO = 0 and B1 = 0 in their

impedance expressions.



4.6 SUMMARY

In Section 4.2 we considered the amplifier in S.TI.
circuit B to be ideal, we chose an experimental design for the
circuit, and then we investigated the effects of passive
component tolerances on the impedance. After this investig-
ation we showed how to choose the nominal passive component
values for S.I. circuit B so that the effects of tolerances
on the impedance were reduced.

In Section 4.3 we considered the passive component
tolerances for S.I. circuit B to be zero, and we investigated
the effects of the non-ideal voltage gain for the amplifier
on the impedance. A design procedure for improving the
overall Q(w) behaviour was described, and we also showed
how to design S.I. circuit B so that Q(w) had its largest
value at a specified operating frequency fop' This later
design procedure, however, depends on extremely close
matching of the resistance values for the S.I. circuit, and
it 1s unlikely to be useful in practice.

In Section 4.4 we again took the non-ideal voltage
gain for the amplifier into consideration, and we investigated
how the L(w) and Q(w) behaviour change when the passive
component values change from their nominal values. We also
investigated the effects of fT variations on L(w) and Q{w).
The large changes in Q(w) due to the resistance changes,
arise because of errors for the values of the coefficients
A, and B, 1n the impedance expression for S.I. circuit B, see

0 1

(4.206) ( note that A, and B, are both nominally zero).

0 1



In Section 4.5 we compared S.I. circuit B with
Antoniou’s two-amplifier S.I. circuit and Orchard and
Willsons’ single-amplifier S.I. circuit. We showed that
all three S.I.s have similar L(w) and Q(w) behaviour due
to the non-ideal voltage gain for their amplifiers. We
also showed that the effects of component value changes
on the L(w) behaviour are similar, however, Antoniou’s
two-amplifier circuit has much better Q(w) sensitivities
to its resistance values and this is why it is preferred

to the other circuits , in scme applications.
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CHAPTER 5

FILTER DESIGN USING SIMULATED

BIQUADRATIC IMPEDANCES

5.1 INTRODUCTION

In Chapter 3 we described some single-amplifier,
single-capacitor, networks for simulating the impedance of
a lossless inductor. The simulation, however, is exact
only if the amplifiers in the simulation networks are
considered ideal. When the non-ideal voltage gain for
the amplifiers is taken into consideration, the impedance
for the simulating networks becomes a biquadratic
expression in p , and only approximates the impedance of
an ideal inductance over a limited frequency range. In
this chapter we take into consideration the non-ideal
amplifier gain, and deliberately re-design the simulation
networks of Chapter 3 to have a specific biquadratic
impedance. We then show how various types of LC filters,
with their terminating resistors, may be modified so as
to produce the required loss/frequency response using these
biquadratic impedances instead of the originally required
inductors.

The specific biquadratic impedance function chosen
for the simulating networks is discussed in Section 5.2, and
the way of modifying LC filters to include the biquadratic

impedances is described in Section 5.3. In Section 5.4 we



show how to design some simulating networks so that they

have the required specific biquadratic impedance. As these
simulating networks now have, ideally, a specific biquadratic
impedance, and are no longer required to simulate an ideal
inductor, we shall henceforward refer to these networks as
'S.B.I." circuits where S.B.I. 1s an abbreviation for
simulated biquadratic impedance.

An advantage of the approach mentioned above is
that the non-ideal voltage gain for the amplifiers in the
simulating networks, is taken into consideration in the
design of the active filter. For bandpass filters using
the S.B.I. circuits, the passband loss/frequency response
is correct at the frequencies of maximum power transfer
for the original LC filter. The response at other frequencies
may be incorrect but a high degree of compensation for the
non-ideal voltage gain of the amplifiers can still be
obtained. For highpass filters complete compensation for
the non-ideal voltage gain can be obtained over the entire
frequency range in which the gain of the amplifier can be
adequately described by a single-pole model. Even in the
case of two-amplifier S.I.s this has not been achieved, as
these circuits are usually designed to offer compensation
for the non-ideal amplifier gain only in the neighourhood

of a particular frequency (49).



5.2 THE S.B.I. CIRCUIT

When the amplifier is considered ideal the single-
amplifier, single-capacitor, simulation networks discussed
in this thesis have an impedance of the general form

Ag * PAq

7 -0 "1 (5.1)
By * PBy

and the design criteria

AL =0, B1 =0, Al/BO >0 (BO # 0) (5.2)

are needed to give lossless positive inductor simulation.
When the non-ideal voltage gain for the amplifier is taken
into consideration,the impedance for the simulation

networks becomes

2
aj * 4 p *ap
Z = (5.3)

b, +bp+ b, p*

as pointed out in Section 3.4. The design criteria in (5.2)
are only applicable for the ideal amplifier case, and a
different approach will be used for the non-ideal amplifier
case.

For reasons which will become apparent our design

criteria for the non-ideal amplifier case will be

a_ =0,Db =0, al/bo >0, a /b >0, bz/bo > 0 (5.4)

where bO is non-zero. When these conditions are satisfied

[o¥)



the impedance Z in (5.3) becomes

a,p(l + pa,/a)
7 = 2’| (5.5)

2
bo(l + P bZ/bO)

and this expression can be rewritten as

pL(1 + pT)
Z = 5 (5.6)
1 + p LC
where
= = ft =
L a,/bO , C bZ/al R aZ/al (5.7)

Note from (5.4) and (5.7) that the values for L, C and T
are positi&e. Rather than regarding the simulation networks
with the impedance in (5.6) as non-ideal S.I.s, we now
regard them as ideal specific biquadratic impedances called
'S.B.I.s'. Equation (5.6) shows that the impedance of the
S.B.I.s is the same as that for a parallel LC resonator
whose impedance is scaled,i.e. multiplied, by a factor (1 + p7%).
In addition to the criteria in (5.4) it will be
necessary, in general, to design the S.B.I.s in a filter so
that they each have a different specified value for L. It
is also important that the time constant T, which has the
dimension of an RC product, has the same value for all
S.B.I.s in a filter irrespective of the different L values.
For any initial design for the S.B.I. circuit, other designs
having different L values but the same value for U can be

obtained by scaling the impedances of the resistors and

(U]
2



capacitor in the S.B.I. circuit by the same constant.
Impedance scaling does not affect the value for U because
it has the dimension RC, but it does affect the value for
C in (5.6). When an S.B.I. circuit is designed to have a
specified value for L, i.e. L = LN’ we shall write ZN for
the impedance in (5.6) and we shall write the values for

C and U in (5.6) as Cy and'EN.



5.3 FILTER DESIGN USING S.B.I. CIRCUITS

5.3.1 GENERAL APPROACH

The form for the impedance Z in (5.6) suggests,
if initially we ignore the scaling term (1 + pT), that we
may be able to use the S.B.I.s in filters which incorporate
grounded parallel LC circuits. Such circuits occur naturally
in bandpass filters, see Figs. 1.5 (c) and (d), but this is
not the case with highpass filters, see Figs. 1.5 (a) and
(b), nor lowpass filters. Since we are concerned here with
both highpass and bandpass filter design a circuit modification
for the highpass filters will have to be made so that parallel
LC circuits can be introduced. This modification will be
described in Section 5.3.2.1.

To take into consideration the impedance scaling
term (1 + pV) in (5.6) we shall impedance scale the LC filter,
with its terminating impedances, by the same factor (1 + p?).
This does not affect the voltage transfer ratio for the
filter , and the Paranel LC resonators are transformed to
have an impedance of the same form as in (5.6). These new
impedances can be realised using S.B.I. circuilts to obtain
the active filter. Impedance scaling by (1 + pV) also
modifies the other impedances in the filter - these trans-

formations are shown in Fig. 5.1.



5.3.2 HIGHPASS FILTER DESIGN

In this section we describe how to design Cauer
and Polynomial type highpass filters using S.B.I. circuits
(note that Cauer and Polynomial type highpass filters have
the typical loss/frequency characteristics shown in Figs.
1.5 (a) and (b)). Before outlining these design procedures,
however, it is necessary to describe a network transformation
for LC filters that was proposed by Nightingale and

Rollett (58).

5.3.2.1 PRELIMINARY NETWORK TRANSFORMATION

Consider the LC lowpass filter shown in Fig. 5.2
(a). To obtain an active-RC version of this filter we shall
use Bruton’s method of impedance scaling the components in
the LC filter by k/p , to give the circuit in Fig. 5.2 (b).
The F.D.N.R.s in the scaled filter, which arise from impedance
scaling the capacitors in the original LC network, may be
realised by the two-amplifier circuit of Fig. 2.7 (a).
Unfortunately, the amplifiers in this simulating network
give rise to a practical problem which we shall now outline.

The input connections to operational amplifiers
require a D.C. blas and must therefore be connected by a
resistive path to a point of fixed potential chosen so that
the quiescent output voltage of the amplifier is not biased
too far towards one or other of the power-supply voltages.

When the two-amplifier F.D.N.R. of Fig. 2.7 (a) is



incorporated into the filter circuit in Fig. 5.2 (b), we
find that some of the amplifier inputs do not have a D.C. bias.

A general technique for overcoming the above
problem (proposed originally by D.G. Haigh (37)) is to modify
the F.D.N.R. 1lowpass filter in the way shown in Fig. 5.2 (c).
The two resistors Ra and Rb in Fig. 5.2 (c) now connect the
previously mentioned amplifier inputs to suitable points of
fixed potential and provide the required D.C. bias.
Unfortunately, the inclusion of these bias resistances in
the filter may additionally cause the voltage transfer response
for the filter to become distorted. The distortion can be
reduced by reducing the filter impedances relative to the
D.C. bias resistances which are determined by the D.C.
properties of the amplifiers, however, the capacitances are
then increased, and the size and cost of the filter are also
increased. A way of avoiding the distortion completely
has been proposed by Nightingale and Rollett (58), and will
now be briefly described.

When the modified F.D.N.R. filter in Fig. 5.2 (c)
1s converted back to its equivalent LC filter we obtain the
circuit in Fig. 5.2 (d). The D.C. path resistors of
Fig. 5.2 (c) are now equivalent to the inductors La and Lb
placed across the terminating resistors of the original LC
filter. For a chosen ratio La/Rs for the lowpass filter in
Fig. 5.2 (d) (when normalised to have a passband edge
frequency equal to 1.0 r/s) Nightingale and Rollett described

a design procedure (58) so that the loss/frequency response

,
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could be made substantially the same as that for the original
LC filter in Fig. 5.2 (a). They found that the response for
the filter in Fig. 5.2 (d) could be made exactly equal to
that for the filter in Fig. 5.2 (a) except for an additional
constant loss term. They also found that their design
procedure is applicable to lowpass filters that have finite
zeros in the transfer function.

In the following sections we will make use of the
Nightingale/Rollett design procedure mentioned above to
obtain active-RC highpass filters that use S.B.I. «circuits.
Some comments on the sensitivity properties of the Nightingale/

Rollett filters will be made later in the thesis in Chapter 6.



5.3.2.2 CAUER TYPE FILTERS

The first step is to obtain an LC highpass filter
circuit in which the inductors appear only as parts of
grounded parallel LC resonators. For Cauer type highpass
filters this may be achieved in the following way.

Consider, for example, the resistively terminated
Sth order highpass filter shown in Fig. 5.3 (a). The
corresponding lowpass filter is shown in Fig. 5.3 (b). For
this filter we can use Nightingale and Rolletts’ design
method to obtain the equivalent lowpass filter with parallel
RL terminations shown in Fig. 5.3 (c). Now, by lowpass to
highpass filter transformation, we obtain the highpass
filter circuit in Fig. 5.3 (d) which contains parallel RC
terminations. We shall refer to this filter as a Nightingale/
Rollett type highpass filter. The loss/frequency charac-
teristic for the filter in Fig. 5.3 (d) will be identical
to that in Fig 5.3 (a) except for an additional constant
loss term that arises in the Nightingale /Rollett design
procedure. Also, for a normalised passband edge frequency
of 1.0 r/s, many designs are possible depending upon the
value one chooses for the product RgCg. This 1is because
there is some freedom of choice for the ratio LS/RS in the
design of the Nightingale/Rollett lowpass filter in Fig 5.3 (c).
From the circuit in Fig. 5.3 (d) we obtain the filter circuit
of Fig. 5.3 (h), which is our goal, by means of the following

transformations.



First of all the Norton transformation shown in

Fig. 5.4 (a) is applied to the capacitors C. and C__ in

5
Fig. 5.3 (d) to give the filter circuit in Fig. 5.3 (e)
(note that this transformation does not affect the voltage
transfer function for the filter in Fig. 5.3 (d)). This
was done so that a capacitor CX appears across the tuned
circuit L2C4 , and so that some capacitance remains in
parallel with the load resistor RL’ The ideal transformer
arising from this transformation can be eliminated using
the transformation of Fig. 5.4 (b) to obtain the circuit
in Fig. 5.3 (f). This step involves impedance scaling the
components to the right of the transformer in Fig. 5.3 (e)

by the factor ¢2 , where ¢ is the transformer turns ratio.

This procedure will alter the basic loss for the filter,

V
where the loss is defined as 2010g10 VQHI , but the

shape for the loss/frequency characteriZtic remains unchanged.
To the circuit in Fig. 5.3 (f) we again apply the Norton
transformation of Fig. 5.4 (a) to the capacitor C3 taken

with part of CX and again eliminate the resulting transformer
in the way shown in Fig. 5.4 (b). When this is done we
obtain the circuit in Fig. 5.3 (g) where a parallel capacitor
has been provided to each series tuned circuit. The circuit
in Fig. 5.3 (g) can now be transformed into the circuit of
Fig. 5.3 (h) using the equivalence shown in Fig. 5.5. In
this way we have achieved our first aim of obtaining an LC

highpass filter in which the inductors exist only as parts

of grounded parallel LC resonator circuilts.



The next step is to design two S.B.I. circuits
so that the parameter L in their impedance expression, see
(5.6), has the inductance values LA and LB shown in
Fig. 5.3 (h). Associated with these two designs there will
be two values CA and CB for the parameter C in (5.6)
(different C values for different L values), but the values
for U in (5.6) will be the same if we follow the design
procedure outlined in Section 5.3. We now proceed by re-
drawing the filter circuit of Fig. 5.3 (h) in the way shown
in Fig. 5.3 (i) so that the capacitors CS, CZ' s C6 and C7
(see Fig. 5.3 (h)) are split in such a way that the capacitors

1 LARAS

g > CL s C6 and C7 (see Fig. 5.3 (1)) have the values

1
CS =’U/RS , C

C

1mr

L
The filter in Fig. 5.3 (i) can now be impedance scaled by

1" 1 1
= ‘U/RL , Cq = Cg - Cy and C; = C, - Cy.

(1 + pY) making use of the transformations given in Fig. 5.1.
This results in the filter of Fig. 5.3 (j), in which the
impedances ZA and ZB are realised by the S.B.I. circuits.
Note that for the practical realisation of the final active-
RC filter it is of course necessary that the capacitance
4, CI" C, and C, in Fig. 5.3 (i) are all positive.

It is of interest to compare the active filter of

values C

Fig. 5.3 (j) with that which is obtained when S.I.s are
used to replace directly the inductors in the LC filter of

Fig. 5.3 (a). We find that four additional capacitors, 1i.e.,

T ! ! n
g C6, C7 and CL’

A plausible approach, not yet tested, for reducing the number

C are required for the new design procedure.

of additional capacitors will now be discussed.



There are some degrees of freedom in the design
procedure outlined here, namely, our choice for the product

RSCS in the filter of Fig. 5.3 (d), and secondly the amount

of load capacitance C;, in Fig. 5.3 (d) that we distribute

L
across the inductors in the filter of Fig. 5.3 (h). It may

be possible to use these degrees of freedom to design the

LC filter of Fig. 5.3 (h) so that, after the design of the

' "in

7 and CL

Fig. 5.3 (i) are exactly zero. This implies that the values

S.B.I.s , the additional capacitances C6, C

for C6 and C7

respectively, to the values CA and CB associated with the

in Fig. 5.3 (h) would have to be equal ,

S.B.I. circuits, and that Cg‘ was exactly equal to AU/RE.
In this case impedance scaling by (1 + p%¥) would give rise
to the active-RC filter of Fig. 5.3 (k). For this filter
there is only one additional capacitor, namely, Cg.

The design procedure outlined here for a Sth order
filter can be applied in the same way to filters of higher

order.



5.3.2.3 POLYNOMIAL TYPE FILTERS

Polynomial type highpass filters can be designed
in the same way as the Cauer type filters except that the
transformation shown in Fig. 5.5 is not required.

Consider, for example, the resistively terminated
5th order polynomial type filter shown in Fig. 5.6 (a).
Fig. 5.6 (b) shows the equivalent Nightingale/Rollett type
highpass filter. Continuing in the same way as in Section
5.3.2.2, the filter of Fig. 5.6 (b) 1is now transformed to
the filter of Fig. 5.6 (c). This filter is then re-drawn
in the way shown in Fig. 5.6 (d) and, finally, impedance
scaled by (1 + pT¥) to obtain the filter in Fig. 5.6 (e)
where ZA and ZB represent the S.B.I. «circuits.

As in the case for Cauer type filters there are
some degrees of freedom in the design procedure outlined
here. Once again, i1t may be possible to use these degrees
of freedom to eliminate some of the capacitors in the
active-RC filter of Fig. 5.6 (e), to obtain the filter of
Fig. 5.6 (f). This filter uses only one more capacitor than

the equivalent active-RC filter obtained by replacing the

inductors in the filter of Fig. 5.6 (a) by S.I. «circuits.



5.3.3 BANDPASS FILTER DESIGN

5.3.3.1 POLYNOMIAL TYPE FILTERS

Bandpass filters that contain grounded parallel
LC circuits and no floating inductors, are also suited to
the new design procedure. Consider, for example, the equally
resistively terminated 6th order polynomial type filter
shown in Fig. 5.7 (a), designed so that its loss/frequency
response in the passband contains points of maximum power
transfer. The S.B.I. circuits can be designed so that the
parameter L for their impedance expression in (5.6) has

the inductance values LA, LB and LC shown in Fig. 5.7 (a).
Along with these L values the S.B.I.s will have the
parameter values CA’ CB and CC’ and a common value for V.
We now proceed by re-drawing the filter of Fig. 5.7 (a)

in the way shown in Fig. 5.7 (b), and for this circuilt we

1 1

1
choose C, = C, - C cC, = C, - C Cs = C5 - CC - CX’ and

1 1 A’ 73 3 B’
4 !

t
X = 'U/RL (note that positive values for C,, C3 and CS

are required for realisability). The filter circuit of

C

Fig. 5.7 (b) can now be impedance scaled by (1 + p%v), making
use of the transformations shown in Fig. 5.1, to give the
filter circuit of Fig. 5.7 (c) in which the impedances ZA’

ZB and ZC represent the S.B.I. circuits. However,
impedance scaling by (1 + p7%) transforms the source resistor
in Fig. 5.7 (b) into the series inductor/resistor combination

shown in Fig. 5.7 (c), and it becomes neccessary to delete

the undesirable inductor in some way. In the highpass filter

=



design procedure this difficulty does not arise because
the scaling transformation can be applied to a parallel RC
circuit, and this results in a pure resistor.

To eliminate the inductor in Fig. 5.7 (c) we
consider now the frequencies foi for which maximum power
transfer occurs in the filter of Fig. 5.7 (a). At these
frequencies the impedance to the right of the line XX‘
in Fig. 5.7 (a) will be purely resistive and have a value
R = RS. For the impedance scaled filter of Fig. 5.7 (c),
the impedance to the right of XX‘ will be Rs(l + pT) at
f = foi’ as shown in Fig. 5.8 (a). Also, at the frequencies
foi’ the voltage gain for the circuit in Fig. 5.8 (a) is
given by VX/VIN = 3. This is also the gain for the circuit
in Fig. 5.8 (b) at f = foi’ because of the well known
equivalence shown in Fig. 5.8 (c). We can apply the
cquivalence between the circuits in Figs. 5.8 (a) and (b)
to the filter of Fig. 5.7 (c), to obtain the new filter
circuit shown in Fig. 5.7 (d)(note that the two series RC
circuits on eilther side of XX' in Fig. 5.7 (d) can bhe
combined into a single series RC circuit because their
RC products are the same). The voltage transfer function
for the filter in Fig. 5.7 (d) will be identical to that
for the circuit in Fig. 5.7 (a) at the frequencies foi’
and at zero frequency. At frequencies other than foi and
zero frequency, we would expect the response to be different

to an extent which depends on the value for U used in the

impedance scaling procedure.



Some computed and experimental work on bandpass
filters of the type discussed here will be presented later
in Chapter 7. The results indicate that although the
design procedure here is not exact, extremely good results
can still be obtained. Note, also, that the design procedure
described here does not require additional capacitors as 1is

the case for highpass filters.

(R4}



5.3.3.2 FILTERS WITH FINITE ZEROS

LC bandpass filters having finite transmission
zeros, and no floating inductors, can also be modified to
obtain active filters that use S.B.I. circuits.

Consider, for example, the channel filter shown
in Fig. 5.9 (a) which has been investigated by Valihora,
Lim, and Bruton (21). Making use of the transformation
shown in Fig. 5.5, the circuit in Fig. 5.9 (a) 1is re-drawn
as shown in Fig. 5.9 (b) so that each inductor is associlated
with a parallel capacitor. Once again the S.B.I.s are
now designed, as outlined in Section 5.2, to have the
parameter values LA to Lp shown in Fig. 5.9 (b). Proceeding
in the same way as before, we re-draw the circuit of
Fig. 5.9 (b) in the way shown in Fig. 5.9 (c), and then
impedance scale by (1 + p%v). When this is done we obtain
the filter circuit of Fig. 5.9 (d) where ZA to ZF represent
the S.B.I. «circuits. The small inductance L' arising in
the circuit of Fig. 5.9 (d) can be eliminated in the same
way as in Section 5.3.3.1, i.e. by making use of the
transformation of Fig. 5.8, to obtain the final active-RC
filter shown in Fig. 5.9 (e). The two series RC circuilts
on either side of XX' in Fig. 5.8 (e) can be combined so
that the design procedure does not require the use of

additional capacitors.



5.3.3.3 RE-INTERPRETATION OF DESIGN PROCEDURE

FOR BANDPASS FILTERS

The design procedure for bandpass filters may be
re-interpreted in the following way.

Let us represent the original LC bandpass filters
of Figs. 5.7 (a) and 5.9 (a) by the more general circuilt
diagram of Fig. 5.10 (ignoring temporarily the capacitors C ).
For the frequencies foi of maximum power transfer, the
impedance to the right of the line XX' in Fig. 5.10 will be
purely resistive of value RS’ and the voltage VX will be
equal to VIN/Z. If two capacitors of equal value are inserted
into the filter, as shown in Fig. 5.10, the voltage VX will
be unchanged at the frequencies foi; and hence the
voltage gain for the filter, VOUT/VIN , will be unchanged
at the frequencies foi' The gain for other frequencies will
of course differ from the gain before the insertion of the
capacitors, but for suitably small values for C it may be
possible to meet the required filter specification wusing
the modified filter circuit.

For these modified LC bandpass filters, with their
parallel RC source impedance, we can choose C ='t“/RS and
follow our usual design procedure for filters containing
S.B.I. «circuits, see Section 5.3.1. In the present case,
however, impedance scaling by (1 + pU) transforms the modified
source impedance to a pure resistor, and this avoids the

unwanted inductor that arose in the design procedures of



Sections 5.3.3.1 and 5.3.3.2. In these Sections impedance
scaling by (1 + pT) was applied to a source impedance
consisting of a pure resistor - this resulted in a series

RL combination, and the unwanted inductor was eliminated

using the transformation shown in Fig. 5.8. The active-RC
bandpass filters that are obtained using the new approach,
however, are identical to the active-RC filters obtained
previously, and we shall therefore regard the design approach
here as a re-interpretation of the methods of Sections 5.3.3.1

and 5.3.3.2.



5.4 DESIGN OF SOME S.B.I. CIRCUITS

Previously, in Sections 3.2.1 and 3.2.2 we
showed that for the ideal amplifier case, the networks in
Figs. 3.2 (a) and 3.4 may be designed to simulate the
impedance of a lossless positive inductor. When the non-ideal
voltage gain for the amplifiers is taken into consideration,
the networks become non-ideal S.I.s. In this section we
show how to design the networks in Figs. 3.2 (a) and 3.4
so that, after taking into consideration the non-ideal
voltage gain for the amplifiers, they become ideal S.B.I.

circuits.

5.4.1 PROCEDURE FOR S.B.I. CIRCUIT B

Before describing how the simulating network 1n
Fig. 3.3 can become an ideal S.B.I. <circuit, 1t 1s conven-
ient to first of all consider the gain for the amplifier
ideal, i.e. infinite, and review the design procedure for

obtaining an ideal S.I..

5.4.1.1 REVIEW OF IDEAL AMPLIFIER CASE

When the gain for the amplifier is assumed to be

ideal, the simulating network in Fig. 3.3 has an impedance

A + pA
7 = 0 1 (5.8)
By * pBy
and the coefficients A to B, are given by the expressions



oJ
|

o = (61 + Gg) (6,6, -

oe}
1

= CO(G4G2 - G,G. - G5

1 375

G

6)

GSGS) + GlGZG~

6

The circuit therefore has the impedance of a lossless

inductor of value L = Al/BO provided the conditions AO =

and B, = O are satisfied. From (5.9) these conditions are

1

G4G2 - GSGS - G3G

1

0

CO(G4G2 - 6365 - GSGé) =0
and the inductance value L 1is
L. oS4
(G * G (GG, - G3Gg) + G1G,Gy

In Section 3.2.2 we satisfied

the conditions in (5.10) by

choosing arbitrary values for GB’
specifying G1 and G2 as

61 = R3G4Cs

G, = GgRy(65 + Gg)

In this section, however, it i1s more convenient to satisfy

G

4,

G

5

and G

6’

and then

(5.9)

(5.10)

(5.11)

(5.12)



the conditions in (5.10) by choosing arbitrary values for

Gl’ GZ’ G4 and GS’ and specifying G3 and Gé as
o o 4B
5 =
G1 + G5
(5.13)
o - 616284
6
GS(Gl + GS)
Substitution of these expressions into (5.11) gives
CoGg(Gs *+ 6,)°
L= — > (5.14)
G1G,(GyGg * Gg * GG, + GG, + G,G)

and the desired inductance value, L = LN, can be obtained

by specifying CO as

2 2
L6716, (G165 + Gg + GG, + 6,6, + G,Gg)
C, = 5 (5.15)
G (Gc + 6,)

Note from eqns. (5.13) and (5.15) that, for arbitrary positive
values for Gl’ GZ’ G4, G5 and LN’ the values for GS’ GG and

C, are always positive.

0



5.4.1.2 NON-IDEAL AMPLIFIER CASE

The impedance for the simulating network in Fig. 3.3,
for the non-ideal amplifier case, was given previously in
eqns. (3.21) and (3.22). When the impedance expression
in (3.21) is re-written in the form
a +ap+a p2
1 2

7 = -2 5 (5.16)
bo ¥ blp * pr

we find that the coefficients a  to bZ are given by

js¥)
1

o = 6564 = GGg - G565 + a(G, + G) (G + Gy + Gg)

s}
1}

. COG4 + qu(Gl + G4 + GS) + (G2 + GS)(GI + G4 + GS)AUT

[sY]
!

= GGy + Gy *+ Gg) /Wy

) (5.17)
by = (G, * G) (6,6, - 665) *+ 66,65 + (G, + Gs){—(G4 + G (G, *+ G + GlG6}
b, = Cy(6,G, - GsGg - GsGg) + (6, + 65) { (G, * G (G + Gg) + GlGG} /6 ¢

- <xc0‘{(cl + G, + G)(G, + Gy * Gg) + G (G, + GS)}
b, = co{-(cl + G, + 6)(G, *+ Gy *+ Gg) + G (G, + GS)} /6,

The design criteria ag = 0 and b1 = 0 1in (5.4) are



therefore given by

3G - GG, - ; o ) = 5.18
()G, = GGy = GoGe + (G, + Gx) (G + G, + Gg) 0 ( )

G4G, - GGc = Gl + (G, + Gg) [(G4 +Go) (G *+ Gg) + G1G6] rCo
C =0

0
+aflG) + Gy + G (G, + Gy + Gg) + G (G + Gg)]
{(5.19)
and when these conditions are satisfied the simulating
network becomes an ideal S.B.I. «circuit having the impedance
pL(1 + pT)
7 = 5 (5.20)
1+ p"LC
where
Lo “o{Gzl voaGy + Gy w Go) (G + Gg) (G + Gy v Gs)/wTCo}
(G, + Gg) (GG, = G56c) + GGG + (G, + GB){(GA + G (Gy + Gg) + Gle}
(5.21)
. (Gl + 04 + GSJ(G2 + G3 + 66) + 61(64 + GS)
an { Gy + @(G, *+ Gy + o) + (G, + G) (G, + G, + GS)/chO}
(5.22)
v - S R
Q)T { 04 + a(hl + 64 + bs) + (QZ + Gs)((Jl + G4 + GS)AUTCO.}
(5.23)

In addition to the conditions a_ = 0 and bl = 0 in (5.18)



and (5.19), it will be necessary to design the S.B.TI.
circuit so that the parameter I in (5.20) 1is equal to the

desired value LN‘ For given values for the amplifier

parameters, & and CUT, these objectives may be achieved

in the following way

Inspection of the expression for ao‘in (5.17)
shows that ag is dependent on the values for Gl’ GZ’ GS’
G4 and GS’
Similarly, from (5.17) and (5.21), we find that bi and L

but independent of the values for G6 and CO.

are functions of all the passive component values for the

simulating network, i.e., Gl’ GZ’ GB’ G4, GS’ G6 and CO'

To achieve the conditions a, = o, hl = 0, and L = LN’ one

approach is to first of all satisfy ag = O by choosing a
suitable value for Gg, and then we find the appropriate

values for Gﬁ and CO

and 1, = LN. The choice of values for G6 and CO do not

affect the value for ag since ag is independent of these

which satisfy the conditions b1 =0

components. This approach will now be outlined in detail.
FFor given values for the amplifier parameters &

and (OT, for a specified value LN’ and for arbitrary

conductance values GI’ GZ’ G4 and GS’ let us first of all
satisfy the condition a, = O in (5.18) by choosing G3 as

G.G, + a(G. + G, + G.)
G, - 12 L4 (5.24)
(Jl + (15 - “(Gl + G4 + (JS)

To satisfy the condition hj = 0 in (5.19) we begin by



rewriting (5.19) in the form

Kl + K2G6 + K3CO + K4G6CO = 0 (5.25)

where

=~
]

1 = 616G * G3)(Gy + Go)/w

K, = (G, + G)(G, + G, + )/ (5.26)
K, = GG, - GG, + cn{(el + G, + G (G, + Gy) + 6, (G, + GS)}
Ky = &6+ Gy +Gg) - Gg

From the expression for L in (5.21), with L = LN’ we also

note the relationship

K. + K.G
C. = 5 676 (5.27)
0 K
7
where
Ko = LG, {G4G2 - GG + (G, + G.) (G, + st} - (G, + 6) (G, + G, *+ Go)
Ke = Iy {6462 * GG,y - GSGS} ¥ %Gy + G5 (G *+ Gy + Gg)
(5.28)
Ky = Gy + &(G + Gy + Gg)

Now, substituting the expression for CO in (5.27) into (5.25),

we find that the condition for b1 = (0 can be re-expressed as



a quadratic in G6 that is independent of CO, i.e., we obtain

2 =

XlGé + ché + X3 = 0 (5.29)
where

X1 = K4K6

X2 = K2K7 + K3K6 + K4K5 (5.30)

Xy = KyKy v KK
For the given values « , (uT, LN’ Gl’ GZ’ G4 and GS’ and
the value for G3 obtained from (5.24), we can calculate the
values for K1 to K7 in (5.26) and (5.28), and hence we
can determine the values for X1 to X3 in (5.30). To satisfy
the conditions b1 =0 and L = LN we now solve the quadratic

in (5.29) to obtain the required value for G6’ and then from

(5.27) we obtain the value for C This solution, of course,

0
will be significant only if the value for G6 is positive
real, and also provided the value for CO is positive. We
will now discuss whether or not this is the case.

Let us start our discussion by comparing the design
conditions required in the ideal amplifier case of Section
5.4.1.1 , with those for the non-ideal amplifier case studied
here. We find that the expressions for AO = 0 and B1 =0

in (5.10) are similar to those for ag = 0 and bi = 0 in (5.18)

and (5.19). Also, the inductance expression in (5.11) 1is



similar to the expression in (5.21) for the parameter L
Indeed, the expressions for the non-ideal amplifier case
differ only in that they contain additional terms due to
the amplifier parameters & and (UT. Continuing our
comparision, we find that in both the ideal and non-ideal
amplifier cases the design approach is to obtain values

for G G6, and CO that satisfy the relevant design

3’

conditions. In the ideal amplifier case of Section 5.4.1.1

G G

12 727 74
and G5, the values for G3, GG and CO are always positive.

However, in the non-ideal amplifier case this is not

we found that for arbitrary positive values for G

necessarily the case as negative signs, due to & and 1/W.
terms,appear in the expressions which determine GS’ G6 and
CO’ e.g., see (5.24). Nevertheless, for sufficiently small

values for & and l/wT, the values for G G, and CO in

37 76
the non-ideal amplifier case should be close to those for

the ideal amplifier case. We can therefore conclude that
for the non-ideal amplifier case, there should be a wide

range of values for Gl’G G and G. which give rise to

2’ T4

positive real values for GS’ G

5

6 and CO'



5.4.2 PROCEDURE FOR S.B.I. CIRCUIT A

Before describing how the simulating network in
Fig. 3.1 (a) can become an ideal S.B.I. «circuit, it is
again convenient to consider the voltage gain for the
amplifier to be ideal, and review the design procedure for

obtaining an ideal S.I..

5.4.2.1 REVIEW OF IDEAL AMPLIFIER CASE

When the voltage gain for the amplifier is assumed

to be ideal, the simulating network in Fig. 3.1 (a) has an

impedance
A+ pA
z = 9 "1 (5.31)
By * PRy
where
Ag = (G * Gy) (646, - GG - G1Gs)

Ap = Gy {G4(Gz v Gy) - (G Gg) (G # 66)}
(5.32)
B = -
0 GlGZG6G7 + (G4G2 GBGS)(G6G7 + G1G7 + G1G6)
By = GGy + 650 (GG - G365 - GyGe)
The circuit therefore has the impedance of a lossless
inductance of value L = AI/BO provided the conditions
A, = 0 and B, = O are satisfied. From (5.32) these conditions

0 1



are

(Gg + G;) (6,6,

Co

(G

1+ G7) (646

- GG - G;65) =

2

375

- G3G5 - GSGG)

and the inductance value L 1is

Co{ G, (G, *+ Gy)

0

(G + Gg) (G5 + G6)}

(G,G, - G3G5)(G667 + G,G, + G,G

472

177

1

6)

* 616,666,

(5.33)

(5.

To satisfy the conditions in (5.33) let us choose arbitrary

positive values for G

G3 and G6

as

1’

Gys Gys Gy

G

5(6; * Gg)

G. and G

7’

and specify

Substitution of these expressions into (5.34) gives

CO(GSG7

= G16,) (65 + Gg)

2

7
Gi6G,

{G7(Gl * Gg) (6 + Gg) + GG, (6 + 673}

and the desired inductance value, L =

by specifying C, as

L,G]G

N

2
1

0

L

N,

can be obtained

2 {G7(G1 * Gl (G, + Gg) + 6,6,(G) + G7)}

(G5G7

- 61650 (G + Gg)

2

(5.

(5.

(5.

34)

35)

36)

.38)



Equation (5.38) shows that for C, to be positive the

0
following inequality must hold.

GG, > 646, (5.39)

The values for G G G5 and G7 should therefore be chosen

1° 2’
so that the above condition is satisfied.



5.4.2.2 NON-IDEAL AMPLIFIER CASE

The impedance for the simulating network in
Fig. 3.1 (a), for the non-ideal amplifier case, was shown
previously in eqns. (3.13) and (3.14). When the impedance
expression in (3.13) is rewritten in the form
a_ + ap + a pZ
0 1 2

7 = (5.40)

)
by * by * Byp

we find that the coefficients a, to bZ are given by

o8]
|

(Gg + G7){GZG4 - G465 - GG + (G, + G (G *+ G, + GS)}

Gy(G, + Gy) = (6 + Gg) (G5 + Gg)  +

a = (C Oc(Gl+G + G, + G

3 * Gg *+ Gy) +

g ¥ Gg)(Gy + G

(G, + G3) (Gg + G7)(6) + G4 + Gg) /W Ly

a, = CO(G1 + G, + GS)(G2 + G, + G, + G7)/Q)T (5.41)

4 3 6

by = (6,6, - G:G0) (GG, * 6,6y + GG, + G,G,66, +
& (G, + GS){(G4 + G.) (6,6, *+ GG, *+ GG,) + G,6,G, }
+

,
(Gy + G (664 - G3Gg - GgGe)

b= Coi |G (G, + Go) (G, + G + Gg *+ G) + G,(G) + Gy + G (G, + G + G@i} (

FG G [(64 * 65) (6 Gy + GGy + GeG,) + GGGy | /W .rC

-~/

by = Co{Gl(G4 * Gg) (Gy + Gy + Gg *+ Gg) + Gy(Gy + Gy + Gg)(Gy + G5+ Gé)}/Q)T



The design criteria a = 0 and b1 = 0 in (5.4) are therefore

given by

(Gg * G7){G2G4 - GG - GG + «(G, + Gg) (G + G, + GS)} =0

(5.42)

(G + G7) (GyGy - G365 - GsGe) =
% “{?1(G4 * Gg) (G, + G + G + Gy) + Gy(Gy + Gy + Gg) (G, *+ G5 + Gei] =0
* (G, *+ Gg) [ (6, + Gg) (6,6 + 6,6, + GeBy) + 616G, | /Gy
(5.43)
and when these conditions are satisfied the simulating
network becomes an S.B.I. <circuit with the impedance
pL(1 + pT)
Z = 5.44
1 + pZLC ( )
where
Gy(Gy * Gy) = (G + Gg)(Gg + Gg)  +
CO a(G1 + G4 + GS)(G2 + G3 + G6 + G7) +
(G, * G3) (Gg + G;) (G * Gy *+ Gg)/W Gy
L = (5.45)

(646, = G565) (GyGy + GGy + GGg) + GGGy

(G, + GS)[}G4 + G) (6,6, * 6,6, + G,G,) + GlG6Gi]



Gy (Gy * G (Gy *+ G5 + Gg + G;) + G;(Gy + Gy *+ Go) (G, + B3 + Gp)

C =

}

GGy * Gy) = (G *+ Gg)(Gg *+ Gg)  +
Wr { @6y * 6 * GI(6, * G5 + Gg * G) +
L(G2 + Gg) (G + G,) (G, + G, + G)/W.C, (5.46)
(G + Gy + G (G, + G5 + Gg + Gy)

T -

646, + G) = (G + Gg) (G + Gg)  +
(5.47)

Wpq &6y + 6y + GG, + G5+ Gg + G+ 7

(G, + G3) (G + G) (G + Gy + Gp) /WGy,

J/

We now have to determine a way of choosing the passive
component values for the simulating network so that the
conditions in (5.42) and (5.43) are satisfied, and so that
L in (5.45) is equal to the desired value LN' To achieve
this we used the following procedure, which is similar to
that for S.B.I. circuit B.

For given values for a,,cuT and LN’ and for
1° GZ’ G4, G5 and G7, we first of all
satisfied the condition a = 0 in (5.42) by choosing G3 as

chosen values for G

G,G, + Q(G, + G, + G.)
o = 4°2 1 4 S (5.48)

Gl + GS - OC(G1 + G4 + GS)

The condition aj = O in (5.42) is independent of the values



for G, and C so we therefore chosethese component values

6 0’
to satisfy the remaining two conditions b1 = 0 and L = LN.
This was achieved in the following way.

First of all we rewrite the expression for b1 =0

in (5.43) in the form

hl + K2G6 + KSCO + K466CO = 0 (5.49)

where

-~
!

1= 6165(Gy + 6 (Gy + Gg)/W

~
|

o= (6, + 6)[66, + (6, *+ 6 (G G7)] /0

(5.50)

=
1

3= (G +6)(6,6, - G6) +

“'{G1(64 * Gg) (Gy *+ G + Gy) + G;(Gy + G) (G + Gy + Gs)}

o .
|

4" “'{Gl(Ga *Gg) *+ Gy(Gp + Gy # Gs)} - GGy *+ Gy)

From the expression for L in (5.45), with L = LN’ we also

obtain the relationship

c.= -2 66 (5.51)
where

K. = LyG;G, {G2G4 - GGy + (G, + 65)(G, + GS)}

G,(Gy + G3) (G + Gy + Gg)/W



~
1}

6 LN'{(Gl + G7) (6,6, = G56) + G16267} " (G ¥ G (6 + Gy Gg)/Wy

voaLy(G, GS){‘(Gl * GGy *+ Gg) + GiGy }

=~
t

Gy(Gy *+ G7) = G3(G) + Gg) + (G, + Gg + G,) (G + Gy + Gg)

=~
|

a(G1+-G + G

g ¥ G - (6 +6G

c)

(5.52)
Now, by substituting the expression for Cy in (5.51) into
(5.49), we re-express the condition b, = 0 as a quadratic

in G, that is independent of C i.e., we obtain

6 0’
X.6% + X6, + X, = O
176 2°6 3 (5.53)

where

Xl = KZKS + R4K6

XZ = h1K8 + h2K7 + K3K6 + K4K5 (5.54)

Xz = KKy + KK
For the values for G G G G G, , L a and W and

12 722 742 757 77 N’ T

the value for G, obtained from (5.48), we can calculate the

3
values for K1 to KS using eqgns. (5.50) and (5.52), and hence
obtain the values for X1 to X3 in (5.54). The value for G6

can then be obtained by solving the quadratic in (5.53), and

the value for CO is obtained from (5.51). As before, this



solution will be significant only if the value for Gg is
positive real, and provided CO is also positive. For
sufficiently small values for ® and 1/Q)T, the range of

G. and G.,,for which G, and C

2> 747 75 7’ 6 0

positive, should be similar to that for the ideal amplifier

G are

values for Gl’ G
case of Section 5.4.2.1. In that section we showed that a
positive real solution is obtained provided the inequality

shown below is satisfied.

GG, > 6,6, (5.55)

We would expect this condition to be also necessary for the

non-ideal amplifier case studied here.



5.5 CONCLUSIONS

We have pointed out that single-amplifier, single-
capacitor, S.I. «circuits can have the impedance of a
lossless inductance only if the amplifiers in the circuits
are considered ideal. When the non-ideal voltage gain for
the amplifiers is taken into consideration, the impedance
for the simulating networks becomes a biquadratic expression
in p, and only approximates the impedance of an ideal
inductance over a limited frequency range. A biquadratic
expression in p arises because each simulating network
contains a capacitor with a 15t order impedance function,
an amplifier whose voltage gain is assumed to have a 15t
order roll off, and no other elements with frequency
dependent characteristics. In this chapter we took into
consideration the non-ideal voltage gain for the amplifier,
and deliberately re-designed the simulating networks to have

a biquadratic impedance of the form

pL(1 + pT)

1+ pZLC
Circuits having this type of impedance were referred to as
S.B.I.s where ”S.B.I.“ is an abbreviation for Simulated
Biquadratic Impedance. We showed how various types of LC
highpass and bandpass filters, with their terminating resistors,
may be modified so as to produce the required loss/frequency

response using the S.B.I. circuits instead of the originally

required inductors.



An advantage of the approach described here 1is
that the non-ideal voltage gain for the amplifiers in the
simulating networks, is taken into consideration in the
design of the active filter. For bandpass filters using
the S.B.I. «circuits, the passband loss/frequency response
is correct at the frequencies of maximum power transfer
for the original LC filter. The response at other frequencies
can be incorrect but a high degree of compensation for
the non-ideal voltage gain of the amplifiers may still be
achieved. We will show that this is so later in the thesis
in Chapter 7. For highpass filters complete compensation
for the non-ideal voltage gain can be obtained over the entire
frequency range in which the gain of the amplifier can be
adequately described by a single-pole model. Even in the
case of two-amplifier S.I.s this has not been achieved, as
these circuits are usually designed to offer compensation
for the non-ideal voltage gain only in the neighbourhood of
a particular frequency.

A disadvantage of the new filter design method,
when compared with the method of directly replacing the
inductors in an LC filter with S.I. circuits, is that
additional capacitors are required for the highpass filter
case. However, as mentioned earlier, it may be possible
to reduce the number of additional capacitors to only one
regardless of the order of the filter. A sensitivity
investigation for the new types of filters described here

will be carried out in later chapters.



CHAPTER 6

SOME SENSITIVITY FEATURES FOR ACTIVE-RC FILTERS

THAT USE SIMULATED BIQUADRATIC IMPEDANCES

6.1 INTRODUCTION

In Section 5.3.2 we showed that active-RC
highpass filters,which wuse S.B.I. circuits, are derived
from LC filters that have parallel RC terminations. In
Section 5.3.3 we used an original LC filter with purely
resistive terminations in the design procedure for active-RC
bandpass filters using S.B.I.s. However, this later
design procedure involves an approximation, and in Section
5.3.3.3 we showed that the active bandpass filters can,
instead, be more precisely considered as being derived from
LC filters that are modified to have parallel RC terminations.
Thus both the highpass and bandpass filters may be regarded
as being derived from LC filters having parallel RC
terminations. In this chapter we will investigate the
sensitivity properties for LC filters of this type, and
compare the properties to those for LC filters thét have
purely resistive terminations.

Another purpose of this chapter is to investigate

the effects of f.. variations on the impedance for S.B.I.

T
circuits. In particular we will be concerned with deriving
expressions for the 1St order normalised differential

sensitivities of the real and imaginary parts of the impedance

N



to 1/&)T. Later in the thesis, in Chapter 7, we will describe
how to choose the nominal passive component values for S.B.I.
circuit B so that the sensitivity of the imaginary part of
the impedance to variations in fT, is minimised. We will

show that this strategy also reduces the effects of fT

variations on the loss/frequency response of active filters

that contain the S.B.I. circuits B.



6.2 SOME SENSITIVITY FEATURES FOR LC FILTERS

6.2.1 LC FILTERS WITH RESISTIVE TERMINATIONS

The good sensitivity properties of resistively
terminated LC filters were first stated by Orchard (1),
when he pointed out that the 1% order differential
sensitivities of the loss to the reactive components,
are zero at frequencies fOi in the passband if, at these
frequencies, maximun possible transfer of power takes place
from the source to load termination.

To investigate Orchard’s point 1let us consider
the resistively terminated LC filter shown in Fig. 6.1.
Maximum real power will be dissipated to the right hand
side (R.H.S.) of the 1line XX' in Fig. 6.1 whenever the
circuit to the right of XX' has the same impedance as the
source resistance RS. The voltage VX’ shown in Fig. 6.1,
will then be equal to VIN/Z, and the maximum power dissipated
in the circuit to the R.H.S. of XX will be IVIN|2/4RS.
This power must be dissipated in the load resistor RL as
this is the only resistive component to the right of XX'.
For any output voltage, VOUT’ the power dissipated in RL
will be given by ]VOUTIZ/ RL. The voltage gain for the
filter, for which maximum power generation occurs, can
now be determined by equating the maximum power which can
be dissipated to the R.H.S. of XX' to the actual power

dissipated in R i.e., we obtain

L,



2
v

[Vour]| (6.1)
Ry,

and rearrangeing this expression gives
IVOUTI _ A

|V -2 “’; (6.2)

=

|

It is possible to design resistively terminated
LC filters so that, at a number of frequencies foi in the
passband, the actual voltage gain for the filter is equal
to the gain shown in (6.2) for which RL dissipates 1ts maximum
power. For such filters we can now argue that, at the freq-
uencies foi’ positive or negative variations in the values
of the reactive components in the LC filter can only cause
R, to dissipate less power. Hence the voltage gain for the
filter can only decrease, and we can conclude that at the
frequencies foi the 15% order differential sensitivities for
the reactive components must be zero.

\ To 1llustrate the good sensitivity properties that
resistively terminated LC filters can have, let us consider
the particular filter circuit shown in Fig. 6.2. The
component values for this circuit are also shown in Fig. 6.2,
and the nominal loss/frequency response is shown in Figs. 6.3
(a) and (b). The component values in Fig. 6.2 show that RL
is equal to RS, and from (6.2) we deduce that the voltage

gain for the filter must be 0.5 for maximum possible transfer

of power to occur. From the nominal loss/frequency behaviour



shown in Fig. 6.3 (a) we find that the actual response for
the filter does, indeed, contain frequency points where

this is the case. To investigate the sensitivity properties
for the filter, we took the approach of showing how the loss/
frequency response changes when the component values are
altered from their nominal values - these curves are shown

in Figs. 6.4 (a) to (i). We find that for changes in the
capacitor and inductor values, the loss/frequency response
cannot rise above the line 6.021 dB which corresponds to a
voltage gain of 0.5. Some of the curves for the reactive
components also show that the loss for the filter increases

a little at the frequencies for maximum possible transfer

of power. We can explain this by pointing out that in our
discussion we have been concerned only with 15t order
differential sensitivities, and the effects of 5.0 and 10.0 %
changes in the component values cannot fully be taken into

consideration using only these sensitivities.

IN'Es



6.2.2 LC FILTERS WITH PARALLEL RC TERMINATIONS

To investigate the sensitivity properties for LC
filters with parallel RC terminations we will again take the
approach of studying a particular circuit, and showing how
its loss/frequency response is affected by changes in the
values of 1its components. Before this investigation, however,
it is interesting to determine the conditions for these filters,
for which the transfer of power from the source to load
termination is the maximum possible.

Consider the LC filter with parallel RC terminations
shown in Fig. 6.5. For this filter maximum real power will
be dissipated to the R.H.S. of the line XX' in Fig. 6.5
whenever the impedance to the right of XX' is equal to the
complex conjugate of the source impedance. We can prove
this in the following way.

Consider the diagram shown in Fig. 6.6 - this

shows a voltage V with a source impedance of the general

IN?
form Lg = a; * jbl’ connected to an impedance of the
form ZX = a, * Jbz. Since both ZS and ZX are passive
for the filter in Fig. 6.5, both ay and a, will be positive,
but b

1 and b2 can have different signs. We now determine

the values for a and b2 which cause maximum power to be

2
dissipated to the R.H.S. of the line XX in Fig. 6.6.

From Fig. 6.6 we find that the current I is given by

IN

v
I - IN (6.3)

IN .
ayp *ag * by + by




and from this expression we obtain

IVIN‘2

2
(a; +ay)” + (by *+ b))

lIINIZ = 5 (6.4)

1
The power dissipated to the right of XX , Py, ', is therefore

given by
a2|V
2

|2
IN
+ (bl + bz)

- 2 _
Poy' = aZIIINl = ; (6.5)

(a; + a,)

and for this expression to be a maximum it is necessary to

choose b2 = ~b1, and a, = ajp, i.e., we must choose ZX to
be the complex conjugate of ZS. Note, from (6.5), that for
this case the maximum value for PXX' is
viyl®
PXX'(max] = — (6.6)
4a
1

For the LC filter in Fig. 6.5 the source impedance

is given by

ZS = RS/(l + pRSCS) (6.7)
and this can be written in the form ZS = a; ¢ jb1 where
_ 2,22
a; = RS/(l + W RSCS)
(6.8)
_ 2 2,242
by = - WCGRG/(1 + WRGCY)

Making use of the above expression for a, in (6.6), we find

1
that the maximum possible power which can be dissipated to



the R.H.S. of XX in Fig. 6.5 1is given by

2 2.2.2
[Vin| (1 + 0"RgCY) 6.9

t —
PXX (max) =
4RS

t
The power dissipated to the right of XX can only be due to

the load resistor R and is given by the expression

L’

2
lYQHIl_ (6.10)

Ry,

Now, by equating P, ,'(max) in (6.9) to P, in (6.10), we

XX L
can find the magnitude of the voltage gain VOUT/VIN for

which the power dissipated by R, is a maximum, 1i.e.,

L
2 2 2.2.2
v \Y (1 + wWReCQ)
I OUTI - l INl S”S (6.11)
RL 4RS
and, by rearrangement, we obtain
2,22
\' R, (1 + W™R.CZ)
OUT _ L STS (6.12)
V1IN Rs

Note that this expression is frequency dependent wunlike
the expression in (6.2) for the 7resistively terminated
LC filter case.

An example of an LC filter with parallel RC
terminations 1is shown in Fig. 6.7 (thanks are due to C.

Nightingale, Post Office Research Centre, for designing



this filter). The component values for the filter are also
shown in Fig. 6.7, and the nominal loss/frequency behaviour
is shown in Figs. 6.8 (a) and (b). By substituting the
values for RS, RL and CS into equation (6.12), we can
determine the voltage gain required for maximum possible
transfer of power to take place in the filter - this
behaviour is shown in Fig. 6.8 (a) alongwith the passband
loss/frequency response for the filter. We find that the
passband response does not contain frequency points for
which maximum transfer of power occurs. Computed curves
showing how the loss for the filter is affected by changes
in the component values, are shown in Figs. 6.9 (a) to (k).
For the capacitor and inductor changes we find that the
altered loss/frequency response can rise above its nominal
behaviour, unlike the changes shown previously in Figs. 6.4
(c) to (i) for the resistively terminated LC filter case.
Comparing the curves in Fig. 6.4 with those in Fig. 6.9,
we find that, on the whole, the sensitivities for the LC
filter studied here are worse than those for the resistively
terminated filter studied in Section 6.2.1.

Some comments on the sensitivity properties of LC
lowpass filters with parallel RL terminations have been made
by Nightingale and Rollett (58). They suggest that the
component sensitivities for these filters are improved as
we choose a smaller ratio for the normalised inductance
and resistance values for the source impedance. By

1
normalised source inductance and source resistance values



we mean the values that arise when the filters have been
normalised to have a passband edge fréquency of 1.0 r/s.

Since LC highpass filters with parallel RC terminations are
obtained from LC lowpass filters with parallel RL terminat-
ions, merely by lowpass to highpass transformation , we
would expect the component sensitivities for the highpass
filters to be improved as we chose a smaller product for

the normalised capacitance and resistance values for the
source impedance. Further investigation of this point,however,

has not been undertaken.



6.3 EFFECTS OF F.. VARIATIONS ON THE IMPEDANCE

T
FOR S.B.I. CIRCUITS

6.3.1 GENERAL EFFECTS

In Section 3.4 we pointed out that the single-
amplifier, single-capacitor, simulation networks discussed
in this thesis have an impedance of the form

a, + pa, + pza
0 1 2

7 = . (6.13)
bg * Pby * p'b,

when the non-ideal voltage gain for the amplifier is taken
into consideration. In Section 5.3 we suggested designing
the simulating networks so that the coefficients a, and b1
in (6.13) are zero, and we then showed that the impedance Z

becomes
pL(1 + pT)
7 =
1+ szC (6.14)
where
L = al/bo , C=by/a; , T = az/al (6.15)

We referred to networks having this type of impedance as

ideal S.B.I. «circuits. In this section we express the
impedance for the S.B.I. «circuits in the form
Z = RE(Q)) + JIM(Q)) (6.16)

and then we derive expressions for the normalised sensitivities



R, @) (@)
S and S These sensitivities are defined as
1ﬂuT 1/wT
R, (@) dR, W) 1/W
s b = E_ . T (6.17)
1/60 d(1/wy) Ry @)
I, (w) dI,, (w) 1/W
g M = M- T (6.18)
1ﬂ»T d(lﬁwT) IM(un

First of all we rewrite equation (6.13) in the

following form

M + pL(1 + p)

VA =
T on + olic (6.19)

where the expressions for L, C, and T are the same as those

in (6.15), and M and N are given by
M o= ag/by N o= by/by (6.20)

To obtain an S.B.I. circult we now need to choose M = 0
and N = 0 in (6.19). When the impedance expression in (6.19)

is written in the form shown in (6.16) we obtain

M - WPLT) (1 - w’LC) + w’NL
R.() = (6.21)
E PSR P R
2 2
wL(l - w'LC) - wWNM - L7
I (W) = (6.22)
M PR S R .



Note that the substitution P = jw has been made in (6.19)
to enable the impedance to be expressed in the form shown

in (6.16). When the nominal values M = O, N = 0, L = LN’
C=Cy and T = Tﬁ, are substituted into (6.21) and (6.22)
we find that the S.B.I.s have, ideally, an impedance with

a real and imaginary part given by

2

* "'(,OL’ZE\I
Rp (@) = X (6.23)
1 - W'LyCy
. WLy,
T, = ] (6.24)
1 - u)LNCN~

In general variations in the fT value for the
amplifier in the S.B.I. «circuits will alter the values
for M, N, L, C and T from their nominal values. Because
of these changes,the real and imaginary parts of the
impedance for the S.B.I.s will not have the nominal values
shown in (6.23) and (6.24). For sufficiently small changes
in M N, L, C and T from the nominal values, the changes in

RE(w) and IMGUJ will, in general, be given by

o1 oI, (w ¥, () o1 AT, (
AL W) = M@£L4- M(£c+ MUAT M(W)AM+ “wkN
3L 3¢ 3T M 3N
(6.25)
3R (W) AR (W) IR (W) IR, (W) IR, (W)
AR W) = : AL + —EAC + i AT + h: AM + —E AN
L 3C 37T M 3N

(6.26)



Expressions for the partial derivatives shown in (6.25) and

(6.26) may be found from equations (6.21) and (6.22). For

the nominal values

we obtain

bIM(w)
oL

3T (W)
o C

BIM(w)
o

éIM(w)

3 M

3y (W)

M=0,N=0,L=L

(1 - WLy

3.2

(- WL

3
w LNZN

(- wie’

N’

BRE(LL))
oM

> Ry ()
3N

CN and U = Zﬁ

- (A.)ZZ’N
(1 - WGy’
2 2
(1 - WG
- sz’N
L- WGy
1
2
1-w LSy
w°L,
(- W’

(6.27)



When the expressions in (6.27) are substituted into (6.25)

and (6.26) we obtain

2.2 2
WAL + WLEAC + W T L.AN) :
AL (@) = N NN (6.28)

(1 - wLG°

2 2 4.2
wINAN - w'ZNAL - wIN?NAC +

a - wZINCN}AM - wZLN(l - wZLNcN)/_\Z'
(- WGy’

ARE((U) (6.29)

These expressions show how the small changes AL, AC, AT,
AM and AN affect the impedance for the S.B.I.s. We
now continue investigating the case where the small changes

in L, C,7, M and N are caused by variations in fT. Since

fT is very large, however, we will follow the general

procedure of considering the effects of small changes in

1/W where W, = ZNfT.

T’ T

For sufficiently small changes in 1/W ..,the changes

T’
in L, C, ¥ , M and N are given by the general expressions

3L 3C
AL = A(1/0) AC A1 /0)
o (/) ¥ (/)

1}

I



AT = BACA o

(1) OM = A(1/w.)
Yamy T wp T
IN

AN = A1 /) (6.30)
3 (/)

Substituting these expressions into (6.28) gives

o) 3L 3 9 3 C 3 N
Al 4 w _— v WL T
T > (1) LNB(l/w N

) (/)
zQIM@U
2 2
(1 - wLGy
(6.31)
dIhiﬁu)
and the differential sensitivity is found by
d(l/wT)
lettingtﬂ(IMHJ — 0 in (6.31), i.e.,
dL dC oN
W B,
a1, @) 0 (/) o (L) o (L)
(1) (- ‘OZLNCN)Z
(6.32)

The normalised differential sensitivity can now be found

from eqns. (6.18), (6.24) and (6.32), i.e., we obtain

3L X e 2L 7 N
+ W + W N

I,@) ) B(l/wTJ B(l/wT)

1/

p) (L)

ply @ - w'hyG®

(6.33)



Ry W)
Before deriving an expression for S E , we note that
(1/07)

BM/b(lﬂoT) is zero for the following reason

Equation (6.19) shows that the parameter M
represents the D.C. resistance for the simulating networks.
The value for the D.C. resistance, i.e. M, depends on the
values for the passive components in the simulating networks,
and also on the gain of the amplifier at D.C.. In general
the gain G is given by G = 1/( & + jwﬂuT), and at D.C.
this expression 1is equal to 1/ . The parameter M is
therefore independent of CoT, and hence of 1ﬂoT, and we can
conclude that BM/b(lknT) = 0. Note that we are considering
here only the effects of W variations on the impedance of
the S.B.I.s and not the effects of variations in & .

Substituting the expressions in (6.30) into (6.29),

and putting bM/B(lﬂuT) = 0, gives
[, ML .2 d¢C W
IS TN
T (1/w)
— A pA ?
. ‘*’ZLN(l i C‘)ZLNCN) T N oN
| B(lm%) lé(lﬂ%)J
ARE(w) =
(1 - Wiy’
(6.34)
From this expression we obtain
( dL 0C
W' Ty - wilry
dRe @) _ -1 (LA (1)
2 2
d(t/wp) N wlyG) —2L - i
g (/0 N3y

(6.35)



and the normalised sensitivity, obtained from eqns.

(6.23)

@)
SE

1/w

T

and (6.35), is given by

1

7
Wely T - WGy

-

.

L
'LJ +
N B(l/wT)
L(1 - w%Ng@
N

wLNT

o
b(lﬁwT)

oC
Ny

- Iy

(6.17),

+

ON

B(lﬂuT)

(6.36)




6.3.2 EFFECTS OF FT VARIATIONS ON THE IMPEDANCE

FOR S.B.I. CIRCUIT B

Ly (@)
To evaluate the normalised sensitivities S(l/w )
RE(w) T
and S for S.B.I. circuit B, it will not only
(lﬂDT)

be necessary to know the nominal values LN’ CN and ’UN
appearing in (6.33) and (6.36), but also the values for

the partial derivatives BL/B(lﬂnT), éC/é(l/wT), é?Vé(lﬂoT)
and BN/S(lﬂvT). For any set of nominal component values

for S.B.I. circuit B we can use eqns. (5.21), (5.22) and
(5.23) to calculate LN’ CN and T:N' We can also use these
equations to determine expressions for the partial derivatives
YL/3(1/wy)
iating eqns. (5.21), (5.22) and (5.23) with respect to l/wT

BC/é(l/wT) and 3%75(1A0T), i.e., different-

we obtailn

oL (G2 + G3)(G1 + G4 + GS)

3wy (G + G(G,6, - GG) + 66,6, + &(G,* Gs){(G4+G5) (6,* Gg) + G1(36}

(6.37)

3¢ [6, +a(Gy *+ 6, + G][(6, + Gy *+ G (G] *+ G, + G5) * G (G, * Gg)]

2
3(1/w) {:G4 + Gy + Gy *+ G) + (G, + (G *+ Gy ¥ GS)/chOj}

(6.38)

\r (G, + Gy + GS)-{G4 + (G, + G, + GS)}

7
d(1 /) { Gy * &Gy + G, + G) + (G, + G)(G + G, + GS)/chOj}

(6.39)



To determine the expression for BN/B(lﬂDT), it
is first of all necessary to determine the expression for
N in (6.19). Making use of eqns. (6.20) and (5.17) we

find that, for S.B.I. <circuit B, N 1s given by

G,G, - G5(Gg *+ Gg) + (6, *+ Go) [(G, + G) (G + Gg) + GGy | MGy

C
0
+ oc[(Gz + Gy + G)(Gy + G, + G) + G (G, + GS)]

(6 * Gg) (GG, = G565) + G 6,6y + ®(G,*Gy) [(G,*G5) (G + Gg) + GG |

(6.40)

and differentiating this expression w.r.t. 1ﬁwT gives

oN (G, + GS){(GLl * 6) (G + Gg) + GlG6}

o(1/p) (G * Gg) (GG, - G3Gg) + 6,G,Gg Oc(Gz’”G:s){ (G4*Gg) (Gy*Gg) * GlG6}
(6.41)
The expression for M in (6.19), for S.B.I. circuit
B, may also be found from eqns. (6.20) and (5.17), i.e. , we
obtain

GG, = G5(6; + G + (G, + G) (G + G,

(G, * Gg) (6,6, - G;G) + GGG, + oc((;2+63){(c4+65) (6,+Gg) + 6166}

+ Gs)

(6.42)
Note that this expression does not contain any Wp terms
as mentioned previously in Section 6.3.1.
For any choice of nominal component values for

S.B.I. «circuit B, we can use eqns. (6.37), (6.38), (6.39)



and (6.41) to evaluate bL/B(lﬂvT), bC/B(l/wT), BTYB(IAUT)
and BN/B(lﬂoT). We can then use these values, and the

N’ CN and ’KN,
determine the normalised sensitivities

values for L in (6.33) and (6.36) to

JIn) R @)
(1/wp) 7 2 (1/wg)
In Chapter 7 we will show how to choose the nominal passive

component values for S.B.I. circuit B so that, in addition

to the usual design requirements M = O, N = 0 and L = L
Iy @)

S M
(1/0,)

We will then use this design procedure to obtain active-RC

N’
is minimised at a chosen frequency.

the value for
filters whoose loss/frequency responses have low sensitivities

to fT variations.



6.4 CONCLUSIONS

This chapter has been concerned with the
sensitivity properties for active filters that use S.B.I.
circuits. We pointed out that both highpass and bandpass
filters that use S.B.I.s , can be considered as being
derived from LC filters having paralell RC terminations.
We briefly investigated the sensitivity properties for
filters of this type, and showed that they can be
significantly more sensitive than LC filters having
purely resistive terminations.

We also investigated the effects of fT
variations on the real and imaginary parts of the impedance

for the S.B.I. circuits. General expressions for the

I (w)
1% order normalised differential sensitivities S
R. (W) (1/wq)
and S E were derived, and we showed, in particular,
(1/ W) ‘

how to calculate these sensitivities for the S.B.I. circuit B.

In Chapter 7 we choose the nominal passive component values
I (w)
for the S.B.I. circuit B so that the sensitivity S M
(1/ W)
is minimised, and we then show that this strategy helps to
reduce the effects of fT variations on the loss/frequency

response of active filters that contain S.B.I. circuits B.



CHAPTER 7

EXPERIMENTAL INVESTIGATIONS

7.1 HIGHPASS FILTER USING S.B.I. CIRCUIT B

In this section we describe an active-RC highpass
filter which uses S.B.I. «circuit B, and whose loss/
frequency response is the same as that for a Sth order
Cauer type LC filter having the nominal behaviour: stopband
attenuation < 30 dB, loss variation in passband < 0.1 dB

above 2.0 kHz.

7.1.1 DESIGN OF THE ACTIVE FILTER

As mentioned in Section 5.3.2.2, the first step
in designing the active highpass filter is to choose an
LC 1lowpass filter, with parallel RL terminations, whose
loss/frequency response has the corresponding 1lowpass
behaviour: stopband attenuation <« 30 dB, loss variation
in passband < 0.1 dB below 2.0 kHz. An appropriate
lowpass filter having the above behaviour, except that the
passband edge frequency W is 1.0 r/s, is shown in
Fig. 7.1 (a), and its component values are given in Table
(a) of Fig. 7.2 (thanks are due to C. Nightingale, British
Post Office Research Centre, for designing this filter).
A new set of component values which cause the response to
have the required lowpass behaviour, i.e. fc = 2.0 kHz,

can be obtained by denormalisation. That is, we multiply

the capacitor values in Table (a) of Fig. 7.2 by 1/2TTfCR,



the inductor values by R/ZTTfC, and the source and load
resistors by R, where R can be chosen arbitrarily. The
component values that are obtained for the case R = 2.0 K&
are shown in Table (b) of Fig. 7.2.

From the lowpass filter in Fig. 7.1 (a) we
obtain, by lowpass to highpass transformation, the LC
highpass filter with parallel RC terminations shown in
Fig. 7.1 (b). This transformation involves replacing the
inductors Li in the lowpass filter by capacitors of value
l/a)zLi , and replacing the capacitors 'Ci in the lowpass
filter by inductors of value 1/a>2ci - the component
values that are obtained for the highpass filter are shown
in Table (c) of Fig. 7.2. We now transform the filter in
Fig. 7.1 (b) in the way described in Section 5.3.2.2, to
obtain the LC highpass filter in Fig. 7.1 (c), for which
the inductors LA and LB appear as parts of grounded
parallel LC resonators - the component values for this
circuit are shown in Table (d) of Fig. 7.2.

The next step in the design procedure 1s to choose
two sets of nominal component values for S.B.I. circuit
B so that the conditions ag = 0 and bl = 0 in (5.4) are
satisfied, and so that L in (5.6) is equal to the inductance
values LA and LB for the LC filter in Fig. 7.1 (c). To
satisfy these conditions we used the design procedure for
S.B.I. «circuit B described previously in Section 5.4.1.2.

As mentioned in Section 5.4.1.2, there are many ways of

choosing the nominal component values for S.B.I. «circuit B



so that the conditions aO = 0 and bl

so that L has a specified nominal value.

values used here, which are for an amplifier having X =

6

and fT = 10~ Hz, are shown in Tables

Note that we obtained the component values in Table
LB

Fig 7.3, which are for the case L =

the resistance values for the case L
LA/LB'
by the constant LB/LA. As mentioned

that the values of associated with

and L = LB’ see (5.6), are the same.
the values CA and CB associated with
S.B.I. circuit, see (5.6), are shown

values in Fig 7.3.

To complete the design of the active

and by multiplying the capacitance value for L = L

= 0 are achieved, and

The component

107°
(a) and (b) of Fig 7.3.
(b) of

, by multiplying

= L

A by the constant

A

in Section 5.3, this ensures
the designs for L = L

This value of T,

A
and

the two designs for the

in the Tables of component

high pass filter, the LC

filter in Fig 7.1 (c) was modified in the way described in

Section 5.3.2.2,

by (1 + p’ ) to give the active RC filter shown in Fig 7.4

see also Fig 5.7 (e),

and then impedance scaled

(a)

- the full set of component values for this filter is given in

Fig 7.4 (b).



7.1.2 EXPERIMENTAL

ADJUSTMENT PROCEDURE FOR

HIGHPASS FILTER

The active filter of Fig 7.4
resistors and capacitors having values within t
specified values shown in Fig 7.4
resistors with very small values,

included in the realisation.

(a) was constructed using
of the

[)
°

however, some of the

RC2 and RCS’

These tolerances and omissions

(b),

ie, were not

cause the loss/frequency response for the experimental filter

to deviate from the nominal response;

the £, values for

also, t

the amplifiers will not be precisely equal to their nominal

values,

and this again causes the response to be non-ideal.

Ideally the S.B.I. circuits B in the active filter have the

impedance:

where LN' ’tN' and C
Tables (a) and (b)

N
of

PL (1 + pTy) (7.1)

1 + pZLNCN

represent the nominal values shown in

Fig 7.3. However, due to passive

component tolerances and fT tolerances, the S.B.I.s will

instead have impedances of the form

Thus, for the S.B.I.s
would be necessary to
so that the following
N O, L LN' C CN
however, to

practice,
circuit B so that all
simultaneously. Also,

we would still not be

M + pL(1l + p't ) (7.2)

1 + pN + pZLC
to have their ideal impedances, it
adjust the resistances for each circuit

five conditions were obtained: M = O,

and U = tN'

make resistance adjustments for S.B.I

It is impossible in

these conditions are achieved
if such adjustments were possible,

overcoming the effects on the highpass

.?_ [ 1’



filter responsc, of tolerances on the remaining components
in the filter. Instead, as a compromise, we adopted the
following adjustment strategy which we have found to be

satisfactory:

The adjustment strategy adopted here is Lo try Lo achicve bolh

the following conditions:

(1) Fach S.B.I. circuit has zero D.C. recsistance (from
(7.2) the D.C. resistance is given by M which is

idecally zero).

(ii) The shunt arms in the highpass filter have their ideal
impedance of zero , at their appropriate

nominal transmission zero frequency.

These conditions were achieved in practice by iteratively
adjusting the three resistors R3, R6, and R5 in each S.B.I.

circuit using the cexperimental procedurc describced below:

First of all we adjust the conductance G3 in eachS.B.I. circuit

so that the condition M = O was achieved. From (6.42) we have:

G4G2

(G, + Gg) (6,6, = Gs6) + GGG + “(Gz“’Gs){(Ga'*Gs) (6,*Gg) + cleé}

- 65(G, * G) + ®(G, * G (G + Gy + Go)

(7.3)

and from (7.2 we note that M represents the D.C. resistance

for the S.B.I. circuit. We can therefore make M equal to zero

in practice, by connecting a resistance meter across the S.B.I.
circuit and adjusting G3 until the resistance is zero.

The next part of the adjustment procedure is to iteratively
adjust the resistors R6 and R5 for each S.B.I. circuit, so

that the shunt arms of the active highpass filter not only

have their nominal transmission zero frequencies, but so that
the impedance at these frequencies is zero. Each shunt arm is di
connected from the filtexr, connected to a series resistor, and

driven at the appropriate transmission zero frequency, as shown



in Fig 7.5. The resistors R6 and R5 are then adjusted

iteratively so that the voltage V shown in Fig 7.5 is

as close as possible to zero. Thguzhunt arms are then
reconnected to the filter. Note that we are taking into
consideration the tolerances on the components C2, C6, C4,
C7, RC2, RC6, RC4 and RC7 in Fig 7.4 (a), as well as the
tolerances for the components in the S.B.I. circuits at the

appropriate transmission zero frequency.

Adjusting R6 does not affect the value of M,for M = 0, as shown

in (7.3). However, the adjustments made to R5 will affect

the M value and hence change the D.C.resistance from zero gls.
For the adjustment procedure to be successful, it is necessary
that the adjustments of R5 introduce only small changes in the
D.C. resistance values for the S.B.I.s. Examination of (7.3)
has shown that this will be the case if the S.B.I.s can be
designed using large values for R2, R3 and R5 and small values for
R1, R4 and R6. Hence, the spread in the resistance values for
the S.B.I.s show in Fig 7.4 (b). A detailed investigation of
the adjustment procedure has not been undertaken, however, it

is probably the case that the variations in R6 affect the values
of both the imaginary and real parts of the impedance presented
by the S.B.I. circuit, whereas the same percentage variations

in R5 affect the real part (and hence the Q of the S.B.I.

circuit) and have a much smaller affect on the imaginary part.

Investigation of adjustment procedures for filters using other
types of S.B.I. circuit, rather than type B, would be desirable but
has not been undertaken owing to lack of time. Nevertherless,

the general strategy described above seems to be satisfactory

as will be demonstrated by the measured filter performance given

in the next section.



7.1.3 COMPUTED AND MEASURED RESULTS

The loss/frequency response for the active-RC
highpass filter was determined using a computer analysis
program, and is shown in Fig. 7.6. We find that this
behaviour precisely suits our desired specification,
namely: stopband attenuation < 30 dB, and loss
variation in passband < 0.1 dB above 2.0 kHz.

For the practical filter we adjusted the S.B.I.
circuits in the way described in Section 7.1.2, and
then we measured the loss/frequency response to obtain
the behaviour shown in Fig. 7.7. The measured response
agrees fairly closely with the computed response in Fig. 7.6
and shows that the adjustment procedure for overcoming

the passive component and f tolerances is satisfactory,

T
at least for the filter example studied here. The passband
loss for the practical filter, measured at 10.0 kHz, was

7.9 dB f 0.1 dB measuring error, and is in close agreement

with the computed value 7.86 dB.

7.1.4 SENSITIVITY INVESTIGATION

To investigate the passive component sensitivities
for the highpass filter, we took the approach of showing
how the loss/frequency response changes, when the passive
component values are altered from their nominal values -
these curves are shown in Figs. 7.8 (a) to (b). For

comparision purposes, we decided to show how the response



of a low sensitivity LC filter is affected by changes
in its component values. The LC filter is shown in Fig.7.9
alongwith its nominal passive component values, and the
changes in the loss/frequency behaviour for this filter are
shown in Figs. 7.10 (a) and (b).
The curves in Figs. 7.8 (a) to (b) , for the
capacitance changes for the active highpass filter, show
that the loss can become less than the basic loss , i.e.,
7.8 dB. This behaviour was also observed in Section 6.2.2,
where we investigated the effects of passive component
changes on the loss/frequency response for an LC filter
with parallel RC terminations. Note, from the curves
in Figs. 7.10 (a) and (b), that, for the resistively
terminated LC filter in Fig. 7.9, the capacitance and
inductance changes cannot cause the loss to become less
than the basic passband loss of 6.021 dB (see Section 6.2.1).
The computed curves for the resistors in the
S.B.I. circuits in the active filter, show that the altered
loss/frequency response 1is not much worse than that for
the capacitors in the S.B.I.s. This i1s interesting as
the changes in the resistance values affect the conditions
M =0 and N = 0 required in the impedance expression
for the S.B.I.s (see (6.19), wherecas the changes in the
capacitance values for the S.B.I.s do not alter M from
zero (see (6.42), and they have only a an order effect,

due to fT’ on the value for N (see (6.40).



The effects of small tolerances on the components

C R R R to R

L’ "CL’ "CcS’ 'C1 Cc6?
are very small and have not been shown. Note also, from

on the highpass filter’s response,

Fig. 7.8 (b), that the changes for the capacitors CS, C6

and C, are very small in the region of the passband edge

7
frequency but become larger at higher frequencies. The
computed effects of ¥ 20.0 % simultaneous changes in the fT
values of both amplifiers in the active filter are shown in
Fig. 7.11 - once again, we find that the loss/frequency
response for the highpass filter is not much affected near
the passband edge frequency, but the effect at higher
frequencies becomes more significant.

On the whole the altered loss/frequency responses
for the capacitors in the active highpass filter are worse
than those for the LC highpass filter in Fig. 7.9. It
may be possible to improve the sensitivities for the
capacitors in the active filter by redesigning the LC
filter circuit in Fig. 7.1 (c), from which the active filter
was obtained, so that its sensitivities were closer to those
for the LC filter in Fig. 7.9. This may be achieved by
choosing a smaller time constant RSCS for the filter in
Fig. 7.1 (b), however, this possibility has not been

investigated further.

II\_
o



7.2 RESONATOR CIRCUIT USING S.B.I. CIRCUIT B

In this section we discuss the active RC realisation for the
LC network shown in Fig 7.12 (a) using S.B.I. circuit B. This
nwtwork consists of a parallel LC resonator connected to a
source resistance RS, but, for convenience, we refer here to
the entire circuit in Fig 7.12 (a) as a resonator circuit. In
Section 7.2.1 we show how to obtain the active-RC realisation
for the LC resonator circuit, then we choose a typical design
for the active resonator, and investigate the effects of fT
variations on its loss/frequency response. A design procedure
for reducing the effects of fT variations is presented in

Section 7.2.2.

7.2.1 DESIGN FOR THE ACTIVE RESONATOR CIRCUIT

We now describe how the passive resonator in Fig 7.12 (a)
can be realised using S.B.I. circuit B, which has an impedance

of the form

pL(l + pT )

1+ szc (7.4)



First of all the S.B.I. circuit B is designed so that the
parameter L in (7.4 ) has the inductance value LR for

the passive resonator . The parameters C and T in (7.4)
will then have the nominal values Cp and 7§R. The circuit
in Fig. 7.12 (a) is now modified in the way shown in Fig.
7.12 (b), and this circuit is then impedance scaled by

(1 + p¥) to obtain the circuit in Fig. 7.12 (c), where

Z represents the impedance in (7.13) for the case

R

L =1 C=2¢C and T’='(R. Impedance scaling the source

R’ R
resistor RS in Fig. 7.12 (b) by (1 + pT) gives rise to
the small inductance L' shown in Fig. 7.12 (c). In the
case of the equally resistively terminated bandpass filters
discussed in Section 5.3.3 it was possible to eliminate
this unwanted inductor using the transformation shown in
Fig. 5.8, however,this is not possible here as the circuit
in Fig. 7.12 (c) is singly terminated. Instead we shall
ignore the small inductance to obtain the active-RC reson-
ator circuit shown in Fig. 7.12 (d).

We will now describe, in detail, the design of
the active resonator in Fig. 7.12 (d) for the case where
the original passive resonator has a resonance frequency
f, = 1.0 kHz, and a Q of 10. The parameters f

R R
refer to the transfer function for the passive resonator

and Q

in Fig. 7.12 (a) which is of the form

T(p) = 7 (7.5)

* P LRCyRg



This expression can be rewritten as

D(p/ wWy)

T(p) = (7.

1+ D(p/wp) + (p/wp)?

where
1 1 L
wR = —_—— s D = R _B_ (7
LRCN Rg CN
The resonance frequency fR is given by (oR/Zﬂ' , and Q
is defined as the inverse of D, i.e., Q = p1. Making use
of the inverse relationships COR = ZTTfR and D = Q_—1 in
(7.7), and then solving for LR and CN’ we obtain
R Q
LR = __._.S— CN = —_— (7'
Z‘ﬁfRQ 21TfRRS

These expressions show how to choose the values LR and CN

for the passive resonator in Fig. 7.12 (a), so that it has
the required resonance frequency and Q value - note, from

(7.8 ), that the value RS for the passive resonator can

be chosen arbitrarily. Choosing RS = 10.0 k& , with

fR = 1.0 kHz and Q = 10, we obtain: LR = 159.15 mH, and

CN = 159.15 nF.
The S.B.I. «circuit B is now designed in the way
proposed in Section 5.4.1.2, so that the parameter L in

(7.4%) 1s equal to the inductance value LR determined

Do

6)

-7)

8 )



above. As mentioned in Section 5.4.1.2 there are some
degrees of freedom in our choice of values for the components
in the S.B.I. <circuit B. For the

G G G, and G

12 722 74 5

present example we chose: G1 = G2 = G4 = G5 = 10_4@ , and
for the non-ideal amplifier gain we chose & = 10-5 and

fT = 106 Hz. Using these values in the design procedure
of Section 5.4.1.2 we obtain: G3 = 50.00z o , G6 =
54.294 MT and C, = 2.0203 nF. The values Cp and Tr
associated with the impedance for the S.B.I. circuit ,
see (7.4) , are: Cp = 120 pF and ¥, = 4.61107 . 107/,
and the values for CX and RX in the active resonator
of Fig. 7.12 (d) are: CX = 159.03 nF and RX = 2.8995 Q.

The complete set of component values for the active resonator
circuit is shown in Table (a) of Fig. 7.13.

It is interesting to compare the component values
in Table (a) of Fig. 7.13 with those that are obtained if

we consider the voltage gain of the amplifier in the active

resonator to be ideal, i.e., ® = 0 and fT = o0 ., A design
procedure for S.I. «circuit B, for the ideal amplifier
case, has been presented in Section 5.4.1.1. Using this

design procedure with the same values for Gl’ GZ’ G4 and G5
as chosen for the non-ideal amplifief case, 1.e., G1 = G2

= G4 = G5 = 10—4 ¢ , we obtain the component values shown

in Table (b) of Fig. 7.13 for the active resonator circuit.
Comparison of Tables (a) and (b) in Fig. 7.13 show how the
non-ideal voltage gain affects the design.

The computed loss/frequency response for the active

resonator circuit is shown as curve (a) in Fig. 7.14, and

)



the response for the original LC resonator of Fig. 7.12 (a)
is shown as curve (b) in Fig. 7.14. We find that both
these loss/frequency responses are very similar, except for
very high frequencies. 1In a practical application, however,
the small discrepancy at high frequencies would be insig-
nificant. Fig. 7.15 shows the changes in the passband loss/
frequency response for the active resonator, when the value
for l/fT is altered by ¥ 50.0 % - note that the frequency

9

of resonance changes by approx. * 1.0 %.



7.2.2 REDUCING THE EFFECTS OF FT VARIATIONS

In this section we discuss how to design the
active resonator of Fig. 7.12 (d) so that the effects of

f variations on the loss/frequency response are reduced.

T

To achieve our objective we investigate the approach of
Iy(wy)
minimising the sensitivity S(l/(oR

for the S.B.I.
circuit B in the active resonator. The measure referred
to 1s the normalised differential sensitivity of the
imaginary part of the S.B.I’s impedance to l/Q)T R
calculated at the nominal resonance frequency (AR for the
I, (W)
resonator. To minimise S M R we can use
1/ wp)

the following approach.

In Section 5.4.1.2 we showed how to choose
the nominal passive component values for S.B.I. «circuit
B, so that we achieve the conditions ay = 0O and bl =0
for (5.16), and so that the parameter L in the S.B.I’s
impedance expression, see (7-4 ), is equal to a specified
value LN. We also pointed out that in this design procedure,
the values for Gl’ G2’ G4 and GS could be chosen arbitrarily.
We now describe how to choose the values for these conduct-

Ty(wg)
ances so that the sensitivity S is minimised.
1/ W)
For given values for the the amplifier parameters

& and fT, and for a specified value L we

N b
first of all choose an initial set of values for the

conductances Gl’ Gz, G4 and GS in the S.B.I. «circuit B.

Once these values are chosen , the values for GS’ G6 and



C are determined in the way described in Section 5.4.1.2.,

0
IM(O)R) . . .
and the sensitivity S is determined in the way
(1/ W)
described in Section 6.3.2.. A computer minimisation

routine is now used to find a new set of values for Gl’ GZ’

I m(wg)
G, and G so that the value for R becomes smaller,
and this procedure is repeated until a minimum for M R
S(1/w )

is found.

We made use of the above approach to redesign the
S.B.I. «circuit B in the active resonator of Fig. 7.12 (d).
In the computer minimisation routine we used a starting

value of 107 %% for G,, G., G, and G, and during the

12 722 4 5’

minimisation the values for these conductances were

constrained to lie between the limits G _._ = 10_%fand
s min IM(COR)
Gmax = 10 2, The minimum value achieved for S(l/(oT) was

0.00408?'and the passive component values corresponding

; = 0.59529 m¥, G, = 10.0 pu,

G, = 0.60305 m¥ , Gg = 10.0 p¥ , Gy = 9.96343 P& ,

to this minimum were: G

3.1761 nF. The nominal values

G, =0-717602 m¥ and C

6 0
for the parameters L, C and ¢ in the impedance expression

for the S.B.I. <circuit, see (7.13), were LR = 0.15915,

Cp = 330 . 107*% and v, = 5.18267 . 1077, and we obtained

1]

X 158.824 nF and RX = 2.0039 §& for the active resonator

in Fig. 7.12 (d). For comparison purposes the new component

C

values for the active resonator are shown in Table (c) of
Fig. 7.13 alongside our initial set of values in Table (a),

and the values for the ideal amplifier case shown in Table (b).

* The Si’artfnﬁ vale was o0-08



Fig. 7.16 shows the computed loss/frequency
response for the optimised resonator circuit, and the
computed effects of *# 50.0 % changes in l/fT on the
passband response are shown in Fig. 7.17. We find that
the loss/frequency behaviour for the optimised active
resonator is very similar to that for the original LC
resonator, i.e., see curve (b) in Fig. 7.14. Also, the

50.0 % changes in 1/f alter the frequency of resonance

T
by only approx. ¥ 0.1 %. This change is about a tenth of
the change shown in Fig. 7.15 for the non-optimised design
discussed in Section 7.2.1 (note that the horizontal

scales in Figs. 7.15 and 7.17 are different).



7.3 BANDPASS FILTER USING S.B.I. CIRCUIT B

In this section we have chosen the LC bandpass
filter in Fig. 7.18 as a basis for study. We discuss
how to realise this filter wusing S.B.I. «circuit B,
but in particular we will be concerned with designing the
active realisation so that the effects of fT variations
on its loss/frequency response are minimised. The LC

th . : ..
order, having five transmission

bandpass filter is 6
zeros at zero frequency and one zero at infinite frequency,
and its nominal 1loss/frequency behaviour is shown in

Fig. 7.19. Note that the passband frequency range for the
LC filter is from 9.75 kHz to 10.25 kHz, and the loss

variation in the passband is 0.5 dB. This is considered o
c\mlLev\%t'nﬂ desgn. For oo lomped element Lc filler an inductor
@ of appox Loo would be required .

7.3.1 DESIGN OF THE ACTIVE FILTER

To obtain the active filter we followed the
general design procedure described in Section 5.3.3.1,
and to minimise the effects of fT variations on the
loss/frequency response for the active filter we used
the same approach as for the active resonator circuit
of Section 7.2.2. That is, we chose the nominal passive

component values for the S.B.I.s in the active filter so
o I, (w)
M

that the sensitivity 8(1/<u for each S.B.I. circuit

)
was minimised at a chosen frequency. The minimisations
L(w)
M
(1/w )
frequencies for the grounded parallel LC resonators in

of S were carried out at the nominal resonance



the passive filter of Fig. 7.18, and in the computer

minimisation routine the values Gl’ GZ’ G4 and G5 for

the S.B.I. <circuit B were confined to the limits

= 10-33. For the amplifiers in the
-5

G . =10"°% and G
m

min ax

S.B.I. circuits we chose & = 10 and fT = 3.5 MHz.
The nominal passive component values that are obtained
for the S.B.I. circuits, are shown in Fig. 7.20. The
values for the parameters L, C and 7 associated
with each S.B.I’s impedance, see (7.13), are also
shown in Fig. 7.20. Note that the L values in Fig. 7.20
are idéntical, as all three inductors in the LC filter
of Fig. 7.18 have the same inductance value.

In the general design procedure of Section
5.3.3.1 it is necessary to have the same ¢ value for
all S.B.I.s 1in a filter. For our bandpass filter, however,

we find that the S.B.I. circuits have different values

for ¢ . This is because each S.B.I. had its sensitivity
I,(w)

SM
(1/w )

frequency of resonance for the appropriate LC resonator

minimised at a different frequency, namely, the

in the passive bandpass filter of Fig. 7.18. Nevertheless,
the ¢ values for the S.B.I. circuits are very similar,
as the LC resonators in Fig. 7.18 have similar resonance
frequencies, and we decided to use an average value of

T =9.09 . 10—8 in the remaining design steps of Section
5.3.3.1. The active bandpass filter that is obtained is
shown in Fig. 7.21, and the full set of component values

for this filter are shown in Fig. 7.22.



7.3.2 EXPERIMENTAL PROCEDURE

The active filter of Fig. 7.21 was constructed
using resistors and capacitors having values within about
1.0 % of the nominal values in Fig. 7.22. The amplifiers
used had a nominal finite gainbandwidth product of 3.5 MHz
with a tolerance of approx. * 10.0 %. To reduce the effects
of the passive component and fT tolerances we carried
out the following adjustment procedure, which is similar
to that for the active highpass filter example of Section 7.1.

First of all we adjusted the conductance G3 in
each S.B.I. «circuit until the D.C. resistance for the
S.B.I. was zero - this 1s equivalent to obtaining M = O
for the general impedance expression in (7.2). Then, the
remaining part of the adjustment procedure was to adjust
the conductances G6 and G5 in each S.B.I., so that the
resonators in the shunt arms of the bandpass filter had
the ideal impedances of infinity at their nominal
resonance frequencies. From the point of view of adjustment,
however, 1t 1s impractical to measure a very large impedance,
so instead the resonators were rearranged to form the
corresponding series resonator circuits shown in Fig. 7.23.
We then used each series resonator in the measuring setup
in

of Fig. 7.24 and iteratively adjusted GG and G5

OUT/VIN shown

in Fig. 7.24 was as large as possible at the nominal

the S.B.I. circuit until the 1loss IV

resonance frequency. This is equivalent to obtaining a



small impedance for the series resonator, or a large impedance
for the parallel resonator at resonance. After adjusting the
series resonators we reformed the parallel resonator circuits

and connected them to the bandpass filter.

7.3.3 COMPUTED AND MEASURED RESULTS

The computed loss/frequency response for the active bandpass

filter is shown in Figs 7.25 (a) and (b). We find that the

active filter has a passband response which is almost identical

to that shown in Fig 7.19 (a) for the original LC bandpass filter.
The stopband response for the active filter is also very similar to
that for the LC filter, see Fig 7.19 (b), except for very high
frequencies when they begin to differ. 1In a practical application

however, this small discrepancy would be insignificant.

The computed'effects of * 20.0 % variations in the fT values for

all three amplifiers in the active filter are shown in Fig 7.26 (a).
The shift in the centre frequency is only about I 10.0 Hz, ie

I 0.1% of the nominal centre, and the loss in the passband is

affected very little.

The measured loss/frequency response for the active bandpass filter
is shown in Figs 7.27 (a) and (b). These curves are very similar

to the computed curves in Figs 7.25 (a) and (b).

The dynamic range for the experimental filter was also investigated.
We found that the loss/frequency response for the filter

deterorated for passband output levels greater than approx 1.0 r.m.s.
Some measured noise levels for the filter are shown in Figs 7.28 (a)
and (b). These results are for measurement bandwidths of 100 and
1000 Hz respectively, and the curves are shown on a graph were

0.0 dB on the vertical scale represents the maximum passband

output level of l.OVr.m.s.



7.3.4 SENSITIVITY INVESTIGATION

To investigate the passive component sensitivities
for the active bandpass filter, we took the approach of
showing how the loss/frequency response changes, when the
passive component values are altered from their nominal
values - these curves are shown in Figs. 7.29 (a) to (c).
For comparison purposes similar curves for the original
LC bandpass filter are shown in Fig. 7.30.

The loss/frequency changes for the capacitors
in the active filter, see Fig. 7.29 (a), are practically
identical to those in Fig. 7.30 for the corresponding
capacltors and inductors in the original LC bandpass
filter. Also, the loss/frequency changes for RS and
RL in the active filter are very similar to those for
the LC filter case. In these respects the active filter
retains the low sensitivity features for the original
passive filter.

For the resistors in the S.B.I. <circuits at
the terminating ends of the active filter, we find that
the changes produced in the active filter’s loss/
frequency response are about the same as those for the
capacitors in these S.B.I. circuits, see Figs. 7.29 (b)
and (c). However , for the §S.B.I. circuit in the middle
of the active filter, we find that the resistance changes
affect the filter’s response significantly more than the
capacitance change for the S.B.I., see Figs. 7.29 (b) and

(a). The sensitivities of the loss to the resistors RC1 R



R R R and R are all very small as shown by the

C2?> “C3” C4 C5?
curves in Fig. 7.29 (c). The effects of fT variations
on the loss/frequency response for the active filter, have

already been investigated in Section 7.3.3.



CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 REVIEW OF THESIS

In Chapter 1 we outlined various approaches to
the design of active-RC filters. Of these approaches
the one we decided to explore in this thesis was the
'inductance simulation method', where the inductors in an
LC filter are replaced by simulated inductor circuits.
In particular we have been concerned with LC filters

where all the inductors are grounded, and where these

inductors are replaced by single-amplifier S.I. networks.

The approach of using simulated inductances has the
advantage that the active filter can retain some of the
good sensitivity features for the original LC filter.
For instance, the source and load resistors in the active
filter, and the capacitors in the active filter which
correspond to the capacitors in the LC filter, can all
have the same low sensitivities as for the LC filter.
The advantage of using single-amplifier S.I.s is
that the number of amplifiers for the active filter is
a minimum, however, a possible disadvantage is that the
components in the S.I. networks may introduce new
unacceptably large sensitivities for the active filter.
In Chapter 2 we reviewed all the single-
amplifier S.I. networks that have appeared 1in the

literature, and, for interest, we also reviewed the

SIS \



single-amplifier networks for simulating impedances of
the form Mpz, K/pz, pL + 1/pC, and R + K/pz. A useful
way of classifying these networks was to indicate how
many capacitors they contained, and also how many
coefficient and pole/zero <cancellations that are
required in their impedance expressions. This information
was shown in Fig. 2.15, and we found that the S.I.
circuit due to Orchard and Willson (26 ), and the
circuit due to Schmidt and Lee (27 ), both had only
one capacitor and needed the fewest number of
conditions required for inductance simulation, i.e.,
two coefficient cancellations each for their impedance
expressions. As these S.I.s contain only one
capacitor, they can be regarded as single-amplifier
immittance inverter circuits having port 2 terminated
by a capacitor. Henceforward, we were concerned with
single-amplifier S.I.s of this type, as the title of
the thesis indicates.

As alternatives to the O/W and S/L circuits,
some new single-amplifier, single-capacitor, S.I.
circuits were proposed in Chapter 3 - these networks
can also be regarded as single-amplifier immittance
inverters having port 2 terminated by a capacitor.
One of the new circuits, called S.I. «circuit A, has
the interesting feature that its inductance value can
be changed by altering the value of a single Tresistor,

without affecting the conditions required for lossless




inductance simulation; the other new circuits, and the
0/W and S/L circuits, do not possess this property.
Furthermorc, the inductance value can be varied over
a positive and negative range, and the circuit appears
suited to a straightforward adjustment procedure for
reducing the effects of passive component tolerances on
its impedance. Another new circuit, called S.I. circuit
B, uses only six resistors, and it has the interesting
feature that it ié a special case of S.I. «circuilt A.
Also, in Chapter 3, we investigated the general
effects of passive component tolerances on the impedance
for the single-amplifier, single-capacitor, S.I.s. One
way to describe these effects is by the model in
Fig. 3.9, which shows a resistance RX in series with
the parallel combination of an inductance L and a
resistance Ry. The interesting feature for this model
is that the passive component tolerances give rise to
frequency independent values for RX’ RY and L. We

also briefly investigated the general effects due to the

non-ideal voltage gain for the amplifier, and pointed

out that the impedance for the S.I.s becomes a
biquadratic in p. This is because each simulating
network contains a capacitor with a 15t order impedance
function, an amplifier whose voltage gain is assumed to

have a 1St

roll off, and no other elements with frequency
dependent characteristics.

In Chapter 4 we made a study of the new S.I.



circuit B. We showed how to choose the nominal passive
component values for this circuit, so that the effects of
component tolerances on its impedance were reduced.

To do this we made use of the model in Fig. 3.9 - note
that, for this model, RX is ideally zero, Ry is ideally
infinite, and L should be equal to the specified
inductance value LN' We derived expressions for the
worst case values for lRXI and lRY\, due to fractional
changes X for the conductances in the S.I. circuit B,
and we then showed how to minimise and maximise these
expressions accordingly, while still obtaining only small
changes in L for the conductance changes. This approach
is very interesting as it can be used for other single-
amplifier, single-capacitor, S.I. networks.

Also, in Chapter 4, we investigated how the
impedance for S.I. «circuit B is affected by the non-
ideal voltage gain for the amplifier. Expressions for the
L(w) and Q(w) behaviour due to the non-ideal gain
were derived, and we showed the behaviour for a typical
design for S.I. circuit B. We then showed how to choose
the nominal passive component values for the S.I. circuit,
so that the Q(w ) values were larger, and so that Q(w)
had its maximum value at a specified frequency. However,

a sensitivity study showed that the Q(w) behaviour is
very sensitive to changes in the resistance values for
S.I. circuit B, and we decided that the approach of

obtaining Q((u)maX at a specified frequency is unlikely



to be useful in practice. Although small changes in the
resistances produce large changes in the Q(w ) behaviour,
we pointed out that they may, nevertheless, produce much
smaller changes in the loss/frequency response for an
active filter containing the S.I. circuits B. 1In
Chapter 4 we also compared the S.I. «circuit B with
two other S.I. circuits, namely, the O/W circuit of
Section 2.2.4, and Antoniou’s two-amplifier «circuit
of Section 2.2.1. We found that these circuits had
similar L(w) and Q(w) behavioﬁr due to the non-
ideal voltage gain for their amplifiers, however, the
two-amplifier S.I. circuit has much better Q(w)
sensitivities to its Tesistance values, and this is one
reason why it is preferred to the other circuits, in some applications.
In Chapter 5 we described an interesting method
for overcoming the effects of the non-ideal amplifier
gain on the loss/frequency response of active filters that
contain single-amplifier, single-capacitor, S.I.s. We
pointed out that single-amplifier, single-capacitor, S.I.s
can have the impedance of a lossless inductance only if
the amplifiers in the circuits are considered ideal.
When the non-ideal voltage gain for the amplifiers is
taken into consideration, the impedance for the simulating
networks becomes a biquadratic expression in p, and only
approximates the impedance of an ideal inductance over a
limited frequency range. Taking the non-ideal amplifier

gain into consideration, we deliberately redesigned the




simulating networks to have a biquadratic impedance of

the form

pL(1 + p?7)

1 + p’LC

and we referred to circuits having this type of impedance
as 1ideal "S.B.I.s", where S.B.I. 1is an abbreviation for
Simulated Biquadratic Impedance. We then showed how
various types of LC highpass and bandpass filters, with
their terminating resistors, can be modified so as to
produce the required loss/frequency response using the
S.B.I. «circuits instead of the originally required inductors.
An advantage of the approach described in Chapter
5 1s that the non-ideal voltage gain for the amplifiers
is taken into consideration in the design of the active
filter. For bandpass filters using the S.B.I. circuits,
the passband loss/frequency response is correct at the
frequencies of maximum power transfer for the original LC
filter. The response at other frequencies can be incorrect
but a high degree of compensation for the non-ideal voltage
gain of the amplifiers may still be achieved. For highpass
filters complete compensation for the non-ideal voltage
gain can be obtained over the entire frequency range in
which the gain of the amplifier can be adequately described
by a single-pole model. Even in the case of two-amplifier
S.I.s this has not been achieved, as these circuits are

usually designed to offer compensation for the non-ideal



voltage gain only in the neighbourhood of a particular
frequency. A disadvantage of the new filter design method,
when compared with the method of directly replacing the
inductors in an LC filter by S.I. «circuits, is that
additional capacitors are required for the highpass filter
case. However, as mentioned in Chapter 5, it may be
possible to reduce the number of additional capacitors to
only one regardless of the order of the filter.

In Chapter 6 we described some sensitivity features
for active filters that use S.B.I. <circuits. We pointed
out that both highpass and bandpass filters that use S.B.I.s
can be considered as being derived from LC filters having
parallel RC terminations. We briefly investigated the
sensitivity properties for filters of this type, and showed
that they can be significantly more sensitive than LC
filters having purely resistive terminations. However, we
suggested that their sensitivities might approach those
for purely resistively terminated LC filters, as the
time constant RSCS for the source impedance jg chosen
to be smaller. In Chapter 6 we also investigated the
effects of fT variations on the real and imaginary parts
of the impedance for the S.B.I. «circuits. General
expressions for the 15 order normalised differential

. Iy(w) Rp (@) .
sensitivities S(l/a)T) and s(l/CUT) were derived, and
we showed, in particular, how to calculate these sensit-

ivities for the S.B.I. circuit B.



In Chapter 7 we described some active-RC filters
that used S.B.I. circuits. One filter example we described

was a 5th

order Cauer type highpass filter that contained
the S.B.I. circuits B described in Section 5.4.1. The
resistance values for the S.B.I. <circuits B were chosen
so that we could carry out an adjustment procedure, for
overcoming the effects of component tolerances on the loss/
frequency response for the practical filter. The computed
loss/frequency behaviour precisely met the original
specification, and the measured response was very similar
to the computed response. We also carried out a sensitivity
study for the active filter, and found that the passive
component sensitivities were significantly larger than
those for a low sensitivity LC filter. However, the
sensitivities may still be acceptably 1low for some
applications, and it may also be possible to redesign the
active highpass filter to have better sensitivities.

Also, in Chapter 7, we were concerned with
minimising the effects of fT variations on the loss/
frequency response for active filters that use S.B.TI.
circuits. As an example for study we investigated how
to reduce these effects on the loss/frequency response
for an active-RC resonator circuit that contained the
S.B.I. «circuit B. We pointed out that in the design
procedure for the S.B.I. circuit B, see Section 5.4.1,

the values for the conductances Gl’ GZ’ G4 and GS could

be chosen arbitrarily. To achieve our objective we chose



Iy(w)

these conductance values so that the sensitivity S(l/u) ,

)
for the S.B.I’s impedance, was minimised at the nominalT
resonance frequency for the active resonator. The effects
of fT variations on the-resonator’s loss were then so
small that we regarded this approach as successful.

Another filter example described in Chapter 7,
was a éth order bandpass filter again using the S.B.I.
circuits B. To reduce the effects of fT variations on
the filter’s loss, we designed the S.B.I. circuits so

Iy(w)

that their sensitivities S(l/a) were minimised at

)
the nominal resonance frequencieg for the parallel LC
resonators in the original LC filter. We also described
an adjustment procedure for the practical filter, for
reducing the effects of component tolerances on the
measured loss/frequency behaviour. The computed 1loss/
frequency response for the active filter was almost
identical to that for the original LC bandpass filter,
and the response for the practical filter was also very
similar. We carriled out a sensitivity study for the active
filter and showed that the 1loss has, indeed, a low
sensitivity to fT. The sensitivities of the active filter’s
loss to its capacitance values, were practically identical
to the capacitance and inductance sensitivities for the
original LC Dbandpass filter. Also, we obtained low
sensitivities for the resistors in the S.B.I. circuits at
the terminating ends of the active filter. The resistance

sensitivities,for the remaining S.B.I. <circuit, were larger

but may well be acceptable for some filter applications.



8.2 RECENT DEVELOPMENTS

An exciting recent development has been the
discovery of a new single-amplifier, single-capacitor, S.I.
circuit, that requires only one coefficient cancellation
in its impedance expression. The new S.I. circuit is
derived from the Cheng/Lim network of Section 2.4.1,
which simulates the impedance of a grounded series LC
resonator. For this reason we briefly describe Cheng
and Lims circuit once again here.

The Cheng/Lim simulation network is shown in

Fig. 8.1 and, assuming an ideal amplifier, it has an

impedance
Ay + App + Azpz
7 = (8.1)
Blp
where
Ag = G6,65(6g + Gy)
Ay = CgGg(Gy + Gg) + Cy(6,65 + GG, - G;Gg)
(8.2)
+ C46,65R, (Gg + Gy) + CyG,GyRg(Gy + Gg)
Ay = C4CeGsR, (G, + Gg)
B1 = C4GZG7(G1 + G3) note : Gi = l/Ri



To obtain an impedance Z = pLR + 1/pCR the coefficient

0 1is needed so that (8.1) becomes

il

cancellation A

1
AO + Azp2
7 = — (8.3)
Blp
We then have LR = AZ/Bl and CR = Bl/AO - note that

the conditions AZ/B1 > 0 and Bl/AO > 0 are needed
for LR and CR to be positive.

By merely shortcircuiting the capacitor C4 in
Cheng and Lims’ simulation network we obtain the new S.I.
circuit shown in Fig. 8.2. The impedance for the new

circuit can be found by letting C4-+ oo in (8.1), i.e.,

we obtain

A+ Ap
7 = o "1 (8.4)
By
where
Ag = GuGz * GyGy - GGy + GyG5R,(Gg + G)
+ G6,Rg(6) + Gg)
_ (8.5)
Ay C4R, G5 (6, + G)
B, = G,6.,(G, + G)

n

For lossless inductance simulation the condition AO 0



must hold. From the expression for AO in (8.5) we find

that this condition can be satisfied by choosing G1 as

GZ(GS + G7 + R4GSG5 + R4G3G7 + R8G3G7)

Gg - RgG,G,

Gl =

(8.6)

Note that the inequality G, > R8G G must hold for (8.6)

5 277
if the value for G1 is to be positive. A very simple
way to satify this inequality is to choose R8 =0, i.e.,
we replace the resistor R8 in Fig. 8.2 by a short-

circuit. The inductance value for the new S.I. <circuit
is given by the relationship L = Al/BO . Making use of

the expressions for A1 and BO in (8.5) we obtain

C.R,G,(G, + G.)
Lo C6ReB3(6y * G (5.7)
G,G6,(Gy + G3)

When the expression for G1 in (8.6) 1s substituted

into (8.7) we obtain

C.R,G.(G, + G.) (G. - R.G.G.)
L - 643472 7 gl g T Bghoby (8.8)

G,G { GS(GS - R,G,G,) + G,G, + G,G, + R,G.G,G. + R,G,G,G }

277 8277 273 277 4727375 4727377

Once again, if the inequality G5 > R8G2G7 holds, then

the inductance value L will be positive. One set of

component values which satisfy the condition AO =0 to



give L = 100 mH is : R1 = 2.5 k& , R2 = R3 = R4 = R5 =

R, = 10.0 k& , Rg =0 , and C¢ = 2.5 nF.

The expression in (8.7) shows that the inductance
value L 1is independent of the value for R8. To overcome
the effects of passive component tolerances on the impedance
for the new S.I. <circuit, we might therefore adjust
anyone of the conductances G1 to G7 to ensure that L

is equal to the desired inductance value L and then

N’

adjust R so that the coefficient A in (8.5) was

8 0
zero. This last adjustment will not affect the inductance
value.

The new S.I. circuit is very interesting as it
requires only one coefficient cancellation in its impedance
expression. Previous single-amplifier S.I. circuilts have
required at least two coefficient cancellations, as shown
by the Table in Fig. 2.15. When the Table in Fig. 2.15
is updated to include the new S.I. <circuit, we obtailn
the new Table shown in Fig. 8.3. Further additions to

this Table have not been investigated owing to lack of

time.

¥



8.3 SUGGESTIONS FOR FURTHER WORK

(a) Active filters that use S.I. «circuits A

In theory the S.I. circuit A, described in
Section 3.2.1, has the advantage over other single-
amplifier S.I.s, that it is suited to a functional
adjustment procedure for overcoming the effects of passive
component tolerances on its impedance. It would be
worthwhile investigating this adjustment procedure in
practice, and also investigating how we could make use of
the adjustment procedure to reduce the effects of passive

component tolerances on the loss/frequency response for

active filters that contained the S.I. <circuits A.

(b) Reducing the effects of component tolerances

on the impedance for S.I. circuit A

In Section 4.2.2 we showed how to choose the

nominal passive component values for S.I. circuit B so

that the effects of passive component tolerances on the
impedance were reduced. It would also be worthwhile
investigating how to reduce the effects of passive component

tolerances on the impedance for S.I. circuit A . Even

though the S.I. circuit A is suited to a functional
adjustment procedure for overcoming the effects of component
tolerances, the above objective is still worthwhile as

it reduces the effects of post adjustment variations on

the impedance for S.I. «circuit A. Such post adjustment

[ I



variations might be due to ageing of the components, or to

environmental changes such as temperature fluctuations.

(c) Sensitivity investigations for active filters

that contain the S.I. circuits B

It would be interesting to investigate the
sensitivity features for an active filter that contained
the S.I. circuits B, and where these S.I.s are designed
in the way described in Section 4.2.2, so that the effects
of of passive component tolerances on their impedances are
reduced. In particular, it would be interesting to determine
whether the sensitivities of the filter’s loss to the
passive components in the S.I. circuits B were reduced
as a result of designing the S.I.s in the way described
above. If so, we might use the same approach to reduce
the sensitivities for active filters containing the S.I.

circuits A.

(d) Active filters using the S.I. circuit described

in Section 8.2

Assuming an ideal amplifier, the new S.I. circuit
described in Section 8.2 mneeds only one coefficient
cancellation for its impedance expression and, in theory, the
effects of passive component tolerances on its impedance
can be overcome by adjusting the values for just two

resistors in the circuit. Further useful work might be to



investigate the effects of the non-ideal voltage gain of
the amplifier on the impedance, to investigate practical
adjustment procedures for the circuit, and to explore the

use of the circuit in active-RC filter design.

(e) Reducing the passive component sensitivities for

active filters that contain the S.B.I. circuits B

In the design procedure for S.B.I. circuit B,
described in Section 5.4.1, we pointed out that the
G

values for the conductances G G, and G5 could be

12 722 74

chosen arbitrarily. In Sections 7.2.2 and 7.3.1 we
used these degrees of freedom to minimise the effects of
fT variations on the loss/frequency response for active
filters that contained the S.B.I. circuits B. It
would be interesting to explore how the degrees of freedom

might, instead, be used to minimise the passive component

sensitivities for the active filters.

(£) Active filters using the S.B.I. circuits A

We might investigate how to minimise the passive
component sensitivities for active filters that used the
S.B.I. circuit A described previously in Section 5.4.2,
and we might also explore how to adjust the resistances
for these S.B.I. circuits so as to reduce the effects
of passive component tolerances on the loss/frequency

response for the active filters. It may also be worthwhile



investigating how to minimise the effects of £, variations

T
on the loss/frequency response for the active filters.
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‘
circuit no. of no. of coeff. |pole/zero !
amps. capacitors | cancells, | cancells.
Saraga ( pL ) 1 3 2 1
Sipress ( pL ) 1 2 ? 2 1
Orchard/Willson (pL) 1 1 2 0]
Schmidt/Lee ( pL ) 1 1 2 0
Cheng/Lim (pL+1/pC) 1 2 1 0
Two-amp. circuit (pL) 2 1 0 o] i
. 2
Schmidt/Lee (Mp“) 1 2 b 0
Schmidt/Lee (K/pa) 1 2 3 0
2
Saraga (K/p7) 1 3 2 1
Schmidt/Lee (R+K/p2) 1 2 2 0
Cheng/Lim  (R+K/p°) 1 2 1 0
Two-amp. circuit %Q,Mpf 2 2 0 0
Fig. 2.15. Number of amplifiers , capacitors , coefficient and

pole/zero ‘cancellations required by the simulation networks.
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comp- o
onent value | change RX (Q) RY(M&) % L
Ry 10 k |+ 1 % t 25 co Y 0.75
Ron 5 k& " : 50 7 0.5 + 1.5
Rz |10 k& " t 50 + 1.0 | + 0.5
R4N 10 kQ " 7 50 7 0.5 0
RSN 10 k8 " t 25 t+ 0.5 ¥ 0.5
Ren 10 k& " 0 + 1.0 t .75
CON 4 nF " 0 2 + 1.0

4.1 Typical effects of component tolerances
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Fig. 4.2 Worst possible lQ@u)lbehaViour:

due to 1 % passive component tolerances ;




comp-

onent value |change Rx ) RY(M&) $ L
Ry 1 ka T1% |t 3.32 0o t0.67
R,y [99-01k2 " 7 3.36 137 9.9 | 101
Ryy {100 k& " t 3.36 |t 1000 | ;.0066
Ryx 1 k8 " 7 3.36 |3 10 $0.33
Rey 100 k& " t0.033 |+ 9.9 | 1.0066
Ren | 1 k& " o {*10 |*0.67
Con |332-29F } 0 oo 1.0

Fig. 4.3 Effects of component

tolerances for improved design
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COMPONENT VALUE COMPONENT VALVE
R, [-61304 RS R, ) 2-0 k&
Ry 0-8443 Ry -0
Rq 2-0 n R 2.0
Ry 2-0 " Ry L:0 "
Rsg 2-0 " Rs 2:0 0+
Rg [-61804 = R 2.0
Co /61-803 nF Co Joo nF
Table (b) - values for improving the

Table (a) - initial choice for

1Q (W) ?Shﬁi}???”dufwto finite mew the passive component values

Fig. 4.5 Passive component values for S.I. «circuit B
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component valve
R, /-6%75 k82
R2 0.909311 "
Ra 2-0332.8
Ry 2,-03328 «
Rs 2-03328 -
Rg /64496 +
Co 156-55 oF

Fig. 4.8 Passive component values

for obtaining Q@u)max at 1.0 kHz
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valves
Com)oonem:‘ U -5 O o0
R, 64496 kS| [-08743 kK| 1-0/536 ko | 0-947192 k&
R2 0:909211 » | 4-57501 « |9-2657 n | 93-7845 o«
R 203328 « | A-77057 « | 10-4778 | 95-0327
Ry 203328 v | [-154I] | 1-04778 | 0-950327
Rs 203328 | 5-77057 | j0-4778 « | 95-0327
Re 64496 | [-08743 « | [-0/536 ¢ | 0947192 *
Co I56.55 nF | 55-0506 nF| 30-3795 nF| 3.366 nF
e || 27236 5.307 j0-32 | 100-3
spread  Factor =  Rmax/Rmin Ly = loo mH
for amphfier gain : & =10 and fr = 108 Ha fop = 10 k Hz

Fig. 4.12 Passive component values for different values for m
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Change in change in
component comp. value [ ) at 1-0 KHz
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component | valve N
R, 0'352;5?;;2—
Ra 3./7301 ¥
Ry 3-17301 «
Ry 28-5571
Rsg 31.730] "
Re 0317301 ”
Co 9-933 nF

Table (a) - values for

the O/W

S.I. «circuit

Fig. 4.19

component | valve
R, 628319 &
R, 628:319 »
R3 62.8:3/9
Ry 62.8-319 v
Co 0-2533 MF

Table (b) - values for the

component valve

Tw==R, 0-qu7192 K-Jj
R, 93-7845
R3 95-0327 v
Ry 0-950327
Rs 95-0327 *
Rg 0-947192
Co 3.366 nF

two-amplifier S.I. circuit

Table (c) - values for

the SiI'm ;ircp}p-rB_

Passive component values for the S.I. circuits
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ix’

Fig. 6.1 Resistively terminated LC filter %

o

A —
R G 4 (03 = 5
S CZ fo § R
L, Ly, L
ome” value

Re | [-0000 K&

Ry |1-0000 «
C, | 01703 pF
Ca | 05660
Cag (O0-1118 @
Cy |O-1705 u

Cs |0-2733 «
L, |o-1453 H
L, |0-2407 =

Fig. 6.2 Highpass filter example f
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Loss/frequency behaviour for highpass filter
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; Fig. 6.6 |
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| I Il -
°—-——“'___*+___ I " i
Cs T G

come: | valve
Rg | 1-0000 ma
R, |o0-6779 =
Cg |15-915 ~nF
CL | 20370
C; | 96-096 =
Cp | 0-6408 NMF
Cy |O0-I141q
Cy |O0-1919 ¥
Ce | 1-3626
L, | 01285 H
Lo [ 02141 =

Fig. 6.7 "~ Highpass filter with parallel

RC terminations
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Design of the active highpass filter :




vl valve ner valve e value | ﬁ'_i_t_;: valves
Rs }1-00000 9 Rg | 2-0000 ka Rs | 200000 K& Rs | 2:0000 K&
RL {o6779 =« Ry | )-3588 = RL | 1.3558 = RL | 1-5760 =
Ls 1o 0000 H Ls | 1591-55 mH Cg | 3-97887 nF Cs | 3-97837 nF
L | 781320 Ly | r243.51  w C. | %0925 cl | 392:9¢ pF
Ly §1-65622 o L1 | 263.595 =« Ce | 240239 » Ct | 24.0239 nF
Lo, 10248369 « Lo, | 39.5202 = Ca, |60:20 C'g l62-330 v
L3 | rinisqq Ly | 175508 Cz | 35-475 Cy | 33264
Ly 1o- 529364 « Ly | /37-997% Cy | #7-975 v Co | lele-toim »
Le | o0.-176803 * Ls | /8 5897 + Cs 340:65 v C’_c, 297-j06 "
Ca | 1-23819 F Ca | #9-2662 nF Ly | 128-538 mH Ce | 21485
Ce | 0743552 « Ce | 29.5850 = bg | 214047 Cz | 21485 -

@) O) (o) Uy | 125-202 mt
s | 220319

Fig. 7.2 Passive component values for the LC filters of Fig. 7.1
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() (b

g‘;’:ri:_t’ values
Ry -203 Kk&| 2-117 K&
Rs, (20-3 « | 20T ¥
Rs 1218 | 2144 "

R [-203 < | 2-1l7 *
Rs 92:53 *| l62-8 =
Re 203 | 2-n7 -
Co 2569 «oF| |.460 nF

note for amplifiers : @ = 10 ° fT= 1 MHz

L 12.5.202. mH| 220-3196 mH

C o4 787 pF| h24-5437 pF

T 3197139 xt6 | 3-197139x,5"

Fig. 7.3 (a) Component values for the S.B.I. circuits

(b L, C and T values associated with

the impedances for the S.B.I.s




Rs
R Ci Res 1 €2 Res e
I Wy | % I
Res lcs SRe S Rew
RG& Rgg SRCL
Con| 7 SR T =R <
0A Cog R
L
P‘C6 *{ R% RC7$ Rap Rup
Tt Tt ==CL
C
Cg =— 7_____.
2R, = %R 2
2A R‘Sﬂ 2B Rsa
=
Fig. 7. 41_,(0) Active. hlyL}lpass fil_i;ermuiingm S_BI c1rcu1ts _B



|_component valve
Rs 2-000 KR
RL 1-576 '
Ci 2402  nF
C2, 1623
Ca 3336 u
Cy b4:46  »
Cs 297-1 "
Con 2.+569 ¢
Ria 1-2.03 K&
Raa 1203  «
R3a 121-8  «
Rua 1-2.03 *
Rsa 92-53 n
Rsa 1:203 u
Cos 1-460 nF
Ris 2-117 K&
Ras 2.141-7 "
Rag 214k
Rug 2147 =
R53 1628 u
Reg 2147
Cs 3.819 nF
Ce 1-T44
Cr 1-919 "
CL 0-1901 «
Res 83T &
Rey 13321 w
Rez 1-970 w
_ Res 9-583
Ret- T-191
Res 1:076
Rc& 183‘3 M
Rer 166-6 =«
ReL 1:682 K&

for amplifle}:s: & = ‘0-5

fr = 1-0 Muz

Fig. 7.4-(b) Component values'

for active highpass filter °
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Fig. 7.9 Low sensitivity LC
highpass filter example
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Fig. 7.10 (a)  Sensitivity investigation for LC highpass filter
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Fig. 7.12 =~ Active resonator circuit using S.B.I. circuit B




oo by value Pl valve Gomp= value
R | 10-0000 k& Rs | 100000 K= | T Rs | 10-0000 k&
Ry {0-0000 " R1 10-0000 " R4 {-67985 n
Rz | 10-0000 Ry 10-0000 R, | to0-000
Rs 19.9992, ¢ Ra 2.0+0000 " Rg 100-367
R {0-0000 v Ry {0-0000 = Ry {+65824
Rs 10+0000 n Rs {0+0000 u Rs {00-000 ’
Re 8+ 4182 n Re 2.0-0000 g Re¢ 139353 '
Rex | 2-8995 % R cx 0 Rex | 2:0039
Co | 20203 nF Co | 198938 nF Co | 3761  aF
Cx 0-15903 pF Cx H 0-15915 pF Cx 0+158824 pF
(a) (b) )

Fig. 7.13 Passive component values for active resonator circuit
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Wy I |
— %L —— §LB == @ R
component valve component value

Rg 30-0000 K& Cut 640-068 pF
R 30-0000 # Cs (63113 nF
C |6.3113 nF LA I4-.q60% mH
Co, 64-0.068 pF Lg |4.9604
Ca |5+6826 nF ¢ |y -960% n
Fig. 7.18 LC bandpass filter and component values
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7.19 Loss/frequency behaviour for passive LC bandpass filter




associated with the

I (w)

frequency at which Sl/wT

was minimised

/o0 -/884

component values for

the S.B.I. «circuits

C and 77U values

impedance for the S.B.I.s

10-390 6 Kitz| /10.7884 KHz
R, || 1-99920 x& | 2-03860 K&| 1-99920 K&
R, | 100-000 | j00-000 v | 100-000
Ry | tor-ttz  w | 101+133 | loi-liz *
Ry | 1-98190 = 2.02061 | 1-98/90 "
Re | 100-000 100:000 " | 100-000
Re | 1-23w26 o | 1-25849  « | 123426
Co 310-538 pF | 30%-426 pF| 3j0-598 pF
L 0-0149604 H [ 0-0/4960% | O0-014q604
C 98- 5319 PF | 96.4731 oF| 98-532 oF

9.09/9 %68 | 90918  xi5T 9-0919 x1o~8

note for amplifiers : & = 10

Fig. 7.20

-5

5‘1 = 3.5 Miz

Component values for the S.B.I.s in the active bandpass filter




for amplifiers : =107, fr=35 MHz

Fig. 7.21 and 7.22

Active bandpass filter and component values

Rea Cy, Rew C
w W—i| A—
Rs
_[Coa %RGR | Cos Res §R|8 Coc Rec §R
RCI $ R Ria % RlA chg T Ryp RC5$ T Ry '
3R Rag R;c §R
L
aT 3 R SRsn  Cy | TRy IRep,  C5 | 3Ry TRsc
component value " " n " " n
— —— e e ———
Rg ,RL | 30-0000 K& Rap 100:000 k& Ruc | 1-98229 k& Ci 16-2159 nF
Ria I-99920 o Rag 101-133 Rse 100:000 * Ca, 640.068 pF
Rz2a loo.000 Ryp 202061 Rec |+23452, Ca 15.5860 nF
Ran | lol-tiz Rsg 100:000 ¥ Rey 5.60677 Cy 640-068 pF
Ruya | 1-98190 = Res | 125849 Rea | Iun-046 o Cs 16-2097 nF
Rsa 100-000 ¥ Rie 1-99960 Res 5.83337 » Con | 310.538 pF
Rea [-23426 Rac j00-000 Rew 142046 Cos 304 426
Rig 2403860 * Rac loj-nz » Res | 5-60892 Coc | 310479 =



Fig. 7.23 Series resonator circuits for adjustment purposes
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Fig. 8.1 Cheng/Lim circuit ( Z = pL + 1/pC )
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circuit arhp§?f i r.l;ps?f‘ | ngﬁic‘alls.} p?:iﬁééﬁg'

SM:;_: <;L) K 3 2 | 1|
Sipress (pL) 1 2 4 1
Orchacd/Willson (pL) 1 1 A o
Schmidt/Lee (pL) { { 2 o
Cheag/Lim (pL+/pd| 1 2 1 o
Two —amp. ( pL) 2 1 0 o

New S.T. circut (pL) 1 1 { @)
Schmidt /Lee  (Mp2) 1 2 4 o
Schmidt /Lee  ( K/p¥) 1 2. 3 o
Saraga (K/p?) 1 3 2

Schamidt/Lee (R+K/p?) 1 2 2 o
Cheng /Lim (R +K/p¥) ] 2 1 o
Two-amp. (Kp¥, Mp?) 2. 2 0 o)

Fig. 8.3
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