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ABSTRACT

Classically, low frequency filters have been realised 
as a network of lumped element inductors and capacitors 
inserted between resistive source and load impedances. 
These LC filters, however, are unsuited to modern 
microelectronic technology as inductors of suitable 
value and quality factor cannot be realised in this 
way. Since microelectronic circuits have very 
desirable features such as small size and weight, and 
potential low cost, alternative designs using active 
units, resistors and capacitors have been advanced.
Some important objectives in the design of active-RC 
filters are to produce circuits whose responses are 
relatively insensitive to changes in component values, 
and to reduce the DC power consumption caused by the 
inclusion of active units. Another objective might 
be to compensate for the effects of imperfections in 
the active units used. In this thesis we investigate 
active-RC filters which achieve the above objects in 
the following way.

The active-RC filter is designed to simulate a suitably 
designed LC filter, in such a way that the inherently 
low sensitivity of the LC network- is retained. This is' 
achieved by replacing the inductors in the LC filter by 
active-RC networks which simulate the inductive 
impedances. To minimise power consumption in the filter 
we are concerned with simulated inductance circuits 
which use a minimum number of active units. Some new 
networks for simulating a grounded inductance are 
proposed which contain only a single operational 
amplifier. A novel way of compensating the active-RC 
filter for the effects of non-ideal amplifier gain is 
also presented.
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ABBREVIATIONS

S. I. - Simulated Inductor
N.I.C. - Negative Impedance Converter
P.I.C. - Positive Impedance Converter
F.D.N.R. - Frequency Dependent Negative Resistor
S.B.I. - Simulated Biquadratic Impedance
S. A. - Single Amplifier
S.C. - Single Capacitor
C/L - Cheng/Lim
O/W - Orchard/Wilson
S/L - Schmidt/Lee
L, ^( u j )

- Inductance (frequency dependent)

Q (o>) - Quality factor (frequency dependent)
R . . E(Ĉ ) - Real Part of Impedance

IM(^ ) - Imaginary Part of Impedance
w . c. - Worst Case
R.H.S. - Right Hand Side
F - Farads
H - Henries
SI - Ohms

15 - Mhos
D.C. - Direct Current
P - Laplace transform
f T - Gain/Bandwidth Product for Amplifier
<X - Inverse of D.C. gain of Amplifier

P - Amplifier Gain
r . m . s . - Root Mean Square
w . r . t. - With Respect to
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CHAPTER I

INTRODUCTION

1.1 PRELIMINARY CONSIDERATIONS

An electrical filter is best defined using the 

frequency domain description for electrical signals and 

networks. In this domain a 2-port network is described 

by its transfer function T(p) which is defined as the ratio 

of the response of the network measured at one port, and 

the input excitation at the other port. The response and 

input excitation can be either current or voltage signals 

I(p) and V(p) where p is the complex frequency variable.

A filter can now be defined as a 2-port network which passes 

electrical signals in a certain portion of the frequency 

spectrum and blocks signals in the remainder of the spectrum 

By "blocking" we mean that the magnitude response |T(j6j)| 

of the filter is approximately zero for that frequency range 

In applications that require frequency selective networks, 

it is usual to first of all determine the transfer function 

T(p) which meets the particular requirements. The problem, 

then, is to find a suitable practical filter network that 

can realise this function.

The classical approach to filter design is to 

realise the transfer function T(p) by a passive circuit 

consisting of a network of inductors and capacitors inserted 

between a resistive source and a resistive load. This type



of filter is generally referred to as an LC filter. Due to 

manufactoring tolerances and ageing , the values of the components 

in an LC filter will not be exactly equal to the nominal values and 

this causes the response of the filter to deviate from the 

required characteristic. LC filters have the feature that 

the sensitivity of their response to changes in the 

component values can be low (1) and this makes these circuits 

particularly attractive in practice.

LC filters, however, are not suited to modern 

microelectronic technology. Although resistors and 

capacitors can easily be realised in microelectronic form, 

inductors of sufficiently high quality factor and inductance 

value cannot be realised in this way. It is not possible 

to use networks having resistors and capacitors only because 

the transfer function of an RC network can have poles only 

on the negative real p axis, whereas for efficient filter 

design transfer functions with complex conjugate poles are 

required. Since microelectronic circuits have

very desirable features such as small size and weight, 

potentially low cost, and increased reliability, alternative 

approaches to the synthesis of filters have been advanced.

A modern approach to filter design is to realise 

the transfer function T(p) by an active -RC network; i.e. 

a network consisting of resistors, capacitors, and active 

units, namely, operational amplifiers and/or transistors 

( recently another active unit has been proposed , i.e. , 

the current conveyor (2,3) ). These components are all



suited to miniaturisation and microelectronic realisation 

becomes possible.

Unfortunately, filters realised using active- RC 

networks were soon found not to possess the good sensitivity 

properties of their LC predecessors and the sensitivity 

aspects of the various synthesis methods became a major 

consideration in deciding the merits of the different 

methods.

Also, unlike LC filters, active -RC filters require 

power supplies for the correct operation of the active units. 

Not only are the active units generally the most expensive 

components in the filter but the cost of the power supplies 

can also be an important factor. To reduce these costs 

it is desirable that the number of active units in the 

filters is as small as possible.

Another reason for reducing the number of active 

units is that less heat is dissipated in the filters. The 

active units generate most of the heat in the active filters 

and this can affect the response. When the filter is built 

as a discrete component model the heat generated can easily 

be dissipated into the surroundings and the behaviour of 

the filter is not much affected. However, when the filter 

is realised microelectronically, and many of these filters 

are grouped together, the dissipation of heat becomes a 

problem. Fans to cool the filters may be required and this 

increases the overall cost and size.

lu-



Many synthesis methods for active -RC filters 
have appeared in the literature over the years, and a short 
survey of some of these methods will be presented in sections
1.2 and 1.3. The sensitivity aspects of the various methods, 
and the number of amplifiers that are required, are considered 
to be particularly important and will be outlined in the 
survey. After the survey we will then discuss in detail
the approach to filter design taken in this thesis; this is 
done in Section 1.4. Finally, in Section 1.5, we state our 
specific aims and give an outline of the thesis.

1.2 SURVEY OF ACTIVE -RC FILTERS

The first general methods proposed for the 
realisation of active -RC filters were based on the use of 
only one active unit. Linvill in 1954 (4) showed that 
any arbitrary transfer function can be realsied using a 
negative impedance converter (N.I.C.), the active unit, 
embedded between two passive RC two-ports as shown in Fig.1.1. 
Other synthesis methods using a single active unit have 
also appeared in the literature, for instance?the methods 
proposed by Yanagisawa (5) and Mitra (6).

It was soon found, however, that these single 
active-unit networks were unsuitable for the realisation 
of high order filters (i.e., of degree > 2 or 3) as the 
sensitivity of the response of the filter to changes in the 
component values was found to be very large (7), and the

*An N.I.C. is a 2-port which when terminated at one of the ports 
in an impedance z gives rise to an impedance -KZ at the other port, 
where K is a positive constant.



The inability of the single active unit networks to realise 
practical filters led to the exploration of alternative 
methods for the synthesis of active-RC filters.

Perhaps the earliest successful approach to the 
design of active-RC filters that produced filters with 
acceptable sensitivities was the "cascade method". In this 
method the required transfer function T (p) is factorised 
into 2nd order factors which have complex conjugate poles, 
and a factor containing any real poles that may occur.
Each 2nd order factor is realised as the voltage transfer 
function of an active-RC 2-port, and the factor containing 
the real poles can in general be realised by a passive RC
2-port* The active -RC filter is then obtained by cascading 
the individual 2-ports as shown in Fig.1.2. Many active 
-RC circuits, using a single amplifier, that realise 2nd 
order sections have been proposed (8) and extensive study 
has shown that filters can be realised that have 
sensitivity features acceptable for many applications 
(9,10,11). Some two-amplifier networks
for realising 2nd order sections have also been proposed
(12 ).

Although filters with cascaded sections can have 
acceptable sensitivity properties, they suffer from the 
inherent disadvantage that the sensitivity of the filters’
responses, to changes in the resonance frequencies of the 
sections, can be very large, particularly when the required

c i r c u i t s  w e r e  t o t a l l y  u n s u i t e d  to p r a c t i c a l  a p p l i c a t i o n .
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someQ-values for the sections are large. For 
specifications the cascade approach to filter design can 
therefore be unacceptable.

In 1966 Orchard (1) suggested a possible solution 
to the sensitivity problem in active-RC filter design that 
has since been found to be very satisfactory. Rather 
than directly designing the active-RC filter to realise 
the transfer function T(p) Orchard proposes, instead, 
designing the active filter from a low sensitivity LC filter 
having that transfer function. The active filter is 
obtained by retaining the capacitors and terminating 
resistors of the LC filter, and using active-RC networks 
to simulate the inductors. In this way he suggests that 
it might be possible to obtain an active filter that
retains the low sensitivity properties of the original LC 
filter. Orchard also points out that a suitable LC filter 
to start from is one whose loss/frequency response,in the 
passband,contains points at which maximum possible transfer 
of power takes place from source to load. He shows that, 
at these frequencies7the 1st order differential sensitivities 
of the loss to the reactive component values are zero, and he 
also suggests that these sensitivities are low throughout 
the passband. Various other simulations methods stemming 
from Orchard's approach have since been proposed and 
intensively studied in recent years; a short survey of these 
simulation methods will be given later in Section 1.3.



Another approach to filter design , which has 
recently recieved some attention , is the multifeedback 
method (14,15). In this approach the active - RC filter 
once again consists of a cascade of 2nd order sections 
but in addition feedback , and sometimes also feed forward , 
is applied to the network. In this way it was hoped 
to overcome the sensitivity problem arising in the cascade 
method. Multifeedback filters have been intensively 
studied and the results seem to show that active-RC filters 
with sensitivities comparable to LC filters can be obtained 
(16,17,18). The active-RC networks used in the cascade 
approach for the realisation of the 2nd order sections can 
be used in this method , however , additional active units 
may be required to achieve the correct feedback or feedforward 
although in some cases this is not necessary (18).

One type of multifeedback filter , called the leapfrog feedback 
filter (14) , has the feature that it can be designed from the signal flow 
graph of an LC filter. This particular circuit will be discussed in more 
detail in section 1.3 which deals with the simulation of LC filters.

1.3 SIMULATION OF DOUBLY TERMINATED LC LADDER FILTERS
Many of the simulation methods make use of positive 

immittance inverter and converter circuits. The properties 
and definitions of these circuits are first of all described 
in section 1.3.1 The various simulation methods are then 
outlined in sections 1.3.2 , 1.3.3 , and 1.3.4.

ii9. i



1.3.1 Positive Immittance Inverters and Converters

1.3.1.1 The positive immittance inverter

The positive immittance inverter (P.I.I.) is a 
2-port network which, when terminated at one port in an 
impedance Z,presents at the other port an impedance K/Z 
where K is a positive constant and depends only on the 2- 
port (/<7) • Thus if port 1 is grounded (by ’’grounded” we mean where 
one terminal of the port is connected to ground ) and port 2 is 
terminated in a capacitor , the network can simulate a grounded 
inductor as shown in Fig. 1.3 (a). When both ports 1 and 2 
are grounded , two P.I.I.s and a single capacitor may be used 
to form a floating inductor in the way indicated in Fig. 1.3 (b).

An interesting feature of a P.I.I. network is that 
its ports 1 and 2 can be relabelled as ports 2 and 1 and a 
P.I.I. network still results.

1.3.1.2 The positive immittance converter

The positive immittance converter (P.I.C.) is a 
2-port network which, when terminated at port 2 in an 
impedance Z, presents at port 1 and impedance KZ where K 
depends only on the 2-port network (/<?). If K is equal to Np, 
where N is a positive constant and p is the complex frequency 
variable, and if port 1 is grounded and port 2 is terminated 
in a resistor, then a grounded inductor is realised as shown



in Fig.1.3 (c). When both ports 1 and 2 are grounded,
two P.I.C.s (having K=Np) and a resistor may be used to
form a floating inductor in the way shown in Fig.1.3(d).

P.I.C.s can also be used to obtain frequency
dependent negative resistors (F.D.N.R.s) having impedances

2 2of the forms D/p and Mp where D and M are positive constants. 
2The D/p type F.D.N.R. is obtained if a resistor is used to

2terminate port 2 of a P.I.C. having K = N/p . Alternatively,
one can use a P.I.C. having K = N/p, which is terminated in

2a capacitor. To obtain the Mp type F.D.N.R. we can
2terminate port 2 of a P.I.C.,with K= Np , in a resistor.

As in the P.I.I. case, ports 1 and 2 of a P.I.C. 
network can be relabelled as ports 2 and 1 to give a 
P.I.C. network. This time, however, the parameter K 
associated with the new network is equal to the inverse of 
that of the original network.

1.3.2 Filter Design by Inductor Simulation
The first methods proposed for the simulation of 

LC filters by active RC networks may be classified as 
inductor simulating methods. This approach consists of 
simply retaining the resistors and capacitors in the LC 
filter and using active-RC circuits to simulate the 
inductors (1,20,21)

Grounded inductors may be simulated by terminating 
a P.I.I. or a P.I.C. circuit in the ways shown in Figs.1.3(a) 
and (c). Some simulated inductor circuits of this type, 
which use P.I.I and P.I.C. networks consisting of two 
amplifiers and a number of resistors, have been published by



Riordan (22) and Antoniou (23). Some single-amplifier RC 
circuits for the simulation of grounded inductors have also 
appeared in the literature (24,25,26,27). Two of these 
single-amplifier circuits, i.e., the Orchard/Willson circuit 
(26) and the Schmidt/Lee circuit (27), make use of single­
amplifier P.I.I. networks.

To simulate a floating inductor we can again make 
use of P.I.I. and P.I.C. networks, i.e., in the ways shown 
in Figs. 1.3(b) and (d)(30). M. Silva ,however , has shown 
that ports 1 and 2 of a single-amplifier P.I.I. network 
cannot both be grounded (2-8) , and these networks
are therefore unsuited to the method shown in Fig.1.3(b). 
Another way to simulate a floating inductor is to use a 
floating gyrator circuit terminated in a capacitor (29).
An example of a simulated floating inductor of a different 
type is Deboo's circuit (31).

In the above methods the inductors are 
individually replaced by an active -RC circuit. However, 
it is also possible to replace the whole inductor subnetwork 
by an appropriate active -RC network. This approach was 
proposed by Gorski - Popei who suggested using a multi­
terminal P.I.C. network (resistively terminated) to replace 
the inductor network (32). A similar method, using a 
multiterminal P.I.I. network, has also been described by 
Holt and Linggard (33,34).

The inductor simulation method ensures that the 
capacitors of the active-RC filter corresponding to the capacitors of the



original LC filter , will have equally good sensitivities - this is

also true for the terminating resistors . However, the 
components in the active -RC networks used to simulate the 
original inductors may introduce new sensitivities into the 
filter that are not present in the original LC filter.
Care must therefore be taken that these new sensitivities 
are acceptably low. In Chapter 2 we will present a 
survey of the active-RC simulation networks used in the 

design of active filters. This survey will include the 
simulated inductance circuits mentioned in this section.

1.3.3 Impedance Scaling Method
Another method of simulating doubly terminated 

LC ladder filters is the impedance scaling method, proposed 
originally by Bruton (35,36). This method is
based on the fact that the voltage transfer function of a 
filter, being a nondimensional quantity, is unaffected if 
the impedances of all the components in the filter are 
multiplied by the same factor. Consider, for example, the 
lowpass LC filter shown in Fig.1.4(a). If the impedances 
in this filter are multiplied by e/p, where e is a positive 
constant and p is the complex frequency variable, we find 
that the source and load resistors and R^ become capacitors 
of value C^ = l/eRs and C^= i/eR , the inductors L^ become 
resistors of value eL^? and the capacitors Cj. become
impedances of the form Kj/p where Kj[ is equal to e/C^.

2The new impedances K^/p are frequently called supercapacitors.

2 _ ^



As a result of impedance scaling, the network in Fig.1.4(a) 
becomes the network in Fig1.4(b) which retains, in principal, 
the low sensitivity properties of the original LC filter.

The method of impedance scaling by e/p is 
particularly suited to LC low-pass filters in which all 
the capacitors are grounded and hence where the remaining 
sub-network consists solely of inductors. After scaling, 
the inductive sub-network becomes a resistive network,which 
is attractive in practice as close tolerance resistors can 
be used in the design. Also, the impedance scaling method 
avoids the problem arising in the inductor simulation 
methods of having to use active -RC circuits to simulate 
the floating inductors. The grounded capacitors in the 
LC lowpass filter all become grounded supercapacitors and 
these can be realised using both single - amplifier and two- 
amplifier RC networks (35,37,25,27).

Impedance scaling by ep (instead of e/p) is also
useful especially in connection with LC networks in which
all the inductors are grounded (the remaining sub-network
consisting only of capacitors). In this method the
capacitors C. become resistors of value e/C., and the i 1
grounded inductors L^ are transformed to grounded impedances 
of the form Nkp where = eL^. These new impedances 
are called superinductors and they can be realised using both 
single-amplifier and two-amplifier RC networks (35,37,27) .

Some details of the F.D.N.R. circuits mentioned in 
this section will be given later in the survey of simulation 
networks in chapter 2.



A plausible application of the method of 
impedance scaling by ep is for LC highpass filters where 
all the inductors are grounded. The method has the advantage 
that after impedance scaling the capacitor sub-network 
becomes a resistive network and close tolerance resistors 
can be used. However, a drawback of the method is that 
the terminating resistors of the original LC highpass filter 
are transformed to inductors and additional active -RC 
circuits are required to simulate these inductors. This 
is a disadvantage which does not arise in the impedance 
scaling by e/p method for LC lowpass filters.

Impedance scaling techniques are also suited to 
the realisation of active -RC bandpass filters (38,39,40).
In one method the original LC bandpass filter is modified 
so that it consists of a cascade of two sections; one 
section in which all the capacitors are grounded, and the 
other section having all its inductors grounded. Appropriate 
scaling is then applied individually to each section, and 
the two impedance scaled sections are matched using a
suitable type of P.I.C. (38,39).

1.3.4 Resonator Simulation Method
Many LC filters contain series LC resonator circuits. 

To obtain the active -RC filter one method is to realise 
these resonator circuits (and their impedance scaled 
counterparts) by active -RC networks. Some single-amplifier 
RC resonator circuits have been proposed by Schmidt and 
Lee (27) , and also by Cheng and Lim (41). (their 
simulation networks will be discussed in more detail in 
Chapter 2).

?_ u ~



1.3.S Other Approaches
A rather different approach to active filter 

design has been to represent the relationships between 
the voltages and currents of the LC filter by a signal 
flow graph. The variables of the signal flow graph are 
then regarded as voltages and the relationships between 
these voltages are realised by suitable active -RC networks. 
One type of filter which can be considered in this way is 
the leapfrog feedback filter, proposed originally by 
Girling and Good (14). It should be mentioned, however, 
that this filter can also be considered as a multifeedback 
filter. This method does indeed give rise to active -RC 
filters that have good sensitivity properties (18).
Similar relationships between LC ladder filters and other 
multifeedback filters have not yet been derived.

Recently other approaches to active-RC filter 
design have been proposed, namely, the "wave active filter" 
(42,43,44,45) and the "linear transformation filter" (46,
47 ) methods. In these methods the voltage and current
variables of the original LC filter are transformed to new 
variables. The active filter is then obtained by 
realising the relationships between the new variables with 
suitable active -RC networks> so that the overall transfer 
function is the same as that of the LC prototype. There 
is again some evidence that filters having acceptable 
sensitivity properties can be obtained in this way (43).



1.4 APPROACH USED IN THIS THESIS TO DESIGN ACTIVE-RC FILTERS

The approach to filter design adopted in this 
thesis is based on the inductor simulation technique 
described in Section 1.3.2. As mentioned in Section 1.3.2 
there are a number of both two-amplifier and single­
amplifier RC networks for the simulation of grounded 
inductors. The particular simulated inductor circuits we 
will consider, here, are of the type which are obtained 
by terminating a single-amplifier P.I.I. network in a 
capacitor, e.g., the Orchard/Willson circuit (26) and the 
Schmidt/Lee circuit (27) . Simulated inductors of this 
type have the interesting feature that they use the minimum 
number of amplifiers and capacitors (i.e, 1 amplifier and 
1 capacitor) needed for inductor simulation. The Orchard/ 
Willson circuit and Schmidt/Lee circuit are described in 
detail in Chapter 2 (Chapter 2 also contains descriptions 
of other S.I. circuits). In Chapter 3 we will present some 
novel S.I. circuits that are similar to the above circuits 
in that they also contain only 1 amplifier and 1 capacitor, 
and can be regarded as single-amplifier P.I.I.s that have 
been terminated in a capacitor. Henceforward we will 
refer to simulated inductors of this type as S.A. S.C. S.I.s.

As single-amplifier P.I.I. networks are unsuited 
to floating inductor simulation (28) we will be concerned 
only with the active -RC realisation of LC filters in which 
all the inductors are grounded. This restriction seems



at first to be rather severe , however , all highpass 
filters and a wide range of bandpass filters are still 
realisable. Examples of these highpass and bandpass 
filters are shown in Figs. 1.5 (a) to (d), alongwith 
their typical loss/frequency behaviour. LC lowpass 
filters require floating inductors , and cannot therefore 
be simulated using the approach described in this section.

1.5 SPECIFIC AIMS AND OUTLINE OF THESIS
There are two main purposes of this thesis. One 

is to present some new single-amplifier , single-capacitor , 
resistor networks for the simulation of a grounded lossless 
inductor. The other purpose is to present a study of S.I.s 
of this type (i.e., 1A and 1C ) , and also to present a 
study of active-RC filters that use these S.I. circuits 
(see section 1.4 ). In particular we will describe a 
completely novel approach to compensation for the effects 
of the finite gainbandwidth products of the amplifiers on 
the response of active-RC filters that use single-amplifier, 
single-capacitor , S.I.s. A detailed outline of the 
thesis follows.

We begin in chapter 2 with a survey of known
active-RC simulation networks. This survey includes the
S.A. S.C. S.I. circuit due to Orchard and Willson (26) ,
and the other known circuit of this type due to Schmidt
and Lee (27) . As general background the survey also
covers other S.I. circuits and circuits which realise

2 2 2impedances of the form K/p , Mp , R + K/p ,and pL + 1/pC.



The new simulated inductor circuits are described
in chapter 3. In common with other S.A. S.C. S.I.s the 
new circuits rely on precise relationships between their 
component values in order to achieve the simulation of a 
lossless inductor. Deviations of the actual component 
values from the nominal values cause these relationships 
not to be satisfied exactly and the simulation is not 
accurate. A model for evaluating the effects of component 
tolerances on the impedance of the S.I.s is presented. We 
also present a model for evaluating the effects of the 
finite gainbandwidth product of the amplifier on the impedance 
of the S.I.s.

In chapter 4 we present a detailed investigation of 
one of the new S.I. circuits proposed in chapter 3. We will 
show how to design this circuit so that the effects of 
component manufacturing tolerances on the impedance are 
reduced. We also derive expressions for the inductance L(A>) 
and Q-factor Q(co) behaviour when the finite gainbandwidth 
product of the amplifier is taken into consideration. A 
design procedure for improving the Q (go) behaviour will be 
presented. The L (w) and improved Q(co) behaviour is then 
compared with that for two other S.I. circuits , i.e. ,
Orchard and Willsons' circuit (26) , and Antoniou’s two- 
amplifier S.I. circuit (23). The sensitivities of L(co) 
and Q(cj) to changes in the component values for the new 
circuit are also investigated and compared with the 
sensitivities for the other S.I. circuits.

'7  ̂L ... o



In chapter 5 we describe a completely novel 
compensation procedure for overcoming the effects of 
the finite gainbandwidth of the amplifiers in active-RC 
filters that contain S.A. S.C. S.I. circuits.In contrast 
to conventional compensation methods the new procedure 
does not seek to improve the inductance and Q-factor 
behaviour of the S.I. circuits , but deliberately designs 
the simulating networks to have a specific biquadratic 
impedance function. We then choose an LC filter circuit 
which can be modified by appropriate transformations so 
that it produces the required loss/frequency response 
(apart from an increased basic loss in the highpass filter 
case) using these biquadratic impedances instead of the 
original inductors. In this way we can compensate for 
the effects of the finite gainbandwidth products of the 
amplifiers - indeed , in the case of highpass filters 
complete compensation for finite f̂ . can be obtained over 
the entire frequency range in which the non-ideal gain of 
the amplifiers can be adequately described by a single­
pole model. The simulated biquadratic impedances required 
in the new compensation method have been called S.B.I. 
circuits to distinguish them from S.I. circuits designed 
using conventional approaches. Design procedures for 
some S.B.I. circuits will also be presented in chapter 5.

Chapter 6 is concerned with the sensitivity 
properties of the compensated active-RC filters described 
in chapter 5. The active filters which use S.B.I.



circuits are designed from original LC filters that have 
parallel RC terminations instead of purely resistive 
terminations. The sensitivity properties of LC filters 
with parallel RC terminations are investigated and compared 
with those for resistively terminated LC filters. We also 
investigate the effects of variations in f̂ , on the 
impedance of S.B.I. circuits.

Chapter 7 contains the computational and 
experimental work of the thesis. Various filter examples , 
highpass and bandpass , have been studied and their computed 
and measured loss/frequency responses will be given. 
Functional adjustment procedures for overcoming the effects 
of component manufacturing tolerances on the response of 
the filters are presented. We also show how the response 
of each filter changes when the component values for the 
filter change.

Finally in chapter 8 we conclude with a summary 
of the work presented in this thesis and some conclusions 
are made concerning the practical feasibility of active-RC 
filters that use S.A. S.C. S.I.s. A recent and very 
interesting S.A. S.C. S.I. circuit , discovered by the 
author , is also presented and some suggestions for further 
work are made . Some of the results of the work presented in this 
thesis have been published previously by the author (59, 60).

-\o



CHAPTER 2

ACTIVE-RC SIMULATION NETWORKS

2.1 INTRODUCTION

In this chapter we make a survey of the active-RC 
networks that are available for simulating grounded impedances 
of the form pL , K/p2 , Mp2 , R + K/p2 , and pL + 1/pC . The 
survey is mainly concerned with simulation networks that have 
only one amplifier (the theoretical minimum) , however , some 
two-amplifier circuits will also be described so that we can 
compare the various single-amplifier circuits with their 
two-amplifier counterparts.

In general,manufacturing , ageing , and environmental 
tolerances on the values of the passive components in the 
circuits give rise to inexact simulation. The passive 
sensitivity properties of the networks will therefore be 
discussed in the survey. A possible way of overcoming the 
problem of manufacturing tolerances is to adjust the values 
of the resistors in the simulation network (capacitance 
adjustment is not feasible ) until the correct impedance is 
obtained. The suitability of the networks to adjustment 
procedures will also be discussed.

Even if we assume the passive component values to 
be exact , the impedance of the active-RC simulation networks 
will still be affected by the non-ideal behaviour of the 
amplifiers. One amplifier imperfection , in particular , 
is the non-ideal voltage gain /j . Ideally should be



infinite at all frequencies but in practice it is finite 
and becomes less as the frequency of operation is increased. 
Also , the phase difference between the output voltage of 
the amplifier and the differential input voltage is 
approximately 90° except at very low frequencies. A simple 
expression for the gain of the amplifier is:

yU = ---- ------
GC +  p /tOf

where = inverse of the D.C. gain
C0T = finite gainbandwidth product (r/s)

The effects of non-ideal amplifier gain on the impedance 
of some of the simulation networks will be discussed in 
the survey.
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2. 2 CIRCUITS WHICH SIMULATE GROUNDED INDUCTORS

2.2.1 Two-amplifier Circuit

An example of a two-amplifier simulated inductor, 
due to Antoniou (2.3), is shown in Fig.2.1. This circuit 
can be regarded as either a P.I.I. or a p-type P.I.C. network 
having port 2 suitably terminated , see Figs. 1.3 (a) and (c).

Considering the amplifiers to be ideal,the 
impedance of the circuit is given by the expression

ZIND
PCoR1R3R 4

“ pL = ------- R l
(2.1)

The expression in (2.1) shows that this S.I. circuit 
retains its inductance behaviour with arbitrary positive 
values for its components. Furthermore, a relative change 
in the value of each component, taken individually, gives 
rise to the same relative change in either the value of L 
or 1/L. Since the loss/frequency response of an LC filter 
can have low sensitivities to the inductance values , we 
conclude that active-RC filters with equally low sensitivities 
can be obtained using this S.I. circuit.

To take into consideration the non-ideal behaviour 
of the amplifiers in the S.I. the general procedure is to 
represent the circuit's non-ideal impedance as the series 
combination of a resistance R(<°) and an inductance L(<^),i.e.,

^IND -̂(^0 +  PI -* (^0

3 3



The performance of the non-ideal S.I. is then measured 
in terms of the inductance L(w) and the Q-factor Q(w) 
which is defined as

Q(w) = oL(^
R(oo)

Ideally the Q-factor should be infinite at all frequencies 
and the inductance constant with frequency. However, in 
practice the non-ideal gain of the amplifiers cause the 
Q-factor to have finite values and become frequency dependent 
- L(to) also becomes frequency dependent. Bruton has shown 
how to design the S.I. circuit so that the Q-factor 
behaviour is improved ; some work on additionally
improving L(<o) has also been described by Haigh and Kunes (50).

Because of manufacturing tolerances on the values 
of the components in the circuit, the inductance value 
will not be exactly equal to the specified value 
and the Q-factor will not have its nominal behaviour.
The circuit is particularly suited to resistor adjustments 
for overcoming both these problems (37) and a wide tolerance 
capacitor can be used in the design. Furthermore, the 
adjustment procedure is well suited to microelectonic 
technology in which the values of the adjusting resistors 
can only be increased.

The properties of the circuit mentioned above make 
it particularly attractive for practical filter design. 
Perhaps the only disadvantage of the circuit is that it uses



two amplifiers which is not the minimum required for 
inductor simulation.

2.2.2 Saraga Circuit
A circuit which simulates a grounded inductor 

using only one amplifier is shown in Fig.2.2. This 
circuit is due to Saraga (25) and was derived using his 
synthesis procedure for active -RC impedances (51).
Although the circuit uses only one amplifier, three 
capacitors are required compared to one in the Antoniou 
circuit. Furthermore the circuit cannot be regarded as 
a P.I.I. or P.I.C. which has been suitably terminated.

Assuming the amplifier to be ideal, the impedance 
of the circuit in Fig.2.2 can be expressed as a biquadratic 
impedance function in p, the complex frequency variable, as
shown in (2.2) (this is somewhat unusual as we would expect
the circuit to have a 3rd order impedance function in p as
it contains 3 capacitors).

7 A0 + A1P + A 2p (2 .2 )iND
bq + BiP  + B2P2

where

Ao R3R5"R4R1

Ai r 1r 3 (r 5c 2-r 4c 3)- r 1r 4r 5c 6

A 2 "C6C3R1R4R5R3

Bo iii

B1 R3(R5C2 R4C3^“ R1R4C6

B2 C6R1R3 ̂ R5C2“R4C3̂
1 5



To obtain lossless inductor simulation with this circuit

the conditions

AQ = 0 ; B2 = 0 (2.3)

must first of all be satisfied* so that can be
expressed as

pA^l + pA2/A1) 
Bq (1 + PB j /Bq )

(2.4)

The correct simulation is then obtained by choosing

A
A
2
1

A-
> 0

0
(2.5)

so that a pole and a zero of the impedance expression in
(2.4) cancel and has the impedance of a positive
inductor. One way to satisfy the conditions in (2.3) and
(2.5) is to choose

R* C? R<? C/-
^5 = S  ; %  = ^3 ’ and C6 = t 2 ' 6)

The inductance value L is then given by

L = R3R5C3 (2.7)

The method of obtaining inductor simulation with
this circuit is very different to that for the Antoniou
•k

It is worth mentioning that Saraga uses a direct 
synthesis method (5 I ) .



circuit and relies not only on coefficient cancellations, 
i.e., see (2.3), but also on a pole/zero cancellation in 

the expression for its impedance. Small errors in the 
component values give rise to inexact coefficient and 
pole/zero cancellations and the simulation becomes inexact.
Not only will these errors affect the constancy of the 
inductance value with frequency but the Q factor will also 
be affected even when the amplifier is assumed to be ideal; 
we will find later on in the survey that this is also true 
for other single-amplifier S.I.s. We would expect active 
filters using Saraga's S.I. circuit to have worse passive 
sensitivities than for filters using Antoniou’s two-amplifier 
S.I. circuit. This is because tolerances on the component 
values for Antoniou’s circuit affect only the inductance 
value, and not the Q-factor.

A way of overcoming the problems due to manufacturing 
errors in the component values is to adjust the values
of the resistors in the circuit so that the conditions for 
lossless inductor simulation are satisfied. The first two 
conditions in (2.6) and the inductance value condition in
(2.7) can be satisfied by resistor adjustment even
if wide tolerance capacitors are used. However, the 
condition given in (2.6) requires capacitor adjustment
and this is not feasible nowadays. Nevertheless, Saraga 
has shown that the effects of errors in the condition
C6=C2 can be reduced if the ratio p = = R4/R3 is
made large (25). The effect of amplifier imperfections upon 
the impedance of the circuit has not yet been investigated.



2.2.3 Sipress circuit

A single-amplifier S.I. circuit that uses two
capacitors is shown in Fig. 2.3. The circuit is due to 
Sipress,and it was derived using his driving point 
synthesis method which uses a single N.I.C. as the active 
unit (2-4-). The circuit is similar to Saraga’s S.I. circuit 
in that it cannot be regarded as a P.I.I. or a P.I.C. network 
having port 2 terminated in the ways shown in Figs.1.3(a) and (c) .

Assuming the amplifier to be ideal,the impedance of 
Sipress’ S.I. circuit is given by the expression

(2 .8 )

where

G2G4R1R3 G4R3 G2R1 1')

A 2 C1C2^G6R1R5 G2R1R3 R3̂

B0 -G 2

R2 ~ G1G2^G4G6R1R4 6 1 5

and G. = 1/R, i = 1, --- 6l i 7



Inductor simulation is achieved with this circuit in 
exactly the same way as for the Saraga circuit. That is,two 
coefficient cancellations Aq = 0 and B2 = 0 are first of all 
needed. The condition A 2/A^ = B-^/Bq is then required 
so that a pole and a zero of the impedance expression cancel, 
and finally we require A^/Bq > 0  so that positive inductor 
simulation occurs. One set of component values which 
satisfies these conditions and gives rise to an inductance 
value of 1.0 H is: R-̂  = R^ = R^ = 2 52 , R^ = R^ = 1 A , R2 = 4
C1 = 0.125 F and C2 = 0.25 F.

Because the Sipress and the Saraga S.I. circuits 
both have 2nd order impedance functions (in p) and achieve 
inductor simulation in the same way, we would expect the 
sensitivity properties of the Sipress circuit to be similiar 
to those for the Saraga circuit. This is interesting 
because the Saraga circuit uses three capacitors compared 
to two for the Sipress circuit. A detailed comparison of 
the sensitivity properties of both circuits is, however, 
outside the scope of this thesis. Adjustment procedures 
for overcoming the effects of manufacturing tolerances on 
the impedance of the Sipress circuit, and an analysis of 
the effects of amplifier imperfections, have not appeared 
in the literature.



2.2.4 Orchard/Willson Circuit

An example of a single-amplifier S.I. which uses
only one capacitor is shown in Fig.2.4. The circuit is 
due to Orchard and Willson and was the first circuit of 
its type to be published (2.6). Although Orchard and Willson 
do not indicate how the circuit was derived, it is under­
stood from their publication that a sequence of such 
circuits was found that culminated in the circuit of Fig.2.4. 
The circuit uses the theoretical minimum number of 
amplifiers and capacitors , and it can be regarded as a 
single-amplifier P.I.I. network with port 2 terminated in 
the capacitor Cq .

Assuming the amplifier to be ideal, the impedance 
of the circuit can be expressed as a bilinear function in 
p, i.e.,

(2.9)

where
A,0 (1 + R ^ )  (1 + R3G4)

A 1 = V G6R1R0 ^ 6 1 5
(2 .10)

B0

B1 V A0 + 1 R 3G2^

and G. = 1/R. i = 1, ....6l i 9



The impedance Z j ^  
inductance if

will be that of an ideal positive

AQ = 0 , B1 = 0 , and A1/BQ > 0 (2.11)

The conditions in (2.11) are satisfied by choosing

G4G6R1RS = U  + r ig2) 0  + R3G4) (2-12)

and R2 = R^

The inductance value L is then given by the expression

_ W 0 (1 + W
^  + G4R3)

One set of resistance values that satisfies the conditions 
in (2.11) to give L = 4CQ is : Rx = R2 = R3 = R4 = 2 ft ,
R^ = 4 ft , and R^ = 1 .

The circuit achieves inductor simulation by means 
of two coefficient cancellations and is unlike both the 
Saraga and Sipress circuits which additionally require a 
pole/zero cancellation. Small errors in the resistance 
values in the circuit give rise to inexact cancellations
and both the Q-factor and inductance value are affected.
One would therefore expect active-RC filters containing 
the S.I. circuit to have worse passive component sensitivities 
than filters using Antoniou's S.I. circuit, however, the 
sensitivities may be better than those obtained



by using the Saraga and Sipress S.I. circuits 
as fewer cancellations are required to achieve the correct 
simulation of inductance. This conjecture will 
have to be left unstudied as a detailed investigation of 
the sensitivity properties of the various simulation 
networks is outside the scope of the thesis.

Orchard and Willson have investigated the effects 
of non-ideal amplifier gain on the impedance of their 
circuit and they have suggested a design procedure
for improving its non-ideal performance (l6) (some computed 
inductance and Q-factor curves showing this performance 
will be given later on in the thesis). An adjustment 
procedure for overcoming the effects of component 
manufacturing tolerances on the impedance has not been 
proposed.

2.2.5 Schmidt and Lee Circuit
Another example of a single - amplifier, single­

capacitor, S.I., which was obtained by Schmidt and Lee 
using their multipurpose simulation network (27), is shown 
in Fig.2.5. This circuit uses seven resistors (compared 
to six for the Orchard/Willson circuit) and can be regarded 
as a P.I.I. network having port 2 terminated in a capacitor.

Assuming the amplifier to be ideal? the impedance 
of the circuit in Fig.2.5 can be expressed as



where

A0 G2^G3G6 G4G5 G1G4̂

A1 = G0^G2G3 + G3G6 - G4G5 " G1g4J

to o II G2G6(G1G3 + G i G 7 + g 3g 7) G2G4G5̂ -G1 + G7̂

B1 =
r ( V G1G3 

1_G5 (G1G4

+ g 1g 7

+ G4G7

+ g 3g ?

+ G2G4
+ G2G3) -
+ g 2g 7)

and G. = 1/R.i i

The circuit achieves inductor simulation in the same way 
as the Orchard/Willson circuit; that is by means of two 
coefficient cancellations Aq = 0 and B^ = 0 , and by ensuring 
Ai/B0 > 0  so that a positive inductance is realised. We 
would therefore expect the sensitivities properties for 
both these circuits to be similar. Adjustment procedures 
for overcoming the effects of component manufacturing 
tolerances on the impedance , and the effects of amplifier 
imperfections on the impedance of the Schmidt/Lee S.I. 
circuitjhave not yet been investigated.

2.2.6 Imperfect (lossy) Inductor Simulation

Some examples of lossy inductor simulation are 
shown in Fig. 2.6 (a) , (b) , and (c) . The circuit in Fig. 2.6(a)



is due to Ford and Girling (52.), the circuit in Fig. 2.6(b) 
is due to Prescott (53), and the circuit in Fig.2.6(c) is 
due to D. Berndt and S.C.Dutta Roy (54-).

Assuming the amplifier to be ideal, the impedance 
of the circuit in Fig.2.6(a) is

PC1R2R3_____
1 + pC^(R2 + Rj) (2.14)

which is the impedance of an ideal inductor in parallel with 
a resistor. The impedance of the circuit in Fig.2.6(b) is 
given by

z R2 + R3 + pClR2R3 (2.15)

which is the impedance of an ideal inductor in series with 
a resistor as shown in Fig.2.6(b). The Berndt/Dutta Roy 
circuit has an impedance

2 + Pcb R iR 2
1 + PC0 R

and its equivalent circuit is shown in Fig.2.6(c).
The expressions in (2.14), (2.15) and (2.16) show 

that the impedances of the circuits do not depend upon 
coefficient cancellations. However, the circuits are not 
suitable for incorporation into conventional LC filters 
where lossless inductors are required. Instead, specially 
designed filters called "lossy ladder filters", which have 
worse sensitivity properties than LC ladder filters, have 
to be used. Nevertheless, Rollett has shown that good



performance can still be achieved , and that in some cases 
the active-RC lossy ladder filters can be significantly 
less sensitive than cascade filters (55).

2.3 CIRCUITS WHICH SIMULATE GROUNDED F.D.N.Rs
In this section we describe some two-amplifier

and single-amplifier networks for the realisation of grounded
2 2F.D.N.Rs , i.e. , impedances of the form Mp and K/p . All

the single-amplifier circuits make use of coefficient
cancellations in their impedance expressions to achieve the

2correct impedance (one circuit , the Saraga K/p circuit , 
additionally requires a pole/zero cancellation) . In this 
respect these circuits are similar to the single-amplifier 
S.I. circuits described previously.

2.3.1 Two-amplifier F.D.N.R. circuits
Examples of two-amplifier F.D.N.R. circuits for 

2 2the realisation of K/p and Mp impedances are shown in 
Figs. 2.7 (a) and (b) alongwith their impedance expressions . 
These circuits have the same network topology as the two- 
amplifier S.I. circuit described in section 2.2.1 , and they 
also have the same good sensitivity properties. Adjustment 
procedures have been developed for the circuits to overcome 
the effects of both component manufacturing tolerances and 
the finite f^ of the amplifiers on their impedances (37). 
Large tolerance capacitors can be used in the design of the 
circuits , and they are well suited to microelectronic 
technology (56).



2.3.2 ?Saraga Circuit (K/p )
2A circuit which simulates a K/p type impedance

using one amplifier and three capacitors is shown in
Fig.2.8. The circuit is due to Saraga (2.5) and was
derived using his synthesis procedure given in (51).

Assuming the amplifier to be ideal, the impedance 
of the circuit in Fig.2.8 is

A0 + A iP + A ?P2Z - U 1 L (2.17) 
P(BX+ B2p + B3pZ)

where

o ii R S

A i - R1R5C2 + R3R5C3 " R1R4C3

A 2 = C2C3R3R1R5 " C3C6R1R4R5

B1 " C2R5 " C3R4

B2 " C2C3R3R5 + C6C2R1R5 " C6C3R1R4

B3 C2C3C6R1R3R5

2An impedance of the form K/p is achieved by first of all 
satisfying the conditions A^ = 0 and = 0 so that Z becomes

AQ (1 + pAl'/A0-1 
P 2B 2 (1 + pB3/B2)

z (2.18)



soThe condition A^/Aq = B^/I^ is then required 
that a pole and a zero of the expression in (2.18) cancel, 
and finally K will be positive if AQ/B2> 0.

The circuit achieves the correct impedance in 
the same way as the Saraga and Sipress S.I. circuits 
achieve lossless inductor simualtion, that is, by
means of two coefficient cancellations and one pole/zero 
cancellation. We would therefore expect the sensitivity 
properties of the present circuit to be similar to those 
for the S.I. circuits mentioned. Some detailed
work on the sensitivity properties of this circuit, and 
its performance when the non-ideal behaviour of the 
amplifier is taken into consideration, has been carried out 
by Hooshvar (57) .

2.3.3 Schmidt/Lee Circuit (K/p^)

The multipurpose simulation network mentioned 
in Section 2.2.5 can also be used to obtain a circuit that 
has an impedance of the form K/p . This circuit is shown 
in Fig.2.9 and it has the interesting feature that it 
contains only one amplifier and two capacitors ( the 
theoretical minimum ).

Assuming the amplifier to be ideal , the impedance 
of the circuit in Fig. 2.9 is

A0 * AlP
B0 + BiP + B2P2

/ , ‘2

z (2.19)



where

A0 = G3^G2 + G6  ̂ " G4G5 

A1 = C3^G2 + G6  ̂ “ C1G4

B0 = G2G3G6 + G2G3G8 + G3G6G8 " G2G4G5 " G4G5G8 

B1 = G1^G3G6 “ G4G5 " G4G8̂  + C3^G2G6 + G2G8 + G6G8^

B2 = C1C3G6

and G. = 1/R.
1 1

2To obtain the impedance Z = K/p the coefficient
cancellations A-̂  = 0 , Bq = 0 , B^ = 0 , are required and
for K to be positive we need Aq /B£ y 0. The Schmidt/Lee 

2K/p circuit therefore requires three coefficient 
cancellations to achieve the correct impedance , and 
differs from the Saraga circuit which requires two coefficient 
cancellations and one pole/zero cancellation. Some work 
on a comparision of the sensitivity properties of both these 
circuits has been carried out by Hooshvar (57) - it appears 
that the sensitivities of the F.D.N.R. constant K to the 
passive component values are similar for both circuits , also , 
the Q-factor sensitivities (Q = R (Z)/Im (Z) ) are similar 
for both circuits.



2.3.4 2Schmidt/Lee circuit (Mp )

Schmidt and Lee have also used their multipurpose 
simulation network (2.7) to realise an ideal super inductor - 
this circuit is shown in Fig. 2.10. The circuit uses the 
theoretical minimum number of amplifiers and capacitors , 
i.e. , 1A and 2 Cs.

Assuming the amplifier to be ideal,the impedance 
of the circuit can be expressed as:

A0 + A XP + A 2P 2

Bq + BjP + B2p2
(2.20)

where

> o II G1G3(G6G7 ' W  - G3G4CGSG7 + G1G8 + GSG8)

A 1 " C3 (G3G6G8 + G1G3G6 + G1G6G7 + G3G6G7)

_C3 (G1G4G8 + G4G5G8 + G1G4G S + g 4g 5g7)

-C2(G3G4G5 + S W

IICN1
<

C2C3(-G3G8 + G3G6 ' G4G5 ‘ GSG7

Bo “ G3G8(G1G6G7 - g 1g 4g 5 - g4g 5g 7)

B 1 - C3G8(G1G3G6 + Gj^GgGy + GjGgGy - G4G5G7 - 0^̂6465)

_C2G3G5G8 *-G4 + g 7)

B 2 = C2C3G8 *-G3G6 G4G5 _ GSG7-)

and Gi = 1/Ri



The circuit has the impedance of a positive ideal 
?superinductor , i.e . Z = Mp , if Aq = 0 , = 0 ,

= 0 , E$2 = 0 , and A£/Bq > 0. One set of component
2values which satisfy these conditions to give M = 3C^ 

is: R± = R4 = R5 = Ry = 19, , R3 = 2 & , R6 = i SI , Rg = 1 S2 , 
and C£ = 6C3 •

2A sensitivity study for the Schmidt/Lee Mp circuit 
has not been carried out but we would expect the sensitivity 
properties to be bad as four coefficient cancellations are 
required in the impedance expression. Other single-amplifier 
circuits for the realisation of superinductors have not 
appeared in the literature.

2.3.5 Imperfect F.D.N.R. simulation
Some active-RC networks that simulate imperfect

F.D.N.R.s are shown in Figs. 2.11 (a) and (b) alongwith
their equivalent circuits. The networks were derived from
the lossy inductor circuits shown in Figs. 2.6 (a) and (b)
merely by an RC-CR interchange (this transformation converts

2a p type impedance into a 1/p type impedance ). The 
imperfect F.D.N.R.s can be used in filter design in a way 
similar to that described in section 2.2.6 for lossy inductors.

o



2.4 SIMULATED RESONATOR CIRCUITS

As mentioned in Chapter 1 , many LC filters have 
grounded inductors in series with a resonating capacitor. 
Similarly grounded F.D.N.R. circuits often occur in filters 
in series with a resonating resistor. Some single-amplifier 
RC networks simulating these grounded resonators will now 
be described.

2.4.1 Cheng/Lim circuit (z = pL + 1/pC)
A circuit , due to Cheng and Lim (4-1 ) , which 

simulates a series LC shunt branch for use in an LC ladder 
filter, is shown in Fig. 2.12 . The circuit uses one 
amplifier and two capacitors which is the theoretical 
minimum.

Assuming the amplifier to be ideal the impedance 
of the circuit is

where

Z
A0 + A-^p + A 2p 2 

BXP
(2.21)

> o “  S V S  + V

A 1 C6G3(-G2 + G 5̂ + C4(G2G3 + G 2G? Gi Gs ^

+ c 4g 2g3r4 (g 5 + g7) + C4G 2G 7Rg (G1 + G3)

A 2 G4C6G5R4(G2 + G 5̂

b i C4G2G7 (G1 + G3) note :

~> i



The correct simulation of a series LC resonator , whose 
impedance is Z = pL + 1/pC , is achieved by first of all 
satisfying the condition A^ = 0 so that Z in (2.21) becomes

Z = * p A 2y/A0->

The further conditions B^/Aq > 0 and A^/A^ > 0 are then 
required to ensure that the simulated inductance and 
capacitance values are positive.

The simulated resonator circuit described above 
is very interesting as it requires only one coefficient 
cancellation for correct simulation compared to other circuits 
such as the Orchard/Willson S.I. circuit and the Schmidt/Lee
S.I. circuit which require two coefficient cancellations. We 
would expect this circuit to give rise to active-RC filters 
with better sensitivity properties than filters which used 
other single-amplifier simulation networks. However , we 
would still not expect to obtain sensitivities as good as 
those for the two-amplifier simulation networks mentioned 
in previous sections.

Cheng and Lim have proposed an adjustment procedure 
for their simulated resonator circuit for overcoming the 
effects of component manufacturing tolerances on the impedance 
(q-l). They have also shown how to choose the nominal component 
values for the circuit so that the effects of the non-ideal 
gain of the amplifier on the impedance are minimised.



2.4.2 2Schmidt and Lee circuit (Z = R + K/p )

A circuit which realises the impedance of a grounded 
F.D.N.R. (K/p type) in series with a resonating resistor , is 
shown in Fig. 2.13. This circuit is due to Schmidt and Lee
(2.7) , and it uses the theoretical minimum number of amplifiers 
and capacitors.

Assuming the amplifier to be ideal the impedance of 
the circuit is

A0 + A lp + A 2p2 
Bxp + B2p2

( 2 .2 2 )

where

A0 = G2G3G4

A1 = C6G3G4 + G4 ̂ G2G3 " G1G4 " G4G5̂

A 2 = C4C6G3

B1 = C6G3G4 (G1 + G 2̂  " C4G4G5(;G1 + G2}

B2 = G4G6G3G4(G1 + G2) note = 1/R^

2To obtain an impedance Z = R + K/p we need two 
coefficient cancellations A^ = 0 and B^ = 0 so that Z in
(2.22) becomes

The values for R and K are given by the ratios A 2/B2 and Aq /B2 
respectively - obviously these ratios must be greater than 0 
so that R and K are positive.



2.4.3 2Cheng/Lim circuit (R + K/p )

An alternate circuit for the realisation of a 
series F.D.N.R./resistor resonator is shown in Fig. 2.14. 
This circuit is due to Cheng and Lim (/f/) and , like the 
Schmidt/Lee circuit of section 2.4.2 , it uses the 
theoretical minimum number of amplifiers and capacitors .

Assuming an ideal amplifier , the impedance of 
the circuit is

where

A1 = C4^G 2G3 G1G5^ + C7G 2G3

A 2 C4C7G.,(i ♦ g i R s + G3Rg)

B 2 = C4C7G.,(Gi + G3) note :: G. = 1/R,

The circuit achieves the desired impedance 
2Z = R + K/p , where R and K are positive , by means of 

the coefficient cancellation A^ = 0 and the conditions 
k^/^2  ̂0 and Aq /B2 > 0. As only one coefficient 
cancellation is required in the impedance expression , 
we would expect this circuit to have better sensitivity 
properties than Schmidt and Lees' resonator circuit

Z = A0 + A 1 P + a 2p
b 2 p

(2.23)

G 2 G 3 G 5



which requires two coefficient cancellations.
An adjustment procedure for overcoming the 

effects of component manufacturing tolerances on the 
impedance of the circuit has been proposed by Cheng 
and Lim (q-l). They have also shown how to design the 
circuit so that the effects of amplifier imperfections 
on the impedance are reduced.



2.5 SUMMARY AND CONCLUSIONS

The Table in Fig. 2.15 summarises the number of 
amplifiers , capacitors , coefficient and pole/zero 
cancellations that are required for the simulation networks 
to achieve their correct impedances.

As mentioned in Chapter 1?LC filters can be 
designed to have good sensitivity properties , however , 
when the simulating networks are included in the filters 
new sensitivities are introduced by the additional
components in the simulating networks. In the case of two- 
amplifier simulation networks the new passive sensitivities 
introduced are low as these circuits retain their ideal 
simulation behaviour for arbitrary positive values for 
their passive components . Single-amplifier simulation 
networks , however , require coefficient cancellations 
(and possibly also pole/zero cancellations) in their 
impedance expressions , and we would expect the new 
sensitivities to be larger. Furthermore , we might expect 
the sensitivity properties of the single-amplifier networks 
to become worse as the number of cancellations required 
becomes greater.

Many of the single-amplifier simulation networks 
do not have adjustment procedures for overcoming the effects 
of component manufacturing tolerances on their impedances. 
Indeed , inspection of their impedance expressions shows 
that in many cases there is no straightforward method of 
adjusting the circuits. Also , for many of the single-



amplifier networks the effects of amplifier imperfections 
on the impedance have not been investigated.

In some filter applications where the number 
of amplifiers is at a premium it is thought that the 
resonator circuits proposed by Cheng and Lim will offer 
better results than the other single-amplifier networks.
This is because these circuits use a minimum number of 
amplifiers and capacitors , and require only one coefficient 
cancellation in their impedance expressions. Also , 
adjustment procedures for these circuits have been proposed. 
However , the Cheng/Lim circuits are not suitable for LC 
filters where the shunt arms consist solely of grounded 
inductors and other simulation networks , such as the 
Orchard/Willson S.I. circuit and the Schmidt/Lee S.I. circuit, 
would have to be used.



CHAPTER 3

SOME NOVEL SIMULATED INDUCTOR CIRCUITS

3.1 INTRODUCTION

In this chapter we present some novel S.I. 
circuits. Each new circuit contains only one amplifier 
and one capacitor, andean be regarded as a single-amplifier 
P.I.I. network having port 2 terminated in a capacitor.
In this respect the new circuits are similar to the 
Orchard/WilIson S.I. circuit and the Schmidt/Lee circuit 
described previously in Sections 2.2.4 and 2.2.5 .

After describing the new S.I. circuits we 
investigate the effects of passive component tolerances 
on the impedance of S.A. S.C. S.I.s . Models which 
show how the impedance is affected will be described , 
and we will also describe a model which additionally 
takes into consideration the effects of the non-ideal 
gain of the amplifier on the impedance of the S.I.s .

3.2 DESCRIPTION OF CIRCUITS

Before describing the new S.I. circuits in 
detail , it is interesting to mention how many resistors 
they contain and also to point out a few properties of 
some of the circuits that the 0/W and S/L circuits do not 
have (note from Sections 2.2.4 and 2.2.5 that the 0/W



circuit contains six resistors , and the S/L

circuit contains seven resistors).
One of the new circuits, referred to as S.I. 

circuit A >see Fig.3.1(a), uses seven resistors and it has 
the interesting feature that its inductance value can be 
varied by altering the value of a single resistor without 
affecting the conditions required for lossless inductor 
simulation. The other new circuits and the 0/W and S/L 
circuits do not poetess this property. Furthermore, the 
inductance value for S.I. circuit A can be varied over a 
positive and negative range, and the circuit appears to be 
suited to an adjustment procedure for overcoming manufacturing 
tolerances on the values of its passive components. Another 
new circuit, called S.I. circuit B ,see Fig.3.3 , uses only 
six resistors,which is the same number as for the 0/W circuit, 
and it has the interesting feature that it is a special 
case of S.I. circuit A. The remaining new S.I. circuits, 
circuits C,D,E and F, are shown in Figs.3.4 to 3.7; these 

networks use seven or more resistors and they have no 
obvious advantages over the 0/W and S/L circuits , nor the 
new S.I. circuits A and B.

As S.I. circuits A and B are considered to be the 
most important of the new circuits presented in this Chapter, 
a detailed analysis of the impedance presented by these 
circuits, for both the ideal and non-ideal amplifier cases, 
will be presented. Impedance expressions for S.I. circuits 
C and D, for the ideal amplifier case only, will also be



presented, however, the expressions for circuits E and F 
are not given as these circuits contain a large number of 
resistors and are unlikely to be useful in practice.

3.2.1 Circuit A
The impedance presented by the circuit in Fig.3.1(a), 

for both the ideal amplifier and non-ideal amplifier cases, 
will now be determined.

.Firstly, for the purposes of analysis, the amplifier 
is removed from the circuit in Fig.3.1(a) and the
remaining RC network is labelled in the way shown in 
Fig.3.1(b). By inspection the admittance equations 
describing the network in Fig. 3.1(b) are

V (G-^Gy) 0 -Gi 0 ■ G7 V

*2 0 (PC 0+G2 + G3) 0 _G3

i n o V 2

*3
=

"G1 0 C W GP -G4 0 X V3

0 "G3 -G4 (C6+G3+G4) -G6 V4

15 _ ~Gy "PG0 0 -G6 (G7+pCQ+G6) V 5.

(3.1)
Now, taking the amplifier into consideration, we note from 
Fig. 3.1(b) that the voltages V2 , V3, and V4 are related



by the expression:
V4 = p (V2-V3) C3.2)

where }j is the voltage gain for the amplifier. Substituting 
this expression for into eqns. (3.1) gives

(a) V (G1+Gz) 0 -Gi G7 V

(b) h 0 (pC0 + G 2 + G 3 - y G 3 ) yG3 -p co V2

(c) h
=

- G1 -pG4 (G4+G5+G1+UG4) 0
X
V3

(d) X4 0 (-G3+y(G6+G3+G4)) (_G4'ijG6+G3+G4) "G6 _V 5_

(e)

rn-
i cn l "G7 -(pCQ+yG6) uG6 (Gy+pC0+G6)

From Figs. 3.1 (a) and (b) we also note

I2 = J3 = ^  = ° (3.4)

as no current is taken from nodes 2,3 and 5 (nodes 2 and 3 
are connected to the amplifier inputs for which we assume an 
infinite input impedance). These values for and 1^
may be substituted into eqns. (3.3) (b), (c) and (e) to give 
the following set of equations



(PCo+G2 + G3~v G3^0

G 1 -y G4

G 1 -(Pco-mG6)

p G3 -PCo V
(G4 + G5 + G1+u G4) 0 X V 3

u G6 (Gy+PC0+Gg) _V 5_

(3.5)

The voltages and V,. can be expressed in terms of 
, the voltage across the Simulated Inductor network , 

by solving this set of linear equations using 
Cramer’s rule.,i.e. ,

D i
V 3 “ V 1

D 2
V S ^  V1 (3.6)

where the expressions for Dq ,D^ and D£ are

*-pC0+G2 + G3~vlG3-1 pC3 1 n o

IIoQ u G4 (G4+G5+G1+PG4) 0

- (Pco +uG6-) u G6 (Gy+pCg+Gg)



(pC0+G2+G3-hG3) 0 -Pco

Di = -yG4 G1 0

-(pc0-*-hG6) G? (G7+pC0+G6)

(pC0+G2 + G3~uG3-) pG3 0

D2 = -yG4 (G4+G5+Gi+yG4) G1

-CpC0+yG6) yG6 G7

From eqn.(3.3) (a) we have

^  = (G1+G7)V1 - (G1)v3 - (G7)V5

Substituting the expressions for and given in 
(3.6) into (3.10) gives:

Di D ?CG-i + G7) - Gn—^  - G7- /  V x1 D0 7 D0

and from this expression Zjnd = V^/I^ is found to

0
IND (G1 + G?) - G1D1 - G?D2

The expressions for Dq ,D-̂  and given in (3.7), (3.8) 
(3.9),may now be substituted into (3.12) and with some

(3.8)

(3.9)

(3.10)

(3.11)

be

(3.12) 

and



re-arranging of terms the impedance Z can be expressed as:IND

ZIND
CAq + eA2) + p(A: + £A3) 
(B0 + £B2) + p(B1 + 6B3)

(3.13)

where

> o II (G6 + Gy)(G^G2 ~ G 3G 5 - G3Gf

A1 ■ C0 ( G4 ̂ G 2 - G7) - (G1 + G G6}_

IICM
< (G 3 g 2)(g 4 + g 5 + G]) (G6 + < V

A 3 C0 (G4 + G5 + Gl') ^G 2 + G3 + G6 + g 7)

iioPQ G1 32g 6G7 + ^G4G 2 - G3C35)(G6G 7 ♦ G 1G 7

B i = C0 (Gi + G7)(g 2g 4 - G„C 5̂ - G s V

B2 = (G + G3> (g 4 ♦ g 5) (G]G6 G1G7 + G6(

B3 = C0 fl (G4 + g5)(g2 + g +3 G6 + G7) + G, (G1 +

(3.14)

16 7

and £ = jJ  ̂ = (X + p/cô  where fc is the inverse
of the D.C. gain , and 6J,p = 2Tl£j where fp, is the finite 
gainbandwidth product for the amplifier.

In the ideal amplifier case when the gain is 
infinite , i.e. 6 = 0 ,  the impedance in (3\l3) reduces to:



A0 + >lAi.
Z INI) R0 + pB-j (3.15)

For lossless inductor simulation the coefficient
canee 11 at ion:

A0 - 0 and Bj = 0 (3.16)

a r e r e q u i r c d . The inductance value L = A Bq is then
given by the expression

L0 (G.
C0 { G4 (G2 + V  - ({;1. + G 5 ^ G 5 + G6) ]

| G2 - G3G 5H G 6G 7 + G 1 G 7 + W  + G 1G 2G6G 7

(3.17)
For arbitrary values for C„, G„, G. , Gc, Gr and G7 the0 3 4 5 6 /
conditions A = 0 and B = 0 may be satisfied by 
choosing Ĝ  and G? ns:

Subs t i tilting

G, = R7Gr G c 1 3 6 5 (3.18)
^2 ~ ^5^4 ̂ 3  + ^6^

these expressions for Ĝ  and G  ̂ into (3.17)
gives

' 7 , 2 - , -  
('5 ’6 *-G7

Cn (G,G„ - GcGr - G c G ? R „)0 v 4 / 5 6 5 6 aJ
+ GCG J L  + G G„R_) + G7G?G^R-R. (G, + Gr)5 6  a 5 7 3 ^  7 6 5 3  4 3 6

(3.19)
This expression shows that S.T. circuit A can be designed 
to have either a negative or a positive inductance value



unlike previously published circuits. For ideal positive 
inductor simulation we require the inequality

G4G7 > R3g6g 5(g 3+g 6) (3.20)

S.I. circuit A is similar to the 0/W and S/L 
circuits in that tolerances on the values of its conduct­
ances cause the coefficients A q  and B-̂ to be non-zero, 
and the circuit no longer simulates a lossless inductor 
exactly. However, inspection of the expressions for Aq 
and in (3.17) show the following:

(1) The condition Aq = 0 is independent
of the values for G, and G~6 7

(2) The condition B-̂  = 0 is independent 
of the values for G^ and Gy

These properties of S.I. circuit A suggest the 
following straightforward functional adjustment
procedure for overcoming the effects of passive component 
tolerances on the impedance for S.I. circuit A.

(1) Adjust G-j to give A q = 0  and G^ to give B^=0.

(2) Then adjust Gy to obtain the desired inductance value L^.

The last adjustment for does not affect either of the
Furthermore, the conductance Gyconditions Aq ^Q and B^=0.



can be adjusted over a positive range of values to give 
both a positive and negative range for the inductance value.
For example, if we choose G^ = ly Gy^b, G^iy, G^ = iy, G^ = l^, 
Gg=l?5 and Cq =1F, then the variation in inductance value with 
Gy is that shown in Fig.3.2. Other known S.I. circuits, 
both single-amplifier and two-amplifier circuits, do not 
have this property.

The 0/W and S/L circuits, and the remaining S.I. 
circuits to be described in this Chapter, are all unsuited 
to a straightforward adjustment procedure of the kind 
described here for S.I. circuit A. This is so because the 
value of each resistor in these circuits simultaneously affects 
the value of the inductance L and at least one of the two 
coefficient cancellations required for lossless inductor 
simulation.

3.2.2 Circuit B

S.I. circuit B is shown in Fig.3.3.
This circuit is a special case of S.I. circuit A obtained 
by replacing the conductance Gy by a short circuit , see 
Fig.3.1(a).The impedance presented by S.I. circuit B 
can therefore be obtained simply by letting Gy-*-°°
in the impedance expression for S.I. circuit A and 
collecting the remaining terms . In this way we obtain 
for S.I. circuit B

(Aq + SAy) + p(A 1 + £A^)
IND (B0 + £B2) + p (B-̂  + £B3)



where
> o - G4G2 ‘ G3G5 " G3G1

A1 C0G4

A 2 = (g 2 + g 3)(g 1 + g4 + g 5)

A~0 “ C0 (G1 + G4 + GS}

Bo = CG1 + G6)(G4G2 " G3G5} + G1G:!G6

Bi " G(fG4G2 " G3G5 " G5G6')

B2 = (g 2 ♦ g3){(g4 + G5)(Gl ♦ g 6) + G1G6

B3 = c0 f (G1 + G2 + G3 + G6n G4 + Gs> +

and £ = fJ 1 = a + p/wT

(3.22)

+ G3 + G6}

In the ideal amplifier case when p = oo , i.e. £ = 0 , 
the impedance in (3.21) becomes that of an ideal
inductance , i.e. = pL , if

Aq = 0 and = 0 (3.23)

The inductance L = A-^/Bq is given by the expression

^1 = ______________C0G4________________
B0 (G1 + G6>(G4G2 - G3GS} + G1G2G6

(5.24)

For arbitrary values for G^> G^ , and G^ the conditions 
Aq = 0 and B^ = 0 may be achieved by choosing Ĝ  and 
G2 in the same way as for S.I. circuit A , i.e.,



G c G r 5 6 3
(3.25)

G1

G2 G5R4^G3 + G6^

Substitution of these expressions for G^ and G  ̂ into 
the expression for L in (3.24) gives

L
(3.26)

(note that L is always positive). One set of component 
values that satisfies the conditions Aq = 0 and = 0 to 
give L = 0.25 H is: G1 = ltf , G2 = 2 IS , G3 = G4 = G5 = 1 IS,

to achieve inductance simulation and we would expect this 
circuit to have sensitivity properties similar to those 
for the 0/W circuit, the S/L circuit, and the new S.I. 
circuit A outlined previously in Section 3.2.1 .
S.I. circuit B is interesting because it is a special 
case of S.I. circuit A . Also, S.I. circuit B uses only 
six resistors which is the same number as for the 0/W 
circuit, and the fewest number of resistors so far found 
necessary to achieve lossless positive inductance simulation 
using one amplifier and one capacitor .

Two coefficient cancellations are again needed



3.2.8 Circuit C

The impedance presented by the new S.I. circuit in 
Fig.3.4(a) will now be determined for the ideal amplifier 
case only. From Fig. 3.5(b) we find that the admittance 
equations describing the passive component part of the 
simulation network are

h Ĝ l + G2+pC(P -Pc0 -G2 -G1 0 V
*2 "PC0 (PCq +G3+G4) -G4 0 0 V 2

*3 = ~G2 "G4 (G2+g4+g5) 0 -Gs X V 3

14 "G1 0 0 (g i+c6+g 7) -G6 V 4

_*5_ 0 0 -G5 ~G6 (GS+V V S
(3.27)

Now, taking the amplifier into consideration^ we note that 
the voltages and are equal , i.e.,

V 4 V. (3.28)

Making the substitution in eqns. (3.27) gives

(a)V (Gl+G2+pC0) -pc0 "(Gl+G2) 0 V
(b) J2 -Pc0 Cpc0+G3+G4) -G4 0 V2

(c) :3 = -G2 -G4 (g2+G4+G5) -Gs X V3

(d) :4 -G1 0 (g1+g6+g7) -G6
vr5

(e) _h 0 0 -CG5+G6) ( W

(5.29)

/O



The values of I2, 13 and I4 are zero as no current is taken 
from nodes 2, 3 and 5 (nodes 3 and 4 are connected to the 
amplifier inputs). Eqns. (3.29) (b),(c) and (d) can 
therefore be rewritten as:

Pc0 (pc0+G3+G4) -G4 0 V
V1 G2

= -G4 (G2+G4+G5) -G 5 X V 3

_G 1_ 0 (G1 +G6+G 7) -g 6 V 5_

The voltages V2 and can be expressed in terms of , the 
voltage across the simulation network, by solving the set 
of linear equations in (3.30) using Cramer’s rule, i.e.,

D i
v 2 = V 1

D.
V 3 ■ D V-

0

where the expressions for Dq ,D̂ , and D2 are

(3.31)

(pC0 +G 3+ G 4 ) - G 4 0

Do = -G 4 (G2+ g 4 + G 5 ) -G 5

0 (G l + G 6+ G ?) - G 6

(3.32)

Pc0 (GiG 5 + G5G7 G2G6 - G4G6)
+ g 5 (g 1 + g ?)(g 3 + g 4) - g 6(g 2g 3 + g 2g 4 + g 3g4)

(3.33)



pc0 -G4 0

D1 G2 (G2+G4+G5} -G 5 (3.34)

G1 (g 1 +g 6+g7) - G6

= PC0 (G 1G S + G5G7 - G2G6 ' G4G6) + G4 (G 1G 5 ' G2G6} (3.35)

(Pc0+G3+G4) pc0 0

D2 = -G4 G2 “GS (3.36)

0 G1 - G6

= pCQ (G.LG 5 - G2G6 ' G4 G 6) + (G3 + G4)CGx G5 - G2Ge) (3.37)

From equation (3.29) (a) we have

(Gx + G2 + pCQ)V1 - (pCJV, - (Gn + Gn)Vx (3.38)0J 2 v 1 2 3

Substituting the expressions for and in (3.31) 
into (5.58) gives

1 = (Gj + G2 + pCQ) - pCQ pi - (G1 + G2) ^  Vx (3.39)

and from (3.39) the impedance = V./q is found to be



(Gi ♦ G 2)D2
(3.40)IND

(G1 + G2 + r>C0-'D0

^0______
PG0D1

The expressions for Dq , and given in (3.33), (3.55), 
and (3.37) may now be substituted into (3.40) and with some 
re-arranging of terms the impedance can be expressed as

where

ZIND
A0 + pAl 
B0 + pBi

(3.41)

Ao V G 1 + G 7)(G + 
7J 3

g 4) - G6 (G 2G 3 + G3G4 + G 2G4')

II1—I 
<

C0 (G 1G 5 + g 5g ? G 2G6 ' G 4G

Bo = (Cl + g 2) (g 3g 5g ? + g 4 g s g 7 G3G4G 6)

B 1 " C0 { G 5G7 (Gl + G 2 + G3 + G4^ + G,G-Gc - G 7G,(G0 1 5 5 5 o 2

(3.42)

+ G 4 ^

Once again two coefficient cancellations are required to 
achieve lossless inductance simulation. One set of conductance 
values which satisfy these conditions to give the inductance 
value L = CQ/27 is G1 = G2 = G4 = G5 = G6 = G7 = 1W, G3 = 6 ,̂ and G^ = 31S.

3.2.4 Circuit D

The impedance presented by the S.I. circuit shown 
in Fig. 3.5(a) , for the ideal amplifier case, was obtained
in the following way.



The admittance equations describing the RC 
network are first of all determined by inspection of 
Fig.3.5(b), i.e.,

V '(g 1+g 2) l—11 0 -G2 0 V
X2 -G1 (Gi+g 3+p c0) i n o 0 _G3 V2

13 = 0 1 n o (G6+G7+pGCp 0 ~G6 X V3

X4 -G2 0 0 (G2+g4+g5) -G4 V4

h. 0 "G3 _G6 -G4 (G3+G4+g6) _V 5_

(3.43)

Now, taking the amplifier into consideration, we note from 
Fig. 3.5(a) that the voltages and are equal, i.e.,

V4 = V 2 (3.44)

Making this substitution for in equations (3.43) gives

(a) V ■(gi+c2) -(G1+G2) 0 0

Cb) J2 -G1 (G l + G 3 +p C 0 ) -Pc0 ~G3

(c) :3 = 0 -pco Ĝ6+G7+pG(P -G6

(d) :4 -G2 (G2+G4+G5) 0 -G4

(e) h
0 -(g3+c4) _G6 CG3+G4+G63_

X

V,

V.

V.

Vr

(3.45)



The currents 1̂  , 1^ and 1^ are equal to zero and eqns.(3.45) 
(b),(c) and (d) can therefore be rewritten as:

V ■̂Gl+G3+PGCp 1 n 0 -G3 V
V1 0 = 1 n 0 (G6+G7+PC0^ ~G6 X V3

_G2_ (G2+G4+G5) 0 _G4 V 5

(3.46)

The voltage can
solving the set of linear eq
Cramer s rule, i.e.

D-,
V2 - « 5 t i

where the expressions for Dq

(Gl+G3+pCQ) 1 "d n 0

D = -Pc0 (G6+g 7+Pc

(G2+G4+G5) 0

be expressed in terms of by

(3.47)

-G.

(3.48)

-G

( G 6  + G 7^ ^ G 2 G 3 + G 3 G 5 G 1 G4 ^ +

p c0 ((g3 ♦ G6)(G2 ♦ g 5) - G4 (Gl + c7)
(3.49)

G1 1 O O -G

0 (G5+G7+pCq ) -G

G2 0 -G

(3.50)



(3.51)
'  ( G 6 + G 7 > ( G 2 G 3 -  W  + P C 0 ( G 2 G 3 + G 2 G 6 ‘  G 1 < V

From equation (3.45)(a) we have:

T1 = (G1 + Cl2)Vl " (G1 + G2)V2 (3.52)

and substituting the expression for in (3.47) gives

Ix = (Gx + G2)(l - D ^ D q ) V1

The impedance = V^/I^ is therefore given by

IND
0

(G1 ♦ G2)(D0 - o p
( 3 . 5 3 )

The expressions for Dq and given in (3.49) and (3.51) 
may now be substituted into (3.53) and with some re-arranging 
of terms we obtain

where

Z IND
A0 + p A l
B0 + p b i

Ao (G6 + c7)(G2G3 ♦ G3G5 G lG4-)

A1 = Co (CG3 + G6^ G 2 - g 5) - G4(G1

Bo = G_G5(Gi + G2)(G6 + G y>

B1 ■ V G1 + G2 ^ G3G5 + g 5g 6 - G4G

(3.54)

(3.55)



The circuit achieves lossless inductor simulation in the 
same way as the previously mentioned circuits, i.e., by 
means of the conditions Aq =0, B^=0, and A^/Bq > 0. One set 
of component values which satisfy these conditions to give 
an inductance value L=Cq /15 is: = 225, G^ = 315,

G2 " S  ' G4 = G5 " 1U '

3.2.5 Circuits E and F
Two more S.A. S.C. S.I. circuits were discovered 

by the author, but these circuits contain a large number of 
resistors and have no obvious advantages over the other S.I 
mentioned in this Chapter. The two circuits are shown in 
Figs.3.6 and 3.7 alongwith sets of resistance values which 
gives rise to lossless positive inductor simulation. Thes 
resistance values were found by matrix manipulation without 
fully deriving explicit impedance expressions, but the 
simulation of a lossless inductor was verified by computer 
analysis of the circuits.



3.3 EFFECTS OF PASSIVE COMPONENT TOLERANCES

In this Section we investigate the effects of 
passive component tolerances on the impedance of the 
single-amplifier, single-capacitor, S.I.s discussed in 
this thesis.

Assuming the amplifiers to be ideal,the S.I. 
circuits all have impedance expressions of the form

ZIND
A0 + PA1 

B0 + PB1
(3.56)

and the expressions for Aq , A^, Bq , and for each circuit 
have been given previously. To obtain lossless positive 
inductor simulation it is necessary to choose nominal values 
for the passive components in each circuit so that the 
nominal values for the coefficients in (3.56) , which we
shall call AqN , A ^ ,  B ^ , and B ^  , satisfy the following 
conditions.

AON = 0 IN = 0
a i n //b o n

> 0 (3.57)

Equation (3.56) then becomes = where the nominal
inductance value LXT is equal to A,XT/B . Tolerances on 
the passive component values for each circuit, however , 
cause the actual values for the coefficients in (3.56) not 
to be equal to their nominal values , i.e.,



> o
II > o + AA0

II > > o

II1—1 
<

ain + AA1

Bo ' bon + AB0

Bi = bin + AB1 = AB1

(3.58)

and the simulation is no longer that of a lossless inductor. 

The actual impedance presented by the non-ideal S.I. circuits 

is easily found by substituting the expressions in (3.58) 

into (3.56) , i.e., we obtain

A A Q + p(A1N + A A X) 

^ON + A B 0 + PA B 1
(3.59)

(note that A ^  and are zero and do not appear in (3.59)).

Two different models which both describe this impedance 

function will now be presented.

3.3.1 MODEL 1

One way of describing the impedance in (3.59) is 

by the well known model in Fig. 3.8 (a). For p = jto , we 

consider the impedance in (3.59) as the series

combination of a frequency dependent resistance R(u>) and 

an inductor whose inductance value L(oo) is also frequency 

dependent, i.e.,

z INd = + j L ( U 3 )  (3.60)

The frequency behaviour of is then described by L(oj)



and the Q-factor Q(oo) which is defined as

Q(w) L (cj) /R(oo) (3.61)

For an ideal lossless inductor L(co) is constant with 

frequency and Q(co) is infinite at all frequencies.

However, for the S.I.s u n d e r study, whose coefficients have 

the small errors shown in (3.58) , we find that L (co) is

frequency dependent and Q(co) has finite values which are 

also frequency dependent. Expressions for L (co) and Q(co) 

may be obtained from eqns. (3.59), (3.60), and (3.61), i.e.,

Simpler expressions for L (co) and Q(co) , than those in

(3.62) and (3.63) , are obtained if we neglect second order

effects, i.e., L (co) becomes

L(co) A 1NB0N + B0NAA1 + A 1NAB0 + A A 1AB0 " AA0AB1

(3.62)

Q(co)

(3.63)

L(w)

(3.64)



Thewhere is the nominal inductance value A ^ N ^ O N  

expression in (3.64) does not contain any terms due to 

A A q  and ABj, asthese errors have only a second order effect 

on L(oj). The simplified expression for Q(oo) is

Q(w)
w a i n b o n

a a o b o n + 60 A B 1A 1N

to LN
A A 0 2t 2 CO Ln AB.

ON A IN

(3.65)

This expression shows that the errors A A q and AB^ have 
s ta 1 order effect on Q(co) . We also note that the errors 

A A q and AB^ are mainly due to tolerances on the conduct­

ances in the S.I. circuits and not the capacitor tolerance. 

This is because Aq is independent of the capacitance value 

Cq , and because B^ is independent of Cq when B^ has its 

nominal value B ^  = 0. For example , for S.I. circuit B 

(see Section 3.2.2) A q is given by the expression

A0 = G4G 2 " G3G5 " G3G1 

and B^ is given by

V  V G4G 2 - G3G S - GS < V

The expression for B^shows that the tolerance on Cq can
1

only have a second order effect on the value for when



the tolerances on G ^ , G^, G ^ , G^ and Ĝ. are taken into 

consideration.

The frequency behaviour for |Q(<o)| ,as determined 

from (3.65) , is shown in Fig. 3.8 (c). We find that two types o f 

behaviour are possible depending upon the signs for A A q and

AB For both the maximum value for

|Q(u>)| occurs at the frequency

GOM L,tAB
(3.66)

When A A q and AB^ have opposite signs the value for 

|Q(w)| is infinite at GO = , and when they have the

same sign the maximum value for |Q(co)| is

max
1 /A 1NB

^ A A q AB
(3.67)

Unfortunately , in practice , the values for the 

conductances in the S.I. circuits are not known accurately, 

and the exact values for A A q and AB^ will therefore 

be unknown. Hence it is not possible to predict the values 

for |Q(co)| and GO^ that one would obtain. However , for

the given tolerances on the conductances for the S.I.s we 

can determine the worst possible values for A A q and AB^ 

and hence determine the worst case behaviour for |Q(co)| 

Consider , for example, S.I. circuit B for the case where



the amplifier is ideal and the passive components in the 

circuit have values within 1% of the following nominal 

values: = 1 IS , = 2 £> , G^ = G^ = G<- = G^ = 1 , Cq = 1 F.

From (3.22) we find that for this design the values for

a in  and bon a r e

a in ■ 1 b o n ^ (3.68)

and the worst case values for A A q and are

AAQ = AB 8/100 (3.69)

The worst case (w.c.) behaviour for |Q (co)| can now be determined 

by substituting these values into eqns. (3.66) and (5.67).

In this case we obtain

max(w.c .) 11-5

and this occurs at

(w.c.) Z.O r/s

An accurate plot of the worst case behaviour for |Q(o>)| ,

calculated from equation (3.65) , is shown in Fig. 3.8 (d).

To conclude we can say that in practice the actual |Q(w)| 

values , due to the 1% conductance .tolerances, must lie 

somewhere on the shaded area shown in this diagram.



3.3.2 MODEL 2

Rather than describing the non-ideal impedance 

of the S.I.s (see (3.59)) as the series combination*of a 

frequency dependent resistance and an inductor whose 

inductance value is also frequency dependent, an alternative 

model is that shown in Fig. 3.9. For the circuit in 

Fig. 3.9 we have

R Rv + pLRy
Z = — — ------- -  (3.70)

Rx + Ry + pL

This expression is of the same form as the expression in

(3.59) for the non-ideal impedance of the S.I.s, i.e., a 

bilinear expression in p. Expressions for the resistances 

Rx and Ry and the inductance L for the model in Fig. 3.9 

are obtained by equating the impedance expression in (3.70) 

to the non-ideal impedance in (3.59). Before doing this, 

however, it is convenient to re-express eqns. (3.70) and

(3.59) in the following way.

Z

RxRy pLRy

RX + RY RX + RY

pL

RX + RY

(3.71)

A A0 P(A i n + A A 1}

bon + ABo bon + AB0
IND

pABj

bon + A B o

(3.72)

-y ' i



Now we note that the impedance expressions in (3.71) and

(3.72) are equal for the following relationships

RX RY

Rx + Ry

A A 0

b o n  + A B o

iRy

+ Ryx
a i n + a a i 

b o n  + A B o
(3.73)

*x + *y

A B

b o n  + a b o

From these relationships we obtain the following expressions 

for , Ry, and L

A 1N + A A 1 

AB,

R A A 0 ̂ A 1N + A A 1^

Â 1N + A A 1 ^ B0N + A B 0^ A A qAB^
(3.74)

(A1N + a V

(A 1N + A A 1')('B0N + A B 0') " a a oa b i

These equations show that when the impedance of the non-ideal

S.I.s is represented by the the circuit in Fig. 3.9 , the 

component values R ^ ,

frequency independent . In this respect the alternative 

model differs from MODEL 1 which has frequency dependent

and L for the model are all



order changescomponent values. When the effects of 2n<̂  

are neglected from the expressions in (3.74) we obtain

Ry ~

Rx ^  A A q /B0N (3.75)

L »  Ln (1 + A A 1 /A1n - A B q /B0N)

where = A ^ / B q ^ * Note that the inductance expression
j

in (3.75) is the same as that for MODEL 1 when 2n order

changes are ignored, see (3.64) .

In the ideal case , when the conductances in the

S.I.s have their nominal values so that AA^ and AB^ are

zero , Ry will be infinite and Ry will be zero as expected

(see (3.74)). However, in the practical case, when the

conductances have tolerances causing A A q and AB^ to be

non-zero , Ry becomes finite and Ry becomes non-zero.

Futhermore, the values for A A q and AB^ will not be known

accurately and it is not possible to predict the values

for Ry and Ry that are obtained. However, for given

tolerances on the conductances we can calculate the

maximum possible values for |AAq| and |Ab J and hence

find the worst case values for |Ry| and |Ry| using

eqns. (3.75). Consider, for example, S.I. circuit B for

the case where the passive components in the circuit have

values within 1% of the following nominal values: = 1 IS ,

G 9 = 2 IS , G 7 = G, = G c = Gv = 115 , and = 
l  3 4 5 6 0 1 F. The



values for A-^ and for this choice of component values

have been calculated previously and are shown in (3.68) .

The worst case values for |AAq | and |AB.J have also been 

calculated previously and are shown in (3.69). Making use 

of the values in (3.68) and (3.69) in equation (3.75) we 

obtain

lRy l ( w . c )  ~  l 2 ' 5 a

lRXl (w .c )  ~ 0.0Z SI



3.4 EFFECTS OF NON-IDEAL AMPLIFIER GAIN (A GENERAL DISCUSSION)

Even if the passive components in the S.I. circuits

have zero tolerances the impedance of the circuits will

still be that of a lossy inductance due to amplifier

imperfections. These imperfections include the non-infinite

input resistances for the amplifier, the non-zero output

resistance, the non-zero input capacitances, and the non-
s tideal voltage gain }j for the amplifier which, to a 1 

order approximation is given by fj =  (  a. +  p/cĵ ,)

Taking into consideration the non-ideal gain fj , and 

ignoring other amplifier imperfections , we find that the 

impedance presented by the non-ideal S.I. circuits has the 

general form of a biquadratic in p, i.e.,

ZIND
a 0 + axp + a 2p 2

2
bo + P + b 2p

(3.76)

This form 
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One of these approaches is to model the non-ideal 

impedance of the S.I. by the series combination of a 

frequency dependent resistance and an inductance whose 

inductance value is also frequency dependent. For p = j cj f 

the impedance expression in (3.76) can be used with eqns.

(3.60) and (3.61) to determine expressions for the inductance 

and Q-factor behaviour. This approach has been used by 

Orchard and Willson for their S.I. circuit and detailed 

results of their investigations may be found in (26).

The same approach will also be adopted by the author for

S.I. circuit B and the results of this work will be 

presented in Chapter 4.

The other approach used in Section 3.3 was to 

model the impedance of the non-ideal S.I. by the circuit 

in Fig. 3.9. The impedance of the circuit in Fig. 3.9 

was given previously in (3.70),but it is convenient here 

to make the substitution p = jto in (3.70) and re-express 

the impedance as

jCOLRy
+

RX + RY
Z (3.77)

1 + jc?L

Similarly, for p = j<o , it is convenient to re-express

the impedance in (3.76) for the non-ideal S.I.

circuit as



+ap ~ M a2

b0 ' “S

jcoa.

bO w  b 2
IND

(3.78)
jwb-

b0 w  b 2

For the circuit in Fig. 3.9 to model the non-ideal impedance 

of the S.I. it is now obvious from eqns. (3.77) and (3.78) 

that the following relationships must hold

rxry ao
z- w a 2

Rx + ry b0
2,U) b 2

LRy a i

Rx + ry b0 - wS

L b l

RX + ry b0 2kca b 2

(3.79)

From these relationships we now obtain the following 

expressions for R^, Ry, and L

R x (-)

L(w)

Ry = ai/hl

ai(aQ _ u) 3 2)
2

(a lbo "" b la 0^ — ^  (b 2a i — b ia 2^
2

a l
2

(a lb0 ~ b ia0) - ^  (b 2a 1 - b la 2̂

(3.80)

When the non-ideal amplifier gain is taken into consideration

atO



we therefore find that for the model of Fig. 3.9 the

resistance Ry remains frequency independent, and the values 

for Ry and L both become frequency dependent. The frequency 

dependent inductance , however, may be replaced by the 

parallel combination of a frequency independent inductance L' 

and a frequency independent capacitance C' if

L'

2
al

a lb0 - bla0

C* (a lb0 b la0 )(b 2al -

a 2
1

b la 2)

(3.81)

This gives rise to the new model in Fig. 3.10 for which

the only frequency dependent component is the resistance Ry(co).

With the help of the model in Fig. 3.10 the 

author was able to develope a novel compensation procedure 

for overcoming the effects of the non-ideal amplifier 

gain on the loss/frequency response of active filters 

containing S.A. S.C. S.I.s - this compensation procedure 

will be described later in Chapter 5.



3.5 SUMMARY AND CONCLUSIONS

In this chapter Ave presented some new circuits 

which simulate the impedance of a lossless positive 

grounded inductor using only one amplifier, one capacitor, 

and a number of resistors. As an alternative to the 0/W 

and S/L circuits , one of the new circuits, circuit A, has 

the interesting feature that its inductance value can be 

varied over a positive and negative range by means of a 

single resistor, without affecting the conditions required 

for lossless inductor simulation. Futhermore , this new 

circuit is well suited to a straightforward functional 

adjustment procedure for overcoming the effects of passive 

component tolerances on the impedance. Another new 

circuit, circuit B, uses only six resistors , which is the 

same number as for the 0/W circuit , and it has the feature 

that it is a special case of S.I. circuit A.

All the new S.I. circuits rely on two coefficient 

cancellations in their impedance expressions to obtain the

correct simulation. Tolerances on the resistance values

for the circuits caus e these cancellatio ns to be in exact

and the simulation is no longer that of a lossless inductor

The impedance for the S.I. circuits under these conditions 

has been discussed in Section 3.3. The effects of the 

non-ideal voltage gain of the amplifier on the impedance 

of the S.I. circuits were briefly discussed in Section 3.4.



CHAPTER 4

A STUDY OF SIMULATED INDUCTOR CIRCUIT B

4.1 INTRODUCTION

In this chapter we carry out a study of one of 

the new S.I. circuits presented in Chapter 3, namely , S.I. 

circuit B.

In Section 4.2 we consider the amplifier in S.I. 

circuit B to be ideal and investigate the effects of passive 

component tolerances on the impedance. We then show how 

to choose the nominal component values for the circuit so 

that the effects of resistance tolerances on the impedance 

are reduced.

In Section 4.3 we consider the passive components

in the S.I. circuit to have exactly their nominal values,

i.e. zero tolerances, and investigate the effects of the

non-ideal voltage gain of the amplifier on the impedance.

Expressions for the L(co) and Q (co) behaviour are derived, 
how

and we show^to design the S.I. circuit so that the Q (to) 

behaviour is improved.

In Section 4.4 we ma ke a sensitivity study for

S.I. circuit B . We take into cons ideration the non- ideal

voltage gain of the ampl if ier and show how the L (u>) and

Q(co) behaviour change when the passive component values 

change from the nominal values.



In Section 4.5 we compare S.I. circuit B with 

two other S.I. circuits, namely , the Orchard/Willson 

circuit (see Section 2.3.1) and Antoniou’s two-amplifier 

circuit (see Section 2.3.2). This comparison includes 

the L(go) and Q(co) behaviour for the circuits due to the 

non-ideal voltage gains for their amplifiers, and the 

sensitivities of the L(a;) and 0(co) behaviour to the 

component values for the circuits.

A summary of the work presented in this chapte 

is given in Section 4.6.



4.2 EFFECTS OF PASSIVE COMPONENT TOLERANCES

In this section we consider the amplifier in S.I. 

circuit B to be ideal and investigate the effects of passive 

component tolerances on the impedance for the circuit.

4.2.1 TYPICAL EFFECTS OF PASSIVE COMPONENT TOLERANCES

In the ideal amplifier case S.I. circuit B has 

an impedance

Z = A0 * PA1 

B0 + PB1
(4.1)

where

A0 G4G 2 G3GS " G3G1

A 1 C0G4
(4.2)

Bo = (Gx + G6 )(G4 G2 -  S G5̂  + Gl'G2G6

B1 ■ C0 ( G4 G2 " G3G 5 - G SG 6^

us now choose the foilLowing nominal1 values for the

5ive components in the S.I. circuit :

R1N R 2N R3N R4N R 5N R,»,6N r̂ON

VALUE 10 5 10 10 10 10 4 (4.3)

UNITS K ft K SI nF

Note that the subscript N has been used in ,(4.3) to denote



nominal capacitance and resistance values. The nominal 

conductance values may be calculated from the

relationship G.XT = 1/R.XT and then used in (4.2), 

along with the value for Cq ^, to obtain the following 

nominal coefficient values:

A

VALUE

ON

0

A

4.10

IN

-13

B

4.10

ON
-12

BIN

0
(4.4)

From (4.1) we now find that the impedance is that of a 

lossless inductance having the nominal value = A ^ / B q ^

= 100 mH.

Tolerances on the capacitance and resistance

values for the S.I. circuit B will cause the coefficients

in (4.1) not to have the nominal values in (4.4) , and

the impedance will no longer be that of a lossless

inductance of value LXT. Various models which show theN
typical effects of the component tolerances were described

in Section 3.3. One model, shown in Fig*3.8(a) , likens

the non-ideal impedance to that of a frequency dependent

resistance in series with a frequency dependent inductance.

An alternative model is shown in Fig. 3.9 , and this model

has no frequency dependent component values. We will now adopt

the model in Fig. 3.9 and give values for its components

when each passive component in S.I. circuit B has, in turn,

a 1 1 tolerance from its nominal value in (4.3). Note

that for the model in Fig. 3.9 Ry should

R w should be zero, and L equal to Lxt.X N

be ideally infinite



From (4.2) we accurately calculate the values 

for A q , , Bq , and due to each component tolerance, 

and hence determine the errors A A q , A A ^ , A B q , and AB^

from the nominal coefficient values in (4.4). Then the 

values R^, Ry, and L for the model in Fig. 3.9 are 

calculated from eqns. (3.74). In this way we obtain the 

values shown in the Table in Fig. 4.1 (for convenience 

we show % changes in L due to each component tolerance 

instead of the actual inductance value). The largest 

value for |R is 50 ft and this occurs for a 1% 

change in any one of the resistances R^, R^> and R^ for 

the S.I. circuit. The smallest value for |Ry| is 

0.5 Mft and this occurs for 1% changes in R^, R ^ , and 

Rc- . The % changes in the inductance value L q due to 

the 1% component tolerances lie in the region 1.5%.

Note also, that the 1% changes in Cq affect only the 

inductance value .

So far we have considered only the effects of 

individual tolerances, however, in practice the actual 

values for R^, Ry, and L are due to a combination of 

component tolerances. Although we do not know accurately 

each component value for S.I. circuit B, and hence the 

accurate values for R^, Ry, and L , we can still calculate 

the worst possible values for |R̂ | , |Ry| , and L due

to the tolerances. The worst possible values for |R | and 

|Ry| occur when the values for |AAq | and |AB^| are the 

largest possible, see equation (3.75). From the expressions



for Aq and in (4.2) we see that this is the case when

the conductances and have a + 1% change and the

conductances G^, G^, G,., and G^ have a + 1% change. The 

worst case (w.c) values calculated using (3.75) are then

lRxlw.c B 200 

lRyI w.c s 125

(4.5)

The changes shown in Fig. 4.1 suggest that the largest 

change in L occurs when R ^ , an<  ̂ ^0 ^ave a - ^

change, and and have a + 1% change. For this case 

we obtain the values for A q and using (4.2), and

then from (3.75) we find that the largest error in L is 

approx. t  5 . 0 %.

The model in Fig. 3.8 may also be used to describe 

the non-ideal impedance for S.I. circuit B due to 1% 

component tolerances. From (3.65) we see that the |Q(gj)| 

behaviour is worst when the values for A A ^  and AB^ are 

as large as possible. Once again, this occurs when the 

conductances G^, G^, G^, and G^ have a 7 II change, and 

G^ and G^ have t  II changes. Calculating A A q and A B^ 

from (4.2) , and then making use of (3.65) , we obtain the

worst case |Q(co)| behaviour shown in Fig. 4.2. This 

behaviour shows that at 7.96 kHz the value for |Q(co)|

cannot be less than 1Z. 5



4.2.2 REDUCING THE EFFECTS OF COMPONENT TOLERANCES

For the model in Fig. 3.9 R^ should ideally be

zero, Ry should be infinite, and L should be equal to the 

specified inductance value L^. However , due to tolerance 

on the passive components for S.I. circuit B , the value

for R^ will be non-zero, Ry will be finite, and L will 

not be exactly equal to L^. In this section we show how 

to choose the nominal component values for S.I. circuit B 

so that the worst possible values for |R̂ | and |Ry| due 

to component tolerances are minimised and maximised 

accordingly.

Prev iouisiy in Section 3.3 we derived expres s ions

for Rx and r y due to the coeffic ient error s A0 ’ V

V and Bi for the impedance expr ess ion in (4. 1). The

exact express ions for R^ and Ry ar e gi­ven in (3 .74) , and

appro ximations , whiLch ignore second order ef f ec t s , ar e

given in (3.75 ). For convenience the approx ima te
expre ssions ar e again repeated here, i . e • y

RX ~ A A 0/B0N

RY * A 1n /A B 1

(4.6)

Assuming R^ and Ry to be given by the above approximations

the worst possible values for |R̂ | and |Ry| occur when

the values for A A q and AB-^ are the largest possible.

Oryi f/



The expressions for A q and in (4.2) show that this is 

the case when the conductances and G? differ by the 

fractional changes t  x from their nominal values, and the 

conductances G^, G ^ , G^ and G^ differ by + x fractional 

changes. Note from (4.2) that a small fractional 

change x for the value for Cq does not affect the value 

for A A q , and it has only a second order effect on the 

value for AB^

Let us now denote the nominal conductance values 

as G . XT so that the actual conductance values G- due to 

fractional changes . ± x , are given by

G. = (1 ± x )G.m (4.7)l v J lN v J

Substituting the conductance values in (4.7), with the 

appropriate signs for x mentioned above, into the expression 

for A q in (4.2) gives

Aq = G4N(1 ± x)G2N(1 !i) - G3N(1 + x) G5N(1 + x) + G1N(1 j x)
(4.8)

2and for small values for x we can ignore terms in x to give 

A) = G4NG2N " G3N^G5N + G1N̂  - 2x Ĝ4NG2N + G3NG5N + G5NG1N̂
(4.9)

We now note from (4.2) that the nominal value for A q is 

given by the expression

A dN G4NG2N G3N^G5N + G1N̂ 0 (4.10)



and we also note that the coefficient error A A q is given 

by the expression

A A 0 A0N C4*11)

Making use of eqns. (4.11) , (4.10) and (4.9) gives the 

following expression for the largest possible value for |a Aq |

|AAj = 2x (G.m Gom + G-mGcm + G-XTG-J (4.12)| 0 1 max v 4N 2N 3N 5N 3N IN' v J

In a similar way we can show that the largest possible 

value for AB^ , due to the fractional changes t  x for the 

conductance values , is given by the expression

! A B 1 1 max 2x CON^G4NG2N G3NGSN G3NG6n) (4.13)

Note that Cq ^ is the nominal value for Cq .

Expressions for the nominal values for A^ and Bq 

may be obtained from (4.2), i.e. we obtain

A IN C0NG4N

ON (GIN + G6N^G4NG2N G-mGcm) + G, x TGOXTG/-. t j>N 5N' IN 2N 6N

(4.14)

Now, substituting the expressions in (4.14), (4.13) and

id



(4.12) into (4.6) we obtain the following expressions 

for the worst case (w.c) values for |R̂ .| and |Ry| due 

to the fractional changes t  x for the conductance values

|Rxlw.c
_______2x (G4NG2N + G3NG5N + G3NGllP

Ĝ1N + G6N̂  ̂ G4NG2N " G3NG5I\P + G1NG2NG6N

(4.15)

l^lw.c
_____________ j W ____________

2x (G4NG2N + G3NG5N + G5NG6N̂
(4.16)

In Section 3.2.2 we showed that the nominal

values G 7XT, G.xt, G rxT and G.XT for S.I. circuit B could be 3N’ 4N 5N 6N
chosen arbitrarily and the conditions = 0 and =

satisfied by choosing

0

G1N G6NG 5N//G3N

G2N G5N^G3N + G6N^/G4N

(4.17)

Also, the specified inductance value can always be 

obtained by choosing the nominal value for Cq as

LNG6NG5N^G3NG4N G. XTG rxT + G^XTG rxT 4N 5N 5N + G c M G s .,) 5N 6N J
'ON C t.jG4N (4.18)



G j- n  and s o  that |Rxlw c an as as sma11 as

possible for any given values for x, and so that |Ry|w c 

in (4.16) is as large as possible.

Substituting the expressions for G ^  and G2^ in

(4.17) into eqns. (4.15) and (4.16) gives

We will now show how to choose the values for G ^ »  G ^  ,

|Rxlw.

4xG->IG/1KT(GT1.T + G,M ) 3N 4 N V 3N 6N'

^ 6 N ^ 4 N ^ 5 N  + + +3N 4N 3N 5N 5N 6N
(4

IRy I w .
4N

4xGCXT(G7M + GrxT) 5N 3N 6N
(4

Inspection of these expressions suggested that one way to 

achieve our objective is to choose large values for G4N 

and Gg^ , and to choose small values for G ^  and G ^ .  For 

example let us choose G ^  = G ^  = G^ and G ^  = G ^  = G g . 

Substituting these values in (4.19) and (4.20) gives

IRX I w .
4*(GS + GiJ 

GL (3fiL + Gs)
(4

Iry I w . c 4xGs (Gs + Gl )
(4

These expressions show clearly that for large values for G

.19) 

. 20)

.21) 

. 2 2 ) 

L



and small values for Gg, Pxlw c ^ecomes smaH  and |Ry| w c 

becomes large, i.e. from (4.21) and (4.22) we obtain

N w . c “  4X/3GL 

| R y I w . c  ~  1 / 4 x G S

The values for G-..., Goxl and C~.T that are required when G_,TJIN 2N ON M 3N’

^4N ’ G 5N an<  ̂ ^6N are c^osen 4n waY described previously,

may be obtained from eqns. (4.17) and (4.18). The entire 

set of component values which achieves our objective is 

therefore

g in = g l

G2N V 1 + W

G3N Gs

ii

g l

G„, = G^U5N s

G6N g l

C0N Ln G s G l (3 ♦ Gs /Cl)

where GT is large and Gc is small.

(4.23)



To show the advantages to be gained by designing

S.I. circuit B in the way shown in (4.23) let us choose 

L^= 100 mH, = 10  ̂ and Gg = 10 **. Making use of (4.23)

and the relationship = 1/ G ^  > we obtain the following

nominal component values for S.I. circuit B

R1N R 2N R3N R4N r sn R6N C0N

VALUE 1 99.01 100 1 100 1 332.2

UNITS K& K SI Kft pF

(4.24)
We now investigate how the impedance for S.I. circuit B 

changes, when each passive component value changes by t  1 . 0  % 

(i.e., x = 0.01) from the nominal value in (4.24). Making 

use of eqns. (4.2) and (3.74) we calculate the values for

R^, Ry and the % change in L for the model in Fig. 3.9.

In this way we obtain the values shown in Fig. 4.3. We 

find that the values for R̂ . and Ry are much closer to their 

ideal values , i.e. R = 0 and Ry = oo , than the values 

shown in Fig. 4.1 for the design example of Section 4.2.1, 

also, the % changes in L for the new design still lie in 

approximately the same range of values as for our previous 

example. The worst case values for |R^| and |Ry| due 

to combined tolerances were found to be

I Rv I = 13.35 ftI XI w . c

2.50 M&

(4.25)



These values were calculated in the same way as the values 

in (4.5) for our previous design example, see Section 4.2.1.

Note that the values in (4.25) are a significant improvement 

on those in (4.5). The worst case |Q(oo)| behaviour for

the new design was also calculated in the way described in 

Section 4.2.1 for the previous design, and is shown in Fig. 4.4. 

At the frequency 8.0 kHz we find that |Q(go)| cannot be 

less than 200 despite the 1.0 % component tolerances for

S .I . circuit B .



4.3 EFFECT OF NON-IDEAL A M P L I F I E R  GAIN

In Section 3.2.2 we showed that the impedance 

for S.I. circuit B , when the non-ideal voltage gain 

of the amplifier is taken into consideration, is given by 

the expression

ZIND
(Aq + 6A2) + p( A1 + £A3) 

(B0 + + P(B  ̂ + ^ 3)
( 4 . 2 6 )

where

>
o

II

G 4 G 2 ' G 3 G 5 " G 3 G 1

A 1 = C 0 G 4

A 2 ( G 2 +
G 3 ) ( G i ♦ G 4 + G s )

A 3 V G 1 + G 4 + G S>

B o  = ( G 1 + G 6^ *-G 4 G 2 “ G 3 G 5-> + G 1 G 2 G 6

B 1 =

n
o

(7
5

-P
*

G 2 " G 3 G 5 " G S G 6^

B 2 = ( C 2 + G 3 ) f ( G 4 + G s H G ! + ^  + G 1 G 6

B 3 C o f  ^ G 1 G 2 + G 3 + G 6') ^ G 4 + G 5') + G 1 ('G 2 

and £ = j j  * = cX + p/cJ^

( 4 . 2 7 )

+ S  + V

In the following section we investigate the typical effects



of the non-ideal voltage gain on the L(co) and Q(co) 

behaviour for S.I. circuit B. Then, in later sections,

we will make use of eqns. (4.26) and (4.27) to derive 

expressions for this L(co) and Q(cj) behaviour, and we will 

also describe a method of choosing the nominal passive 

component values for S.I. circuit B so that the Q(co) 

behaviour due to the non-ideal gain is improved. As we 

are interested here only in the effects of the non-ideal 

voltage gain of the amplifier , we shall assume that the 

passive components in the S.I. circuit have exactly their 

nominal values, so that Aq and B^ in (4.26) are exactly 

zero as required for lossless inductor simulation in the 

ideal amplifier case.



4.3.1 TYPICAL EFFECTS OF NON-IDEAL AMPLIFIER GAIN

For the passive components in S.I. circuit B 

we chose the nominal values shown in Table (a) of 

Fig. 4.5, and for the non-ideal amplifier gain p  we 

chose = 10  ̂ and f^ = 10^ Hz (see (4.27)). The Q (cu) 

and L (o>) behaviour for this design were then evaluated 

at a number of frequencies using a computer analysis 

program. L(a;) is shown as curve 1 in Fig. 4.6 (a), and 

Q(co) is shown as curve 1 in Fig. 4.6 (b) . Ideally the 

inductance value should be 100 mH , however, we find that 

this is only approximately the case at low frequencies, 

and at higher frequencies the inductance value becomes 

larger. The largest value for Q (co) is approximately 2000 

and this occurs at about 300 Hz.



4.3.2 EXPRESSIONS FOR L(co)

4.3.2.1 EXACT EXPRESSION FOR L M

To derive an expression for L(co) it is convenient 

to first of all express in (4.26) in the form shown

below where the substitution p = jco has been made

As the passive components for S.I. circuit B are assumed 

to have exactly their nominal values, we have not included 

the coefficients and in (4.28) as these are nominally

zero. Strictly speaking, the subscript N should be used 

for the coefficients in (4.28) to denote nominal values, 

however, the subscripts have been omitted to avoid 

complexity in the mathematical expressions which follow.

When in (4.28) is rewritten in the form

Z (4.28)
(Bq + *B2 - u)2B3/ wt ) + jio(cxB3 + B 2 Ajt )

z INd = R(w) + jcoL(co) (4.29)

we obtain the following expression for L(co)

L(w) =

(4.30)



When the expression in (4.30) is expanded, we find that the 
terms in oc/cô  appearing in the numerator have the coefficient

E = B2A2 + w B3A3 " B2A2 " 00 B3A3

which is exactly zero. Similarly, when the oc /cô  terms in 
the denominator of (4.30) are collected together we find 
that these also cancel. Our expression for L (co) therefore 
reduces to

L(w) =
A1B0 + ̂ B2A1 + B0A3̂  + Â2B0 w B 3Al)/,UT + (ct + u> MjO ( B ^  A2B3^

Bq + 2̂ BqB2 - 2co2BqB3/(0t + (a2 + cj /câ ) (B̂  + coB^)'

(4.31)
4.3.2.2 APPROXIMATION FOR L(co)

An approximation for the L (co) behaviour in (4.31)
can be obtained in the following way. For both the numerator

n dand denominator in (4.31) we ignore the 211 order terms in 
oc and l/co,p but retain all the remaining terms. In this 
way we obtain

L(co) A1B0 + °^B2A1 + B0A3̂  + Â2B0 ~ 10 B3A1^ °T

Bq + 2ocBqB2 - 2(Jb0B3A jt
(4.32)

To show that this expression approximates the actual 
inductance behaviour, we evaluated (4.32) at a number of 
frequencies . Choosing the values in Table (a) of Fig. 4.5 
for the passive components in S.I. circuit B, and ct = 10 **



and fT = 106 Hz for the non-ideal amplifier gain, we 
calculate the values for the coefficients in (4.27), and 
then from (4.32) we obtain the approximated L(w) behaviour 
shown as curve 2 in Fig. 4.6 (a). We find that the 
expression in (4.32) is, indeed, a very good approximation 
to the actual inductance behaviour which is shown as curve 1 
in Fig. 4.6 (a).



4.3.3 EXPRESSIONS FOR Q(co)

4.3.3.1 EXACT EXPRESSION FOR Q (co)

The impedance expression in (4.28) may be re-written 
in the form = R(co) + jcoL(cu) and then , making use
of the definition for Q(co) , i.e.,

Q (co) = goL(co)/R(go) (4.33)

we obtain

(Bq + 00̂ 2 ” u^B /̂CJy) (A  ̂ + ooÂ  + A /̂^rp) -  (ccA2 -  û A /̂cô ,) (ccB̂  + B^/^y)!
Q (̂ ) — o o t(Bq + <̂ B2 - CO B3/w t) (ĉ A2 - co A ^ M j,) + CO (A1 + ocÂ  + A2/«T) (*B3 +

(4.34)
When the numerator and denominator of the expression in
(4.34) are expanded we find, once again, that the terms in 
oc/ŵ  cancel. Equation (4.34) therefore becomes

_ 4 iB0 + “(A1B2 + V s 5 + % A2 - ^ A 1B3)/Wt+C ^ ^ 2/4)(B2A3 - A2B.)} 
W(°°) ■ 2 2 2 2 2 2^ ( B ^  + co A2B3) + co (A1B2 - B0A3)/got + (oc + (S JOxfi ( A ^  + co A~B3)

(4.35)
For the passive component values in Table (a) of Fig. 4.5 , 
and oc = 10  ̂ and f^ = 10^ Hz, we calculated the values for 
the the coefficients in (4.27), and then (4.35) was evaluated 
at a number of frequencies. The Q(co) behaviour obtained 
in this way was found to be identical to the Q(co) behaviour 
obtained using a computer analysis program, i.e. see curve 1 
in Fig. 4.6 (b).



4 .3.3.2 APPROXIMATION FOR Q(0))

An approximation for the Q-factor expression in
(4.35) can be obtained in the following way. For the
numerator in (4.35) we retain the term that is independent
of cc and 1 /cô , and ignore the 1st and 2nc* order terms in

s t<X and 1/cOj, - for the denominator we retain the 1 order 
terms in 06 and 1/COrp and ignore the 2n<̂  order terms. In 
this way we obtain

Q(*0
coAiBo

a (B0A2 + g/ a^b )̂ + co2 (a1b2 boa3) /^t
(4.36)

For a specified frequency range this expression can always 
be made valid by choosing sufficiently small values for cl and 
1/G)̂  - at higher frequencies the approximation breaks down 
as shown by the exact expression for Q (g o ) in (4.35).

It is interesting to determine the Q (go) values 
that are obtained from the approximation in (4.36) when the 
passive components in the S.I. circuit have the nominal 
values shown in Table (a) of Fig. 4.5, and oc = 10 ** and 
f̂ , = 10 Hz. Calculating the coefficient values from (4.27), 
and then using the expression in (4.36), we obtain the 
approximated Q(co) behaviour shown as curve 2 in Fig. 4.6 (b) . 
The agreement with the actual Q(co) behaviour, curve 1 in 
Fig. 4.6 (b) , is quite close over the frequency range 0.0 Hz 
to about 2.0 kHz when the discrepancy is approximately 10 °& 
of the actual Q(co) value.



4.3.4 DESIGN FOR IMPROVING Q(cj)

Inspection of the approximation in (4.36) suggested
that the actual Q(cu) behaviour might be improved by designing

2the S.I. circuit B so that the term in CO /cô, in (4.36)
was zero. We will, of course, still have to design the
S.I. circuit so that it has the nominal inductance value L^,
and so that the coefficients Aq and are both zero as
required for lossless inductor simulation in the ideal

2amplifier case. The coefficient for the CO /oô  term in
(4.36) , which we shall now call T , can be made to be
zero in the following way.

From (4.36) we note that T is given by the expression 

T = A 1B2 - BqA3 (4.37)

and substituting for A^, B^, B^ and A^ from (4.27) we obtain

T = C,
G4(G2 + G3)[(G4 + G5)(G1 + G6) + GiG&] -

(G1 + G4 + G5̂  (G1 + *-G4G2 " G3G5-* + G1G2G6
(4.38)

In Section 3.2.2 we showed that for arbitrary values for
G7, G. , Gr and G. , the coefficients A~ and B.. could be 3 4 5 6 0 1
made zero by choosing G^ and G2 as

G1 G5G6//G3

G2 G5('G3 + G6')//G4

(4.59)



We also showed that the desired inductance value could 
be obtained by choosing Cq as

C0
LNG6(G3G4GS + G3G4 + G3G5 + G5G6̂

G3G4
(4.40)

When the expressions for and G2 in (4.39) are substituted 
into (4.38) we obtain

,, . C0^G3G4 + G3G5 + G5G6 ^ G6G5 + ^ 3  + <0 " W G4 + G5 ^ G3 + GS>}
1 2

G3
(4.41)

This expression shows that for any arbitrary positive values 
for G^, G^ and G^, T can be made to be zero by choosing G^ 
to have the positive value that is obtained as a solution 
of the following quadratic in G^.

G6G5 + G6G5^G3 + G4} - G3G4(G4 + GS> (G3 + GS> = ° (4‘42)

Note that the solution of this equation always leads to one 
positive value for G^. Hence, our proposed design procedure 
is to choose arbitrary positive values for G^, G^ and G^, 
then solve the quadratic in G^ in (4.42) to make T = 0, and 
finally the conditions Aq = 0, = 0, and L = are
achieved by choosing G^ , G^ and Cq in the way shown in (4.39) 
and (4.40). We should remember , however, that when Cq is 
chosen in the way shown in (4.40) the actual L (to) values wilL 
only be approximately equal to because of the non-ideal



voltage gain for the amplifier.

To show the improvement in Q(co) when the above 
approach is used , we designed S.I. circuit B in the following 
way. First of all the component values G^, G^ and G^ were 
chosen as in Table (a) of Fig. 4.5, i.e., the same as for 
the design example studied in Section 4.3.1. The conductances 
G^, G^ and G£ were then calculated using eqns. (4.42) and
(4.39), and Cq was determined from (4.40) using the same value 
for as in our previous design example, i. e. , = 100 mil.
In this way we obtained the set of nominal passive component 
values shown in Table (b) of Fig. 4.5. Once again we 
chose oc = 10 and f^ = 10° Hz for the non-ideal amplifier
gain, see (4.27), and then we determined the L (co) and Q(w) 
behaviour using a circuit analysis program. The inductance 
behaviour for the new design is shown in
Fig. 4.7 (a), and we find that it is very similar to the 
behaviour for the design example of Section 4.5.1, i.e., 
see curve 1 in Fig. 4.6 (a). The new Q(co) behaviour is 
shown as curve 1 in Fig. 4.7 (b), and we find that this is 
a significant improvement on the previous behaviour shown
as curve 1 in Fig. 4.6 (b).

2When the co term in (4.36) is zero our
approximation for Q(co) reduces to

" A i BqQ M  = ------ ^ - 5 -----  (4.43)
a(B0A 2 ♦ u, A^.)

It is of interest to compare the approximate Q(cu) values



obtained from this expression with the actual Q(co) values.
By numerical evaluation of (4.43) we obtain curve 2 in 
Fig. 4.7 (b). Comparing this curve with curve 1 in Fig.4.7(b) 
we find that the approximation is still valid at low 
frequencies but at high frequencies it breaks down.



4.3.5 DESIGN FOR OBTAINING Q M max AT A SPECIFIED FREQUENCY

In this section we discuss how to choose
nominal passive component values for S.I. circuit
the Q-factor has its maximun value Q(co) at a sp x 'max 1

operating frequency fop

the
B so that 
ec if ied

4.3.5.1 INITIAL ASSUMPTIONS

Let . us assume that in the frequency 
range of interest the inductance behaviour L (co) can be 
approximated by the expression in (3.24) for the ideal 
amplifier case, i.e.,

L (co) = L C0G4
(Gi + G6)(G4G 2 - G 3G 5) + GlG 2G6

(4.44)

Let us also assume that the design procedure of Section 4.3.4 
has been carried out, and that the Q (co) behaviour can be 
approximated by the expression in (4.43), i.e.,

Q M w A iBo

a ̂ B0A 2 + ^  A 1B 3^

(4.45)

The largest value for the Q-factor expression 
in (4.45) is

0(co) max
A 1B0 

2o6 J a 2B 3
(4.46)



and this occurs at the frequency (Ajmax given by

Comax
V z

A 1B3
(4.47)

When the expressions for , k ^ i Bq and in (4.27) are 

substituted into (4.46) and (4.47) we obtain

Q(«)m v  = —max
1

2 a

G4{(G2 + G3)(G4G2 - G3G5) + GiG2G6 }

(G2 ♦ G )(G + G4 + Gs) \
(G4 + g 5) (g x + g 2 + c3 + g6) 

+ q ( G 2 + g3 + g 6)

(4.48)

1 (G2 + ^  CG1 + G4 + GS> { (G1 + V  ^ 2  - G3G5> + G1G2G6? 
C0 G4 { (G4 + G5) (Gl + G2 ♦ G. + G6) + Gi(G2 * G3 ♦ G6)j

(4.49)

4.3.5.2 OUTLINE OF DESIGN PROCEDURE

First of all we introduce a reference conductance 

Gq so that we obtain the normalised conductance values

Ki = Gi/G0 (4.50)

where i = 1 to 6 . Rewriting (4.39) in normalised form we 

find that the coefficients Aq and B^ will be zero if we choose

K1 = KCK,./K,1 5 6 :>

K2 = K5(K3 + k6)/k4
(4.51)



Also, condition (4.42) for improving Q (co) becomes a quadratic

in K6, i.e.,

K6K5 + K6K1CK3 ♦ K4) K3K4 (K4 + K5)(K3 + K ) = 0 (4..52)

and eqns. (4.44) and (4.49) for L and ^ max become

L - M ĵ Cq /Gq (4.53)

U nax —  /M 
C0

where

(4.54)

M,
(Ki + K6)(K4K2 - K3K5) + KlK2K6

(4.55)

M = (K2 + K3)(Kl + K4 H. Ks) ( (Kx + K6)(K4K2 - K3K5) + KiK2K6}
2 k4 { (K4 ♦ K5)(Kl + K2 + K3 + K6) + Kl(K2 + K3 + K6) }

(4.56)
Note that the values for and in (4.55) and (4.56)
depend only on the normalised conductance values and not 
on the values for Gq and Cq . The conditions in (4.51) and 
(4.52) also depend only on the values and not on Gq nor Cq .

The following procedure can now be used to design 
the S.I. circuit B so that to , the frequency at which 
Q(co)maX occurs > is equal to the desired frequency cj . We 
start by assuming that the values for K^, and K<- are 
given ( the best choice for these values will be discussed 
later in Section 4.5.6.2). For these values we solve the



values for and are found from (4.51), and this enables
us to evaluate and using eqns. (4.55) and (4.56).
From eqns. (4.53) and (4.54) we now find that the values for
G~ and C~ which give rise to L = LXT and g o  = g o  are0 0 N max op

quadratic in (4.52) to obtain the value for K^. Then the

0

M M 1 2

co Lm op N

'0
M 1M 2
2 TCx) i-i XTop N

(4.57)

(4.58)

Having found G„ we can obtain the actual conductance values 
G. using (4.50).



4.3.6 SOME DESIGN EXAMPLES

To demonstrate the design procedure of Section
4.3.5 let us consider the following example. We shall 
specify that the S.I. circuit is to have an inductance 
value Lxt = 100 mH, and that Q (o>) is to occur for
f = 1.0 kHz. For the non-ideal amplifier gain we
will choose & = 10 ** and f^ = 10^ Hz,as in the design 
examples of Sections 4.3.1 and 4.3.4.

4.3.6 . i INITIAL DESIGN

Previously, in Section 4.3.5.2, we mentioned that 
the values for K^, , and Kj. could be chosen arbitrarily
in the design procedure for obtaining Q(w) at a specified 
frequency. The best choice for these values will be discussed 
later in Section 4.3.6.1 but, as an initial design example, 
let us choose here = 1. For these values we
obtain from (4.52) = 1.23607, and then from (4.51) we
obtain = 1.23607 and = 2.23607. Using the values 
for K-̂ to in eqns. (4.55) and (4.56) gives M^ = 0.154508
and M2 = 2.000000, and then from eqns. (4.57) and (4.58) we 
obtain GQ = 4.91816 10-4^, and CQ = 1.56550 10-7 F.
Finally, the actual conductance values G^ are obtained from
(4.50) , and making use of the relationship = 1/G^ we
we obtain the set of nominal passive component values shown
in the Table in Fig. 4.8.

The L (co) and Q (co) behaviour for the above design



were determined by a computer circuit analysis program and 
are shown in Figs. 4.9 (a) and (b) . We find that the actual 
Q(co) behaviour reaches its largest value at approximately 
800 Hz instead of the specified frequency of 1.0 kHz. This 
error arises because we used the approximations for L(w) 
and Q(co) in (4.44) and (4.45) in the design of the S.I. circuit. 
A design based on more accurate approximation for L(w) and 
Q (co) has not been attempted.

4.3.6.2 IMPROVING L (oj) AND 0 (co) BY INTRODUCING A
LARGER RESISTANCE SPREAD

For the design example of Section 4.3.6.1 we 
specified LX7 = 100 mH, f =1.0 kHz, and we chose K_, K. 
and Kj. to be equal to unity. By retaining = 1 and
choosing = m, where m is large compared to one, we 
found that the overall behaviour for both L(co) and Q (go) 

were improved. Computed L(cu) and Q(ca) curves for m = 1,
5, 10 and 100 are shown in Figs. 4.10 and 4.11. The 
component values for S.I. circuit B corresponding to these 
values for m are shown in the Tables in Fig. 4.12.

The curves in Figs. 4.10 and 4.11 show clearly 
that there is some advantage in choosing a reasonably 
large value for m. However, we should note that as m is 
made large the resistance spread for the S.I. circuit is 
increased (see Fig. 4.12) and in some cases this may be 
undesirable. Note also that for values of m larger than 
10, the L (co) and Q (w) behaviour are not much more improved.



4.3.6.3 DESIGNS FOR DIFFERENT OPERATING FREQUENCIES

For the design example of Section 4.3.6.1 we
specified LXI = 100 m i l  and f =1 . 0  kHz, and the design r N op ’
procedure of Section 4.3.5 was carried out using

= K,- = 1.0. For the example of Section 4.3.6.2
the design specification was the same but different
values for were used. In this Section we will keep
Lm = 100 mH , choose K_ = Kr = 1 and K. = 10, andN ’ 3 5 4
investigate the design procedure of Section 4.3.5 for 
three different operating frequencies, i.e., f = 100
1.0 kHz and 10.0 kHz.

The component values which are obtained when
S.I. circuit B is designed in the way mentioned above,
are shown in the Tables in Fig. 4.13. Once again, the
L(w) and Q(co) behaviour for the designs were determined
using a computer circuit analysis program. The curves in
Fig. 4.14 show the Q(w) behaviour plotted against a
normalised frequency f/f . The curve for f = 100 Hz
shows that Q(w) reaches its largest value exactly at
the specified operating frequency. This suggests that th
design procedure of Section 4.3.5 is successful for low
operating frequencies. For higher operating frequencies,
i.e. f = 1.0 kHz, the design procedure still works
reasonably well and the Q-factor reaches its peak at a
frequency close to the specified operating frequency.
However , for high values for f , i.e. f = 1 0  kHz, we ’ op’ op



find that the design procedure of Section 4.3.5 is 
unsatisfactory.

It is interesting to show the variation of
inductance by two different representations. Fig. 4.15
shows the L(co) behaviour for each design example plotted
against f/f , and Fig. 4.16 shows the L (to) behaviour
plotted against frequency f. The curves in Fig. 4.15 show
that the actual inductance value is closer to the specified
value for designs based on a low operating frequency.
However, when S.I. circuit B is designed using a high value
for f we find that the inductance value remains more op
constant over a greater range of frequency as shown by 

Fig. 4.16.the curves in



4.4 COMBINED EFFECTS OF NON-IDEAL AMPLIFIER GAIN
AND COMPONENT TOLERANCES

In this Section we investigate how the L(co) and 
Q(co) behaviour, due to the non-ideal amplifier gain, are 
affected when the passive component values for S.I. circuit 
B change from their nominal values. We will also investigate 
how the L(co) and Q(co) behaviour change when the f^ value 
for the amplifier changes from its nominal value. As an 
example for study we will choose the values in Fig. 4.8 
for the passive components in the S.I. circuit, with a = 10-  ̂
and f,p = 10^ Hz for the non-ideal amplifier gain. These 
values are for the design example studied in Section 4.3.6.1 
where we specified L^ = 100 mH and f = 1.0 kHz, and chose 

= K<- = 1 ; the nominal L(w) and Q (co) behaviour for 
this design are shown in Figs. 4.9 (a) and (b).

We now investigated the effects of i 1.0 % changes 
in the passive component values on the L (ca) behaviour.
Using a computer circuit analysis program , we found that, 
at the operating frequency f = 1.0 kHz, the ± 1.0 % 
passive component changes produce the % changes in L (co) 
shown in the Table in Fig. 4.17. The changes in L (co) are 
all reasonably small, i.e., the magnitude for the largest 
% change in L (ca) is only 1.4. We also investigated the 
effects of ± 10.0 % changes in f^, but we found that the 
% changes in L (to) for f = f were extremely small.

Rather than determining the 9o changes in



produced by the component tolerances, for f = f , it is 
more interesting to show the actual changes produced in 
the overall Q(co) behaviour. When the resistance values 
R^ to Re- are altered by i 0 .001% and t 1.0 %, and R^ is 
altered by i 0.01 % and t 1.0 $, we obtain the changes in 
Q(uf) shown in Figs. 4.18 (a) to (f) . The effects of t 10.0
% changes in Cq and frp are shown in Figs. 4.18 (g) and (h) .
We find that the 1.0 % changes in the resistance values 
cause large changes in Q(u>) whereas the 10.0 % changes in
Cq and f^ have only a small effect on the Q(co) values.
This is because the resistance changes cause the coefficients 
Aq and in (4.26) not to be nominally zero, whereas the 
changes in Cq and f^ do not affect the values for Aq and 

, see (4.27) (note that the general Q(eo) behaviour due 
to the coefficient errors AA q and AB^ has been previously 
investigated in Section 3.3).

For the small changes in the resistance values, 
i.e. 0.001 %, we find from Figs. 4.18 (a) to (f) that the 
changes in Q(co) are very much smaller as expected. 
Nevertheless, these small resistance changes can still 
give rise to significant changes in the frequency at which 
the maximum value for Q (co) occurs. This shows that the 
design procedure in Section 4.3.5, for obtaining Q(co) 
at a specified frequency, depends on extremely close 
matching of the resistance values in the circuit( Orchard 
and Willson have pointed out (2.6) that this is also true 
for their S.I. circuit). In view of this, the design



procedure of Section 4.3.5 is very unlikely to be of use 
in practice.

Although small variations in the values for the 
resistors in S.I. circuit B can give rise to large changes 
in Q(w), the changes they produce in the loss/frequency 
response of active filters containing these S.I. circuits 
may be very much smaller. Later on in the thesis , i.e. 
in Chapter 7, we will show that this is indeed the case, 
and that one can obtain active-RC filters which are suitable 
for practical realisation.



4.5 COMPARISON WITH OTHER SIMULATED INDUCTOR CIRCUITS

In this Section we compare S.I. circuit B with 
two other S.I. circuits, namely, the Orchard/WilIson 
circuit of Section 2.2.1, and Antoniou’s two-amplifier
circuit described in Section 2 .2.2 . We will compare the
L(co) and Q(w) behaviour for these cir cuits due to the non
ideal vo ltage gain for their ampl if iers, and we will also
compare the sensit ivities of the L(co) and Q (co) values to
the passive component values and the f̂ , values for the 
circuits .

4 . S . ! L( 6 q ) AND Q (g o ) BEHAVIOUR

All three S . I. circuits men t ioned above were
des igned to me et the same specificati on, i.e• ln = 100 mH
and f = 1.0 op kHz For the non-ideal voltag e gain for
the amplifiers in the circuits we cho s e oc = 10"5 and

fT = 106 Hz. The Ore hard/Willson circuit wa s des igned in
the way sugges ted by the originators in (26) and the
Ant oniou circu it was designed in the way suggeste d by
Bru ton in (^q) • The component values that arise from these
des ign procedures are given in Tables (a) and (b) of Fig. 4.19
In the design pro cedure for the 0/W circuit the spread in
the resistance va lues was restricted to 100 : 1 . S.I.
circuit B has aiready been designed to meet the above
spe cification for a similar resistanc e sprea d , see Section
4 . 3.6.2, and for comp arision purposes its component values

o



are shown again in Table (c) of Fig. 4.19.
The L(co) and Q(oo) behaviour for all three S.I.s 

were obtained by computational circuit analysis and are 
shown in Figs. 4.20 and 4.21. We find that S.I. circuit B 
has slightly higher Q(co) values than the Orchard/Willson 
circuit, and slightly worse values than those for Antoniou’s 
circuit. Also, the L(co) behaviour S.I. circuit B is 
practically identical to the behaviour for Antoniou’s 
circuit, and more constant with frequency than the L(co) 
behaviour for Orchard and Willsons’ circuit(recently Haigh 
and Kunes have pointed out.that the inductance behaviour 
for Antoniou’s circuit can be made more constant with 
frequency by introducing a larger resistance spread into 
its design (So)).

4.5.2 L(co) AND Q(oQ SENSITIVITIES

The changes in L(co) and Q ( go) for S.I. circuit B 
due to changes in its component values, have already been 
investigated in Section 4.4. For the design example studied 
in that section we found that for f = f = 1 . 0  kHz, and 
for 1.0 % changes in the passive component values, we obtain 
the % changes in L(co) shown in the Table in Fig. 4.17. The 
magnitude for the largest % change in L(to) is only 1.4. The 
effects of changes in the passive component values
on the Q(co) behaviour are shown in Figs. 4.18 (a) to (g) , 
and the effects on Q((t>) of changes in the f̂, value are shown



Section 4.4 that thein Fig. 4.18 (h). We pointed out in 
large changes in Q(co) produced by the 1.0 % resistance 
changes, arise because of the errors a Aq and AB^ in the 
impedance expression for S.I. circuit B, see (4.26) and (4.27).

The impedance for Antoniou’s S.I. circuit,for 
the ideal amplifier case , is given by

Z = pL = pC0RlR2R3 
R .

(4.59)

This expression shows that 1.0 I changes in the passive 
component values give rise to either ± 1.0 % or + 1.0 % 
changes in the inductance value L. When the non-ideal 
voltage gains for the amplifiers in Antoniou’s circuit are 
taken into consideration, we would expect similar % changes 
for L (co) . The % changes in L(co) for Antoniou’s circuit 
should therefore be similar to those in Fig. 4.17 for S.I. 
circuit B. However, unlike S.I. circuit B, the Antoniou 
circuit does not make use of coefficient cancellations in 
its impedance expression, and we would expect the effects 
of component tolerances on its Q (co) behaviour to be very 
much smaller than the effects shown in Figs. 4.18 (a) to (h). 
To show this we chose the values in Table (b) of Fig. 4.19 
for the passive components in Antoniou’s circuit, and we 
investigated the effects of ± 1.0 % changes in these values 
on the nominal Q(co) behaviour. The nominal Q (co) behaviour
is shown in Fig. 4.21 and this is for amplifiers having 

T= 10  ̂ and fT = 10^ Hz. Using a computer circuit analysis



program we found that the changes in do not affect Q(<u).
The changes in and R^ produce the curves in Figs. 4.22
(a) and (b), and for the changes in R^ and Cq , Q(w ) is 
affected so little that the Q(cu) changes are not shown. The 
largest changes produced in Q(w) are for R^ and R^ and, as 
expected, they are very much smaller than the changes shown 
in Figs. 4.18 (a) to (f) for S.I. circuit B.

The effects of component tolerances on the L(co) 
and Q(w) behaviour for the Orchard/Willson S.I. circuit 
have not been determined, however, we would expect these 
effects to be similar to those for S.I. circuit B as both 
circuits achieve inductor simulation in the same way, i.e., 
by means of the conditions Aq = 0 and B^ = 
impedance expressions.

0 in their



4.6 SUMMARY

In Section 4.2 we considered the amplifier in S.I. 
circuit B to be ideal, we chose an experimental design for the 
circuit, and then we investigated the effects of passive 
component tolerances on the impedance. After this investig­
ation we showed how to choose the nominal passive component 
values for S.I. circuit B so that the effects of tolerances 
on the impedance were reduced.

In Section 4.3 we considered the passive component 
tolerances for S.I. circuit B to be zero, and we investigated 
the effects of the non-ideal voltage gain for the amplifier 
on the impedance. A design procedure for improving the 
overall Q(co) behaviour was described, and we also showed 
how to design S.I. circuit B so that Q h a d  its largest 
value at a specified operating frequency f . This later 
design procedure, however, depends on extremely close 
matching of the resistance values for the S.I. circuit, and 
it is unlikely to be useful in practice.

In Section 4.4 we again took the non-ideal voltage 
gain for the amplifier into consideration, and we investigated 
how the L(u>) and Q ( go) behaviour change when the passive 
component values change from their nominal values. We also 
investigated the effects of f^ variations on L(co) and Q(to).
The large changes in Q (go) due to the resistance changes, 
arise because of errors for the values of the coefficients 
Aq and B^ in the impedance expression for S.I. circuit B, see
(4.26) ( note that Aq and B^ are both nominally zero).



In Section 4.5 we compared S.I. circuit B with
Antoniou’s two-amplifier S.I. circuit and Orchard and 
Willsons’ single-amplifier S.I. circuit. We showed that 
all three S.I.s have similar L(co) and Q(oo) behaviour due 
to the non-ideal voltage gain for their amplifiers. We 
also showed that the effects of component value changes 
on the L(co) behaviour are similar, however, Antoniou’s 
two-amplifier circuit has much better Q(to) sensitivities 
to its resistance values and this is why it is preferred 

to the other circuits , in seme applications.



CHAPTER 5

FILTER DESIGN USING SIMULATED 

BIQUADRATIC IMPEDANCES

5.1 INTRODUCTION

In Chapter 3 we described some single-amplifier, 
single-capacitor, networks for simulating the impedance of 
a lossless inductor. The simulation, however, is exact 
only if the amplifiers in the simulation networks are 
considered ideal. When the non-ideal voltage gain for 
the amplifiers is taken into consideration, the impedance 
for the simulating networks becomes a biquadratic 
expression in p , and only approximates the impedance of 
an ideal inductance over a limited frequency range. In 
this chapter we take into consideration the non-ideal 
amplifier gain, and deliberately re-design the simulation 
networks of Chapter 3 to have a specific biquadratic 
impedance. We then show how various types of LC filters, 
with their terminating resistors, may be modified so as 
to produce the required loss/frequency response using these 
biquadratic impedances instead of the originally required 
inductors.

The specific biquadratic impedance function chosen 
for the simulating networks is discussed in Section 5.2, and 
the way of modifying LC filters to include the biquadratic 
impedances is described in Section 5.3. In Section 5.4 we



show how to design some simulating networks so that they 
have the required specific biquadratic impedance. As these 
simulating networks now have, ideally, a specific biquadratic 
impedance, and are no longer required to simulate an ideal 
inductor, we shall henceforward refer to these networks as 
'S.B.I.' circuits where S.B.I. is an abbreviation for 
simulated biquadratic impedance.

An advantage of the approach mentioned above is 
that the non-ideal voltage gain for the amplifiers in the 
simulating networks, is taken into consideration in the 
design of the active filter. For bandpass filters using 
the S.B.I. circuits, the passband loss/frequency response 
is correct at the frequencies of maximum power transfer 
for the original LC filter. The response at other frequencies 
may be incorrect but a high degree of compensation for the 
non-ideal voltage gain of the amplifiers can still be 
obtained. For highpass filters complete compensation for 
the non-ideal voltage gain can be obtained over the entire 
frequency range in which the gain of the amplifier can be 
adequately described by a single-pole model. Even in the 
case of two-amplifier S.I.s this has not been achieved, as 
these circuits are usually designed to offer compensation 
for the non-ideal amplifier gain only in the neighourhood 
of a particular frequency (q-9) •



5.2 THE S.B.I. CIRCUIT

When the amplifier is considered ideal the single­
amplifier, single-capacitor, simulation networks discussed 
in this thesis have an impedance of the general form

Z A0 + PA1 
B0 + PB1

(5.1)

and the design criteria

Aq = 0 , Bx = 0 , A1/Bq > 0  (Bq f 0) (5.2)

are needed to give lossless positive inductor simulation. 
When the non-ideal voltage gain for the amplifier is taken 
into consideration,the impedance for the simulation 
networks becomes

Z a0 + a, p + aiPz
bO + bi P + bz P2"

(5.3)

as pointed out in Section 3.4. The design criteria in (5.2) 
are only applicable for the ideal amplifier case, and a 
different approach will be used for the non-ideal amplifier 
case.

For reasons which will become apparent our design 
criteria for the non-ideal amplifier case will be

a = 0 , b, = 0 , a /b >0, a /b > 0 , b, /b > 0  (5.4)o 1 1 0  2 0 ’ 2- 0

where b is non-zero. When these conditions are satisfiedo

i 3>



the impedance Z in (5.3) becomes

a, pCl + Pa2./ai ) (5.5)

and this expression can be rewritten as

pL(l + pT)
Z

1 + p 2LC
(5.6)

where
L = a, /bo , C = b /a( , ^  = a^/a, (5.7)

Note from (5.4) and (5.7) that the values for L, C and T7
are positive. Rather than regarding the simulation networks
with the impedance in (5.6) as non-ideal S.I.s, we now
regard them as ideal specific biquadratic impedances called
'S.B.I.s'. Equation (5.6) shows that the impedance of the
S.B.I.s is the same as that for a parallel LC resonator
whose impedance is scaled,i.e. multiplied, by a factor (1 + pT).

necessary, in general, to design the S.B.I.s in a filter so 
that they each have a different specified value for L. It 
is also important that the time constant X , which has the 
dimension of an RC product, has the same value for all 
S.B.I.s in a filter irrespective of the different L values. 
For any initial design for the S.B.I. circuit, other designs 
having different L values but the same value for X  can be 
obtained by scaling the impedances of the resistors and

In addition to the criteria in (5.4) it will be



capacitor in the S.B.I. circuit by the same constant. 
Impedance scaling does not affect the value for "£ because 
it has the dimension RC, but it does affect the value for 
C in (5.6). When an S.B.I. circuit is designed to have a 
specified value for L, i.e. L = L^, we shall write for 
the impedance in (5.6) and we shall write the values for 
C and T  in (5.6) as and .



5.3 FILTER DESIGN USING S.B.I. CIRCUITS

5.3.1 GENERAL APPROACH

The form for the impedance Z in (5.6) suggests, 
if initially we ignore the scaling term (1 + pT), that we 
may be able to use the S.B.I.s in filters which incorporate 
grounded parallel LC circuits. Such circuits occur naturally 
in bandpass filters, see Figs. 1.5 (c) and (d), but this is 
not the case with highpass filters, see Figs. 1.5 (a) and 
(b), nor lowpass filters. Since we are concerned here with 
both highpass and bandpass filter design a circuit modification 
for the highpass filters will have to be made so that parallel 
LC circuits can be introduced. This modification will be 
described in Section 5.3.2.1.

To take into consideration the impedance scaling 
term (1 + pT") in (5.6) we shall impedance scale the LC filter, 
with its terminating impedances, by the same factor (1 + plT) . 
This does not affect the voltage transfer ratio for the 
filter , and the parallel LC resonators are transformed to 
have an impedance of the same form as in (5.6). These new 
impedances can be realised using S.B.I. circuits to obtain 
the active filter. Impedance scaling by (1 + pT) also 
modifies the other impedances in the filter - these trans­
formations are shown in Fig. 5.1.



5.3.2 HIGHPASS FILTER DESIGN

In this section we describe how to design Cauer 
and Polynomial type highpass filters using S.B.I. circuits 
(note that Cauer and Polynomial type highpass filters have 
the typical loss/frequency characteristics shown in Figs.
1.5 (a) and (b)). Before outlining these design procedures, 
however, it is necessary to describe a network transformation 
for LC filters that was proposed by Nightingale and 
Rollett (58) •

5.3.2.1 PRELIMINARY NETWORK TRANSFORMATION

Consider the LC lowpass filter shown in Fig. 5.2 
(a). To obtain an active-RC version of this filter we shall 
use Bruton’s method of impedance scaling the components in 
the LC filter by k/p , to give the circuit in Fig. 5.2 (b). 
The F.D.N.R.s in the scaled filter, which arise from impedance 
scaling the capacitors in the original LC network, may be 
realised by the two-amplifier circuit of Fig. 2.7 (a). 
Unfortunately, the amplifiers in this simulating network 
give rise to a practical problem which we shall now outline.

The input connections to operational amplifiers
requ ire a D.C. bias and must the refore be connected by a
resi stive path to a poi nt of fix ed potent iLai choi;en so that
the quies cent outpu t VO 1 tage of the amplifier is not biased
too far towards one or o ther of the power--supply VO1 tag es .
When the two-ampi ifi er F.D.N., R. of Fig. ;l. 7 (a) is



incorporated into the filter circuit in Fig. 5.2 (b), we 
find that some of the amplifier inputs do not have a D.C. bias.

A general technique for overcoming the above 
problem (proposed originally by D.G. Haigh (37)) is to modify 
the F.D.N.R. lowpass filter in the way shown in Fig. 5.2 (c). 
The two resistors Ra and R^ in Fig. 5.2 (c) now connect the 
previously mentioned amplifier inputs to suitable points of 
fixed potential and provide the required D.C. bias. 
Unfortunately, the inclusion of these bias resistances in 
the filter may additionally cause the voltage transfer response 
for the filter to become distorted. The distortion can be 
reduced by reducing the filter impedances relative to the 
D.C. bias resistances which are determined by the D.C. 
properties of the amplifiers, however, the capacitances are 
then increased, and the size and cost of the filter are also 
increased. A way of avoiding the distortion completely 
has been proposed by Nightingale and Rollett (58) , and will 
now be briefly described.

When the modified F.D.N.R. filter in Fig. 5.2 (c) 
is converted back to its equivalent LC filter we obtain the 
circuit in Fig. 5.2 (d). The D.C. path resistors of 
Fig. 5.2 (c) are now equivalent to the inductors L& and 
placed across the terminating resistors of the original LC 
filter. For a chosen ratio L /R for the lowpass filter in 
Fig. 5.2 (d) (when normalised to have a passband edge 
frequency equal to 1.0 r/s) Nightingale and Rollett described 
a design procedure (58) so that the loss/frequency response



could be made substantially the same as that for the original 
LC filter in Fig. 5.2 (a). They found that the response for 
the filter in Fig. 5.2 (d) could be made exactly equal to 
that for the filter in Fig. 5.2 (a) except for an additional 
constant loss term. They also found that their design 
procedure is applicable to lowpass filters that have finite 
zeros in the transfer function.

In the following sections we will make use of the 
Nightingale/Rollett design procedure mentioned above to 
obtain active-RC highpass filters that use S.B.I. circuits. 
Some comments on the sensitivity properties of the Nightingale/ 
Rollett filters will be made later in the thesis in Chapter 6.



5.3.2.2 CAUER TYPE FILTERS

The first step is to obtain an LC highpass filter 
circuit in which the inductors appear only as parts of 
grounded parallel LC resonators. For Cauer type highpass 
filters this may be achieved in the following way.

Consider, for example, the resistively terminated 
t h5 order highpass filter shown in Fig. 5.3 (a). The 

corresponding lowpass filter is shown in Fig. 5.3 (b). For 
this filter we can use Nightingale and Rolletts’ design 
method to obtain the equivalent lowpass filter with parallel 
RL terminations shown in Fig. 5.3 (c). Now, by lowpass to 
highpass filter transformation, we obtain the highpass 
filter circuit in Fig. 5.3 (d) which contains parallel RC 
terminations. We shall refer to this filter as a Nightingale/ 
Rollett type highpass filter. The loss/frequency charac­
teristic for the filter in Fig. 5.3 (d) will be identical 
to that in Fig 5.3 (a) except for an additional constant 
loss term that arises in the Nightingale /Rollett design 
procedure. Also, for a normalised passband edge frequency 
of 1.0 r/s, many designs are possible depending upon the 
value one chooses for the product RgCg. This is because 
there is some freedom of choice for the ratio Lg/Rg in the 
design of the Nightingale/Rollett lowpass filter in Fig 5.3 (c). 
From the circuit in Fig. 5.3 (d) we obtain the filter circuit 
of Fig. 5.3 (h), which is our goal, by means of the following
transformations.



First of all the Norton transformation shown in
Fig. 5.4 (a) is applied to the capacitors and CL in
Fig. 5.3 (d) to give the filter circuit in Fig. 5.3 (e)
(note that this transformation does not affect the voltage
transfer function for the filter in Fig. 5.3 (d]). This
was done so that a capacitor appears across the tuned
circuit ^2^4 3 and s0 that some capacitance remains in
parallel with the load resistor . The ideal transformer
arising from this transformation can be eliminated using
the transformation of Fig. 5.4 (b) to obtain the circuit
in Fig. 5.3 (f) . This step involves impedance scaling the
components to the right of the transformer in Fig. 5.3 (e)

2by the factor d , where d is the transformer turns ratio.
This procedure will alter the basic loss for the filter,

VOUTwhere the loss is defined as 201ogin ---, but the
shape for the loss/frequency characteristic remains unchanged. 
To the circuit in Fig. 5.3 (f) we again apply the Norton 
transformation of Fig. 5.4 (a) to the capacitor taken 
with part of and again eliminate the resulting transformer 
in the way shown in Fig. 5.4 (b). When this is done we 
obtain the circuit in Fig. 5.3 (g) where a parallel capacitor 
has been provided to each series tuned circuit. The circuit 
in Fig. 5.3 (g) can now be transformed into the circuit of 
Fig. 5.3 (h) using the equivalence shown in Fig. 5.5. In 
this way we have achieved our first aim of obtaining an LC 
highpass filter in which the inductors exist only as parts 
of grounded parallel LC resonator circuits.



The next step is to design two S.B.I. circuits 
so that the parameter L in their impedance expression, see
(5.6), has the inductance values and shown in
Fig. 5.3 (h). Associated with these two designs there will 
be two values and Cg for the parameter C in (5.6)
(different C values for different L values), but the values 
for TT in (5.6) will be the same if we follow the design 
procedure outlined in Section 5.3. We now proceed by re­
drawing the filter circuit of Fig. 5.3 (h) in the way shown

n i
in Fig. 5.3 (i) so that the capacitors Cg, and
(see Fig. 5.3 (h)) are split in such a way that the capacitors

1 I t  IT I ICg , , C6 and (see Fig. 5.3 (i)) have the values
i mi h i  i

CS = ^ RS ’ CL = ’ C6 C6 ~ CA and C7 C7 CB ’
The filter in Fig. 5.3 (i) can now be impedance scaled by
(1 + pT) making use of the transformations given in Fig. 5.1.
This results in the filter of Fig. 5.3 (j), in which the
impedances and are realised by the S.B.I. circuits.
Note that for the practical realisation of the final active-
RC filter it is of course necessary that the capacitance
values Cg, C£", and C7 in Fig. 5.3 (i) are all positive.

It is of interest to compare the active filter of
Fig. 5.3 (j) with that which is obtained when S.I.s are
used to replace directly the inductors in the LC filter of
Fig. 5.3 (a). We find that four additional capacitors, i.e.,
u i t muCg, C^, Cy and C^> are required for the new design procedure.

A plausible approach, not yet tested, for reducing the number 
of additional capacitors will now be discussed.



There are some degrees of freedom in the design 
procedure outlined here, namely, our choice for the product 
RgCg in the filter of Fig. 5.3 (d), and secondly the amount 
of load capacitance in Fig. 5.3 (d) that we distribute 
across the inductors in the filter of Fig. 5.3 (h). It may 
be possible to use these degrees of freedom to design the 
LC filter of Fig. 5.3 (h) so that, after the design of the

* ’ lllllS.B.I.s , the additional capacitances C^, Cy and m
Fig. 5.3 (i) are exactly zero. This implies that the values 
for and in Fig. 5.3 (h) would have to be equal ,
respectively, to the values and Cg associated with the

M ! »>S.B.I. circuits, and that Cg was exactly equal to t/Rg.
In this case impedance scaling by (1 + pT) would give rise 
to the active-RC filter of Fig. 5.3 (k). For this filter

iithere is only one additional capacitor, namely, Cg.
t hThe design procedure outlined here for a 5 order 

filter can be applied in the same way to filters of higher 
order.

.3



5.3.2.3 POLYNOMIAL TYPE FILTERS

Polynomial type highpass filters can be designed 
in the same way as the Cauer type filters except that the 
transformation shown in Fig. 5.5 is hot required.

Consider, for example, the resistively terminated 
5 ^  order polynomial type filter shown in Fig. 5.6 (a).
Fig. 5.6 (b) shows the equivalent Nightingale/Rollett type 
highpass filter. Continuing in the same way as in Section
5.3.2.2, the filter of Fig. 5.6 (b) is now transformed to 
the filter of Fig. 5.6 (c). This filter is then re-drawn 
in the way shown in Fig. 5.6 (d) and, finally, impedance 
scaled by (1 + pY) to obtain the filter in Fig. 5.6 (e) 
where and Zg represent the S.B.I. circuits.

As in the case for Cauer type filters there are 
some degrees of freedom in the design procedure outlined 
here. Once again, it may be possible to use these degrees 
of freedom to eliminate some of the capacitors in the 
active-RC filter of Fig. 5.6 (e), to obtain the filter of 
Fig. 5.6 (f). This filter uses only one more capacitor than 
the equivalent active-RC filter obtained by replacing the 
inductors in the filter of Fig. 5.6 (a) by S.I. circuits.



5.3.3 BANDPASS FILTER DESIGN

5.3.3.1 POLYNOMIAL TYPE FILTERS

Bandpass filters that contain grounded parallel 
LC circuits and no floating inductors, are also suited to 
the new design procedure. Consider, for example, the equally 
resistively terminated b1"*1 order polynomial type filter 
shown in Fig. 5.7 (a), designed so that its loss/frequency 
response in the passband contains points of maximum power 
transfer. The S.B.I. circuits can be designed so that the 
parameter L for their impedance expression in (5.6) has
the inductance values L., L^ and Ln shown in Fig. 5.7 (a).

A i5 L

Along with these L values the S.B.I.s will have the 
parameter values C^, and C^, and a common value for .
We now proceed by re-drawing the filter of Fig. 5.7 (a) 
in the way shown in Fig. 5.7 (b), and for this circuit we

I ! I
choose cx = ci “ C3 = C3 ~ CB ’ C5 = ^5 ~ CC " ^X’ anci

I I T= T/R^ (note that positive values for C-̂ , and 
are required for realisability). The filter circuit of 
Fig. 5.7 (b) can now be impedance scaled by (1 + pT) , making 
use of the transformations shown in Fig. 5.1, to give the 
filter circuit of Fig. 5.7 (c) in which the impedances Z^,
Zg and Z^ represent the S.B.I. circuits. However, 
impedance scaling by (1 + pT) transforms the source resistor 
in Fig. 5.7 (b) into the series inductor/resistor combination 
shown in Fig. 5.7 (c), and it becomes necessary to delete 
the undesirable inductor in some way. In the highpass filter



design procedure this difficulty does not arise because 
the scaling transformation can be applied to a parallel RC 
circuit, and this results in a pure resistor.

To eliminate the inductor in Fig. 5.7 (c) we 
consider now the frequencies f  ̂ for which maximum power 
transfer occurs in the filter of Fig. 5.7 (a). At these

ifrequencies the impedance to the right of the line XX 
in Fig. 5.7 (a) will be purely resistive and have a value 
R = Rg. For the impedance scaled filter of Fig. 5.7 (c),

Tthe impedance to the right of XX will be Rg(l + PT) at 
f = f as shown in Fig. 5.8 (a). Also, at the frequencies 
f the voltage gain for the circuit in Fig. 5.8 (a) is 
given by = is also the gain for the circuit
in Fig. 5.8 (b) at f = f because of the well known 
equivalence shown in Fig. 5.8 (c) . We can apply the 
equivalence between the circuits in Figs. 5.8 (a) and (b) 
to the filter of Fig. 5.7 (c), to obtain the new filter 
circuit shown in Fig. 5.7 (d)(note that the two series RC

icircuits on either side of XX in Fig. 5.7 (d) can be 
combined into a single series RC circuit because their 
RC products are the same). The voltage transfer function 
for the filter in Fig. 5.7 (d) will be identical to that 
for the circuit in Fig. 5.7 (a) at the frequencies f 
and at zero frequency. At frequencies other than f  ̂ and 
zero frequency, we would expect the response to be different 
to an extent which depends on the value for 'X used in the 
impedance scaling procedure.

; -



Some computed and experimental work on bandpass 
filters of the type discussed here will be presented later 
in Chapter 7. The results indicate that although the 
design procedure here is not exact, extremely good results 
can still be obtained. Note, also, that the design procedure 
described here does not require additional capacitors as is 
the case for highpass filters.



5.3.3.2 FILTERS WITH FINITE ZEROS

LC bandpass filters having finite transmission 
zeros, and no floating inductors, can also be modified to 
obtain active filters that use S.B.I. circuits.

Consider, for example, the channel filter shown 
in Fig. 5.9 (a) which has been investigated by Valihora,
Lim, and Bruton (Zl)• Making use of the transformation 
shown in Fig. 5.5, the circuit in Fig. 5.9 (a) is re-drawn 
as shown in Fig. 5.9 (b) so that each inductor is associated 
with a parallel capacitor. Once again the S.B.I.s are 
now designed, as outlined in Section 5.2, to have the 
parameter values to Lp shown in Fig. 5.9 (b). Proceedin 
in the same way as before, we re-draw the circuit of 
Fig. 5.9 (b) in the way shown in Fig. 5.9 (c), and then 
impedance scale by (1 + pT) . When this is done we obtain 
the filter circuit of Fig. 5.9 (d) where to Zp represent

tthe S.B.I. circuits. The small inductance L arising in 
the circuit of Fig. 5.9 (d) can be eliminated in the same 
way as in Section 5.3.3.1, i.e. by making use of the 
transformation of Fig. 5.8, to obtain the final active-RC 
filter shown in Fig. 5.9 (e). The two series RC circuits

ion either side of XX in Fig. 5.8 (e) can be combined so 
that the design procedure does not require the use of 
additional capacitors.



5.3.3.3 RE-INTERPRETATION OF DESIGN PROCEDURE

FOR BANDPASS FILTERS

The design procedure for bandpass filters may be 
re-interpreted in the following way.

Let us represent the original LC bandpass filters 
of Figs. 5.7 (a) and 5.9 (a) by the more general circuit 
diagram of Fig. 5.10 (ignoring temporarily the capacitors C ). 
For the frequencies f  ̂ of maximum power transfer, the

Timpedance to the right of the line XX in Fig. 5.10 will be 
purely resistive of value Rg, and the voltage will be 
equal to Vj^/2. If two capacitors of equal value are inserted 
into the filter, as shown in Fig. 5.10, the voltage will 
be unchanged at the frequencies f and hence the
voltage gain for the filter, Vq uT ^ I N  , will be unchanged 
at the frequencies f The gain for other frequencies will
of course differ from the gain before the insertion of the 
capacitors, but for suitably small values for C it may be 
possible to meet the required filter specification using 
the modified filter circuit.

For these modified LC bandpass filters, with their 
parallel RC source impedance, we can choose C = T/Rg and 
follow our usual design procedure for filters containing 
S.B.I. circuits, see Section 5.5.1. In the present case, 
however, impedance scaling by (1 + pT) transforms the modified 
source impedance to a pure resistor, and this avoids the 
unwanted inductor that arose in the design procedures of



Sections 5.3.3.1 and 5.3.3.2. In these Sections impedance 
scaling by (1 + pT) was applied to a source impedance 
consisting of a pure resistor - this resulted in a series 
RL combination, and the unwanted inductor was eliminated 
using the transformation shown in Fig. 5.8. The active-RC 
bandpass filters that are obtained using the new approach, 
however, are identical to the active-RC filters obtained 
previously, and we shall therefore regard the design approach 
here as a re-interpretation of the methods of Sections 5.3.3.1 
and 5.3.3.2.



5.4 DESIGN OF SOME S.B.I. CIRCUITS

Previously, in Sections 3.2.1 and 3.2.2 we 
showed that for the ideal amplifier case, the networks in 
Figs. 3.2 (a) and 3.4 may be designed to simulate the 
impedance of a lossless positive inductor. When the non-ide 
voltage gain for the amplifiers is taken into consideration, 
the networks become non-ideal S.I.s. In this section we 
show how to design the networks in Figs. 3.2 (a) and 3.4 
so that, after taking into consideration the non-ideal 
voltage gain for the amplifiers, they become ideal S.B.I. 
circuits.

5.4.1 PROCEDURE FOR S.B.I. CIRCUIT B

Before describing how the simulating network in 
Fig. 3.3 can become an ideal S.B.I. circuit, it is conven­
ient to first of all consider the gain for the amplifier 
ideal, i.e. infinite, and review the design procedure for 
obtaining an ideal S.I..

5.4.1.1 REVIEW OF IDEAL AMPLIFIER CASE

When the gain for the amplifier is assumed to be 
ideal, the simulating network in Fig. 3.3 has an impedance

Z
A0
0

+ P A 1 

+ p B 1
(5

and the coefficients Aq to B^ are given by the expressions



The circuit therefore has the impedance of a lossless 
inductor of value L = A^/Bq provided the conditions Aq = 0 
and = 0 are satisfied. From (5.9) these conditions are

G4G2 G3G5 

C0 (g4g 2 - G 3G 5

S G 1 = °

- G 5G 6^ = 0

and the inductance value L is

(5.10)

L = C0G 4
(G1 + G 6)(G4 G 2 - G 3G 5) + G1G 2G 6

(5.11)

In Section 3.2.2 we satisfied the conditions in (5.10) by 
choosing arbitrary values for G^, G^, G^ and G^, and then 
specifying G^ and G2 as

G

G

1

2

R3G6G5

g sr4 (g 3 + g6)
(5.12)

In this section, however, it is more convenient to satisfy



the conditions in (5.10) by choosing arbitrary values for 

G^, ^4 and G<-, and specifying G^ and G^ as

G4G2

G 1 + G 5

G 6 =
G1G2G4 

c 5 (g i + G 5)

(S.13)

Substitution of these expressions into (5.11) gives

L = W G 5 + G d

G 1G 2^G 1G5 + G 5 + G1G 2 + G2G4 + G 2G 5')

(5.14)

and the desired inductance value, L = L^, can be obtained 

by specifying Cq as

c = LN G lG 2^G lG 5 + G 5 + G 1G 2 + G 2G 4 + G 2G 5'1 ^  1 5 ^

° "  V G S + ^

Note from eqns. (5.13) and (5.15) that, for arbitrary positive

values for Gn , G~, G., G r and L.,, the values for G? , Gr and 1 * 2 * 4 5  N ’ 3 6

Cq are always positive.



5.4.1.2 NON-IDEAL AMPLIFIER CASE

The impedance for the simulating network in Fig. 3-3, 
for the non-ideal amplifier case, was given previously in 
eqns. (3.21) and (3.22). When the impedance expression 
in (3.21) is re-written in the form

Z ao + a,p + azP2

bo + blP + b2.pZ
(5.16)

we find that the coefficients a to b9 are given byO (-*

a — G0G„ - GnG7 - G^GC + (X(G0 + GT) (G-, + G, + Ĝ )o 24 13 35 K 2 3V V 1 4 5

C0G4 a c0 (Gi + g4 + Gs) (G2 + C3) (Gl + g4 + G^)/Wrp

= Cq (Gi + G4 + g5)/COt

(Gi + G6)(G4G2 - Ĝ Gj.) + GlG2G6 + a(G2

= c0 cg4g 2 - G3G5 - g 5g 6) + (G2 + g 3) { (G4

+ aC0 ((G1 + C4 + G5)(G2 + G3 + G6) +

(5.17)

+ G3) f (G4 + V  (G1 + G6> + G1G

+ G5')('G1 + G6̂  + G1G6̂}

Gl(G4 + G5)}

bz = c0 (G1 - G4 + V  ̂ G2 + G3 + V + < ¥ G4 GŜ
/COT

The design criteria aQ 0 and b
i

0 in (5.4) are



therefore given by

G2G4 - GxG3 - G3G5 + CC(G2 + G3)(G1 + G4 + G5) = 0  ■ (5.18)

J0

G4G2 " G3G5 “ G5G6 + Ĝ2 + G3̂  ̂ G4 + G5̂  ̂ G1 + + GlG6l /WTC0

+ a[̂G.l + G4 + G5 ^ G2 + S  + G6̂  + G1^G4 + G5̂ 1
1= 0

(5.19)

and when these conditions are satisfied the simulating 
network becomes an ideal S.B.I. circuit having the impedance

ph(l + p^) 
1•+ p2LC

(5.20)

where

L =
C0 { G4 + a(Gj + G4 + G5) + (G2 + G3) (G^ + G4 + G5^/^tGo }

(G, ♦ G6)(G4G2 - g3g5) + GlG2G6 + a(G2 + G3)|(G4 + GSK G 1 ♦ g6) + gxg6

(5.21)

(Gj + G4 + g 5)(g2 + C.3 + c6) + g1(g4 + G5)

(Of i G4 + a (Gl + G4 + Gj-) + (G2 + G3) (Ĝ  + G4 + G^/W^Cq j

(5.22)

r  =
(G1 + G4 + G5)

COj J G4 + a (G^ + G4 + G5) + (G2 + G3) (Ĝ  + G4 + G3)/w tCq

(5.23)

In addition to the conditions a = 0  and b = 0 in (5.18)o 1



and (5.19), it will be necessary to design the S.B.T. 
circuit so that the parameter L in (5.20) is equal to the 
desired value . For given values for the amplifier 
parameters, OC and Cd^, these objectives may be achieved 
in the following way

Inspection of the expression for aQ in (5.17)
shows that aQ is dependent on the values for G^, ^3*

and G^, but independent of the values for G^ and Cq .
Similarly, from (5.17) and (5.21), we find that b and L
are functions of all the passive component values for the
simulating network, i.e., G^, G?, G-, G^, G<-, G^ and Cq .
To achieve the conditions a = 0, b =0, and L = LM , one0 1  N
approach is to first of all satisfy a = 0 by choosing a
suitable value for G~,, and then we find the appropriate
values for Gr and C~ which satisfy the conditions b. = 0 6 0 ' 1
and L = L... The choice of values for G, and do not N o u
affect the value for a since a is independent of these 
components. This approach will now be outlined in detail.

For given values for the amplifier parameters & 
and COy, for a specified value , and for arbitrary 
conductance values G^, G^, G^ and G^, let us first of all 
satisfy the condition a = 0 in (5.18) by choosing G^ as

G4G2 + oo(G1 + G4 + G5) 
Gt + Gs - Oi(G1 + G4 + Gs)

(5

To satisfy the condition b = 0 in (5.19) we begin by



rewriting (5.19) in the form

K1 + K2G6 + K3 C0 + K4 G6 C0 = °  <5 ' 2 0

where

Kx = g1 cg2 + G3)(G 4 + g5) / « t

K2 = (G2 + G3)(G 4 + Gs + G ^/to j. ( 5 . 2 6 )

K3 = G4G2 ” G3G5 + a |"^Gl  + G4 + G5')('G2 + G3^ + Gb G4 + G5-) }

K4 = «(G1 + G4 + G5) - G s

From the expression for L in (5.21), with L = L^, we also 
note the relationship

KS + K6G6
'0 ( S . 2 7 )

where

K5 LNG1 G4G2 -  G3G5 + ^ G2 + G3)(G 4 + G5> " (G2 + G3 ^ G1 + G4 + G5)/6 ;T

K, G4G2 + G1G2 -  G3Gs]  + a ( G 2 + G3 ^ G1 + G4 + GS>

K7 = G4 + a  (Gx + G4 + Gs )
(5.28)

Now, substituting the expression for Cq in (5.27) into (5.25),
we find that the condition for b = 0  can be re-expressed as1



X1G6 + X2G6 + X3 = 0 (5.29)

where

X1 = K4K6

X, = K,K, + K,K, + K . K,- (5.30)L 2 / 3 o 4 b

X3 = K 1 K 7 + K3K5

For the given values oc , CO^, , G^, G^, G^ and G^, and 
the value for G^ obtained from (5.24), we can calculate the 
values for to in (5.26) and (5.28), and hence we
can determine the values for X^ to X^ in (5.30). To satisfy 
the conditions b̂  = 0 and L = we now solve the quadratic 
in (5.29) to obtain the required value for G^, and then from
(5.27) we obtain the value for Cq . This solution, of course, 
will be significant only if the value for G^ is positive 
real, and also provided the value for Cq is positive. We 
will now discuss whether or not this is the case.

Let us start our discussion by comparing the design 
conditions required in the ideal amplifier case of Section
5.4.1.1 , with those for the non-ideal amplifier case studied 
here. We find that the expressions for Aq = 0 and = 0 
in (5.10) are similar to those for aQ = 0 and b̂  = 0 in (5.18) 
and (5.19). Also, the inductance expression in (5.11) is

a quadratic in that is independent of Cq , i.e., we obtain



similar to the expression in (5.21) for the parameter L . 
Indeed, the expressions for the non-ideal amplifier case 
differ only in that they contain additional terms due to 
the amplifier parameters OC and CÔ ,. Continuing our 
comparision, we find that in both the ideal and non-ideal 
amplifier cases the design approach is to obtain values 
for G^, G^, and Cq that satisfy the relevant design 
conditions. In the ideal amplifier case of Section 5.4.1.1 
we found that for arbitrary positive values for G^, G^, G^ 
and G^, the values for G^, G^ and C q  are always positive. 
However, in the non-ideal amplifier case this is not 
necessarily the case as negative signs, due to oc and 1/(JT 
terms,appear in the expressions which determine G^j G^ and 
Cq , e.g., see (5.24). Nevertheless, for sufficiently small 
values for CX and l/Gd̂ , the values for G^, G^ and C q  in 
the non-ideal amplifier case should be close to those for 
the ideal amplifier case. We can therefore conclude that 
for the non-ideal amplifier case, there should be a wide
range of values for G^, , G4 and GS which give rise to
positive real values for G3> G6 and C0 .



5.4.2 PROCEDURE FOR S.B.I. CIRCUIT A

Before describing how the simulating network in 
Fig. 3.1 (a) can become an ideal S.B.I. circuit, it is 
again convenient to consider the voltage gain for the 
amplifier to be ideal, and review the design procedure for 
obtaining an ideal S.I..

5.4.2.1 REVIEW OF IDEAL AMPLIFIER CASE

When the voltage gain for the amplifier is assumed 
to be ideal, the simulating network in Fig. 3.1 (a) has an 
impedance

where

Z A 0 + PA 1

B0 + PBj_

> o II (G6 ♦ G7)(G4G2 - G3G5 GiG3)

A1 - C0 | G4 (G2 + G7-)

+i—i g s H g 3 + V )

Bo - G1G2G6G7 + ('G4G2 G3G5) (g 6g 7 + Gig 7 + g iG6)

Bi ' Cq CG1 + Gy)(G2U^ ' G3GS - g sg6)

(5.31)

(5.32)

The circuit therefore has the impedance of a lossless
inductance of value L = A^/B^ provided the conditions
Aq = 0 and B^ = 0 are satisfied. From (5.32) these conditions



are

(G6 ♦ G 7)(G4G 2 - G 3G 5 - G 1G.) = 0

V G1 + G 7)(G4G 2 - G G s - G G ) = 0

(5.33)

and the inductance value L is

L =
G0 f G4 (G2 + G?) - (G4 + G s)(G3 + G6))

(G4g2 - G3G5)(G6g7 + G1G7 + g xg 6d + GlG2G6G7
(5.34)

To satisfy the conditions in (5.33) let us choose arbitrary 
positive values for G^, G2, G^, G^ and G7, and specify
G7 and G. as 5 o

G3 =
G4G 2

G1 + G5
(5.35)

G1G2G4
G5(G1 + GS>

(5.36)

Substitution of these expressions into (5.34) gives

L = C0 (G5G7 " G1G2)(G1 + G5}
G 1G 2 { M G 1 + G 5 ^ G 2 + G S> + G 4G 2<G1 + G 7^ }

(5.37)

and the desired inductance value, L = L^, can be obtained 
by specifying Cq as

„ LNG1G2 f G7 CGi + g5)(g2 + G 5̂  + G4G2('G1 + G 7 ' ) ]
'0

(G5G7 " G1G2 ^ G1 + G 5̂
(5.38)



Equation (5.38) shows that for Cq to be positive the 
following inequality must hold.

GSG? > G1G2 (5.39)

The values for G-̂ , G2, G^ and G^ should therefore be chosen
so that the above condition is satisfied.



5.4.2. 2 NON-IDEAL AMPLIFIER CASE

The impedance for the simulating network in 
Fig. 3.1 (a), for the non-ideal amplifier case, was shown 
previously in eqns. (3.13) and (3.14). When the impedance 
expression in (3.13) is rewritten in the form

a0 + aiP + \ P 2Z = — ---- ------ — T  (5.40)
b 0 + V  + V

we find that the coefficients a to b n o Z. are given by

a~ Ĝ6 + G7MG2G4 G1G3 G3G5 + °^G2 + G3 ^ G1 + G4 + G5̂

a, = co i

G4(G2 + G7) - (Gx + G5)(G3 + G6) +

a  ̂ G1 + G4 + G5^(G2 + G3 + G6 + G7̂  + ^
(g2 + g3)(g6 + g7)(g1 + g4 + g5)/cotc0

J

aZ V G1 + G4 G5 ^ G2 + G3 + G6 9 ^ 1 (5.41)

bo (-G4G2 G3G5̂  (G6G7 + G1G7 + G1G6̂  + G1G2G6G7
a(G2 + G3)̂ (G4 + GjHGjGg + g1g7 + g6g7) + g1g6g7 j

“\
(Gj + G7)(G2G4 G3G5 GgGg) +

\ = CQ -| tt[G1(G4 ♦ G5)(G2 + G3 + G6 + G7) + G?(G1 ♦ G4 + G5)(G2 + G3 + G&)] 

CG2 + G3)[(G4 + G5)(GlG6 + g xg 7 + g 6g 7) + GlG6G7]  / w t c 0

\ = V Gl(G4 g5)(G2 + G. + G, c7) G7 (Gi + G, C5) (G. + G-, + G, T



The design criteria aQ 
given by

= 0 and b.
1

0 in (5.4) are therefore

(G6 + G7')' G2G4 G1G3 G3G5 + a(-G2 + G3 ^ G1 + G4 + G5') 0

(5.42)

(G-j. + G7̂  ̂ G2G4 G3G5 G5G6̂  +

C0 f[Gl(G4 + G5)(G2 + S  + G6 + G7} + V G1 + G4 + G5 ^ G2 + G3 + Gj\ 
+ (G2 + G3) [CG4 + Gs) (G^Gg + G1Gy + GgG?) + GjGgG^ /G) TCQ

= 0

and when these conditions are satisfied the simulating 
network becomes an S.B.I. circuit with the impedance

pL(l + pT)
1 + p LC

where

'0

G4(G2 + g7) - (Gl + G5)(G3 + Gg) ♦ 

a (G1 + G4 + G5̂  *-G2 + G3 + G6 + G7̂  +
(g 2 + g 3)(g6 + g 7h g 1 + g4 + g 5)/w t c0

*-G4G2 G3G5 ^ G6G7 + G1G7 + G1G6̂  + G1G2G6G7 +

(5.43)

(5.44)

(5.45)

a(G2 + G.) (C4 + Gs)(G1G6 + GlG7 + G6G7) + GlG6G7



c
V G4 + G5^G2 + G3 + G6 + G7> + V G1 + G4 + G5^G2 + G3 + V

GO,

G4 (G2 + Gy) - (G1 + G5)(G3 + G6) +

a ̂G1 + G4 + G5̂  ̂ G2 + G3 + G6 + G7̂  + 
(G2 + Gj) (Gg + G7) (G1 + G4 + G5)/(OtCq (5.46)

V =

COT

(Gx ♦ G4 + G5)(G2 ♦ G3 ♦ G6 ♦ Gy)

r G4 (G2 + G?) -  fGl *  G5)(G 3 ♦ G6) +

1 a (G1 + G4 + Gs) (G2 + G3 + Gg + G7) + 

(G2 ♦ Gj) (Gg ♦ G7)(G1 ♦ G4 + G5)/ (O t C0

(5.47)

We now have to determine a way of choosing the passive
component values for the simulating network so that the
conditions in (5.42) and (5.43) are satisfied, and so that
L in (5.45) is equal to the desired value L^. To achieve
this we used the following procedure, which is similar to
that for S.B.I. circuit B.

For given values for oc , COj and L^, and for
chosen values for G^, G^, G4, G^ and G^, we first of all
satisfied the condition a = 0 in (5.42) by choosing G_ aso ' o

G4 G 2 + « ( Gl + G4 + g 5) 

G 1 + G 5 - a ( G 1 + g 4 + G s)
(5.48)

The condition aQ = 0 in (5.42) is independent of the values



for and C q , s o  we therefore chose these component values 
to satisfy the remaining two conditions = 0 and L = L^. 
This was achieved in the following way.

First of all we rewrite the expression for = 0 
in (5.43) in the form

K1 + K2G6 + K3C0 + K4G6C0 " ° (5.49)

where

Kx -  G-^GyCĜ  + G^) (G^ + G^)/(Drp

K2 = (G2 + G3) [giG7 + (G4 + Gs) (Gx + G7)] /« T
(5.50)

K3 *-Gl  + G7-)(-G2G4 G3G5-> +
« (g^  + G5)(G2 + G3 + G7) + G7(G2 + 035(04 + G4 + Gs)j

K4 = « ( G ^  + G$) + G7(G1 + G4 + Gs)j - Gj(Gx - G7)

From the expression for L in (5.45), with L = , we also
obtain the relationship

where

'0
KS + K6 G6 

K7 + K8G6
(5.51)

K 5 LNG1G7 ( G2G4 " G3G5

- V G 2 + G3 ^ G1 +

+ a ( g 2 + g ^)(G^

G4 + g5) /to T

G 5^j

+



K6 = (Gj + G7)(G4G2 - G3G5) + G - ^ g J  - (G2 + G3)(G1 + G4 + G5)/60t 

+ a Ln (G2 + Gj) ■ (G1 + G7) (G4 + Gj.) + G1G7 j

K7 = G4 (G2 + G7) - G3(G1 + Gs) + «(G2 + G3 + G7)(G1 + G4 + G5)

Kg = a  (Gx + G4 + Gs) - (G4 + Gs)

(5.52)

Now, by substituting the expression for Cq in (5.51) into
(5.49), we re-express the condition b^ = 0 as a quadratic
in Gr that is independent of C~, i.e., we obtain 6 * 0

where
X1G6 + X2G6 + X3 = 0

X1 " K2K8 + K4K6

X2 = K1K8 + K2K7 + K3K6 + K4K5

X3 K1K7 + K3K5

(5.53)

(5.54)

For the values for G^, G^, G^, G^, Gj , L^, OC and d)^, and 
the value for G^ obtained from (5.48), we can calculate the 
values for K, to K0 using eqns. (5.50) and (5.52), and hence
obtain the values for to in (5.54). The value for G^ 
can then be obtained by solving the quadratic in (5.53), and 
the value for Cq is obtained from (5.51). As before, this



solution will be significant only if the value for G^ is 
positive real, and provided Cq is also positive. For 
sufficiently small values for OC and l/CO^, the range of 
values for G^, G2> G^ , G<- and Gy,for which G^ and Cq are 
positive, should be similar to that for the ideal amplifier 
case of Section 5.4.2.1. In that section we showed that a 
positive real solution is obtained provided the inequality 
shown below is satisfied.

G5Gy > GxG2 (5.

We would expect this condition to be also necessary for the 
non-ideal amplifier case studied here.



5.5 CONCLUSIONS

We have pointed out that single-amplifier, single­
capacitor, S.I. circuits can have the impedance of a 
lossless inductance only if the amplifiers in the circuits 
are considered ideal. When the non-ideal voltage gain for 
the amplifiers is taken into consideration, the impedance 
for the simulating networks becomes a biquadratic expression 
in p, and only approximates the impedance of an ideal 
inductance over a limited frequency range. A biquadratic
expression in p arises because each simulating network

s tcontains a capacitor with a 1 order impedance function,
s tan amplifier whose voltage gain is assumed to have a 1 

order roll off, and no other elements with frequency 
dependent characteristics. In this chapter we took into 
consideration the non-ideal voltage gain for the amplifier, 
and deliberately re-designed the simulating networks to have 
a biquadratic impedance of the form

pL(l + pT)
1 + p2LC

type of impedance were referred to as 
11.1. is an abbreviation for Simulated 
We showed how various types of LC 

filters, with their terminating resistors, 
to produce the required loss/frequency 
.B.I. circuits instead of the originally

required inductors.

Z

Circuits having this 
S .B .I.s where S . B
Biquadratic Impedance 
highpass and bandpass 
may be modified so as 
response using the S



An ad van t age  o f  t h e  app roach  d e s c r i b e d  he r e  i s  

t h a t  t h e  n o n - i d e a l  v o l t a g e  g a i n  f o r  t h e  a m p l i f i e r s  i n  t h e  

s i m u l a t i n g  n e tw or k s ,  i s  t a k e n  i n t o  c o n s i d e r a t i o n  i n  t he  

d e s i g n  o f  t h e  a c t i v e  f i l t e r .  For bandpas s  f i l t e r s  u s i n g  

t h e  S . B . I .  c i r c u i t s ,  t h e  p a s s b a n d  l o s s / f r e q u e n c y  r e s p o n s e  

i s  c o r r e c t  a t  t h e  f r e q u e n c i e s  o f  maximum power t r a n s f e r  

f o r  t h e  o r i g i n a l  LC f i l t e r .  The r e s p o n s e  a t  o t h e r  f r e q u e n c i e s  

can  be i n c o r r e c t  bu t  a h ig h  d e g re e  o f  comp ensa t i o n  f o r  

t h e  n o n - i d e a l  v o l t a g e  g a in  o f  t he  a m p l i f i e r s  may s t i l l  be 

a c h i e v e d .  We wi l l  show t h a t  t h i s  i s  so l a t e r  i n  t he  t h e s i s  

i n  Chapt e r  7. For h i g h p a s s  f i l t e r s  co mp le t e  compensa t ion  

f o r  t h e  n o n - i d e a l  v o l t a g e  g a i n  can be o b t a i n e d  over  t he  e n t i r e  

f r e q u e n c y  r an ge  i n  which t h e  g a i n  o f  t he  a m p l i f i e r  can be 

a d e q u a t e l y  d e s c r i b e d  by a s i n g l e - p o l e  model .  Even i n  t h e  

c a s e  o f  t w o - a m p l i f i e r  S . I . s  t h i s  has n o t  been  a c h i e v e d ,  as  

t h e s e  c i r c u i t s  a r e  u s u a l l y  d e s i g n e d  t o  o f f e r  compensa t i on  

f o r  t h e  n o n - i d e a l  v o l t a g e  g a i n  o n ly  i n  t h e  ne ighbou rhood  o f  

a p a r t i c u l a r  f r e q u e n c y .

A d i s a d v a n t a g e  o f  t h e  new f i l t e r  d e s i g n  method,  

when compared w i t h  t h e  method o f  d i r e c t l y  r e p l a c i n g  t he  

i n d u c t o r s  i n  an LC f i l t e r  w i t h  S . I .  c i r c u i t s ,  i s  t h a t  

a d d i t i o n a l  c a p a c i t o r s  a r e  r e q u i r e d  f o r  t h e  h i g h p a s s  f i l t e r  

c a s e .  However,  as ment i oned  e a r l i e r ,  i t  may be p o s s i b l e  

t o  r educ e  t h e  number o f  a d d i t i o n a l  c a p a c i t o r s  t o  on ly  one 

r e g a r d l e s s  o f  t h e  o r d e r  o f  t h e  f i l t e r .  A s e n s i t i v i t y  

i n v e s t i g a t i o n  f o r  t he  new t y p e s  o f  f i l t e r s  d e s c r i b e d  h e r e  

w i l l  be c a r r i e d  ou t  i n  l a t e r  c h a p t e r s .



CHAPTER 6

SOME SENSITIVITY FEATURES FOR ACTIVE-RC FILTERS 

THAT USE SIMULATED BIQUADRATIC IMPEDANCES

6.1 INTRODUCTION

In S e c t i o n  5 . 3 . 2  we showed t h a t  a c t i v e - R C

h i g h p a s s  f i l t e r s , which use  S . B . I .  c i r c u i t s ,  a r e  d e r i v e d

from LC f i l t e r s  t h a t  have p a r a l l e l  RC t e r m i n a t i o n s .  In

S e c t i o n  5 . 3 . 3  we used  an o r i g i n a l  LC f i l t e r  w i t h  p u r e l y

r e s i s t i v e  t e r m i n a t i o n s  i n  t h e  d e s i g n  p r o c e d u r e  f o r  a c t i v e - R C

bandpas s  f i l t e r s  u s i n g  S . B . I . s .  However,  t h i s  l a t e r

d e s i g n  p r o c e d u r e  i n v o l v e s  an a p p r o x i m a t i o n ,  and i n  S e c t i o n

5 . 3 . 3 . 3  we showed t h a t  t h e  a c t i v e  bandpass  f i l t e r s  c an ,

i n s t e a d ,  be more p r e c i s e l y  c o n s i d e r e d  as b e in g  d e r i v e d  from

LC f i l t e r s  t h a t  a r e  m o d i f i e d  t o  have p a r a l l e l  RC t e r m i n a t i o n s .

Thus bo th  t h e  h i g h p a s s  and bandpass  f i l t e r s  may be r e g a r d e d

as be ing  d e r i v e d  from LC f i l t e r s  hav ing  p a r a l l e l  RC

t e r m i n a t i o n s .  In  t h i s  c h a p t e r  we w i l l  i n v e s t i g a t e  t he

s e n s i t i v i t y  p r o p e r t i e s  f o r  LC f i l t e r s  o f  t h i s  t y p e ,  and

compare t h e  p r o p e r t i e s  t o  t h o s e  f o r  LC f i l t e r s  t h a t  have

p u r e l y  r e s i s t i v e  t e r m i n a t i o n s .

Ano the r  p u r po se  o f  t h i s  c h a p t e r  i s  t o  i n v e s t i g a t e

th e  e f f e c t s  o f  f ^  v a r i a t i o n s  on t h e  impedance f o r  S . B . I .

c i r c u i t s .  In p a r t i c u l a r  we w i l l  be conce rned  w i t h  d e r i v i n g
s te x p r e s s i o n s  f o r  t he  1 o r d e r  n o r m a l i s e d  d i f f e r e n t i a l  

s e n s i t i v i t i e s  o f  t h e  r e a l  and imag ina ry  p a r t s  o f  t h e  impedance



t o  1/Cl)t - L a t e r  i n  t h e  t h e s i s ,  i n  Chapt e r  7, we w i l l  d e s c r i b e  

how to  choose  t h e  nomina l  p a s s i v e  component  v a l u e s  f o r  S . B . I .  

c i r c u i t  B so t h a t  t h e  s e n s i t i v i t y  o f  t he  imag ina r y  p a r t  of  

t h e  impedance t o  v a r i a t i o n s  i n  f^,, i s  m in imised .  We w i l l  

show t h a t  t h i s  s t r a t e g y  a l s o  r e d u c e s  t he  e f f e c t s  o f  f j  

v a r i a t i o n s  on t h e  l o s s / f r e q u e n c y  r e s p o n s e  o f  a c t i v e  f i l t e r s  

t h a t  c o n t a i n  t h e  S . B . I .  c i r c u i t s  B.

I 7



6 . 2 SOME SENSITIVITY FEATURES FOR LC FILTERS

6 . 2 . 1  LC FILTERS WITH RESISTIVE TERMINATIONS

The good s e n s i t i v i t y  p r o p e r t i e s  o f  r e s i s t i v e l y

t e r m i n a t e d  LC f i l t e r s  were f i r s t  s t a t e d  by Orchard  ( 1 ) ,
s twhen he p o i n t e d  ou t  t h a t  t h e  1 o r d e r  d i f f e r e n t i a l  

s e n s i t i v i t i e s  o f  t h e  l o s s  t o  t he  r e a c t i v e  components ,  

a r e  zero  a t  f r e q u e n c i e s  f   ̂ i n  t he  pa s s ba n d  i f ,  a t  t h e s e  

f r e q u e n c i e s ,  maximun p o s s i b l e  t r a n s f e r  o f  power t a k e s  p l a c e  

from t h e  s o u r c e  to  l o a d  t e r m i n a t i o n .

To i n v e s t i g a t e  O r c h a r d ’ s p o i n t  l e t  us c o n s i d e r  

t h e  r e s i s t i v e l y  t e r m i n a t e d  LC f i l t e r  shown i n  F ig .  6 . 1 .  

Maximum r e a l  power w i l l  be dissipated to t h e  r i g h t  hand
t

s i d e  ( R .H .S . )  o f  t he  l i n e  XX in  F ig .  6 .1  whenever  t he

c i r c u i t  t o  t h e  r i g h t  o f  XX has  t h e  same impedance as t h e  

s o u r c e  r e s i s t a n c e  Rg. The v o l t a g e  V^, shown i n  F ig .  6 . 1 ,  

w i l l  t h e n  be equa l  t o  V ^ / 2 ,  and t h e  maximum power dissipated

VIN /4RS .in  t h e  c i r c u i t  to  t h e  R.H.S.  o f  XX w i l l  be

Th is  power must  be dissipated i n  t h e  l oad  r e s i s t o r  R^ as
?

t h i s  i s  t h e  on ly  r e s i s t i v e  component  t o  t h e  r i g h t  o f  XX .

For any o u t p u t  v o l t a g e ,  Vq^ ,  t he  power dissipated in  R^
2

w i l l  be g i v e n  by VOUT /  R^. The v o l t a g e  g a i n  f o r  t h e

f i l t e r ,  f o r  which maximum power g e n e r a t i o n  o c c u r s ,  can 

now be d e t e r m i n e d  by e q u a t i n g  t he  maximum power which can

be diss ipated to t he  R.H.S.  of  XX to t h e  a c t u a l  power 

dissipated in  R i . e . ,  we o b t a i n



2 2

4RS

and r e a r r a n g e i n g  t h i s  e x p r e s s i o n  g i v e s

(6 .1)

I t  i s  p o s s i b l e  t o  d e s i g n  r e s i s t i v e l y  t e r m i n a t e d  

LC f i l t e r s  so t h a t ,  a t  a number o f  f r e q u e n c i e s  f   ̂ i n  t h e  

p a s s b a n d ,  t h e  a c t u a l  v o l t a g e  g a i n  f o r  t he  f i l t e r  i s  equa l  

t o  t h e  g a in  shown i n  ( 6 . 2 )  f o r  which dissipates i t s  maximum 

power .  For such  f i l t e r s  we can  now a rgue  t h a t ,  a t  t h e  f r e q ­

u e n c i e s  f  p o s i t i v e  o r  n e g a t i v e  v a r i a t i o n s  i n  t he  v a l u e s  

o f  t h e  r e a c t i v e  components  i n  t h e  LC f i l t e r  can on ly  cause  

R^ to  dissipate l e s s  power .  Hence t h e  v o l t a g e  g a in  f o r  t h e  

f i l t e r  can on ly  d e c r e a s e ,  and we can c onc lu de  t h a t  a t  t h e

f r e q u e n c i e s  f  . t h e  1 o r d e r  d i f f e r e n t i a l  s e n s i t i v i t i e s  f o r  01
t h e  r e a c t i v e  components  must  be z e r o .

To i l l u s t r a t e  t h e  good s e n s i t i v i t y  p r o p e r t i e s  t h a t  

r e s i s t i v e l y  t e r m i n a t e d  LC f i l t e r s  can have ,  l e t  us c o n s i d e r  

t h e  p a r t i c u l a r  f i l t e r  c i r c u i t  shown in  F ig .  6 . 2 .  The 

component  v a l u e s  f o r  t h i s  c i r c u i t  a r e  a l s o  shown in  F ig .  6 . 2 ,  

and t h e  nominal  l o s s / f r e q u e n c y  r e s p o n s e  i s  shown in  F i g s .  6 . 3  

(a)  and ( b ) . The component  v a l u e s  i n  F ig .  6 .2  show t h a t  R^ 

i s  equ a l  t o  Rg, and from (6 .2 )  we deduce  t h a t  t he  v o l t a g e  

g a i n  f o r  t h e  f i l t e r  must  be 0 . 5  f o r  maximum p o s s i b l e  t r a n s f e r  

o f  power t o  o c c u r .  From t h e  nomina l  l o s s / f r e q u e n c y  b e h a v i o u r



shown i n  F ig .  6 . 3  (a) we f i n d  t h a t  t h e  a c t u a l  r e s p o n s e  f o r

t h e  f i l t e r  d o e s ,  i n d e e d ,  c o n t a i n  f r eq u e n cy  p o i n t s  where

t h i s  i s  t h e  c a s e .  To i n v e s t i g a t e  t h e  s e n s i t i v i t y  p r o p e r t i e s

f o r  t h e  f i l t e r ,  we t ook  t h e  ap p ro ach  o f  showing how t h e  l o s s /

f r e q u e n c y  r e s p o n s e  changes  when t h e  component  v a l u e s  a r e

a l t e r e d  from t h e i r  nominal  v a l u e s  - t h e s e  c u r v e s  a r e  shown

i n  F i g s .  6 . 4  (a)  t o  ( i ) . We f i n d  t h a t  f o r  changes  i n  t h e

c a p a c i t o r  and i n d u c t o r  v a l u e s ,  t h e  l o s s / f r e q u e n c y  r e s p o n s e

c a n n o t  r i s e  above t h e  l i n e  6 .021 dB which c o r r e s p o n d s  t o  a

v o l t a g e  g a i n  o f  0 . 5 .  Some o f  t h e  cu rve s  f o r  t h e  r e a c t i v e

components  a l s o  show t h a t  t h e  l o s s  f o r  t h e  f i l t e r  i n c r e a s e s

a l i t t l e  a t  t h e  f r e q u e n c i e s  f o r  maximum p o s s i b l e  t r a n s f e r

o f  power .  We can  e x p l a i n  t h i s  by p o i n t i n g  ou t  t h a t  i n  our
s td i s c u s s i o n  we have been c on ce rn ed  on ly  w i t h  1 o r d e r  

d i f f e r e n t i a l  s e n s i t i v i t i e s ,  and t h e  e f f e c t s  o f  5 . 0  and 10 .0  

changes  i n  t h e  component  v a l u e s  c ann o t  f u l l y  be t a k e n  i n t o  

c o n s i d e r a t i o n  u s i n g  on ly  t h e s e  s e n s i t i v i t i e s .

ON=>



6 .2 . 2 LC FILTERS WITH PARALLEL RC TERMINATIONS

To i n v e s t i g a t e  t h e  s e n s i t i v i t y  p r o p e r t i e s  f o r  LC 

f i l t e r s  w i t h  p a r a l l e l  RC t e r m i n a t i o n s  we w i l l  a g a i n  t a k e  t h e  

app roach  o f  s t u d y i n g  a p a r t i c u l a r  c i r c u i t ,  and showing how 

i t s  l o s s / f r e q u e n c y  r e s p o n s e  i s  a f f e c t e d  by changes  i n  t he  

v a l u e s  o f  i t s  component s .  B e f o r e  t h i s  i n v e s t i g a t i o n ,  however ,  

i t  i s  i n t e r e s t i n g  t o  d e t e r m i n e  t h e  c o n d i t i o n s  f o r  t h e s e  f i l t e r s ,  

f o r  which t h e  t r a n s f e r  o f  power from the  s o u r c e  t o  l oad  

t e r m i n a t i o n  i s  t h e  maximum p o s s i b l e .

Co n s id e r  t h e  LC f i l t e r  w i t h  p a r a l l e l  RC t e r m i n a t i o n s  

shown in  F ig .  6 . 5 .  For  t h i s  f i l t e r  maximum r e a l  power w i l l
t

be dissipated to t h e  R.H.S.  o f  t h e  l i n e  XX in  F ig .  6 .5
T

whenever  t h e  impedance  t o  t h e  r i g h t  of  XX i s  equa l  t o  t h e  

complex c o n j u g a t e  o f  t h e  s o u r c e  impedance.  We can prove  

t h i s  i n  t h e  f o l l o w i n g  way.

Co n s id e r  t h e  d i ag ram shown in  F i g .  6 . 6  - t h i s  

shows a v o l t a g e  V j^ ,  w i t h  a s o u r c e  impedance o f  t he  g e n e r a l  

form Zg = a p + c o n n e c t e d  to  an impedance of  t he

form = a 2  + ^ 2 *  S i n ce  b o t h  Zg and Z^ a r e  p a s s i v e

f o r  t he  f i l t e r  i n  F i g .  6 . 5 ,  b o t h  a^ and w i l l  be p o s i t i v e ,

b u t  b^ and b 2 can have  d i f f e r e n t  s i g n s .  We now d e t e rm in e  

t h e  v a l u e s  f o r  a 2 and b^ which  cause  maximum power to be
I

dissipated to t h e  R.H.S.  o f  t h e  l i n e  XX in  F ig .  6 . 6 .

From F ig .  6 .6  we f i n d  t h a t  t h e  c u r r e n t  I j ^  i s  g iv en  by

al + a 2 + j(b1 + b 2)
( 6 . 3 )



and from t h i s  e x p r e s s i o n  we o b t a i n

I
+ a 2^ 2 + (bl

( 6 . 4 )

The power dissipated t o  t he  r i g h t  o f  XX , P ^ ’ > as t h e r e f o r e  

g i v e n  by

P ’XX
a 2 IV IN

IN (al + a 2)2 + (b1 + b 2)2
( 6 . 5 )

and f o r  t h i s  e x p r e s s i o n  to  be a maximum i t  i s  n e c e s s a r y  to  

choose  b 2 = -b-^, an^ a 2  = a i » a - e -> we must  choose  Z^ t o  

be t h e  complex c o n j u g a t e  o f  Zg. No te ,  f rom ( 6 . 5 ) ,  t h a t  f o r  

t h i s  c a s e  t h e  maximum v a l u e  f o r  P ^ ’ i s

Px x ' (max)
VIN

4a.
(6 .6 )

For t he  LC f i l t e r  i n  F i g .  6 .5  t h e  s o u r c e  impedance 

i s  g i v e n  by

Z$ = Rs / ( 1  + PRSCS) ( 6 . 7 )

and t h i s  can be w r i t t e n  i n  t h e  form Zg = a j  + jb^  where

= Rg/Cl + « 2RgCg)

bl = - WCgRg/fl + ^RgCg)
(6.8)

Making use  of  t he  above e x p r e s s i o n  f o r  i n  ( 6 . 6 ) ,  we f i n d  

t h a t  t h e  maximum p o s s i b l e  power which can be dissipated to



the R.H.S. of XX in Fig. 6.5 is given by

Px x *(max) V INI 2 t1 + u 2r SCs ) ( 6 . 9 )
4R,

The power dissipated to t h e  r i g h t  o f  XX can o n ly  be due t o  

t h e  l oad  r e s i s t o r  R^, and i s  g i v e n  by t he  e x p r e s s i o n

VOUT
(6 .10)

R,

Now, by e q u a t i n g  Px x ’ (max) i n  ( 6 . 9 )  to P^ i n  ( 6 . 1 0 ) ,  we 

can f i n d  t h e  magn i tud e  of  t h e  v o l t a g e  g a in  ^ qU T ^ IN  ^or  

which  t h e  power dissipated by R^ i s  a maximum, i . e . ,

VOUT VIN
? 2 2 2 (1 + W RgCg)

(6 .1 1 )
R, 4R,

and,  by r e a r r a n g e m e n t ,  we o b t a i n

VOUT Rl(1 + 602RgCg)
VIN 4R,

(6 .1 2 )

Note t h a t  t h i s  e x p r e s s i o n  i s  f r e q u e n c y  depen de n t  u n l i k e  

t h e  e x p r e s s i o n  i n  ( 6 . 2 )  f o r  t h e  r e s i s t i v e l y  t e r m i n a t e d  

LC f i l t e r  c a s e .

An example o f  an LC f i l t e r  w i th  p a r a l l e l  RC 

t e r m i n a t i o n s  i s  shown in  F ig .  6 .7  ( t han ks  a r e  due t o  C. 

N i g h t i n g a l e ,  P o s t  O f f i c e  Re sea r ch  C e n t r e ,  f o r  d e s i g n i n g



t h i s  f i l t e r ) . The component  v a l u e s  f o r  t h e  f i l t e r  a r e  a l s o  

shown i n  F ig .  6 . 7 ,  and t h e  nomina l  l o s s / f r e q u e n c y  b e h a v i o u r  

i s  shown i n  F ig s .  6 .8  (a) and ( b ) . By s u b s t i t u t i n g  t he  

v a l u e s  f o r  Rg, and Cg i n t o  e q u a t i o n  ( 6 . 1 2 ) ,  we can 

d e t e r m i n e  t he  v o l t a g e  g a in  r e q u i r e d  f o r  maximum p o s s i b l e  

t r a n s f e r  o f  power t o  t a k e  p l a c e  i n  t h e  f i l t e r  - t h i s  

b e h a v i o u r  i s  shown in  F ig .  6 .8  (a)  a l o n g w i t h  t h e  pa ssband  

l o s s / f r e q u e n c y  r e s p o n s e  f o r  t h e  f i l t e r .  We f i n d  t h a t  t he  

pa s s b a n d  r e s p o n s e  does no t  c o n t a i n  f r e q u e n c y  p o i n t s  f o r  

which  maximum t r a n s f e r  o f  power o c c u r s .  Computed cu rves  

showing how the  l o s s  f o r  t he  f i l t e r  i s  a f f e c t e d  by changes  

i n  t h e  component  v a l u e s ,  a r e  shown in  F i g s .  6 .9  (a) to  ( k ) . 

For t h e  c a p a c i t o r  and i n d u c t o r  changes  we f i n d  t h a t  t he  

a l t e r e d  l o s s / f r e q u e n c y  r e s p o n s e  can r i s e  above i t s  nominal  

b e h a v i o u r ,  u n l i k e  t he  changes  shown p r e v i o u s l y  i n  F i g s .  6 .4

(c) t o  ( i )  f o r  t h e  r e s i s t i v e l y  t e r m i n a t e d  LC f i l t e r  c a s e .  

Comparing t he  cu rve s  i n  F ig .  6 .4  w i t h  t h o s e  i n  F ig .  6 . 9 ,  

we f i n d  t h a t ,  on t h e  whole ,  t h e  s e n s i t i v i t i e s  f o r  t he  LC 

f i l t e r  s t u d i e d  h e r e  a r e  worse  t h a n  t h o s e  f o r  t h e  r e s i s t i v e l y  

t e r m i n a t e d  f i l t e r  s t u d i e d  i n  S e c t i o n  6 . 2 . 1 .

Some comments on t h e  s e n s i t i v i t y  p r o p e r t i e s  o f  LC 

lowpass  f i l t e r s  w i t h  p a r a l l e l  RL t e r m i n a t i o n s  have been made 

by N i g h t i n g a l e  and R o l l e t t  (58) • They s u g g e s t  t h a t  t he  

component  s e n s i t i v i t i e s  f o r  t h e s e  f i l t e r s  a r e  improved as 

we choose  a s m a l l e r  r a t i o  f o r  t h e  n o r m a l i s e d  i n d u c t a n c e  

and r e s i s t a n c e  v a l u e s  f o r  t h e  so u r c e  impedance.  By
i »
n o r m a l i s e d  sou rce  i n d u c t a n c e  and s o u r c e  r e s i s t a n c e  v a l u e s



we mean t he  v a l u e s  t h a t  a r i s e  when t he  f i l t e r s  have been  

n o r m a l i s e d  t o  have a pa s sba nd  edge f r eq u en cy  o f  1 . 0  r / s .

S inc e  LC h i g h p a s s  f i l t e r s  w i t h  p a r a l l e l  RC t e r m i n a t i o n s  a r e  

o b t a i n e d  from LC lowpass  f i l t e r s  w i t h  p a r a l l e l  RL t e r m i n a t ­

i o n s ,  mere ly  by lowpass  t o  h i g h p a s s  t r a n s f o r m a t i o n  , we

would e x p ec t  t he  component  s e n s i t i v i t i e s  f o r  t h e  h ig h p as s  

f i l t e r s  t o  be improved as we chose  a s m a l l e r  p r o d u c t  f o r  

t h e  n o r m a l i s e d  c a p a c i t a n c e  and r e s i s t a n c e  v a l u e s  f o r  t h e  

so u r c e  impedance .  F u r t h e r  i n v e s t i g a t i o n  o f  t h i s  p o i n t , h o we v e r ,

has  no t  been  u n d e r t a k e n .



6.3 EFFECTS OF FT VARIATIONS ON THE IMPEDANCE 

FOR S . B . I .  CIRCUITS

6 . 3 . 1 GENERAL EFFECTS

In S e c t i o n  3 .4  we p o i n t e d  ou t  t h a t  t h e  s i n g l e ­

a m p l i f i e r ,  s i n g l e - c a p a c i t o r ,  s i m u l a t i o n  ne tworks  d i s c u s s e d  

i n  t h i s  t h e s i s  have an impedance o f  t he  form

l0 + P al + P a 2

bO + Pbl + p 2b
( 6 . 13)

when t h e  n o n - i d e a l  v o l t a g e  g a i n  f o r  t h e  a m p l i f i e r  i s  t ak e n  

i n t o  c o n s i d e r a t i o n .  I n  S e c t i o n  5 .3  we s u g g e s t e d  d e s i g n i n g  

t h e  s i m u l a t i n g  ne tworks  so t h a t  t h e  c o e f f i c i e n t s  a^ and 

i n  ( 6 . 1 3 )  a r e  z e r o ,  and we t h e n  showed t h a t  t h e  impedance Z 

becomes
PL(1 + pTO

(6 .1 4 )1 + p LC

where

L = a x /bg  , C = b 2/ a 1 , T  = a 2/i ( 6 . 15 )

We r e f e r r e d  t o  ne tworks  hav ing  t h i s  t ype  o f  impedance as 

i d e a l  S . B . I .  c i r c u i t s .  In t h i s  s e c t i o n  we e x p r e s s  t he  

impedance  f o r  t h e  S . B . I .  c i r c u i t s  i n  t he  form

Re (W)  + j I M ( GO ) (6 .16 )

and t h e n  we d e r i v e  e x p r e s s i o n s  f o r  t h e  n o r m a l i s e d  s e n s i t i v i t i e s



and These s e n s i t i v i t i e s  a r e  d e f i n e d  as
Rf (co)

S E
1 /(jOj

f o l l o w i n g

where t he  

i n  ( 6 . 1 5 ) ,

To o b t a i n  

and N = 0 

i s  wri t ten

Re (W)

IM (CU)

s ' » “ ”
I/O

M “ ) dR (OJ) 1/W
— ---- ------- - (6.17)

1 /UT d(l/W ) Re (w )

P M(o) _ d I M(W) 1/WTS '
1/0)T  d ( l /W T) I M(W)

(6 .18)

F i r s t  o f  a l l  we r e w r i t e  e q u a t i o n  (6 .13)  i n  t he  

form

M + p L ( l  + pT) 

1 + pN + p 2LC (6 .19 )

e x p r e s s i o n s  f o r  L, C, and 7T a r e  t h e  same as t h o s e  

and M and N a r e  g i v en  by

M = a0/b 0 N b i/bo (6 .20)

an S . B . I .  c i r c u i t  we now need t o  choose  M = 0 

i n  ( 6 . 1 9 ) .  When t he  impedance e x p r e s s i o n  i n  ( 6 . 19 )  

in t he  form shown in  (6 .16 )  we o b t a i n

(M - w2lT ) ( 1  -  go2LC) + co2NL
X J O  T

(1 - CO LC) + (O N
(6.21)

coL(l - W2LC) - <oN(M - go2lt;)
2 2 2 2 (1 - W LC) + WZN

(6 . 2 2 )



Note t h a t  t h e  s u b s t i t u t i o n  p = j co has been made i n  ( 6 . 19 )  

t o  e n a b l e  t he  impedance  t o  be e x p r e s s e d  i n  t he  form shown 

i n  ( 6 . 1 6 ) .  When t h e  nominal  v a l u e s  M = 0,  N = 0 ,  L = L^,

C = and T  = a r e  s u b s t i t u t e d  i n t o  (6 .21 )  and (6 .22)

we f i n d  t h a t  t h e  S . B . I . s  have ,  i d e a l l y ,  an impedance w i t h  

a r e a l  and im a g i n a r y  p a r t  g iv en  by

Re (*>)
6) Ln ?^

1 - W LNCN
(6 .2 3 )

CO LN

1 W LNCN
(6 .2 4 )

In g e n e r a l  v a r i a t i o n s  i n  t h e  f ^  v a l u e  f o r  t he  

a m p l i f i e r  i n  t h e  S . B . I .  c i r c u i t s  w i l l  a l t e r  t h e  v a l u e s  

f o r  M, N, L, C and 7? from t h e i r  nominal  v a l u e s .  Because 

o f  t h e s e  c h a n g e s , t h e  r e a l  and i m a g i n a r y  p a r t s  o f  t h e  

impedance  f o r  t h e  S . B . I . s  w i l l  n o t  have t h e  nomina l  v a l u e s  

shown i n  (6 .23)  and ( 6 . 2 4 ) .  For  s u f f i c i e n t l y  sma l l  changes  

i n  M N, L, C and T  from the  nomina l  v a l u e s ,  t h e  changes  i n  

Rg(OJ) and I^(co) w i l l ,  i n  g e n e r a l ,  be g iven  by

A V " )
a y " )  aiM c«)
——— AL + — —  AC + M A T  + _ M

& L bM
^ M C«)

AM + - ■■■■ -AN
'b N

( 6 . 25 )

AR£ (w)
R̂p(o)) b R ^ )

—-— AL + 
b L

—— AC + - ^ t-ATT +
^Rn(w)
—-— AM + -  - ...AN

b M b N

( 6 . 2 6 )



E x p r e s s i o n s  f o r  t h e  p a r t i a l  d e r i v a t i v e s  shown i n  (6 .25)  and 

(6 .2 6 )  may be found from e q u a t i o n s  (6 .21)  and ( 6 . 2 2 ) .  For 

t h e  nominal  v a l u e s  M = 0,  N = 0 ,  L = L^, C = and T  =

we o b t a i n

= gj
 ̂L (1 “ 60

^ ( w )  _ - w 2rN
H  (1 - c A ^ ) 2

= U?I*
Sc (1 - A y ^ ) 2

v y w ) _ - to4i ^ r 2 

Sc (l - A y y 2

SIH (W)
h r

SRg(w)
STr

u  %

1 ■ w AA

S M

^ Rg (CO) 
 ̂M

1

1 " W HlSl

_ A A n
S N (1 - C O ^ ) 2

SRg(U)  ̂ w 2Ln

S N (1 - l A ^ ) 2

(6.27)

O ✓'iL- '



When the  e x p r e s s i o n s  i n  ( 6 . 27 )  a r e  s u b s t i t u t e d  i n t o  (6 .25)  

and (6 .26 )  we o b t a i n

A V " )
+

( 6 . 28)
a - "2W

2

r
W2LnAN - W2r NAL - W4L^<rNAC +

_ (1 - wzlncn)a m  - W2Ln (1 - to2LNcN)A?r
ARe (w )

w  H jV
J7 ~ T 7 l

( 6 . 29)

These e x p r e s s i o n s  show how the  sm a l l  changes  AL,  AC, AT ,  

AM and AN a f f e c t  t h e  impedance f o r  t h e  S . B . I . s .  We 

now c o n t i n u e  i n v e s t i g a t i n g  t h e  c a s e  where  t h e  sma l l  changes  

i n  L, C,7T,  M and N a r e  c aused  by v a r i a t i o n s  i n  f  . S ince  

f j  i s  v e r y  l a r g e ,  however ,  we w i l l  f o l l o w  the  g e n e r a l  

p r o c e d u r e  o f  c o n s i d e r i n g  t h e  e f f e c t s  o f  sma l l  changes  i n  

1 /C0T , where 0)^ = 2tff .

For s u f f i c i e n t l y  sma l l  changes  i n  1/Cd,p, the  changes  

i n  L, C, T  , M and N a r e  g i ve n  by t h e  g e n e r a l  e x p r e s s i o n s

AL 7--------Att/Op)
J(1/0)T) 1

AC
Mi/wT)

A(1/«t)

/



a TT = ■ A ( l / a T)
) (i/«T)

AM = ---------A( l /«„)
i (1A>T) 1

S n
AN = ---------A(1/Wt ) ( 6 . 3 0 )

SCl/tojO 1

S u b s t i t u t i n g  t h e s e  e x p r e s s i o n s  i n t o  (6 .28)  g iv e s

A (1 A)t) \ 00
~b L

 ̂(1 /coT)
, 3t2 + 0) Ln

 ̂c

i (1/60tD
+ CO

'b N

A I m (o))
(1 - w 2̂ ) 2

( 6 . 3 1 )

dIM (w)
and t h e  d i f f e r e n t i a l  s e n s i t i v i t y  ----------  i s  found by

d(l/co )
l e t t i n g  ^  (l/<Up) —> 0 i n  ( 6 . 3 1 ) ,  i . e . ,

dIM W
d(l/wT)

dL
U) ------

<) (l/d)̂ ) S (iMjO « V n
 ̂N

^ Ci/wT)

(1 (0 ^slV
( 6 . 3 2 )

The n o r m a l i s e d  d i f f e r e n t i a l  s e n s i t i v i t y  can now be found 

from e q n s . ( 6 . 1 8 ) ,  ( 6 . 24)  and ( 6 . 3 2 ) ,  i . e . ,  we o b t a i n

9 ? 9 N
--------- + CO ^  7--------  + (a) 7--------
^( l /wT) N i ( l /wT) N N i ( l /wT)

" (0

S ^ }
(1A t )

( 6 . 3 3 )



Re («)

c)M/c) (l/60rp) i s  z ero  f o r  t h e  f o l l o w i n g  r e a s o n

E q u a t i o n  (6 .19)  shows t h a t  t h e  p a r a m e t e r  M 

r e p r e s e n t s  t h e  D.C. r e s i s t a n c e  f o r  t h e  s i m u l a t i n g  n e t w o r k s .  

The v a l u e  f o r  t h e  D.C. r e s i s t a n c e ,  i . e .  M, depends on t h e  

v a l u e s  f o r  t h e  p a s s i v e  components  i n  t h e  s i m u l a t i n g  n e t w o r k s ,  

and a l s o  on t h e  g a i n  o f  t h e  a m p l i f i e r  a t  D .C. .  In  g e n e r a l  

t h e  g a i n  G i s  g i v en  by G = 1 / ( 0 6  + jtd/OO^) , and a t  D.C. 

t h i s  e x p r e s s i o n  i s  equa l  t o  1/0C . The p a r a m e t e r  M i s  

t h e r e f o r e  i n d e p e n d e n t  o f  CO^, and hence  o f  1/COrp and we can 

c o n c l u d e  t h a t  ^M/^(1/C0T) = 0.  Note t h a t  we a r e  c o n s i d e r i n g  

h e r e  on ly  t h e  e f f e c t s  o f  0)^ v a r i a t i o n s  on t h e  impedance o f  

t h e  S . B . I . s  and n o t  t h e  e f f e c t s  o f  v a r i a t i o n s  i n  <X .

S u b s t i t u t i n g  t he  e x p r e s s i o n s  i n  ( 6 . 3 0 )  i n t o  ( 6 . 2 9 ) ,  

and p u t t i n g   ̂M/(1/60-j,) = 0,  g i v e s

Before deriving an expression for  ̂, we note that

, 2-vCO T N
A(l//ApK

b (iMf)
+ o) ln r N

 ̂c

} (1/WT)

7 9 \ '~Y
+  60 L ^ ( l  -  CO

S (l/U^)
2t

CO Îj
^ N

ARe (w) =
^(1/WT) j

(1 60

From t h i s  e x p r e s s i o n  we o b t a i n
(6 .3 4 )

dR^/w)

d(l /wT)

- 1
2_co 7T

 ̂L
N ( l /oT) +

^C

dA)T)
(i -

+ " V 1 - wV n) n
(l/wT)

C0ZL.
i)N

N
J

(6.35)



and t h e  n o r m a l i s e d  s e n s i t i v i t y ,  o b t a i n e d  from e q n s . ( 6 . 1 7 ) ,

( 6 . 23 )  and ( 6 . 3 5 ) ,  i s  g iven  by

C 'bL ? 7
—  + —

Re (CO)

r N
d(l/foT)

l/(x/rp 6)rpL^7T^(l CO LjVjCjvj)

L»(1 • "  W

^ (1/COj.)

b N

^(i/wT)

( 6 . 3 6 )



6.3.2 EFFECTS OF FT VARIATIONS ON THE IMPEDANCE 

FOR S . B . I .  CIRCUIT B

Re  (w )
To e v a l u a t e  t h e  n o r m a l i s e d  s e n s i t i v i t i e s (l/wT)

and S (1 /UT) f o r  S . B . I .  c i r c u i t  B, i t  w i l l  n o t  on ly

be n e c e s s a r y  t o  know th e  nomina l  v a l u e s  L^, C^ and 

a p p e a r i n g  i n  ( 6 . 33)  and ( 6 . 3 6 ) ,  b u t  a l s o  t h e  v a l u e s  f o r  

t h e  p a r t i a l  d e r i v a t i v e s  ( l /w ^ )  ,  ̂C / i  (l/OJ^) , ^27^(1/60^)

f o r  S . B . I .  c i r c u i t  B we can u se  eqns .  ( 5 . 2 1 ) ,  ( 5 .22)  and

(5 .2 3 )  to  c a l c u l a t e  L^, C^ and We can a l s o  use  t h e s e

e q u a t i o n s  t o  d e t e r m i n e  e x p r e s s i o n s  f o r  t h e  p a r t i a l  d e r i v a t i v e s  

c} L/<) ( l / t oT) , S c / i ( l / o ; T) and Sty i ( l / a ) T) , i . e . ,  d i f f e r e n t ­

i a t i n g  eqns .  ( 5 . 2 1 ) ,  ( 5 . 22 )  and (5 .2 3 )  w i t h  r e s p e c t  to  1/6;^ 

we o b t a i n

and  ̂ N/^(1/cOrp) . For any s e t  o f  nominal  component  v a l u e s

(C2 + c3)(Gx + C4 + g5)

s (lAty)

( 6 . 37 )

(6 .38 )

i ( l /wT) G4 + a ^Gi  + G4 + Gs  ̂ + (G2 + G3 ^ G1 + G4 + G5)/WtCq
2

( 6 . 39 )



To d e t e r m i n e  t he  e x p r e s s i o n  f o r  ^ N / ^(1/0)^) , i t  

i s  f i r s t  o f  a l l  n e c e s s a r y  t o  d e t e r m i n e  t he  e x p r e s s i o n  f o r  

N i n  ( 6 . 1 9 ) .  Making use  o f  e q n s . ( 6 . 20 )  and (5 .17 )  we

f i n d  t h a t ,  f o r  S . B . I .  c i r c u i t  B, N i s  g iven  by

' G4G2 - V G3 + V  + (G2 + G3̂  BG4 + G5 ^ G1 + V  + G1G6]  /WTC0
J0

N = + a E G2 + G3 + V (G1 + G4 + G5} + G1 (G4 + S d
(G1 ♦ G6J (G4G2 - G3Gs) + GlG2G6 ♦ a(G2+G3) [(G4+G53 (G1+ Gg) ♦ G ^ ]

( 6 . 40)

and d i f f e r e n t i a t i n g  t h i s  e x p r e s s i o n  w . r . t .  1 /co^ g i v e s

__________________ (G2 * G3){ (G4 h- G5) (G4 + G6) + GlG6 )________________

MI/WP fGl  + G6KG4G2 -  W  + G1G2G6 + { W  (W  + G1G6 }

(6 .41)

The e x p r e s s i o n  f o r  M i n  ( 6 . 1 9 ) ,  f o r  S . B . I .  c i r c u i t  

B, may a l s o  be found from eqns .  ( 6 . 2 0 )  and ( 5 . 1 7 ) ,  i . e .  , we 

o b t a i n

M = _________G4G2 ~ G5^G1 + G5̂  + a ^G 2 * G3 ^ G1 + G4 + G5̂ __________
(G1 + G6) (G4G2 - G3G5) + GlG2G6 + a(G2+G3)|(G4+G5) (Gx+G6) +

( 6 . 42 )

Note  t h a t  t h i s  e x p r e s s i o n  does n o t  c o n t a i n  any CO ^  t e rms  

as  men t i one d  p r e v i o u s l y  i n  S e c t i o n  6 . 3 . 1 .

For any c h o i c e  o f  nomina l  component  v a l u e s  f o r

S.B.I. circuit B, we can use eqns. (6.37), (6.38), (6.39)



and ^N/^(1/C0^) .  We can t h en  use  t h e s e  v a l u e s ,  and t he  

v a l u e s  f o r  LM, CM and T M, i n  ( 6 . 33 )  and (6 .3 6 )  t o
N N N I M(*0 Re (w)

d e t e r m i n e  t h e  n o r m a l i s e d  s e n s i t i v i t i e s  S a n d  S , ,  n .
/lOr^J (X/WrpJ

In  C h a p t e r  7 we w i l l  show how to  choose  t h e  nomina l  p a s s i v e  

component  v a l u e s  f o r  S . B . I .  c i r c u i t  B so t h a t ,  i n  a d d i t i o n  

t o  t h e  u s u a l  d e s i g n  r e q u i r e m e n t s  M = 0,  N = 0 and L = L^,

and (6.41) to evaluate ^L/^(l/co^,), c)C/ ̂ (l/cô ) , )>T/ i (1/60̂ )

iM (w )t h e  v a l u e  f o r   ̂ i s  m in im i sed  a t  a chosen  f r e q u e n c y .

We w i l l  t h e n  use  t h i s  d e s i g n  p r o c e d u r e  t o  o b t a i n  a c t i v e - RC  

f i l t e r s  whoose l o s s / f r e q u e n c y  r e s p o n s e s  have low s e n s i t i v i t i e s  

t o  f ^  v a r i a t i o n s .



6.4 CONCLUSIONS

This  c h a p t e r  has  been  co nc e rn e d  w i t h  t h e  

s e n s i t i v i t y  p r o p e r t i e s  f o r  a c t i v e  f i l t e r s  t h a t  u se  S . B . I .  

c i r c u i t s .  We p o i n t e d  o u t  t h a t  b o t h  h i g h p a s s  and bandpass  

f i l t e r s  t h a t  use  S . B . I . s  , can be c o n s i d e r e d  as be ing  

d e r i v e d  from LC f i l t e r s  ha v in g  p a r a l e l l  RC t e r m i n a t i o n s .  

We b r i e f l y  i n v e s t i g a t e d  t h e  s e n s i t i v i t y  p r o p e r t i e s  f o r  

f i l t e r s  o f  t h i s  t y p e ,  and showed t h a t  t hey  can be 

s i g n i f i c a n t l y  more s e n s i t i v e  t h a n  LC f i l t e r s  hav ing  

p u r e l y  r e s i s t i v e  t e r m i n a t i o n s .

We a l s o  i n v e s t i g a t e d  t h e  e f f e c t s  o f  f ^  

v a r i a t i o n s  on t h e  r e a l  and im a g i n a r y  p a r t s  o f  t h e  impedance

f o r  t h e  S . B . I .  c i r c u i t s .  Ge ne ra l  e x p r e s s i o n s  f o r  t he
s t  ^1 o r d e r  n o r m a l i s e d  d i f f e r e n t i a l  s e n s i t i v i t i e s  S r i / , .  ^

R (W)  ( 1 / W T)
and  ̂ were d e r i v e d ,  and we showed,  i n  p a r t i c u l a r ,

how to  c a l c u l a t e  t h e s e  s e n s i t i v i t i e s  f o r  t he  S . B . I .  c i r c u i t  B.

In  C ha p t e r  7 we choose  t h e  nomina l  p a s s i v e  component  v a l u e s

f o r  t h e  S . B . I .  c i r c u i t  B so t h a t  t h e  s e n s i t i v i t y  S (1 / W T)
i s  m in im i se d ,  and we t h e n  show t h a t  t h i s  s t r a t e g y  h e l p s  to 

r ed u c e  t he  e f f e c t s  o f  f^  v a r i a t i o n s  on t h e  l o s s / f r e q u e n c y  

r e s p o n s e  o f  a c t i v e  f i l t e r s  t h a t  c o n t a i n S . B . I . c i r c u i t s  B.



CHAPTER 7

EXPERIMENTAL INVESTIGATIONS

7.1 HIGHPASS FILTER USING S . B . I .  CIRCUIT B

In t h i s  s e c t i o n  we d e s c r i b e  an a c t i v e - R C  h i g h p a s s  

f i l t e r  which u s e s  S . B . I .  c i r c u i t  B, and whose l o s s /  

f r e q u e n c y  r e s p o n s e  i s  t he  same as t h a t  f o r  a 5 ^  o r d e r  

Cauer  t ype  LC f i l t e r  hav ing  t h e  nominal  b e h a v i o u r :  s t opba nd  

a t t e n u a t i o n  < 30 dB, l o s s  v a r i a t i o n  i n  p a s s b a nd  <^0.1 dB 

above 2 .0  kHz.

7 . 1 . 1  DESIGN OF THE ACTIVE FILTER

As ment ioned  i n  S e c t i o n  5 . 3 . 2 . 2 ,  t h e  f i r s t  s t e p  

i n  d e s i g n i n g  t h e  a c t i v e  h i g h p a s s  f i l t e r  i s  t o  choose  an 

LC lowpass  f i l t e r ,  w i t h  p a r a l l e l  RL t e r m i n a t i o n s ,  whose 

l o s s / f r e q u e n c y  r e s p o n s e  has  t h e  c o r r e s p o n d i n g  lowpass  

b e h a v i o u r :  s t opba nd  a t t e n u a t i o n  30 dB, l o s s  v a r i a t i o n  

i n  p a s s b a n d  <^0.1 dB below 2 .0  kHz. An a p p r o p r i a t e  

l owpass  f i l t e r  hav ing  t he  above b e h a v i o u r ,  e x c e p t  t h a t  t he  

pa s s b a n d  edge f r e q u e n c y  c i s  1 . 0  r / s ,  i s  shown in  

F i g .  7.1 ( a ) ,  and i t s  component  v a l u e s  a r e  g i v e n  i n  Tab l e  

(a)  o f  F ig .  7 .2  ( t h an k s  a r e  due t o  C. N i g h t i n g a l e ,  B r i t i s h  

P o s t  O f f i c e  Re se a r ch  C e n t r e ,  f o r  d e s i g n i n g  t h i s  f i l t e r ) .

A new s e t  o f  component  v a l u e s  which cause  t h e  r e s p o n s e  to 

have t h e  r e q u i r e d  lowpass  b e h a v i o u r ,  i . e .  f  = 2 .0  kHz, 

can be o b t a i n e d  by d e n o r m a l i s a t i o n .  That  i s ,  we m u l t i p l y  

t h e  c a p a c i t o r  v a l u e s  i n  Tabl e  (a) o f  F ig .  7 . 2  by 1/2 t f f  R,



t h e  i n d u c t o r  v a l u e s  by R / 2 Tf f  , and t h e  so u r c e  and l o ad  

r e s i s t o r s  by R, where R can be chosen  a r b i t r a r i l y .  The 

component  v a l u e s  t h a t  a r e  o b t a i n e d  f o r  t h e  ca se  R = 2 .0  

a r e  shown i n  Tab le  (b) o f  F ig .  7 . 2 .

From th e  l owpass  f i l t e r  i n  F ig .  7 .1  (a) we

o b t a i n ,  by lowpass  t o  h i g h p a s s  t r a n s f o r m a t i o n ,  t h e  LC

h i g h p a s s  f i l t e r  w i t h  p a r a l l e l  RC t e r m i n a t i o n s  shown in

F ig .  7 .1  (b) . Th is  t r a n s f o r m a t i o n  i n v o l v e s  r e p l a c i n g  t h e

i n d u c t o r s  i n  t h e  l owpass  f i l t e r  by c a p a c i t o r s  o f  v a l u e
2

1 / CO , and r e p l a c i n g  t h e  c a p a c i t o r s  i n  t h e  lowpass
2

f i l t e r  by i n d u c t o r s  o f  v a l u e  1/60 c C^ - t h e  component  

v a l u e s  t h a t  a r e  o b t a i n e d  f o r  t h e  h i g h p a s s  f i l t e r  a r e  shown 

i n  Tab l e  (c) o f  F ig .  7 . 2 .  We now t r a n s f o r m  the  f i l t e r  i n  

F ig .  7.1 (b) i n  t he  way d e s c r i b e d  i n  S e c t i o n  5 . 3 . 2 . 2 ,  to  

o b t a i n  t h e  LC h i g h p a s s  f i l t e r  i n  F ig .  7 .1  ( c ) , f o r  which 

t he  i n d u c t o r s  and a pp ea r  as  p a r t s  o f  g rounded

p a r a l l e l  LC r e s o n a t o r s  - t h e  component  v a l u e s  f o r  t h i s  

c i r c u i t  a r e  shown i n  Tab l e  (d) o f  F ig .  7 . 2 .

The n e x t  s t e p  i n  t he  d e s i g n  p r o c e d u r e  i s  t o  choose  

two s e t s  o f  nominal  component  v a l u e s  f o r  S . B . I .  c i r c u i t  

B so t h a t  t he  c o n d i t i o n s  a^ = 0 and b^ = 0 i n  ( 5 . 4 )  a r e  

s a t i s f i e d ,  and so t h a t  L i n  ( 5 . 6 )  i s  equa l  t o  t h e  i n d u c t a n c e  

v a l u e s  L^ and L^ f o r  t h e  LC f i l t e r  i n  F ig .  7 .1  ( c ) . To 

s a t i s f y  t h e s e  c o n d i t i o n s  we u sed  t h e  d e s i g n  p r o c e d u r e  f o r  

S . B . I .  c i r c u i t  B d e s c r i b e d  p r e v i o u s l y  i n  S e c t i o n  5 . 4 . 1 . 2 .

As men t i one d  i n  S e c t i o n  5 . 4 . 1 . 2 ,  t h e r e  a r e  many ways of  

ch o o s i n g  t h e  nominal  component  v a l u e s  f o r  S . B . I .  c i r c u i t  B



0 are achieved, andso that the conditions aQ = 0 and = 
so that L has a specified nominal value. The component
values used here, which are for an amplifier having ci = 10 

6and fT = 1 0  Hz, are shown in Tables (a) and (b) of Fig 7.3.
Note that we obtained the component values in Table (b) of
Fig 7.3, which are for the case L = L_, by multiplyingB
the resistance values for the case L = L, by the constant 
L^/Lg, and by multiplying the capacitance value for L = 
by the constant L_/LA . As mentioned in Section 5.3, this ensures 
that the values of associated with the designs for L =
and L = L , see (5.6), are the same. This value of V  , andB
the values C, and C associated with the two designs for the A B
S.B.I. circuit, see (5.6), are shown in the Tables of component 
values in Fig 7.3.

To complete the design of the active high pass filter, the LC 
filter in Fig 7.1 (c) was modified in the way described in 
Section 5.3.2.2, see also Fig 5.7 (e), and then impedance scaled 
by (1 + p 2T ) to give the active RC filter shown in' Fig 7.4 (a)
- the full set of component values for this filter is given in 
Fig 7.4 (b).

-5
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7.1.2 EXPERIMENTAL ADJUSTMENT PROCEDURE FOR
HIGHPASS FILTER

The active filter of Fig 7.4 (a) was constructed using 
resistors and capacitors having values within - 1 % of the 
specified values shown in Fig 7.4 (b), however, some of the 
resistors with very small values, ie , R  ̂ anc  ̂ Rc5 ' were not 
included in the realisation. These tolerances and omissions 
cause the loss/frequency response for the experimental filter 
to deviate from the nominal response; also, the f values for 
the amplifiers will not be precisely equal to their nominal 
values, and this again causes the response to be non-ideal.

Ideally the S.B.I. circuits B in the active filter have the 
impedance:

Z p l n (1 + p T w )

1 + p l n c n

(7.1)

where L , and represent the nominal values shown in
Tables (a) and (b) of Fig 7.3. However, due to passive 
component tolerances and f^ tolerances, the S.B.I.s will 
instead have impedances of the form

M + pL(1 + p 'fr ) 
21 + pN + p LC

Thus, for the S.B.I.s 
would be necessary to 
so that the following 
N = 0, L - Ln , C = CN 
practice, however, to 
circuit B so that all 
simultaneously. Also 
we would still not be

to have their ideal impedances, it 
adjust the resistances for each circuit 
five conditions were obtained: M = 0, 
and It is impossible in
make resistance adjustments for S.B.I 
these conditions are achieved 
if such adjustments were possible, 

overcoming the effects on the highpass

2-a  I



filter response, of tolerances on the remaining components 
in the filter. Instead, as a compromise, we adopted the 
following adjustment strategy which we have found to be 
sat is factory:

The adjustment strategy adopted hero is to try to achieve both 
the following conditions:

(i) Each S.B.I. circuit has zero D.C. resistance (from 
(7.2) the D.C. resistance is given by M which is 
ideally zero).

(ii) The shunt arms in the highpass filter have their ideal
impedance of zero , at their appropriate
nominal transmission zero frequency.

These conditions were achieved in practice by iteratively 
adjusting the three resistors R3, R6, and R5 in each S.B.I. 
circuit using the experimental procedure described below:

First of all we adjust the conductance in eachS.B.I. circuit 
so that the condition M = 0 was achieved. From (6.42) we have:

G4G2 - G3(G1 + Gs) + a,(G2 + G3) (Gx + G4 + G5)
(Gx + c6)(G4G2 - g3g 5) + g 1g2g6 + oc(G2+G3)((G4+G5H G 1+G6) + c p g  j

(7.3)
and from (7.2 we note that M represents the D.C. resistance 
for the S.B.I. circuit. We can therefore make M equal to zero 
in practice, by connecting a resistance meter across the S.B.I. 
circuit and adjusting until the resistance is zero.

The next part of the adjustment procedure is to iteratively 
adjust the resistors R6 and R5 for each S.B.I. circuit, so 
that the shunt arms of the active highpass filter not only 
have their nominal transmission zero frequencies, but so that 
the impedance at these frequencies is zero. Each shunt arm is d 
connected from the filter, connected to a series resistor, and 
driven at the appropriate transmission zero frequency, as shown



i n  F i g  7 . 5 .  T h e  r e s i s t o r s  R 6  a n d  R 5  a r e  t h e n  a d j u s t e d  

i t e r a t i v e l y  s o  t h a t  t h e  v o l t a g e  v 0 l j T  s h o w n  i n  F i g  7 . 5  i s  

a s  c l o s e  a s  p o s s i b l e  t o  z e r o .  T h e  s h u n t  a r m s  a r e  t h e n  

r e c o n n e c t e d  t o  t h e  f i l t e r .  N o t e  t h a t  w e  a r e  t a k i n g  i n t o  

c o n s i d e r a t i o n  t h e  t o l e r a n c e s  o n  t h e  c o m p o n e n t s  C 2 ,  C 6 ,  C 4 ,

Cl, R C 2 ,  R C 6 ,  R C 4  a n d  R C 7  i n  F i g  7 . 4  ( a ) ,  a s  w e l l  a s  t h e  

t o l e r a n c e s  f o r  t h e  c o m p o n e n t s  i n  t h e  S . B . I .  c i r c u i t s  a t  t h e  

a p p r o p r i a t e  t r a n s m i s s i o n  z e r o  f r e q u e n c y .

A d j u s t i n g  R 6  d o e s  n o t  a f f e c t  t h e  v a l u e  o f  M , f o r  M =  0 ,  a s  s h o w n  

i n  ( 7 . 3 ) .  H o w e v e r ,  t h e  a d j u s t m e n t s  m a d e  t o  R 5  w i l l  a f f e c t  

t h e  M v a l u e  a n d  h e n c e  c h a n g e  t h e  D . C . r e s i s t a n c e  f r o m  z e r o  £ i  s .

F o r  t h e  a d j u s t m e n t  p r o c e d u r e  t o  b e  s u c c e s s f u l ,  i t  i s  n e c e s s a r y  

t h a t  t h e  a d j u s t m e n t s  o f  R 5  i n t r o d u c e  o n l y  s m a l l  c h a n g e s  i n  t h e

D . C .  r e s i s t a n c e  v a l u e s  f o r  t h e  S . B . I . s .  E x a m i n a t i o n  o f  ( 7 . 3 )  

h a s  s h o w n  t h a t  t h i s  w i l l  b e  t h e  c a s e  i f  t h e  S . B . I . s  c a n  b e  

d e s i g n e d  u s i n g  l a r g e  v a l u e s  f o r  R 2 , R 3  a n d  R 5  a n d  s m a l l  v a l u e s  f o r  

R l ,  R 4  a n d  R 6 . H e n c e ,  t h e  s p r e a d  i n  t h e  r e s i s t a n c e  v a l u e s  f o r  

t h e  S . B . I . s  s h o w  i n  F i g  7 . 4  ( b ) .  A  d e t a i l e d  i n v e s t i g a t i o n  o f  

t h e  a d j u s t m e n t  p r o c e d u r e  h a s  n o t  b e e n  u n d e r t a k e n ,  h o w e v e r ,  i t  

i s  p r o b a b l y  t h e  c a s e  t h a t  t h e  v a r i a t i o n s  i n  R 6  a f f e c t  t h e  v a l u e s  

o f  b o t h  t h e  i m a g i n a r y  a n d  r e a l  p a r t s  o f  t h e  i m p e d a n c e  p r e s e n t e d  

b y  t h e  S . B . I .  c i r c u i t ,  w h e r e a s  t h e  s a m e  p e r c e n t a g e  v a r i a t i o n s  

i n  R 5  a f f e c t  t h e  r e a l  p a r t  ( a n d  h e n c e  t h e  Q o f  t h e  S . B . I .  

c i r c u i t )  a n d  h a v e  a  m u c h  s m a l l e r  a f f e c t  o n  t h e  i m a g i n a r y  p a r t .

I n v e s t i g a t i o n  o f  a d j u s t m e n t  p r o c e d u r e s  f o r  f i l t e r s  u s i n g  o t h e r  

t y p e s  o f  S . B . I .  c i r c u i t ,  r a t h e r  t h a n  t y p e  B ,  w o u l d  b e  d e s i r a b l e  b u t  

h a s  n o t  b e e n  u n d e r t a k e n  o w i n g  t o  l a c k  o f  t i m e .  N e v e r t h e r l e s s , 

t h e  g e n e r a l  s t r a t e g y  d e s c r i b e d  a b o v e  s e e m s  t o  b e  s a t i s f a c t o r y  

a s  w i l l  b e  d e m o n s t r a t e d  b y  t h e  m e a s u r e d  f i l t e r  p e r f o r m a n c e  g i v e n  

i n  t h e  n e x t  s e c t i o n .

o



7.1.3 COMPUTED AND MEASURED RESULTS

The l o s s / f r e q u e n c y  r e s p o n s e  f o r  t h e  ac t i v e -R C 

h i g h p a s s  f i l t e r  was d e t e r m i n e d  u s i n g  a computer  a n a l y s i s  

p rogram,  and i s  shown in  F ig .  7 . 6 .  We f i n d  t h a t  t h i s  

b e h a v i o u r  p r e c i s e l y  s u i t s  our  d e s i r e d  s p e c i f i c a t i o n ,  

namely:  s t opb an d  a t t e n u a t i o n  < 3 0  dB, and l o s s  

v a r i a t i o n  i n  p a s s ba nd  < 0 . 1  dB above 2 .0  kHz.

For  t h e  p r a c t i c a l  f i l t e r  we a d j u s t e d  t h e  S . B . I .  

c i r c u i t s  i n  t h e  way d e s c r i b e d  i n  S e c t i o n  7 . 1 . 2 ,  and 

t h e n  we measured  t h e  l o s s / f r e q u e n c y  r e s p o n se  t o  o b t a i n  

t h e  b e h a v i o u r  shown in  F ig .  7 . 7 .  The measured  r e s p o n s e  

a g r e e s  f a i r l y  c l o s e l y  w i t h  t h e  computed r e s p o n s e  i n  F ig .  7 . 6  

and shows t h a t  t h e  a d j u s t m e n t  p r o c e d u r e  f o r  overcoming 

t h e  p a s s i v e  component  and f ^  t o l e r a n c e s  i s  s a t i s f a c t o r y ,  

a t  l e a s t  f o r  t h e  f i l t e r  example s t u d i e d  h e r e .  The passbandL 

l o s s  f o r  t h e  p r a c t i c a l  f i l t e r ,  measured  a t  10 .0  kHz, was

7 .9  dB ± 0 .1  dB measu r ing  e r r o r ,  and i s  i n  c l o s e  agr eement  

w i t h  t he  computed v a l u e  7 .86  dB.

7 . 1 . 4  SENSITIVITY INVESTIGATION

To i n v e s t i g a t e  t he  p a s s i v e  component  s e n s i t i v i t i e s  

f o r  t h e  h i g h p a s s  f i l t e r ,  we t ook  t h e  app roach  o f  showing 

how th e  l o s s / f r e q u e n c y  r e s p o n s e  chang es ,  when t h e  p a s s i v e  

component  v a l u e s  a r e  a l t e r e d  from t h e i r  nominal  v a l u e s  - 

t h e s e  c u rv e s  a r e  shown in  F i g s .  7 .8  (a) t o  (b) . For 

c o m p a r i s i o n  p u r p o s e s ,  we d e c i d e d  to show how th e  r e s p o n s e



o f  a low s e n s i t i v i t y  LC f i l t e r  i s  a f f e c t e d  by changes  

i n  i t s  component  v a l u e s .  The LC f i l t e r  i s  shown i n  F i g . 7 .9  

a lo n g w i t h  i t s  nominal  p a s s i v e  component  v a l u e s ,  and t h e  

changes  i n  t he  l o s s / f r e q u e n c y  b e h a v i o u r  f o r  t h i s  f i l t e r  a r e  

shown i n  F i g s .  7 .10  (a) and ( b ) .

The c u rv e s  i n  F i g s .  7 .8  (a) t o  (b) , f o r  t h e  

c a p a c i t a n c e  changes  f o r  t h e  a c t i v e  h i g h p a s s  f i l t e r ,  show 

t h a t  t h e  l o s s  can become l e s s  t h a n  t h e  b a s i c  l o s s  , i . e . ,

7 .8  dB. This  b e h a v i o u r  was a l s o  o b se r v ed  i n  S e c t i o n  6 . 2 . 2 ,  

where  we i n v e s t i g a t e d  t h e  e f f e c t s  o f  p a s s i v e  component  

changes  on t he  l o s s / f r e q u e n c y  r e s p o n s e  f o r  an LC f i l t e r  

w i t h  p a r a l l e l  RC t e r m i n a t i o n s .  No te ,  from the  cu rve s  

i n  F i g s .  7 .10  (a) and ( b ) , t h a t ,  f o r  t h e  r e s i s t i v e l y  

t e r m i n a t e d  LC f i l t e r  i n  F i g .  7 . 9 ,  t he  c a p a c i t a n c e  and 

i n d u c t a n c e  changes  c an n o t  c au se  t h e  l o s s  to  become l e s s  

t h a n  t h e  b a s i c  p a s s ba n d  l o s s  o f  6 .021  dB ( see  S e c t i o n  6 . 2 . 1 ) .

The computed c u rv e s  f o r  t h e  r e s i s t o r s  i n  t he  

S . B . I .  c i r c u i t s  i n  t h e  a c t i v e  f i l t e r ,  show t h a t  t he  a l t e r e d  

l o s s / f r e q u e n c y  r e s p o n s e  i s  n o t  much worse t h an  t h a t  f o r  

t h e  c a p a c i t o r s  i n  t h e  S . B . I . s .  Th i s  i s  i n t e r e s t i n g  as 

t h e  changes  i n  t he  r e s i s t a n c e  v a l u e s  a f f e c t  t he  c o n d i t i o n s  

M = 0 and N = 0 r e q u i r e d  i n  t h e  impedance e x p r e s s i o n  

f o r  t h e  S . B . I . s  ( s ee  ( 6 . 1 9 ) ,  wherea s  t he  changes  i n  t he  

c a p a c i t a n c e  v a l u e s  f o r  t h e  S . B . I . s  do n o t  a l t e r  M from 

ze ro  ( s ee  ( 6 . 4 2 ) ,  and t hey  have o n l y  a 2nc  ̂ o r d e r  e f f e c t ,  

due t o  f ^ ,  on t h e  v a l u e  f o r  N ( s e e  ( 6 . 4 0 ) .



The e f f e c t s  of  sm a l l  t o l e r a n c e s  on t h e  components

CL, Rc l > RC1 t0  RC6’ 0n t *ie h i g h p a s s  f i l t e r ’ s r e s p o n s e ,

a r e  v e r y  sm a l l  and have n o t  been  shown. Note a l s o ,  from 

F ig .  7 .8  ( b ) , t h a t  t h e  changes  f o r  t he  c a p a c i t o r s  C^, 

and Cy a r e  v e r y  sma l l  i n  t h e  r e g i o n  o f  t h e  p a s s b a n d  edge 

f r e q u e n c y  b u t  become l a r g e r  a t  h i g h e r  f r e q u e n c i e s .  The 

computed e f f e c t s  o f  1 20 .0  % s i m u l t a n e o u s  changes  i n  t h e  f ^  

v a l u e s  o f  b o t h  a m p l i f i e r s  i n  t h e  a c t i v e  f i l t e r  a r e  shown i n  

F i g .  7.11 - once a g a i n ,  we f i n d  t h a t  t he  l o s s / f r e q u e n c y  

r e s p o n s e  f o r  t h e  h i g h p a s s  f i l t e r  i s  no t  much a f f e c t e d  n e a r  

t h e  pa s s b a n d  edge f r e q u e n c y ,  b u t  t h e  e f f e c t  a t  h i g h e r  

f r e q u e n c i e s  becomes more s i g n i f i c a n t .

On t h e  whole t h e  a l t e r e d  l o s s / f r e q u e n c y  r e s p o n s e s  

f o r  t h e  c a p a c i t o r s  i n  t he  a c t i v e  h ig h p as s  f i l t e r  a r e  worse  

t h a n  t h o s e  f o r  t h e  LC h i g h p a s s  f i l t e r  i n  F i g .  7 . 9 .  I t  

may be p o s s i b l e  to  improve t h e  s e n s i t i v i t i e s  f o r  t he  

c a p a c i t o r s  i n  t h e  a c t i v e  f i l t e r  by r e d e s i g n i n g  t he  LC 

f i l t e r  c i r c u i t  i n  F i g .  7 .1  ( c ) , from which t h e  a c t i v e  f i l t e r  

was o b t a i n e d ,  so t h a t  i t s  s e n s i t i v i t i e s  were  c l o s e r  t o  t h o s e  

f o r  t h e  LC f i l t e r  i n  F ig .  7 . 9 .  This  may be a ch i ev e d  by 

ch o os in g  a s m a l l e r  t ime c o n s t a n t  R^Cg f o r  t h e  f i l t e r  i n  

F i g .  7 .1  ( b ) , however ,  t h i s  p o s s i b i l i t y  has  n o t  been 

i n v e s t i g a t e d  f u r t h e r .

Cj O



7.2 RESONATOR CIRCUIT USING S.B.I. CIRCUIT B

In this section we discuss the active RC realisation for the 
LC network shown in Fig 7.12 (a) using S.B.I. circuit B. This 
nwtwork consists of a parallel LC resonator connected to a

the entire circuit in Fig 7.12 (a) as a resonator circuit. In 
Section 7.2.1 we show how to obtain the active-RC realisation 
for the LC resonator circuit, then we choose a typical design 
for the active resonator, and investigate the effects of f^ 
variations on its loss/frequency response. A design procedure 
for reducing the effects of f variations is presented in 
Section 7.2.2.

7.2.1 DESIGN FOR THE ACTIVE RESONATOR CIRCUIT

We now describe how the passive resonator in Fig 7.12 (a) 
can be realised using S.B.I. circuit B, which has an impedance 
of the form

source resistance RS but, for convenience, we refer here to

Z



First of all the S.B.I. circuit B is designed so that the
parameter L in (7.*f-) has the inductance value for
the passive resonator . The parameters C and ^  in (7.M-)
will then have the nominal values and The circuit
in Fig. 7.12 (a) is now modified in the way shown in Fig.
7.12 (b), and this circuit is then impedance scaled by
(1 + pT) to obtain the circuit in Fig. 7.12 (c), where
ZD represents the impedance in (7.13) for the case
L = Ld, C = Cd and T  = T D . Impedance scaling the source 

K K K

resistor Rg in Fig. 7.12 (b) by (1 + p ^ ) gives rise to
tthe small inductance L shown in Fig. 7.12 (c). In the 

case of the equally resistively terminated bandpass filters 
discussed in Section 5.3.3 it was possible to eliminate 
this unwanted inductor using the transformation shown in 
Fig. 5.8, however,this is not possible here as the circuit 
in Fig. 7.12 (c) is singly terminated. Instead we shall 
ignore the small inductance to obtain the active-RC reson­
ator circuit shown in Fig. 7.12 (d).

We will now describe, in detail, the design of 
the active resonator in Fig. 7.12 (d) for the case where 
the original passive resonator has a resonance frequency 
f^ = 1.0 kHz, and a Q of 10. The parameters f^ and Q 
refer to the transfer function for the passive resonator 
in Fig. 7.12 (a) which is of the form

pL R
RS + pLR + P LRCNRS

2.-0 S

T C P )
+

( 7 . 5  )



This expression can be rewritten as

TCP)
D(p/ <0R)

1 + D(p/C0R) + (p/WR)2
(7.6

where

CO R (7.7

The resonance frequency fR 
is defined as the inverse of 
of the inverse relationships 
(7. 7) , and then solving for

is given by C0R/2Tt , and 0 
D, i.e., Q = D Making use

= 2 Tf f D and D = Q  ̂ in
K K

Lr and Cĵ , we obtain

LR
R,

2 T ffRQ 'N

Q

2 n f RRS
(7.8

These expressions show how to choose the values LR and 
for the passive resonator in Fig. 7.12 (a), so that it has 
the required resonance frequency and Q value - note, from 
(7.#), that the value Rg for the passive resonator can 
be chosen arbitrarily. Choosing R^ = 10.0 kSl , with 
fR = 1.0 kHz and Q = 10, we obtain: LR = 159.15 mH, and
Ckl = 159.15 nF.

N

The S.B.I. circuit B is now designed in the way 
proposed in Section 5.4.1.2, so that the parameter L in 
(7.*/-) is equal to the inductance value LR determined



above. As mentioned in Section 5.4.1.2 there are some
degrees of freedom in our choice of values for the components 
G^, G2, G^ and G^ in the S.B.I. circuit B. For the 
present example we chose: G^ = G£ = G^ = Gc- = 10 , and
for the non-ideal amplifier gain we chose & = 10 ** and 
f̂ , = 10u Hz. Using these values in the design procedure 
of Section 5.4.1.2 we obtain: G^ = 50.002 p2S , G^ =
54.294 p  ?5 and Cq = 2.0203 nF. The values and
associated with the impedance for the S.B.I. circuit , 
see (7.*/-) , are: = 120 pF and = 4.61107 . 10
and the values for Cv and RY in the active resonator

A  A

of Fig. 7.12 (d) are: Cx = 159.03 nF and Rx = 2.8995 ft.
The complete set of component values for the active resonator 
circuit is shown in Table (a) of Fig. 7.13.

It is interesting to compare the component values 
in Table (a) of Fig. 7.13 with those that are obtained if 
we consider the voltage gain of the amplifier in the active 
resonator to be ideal, i.e., Ct = 0 and f^ = 00 . A design 
procedure for S.I. circuit B, for the ideal amplifier 
case, has been presented in Section 5.4.1.1. Using this 
design procedure with the same values for G^, G2, G^ and G^ 
as chosen for the non-ideal amplifier case, i.e., G^ = G^
= G^ = Gj. = 10  ̂(T , we obtain the component values shown 
in Table (b) of Fig. 7.13 for the active resonator circuit. 
Comparison of Tables (a) and (b) in Fig. 7.13 show how the 
non-ideal voltage gain affects the design.

The computed loss/frequency response for the active 
resonator circuit is shown as curve (a) in Fig. 7.14, and

! O



the response for the original LC resonator of Fig. 7.12 (a) 
is shown as curve (b) in Fig. 7.14. We find that both 
these loss/frequency responses are very similar, except for 
very high frequencies. In a practical application, however, 
the small discrepancy at high frequencies would be insig­
nificant. Fig. 7.15 shows the changes in the passband loss/ 
frequency response for the active resonator, when the value 
for l/f,p is altered by t 50.0 % - note that the frequency 
of resonance changes by approx. ± 1.0 % .



7.2.2 REDUCING THE EFFECTS OF FT VARIATIONS

In this section we discuss how to design the
active resonator of Fig. 7.12 (d) so that the effects of
f,p variations on the loss/frequency response are reduced.
To achieve our objective we investigate the approach of
minimising the sensitivity ^(l/co ) f°r S.B.I.
circuit B in the active resonator. The measure referred
to is the normalised differential sensitivity of the
imaginary part of the S.B.I’s impedance to 1/CO^, ,
calculated at the nominal resonance frequency for the

V ^ r )resonator. To minimise S ri , >. we can use
V. “*• / Ct) rp J

the following approach.
In Section 5.4.1.2 we showed how to choose

the nominal passive component values for S.B.I. circuit
B, so that we achieve the conditions a^ = 0 and = 0
for (5.16), and so that the parameter L in the S.B.I’s
impedance expression, see (7-̂ - ), is equal to a specified
value L^. We also pointed out that in this design procedure,
the values for G^, G^, G^ and G^ could be chosen arbitrarily
We now describe how to choose the values for these conduct-

r )ances so that the sensitivity S ri . is minimised.I J- / rp J

For given values for the the amplifier parameters
OC and f^, and for a specified value LN , we

first of all choose an initial set of values for the
conductances G^, G^, G^ and G^ in the S.B.I. circuit B.
Once these values are chosen , the values for G7, G, and3 6



Cn are ' determined in the way described in Section 5.4.1.2., 
and the sensitivity S (i/^ ) is determined in the way 
described in Section 6.3.2.. A computer minimisation 
routine is now used to find a new set of values for G., , G?,

I M ( <0R )G. and Gr so that the value for S,-, , > .  becomes smaller,
4 5 1 I M ( U R )and this procedure is repeated until a minimum for 

is found.
We made use of the above approach to redesign the 

S.B.I. circuit B in the active resonator of Fig. 7.12 (d).
In the computer minimisation routine we used a starting 
value of 10 for G^ , G^, G^ and G^, and during the
minimisation the values for these conductances were 
constrained to lie between the limits G = 10 and

-3 ^  V W r )G = 10 V. The minimum value achieved for S., >> wasmax (1/ CO rp)
10.00408, and the passive component values corresponding

to this minimum were: G^ = 0.59529 m2? , G  ̂ ~ 10.0 jJtf,
G = 0.60305 mtf , G5 = 10.0 p V  , G3 = 9.96343 p ,
G s = 0-717602 mXS and C~ = 3.1761 nF. The nominal values o 0
for the parameters L, C and 7T in the impedance expression 
for the S.B.I. circuit, see (7.13), were = 0.15915,

= 330 . 10 ^  and ^  ̂  = 5.18267 . 10 ^, and we obtained 
= 158.824 nF and = 2.0039 Q, for the active resonator

in Fig. 7.12 (d). For comparison purposes the new component 
values for the active resonator are shown in Table (c) of 
Fig. 7.13 alongside our initial set of values in Table (a), 
and the values for the ideal amplifier case shown in Table (b)

The shafting value Was

' > !
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Fig. 7.16 shows the computed loss/frequency 
response for the optimised resonator circuit, and the 
computed effects of ± 50.0 % changes in 1/f̂ , on the 
passband response are shown in Fig. 7.17. We find that 
the loss/frequency behaviour for the optimised active 
resonator is very similar to that for the original LC 
resonator, i.e., see curve (b) in Fig. 7.14. Also, the
50.0 % changes in l/f^ alter the frequency of resonance 
by only approx, t 0.1 %. This change is about a tenth of 
the change shown in Fig. 7.15 for the non-optimised design 
discussed in Section 7.2.1 (note that the horizontal 
scales in Figs. 7.15 and 7.17 are different).



7.3 BANDPASS FILTER USING S.B.I. CIRCUIT B

In this section we have chosen the LC bandpass
filter in Fig. 7.18 as a basis for study. We discuss
how to realise this filter using S.B.I. circuit B,
but in particular we will be concerned with designing the
active realisation so that the effects of f̂ , variations
on its loss/frequency response are minimised. The LC
bandpass filter is 6 ^  order, having five transmission
zeros at zero frequency and one zero at infinite frequency,
and its nominal loss/frequency behaviour is shown in
Fig. 7.19. Note that the passband frequency range for the
LC filter is from 9.75 kHz to 10.25 kHz, and the loss
variation in the passband is 0.5 dB. This is Ccmsid̂ recl cx

cie^icjri. Hsr cx lumped e le m e n t  Lc filler  a ,n  mductor
Q. of appfo* Loo  i/vjould b e  r e t i r e d .
7.3.1 DESIGN OF THE ACTIVE FILTER

To obtain the active filter we followed the 
general design procedure described in Section 5.3.3.1, 
and to minimise the effects of f̂ , variations on the 
loss/frequency response for the active filter we used 
the same approach as for the active resonator circuit 
of Section 7.2.2. That is, we chose the nominal passive 
component values for the S.B.I.s in the active filter so

im O )
that the sensitivity S n  , , . for each S.B.I. circuit1 1 /  Uy rp J

was minimised at a chosen frequency. The minimisations
of S ri n were carried out at the nominal resonance Cl/ w
frequencies for the grounded parallel LC resonators in



the passive filter of Fig. 7.18, and in the computer 
minimisation routine the values G^, G^ and G<- for
the S.B.I. circuit B were confined to the limits 
G . = 10 and G = 10"^2T. For the amplifiers in the
S.B.I. circuits we chose & = 10 ** and f^ = 3.5 MHz.
The nominal passive component values that are obtained 
for the S.B.I. circuits, are shown in Fig. 7.20. The 
values for the parameters L, C and T  associated 
with each S.B.I’s impedance, see (7.13), are also 
shown in Fig. 7.20. Note that the L values in Fig. 7.20 
are identical, as all three inductors in the LC filter 
of Fig. 7.18 have the same inductance value.

In the general design procedure of Section
5.3.3.1 it is necessary to have the same ^  value for 
all S.B.I.s in a filter. For our bandpass filter, howeve 
we find that the S.B.I. circuits have different values 
for ^  . This is because each S.B.I. had its sensitivity

V " )S(1/C0 minimised at a different frequency, namely, the
frequency of resonance for the appropriate LC resonator 
in the passive bandpass filter of Fig. 7.18. Nevertheless, 
the 7T values for the S.B.I. circuits are very similar, 
as the LC resonators in Fig. 7.18 have similar resonance 
frequencies, and we decided to use an average value of
'V'' — 86 = 9.09 . 10 in the remaining design steps of Section
5.3.3.1. The active bandpass filter that is obtained is 
shown in Fig. 7.21, and the full set of component values 
for this filter are shown in Fig. 7.22.



7.3.2 EXPERIMENTAL PROCEDURE

The active filter of Fig. 7.21 was constructed 
using resistors and capacitors having values within about
1.0 % of the nominal values in Fig. 7.22. The amplifiers 
used had a nominal finite gainbandwidth product of 3.5 MHz 
with a tolerance of approx. ± 10.0 %. To reduce the effects 
of the passive component and f^ tolerances we carried 
out the following adjustment procedure, which is similar 
to that for the active highpass filter example of Section 7.1.

First of all we adjusted the conductance in
each S.B.I. circuit until the D.C. resistance for the
S.B.I. was zero - this is equivalent to obtaining M = 0
for the general impedance expression in (7.2). Then, the
remaining part of the adjustment procedure was to adjust
the conductances G. and Gr in each S.B.I., so that the6 5
resonators in the shunt arms of the bandpass filter had 
the ideal impedances of infinity at their nominal 
resonance frequencies. From the point of view of adjustment, 
however, it is impractical to measure a very large impedance, 
so instead the resonators were rearranged to form the 
corresponding series resonator circuits shown in Fig. 7.23.
We then used each series resonator in the measuring setup 
of Fig. 7.24 and iteratively adjusted G^ and G^ in 
the S.B.I. circuit until the loss |^0UT^IN shown 
in Fig. 7.24 was as large as possible at the nominal 
resonance frequency. This is equivalent to obtaining a



small impedance for the series resonator, or a large impedance 
for the parallel resonator at resonance. After adjusting the 
series resonators we reformed the parallel resonator circuits 
and connected them to the bandpass filter.

7.3.3 COMPUTED AND MEASURED RESULTS

The computed loss/frequency response for the active bandpass 
filter is shown in Figs 7.25 (a) and (b). We find that the 
active filter has a passband response which is almost identical 
to that shown in Fig 7.19 (a) for the original LC bandpass filter. 
The stopband response for the active filter is also very similar to 
that for the LC filter, see Fig 7.19 (b), except for very high 
frequencies when they begin to differ. In a practical application 
however, this small discrepancy would be insignificant.

The computed effects of - 20.0 % variations in the f values for 
all three amplifiers in the active filter are shown in Fig 7.26 (a). 
The shift in the centre frequency is only about - 10.0 Hz, ie 
- 0.1% of the nominal centre, and the loss in the passband is 
affected very little.

The measured loss/frequency response for the active bandpass filter 
is shown in Figs 7.27 (a) and (b). These curves are very similar 
to the computed curves in Figs 7.25 (a) and (b).

The dynamic range for the experimental filter was also investigated. 
We found that the loss/frequency response for the filter 
deteriorated, for passband output levels greater than approx 1.0 r.m.s. 
Some measured noise levels for the filter are shown in Figs 7.28 (a) 
and (b). These results are for measurement bandwidths of 100 and 
1000 Hz respectively, and the curves are shown on a graph were 
0.0 dB on the vertical scale represents the maximum passband 
output level of l.ol/r.m.s.



7.3.4 SENSITIVITY INVESTIGATION

To investigate the passive component sensitivities 
for the active bandpass filter, we took the approach of 
showing how the loss/frequency response changes, when the 
passive component values are altered from their nominal 
values - these curves are shown in Figs. 7.29 (a) to (c).
For comparison purposes similar curves for the original 
LC bandpass filter are shown in Fig. 7.30.

The loss/frequency changes for the capacitors 
in the active filter, see Fig. 7.29 (a), are practically 
identical to those in Fig. 7.30 for the corresponding 
capacitors and inductors in the original LC bandpass 
filter. Also, the loss/frequency changes for and

in the active filter are very similar to those for 
the LC filter case. In these respects the active filter 
retains the low sensitivity features for the original 
passive filter.

For the resistors in the S.B.I. circuits at 
the terminating ends of the active filter, we find that 
the changes produced in the active filters loss/ 
frequency response are about the same as those for the 
capacitors in these S.B.I. circuits, see Figs. 7.29 (b) 
and (c). However , for the S.B.I. circuit in the middle 
of the active filter, we find that the resistance changes 
affect the filter’s response significantly more than the 
capacitance change for the S.B.I., see Figs. 7.29 (b) and 
(a) . The sensitivities of the loss to the resistors R ^  ,



Rc 2> ^C3* ^C4 an<̂  ^05’ are ver^ smaH  as shown by the 
curves in Fig. 7.29 (c). The effects of f^ variations 
on the loss/frequency response for the active filter, have 
already been investigated in Section 7.3.3.



CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 REVIEW OF THESIS

In Chapter 1 we outlined various approaches to 
the design of active-RC filters. Of these approaches 
the one we decided to explore in this thesis was the
t t
inductance simulation method , where the inductors in an 

LC filter are replaced by simulated inductor circuits.
In particular we have been concerned with LC filters 
where all the inductors are grounded, and where these 
inductors are replaced by single-amplifier S.I. networks. 
The approach of using simulated inductances has the 
advantage that the active filter can retain some of the 
good sensitivity features for the original LC filter.
For instance, the source and load resistors in the active 
filter, and the capacitors in the active filter which 
correspond to the capacitors in the LC filter, can all 
have the same low sensitivities as for the LC filter.
The advantage of using single-amplifier S.I.s is 
that the number of amplifiers for the active filter is 
a minimum, however, a possible disadvantage is that the 
components in the S.I. networks may introduce new 
unacceptably large sensitivities for the active filter.

In Chapter 2 we reviewed all the single­
amplifier S.I. networks that have appeared in the 
literature, and, for interest, we also reviewed the



single-amplifier networks for simulating impedances of 
the form Mp^, K/p^, pL + 1/pC, and R + K/p^. A useful 
way of classifying these networks was to indicate how 
many capacitors they contained, and also how many 
coefficient and pole/zero cancellations that are 
required in their impedance expressions. This information 
was shown in Fig. 2.15, and we found that the S.I. 
circuit due to Orchard and Willson (2,6 ) , and the 
circuit due to Schmidt and Lee (2.7 ), both had only 
one capacitor and needed the fewest number of 
conditions required for inductance simulation, i.e., 
two coefficient cancellations each for their impedance 
expressions. As these S.I.s contain only one 
capacitor, they can be regarded as single-amplifier 
immittance inverter circuits having port 2 terminated 
by a capacitor. Henceforward, we were concerned with 
single-amplifier S.I.s of this type, as the title of 
the thesis indicates.

As alternatives to the 0/W and S/L circuits, 
some new single-amplifier, single-capacitor, S.I. 
circuits were proposed in Chapter 3 - these networks 
can also be regarded as single-amplifier immittance 
inverters having port 2 terminated by a capacitor.
One of the new circuits, called S.I. circuit A, has 
the interesting feature that its inductance value can 
be changed by altering the value of a single resistor, 
without affecting the conditions required for lossless



inductance simulation; the other new circuits, and the 
0/W and S/L circuits, do not possess this property. 
Furthermore, the inductance value can be varied over 
a positive and negative range, and the circuit appears 
suited to a straightforward adjustment procedure for 
reducing the effects of passive component tolerances on 
its impedance. Another new circuit, called S.I. circuit 
B, uses only six resistors, and it has the interesting 
feature that it is a special case of S.I. circuit A.

Also, in Chapter 3, we investigated the general 
effects of passive component tolerances on the impedance 
for the single-amplifier, single-capacitor, S.I.s. One 
way to describe these effects is by the model in 
Fig. 3.9, which shows a resistance RY in series with

A

the parallel combination of an inductance L and a 
resistance Ry. The interesting feature for this model 
is that the passive component tolerances give rise to
frequency independent values for RAr, Rx, and L. We

X Y

also briefly investigated the general effects due to the
non-ideal voltage gain for the amplifier, and pointed
out that the impedance for the S.I.s becomes a
biquadratic in p. This is because each simulating

s tnetwork contains a capacitor with a 1 order impedance 
function, an amplifier whose voltage gain is assumed to 
have a 1st roll off, and no other elements with frequency 
dependent characteristics.

In Chapter 4 we made a study of the new S.I.



circuit B. We showed how to choose the nominal passive 
component values for this circuit, so that the effects of 
component tolerances on its impedance were reduced.
To do this we made use of the model in Fig. 3.9 - note 
that, for this model, R̂ . is ideally zero, Ry is ideally 
infinite, and L should be equal to the specified 
inductance value L^. We derived expressions for the 
worst case values for |Ry| anc  ̂ |Ry|, due to fractional 
changes x^ for the conductances in the S.I. circuit B, 
and we then showed how to minimise and maximise these 
expressions accordingly, while still obtaining only small 
changes in L for the conductance changes. This approach 
is very interesting as it can be used for other single­
amplifier, single-capacitor, S.I. networks.

Also, in Chapter 4, we investigated how the 
impedance for S.I. circuit B is affected by the non­
ideal voltage gain for the amplifier. Expressions for the 
L(co) and Q(GO) behaviour due to the non-ideal gain 
were derived, and we showed the behaviour for a typical 
design for S.I. circuit B. We then showed how to choose 
the nominal passive component values for the S.I. circuit, 
so that the Q(co ) values were larger, and so that Q(co) 
had its maximum value at a specified frequency. However, 
a sensitivity study showed that the Q(co) behaviour is 
very sensitive to changes in the resistance values for
S.I. circuit B, and we decided that the approach of
obtaining Q (CO ) at a specified frequency is unlikelymax



to be useful in practice. Although small changes in the 
resistances produce large changes in the Q(£0) behaviour, 
we pointed out that they may, nevertheless, produce much 
smaller changes in the loss/frequency response for an 
active filter containing the S.I. circuits B. In 
Chapter 4 we also compared the S.I. circuit B with 
two other S.I. circuits, namely, the 0/W circuit of 
Section 2.2.4,' and Antoniou’s two-amplifier circuit 
of Section 2.2.1. We found that these circuits had 
similar L(o) ) and Q(oo) behaviour due to the non­
ideal voltage gain for their amplifiers, however, the 
two-amplifier S.I. circuit has much better Q(60) 
sensitivities to its resistance values, and this is one
reason why it is preferred to the other circuits, in some applications.

In Chapter 5 we described an interesting method 
for overcoming the effects of the non-ideal amplifier 
gain on the loss/frequency response of active filters that 
contain single-amplifier, single-capacitor, S.I.s. We 
pointed out that single-amplifier, single-capacitor, S.I.s 
can have the impedance of a lossless inductance only if 
the amplifiers in the circuits are considered ideal.
When the non-ideal voltage gain for the amplifiers is 
taken into consideration, the impedance for the simulating 
networks becomes a biquadratic expression in p, and only 
approximates the impedance of an ideal inductance over a 
limited frequency range. Taking the non-ideal amplifier 
gain into consideration, we deliberately redesigned the



simulating networks to have a biquadratic impedance of 
the form

pL(l + pr)
Z  = ---------------- 2----------1 + p LC

and we referred to circuits having this type of impedance
M tt

as ideal S.B.I.s , where S.B.I. is an abbreviation for 
Simulated Biquadratic Impedance. We then showed how 
various types of LC highpass and bandpass filters, with 
their terminating resistors, can be modified so as to 
produce the required loss/frequency response using the 
S.B.I. circuits instead of the originally required inductors.

An advantage of the approach described in Chapter 
5 is that the non-ideal voltage gain for the amplifiers 
is taken into consideration in the design of the active 
filter. For bandpass filters using the S.B.I. circuits, 
the passband loss/frequency response is correct at the 
frequencies of maximum power transfer for the original LC 
filter. The response at other frequencies can be incorrect 
but a high degree of compensation for the non-ideal voltage 
gain of the amplifiers may still be achieved. For highpass 
filters complete compensation for the non-ideal voltage 
gain can be obtained over the entire frequency range in 
which the gain of the amplifier can be adequately described 
by a single-pole model. Even in the case of two-amplifier
S.I.s this has not been achieved, as these circuits are 
usually designed to offer compensation for the non-ideal



voltage gain only in the neighbourhood of a particular 
frequency. A disadvantage of the new filter design method, 
when compared with the method of directly replacing the 
inductors in an LC filter by S.I. circuits, is that 
additional capacitors are required for the highpass filter 
case. However, as mentioned in Chapter 5, it may be 
possible to reduce the number of additional capacitors to 
only one regardless of the order of the filter.

In Chapter 6 we described some sensitivity features
for active filters that use S.B.I. circuits. We pointed
out that both highpass and bandpass filters that use S.B.I.s
can be considered as being derived from LC filters having
parallel RC terminations. We briefly investigated the
sensitivity properties for filters of this type, and showed
that they can be significantly more sensitive than LC
filters having purely resistive terminations. However, we
suggested that their sensitivities might approach those
for purely resistively terminated LC filters, as the
time constant for the source impedance is chosen
to be smaller. In Chapter 6 we also investigated the
effects of f variations on the real and imaginary parts
of the impedance for the S.B.I. circuits. General

s texpressions for the 1 order normalised differential
RE (W )sensitivities S... , , and A were derived, and

(1/ COj] {1/C0jj

we showed, in particular, how to calculate these sensit­
ivities for the S.B.I. circuit B.



In Chapter 7 we described some active-RC filters
that used S.B.I. circuits. One filter example we described 
was a 5 ^  order Cauer type highpass filter that contained 
the S.B.I. circuits B described in Section 5.4.1. The 
resistance values for the S.B.I. circuits B were chosen 
so that we could carry out an adjustment procedure, for 
overcoming the effects of component tolerances on the loss/ 
frequency response for the practical filter. The computed 
loss/frequency behaviour precisely met the original 
specification, and the measured response was very similar 
to the computed response. We also carried out a sensitivity 
study for the active filter, and found that the passive 
component sensitivities were significantly larger than 
those for a low sensitivity LC filter. However, the 
sensitivities may still be acceptably low for some 
applications, and it may also be possible to redesign the 
active highpass filter to have better sensitivities.

Also, in Chapter 7, we were concerned with 
minimising the effects of variations on the loss/
frequency response for active filters that use S.B.I. 
circuits. As an example for study we investigated how 
to reduce these effects on the loss/frequency response 
for an active-RC resonator circuit that contained the 
S.B.I. circuit B. We pointed out that in the design 
procedure for the S.B.I. circuit B, see Section 5.4.1, 
the values for the conductances G^, G2, G^ and G^ could 
be chosen arbitrarily. To achieve our objective we chose



these conductance values so that the sensitivity S
!m ( W  )

( i / w T ) ’
for the S.B.I’s impedance, was minimised at the nominal 
resonance frequency for the active resonator. -The effects 
of f̂ , variations on the - resonator’ s loss were then so 
small that we regarded this approach as successful.

Another filter example described in Chapter 7, 
was a 6 ^  order bandpass filter again using the S.B.I. 
circuits B. To reduce the effects of f^ variations on 
the filter’s loss, we designed the S.B.I. circuits so

iM c*>)that their sensitivities //% were minimised atX / Cu rp )
the nominal resonance frequencies for the parallel LC 
resonators in the original LC filter. We also described 
an adjustment procedure for the practical filter, for 
reducing the effects of component tolerances on the 
measured loss/frequency behaviour. The computed loss/ 
frequency response for the active filter was almost 
identical to that for the original LC bandpass filter, 
and the response for the practical filter was also very 
similar. We carried out a sensitivity study for the active 
filter and showed that the loss has, indeed, a low 
sensitivity to fj. The sensitivities of the active filter’s 
loss to its capacitance values, were practically identical 
to the capacitance and inductance sensitivities for the 
original LC bandpass filter. Also, we obtained low 
sensitivities for the resistors in the S.B.I. circuits at 
the terminating ends of the active filter. The resistance 
sensitivities,for the remaining S.B.I. circuit, were larger 
but may well be acceptable for some filter applications.



8 . 2 RECENT DEVELOPMENTS

An exciting recent development has been the 
discovery of a new single-amplifier, single-capacitor, S.I. 
circuit, that requires only one coefficient cancellation 
in its impedance expression. The new S.I. circuit is 
derived from the Cheng/Lim network of Section 2.4.1, 
which simulates the impedance of a grounded series LC 
resonator. For this reason we briefly describe Cheng 
and Liins circuit once again here.

The Cheng/Lim simulation network is shown in 
Fig. 8.1 and, assuming an ideal amplifier, it has an 
impedance

Z
A0 + A xp + A 2p 2 

B-jP
(8 .1)

where

A 0  G 2 G 3 ^ G 5 + G 7-)

A1 = C6G3(-G2 + G5') + C4^G2G3 + G2G7 “ G1G5̂

+ + G y )  + C ^ G y G y R g  (Gj ,  + G ^ )
(8 .2 )

A2 C4C6G3R4 (-G2 + G5-)

Bx = C4G2G7(G1 + G3) note : G. = 1/R.l i



To obtain an impedance Z = pL^ + 1/pC^ the coefficient 

cancellation = 0 is needed so that (8.1) becomes

Z Ao * a 2p 2
B lp

(8.3)

We then have = A^/Bi and = B^/A^ ~ note that

the conditions A^/B^ >  0 and B^/Aq >  0 are needed

for Ld and C_ to be positive.

By merely shortcircuiting the capacitor in

Cheng and Lims’ simulation network we obtain the new S.I. 

circuit shown in Fig. 8.2. The impedance for the new 

circuit can be found by letting -> cx? in (8.1), i.e., 

we obtain

Z A 0 + V

B0
(8.4)

where

A0 G2G 3 + G 2G7 G1G 5 + G2G3R4 ('G 5 + G7-*

+ G2G7Rg(G1 + Gj)

A1 = C6R4G3<G 2 + G5)
(8.5)

0 g 2 g 7 ( g 1 +  g 3 )

For lossless inductance simulation the condition A q  = 0



must hold. From the expression for Aq in (8.5) we find 
that this condition can be satisfied by choosing as

G = G2(G3 + G7 * R4G3G5 * R4G3G7 * V W  (g ^
G5 " R8G2G7

Note that the inequality Gg >  RgG^Gy must hold for (8.6) 
if the value for G^ is to be positive. A very simple 
way to satify this inequality is to choose Rg = 0 , i.e., 
we replace the resistor R0 in Fig. 8.2 by a short­
circuit. The inductance value for the new S.I. circuit 
is given by the relationship L = A^/Bq . Making use of 
the expressions for A^ and Bq in (8.5) we obtain

C6R4G5 (-G2 * G5̂  
G 2 G 7(Gl + G^)

(8.7)

When the expression for G^ in (8.6) is substituted 
into (8.7) we obtain

L = C6W G2 + G5 ^ GS -  R8G2G7̂

G2G7 f G3('G5 R8G2G7') + G2G3 + G2G7 + R4G2G3G5 + R4G2G3G7 j
(8 .8)

Once again, if the inequality Gg >  ^36267 holds, then 
the inductance value L will be positive. One set of 
component values which satisfy the condition Aq = 0 to



give L = 100 mH is : = 2.5 k& , R2 = R3 = R4 = R5 =
Ry = 10.0 kS2 , Rg = 0 , and = 2.5 nF.

The expression in (8.7) shows that the inductance 
value L is independent of the value for Rg. To overcome 
the effects of passive component tolerances on the impedance 
for the new S.I. circuit, we might therefore adjust 
anyone of the conductances to to ensure that L
is equal to the desired inductance value L^, and then 
adjust Rg so that the coefficient Aq in (8.5) was 
zero. This last adjustment will not affect the inductance 
value.

The new S.I. circuit is very interesting as it 
requires only one coefficient cancellation in its impedance 
expression. Previous single-amplifier S.I. circuits have 
required at least two coefficient cancellations, as shown 
by the Table in Fig. 2.15. When the Table in Fig. 2.15 
is updated to include the new S.I. circuit, we obtain 
the new Table shown in Fig. 8.3. Further additions to 
this Table have not been investigated owing to lack of
time.



8.3 SUGGESTIONS FOR FURTHER WORK

(a) Active filters that use S.I. circuits A

In theory the S.I. circuit A, described in 
Section 3.2.1, has the advantage over other single- 
amplifier S.I.s, that it is suited to a functional 
adjustment procedure for overcoming the effects of passive 
component tolerances on its impedance. It would be 
worthwhile investigating this adjustment procedure in 
practice, and also investigating how we could make use of 
the adjustment procedure to reduce the effects of passive 
component tolerances on the loss/frequency response for 
active filters that contained the S.I. circuits A.

(b) Reducing the effects of component tolerances
on the impedance for S.I. circuit A

In Section 4.2.2 we showed how to choose the 
nominal passive component values for S.I. circuit B so 
that the effects of passive component tolerances on the 
impedance were reduced. It would also be worthwhile 
investigating how to reduce the effects of passive component 
tolerances on the impedance for S.I. circuit A . Even 
though the S.I. circuit A is suited to a functional 
adjustment procedure for overcoming the effects of component 
tolerances, the above objective is still worthwhile as 
it reduces the effects of post adjustment variations on 
the impedance for S.I. circuit A. Such post adjustment



variations might be due to ageing of the components, or to 
environmental changes such as temperature fluctuations.

(c) Sensitivity investigations for active filters
that contain the S.I. circuits B

It would be interesting to investigate the 
sensitivity features for an active filter that contained 
the S.I. circuits B, and where these S.I.s are designed 
in the way described in Section 4.2.2, so that the effects 
of of passive component tolerances on their impedances are 
reduced. In particular, it would be interesting to determine 
whether the sensitivities of the filter’s loss to the 
passive components in the S.I. circuits B were reduced 
as a result of designing the S.I.s in the way described 
above. If so, we might use the same approach to reduce 
the sensitivities for active filters containing the S.I. 
circuits A.

(d) Active filters using the S.I. circuit described 
in Section 8.2

Assuming an ideal amplifier, the new S.I. circuit 
described in Section 8.2 needs only one coefficient 
cancellation for its impedance expression and, in theory, the 
effects of passive component tolerances on its impedance 
can be overcome by adjusting the values for just two 
resistors in the circuit. Further useful work might be to



investigate the effects of the non-ideal voltage gain of 
the amplifier on the impedance, to investigate practical
adjustment procedures for the circuit, and to explore the 
use of the circuit in active-RC filter design.

(e) Reducing the passive component sensitivities for
active filters that contain the S.B.I. circuits B

In the design procedure for S.B.I. circuit B, 
described in Section 5.4.1, we pointed out that the 
values for the conductances G^, G^, G^ and could be
chosen arbitrarily. In Sections 7.2.2 and 7.3.1 we 
used these degrees of freedom to minimise the effects of 
fj variations on the loss/frequency response for active 
filters that contained the S.B.I. circuits B. It 
would be interesting to explore how the degrees of freedom 
might, instead, be used to minimise the passive component 
sensitivities for the active filters.

(f) Active filters using the S.B.I. circuits A

We might investigate how to minimise the passive 
component sensitivities for active filters that used the 
S.B.I. circuit A described previously in Section 5.4.2, 
and we might also explore how to adjust the resistances 
for these S.B.I. circuits so as to reduce the effects 
of passive component tolerances on the loss/frequency 
response for the active filters. It may also be worthwhile



investigating how to minimise the effects of 
on the loss/frequency response for the active

fj variations 
filters.
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Fig. 1.1_____ Linvill's method for active-RC filter design
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V2(p)

v 1 (p )

1S  ̂ order 2nC* order

section section

Fig. 1.2 'Cascade method11 for active-RC filter design
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Fig. 1.3 Some methods for the simulation of inductors
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Fig. l.^(b)______Lowpass filter after impedance

scaling by e/p ( T(p) unchanged )
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(d) Bandpass filter with 1 transmission 
zero at a finite frequency

LG filter types where all Ls are grounded
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Fig. 2,.i Two-amplifier circuit (Z = pL)
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Fig. 2.2_____ Saraga circuit (Z = pL)

Fig- 2.5 Sipress circuit (Z = pL)
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Fig. 2.3 Schmidt/Lee circuit (Z = pL)
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(a)______Ford and Girling circuit

(b) Prescott circuit

(c)______Berndt and Dutta Roy circuit

Fig. 2.6 Some "lossy" simulated inductor circuits
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2.7 Two-amplifier F.D.N.R. circuits
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Fig. 2.8 Saraga circuit Z = K/p2 )

Schmidt/Lee circuit ( Z = K/p2
)Fig. 2.9



Fig. 2.10 Schmidt/Lee circuit Z = Mp2 )
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Fig. 2.11____ Some imperfect F.D.N.R. circuits



Fig. 2.12 Cheng/Lim circuit ( z = pL + V p C  )
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Fig, 2.13 Schmidt/Lee circuit Z = R + K/p2 )

Fig. 2. 'Ik Cheng/Lim circuit Z = R + K/p2 )

r



circuit j no. of 
| amps.

no. of 
capacitors

coeff. 
cancells.

pole/zero | 
cancells.

Saraga ( pL ) 1 3 2 1

Sipress ( pL ) *"i 2 2 1

Orchard/Willson (pL) 1 1 2 0

Schraidt/Lee ( pL ) “1 2 0

Cheng/Lim (pL+1/pC) < 2 1 0

Two-amp. circuit (pL) 2 1
_ _ _ _ _ _

0
L_

0

Schmidt/Lee (Hp2 ) 1 2 k 0
Schmidt/Lee C\J 1 2 3 0
Saraga r\JNw/ 3 2 1
Schmidt/Lee (R+K/p2 ) 1 2 2 0
Cheng/Lim (R+K/p2 ) 2 1 0

K tTwo-amp. circuit -̂i2,Mp' 2 2 0 0

Fig. 2.13 ’____ Number of amplifiers , capacitors , coefficient and

pole/zero cancellations required by the simulation networks.



o

*/

R

F i g .  3 . 1  (a)  S . I .  c i r c u i t  A j
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Fig. 3.1 (b) RC network for S.I. circuit A
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Fig. 5.3 S.I. circuit B
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F i g .  3 . 4  (a) S . I .  c i r c u i t  C

Fig. 3.4 fb) RC network for S.I. circuit CI
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F i g .  3 . 5  (a) S . I .  c i r c u i t  D

Fig. 3.5 (b) RC network for S.I. circuit D
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F ig .  5 . 6  S . I .  c i r c u i t  E

Fig. 3.7 S.I. circuit F



Fig .  3 . 8  (a)  Model f o r  showing t h e  e f f e c t s j 

o f  p a s s i v e  component  t o l e r a n c e s
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F i g .  3 . 9  A l t e r n a t i v e  model  f o r  showing t h e  

e f f e c t s  o f  p a s s i v e  component  t o l e r a n c e s

F i g .  3 . 10  Model f o r  showing t he  e f f e c t s  

o f  t h e  n o n - i d e a l  a m p l i f i e r  ga in



comp­
onent v a lu e change Rx (ft) Ry(Mft) % L

rin 10 kft + 1 % — 1 0 t  25 oo i  0 . 75

R2N 5 kSl 11 + 50 + 0 .5 ± 1.5

R3N 10 k SI ti ± 50 ± 1 .0 ;  0 . 5

R4N 10 ka * i ;  50 + 0 . 5 0

R5N 10 k SI M ± 2 5 ± 0 . 5 + 0 .5

R6N 10 k SI 1 t 0 ± 1 .0 ± 0 . 75

C0N 4 nF 11 0 oO ± 1 .0

F ig .  4 . 1  T y p i c a l  e f f e c t s  o f  component  t o l e r a n c e s
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776 ,
1—|—r-r-f-H----------------1----------1-----1—i—i i n
if- 6 8 lo lo LH> <>0 sc too

J-rec^yeiacw It Hr.)

Fig .  4 . 2  Worst  p o s s i b l e  1 Q ( c o )1  b e h a v i o u r  

due to 1 % p a s s i v e  component  t o l e r a n c e s



comp­
onent v a lu e change Rx (a) Ry (M») L

R1N 1 k SI + 1 9 t 3 . 32 OO 10.67

R2N 99.01 krt it ;  3 .36 + 9 .9 l i . o i

R3N 100 kft tt ! 3 . 36 i i o o o 1-0066

R4N 1 kft n ;  3 .36 + 10 ; 0 . 3 3

R5N 100 k SI 1 f ^0 .033 + 9 .9 + .0066

R6N 1 ktt M 0 t 10 10.67

C0N 332.2 pF ! 1 0 OO t 1 .0

F ig .  4 . 3  E f f e c t s  o f  component  

t o l e r a n c e s  f o r  improved d e s i g n



Fig .  4 .4  Worst  p o s s i b l e  |Q(io)| b e h av i ou r  | 

f o r  improved d e s i g n  (due t o  1 % p a s s i v e

c o m p o n e n t  t o l e r a n c e s )



COMPONENT V A  LOB

R. 1-6180^ ktt

R jl o - m w

1-0

R  4- t - o

r 5 1-0

^6

C o / 6 / - 3 0 3  n F

Table (b) - values for improving the 

|Q(co)| behaviour due to finite

COMPONE NT VALVE

R. 2,-0

Ri 1*0

Rs z • 0

R m- h - 0

R 5 2 • 0

R 6 2-0

Co 100 n F

Table (a) - initial choice for 

the passive component values

Fig. 4.5 Passive component values for S.I. circuit B
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Fig. 4.6 L foo) and Q(co) behaviour for initial design
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Fig. 4.7 L (co) and Q(oo) behaviour for improved design



component value

ft, I - & W 6  kSl

0 - W 3 I I  "

R3 2-0332.8 ■

R i f 2-0 3328 "

Rs 2-03328 "

R e i . e w e  -

C o 1 5 6 - 5 5  nF

Fig. 4.8 Passive component values 

for obtaining OCaO at 1.0 kHz----------------tt— — z_max-----------------
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Fig. 4.9 L (to) and Q (go)  behaviour for

design having LfJ
-op-

100 mH and f 1.0 kHz
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Fig. 4.10 L(oo) behaviour for different values of m
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Fig. 4.11 QĈ -Q behaviour for different values of m



Com ponen t
v a lu e s

m = I m =■ 5 m -  \ 0 m  = 100

R, i-6 w e h a l-OS 74-3 kSi 1-01536 k& 0-947/72 /tfi

Rz 0-307311 n 4-5750/ 11 3 - 1 6 5 7 II 93-7545 *

R3 2-0332.8 n 5 - 7 7 0 5 7 /i 1 0 - ^ 7 7 2 n 95-037.7 »

R if- L-033 n it /•I54// n 1-06-7 7Z it 0-95032,7 »

R5 2-0332,8 11 5 - 7 7 0 5  7 n /0 -4-775 n 75-032.7 *

Re 6 n 1-0574-3 n 1-01536 11 0-747/92 *

Co 1 5 6 -5 5 n F 5* {? *0506 n F 30-3755 n F 3*3 66 nP
Spread

fnac/For 2a' 1 3 6 5 - 3 0 7 1 0 - 3 2 ,

CO•00

Spread f ac to r  3 Rmax/Rmia 100 mH
r ^pl^'cr ; a = |0'5 aoc{ -jiT « |06 Hx f 0p - I-0 k Hz

Fig. 4.12 Passive component values for different values for m



com ponent
va lues

fop — 100  Hz k P = ' fop  -  /O kHz

R, 0 - 1 0 1 5 3 6  iS2 1 - 0 1 5 3 6  h a 10-1536

R i 0 - 9 2 5 6 5 7  « 0 - U 6 S 7  » 9 1 - 5 6 5 7  «

r3 1 - 0 1 7 7 8  " \ 0 - 9 7 7 8  " \ 0h- -17S  "

1 -OH-778 " 1-09-778  ' 1 0 - 9 7 7 2  ’

r 5 \ -OH-773  » l O ' H - U S  " 1 0 9 - 7 7 8  11

r 6 070/536 « 1 - 0 1 5 3 6 1 0 - 1 5 3 6  "

Co 3 - 0 3 7 9 5  /JF 3 0 - 3 7 9 5  n F 3 0 3 - 7 9 5  P F

- 5 C°c -  lo f T  = lo Hz. , Z-/s/ “  100 mH j m = /o

Fig. 4.13 Passive component values for different values for f
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Fig. 4.14 Q(co)
OD

behaviour for different values for f



LC
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Fig. 4.15 L(co) behaviour for different values for fQ



10-0 KHz

Fig. 4.16 L(to) behaviour for different values for f



component
change in 
comp, value

change in 
[_(oo) cot 1*0 KHz

R i t  I'O % t 0-77 %

R z
4 t  1 - H o

R b
* +  0 - 3 9

Rif-
II + (7 • 13 n

R 5
H +  0 - Z 9  »

n t  0 - 7 7

Co
M ± 1 - 0 1

Fig. 4.17 Changes in L(cu) due to 1 %

changes in the passive component values



jVecjuenctj ( k Hz.)

Fig. 4.18 (a) Changes in |Q(co)| due to changes in

V U .



Fig. 4.18 (b) Changes in |Q(co)| due to changes in



frequency (KHz)

Fig. 4.18 (c) Changes in |Q(co)| due to changes in

D



Fig. 4.18 (d) Changes in |Q(co)| due to changes in

9



Fig. 4.18 (e) Changes in |Q(cj)| due to changes in



Fig. 4.18 (f) Changes in | Q (oj> ) | due to changes in

O v'/
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Fig. 4.18 (g) Changes in |Q(uj)| due to changes in Cq

c) r:,
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|Q(co)| due to changes in f̂ , !Fig. 4.18 (h) Changes in



co m p o n e n t va lue

R, 0 - 3 5 2 5 5 7  KSi

3 - 1 7 3 0 1  "

h 3 - 1 7 3 0 1  «

R*t- n - 5 5 7 i  «

31-7301  "

Re 0 - 3 1 7 3 0 1  «

Co M33 n F

Table (a) - values for

the 0/W S. I. circuit

c o m p o n e n t va lue

R, S I Z W  Si

R * 6 2 2 - 3/7 "

R^ 62.8-3/7 "

P>4- 62.8-3/7 «

Co 0 - 2 5 3 3  A<F

Table (b) - values for the 

two-amplifier S.I. circuit

c o m p o n e n t v a l u e

R , o - q t f r m

Ri 1 3 - 7 2 V 5  "

R3 5 5 - 0 3 2 7  ••

R 4. 0 - 1 5 0 3 1 7  »

R s 5 5 - 0 3 2 7  »

Re f l - w m  "

C o

Table fcl - values for

the S.I. circuit B

Fig. 4.19 Passive component values for the S.I. circuits



Fig. 4.20 Comparision of L(co) behaviour
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Fig. 4.21 Comparision of Q(gj) behaviour
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Fig. 4.22 (a) Effects of changes in R0 on
z !

the Q (cj) behaviour for Antoniou’s circuit i



Fig. 4.22 (b) Effects of changes in on 

the QfaQ behaviour for Antoniou’s circuit
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Fig. 5.1 Effects of impedance

scaling by (1 + p~C)
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Fig. 5.2 Development of LC lowpass ; 

filters with parallel RL terminations !
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Fig. 5.3 Cauer type highpass filter design using S.B.I.s
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Fig. 5.4 (a) Norton transformation, (b) Elimination of

the ideal transformer
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=1= C* = C, *  Ct
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(CrfCz y
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Fig• 5.5 Equivalence transformation
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F i g . 5.6 Polynomial highpass filter design using S.B.I.s
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Fig. 5.7 Polynomial bandpass filter design using S.B.I.s
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Fig. 5.8 Elimination of unwanted inductor
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Fig. 5.9 Design procedure for bandpass filters with finite zeros



Fig. 5.9 Design procedure for bandpass filters with finite zeros
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Fig. 5 10 Reinterpretation of d e s i g n j
j

procedure for bandpass filters



Fig. 6.1 Resistively terminated LC filter

o*

o■

4
c3

■o

RL

o

c o m p ­
o n e n t value

1 - 0 0 0 0  KSl

1 • 0 0 0 0  "

c, 0 - 1 7 0 3  fJP

Cz 0 * 5 6 6 0  "

c 3 O 'U H  "

u 0 - 1 7 0 5  "

c 5 0 - 2 7 3 3  *

L , 0 * 1 4 5 3  H

0 * 2 4 - 0 7  "

Fig. 6.2 Highpass filter example
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Fig. 6.3 Loss/frequency behaviour for highpass filter
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Fig. 6.4 Sensitivity investigation for highpass filter i



frequency (kHz )
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Fig. 6.4 (continued) Sensitivity investigation for highpass filter



z * = ai

comp­
onent v a lv e

Rs 1-0000 K61

Rl 0-67^ II

Cs 15*̂ 15 nF

Cl 20-370 it

C, % - 0 % n

C i 0 - 6 H - O 8 P F

C z 0-1̂ 19 n

c * 0-11 IS 11

Ce 1-362,6 it

L, 0 - 1 1 8  5 H

L-2. O-ZIH-I it

Fig. 6.7 ' Highpass filter with parallel RC terminations j
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Fig. 6.9 Sensitivity investigation for highpass filter 
with parallel RC terminations



frequency (KHz)

Fig. 6.9 (continued) Sensitivity investigation for highpass 
filter with parallel RC terminations
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Fig. 6.9 (continued) Sensitivity investigation for highpass
filter with parallel RC terminations



Fig. 7.1 Design of the active highpass filter
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Ll l ‘ (z'o&Z'L •/

l~ z 0 - 2 V - S 3 6 9  «
h l l l^C fC j  „
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° 6 o - 7 4 - 3 5 5  2. "
c«o
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Z-oooo KJl

^
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r~ /•3553

Ls |5 9 /.55 mH

L l 129-2-51

Li 268-595 «
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L 5 /%• 52*17 <
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C b 29-5850
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Fig. 7.2 Passive component values for the LC

Comp- I 
oneat value.

Rs 2 - 0 0 0 0 0  Kf t

r l 1 - 3 5 5 ?  ”

c s 3 - 3 7  387 n F

0 . 5- 09Z. 5 "

Ci 2. 4- 02, 31 "

Ca 1 6 0 - 2 . 0  -

Cs 3 5 - 4 7 5  "

C*»- 4 - 7 - 9 7 5  *

C 5 3 4 0 - 6 5  "

l a 1?, S*538 mH

L b 21 4- 0 4 7  >•

( o

filters of Fig. 7.1

comp -  
oneat values

Rs 2 - o o o o  k si
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Co 2 - 1 4 8 5  •

C7 £•14- 85 *

L'a 12,5-202 mH

1 - 8 230-3196 "

(c k )
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Ra I Z . 0 - 3 ii 2 1 1 - 7 U
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^ 5 °t2 - 5 3 M 1 6 2 - 8 N

1 - 2 . 0 3 n 2 - 1 1 7 «

Co 2 - 5 6 T nF 1 - 4 - S 0 nP

note jor amplifiers : OC, = |o” ̂  1 MHz.

L 12.5-202. mH 220-3196 mH

C V-O^--7? 7 pF tt-Z>f--S if-Z7 pF

r 3-/<?7/3? xco7 3- / 97 /J9x/^7

Fig. 7.5 (a) Component values for the S.B.I. circuits
(t>) L, C and 'V values associated with

the impedances for the S.B.I.s
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Fig. 7.4- (a) Active highpass filter using S.B.I. circuits B



com ponent  11 value

R s 2 - 0 0 0 HR
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Rift 1 * 2 0 3 K  &
Rzn 1 2 0 * 3 «
R ift 1 2 1 * 8 H
Rn-ft i - 2 0 3 K
R en 3 2 - 5 3 11

Reft 1 - 2 0 3 II

C o s 1 * 3 - 6  0 n F
R ts 2 * 1 1 7 K &
R i b 2 1 1 * 7 h

R s b £ 1 4 - 4 - u

R H-B 2 - 1 1 7 ■
R 58 1 6 Z  * 8 II
R e e £ . 1 1 1 K

C s 3 - 8 1 3 nF
C g 1 - 7 4 - 3 - a

O7 1 - 3 1 3 V

C l 0 * 1 3 0 1 II
R es 8 3 - 7 2 £
Rci 1 3 * 3 1 II
R c z 1 * 1 7 0 II

R e s 3 - 5 8 3 fl
R c t f 7 * 1 4 1 If

R e s 1 - 0 7 6 II
R cg 1 8 3 * 3 II
R c 7 1 6 6 * 6 fl

R c l 1 - 6 8  2 K £
fo r  amplifiers : <*, -  io"

^ 1*0 MHz.

Fig. 7 . t+Cb) Component values

for active highpass filter
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Fig. 7.10 (a) Sensitivity investigation for LC highpass filter
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Fig. 7.10 (b) Sensitivity investigation for LC highpass filter
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Fig. 7.12 Active resonator circuit using S.B.I. circuit B
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r 6 1S- 4-182. it
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C  o 2 - 0 2 0 3 n F
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Comp -  
o  n e a t Value

Rs 10-0000

Ri 10-0000 H

Re 10-0000 l<

R i 2 O ’ OOOo II

Rtf- 1 0 ’ 0000 X

Rs 1 0 -0 0 0 0 II

r6 2 0 - 0 0 0 0 11

Rex 0

Co 1-98938 nF

Cx 0 -1 6 9 1 5 pF

( b )

C o m p ­o n e n t v a l u e

R s 1 0 - 0 0 0 0  KSl

R 1 1 - 6 7 9 2 5

R e 100-000 "

R 3 1 0 0 - 9 . 6 7

R 4- I - 6 5 8  2 . 4 -

R 5 100- o o o

R e 1 - 3 9 3 5 3

X0

I

2 - 0 0 3 9  S
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Fig. 7.13 Passive component values for active resonator circuit
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Fig. 7.15 Effects of changing 1/fT by * 50.0 %



(ap) SSOT



lo
ss

 
(d
B)

“ •OS

~*06

~04 

"OZr 

• 00 

•Oi 

•04- 

*06 

•08 

•10 

• U

• 14*
“10 “<? “8 "7 -6 ~5 • >  "3 ”2 “f 0 1 2  3 4- 5 6 7 8 4 JO

change from centre frequency (Hz)

Fig. 7.17 Effects of changing 1/f̂ , by 50.0 % for the optimised resonator circuit



Component value

Rs 3 0 -oooo k s i

R l 3 0 - 0 0 0 0  "

Cl 16*3113 nF

C l ( j i f O - O & S  pF

C 3 15 *682.6 nF

component value

64-O'OCS pF

/ 6 - 3 H 3  n F

L a 14-4604- mH

Lb 14-3604- «

Lc 14-^604-  «

Fig. 7.18 LC bandpass filter and component values
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Fig. 7.20 Component values for the S.B.I.s in the active bandpass filter
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Ric 100-000 »
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f o r  amplifiers : og = io ® } f  t e 3*5 MHz

Fig. 7.21 and 7.22 Active bandpass filter and component values



Fig. 7.23 Series resonator circuits for adjustment purposes
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Fig. 7.24 Measuring setup f o r :

adjusting the series resonators
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Fig. 7.25 (a) Computed passband response for the active bandpass filter



Fig. 7.25 (b) Computed stopband response for the active bandpass filter
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Fig. 7.26 Computed effects of t 20.0 % simultaneous changes in the f̂ . values for the amplifiers
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Fig. 7.27 (a) Measured passband response for active bandpass filter
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Fig. 7.27 (b) Measured stopband response for active bandpass filter
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Fig. 7.28 (a) Noise level for measurement bandwidth of 100 Hz
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Fig. 7.28 (b) Noise level for measurement bandwidth of 1000 Hz
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Fig. 7.29 (a) Sensitivity investigation for active bandpass filter
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Fig. 7.29 (b) Sensitivity investigation for active bandpass filter
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Fig. 7.29 (c) Sensitivity investigation for active bandpass f i l t e r J
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Fig. 7.30 Sensitivity investigation for passive LC bandpass filter



Fig. 8.1 Cheng/Lim circuit ( Z = pL + 1/pC )



Fig. 8.2 New simulated inductor circuit
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no. of > 

amps •
no. of* 

caps. j
coeff. - 
cancel ls . l

pole/zero j

So/Taga. CpL) 1 3 E 1

S 'lp re ss  C pi-0 1 2 l i

Orckard/Wtllson ( p L ) 1 1 l O

Schm id t/L e e  £pL) i f l O

Cheng/Lfm (pL-M/pc) 1 Z 1 o

Two —amp. C pL) i 1 0 o

New 5 .X  circuit (pL) i t t o

Sch m id t/L ee  ( f t  p2) 1 l hr o

Schm idt/Lee (  K/p2') 1 i 3 o

S o r a g a  CVp^) 1 3 & 1

Sckrrudt/Lee (R + K/ PZ) 1 l Z o

Cheng/Lim , (R + K/pz) I 2 1 o

Two-amp. (Vp7', /^p1) l l 0 o

Fig. 8.3 Final classification of the, 

single-amplifier simulation networks


