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ABSTRACT

The objective here has been a theoretical and practical investigation 
into how turbine-generator stability might be improved by modifying 
voltage regulator or turbine governor action using supplementary signals 
added to one or both of these control loops by a microcomputer.

The approach was to simulate the machine with the controller, 
estimating the model state-variables on the basis of measurements taken 
from the real plant, and optimally feed the states back to the plant to 
give the supplementary signals. Practically, this scheme is superior to 
direct state-feedback since noise rejection is better, unmeasurable states 
may be estimated and any convenient inputs may be chosen.

A controller measuring generator rotor angle to the system busbar and 
field voltage to estimate twelve states was tested on computer 
simulations and implemented in real-time on a microcomputer controll
ing a scaled-down laboratory physical model of a typical modern large 
turbine-generator. Steady-state and dynamic stability were substantially 
improved.

A new method of optimal linear model order reduction is described. 
Experimental results showed that in this way the number of states could 
be reduced from twelve to four with very little degradation to the 
control, equivalent in efficacy to a conventionally reduced ninth order 
controller. This has the potential of making an industrial 
implementation much more cost-effective due to relaxation of time and 
storage demands on the on-line control computer.

Practical tests also showed that the controllers are effective for a wide 
range of operating points without alteration of gains, and that control 
was good even with noisy measurements.

Estimators/controllers giving a supplementary signal only to the voltage 
regulator seem particularly suited to older plant with’ slower governors. 
They give almost as good damping but less first rotor angle swing 
reduction following a transient disturbance as compared with control to 
both loops.

Power, terminal voltage and speed were considered as alternatives to 
load angle as an input to the estimator. Speed gave comparable results 
but power and terminal voltage, although more desirable from many 
viewpoints, did not give the same high degree of stability improvement.

Brief preliminary practical investigations of torsional shaft oscillations 
showed that for the conditions considered, they are not worsened by the 
controller. This seems to be the main area for continuing study.
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CHAPTER 1 

INTRODUCTION

1.1 GENERAL

All turbine generators synchronised to electric power systems have their 

possible range of operation constrained by stability limits1,2. Higher 

generating unit output-to-inertia ratios and the tendency for power 

stations to be remotely sited from load centres have both tended to 

worsen stability problems recently. The situation may be ameliorated, 

however, by improving the generator control system.

Stability limits are usually encountered in under-excited generator opera

tion; with long transmission lines the maximum power transfer may be 

limited. If at all possible, in most networks operators run the machines 

well away from steady-state stability limits due to the possibility of a 

fault such as a short circuit occurring. Disturbances of this type, called 

"transient disturbances", disrupt the equilibrium between input and output 

power of the generator, resulting in oscillations decaying to zero if the 

machine remains stable. If, however, the fault is not cleared quickly 

enough or there is insufficient margin of safety between the steady-state 

operating point and the stability limit, the machine loses synchronism 

and pole slips. Pole slipping is detrimental in many ways since high 

mechanical stresses occur in the turbine generator shaft and windings, 

large rotor currents flow and disruption may spread to the rest of the 

system, so if the machine does not re-synchronise quickly it has to be 

disconnected from the grid. Ensuring that the rest of the system is not 

overloaded in this eventuality necessitates extra, usually less economic, 

plant to be kept running to take up the lost capacity.
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In addition to the importance of maintaining synchronism, it is also 

desirable to damp out any oscillations and return to steady-state 

operation as quickly as possible. In this way, disturbances are less 

likely to propogate to other machines in the system, and recent studies 

have shown that reduced mechanical fatiguing of the shaft caused by 

oscillations in torque is likely to prolong its life3'6.

Turbine generators conventionally have two regulating loops: the governor 

and the automatic voltage regulator (AVR) compare speed and voltage 

respectively with reference values to regulate steam input and field 

voltage. Early governors such as the flyball or Watt type were too slow 

in response to have much effect on transient stability, but the stability 

improvement given by AVRs has long been recognised1. Modern electro- 

hydraulic governors enable valves to close at 6-7 pu/sec7 and static 

thyristor excitation systems are also very fast8.

The combination of fast response and high gain has led to inadequate 

damping in voltage regulators in many systems. Lead-lag compensators10 

are fitted which mean that, while the steady-state gain can be as high as 

200, the transient gain during disturbances is usually about 25-30, improv

ing the damping. Compensators of a similar type are also fitted to 

governors for similar reasons. The current practice is to tune compensa

tion networks on site to meet specified responses, for example the voltage 

response following an AVR step change must meet certain overshoot and 

damping criteria.

Manufacturers have recognised the scope of micro-computers in the control 

of turboalternators9 since they offer improvements in speed of response, 

flexibility and integration with [i] other plant [e.g., boiler] control schemes,
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and [ii] centralised power system controllers. The logical first step is 

to build digital versions of conventional analogue regulators. However, 

numerous studies over the past twenty years, which will be reviewed 

later, have revealed that the "classical" generator control system des

cribed above can be improved upon to give a higher transient stability 

margin and better damping. On-line computers provide an ideal 

opportunity to implement an improved control scheme. Alternatively, 

electronic conventional governors and AVRs can easily be adapted to 

take computer-generated supplementary signals modifying their operation 

when necessary to improve transient performance.

Work has been done since 1977 at Imperial College on a controller which 

generates supplementary signals to add to the governor and voltage reg

ulator loop reference points. Theoretical studies by Vaahedi and 

Macdonald11,12 revealed that a promising way of doing this is by modelling 

the machine and estimating its state variables on-line, continually updating 

the estimates by taking measurements from the machine. The estimates 

are then fed back through an optimal feedback regulator to generate the 

supplementary signals. Subsequently practical studies by Menelaou and 

Macdonald13"15 used a micromachine power system model, but the scope 

of this work was limited by the slow processing speed. Here the object

ive is to develop the work further using more advanced computer hard

ware, to perform theoretical and practical studies establishing which 

model and signals are best used as a basis for estimation and control, 

and to consider other appropriate factors relevant to the industrial 

implementation of such a control scheme.
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1.2 TURBINE GENERATOR STABILITY

1.2.1 Classifications of stability

For convenience in power system analysis, turbine generator stability 

is generally subdivided into three main classifications:

a. Steady-state stability is understood to mean the ability of 

the machine to remain synchronised to the power system 

following a very small disturbance. It is well known1’2 how 

a continuously acting voltage regulator extends stability 

beyond the theoretical unregulated steady-state limit [given 

by the short circuit ratio V^VX ] if the machine is under 

load. When operating in this mode, somewhat misleadingly 

the machine is said to be in the "dynamic stability" region.

b. Dynamic stability is concerned with the damping of electro

mechanical oscillations in the machine and the power system 

following small disturbances. They can occur anywhere in 

the generator operating region. Included in this classifica- - 

tion are resonances between the turbo-generator shaft 

either [i] considered as a single mass system, or [ii] consid

ered as a flexible distributed mass system, and the rest of 

the power system [sub-synchronous resonance] and oscillations 

caused by linking two or more interconnected systems [inter- 

area oscillations].

c. Transient stability is the ability of the machine to withstand 

large disturbances. It covers any sudden event which gives 

rise to such disturbances, such as three-phase faults, 

unbalanced line-line, or line-neutral faults, line switching, 

sudden application of load or transformer tap-changing. Of
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these, the most severe - yet usually the least common - is 

the three-phase fault close to the generator, usually followed 

by disconnection of the faulted line. This worst-case 

situation is frequently the basis of transient stability studies.

There is no clear-cut distinction between each of the above classifi

cations but different methods of analysis are used: For steady-state 

or dynamic stability studies disturbances are small and therefore the 

nonlinear generator equations may be linearised. In transient stability 

problems nonlinearities are important and a step-by-step solution of 

the machine equations is required, evaluating and taking account of 

non-linear effects at each time step. Transient stability analyses 

normally consider a single machine linked by a tieline to the rest 

of the system represented by an infinite busbar, whereas dynamic 

stability studies often require a detailed multimachine model of the 

entire system under investigation.

1.2.2 Stability improvement

Steady-state stability problems are frequently encountered in systems 

with long transmission lines, where there is a reactive power absorb- 

tion problem. A reduced short circuit ratio16, series capacitors, 

shunt capacitors or higher transmission voltages are all ways of 

improving the maximum power transfer capability in this situation.

Series capacitor compensation or high gain AVRs lead to dynamic 

instability problems, which power system stabilisers are intended 

to alleviate. Power system stabilisers17 involve the feedback of 

an extra signal through suitable compensation into the voltage reg

ulator. Power system stabilisers and series capacitor compensation
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have both been causes of shaft torsional oscillations, which will be 

discussed in the next Section. In this country, power system 

stabilisers have been used to tackle England-Scotland inter-area 

oscillation difficulties18'19.

Improvement of transient stability is the main objective in this 

work. However, a controller which improves system damping 

after a transient disturbance is also likely to make positive contri

butions to steady-state and dynamic stability. Motives for attempt

ing to improve transient stability are the following:-

a. At any given operating point the generator is able to withstand 

a more severe fault; subsequent oscillations die out rapidly 

giving a generally well-behaved machine;

b. Generators may therefore be safely operated closer to their 

steady-state stability limits;

c. More power may be transmitted along existing transmission lines;

d. Better local controllers improve the chances of system recovery 

from an emergency state20;

e. Since transient stability margins are higher, less spinning reserve 

plant is needed as machines are less likely to be lost.

1.3 REVIEW OF PREVIOUS WORK

1.3.1 Improving stability by modifying the plant and/or external system

Switched series capacitors21,22 or shunt reactors24’25 can be used to 

help maintain generator stability during a transient. Braking 

resistors23 also improve stability by absorbing excess energy from
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the machine to limit the first swing of the rotor angle. Autore

closing circuit breakers26 to reclose the faulted line as soon as 

possible after clearing are another method. However, U.K. utilities 

have not adopted this method due to the possibility of aggravating 

fault-induced shaft torsional oscillations [and exceeding peak design 

torques] before they have decayed27.

The divided-winding rotor [DWR] generator has two independently- 

controllable field windings on both the direct and quadrature rotor 

axes28. This arrangement offers considerable stability improvements 

over conventionally wound machines16'28’29. However, major design 

modifications are necessary for this type of machine, including an 

extra excitation system, resulting in greater expense. It is for 

financial reasons that DWR machines, switched capacitors and 

reactors and braking resistors have not been more widely adopted, 

since all the methods require expensive hardware.

1.3.2 Improving stability by modifying the turbine generator control system

1.3.2.1 EXCITATION CONTROL

A scheme for the "artificial stabilisation" of a synchronous machine 

to improve long distance power transmission was proposed in 1946 

by Wanger30. It involved feeding frequency deviation and rotor 

angle as additional signals into the excitation system. Another early 

supplementary controller in reference (31) fed rotor angle through 

a nonlinear "lim iter" circuit which boosted the field when the angle 

became very high. The scheme was tested on site with a 60 MW 

turboalternator. High speed rectifier excitation systems introduced 

a few years later10 were found to help limit the first load angle 

swing following a disturbance, but with high AVR gains damping was
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sometimes poor. Output power32, speed deviation33, and frequency 

deviation10 were all suggested as stabilising signals to feed into 

the AVR and improve damping. DeMello and Concordia34 published 

a small perturbation analysis of synchronous machine stability, 

giving useful guidelines on designing AVR lead-lag compensators, 

also on designing a supplementary signal AVR stabilising network 

and when it is likely to be needed. In the discussion, it was argued 

that for major disturbances the supplementary signal should be 

switched off, but the authors thought that simply limiting the signal 

would still improve damping following the transient.

A few years later, torsional oscillations gave problems on an Ontario 

Hydro machine35. The cause was traced to be feedback of speed 

through a stabiliser to the AVR exciting natural shaft modes of 

oscillation. More seriously, torsional oscillations led to complete 

shaft failure at Mohave in the U.S.36’37, although there they were 

caused'by resonance between shaft modes of oscillation and series 

capacitor compensated transmission lines. Methods proposed to 

avoid speed based stabilisers exciting shaft oscillations were:

[i] Siting the speed transducer at the physical node of the 

oscillation35;

[ii] Notch filters tuned to filter out resonant shaft frequen

cies35'38; and

[iii] An observer and controller designed using a pole assign

ment technique39 to ensure torsional vibrations are not 

aggravated.

Alternatively, one can avoid using speed as a stabilising signal 

altogether replacing it with frequency10, accelerating power40’41, 

output power32, or even air-gap flux42. Criteria to be considered
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when choosing stabilising signals are:-

[i] Ease and accuracy of measurement;

[ii] Contribution to controllability [hence stability] of the 

system; and

[iii] Avoidance of undesirable torsional modes of oscillation.

1.3.2.2 GOVERNOR CONTROL

In 1868 Maxwell published an analysis of different types of governors43 

and suggested a compound governor which effectively controlled 

speed by feeding back velocity and acceleration. Dineley and 

Kennedy44 used an analogue computer simulation to show that 

improved generator stability was possible with proportional-plus- 

derivative feedback of speed. A frequency-response analysis45 

showed that damping could be improved by proportional-plus-integral 

velocity feedback. Compensators are now commonplace in governors 

but there has been a general reluctance to provide supplementary 

stabilising signals to governors rather than voltage regulators, 

despite the existence of electro-hydraulic systems and the direct 

control of input power that can be achieved. This may be because 

utilities with a mixture of modern and older plant do not want 

steady-state governing and load sharing between machines to be 

interfered with. There are also problems in turbines of thermal 

stresses and steam condensation associated with sudden changes in 

load setting.

1.3.2.3 FAST VALVING

Fast valving46,47 is a means of improving transient stability by 

rapidly shutting off the intercept valves and re-opening them within 

approximately 10 [ten] seconds. Intercept valves control the steam
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input to the intermediate [and thence low] pressure cylinders of the 

turbine after it has been reheated following its passage through the 

high pressure stage. Fast valving is initiated upon detection of an 

unacceptable difference between input and output power of the 

turboalternator and seems especially effective at preventing over- 

speed following load rejection. For other transient disturbances, 

however, there are several problems:-

a. No post-fault contribution is made to system damping;

b. There is the danger of a minor disturbance [e.g. tap changing] 

triggering off the process;

c. Generation capacity is partially lost for several seconds;

d. Reheater steam pressure can build up to dangerously high levels 

if re-opening is delayed;

e. Re-opening could possibly have a destabilising effect if too rapid 

and badly timed;

f. With frequent rapid closure, valve life may be shortened.

1.3.2.4 BANG-BANG CONTROL

Bang-bang control schemes are so-called because system inputs are 

switched from one extreme to the other. Early work used rotor 

angle and frequency deviation to determine the critical switching 

times1*8. A time-optimal control approach for nonlinear systems has 

been used in other studies to determine switching times for a given 

v disturbance for excitation control1*9,50 and for both prime mover end

excitation control51. The difficulty with bang-bang schemes is that 

optimal switching times have to be pre-determined for any fault 

considered. Unless the controller is specifically given information 

as to clearing time and type of fault [whether three-phase or
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unbalanced], and has a look-up table of contingency actions for all 

possible faults, the control will not be optimal except for the design 

type of fault. In some circumstances the action could even be 

detrimental to stability. Another difficulty with time-optimal 

nonlinear control theory is in its application to multiple input/ 

multiple output systems.

1.3.2.5 OPTIMAL AIMING STRATEGIES

Optimal Aiming Strategies [OAS] are also applicable to nonlinear 

systems and were developed by Barnard52. Whereas general optimal 

control theory involves infinite-dimensional function space optimisa

tions, OAS reduce the problem to finite-dimensional optimisations.

The objective of OAS is to drive the system towards a stable equi

librium state when disturbed, and it involves defining:

[i] the present state;

[ii] the desired or "aim" state and a neighbourhood thereabouts 

of acceptable natural system stability, and

[iii] a set of state velocity vectors that can be achieved by the 

controls at any instant in time.

One process chooses the controls such that the angle between the 

possible trajectory, given the control inputs, and the desired trajec

tory is minimised [minimum-angle OAS] but there are different 

optimality criteria.

OAS algorithms have been tried out experimentally controlling 

braking resistors and switched series capacitors on the New England 

Test System53 , with reasonable success. Work has also been done 

on an OAS scheme for providing supplementary signals to turbine 

generators5**, but comprehensive test results have yet to be published.
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1.3.2.6 OPTIMAL CONTROL

The process of optimally feeding back several machine variables to 

provide excitation or prime-mover control began receiving attention 

about twenty years ago. In reference55, with only very limited 

computers then available for control, Nicholson suggested a set of 

"preprogrammed optimal linear control settings" on an on-line 

computer, the settings derived from off-line tests to minimise a 

performance index. The performance index, penalising deviations 

of system states from desired values and taking account of control 

effort, is fundamental to optimal regulators. Differential dynamic 

programming56 requires .advance knowledge of the machine post-fault 

trajectory to perform the optimisation, and consumes a large amount 

of computer time, hence it is not suitable for direct on-line applica

tion but it can be used as a basis for designing a controller for a 

general nonlinear system. Quasilinearisation57 also presents a heavy 

computational burden in calculating optimal controls for nonlinear 

plant.

Other theoretical studies on generator optimal control used 

Pontryagin's maximum principle58 to minimise the performance index 

leading to a Riccati equation, which yields the optimal feedback 

gains upon solution59’60. A linearised system representation is needed 

so the controller is only truly optimal close to the design operating 

conditions; even so, the studies showed a good transient performance 

was possible. Another drawback of these controllers is that all the 

states must be available for measurement. This can be overcome by 

approximating the model used in the controller design or by using 

optimal output controllers61-63. A third problem is in the arbitrary 

choice of weighting matrices for the performance index, which
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quantify how much the deviations of each individual state-variable 

from the steady-state are penalised. A criterion for choosing the 

weighting matrices suggested by Yu and Moussa64 is to shift dom

inant eigenvalues to the left of the complex plane so far as the 

available controls permit. Saturation of the controls can render 

this method ineffective, and the more usual method is design by 

trial-and-error, looking at simulated responses and modifying the 

weighting matrices until the desired performance is reached.

Experimental tests on the optimal control of micromachines were 

made using a computer65’66’70 or preset amplifier gains57. They 

were based on very simple linearised models, the states being fed 

into the field system65*67 or both exciter and prime-mover control 

systems66,70. Discrete-time system modelling was used in the 

computer control scheme of Newton and Hogg70. Results showed 

improvements in both steady-state and dynamic stability over con

ventional controls. Another practical micromachine study by 

Daniels, Davis and Pal68 compared linear optimal control with an 

optimal controller designed by a nonlinear function minimisation 

technique, finding the nonlinear-designed controller marginally 

better. Dynamic programming as a method of calculating the

optimal feedback gains also proved successful69 in a scheme giving
t* hoptimal prime-mover and excitation control using a 7 order 

machine model.

Nonlinear function minimisation methods applied in designing 

generator optimal feedback systems68,109’105 have generally been 

unconstrained quasi-Newton methods110. Although these methods 

handle general nonlinearities in systems, hard constraints due to
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limits on controls and state-variables are not directly taken account 

of during the performance index minimisation. Mayne and Sahba106 

have developed an algorithm to design a nonlinear optimal state- 

feedback controller taking account of both hard and soft constraints, 

and showed in a theoretical paper107 that the generator transient 

response was improved more than with fixed gain linear optimal or 

quasi-Newton designed nonlinear controllers.

1.3.2.7 LOOK-UP TABLES

A practical method of solving the problem of different gains needed 

to give optimal control at different operating points was suggested 

by Evans et al65 and implemented experimentally by Bartlett,

Gibbard and Woodward71. It involved the use of a look-up table of 

third order feedback gains for each node of a grid covering the entire 

operating region, stored in the on-line computer. However, the 

authors encountered limit cycle type oscillations in the dynamic 

stability [leading power factor] region due to the system hunting 

with repeated switching between adjacent feedback gains. Limebeer 

et al72 significantly improved this type of scheme by using a discrete 

time system model, also linearised at several operating points, but 

with gains ramping at a predetermined rate to new values when the 

operating point changed. This inhibited the hunting encountered 

previously. Phung and Gibbard73 achieved similar results by introduc

ing the concept of "pseudo steady state" operating points. These 

were practically determined by digitally low-pass filtering instant

aneous power and VAr values, and were used as a basis for selecting 

gains from the look-up table.

In work by Glavitsch et al7It’75 consideration is taken not only of the
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generator operating condition but also its tie-line impedance to the 

rest of the system. This resulted in a three-dimensional look-up 

table with different power and voltage feedback gains for different 

values of power, reactive power and external impedance. The 

identification of the tie-line reactance required remote and local 

measurements of voltage, phase angle between sending and receiv

ing end voltages and power.

Practical implementations of schemes involving look-up tables have 

so far been limited to simple low-order feedback controllers. Higher 

order algorithms with a large number of gains are likely to run into 

storage problems and the time taken to replace one set of gains with 

another will increase.

1.3.2.8 THE USE OF OBSERVERS OR STATE ESTIMATORS 

All the optimal control techniques discussed so far suffer from 

degradation by system noise, and in the case of state-feedback 

controllers, the order of system model that can be used is con

strained by states that are not easily measurable or are wholly 

fictitious. An approach overcoming these problems, adopted by 

Vaahedi, Menelaou and Macdonald in references [11-15] and used 

as a basis for this work is to estimate the machine state variables 

from measured outputs, then feed them back through a conventional 

optimal regulator. The process, based on theory developed by 

Kalman and Bucy75, gives best estimates of the system states in 

the presence of white noise. Alternatively, a pole-placement 

technique may be used to design the estimator77*39 resulting in a 

Luenberger78 observer. A problem with designing an observer of 

this type is in deciding where to place the observer poles39.
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A drawback of state estimators [Kalman filters] and observers is 

that to design them requires a linearised system model, as with 

optimal regulators. Also the estimator needs to model the system 

on-line, resulting in a considerably greater on-line computation 

requirements than for a straightforward optimal regulator.

1.3.2.9 SELF-TUNING REGULATORS

Self-tuning regulators79’80 were devised to control systems with 

unknown constant or continuously varying parameters. The principle 

has been applied to turbogenerator control, where there is some 

degree of uncertainty in the parameter determination and model 

validity, in references [81-83]. Ghosh et al83 detail the

different approaches to adaptive control, which may be divided into 

those with implicit and those with explicit system identification. 

Those with implicit identification require a predetermined model 

of the system, the regulator gains being determined by the differ

ence between the model and the real system [model reference 

adaptive control]. Those with explicit identification require random 

or pseudorandom noise to be injected into the system inputs to per

form the identification process.

Drawbacks of adaptive control approaches are firstly the time taken 

to identify the system and compute the regulator gains. Secondly, 

it may be undesirable to inject noise into the system inputs, and 

thirdly, the accuracy of identification may be influenced by the 

presence of feedback or of correlation in external disturbances. An 

approach of Hogg84 on overcoming the first two of these drawbacks 

is to use a grid of controllers based on a priori system identification 

performed at several operating points.
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Dual-rate sampling self-tuning regulators108 are those which sample 

plant information [for identification] at a different rate to that 

used for outputting control signals. A scheme of Kanniah, Hope 

and Malik108 sampled plant information at a rate several times 

faster than that for control outputs to overcome difficulties of 

the long computation time taken for identification as compared 

to control calculations. Practical tests demonstrated better small 

and large signal performance than with a standard self-tuning 

excitation regulator.

1.3.2.10 M ULTIVARIABLE FREQUENCY-RESPONSE METHODS 

These are an extension of classical single variable control design 

techniques, such as Bode's and Nyquist's methods, to multivariable 

systems. Multivariable frequency-response methods include direct 

Nyquist array [DNA] and inverse Nyquist array [INA] methods85 and 

characteristic loci methods86. Hughes and Hamdan87 used the DNA 

method to design a speed stabiliser for the excitation system con

sidering both phase lead and phase lag type compensators. They 

found lag compensators to be more sensitive to changes in operat

ing point, whereas lead compensators were more affected by noise. 

Ahson, Hogg and Pullman88 considered an integrated micromachine 

prime-mover and excitation controller based on INA design tech

niques. Speed was fed into the AVR loop and acceleration into the 

governor loop, the compensation networks obtained by a computer- 

aided design package. Good rotor angle damping and voltage 

recovery were obtained over a wide range of operating conditions 

in response to a short circuit. The problem of such compensators 

possibly exciting shaft torsional oscillations is considered by Chan 

and Athans89, for both single and multimachine systems, where
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robustness margins are evaluated close to the critical frequencies.

If the margins are sufficient the designer has confidence that 

torsional shaft oscillations will be avoided, and furthermore he has 

a tool for comparing the robustness of different controller designs.

1.3.3 Conclusion of review

Although this is by no means an exhaustive review, nonetheless the 

vast amount of work and number of different approaches to power 

system stability improvement will now be apparent. Each method 

has its own peculiar advantages and disadvantages over other 

• methods, for example multivariable frequency response methods 

can result in easily implementable controllers without needing on

line control computers, but difficulties have been their adaptability 

to operating point changes and performance in a noisy environment. 

Self-tuning controllers adapt to changes in the system but accuracy 

and speed of identification are problems. Anderson summarises 

the situation well in his discussion an reference [88]: "Whether 

indeed any given method is generally superior will become apparent 

only over a period of time when a number of individuals has each 

obtained experience with all methods on a variety of practical 

problems."

However, the method adopted here of estimating states and optim

ally feeding them back overcomes objections to optimal control 

based on lack of practical availability of all the state variables. 

Moreover, the advanced on-line computers now available make it 

possible to try more detailed models than the maximum of seven 

states found to date in the literature. These, together with numer

ous other refinements detailed later, have enabled a more thorough
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practical exploration of a Kalman filter-optimal regulator based 

turbine generator control scheme than has previously been docu

mented. Eventually it is hoped that a direct comparison using 

the same hardware may be made between this and alternative 

control schemes.

1.4 OBJECTIVES

This work aims to develop and extensively test optimal control based on 

state estimation in an experimental application to a turboalternator model, 

working towards a feasible scheme for use in a real power system.

The approach is to obtain a nonlinear set of differential equations repre

senting the machine as well as possible under transient conditions. This 

model is used for two things: firstly as a basis for designing the controller 

and, secondly, for simulating on a digital computer how the controller 

• affects the behaviour of the machine under transient conditions.

To design the controller the nonlinear equations are linearised about the 

operating point of interest. This is necessary because optimal control 

and Kalman filtering theory are based on linear systems. The order of 

the linearised mathematical plant model can be reduced by a recently 

developed linear system model order reduction method90’91. The linear 

system is then transformed into the discrete-time domain, which is more 

suited to on-line computers which sample data at discrete instants92.

Discrete-time state estimators and optimal controllers are then derived 

from the linearised discrete-time system equations by solving Riccati 

equations for the estimator and regulator respectively.
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Once designed by this process, the controllers can be tested with nonlinear 

simulations. Experimentally the scheme may be tested with a micro

computer giving supplementary control to the standard voltage and speed 

feedback loops of a physical small-scale model of a large turbine- 

generator. Points of interest to industry which it is hoped will be 

clarified are:

a. What improvements in transient stability margins can be expected 

from such an advanced digital generator control scheme?

b. What is the contribution to system damping?

c. How much processing power is needed in the on-line computer?

d. Which measurements are needed for the controller to give best 

results?

e. What is the robustness of the controller with respect to changes in 

local operating conditions and in the system itself?

f. What modifications are required to the plant?

g. Do noise and parameter errors significantly degrade the controller?

h. What are the effects on steady-state operation of the turbine- 

generator?

i. Is the micromachine a valid representation of large machines for 

testing the controller; may it be improved?

j. What other problems may be expected when applying the controller 

to a real machine in a power system?

Other areas hoped to be of more general interest to control as well as
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power engineers are:

a. The practical application of Kalman filtering for estimating the 

state-variables and optimally regulating a synchronous generator.

b. The use of a recently-developed model order reduction method in 

the above, thus experimentally verifying the validity of the tech

nique which potentially has a much wider application.

1.5 ORIGINAL CONTRIBUTIONS

The original contributions of this thesis are thought to be the following:

a. The design and practical application by microcomputer of a state 

estimator and optimal regulator, derived from discrete-time theory, 

to a laboratory turbine-generator physical model with a view to 

improving transient stability.

b. The use of accurate models [up to twelve states] in the above scheme, 

and practical comparison between these and approximate models.

c. The first practical use in any control scheme of an optimal Hankel- 

norm reduced order model. A twelve-state generator model is 

reduced by this method to fourth order, and the controller perform

ance is degraded less than when conventionally reduced models are 

used.

d. Achievement of an on-line calculation time for a generator state 

estimator/optimal controller of less than 11 ms with the micro

computer control system.

e. Comparison of generator controllers of the above type based on
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different measurements: load angle to infinite busbar and field 

voltage; slip speed and field voltage; power and field voltage; 

power and terminal voltage.

Practical demonstration of the immunity of a state estimator/ 

optimal controller to severe noise.

Tests proving the adaptability of the above controllers to changes 

in generator operating condition.

A brief examination of the contribution of state estimation and 

optimal control to the turbine-generator dynamic stability.

A practical assessment of the controller performance when torsional 

vibrations occur on the machine shaft.
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CHAPTER 2

MATHEMATICALLY MODELLING THE POWER SYSTEM

2.1 INTRODUCTION

The ability of large digital computers to handle complex power system 

models has meant that the use of grossly approximate generator repre

sentations in simulations is seldom necessary. Developments in finite- 

element analysis indicate the trend towards more and more complicated 

generator models, and the need to take account of anomalous effects 

due to changes in operating conditions and during transients.

Different approaches to modelling are necessary for different require

ments; principal types of generator model and their applications are:-

a. Nonlinear models for transient stability analysis:

Used by manufacturers to predict whether machines will meet 

specified transient stability requirements, and by utilities to 

predict stability margins during system operation. Here nonlinear 

models are used to examine the effectiveness of a digital 

controller design before implementing it on a micromachine 

power system physical model. The usual representation, and that 

used here, is a single machine connected to the rest- of the system 

[considered as an infinite busbar] by a double circuit transmission 

line, Fig. 2.1.

b. Linearised models:

When deviations from the steady-state operating point are small, 

a linear approximation of the system nonlinearities is justified.
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Eigenvalue analysis may be applied to linear single- or multi

machine system models to give useful dynamic stability information. 

Linear models of varying degrees of approximation may also be used 

to design AVRs, governors, power system stabilisers and advanced 

integrated controllers. These are often applied even during large 

disturbances, although the initial assumptions are then contradicted.

c. Linearised discrete-time models:

More suited to on-line computer control, where data is sampled 

and output at finite intervals in time, are discrete-time equivalent 

models of the continuous-time models in (b). The two are related 

by a straightforward transformation between the continuous-time 

and discrete-time domains.

Simplification of linear models is often desirable for the following reasons:

[i] Reducing a large multi-machine problem to manageable 

proportions;

[ii] Reducing to an acceptable value the computation time 

taken by an on-line controller11-15;

[iii] Deriving an optimal regulator based on conveniently 

measurable input signals65-67’96.

Note that with a state estimator, however, a model with some difficult- 

to-measure or even fictitious state-variables may be used.

All the models in this work are derived using the two-axis theory. Funda

mental to the two-axis theory is Park's transformation94,16 replacing the
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three actual phase coils by two fictitious axis coils that would set up 

the same mmf wave. The two-axis representation of the machine is 

shown in Fig. 2.2. As well as the two axis coils representing the 

stator winding (d, q) there is one field coil (f), and damping circuits 

are represented by one d-axis (kd) and either one or two q-axis short- 

circuited coils (kql, kq2). Position and velocity are measured relative 

to a reference frame rotating at constant angular frequency (jOq [the 

synchronous frequency].

Assumptions made here are that saturation effects may be neglected 

and harmonic winding factors are zero. An infinite bus representation 

of the "stiff" external power system is used throughout. In addition, 

the turbogenerator shaft is considered as a single-mass system with no 

flexible couplings. Capacitance in the generator windings and trans

mission system is neglected. Finally, the system angular frequency at

the infinite busbar is assumed to be constant at the nominal value of w .o

2.2 NONLINEAR MODELS OF THE GENERATOR AND ITS CONTROL LOOPS

A state-space model of the synchronous machine-infinite busbar system 

of the following form is set up:

x = A x + F (x) + B u [2.1]n n' ' n L J

where An is the state matrix, Bn the control matrix [both containing only

linear terms], and Fn(x) accounts for system nonlinearities, x is the state

variable vector and u the control variable vector. The machine model

includes states to represent the generator itself, supplemented by states

to model the dynamics of the governor and voltage regulator. Control

inputs u are the reference signals to the speed and voltage feedback
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loops. Outputs calculated when solving the state equations are voltages, 

fluxes or currents, torques and speed. The per-unit system and motoring 

sign convention of Adkins16 have been adopted.

2.2.1 Voltage Regulator Modelling

Models for the many different excitation systems in use are des

cribed in a recent IEEE report101. To represent fully one of the 

more complex systems, including a lead-lag compensator, would 

require a large number of state variables. Here the AVR and 

excitation system model is based on an a.c. exciter supplying a 

static controlled rectifier feeding the field [IEEE Type AC4101]. 

This arrangement has a very fast response with a time constant 

of typically 5 msec, and is simple to model. Two time delays 

represent the system, one for the AVR and one for the exciter, 

and to simplify the simulation the lead-lag network is not fully 

modelled. This is because only transient performance is of 

interest, and accordingly the steady-state gain Kq of typically 

200 has been reduced to a transient value of about 303l\ The 

transfer function of the AVR-exciter model is shown in Fig. 2.3.

It is assumed that negative as well as positive field forcing is 

possible101, but only positive field current is allowed. In state- 

space form the excitation system is represented as follows:

V = (V + u - V JG  /T - V /T e r i t' a a e a [2.2]

V, = -(V G + Vf)/T f v e e r  e [2.3]

V .  ̂V < V , V£ .  ̂V < V£ emin e emax fmin f fmax [2.4]



AVR delay Voltage limits Excitation delay Voltage limits

F ig . 2 .3 :  The AVR system  model

Field Voltage 

— V f

Torque

U) F ig . 2 .4 :  The governor and turbine model ho
VO



30.

Manufacturers talk about an overall steady-state AVR gain Kq]01+:

V = K (V + u - V J  t a r i r [2.5]

The relationship between Kq, Gq and Gg is derived in Appendix A.

Ceiling values for the excitation voltage and the field voltage 

V  ̂ are chosen to be ±3 times the rated load value.

2.2.2 Governor and Turbine Modelling

To model accurately the time lags associated with pilot and main 

hydraulic systems to open and close the valves, and those associ

ated with entrained steam in the pipework and each individual 

turbine stage would require a large number of state-variables. A 

method of simplifying the governor/turbine model is to represent 

all the delays by two time constants102, as in Fig. 2.4. A paper 

by Limebeer and Lahoud93 shows how balanced model realisations 

may be used to calculate the simplified governor/turbine time 

constants [see also Chapter 3]. The valves are assumed to be 

high-pressure hydraulically activated with a maximum closing 

rate of 6-7 pu/sec. The differential equations are:

P T
2 a w  [ y o  + u>] 

“ T + T [ 2 .6 ]
r  V V  V

A M
M --- PT T

t
" T [2.7]

s s

0  ̂Y £ 1 o [2.8]

0  < A £ 1 
P [ 2 . ? ]

More accurate models of the governor and turbine are considered 

in the practical application [Chapters 5 and 6] which take account
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of different valve opening and closing rates and the turbine and 

reheater entrained steam delays.

2.2.3 Modelling the generator as a whole

A state-space generator model using fluxes as state-variables is 

derived in Adkins and Harley16, but one could just as well derive 

an equally accurate model using winding currents as state-variables95. 

Humpage et al96 suggest that winding currents are better as state- 

variables since they are more accessible generator quantities; 

however, damper currents are not usually considered to be easily 

measurable. Simplification, and possibly a transformation of the 

original equations is necessary to obtain a state-space model con

sisting entirely of readily measurable states; This is not necessary 

here since unmeasurable states may be estimated.

Models using flux linkages, and models'using currents as state- 

variables, have both been employed in this work. It has been found 

that deriving output matrices, which relate measurements taken 

from the plant to the state-variables, is generally more straight

forward when currents are used in the formulation.

2.2.3.1 GENERATOR D IFFERENTIAL EQUATIONS IN TERMS OF 
FLUXES

The machine equations relating generator fluxes, currents and 

voltages [16, Eqn. [5.19] p.107] can be arranged in the form:

- (JL) T +o q

V,

V (jl) [R gdl t y [2.10]

0



32.

qV + 0) ¥ o d
0

[R ] [I ]gq q [2 .n]

where the matrices and vectors are explained in Appendix B.

The currents are related to the fluxes by the following linear 

equations [neglecting saturation]:

t y  = [ V - o  t i g  [2.12]

[Iq] = [Ygq] »0 [ % ]  [2.13]

By substituting [2.13] and [2.12] in [2.11] and [2.10] respectively, a 

state-space model of the generator in terms of fluxes can be derived:

[ * J  =

[ y  ] =
q

v , - Co y  + y  a)d o q q 
V r

O

V + a ) T , - T , a j  q o d d

- [Rgdl [V  “ o [<g  [2.14]

- [R ] [Y ] lo [Y ]gq gq ° q [2.15]

The total torque is given by the electrical torque minus mechanical 

components:

M. = M - J  6 - k6 [2.16]t e

Where:

M = aj e 2 o { y  ,i - y  i ,)' d q q d7 [2.17]

Note that the constant frictional torque loss is omitted from 

the mechanical torque expression for simplicity.

Using this derivation, a generator model in terms of 11 state 

variables [including AYR and governor] can be obtained:
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[x] = [6, 5, a)Q 'i,d/Wo Tp a)Q ^kd/ o)Q ^q/^o ¥kq/ Ve,VpAp//ŷ ] [2.18]

Full details of the nonlinear 11 order model are in Appendix B.3.

2.2.3.2 SIMPLIFICATIONS

The eleventh order representation can be simplified without excess

ive error by neglecting stator transients (wQTd and oo^T )̂; also 

removal of these high-frequency terms allows an increase in the 

integration time step. The simplification does mean, however, 

that oscillating currents, and hence oscillating torque components 

following a severe fault are not simulated. Consequently, the 

back-swing effect does not appear in transient simulations97.

The states of the 9th order generator model are:

[x] = [6, 6 , a) T., a) T, ,,ca \  ,V ,V „A  ,M J L J L ' ' o r  o kd' o kq' e f p tJ [2.19]

Although the rate of change of fluxes T , and T • is assumed to 

be zero during integration, at the end of each time step the values 

are re-calculated by the approximations given in Appendix B.4

2.2.3.3 GENERATOR D IFFERENTIAL EQUATIONS IN TERMS OF 
CURRENTS

The generator equations as found in Adkins and Harley (14, Eqn. 

[4.27]) can be represented by the following matrix equation:

[V] = {[R] + [G].u + [L].s} [I] [2.20]

where go represents the rotor angular velocity and s is the Laplace 

operator. This can easily be rearranged into the following state- 

space form:

[i]  = [B]. {[V] - ([R] + [G M .[I]( [2.21]
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where

[B] = [U]-1

Details of the matrices and vectors in Equations [2.20 

explained in Appendix C.

With two quadrature-axis damper coils, the resulting generator 

model has twelve states:

[x] = [6,0, id, if, ikd, iq/ ikql/ ikq2, Mt , Vf, Ve, Ap]T [2.23]

2.2.3.4 SIMPLIFICATIONS

A much simplified 7-state generator model has been used as a basis 

for controller design. The states are:

M  = [«,«, ip Vp Ve, Ap, Mt]T [2.24]

thIn this model stator transients have been neglected as in the 9 

order model. An additional simplification has been to omit 

electrical damping terms, allowing for them instead by modifying 

the mechanical damping coefficient k, using a formula suggested 

by Crary2’15. The derivation of k is shown in Appendix C, together 

with the simplified model equations.

To simulate the transient performance of the generator in off-line 

studies, an eleventh order nonlinear model based on flux equations 

is used throughout. The other orders of model are linearised to 

design controllers for the machine. The process of linearisation 

is described in Section 2.4.

[2.22] 

-21] are
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2.3 TRANSMISSION LINE AND TRANSFORMER MODEL

Here an uncompensated transmission line is assumed, and capacitors 

may be neglected, so that the transmission line and generator trans

former may be represented by series resistance and inducance [Fig. 

2.5].

Req
A W W -

'Vabc

X e q

- 'T m r v

V a b c

^ a b c

Fig. 2.5: Transformer and transmission line model.

/
/
/
*
/
/

■/

V bvabc

Where R and X are the summed line and transformer resistances, eq eq
The phase voltages are related by:

^ a b J tV‘ abC] - [ V ^ r ]abc [2.25]

Park's transformation16 is used to obtain the above relationship in terms 

of axis quantities, resulting in:

Vtd = Vbd - Req ‘d - (Xeq ‘d + < V  6 >‘q

Vtq = Vbq '  R eq V  (Xeq ‘q '  < V 6' >‘d X e / “ o

[2.26]

[2.27]

The "modified machine" representation is used throughout, where the 

external resistances and reactances between the generator and the infin

ite busbar [or fault point during a short circuit] are added to the 

generator resistances and reactances to give a modified machine model.
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2.4 LINEARISED SYSTEM REPRESENTATION

All the state-space models of the machine discussed so far contain 

nonlinearities. To design controllers using linear optimal control theory 

and state estimation theory, a linear model is needed. Linear models 

can also be used in dynamic stability analysis of single or multimachine 

systems and in the design of conventional controllers.

The nonlinearities in Eqn. [2.1] are contained within F n(x), where x is 

the vector [x^ x2„. xnl̂ "* To obtain a linear approximation for F n(x), 

it is expanded in a Taylor series about a nominal operating point x:

Fn(x) = Fn ^  + {fx’ AXl + I t Ax2+**+I x’ Axn̂  + Hi9her terms [2.28]i 2 • n

where the partial derivatives are evaluated at the nominal operating point. 

Higher terms are usually small compared to first order terms and can be 

neglected.

Using this technique the different orders of generator model may be 

linearised and represented in the following state-space form:

Ax = A^Ax + B^Au # [2.29]

where A^ and are the matrices of Eqn. [2.1], with linearised terms, the 

9F/9x., (i = l...n) from Eqn. [2.28] for each state variable, added.

Equation [2.29] determines the deviations Ax(t) from the nominal operating 

point, given changes Au(t) to the inputs to the system. The complex eigen

values of the matrix [A^] can easily be found, and give information on the 

dynamic stability of the system at the nominal operating point.
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Appendix D gives linearised models of the 12 ,9  and 7 order models 

used in the controller design. A steady-state phasor diagram calculation 

is used to find the nominal operating point x , given in Appendix E.

A useful check on the accuracy of a linearised representation is to com

pare responses for small disturbances with a nonlinear model. As an 

example, with small step changes in the governor or AVR reference 

level there should be very little difference between the responses of 

a model and its linear equivalent.

2.5 INTEGRATION METHOD

When the differential equations, whether linear or nonlinear, have been 

formed they may be solved to simulate the plant in time. A suitable 

method of integration for digital simulations used here is the Kutta- 

Merson fifth-order method. If there are nonlinearities, they have to be 

calculated at the end of each step of the integration before proceeding 

to  the next step. As well as evaluating the algebraic nonlinearity 

expression ^ (x ), the inequalities in equations [2.4, 2.8 .and 2.9] have to 

be tested and the variables constrained if limits are hit. The Kutta- 

Merson integration routine is described in Appendix F.

2.6 LINEARISED DISCRETE-TIME MODELS

With any computer-based control system sampling data at discrete 

instants in time, it is appropriate to replace continuous-time linear 

models [Eqn. 2.29] with their discrete-time equivalents58'98, 103 as follows:

Ax(kT + T) = A^Ax(kT) + B^Au(kT) [2.30]
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or:

Ax(k+1) = ApAx(k) + BpAu(k) [2.31]

thwhere T is the sampling interval, k refers to the k sampling instant and 

Ap and Bp are the state and control transition matrices respectively, 

given by:

A D = A T

th

Bn = J T eAd T‘T)B. dx U © L_

The transition matrices Ap and Bp relate the states at the (k+1) 

sampling instant to the states and controls at the k sampling instant. 

Theymodel in discrete-time linearised form the continuous-time real 

system, and can be calculated as follows:

[2.32]

[2.33]

A 2T 2 A nT n
A A, T t A T L LAn, = e L = I + A. T + —tt,—  + ... +D n! + ••• [2.34]

B = /T eAd T"T̂ B. dx = TB o J o L L +
a l t «b l  a l 2t 3b l

+ -- zr,---- +2! 3!

AL nTn+1BL 
+ (n+l)! + [2.35]

For stable systems, the above infinite series (Eqns. [2.34-2.35]) usually 

converge quickly.

The stability criterion of a discrete-time linear system matrix [Ap] is 

that its eigenvalues be within a unit radius circle, centre the origin.

Linearised discrete-time models are used here to design the turbo

generator digital control scheme, described in Chapter 4.
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CHAPTER 3

OPTIMAL LINEAR MODEL ORDER REDUCTION

3.1 INTRODUCTION

Standard methods of reducing the number of state-variables required to 

model a synchronous machine have been described in the previous Chapter. 

In eliminating state-variables in a nonlinear model, certain simplifying 

assumptions are made, and the eliminated variables are accounted for by 

modifying the remaining state equations. For example, in reducing a 

twelve-state model to seven variables, stator transients are neglected 

[eliminating states î  and i^], and damper currents [i^ , i j^  î  ] are 

removed from the model, and they are accounted for by modifying the 

damping coefficient k [Section 2.2.3.3-4]. For nonlinear models this 

remains a good method of approximation. However, new developments 

in linear systems theory indicate that there are better methods than 

these for reducing linearised models.

Alternatives to the above method for linear model reduction recently 

proposed include modal analysis, frequency domain methods and separa

tion of fast from slow time constant subsystems. In power systems theory 

a method known as coherency is used to analyse when groups of machines 

swing together and may be replaced by a single equivalent unit in the 

system model. A reduction method proposed in 1981 by Moore90 based 

on measures of controllability and observability has been applied to 

linearised turbogenerator models by Limebeer93 and, because of its ability 

to retain system input-output characteristics with very little error even 

in much reduced form, it deserves attention here. Fundamental to this
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approach to model reduction is the concept of system balancing.

3.2 SYSTEM BALANCING

The original model for the linear system in continuous time is a set of 

state equations of the form:

X  (t) = Ax(t) + Bu(t), x(to) = X Q  [3.1]

y(0 = Cx(t) [3.2]

For a system of n states, r inputs and m outputs x(t) is dimension n, 

u(t) is dimension r and y(t) is dimension m. For convenience the model 

is referred to as (A,B,C)n. Throughout the following discussion it will be 

assumed that (A,B,C)n is controllable, observable and asymptotically stable.

A simple example by Silverm an" illustrates the concept of balanced 

systems. Consider the model:

x
.x i

r
-1 0 

L 0 -2 J [3.3]

y = [3.4]

The system transfer function, is given by:

G(s) = C(sI-A)-1B 

for this system:

G ( S )  = " l—  £c* s + l 0 -1 ec 0 s +2 1/ e

[3.5]

13.6]

so that from an input-output point of view, both system state-variables are
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equally weighted. It would appear from just looking at the input or 

B-matrix that the first state is hardly affected by the input, and there

fore could be discarded. This would be a mistake, however, since the 

same state is heavily weighted by in the output. Similarly it would 

be a mistake to discard the x2 variable due to its apparently small con

tribution to the input, since the gain at the. input strongly affects it.

This example is called a badly scaled model. An equivalent model, 

having the same input-output response with good scaling properties, is:

■.  -

Z 1 - 1 0 "z i~
Z 2 0 - 2 Z  2

y [i i] z
z1

2

[3.7]

[3.8]

This model is said to be balanced in the sense that inputs and outputs are 

equally weighted with respect to each state variable.

The model

" “ r  i r i
X 1 
X 2 = -1 0 

0 -2
xi
X2

+ l
e

y £«1

is also balanced, and has the transfer function:

G(s) = [1 s + 1 0 -l 1
_ 0 s + 2 £

s + 1
e
s+2

[3.9]

[3.10]

[3.11]

[3.12]

Since it has little effect on input-output properties, the state variable x2 

may be discarded, since it is weakly weighted in the output and weakly
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influenced by the input. The model order may thus be reduced to 1, and

the balanced representation has given guidance in making the reduction.

3.3 MODEL REDUCTION

3.3.1 Balancing Transformation

Controllability and observability properties of general asymptotically 

stable linear systems (A,B,C)n are indicated by the following:

OO
[3.13]

[3.14]

where P is called the controllability Gramian and Q the observability 

Gramian. They can easily be shown to be the unique positive defin

ite solutions to the following Lyapunov equations:

AP + PAT + BBT = 0 

a t q + QA + CTC = 0

[3.15]

[3.14]

The system is said to be "balanced" over the interval [o, °°] if the 

controllability and observability Gramians are equal and diagonal. 

However, for the general asymptotically stable system (A,B,C)n it 

is always possible to find a co-ordinate transformation T, which is 

orthogonal (i.e., T̂ " = T-1] and such that the Gramians become

diagonal and equal". Thus:

z (t) = T x (t), det. T  ̂ 0 [3.17]

hence: z = Tx = TAx + TBu [3.18]

[3.19]TAT-1z + TBu
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y = Cx = CT_1z [3.20]

The balancing transformation is arranged to give the Gramians the

form:
% %
P = Q = l  = diag. [ a ^ a ^ ,  .... a j  [3.21]

where: a.> a. >/ a, > . . . . >a >0 [3.22]i z 5 n

3.3.2 Effect of Balancing on input/output properties

It has been shown100 that the a's in equation [3.21] can be regarded 

as magnitudes relating past inputs to future inpqts. For the orig

inal system (A,B,C)n, with transfer function G(s) [Eqn. 3.5], input/ 

output properties may be determined from the Hankel-singular- 

values of G(s), defined as:

a. (g (s)) : = (x.(PQ)

where X.(0 is the i i
th

r [3.23]

eigenvalue of the matrix within the brackets.

% %
By substituting the system (A,B,C)n [Eqns. 3.17-20] into the 

Lygapunov equations [3.15-16], where:

A = TA T"1 B = TB C = CT“ 1 [3.24]

It can be verified that:

P = T PT" 1 [3.25]

and: Q = T"TQT_1 [3.26]

thus: PQ = TPQ T"1 [3.27]

but since T is an orthogonal transformation, the eigenvalues of
 ̂a,

PQ are the same as those of PQ, hence the Hankel-singular- 

values and input/output properties are unaffected by the balanc

ing transformation.



44.

3.3.3 Truncating balanced realisations 

If ][ [Eqn. 3.21] is partitioned as:

l  =
r 1

! 0

0  ! U

[3.28]

where £ is k x k and ][ is (n-k) x (n-k) then the system 

(A/B/C)n can be partitioned conformally as follows:

c  = [ c >ic ]A = A 11 1 ^2
____ L___

B = Bl

A 2i |A22
L  i J B2

[3.29]

If »  a^+i then the truncated system (A^, C ^  represents 

a "robustly" controllable and observable part of the original system, 

and input/output properties remain largely unchanged. It can be 

proved, for example from results on the theory of the inertia of 

matrices100, that both the (A , B , C ), and (A / B / C ), , n 

subsystems are stable, provided •

3.4 OPTIMALITY OF REDUCED-ORDER BALANCED MODEL REALISATIONS

Early work90’91’99 on this method of model order reduction did not con

sider in detail the quality of the approximations in the last section. 

Glover100 defined the optimal reduction problem as that of minimising 

some norm of the error between the full model G(s) and the approximate 

model S(s):

Ek(s) = ||g (s) - S k(s) [3.30]

The Hankel-norm was shown to be an appropriate norm to choose for 

minimisation, giving a good measure of modelling error without excessive 

computation requirements. The Hankel-norm of G(s) is defined as:



[3.31]||g (s)|| h : = a ( r G)

i.e., it is the largest singular value of the Hankel operator [defined in 

ref. 100] which provides a mapping for continuous-time systems between 

past inputs and future outputs. It can be shown to be equivalent to:

IIg^ 11 H = fm a x W ) )1 V -W

In other words, the Hankel-norm is the largest Hankel-singular-value 

[Eqn. 3.23].

Another norm, useful for characterising the frequency-response error 

bounds of an approximate system, is the L 00-norm, defined as:

IIg (h = sup a (G(jw) 
ajelR

]3.33]

where (*) Is the supremum [largest magnitude] for all real a) of the

largest singular-value of the given function.

The Hankel-norm error of any stable k-state approximate system G^s) 

to the fuii system G(s) has a lower bound given by:

||G(s) - Gx<s> H [3.34]

Reduced-order models that minimise this error [i.e., are optimal with 

respect to the Hankel-norm criterion] may be found by considering optimal 

anti-causal approximations to causal transfer functions. A result of 

Adamjan, Arov and Krein134 showed a surprising relationship between the 

Hankel-singular-values and the transfer function:

a (g (s)): = | G(s)j| H « G(jw) - F(jio) Loo [3.36]

where: F e H CO [3.36]
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In other words, if it is desired to approximate a transfer function G(ja)) 

with poles in the left half-plane (casual) by F(jai) with its poles in the 

right half-plane (anti-casual), then the smallest achievable error is the 

Hankel-norm of G(s). Glover100 shows how F(jaj) may be chosen to 

achieve equality in [3.35]. Thus, by combining [3.34] and [3.35]

||G(j w) - S k(jui) - F(jaj) II >4 G(s) - e k(s)|| H > ak+) (g (s)) [3.37]

By choosing ^ (s ) to be a truncated balanced realisation of G(s), and 

making F(s) an optimal anticausal approximation of |g (s) - G^(s)j , the 

inequalities of Eqn. [3.37] become equalities [Glover100, Sections 7-8].
A A A

Thus truncated balanced realisations (A/B/C)|< of the system (A/B,C)n 

are one class of optimal Hankel-norm,approximations to the full order 

system.

Frequency-response error bounds of the truncated balanced realisations 

may be found by reducing the order one variable at a time from the full 

model. Using the theory of all-pass functions [i.e., those where 

G(s) G*(s) = I], the error is shown to be:

j|G(s) - Gk(s)|| < 2(ak+) ♦ ak+2 +...+ a ) [3.38]

thwhere (^(s) is a k order truncated balanced realisation.

The frequency-response error bound may be reduced by half by construct

ing an appropriate direct transmission of D-matrix which gives directly 

coupled input/output components. The Hankel-norm does not depend on 

D, but it does affect the L00- norm of the error since it alters the steady- 

state component. The D-matrix is not used in model reductions here, 

however, since it makes solutions of Riccati equations to obtain estimator 

and controller parameters more complicated.
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An optimal reduced-order model of a continuous-time system can be 

transformed into the discrete-time domain by equations [2.34-5] since 

the Hankel-singular values of equivalent discrete and continuous time 

systems are identical100.

3.5 ALGORITHM TO FIND BALANCED SYSTEM REALISATIONS

Given the original linear system A, B and C matrices, and assuming it 

is fully controllable, observable and asymptotically stable, a balanced 

realisation is obtained as follows111:

1. The Lyapunov equations [3.15-16] are solved to find P and Q, the 

controllability and observability Gramians:

AP + PAT + BBT = 0 [3.15]

ATQ + QA + CTC = 0 [3 .U ]

2. A Cholesky factorisation of Q is found:

Q = RTR [3.39]

3. RPR^" is evaluated which will be a positive definite /matrix that can 

be diagonalised as:

R PR T = U p U T with UTU = I ]3.40]

and:

l  = diag. (a ya 2,......, ? n) [3.41]

a. ...... > a > ai  ̂ j n [3.42]

4. Let: T = I ’ V r [3.43]

The new Gramians are:



P = TPTT = u t r p r t u l*»  = I  

Q = T ^ Q T '1 = i ?  UTR 'T RTRR-‘ U ^  = I

48.

[3.44]

[3.45]

5. The co-ordinate transformation on the original A, B and C matrices 

is performed to obtain the balanced realisation:

A = TAT-1

B = TB 

C = CT 

Z = Tx

> [3.44]

The above algorithm has been in use at Cambridge University since 1979, 

and is now also in use at Imperial College. The following example of the 

balancing and reduction process applied to a turbine-generator model 

used the "Cambridge Linear Analysis and Design Programs" software 

package.

3.6 BALANCING AND REDUCTION PROCESS APPLIED  TO A 12-STATE 
LINEAR GENERATOR MODEL

The twelfth order generator model linearised A and B matrices were 

obtained by substituting the micromachine parameters [Appendix H .l] 

into the matrices of Appendix D.2. The model was linearised about the 

standard operating point in Appendix H.2.1. With rotor angle and field 

voltage as measurements, the C-matrix is:

C = 1 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  10 0 0 [3.47]

It will be noted that the field voltage was multiplied by 10 to give it 

similar weighting to the rotor angle measurement. This was necessary
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because otherwise, as a consequence of the per-unit system adopted, 

changes in the field voltage would be weakly weighted in the output 

and input/output information pertaining to it would be lost during the 

reduction.

The balancing transformation described in [3.5] was carried out, resulting 

in Hankel-singular-values [diagonal elements of £]:

a ...., a = 1.96, 0.71, 0.67, 0.14,

0.48.10"2, 0.31.10"2, 0.57.10"3, 0.16.10"3,

0.51.10" \  0.22.10“ 7, 0.16.10"7, 0.14.10"8

It can be seen that a a are small compared to a a . Therefore an5 12 r  l i +
optimal four-state approximate model would have a frequency-response 

error bound given by [Eqn. 3.38]:

[3.48]

I G(jco) - (jco 11| « 2(0.48.10 '2 + 0.31.10"2 + 0.57.10-3

+ 0.16.10-3 + O.U.IO-3 + 0.51.10-“ + 0.22.10"7 + 0.16.10"7 

+ 0.14.10" 8 <1.74.10"2

[3.49]

Thus a four-state optimal reduced generator model retaining nearly 

identical input/output characteristics to the original twelve-state model 

can be obtained by truncating the balanced realisation to four states. A 

discrete-time equivalent model for designing the controller can be 

obtained using Equations [2.34 - 35].
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3.7 CONCLUSIONS

A new method of reducing the order of linear system models has been 

presented. By making a balancing transformation on the original model 

which does not affect input/output properties, states which only weakly 

influence controllability and observability may be discarded. Although 

the states of the reduced model have no physical interpretation, input/ 

output characteristics are optimally retained. An example shows that 

a twelve-state generator model may be reduced to four states with 

little frequency-response error. This model is used to design a state 

estimator and optimal regulator which is theoretically and practically 

tested in Chapters 4 and 6.

Limebeer93 has shown in another example of the reduction method applied 

to linear turbine-generator models that the frequency-response error is an 

order of magnitude less than in a model reduced to the same order by 

traditional methods.

Optimally reduced models used to design state estimators and optimal 

controllers offer considerable savings in on-line computer time and storage 

requirements, making implementations more cost-effective. Another area 

of power systems where optimal Hankel-norm reduction methods may be 

applied is in reducing the dimension of linear multimachine power system 

models.
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CHAPTER 4

APPLICATION OF DISCRETE-TIME OPTIMAL CONTROL AND 
STATE ESTIMATION THEORY TO TURBINE GENERATOR SIMULATIONS

4.1 INTRODUCTION

Turbine generator optimal control and state estimation theory as presented 

by Vaahedi, Menelaou and Macdonald11-15 considers the controller as acting 

continuously in time. A practical digital control scheme receives and 

transmits information at discrete instants in time, and only very high 

sampling rates enable good control when the algorithm has been derived 

in the continuous time domain. Past practical experience13'15 has shown 

that computation speed limits the sampling rate to a level where a 

discrete-time based controller would be more suitable. The control 

scheme considered here is shown in Fig. 4.1, with the digital controller 

interfaced to the plant by sample-and-hold devices.

Here a brief summary of discrete-time optimal control and state estima

tion theory is presented, together with the application of such a state 

estimator / optimal controller to computer simulations of turbine 

generators. Important design considerations are discussed, such as the 

choice of variables to be sampled from the machine, the order of the 

model to be used and the selection of weighting matrices.

Discrete-time optimal control and state estimation theory is based on 

the linearised system equations in discrete time:

x(k+l) = Ax(k) + Bu(k) 

y(k) = Cx(k)
[4.1]
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where A(n x n) and B(n x m) are the transition matrices derived from the

continuous-time linear system by equations [2.32-33], and C(r x n) is the
thoutput matrix, for an n order system with m inputs and r outputs.

4.2 DISCRETE-TIME OPTIMAL CONTROL

Optimal control theory is concerned with the derivation of control inputs 

to a system such that its behaviour is optimal with respect to given 

criteria. In the discrete-time case, the problem may be stated as follows92

Given the system of equations [4.1], find the optimal control u°(k) that 

minimises the quadratic performance index:

J Q = l  \  [xT(k) Qp x(k) +u1(k)Rp u(k)] [4.2]
k=o

where Qp is an n x n symmetric positive semi-definite state variable 

weighting matrix, and Rp is an m x m symmetric positive definite input 

weighting matrix.

Extension of Pontryagin's minimum principle to the discrete-time case 

leads to a solution of the form:

u°(k) = Fx(k) [4.3]

where:

F = -[Rr  ♦ BTP r B ] '1BTP r A [4.4]

and Pp is the unique positive definite solution to the regulator algebraic 

discrete-time Riccati equation:

ATPr A-ATPr B[Rr +BTPr B]-1 BTP r A + Qr -Pr  = 0 [4.5]
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Three methods of solving the Riccati equations have been considered:

a: A recursive method58’72’92

b: An eigenvalue-eigenvector method12’113,111+

c: A method involving real Schur decomposition115.

Recursive or dynamic programming methods of solution involve an initial 

positive definite guess of PR ' then repeated back substitution in a 

recursive form of the Riccati equation until Pp converges to a final value. 

Methods b: and c: involve the formation of a Simplectic matrix [the 

discrete-time equivalent of the Hamiltonian], then finding the eigenvalues 

and eigenvectors [method b:] or making a real Schur decomposition [method 

c:]. Method c: is the most recent and numerically sound method, but all 

three were found to give nearly identical results. Full details of the three 

methods are given in Appendix G.

The class of optimal regulator here is the infinite-time regulator, since 

the performance index to be optimised extends over an indefinite period 

[Eqn. 4.2]. This means it is necessary that the system in Eqn. 4.1 be 

controllable by the application of state feedback. Another requirement is 

that the pair [A,D] must be completely observable [see 4.4], where D is any
j

n x n matrix satisfying DD = Qp. If we choose a positive definite Qp, 

we can always find a D which is a square matrix and [A,D] is completely 

observable for any A.

Vaahedi12 showed that both governor and/or AVR action give complete 

controllability of all the system modes in a turbine-generator model and 

that some modes are better controlled than others by the two control 

inputs. For example, the stator transient fluxes ^  and ¥ have relatively 

low controllability, but rotor angle and its rate of change were shown to be
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more strongly controllable. Some variables are better controlled by one 

loop than the other; an obvious example is that field quantities are better 

controlled by inputs to the voltage regulator loop than the governor loop. 

Thus the best overall control is achieved by the use of both feedback loops.

4.3 CHOICE OF REGULATOR WEIGHTING MATRICES

The objectives when attempting to improve the response following a fault 

in the power system are firstly a reduction in the first load angle excursion 

and improving the damping of subsequent rotor swings. Secondly, it is 

desirable for the terminal voltage to recover quickly to near its pre-fault 

value without a large overshoot or excessive oscillations.

The optimal regulator state-variable weighting matrix Qp is a diagonal 

matrix whose elements reflect the relative importance of reducing fluctua

tions of individual state variables from the steady-state. Its choice is 

completely arbitrary, although as noted in Chapter 1, Yu and Moussa64 

suggested a method which involves selecting elements of Qp such that the 

dominant eigenvalues of the system with state feedback applied are shifted 

as far to the left as possible. However, since limits on controls are not 

accounted for, this method often results in excessive gains.

The control variable weighting matrix Rp reflects the penalty on the 

variations in the control inputs. The ratio of Qp/Rp is important, as it 

determines the gain of the controller. It must be high enough for the 

controller to give a useful improvement in stability, but not so high that 

inordinately large control input variations are demanded for small disturb

ances. In practical terms the latter case could mean the operational life
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of valves etc., is shortened due to excessive fluctuations in setting.

A trial-and-error method of performing nonlinear simulations and making 

adjustments in the weighting matrices to give the best response was used 

here with the following guidelines taken into account:

(a) Starting with both Qp and Rp as matrices with equal elements, the 

ratio Qp/Rp is adjusted until the most satisfactory response is 

obtained.

(b) Individual weights in Qp are then adjusted. Weighting of speed 

gives an overdamped angle and poor voltage recovery, so generally 

this element has to be kept small. Increased weighting of load angle 

improves the response; the other state variables seem to give best 

results when approximately equally weighted.

(c) The control weighting matrix Qp elements are individually adjusted 

to ensure best results without an excessive degree of saturation or 

control variable fluctuation in either feedback loop.

For the optimal Hankel-norm reduced order models, the state variables are 

not directly related to individual physical generator quantities. With these 

models, starting as in (a) above and making trial-and-error adjustments to 

their state-variables was found to give very good results.

4.4 DISCRETE-TIME STATE ESTIMATION

A discrete-time optimal regulator as described in the previous two sections
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requires values of all the system state variables at each sampling instant. 

Even if direct measurement of all of them were feasible from a cost 

point of view, inaccuracy, time lags and the noise picked up in the trans

ducers and their interconnections would all degrade such a controller in 

a practical environment. It would not be possible to use a regulator 

derived from an optimal Hankel-norm reduced order model in this way 

since the states would not be physically measurable at all. Output 

controllers61’53 using transformations to relate measurements to the states 

overcome these problems to some extent but sensitivity to noise remains 

a problem, and theoretically output controllers are always inferior to 

those with all states available, particularly if important states are weakly 

observable in the outputs.

The dynamic state estimator, or Kalman-Bucy filter76, appears to be a 

successful way of overcoming the above drawbacks, and has been studied 

theoretically in continuous-time application to generator control by 

Vaahedi11 12. By measuring a small number of convenient signals, the 

filter makes estimates of all the system state variables. The state 

estimator is designed to give good estimates in the presence of noise.

In the discrete-time derivation of the state estimator the system equations 

[4.1] are rewritten to include white noise w(k) [dimension n]:

x(k + 1) = A x (k) + Bu(k) + w(k) [4.6]

The filter has to extract the system information from a noisy measurement 

vector y:

y(k) = Cx(k) + v(k) [4.7]

where v(k) is the measurement noise vector of order r, and is assumed to be
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uncorrelated with w(k) [i.e., the two noise processes are assumed to be 

independent]. Further, it is assumed that all the noise is white Gaussian. 

The problem112 is how to obtain x(k), the "best" linear estimate of x(k).

By "best", it is meant that estimators which minimise the mean-square 

error of each signal component simultaneously are required. Thus, in 

the filtering process, each mean-square error:

E[xa(k) - x a(k )]2a = 1, 2, ... n [4.8]

is to be minimised.

Equation [4.8] leads to what is defined as the error covariance matrix P(k):

P(k) = E[e(k)eT(k)] [4.9]

where:

e(k) = x(k) - x(k) [4.10]

Kalman's work75 led to a solution of the optimal estimation problem, in 

the discrete-time case a recursive digital filter:

x(k) = Ax(k-l) + Bu(k-l) + K(k) (y(k-l) - Cx(k-lj [4.11]

where K(k) may be calculated by the discrete-time filter recursive Riccati 

equation.

K(k) = A P l (k)CT[C P l (k)CT + RF ]-‘ [4.12]

where:

P[(k)=AP(k-l )AT + Qp(k-l) [4.13]

The error covariance matrix is given by:

P(k) = P L(k) - KfkjCP^k) [4.14]

Qp(k) is the positive semidefinite system noise covariance matrix, order
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n x n:

QF (k) = E[w(k)wT(k)] [4.15]

Rp(k) is the positive semidefinite measurement noise covariance matrix, 

dimension r x r:

R p(k) = E[v(k) vT(k)] [4.14]

If, as has been assumed, there is no correlation between noise processes, 

off-diagonal terms of Qp and Rp are zero.

For time-invariant systems, substitution of P^k) = P^k+1) = Pp as k-*°° 

in Equations [4.12-14] gives the algebraic Riccati equation:

APFAT - APpCT[Rp + CPpCT]‘ ‘CPpAT + Qp - Pp = 0 [4.17]

and the filter gain K [also called the Kalman gain] is:

< = APpCT[Rp + CPpC1]*1 [4.18]

The filter equation with constant gain K becomes:

x(k) = Ax(k-l) + Bu(k-l) + <(y(k-l) - Cx(k-lj) [4.19]

Note that the equation contains a mathematical model of the plant and a 

tracking term K(y(k-1) - Cx(k-l)). In practical applications the model is 

always, to a greater or lesser extent, an approximation of the actual 

situation in the plant; here there are linearised, discrete-time models in 

several different degrees of approximation to the real system. However, 

the tracking term ensures that even with these and other errors an accept

able estimate may be obtained, as has been shown by Vaahedi11’12 for the 

continuous time case and is later shown here for the discrete-time case.
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Also note that the filter estimates the states at time k, given system 

information at time k-1. Thus, as well as filtering the measurements, 

it is predicting the system states at the next time step. For this reason 

the type of filter used here is sometimes called a Kalman predictor, to 

distinguish it from filters obtaining x(k) from measurements y(k).

The success of applying a Kalman filter depends on whether or not the 

system is completely observable, that is whether it is possible to deter

mine from the measured outputs what the behaviour of the states is. This 

can be checked by verifying that the rank of the matrix:

C
CA
CA2

[4.20]

__ CAn~‘

equals the system order n. Alternatively the eigenvalue-eigenvector 

method appearing in Vaahedi11 gives a quantitative evaluation of the 

observability of states through various outputs.

4.5 CHOICE OF FILTER COVARIANCE MATRICES

The Kalman filter noise covariance matrices Qp and Rp are chosen so as 

to provide a compromise between speed of reconstructing a good estimate 

and immunity to noise. At the design stage there is often little idea in 

advance of the noise variances associated with individual states and meas

urements. The procedure is therefore similar to the choice of optimal 

regulator weighting matrices, starting with arbitrary choices of Qp and 

Rp, then tuning so as to give best results both in nonlinear simulations 

and on-line.
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4.6 DESCRIPTION OF THE CONTROL ALGORITHM

Closing the loop, so that the state estimates are fed back into the plant 

inputs via the optimal feedback matrix, results in a system shown schem

atically in Fig. 4.2. The on-line controller predicts the estimated plant 

state vector x(k+l), gives the inputs y(k) at time k, then uses these 

estimates to determine the inputs to control the plant. Since:

u(k) = Fx(k) [4.21]

a reduced equivalent form of the system in Fig. 4.2 may be found, shown 

in Fig. 4.3, with the following equations for the controller:

x( k+1) = (A - BF - KC) x(k) + Ky(k)
[4.22]

u(k+l) = Fx(k+1)

For simplicity the state and measurement noise processes are not shown 

in Figs. 4.2 and 4.3, but may be considered as implicit in the plant. In 

control systems parlance this type of controller based on feedback of 

state estimates is called a Linear-Quadratic-Gaussian [LQG] controller.

The control algorithm based on this method that may be programmed on 

a micro-computer is as follows:

At time t = kT 1.

2.

3.

4.

5.

Read in y(k) from plant;

Calculate:

x(k+l) = z(k) + Ky(k)

Calculate: 

u(k+l) = Fx(k+1)

Feed back u(k+l) to the plant 

Calculate z(k+l) = (A - BF - KC) x(k+l)

[4.23]

[4.24]

[4.25]
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F ig . 4 .2 :  Schematic of the co n tro l algorithm



63.

F ig . 4 .3 : Reduced eq u iv a len t of F ig . 4 .2



64.

At time t = (k+l)T 6. Repeat process from Step 1, with k = k+1.

This arrangement of the algorithm makes the control input u(k+l) 

available as rapidly as possible following the measurements taken at 

time kT, thus minimising delays in response. z(k+l) is then calculated 

in readiness for the next time step.

4.7 CONTROLLER DESIGN PROCEDURE

4.7.1 Parameters

The state estimator-optimal controller described in the preceding 

sections is based on the implicit assumption that a model of the 

system is known. This is an alternative philosophy to that of self

tuning controllers which mostly make no assumptions about the 

system model and perform on-line system identification. Therefore 

the first step in designing a generator LQG controller is to obtain 

the machine and system parameters. Turbine generator manufac

turers perform calculations at the machine design stage, and 

practical tests are carried out in the factory and on site from 

which the relevant parameters may be determined. Using the 

techniques described in Chapter 2, linearised discrete-time A and 

B matrices may then be obtained to model the system.

4.7.2 Choice of measurements from the generator

A very important design decision is in the choice of output measure

ments to sample from the generator for the controller, which 

determine the output or C matrix. The number of measurements 

to be taken is also significant: Using a small number of signals
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means the reliability of individual transducers matters more than 

with many samples, but the latter case will prove more expensive. 

The method of triplex redundancy7, whereby three independent 

transducers and controllers perform the same task and are then 

"majority-voted" to check that they are all acting in the same 

way would improve the reliability of this type of control system.

Below is a list of the possible generator quantities which may be 

used [in any combination] as a basis for the state estimation and 

control, giving the advantages and disadvantages of each with this 

application in mind.

a] Load angle to the infinite busbar 6:

Advantages:- a state-variable shown to give a good contribution to 

optimal control12.

Disadvantages:- it is a difficult variable to measure in a real system. 

Shaft position and remote busbar information is needed and there is 

the problem of deciding which part of the system may be considered 

as infinite.

b] Load angle to the machine terminals 5 :̂

Advantages:- more easily measured than the above since no remote 

system information is needed.

Disadvantages:- only local information on the generator is given in 

Sj,. It is not a state-variable, therefore a linearised output or C 

matrix is needed, resulting in greater estimation errors. During the 

fault the terminal voltage of the machine collapses to nearly zero, 

so the terminal load angle may be indeterminate until the fault is 

removed.
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c] Rate of change of load angle 6:

Advantages:- a state-variable shown by Vaahedi12 to have very high 

modal observability indices, and giving the greatest contribution 

to optimal control of all the state-variables.

Disadvantages:- small changes in speed with reference to rated 

speed need to be measured, so high accuracy is needed. When 

used as a feedback signal for power system stabilisers, speed has 

led to torsional oscillations35, so a method of overcoming these 

difficulties must be found if speed is to be used.

d] Terminal voltage V , current î , power P j. and reactive power Q .̂ 

Advantages:- all these quantities are easily measured using fast 

analogue or digital transducers near the machine terminals. Power 

feedback has not led to any shaft torsional oscillations in the 

operational experience of power system stabilisers so far, and so it 

is particularly favoured by utilities seeking advanced supplementary 

controllers.

Disadvantages:- none of them can be used as state-variables except 

in models which are linearised transformations of the models in 

Chapter 2. Here a linearised C-matrix will be needed and, ideally 

during transient disturbances, a new C-matrix is desirable for every 

change in the external system. This may lead to far greater errors 

in estimation than if original state-variables are used as measure

ments.

e] Field voltage Vp current î  and exciter voltage V_̂ :

Advantages:- practical measurement is straightforward except in 

rotating diode systems. They are all state-variables giving good 

observability of the electrical behaviour of the generator. 

Disadvantages:- they do not give good information on the machine's
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mechanical behaviour. A rapid transducer response is necessary 

to follow changes in field or exciter voltage during transients.

When ceiling voltage levels are reached, state estimation errors 

may occur since the theory does not take account of limit-type 

nonlinearities [hard constraints].

f] Valve position A^:

Advantages:- information on input power to the machine is 

obtained. Valve position transducers are already installed in many 

power stations for monitoring purposes and hence it is a readily 

available state-variable.

Disadvantages:- the valve position-steam flow characteristic is 

highly nonlinear and, again, there are position limits, both of which 

will degrade the estimation and control process.

g] Terminal frequency:

Advantages:- a recently suggested potentially useful input signal 

when transmission lines are long, as it reflects the influence of 

both machine and busbar effects.

Disadvantages:- accurate measurement of small deviations from 

the nominal frequency is difficult with standard zero-crossing 

detection methods due to noise. A linearised transformation is also 

necessary to relate terminal frequency to the system model state- 

variables.

h] Other variables - fluxes and mechanical torque:

Advantages:- State-variables used in the original model so no 

linearised output matrices are needed.

Disadvantages:- impractical to measure, and not the best variables 

to measure for controllability and observability of the system12.
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For the initial theoretical and practical tests it was decided to 

use load angle to the infinite busbar and field voltage as measure

ments. Load angle is a variable frequently used in results to 

indicate how effectively a controller is working, and since it is 

to be measured for this purpose it may also be used as an input 

to the controller. Field voltage supplements this with electrical 

information on the behaviour of the machine.

Other variables considered for the controller here are rate of 

change of load angle, terminal power, terminal voltage and valve 

position.

4.7.3 Estimator and Controller Design

The system A, B and C matrices determined in 4.7.1 and 4.7.2 are 

combined with initial choices of the regulator and filter weighting 

matrices Pp, Qp, Pp and Qp. The Riccatr equations [4.5 and 

4.17] are solved and the regulator and filter gain matrices F and 

K can be determined from Eqns. [4.4 and 4.18]. The estimator 

and controller may be tested separately with nonlinear simulations 

to ensure good estimation and control, the weighting matrices 

being altered as described in Sections 4.3 and 4.5 to give best 

results. With initial choices of weighting matrices similar to those 

of Vaahedi15, good results were obtained with minor alterations.

Finally, the complete state estimator-optimal control algorithm is 

derived as described in Section 4.6, with A-BF-KC precalculated.
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4.8 SIMULATIONS OF THE GENERATOR PERFORMANCE WITH AND 
WITHOUT SUPPLEM ENTARY CONTROL

4.8.1 Comparison of micromachine and 660 MW generator simulations

An illustration of how faithful a model of 660 MW machine per

formance may be expected from the micromachine system can 

be made by comparing simulations using both sets of parameters 

from Appendix H for the same prefault power, reactive power, 

external conditions and fault duration. Fig. 4.4 shows the 

responses of both simulations for the prefault steady-state 

conditions [also in Appendix H] corresponding to

P = -0.8, Q = 0.0 and = 1.0 pu.

The three-phase fault duration is 100 ms and the post-fault 

impedance is the same as before the fault [i.e., the faulted line 

is reclosed successfully after fault removal]. Hereafter we shall 

refer to this type and duration of fault under the above conditions 

as "standard".

Since the mutual reactances X , and X are different in the twomd mq
sets of parameters, the steady-state load angles are about two 

degrees apart. After subtracting the steady-state difference in 

angle, the first swing is about two degrees more for the micro- 

machine simulation, and subsequent damping is better for the 660 

MW machine simultation. The natural oscillation frequency is very 

similar in both cases, as are the terminal and field voltage responses. 

Thus it would appear that, if the parameters are approximately 

correct, the micromachine should give a reasonably good, possibly 

slightly pessimistic, prediction of the transient performance of 

the full size machine.
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f h4.8.2 Simulated response with a 12 order controller measuring load 

angle to the busbar and field voltage

An estimator and controller were designed, as described in 4.7.3, 
thusing a 12 order linearised model and a transition matrix time 

step of 10 ms. Sampled quantities from the simulated plant are 

load angle to the infinite busbar and field voltage. With the 

same pre-fault steady-state conditions and fault duration as in 

the previous Section, the response of the micromachine computer 

simulation with and without supplementary control is shown in 

Fig. 4.5. Calculation time delay is accounted for by not making 

the supplementary governor and AVR control signals available until 

just before the next sample is taken, i.e., after 10 ms of simulation 

time. A further 10 ms delay has been added to account for the 

expected time delay of the transducers themselves. This is shown 

to be a realistic figure in Chapter 5.

The response is well damped, the machine settling back to steady- 

state within 1.5 seconds of the fault. Voltage recovery does not 

suffer either, and it can be seen that almost immediately the fault 

is detected via the two measured signals, the supplementary 

signals help to limit the first swing by reducing the governor 

setting and increasing the AVR setting, reducing the 17° swing by 

about 1°. It is easily verified that state estimation gives almost 

as good a response as with direct state feedback, as has been done 

by Vaahedi12.

4.8.3 Effect of varying the controller calculation time

Simulations were carried out to find a maximum limit to the con

troller time step, beyond which no improvement in machine



F ig . 4 .5 : Response of micromachine sim u la tion  to a 100 ms 3-phase s h o r t -c ir c u it  Q -  w ith a 12th  
order c o n tr o lle r  measuring load angle and f i e l d  v o lta g e  o -  w ithout supplementary co n tro l N>
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performance can be expected, and also whether very small time 

steps improve the response even more than in the previous Section. 

Figure 4.6 shows the rotor angle responses of the micromachine 

simulation with a varying time step in the controller, for the 

standard 100 ms fault and operating conditions. As the time 

step is increased up to 85 ms, damping is slightly reduced and 

the first swing reduction is lost, but the response is still signifi

cantly improved. Above this threshold, the controller starts to 

adversely affect stability. In the 95 ms example, the system 

conditions change so much between taking samples and applying 

controls that the inputs have a detrimental effect on the system 

stability.

It will also be observed by comparing Fig. 4.6b with Fig. 4.5 that 

very little further improvement in response is gained by reducing 

the transition matrix time step from 10 ms to 2 ms.

4.8.4 Major and Minor System Disturbances

It is important that the controller does not just perform well for

one type of disturbance, but that it also improves the response for

less severe and much more severe faults. Figure 4.7 shows the

predicted micromachine performance following the loss of one

transmission line, reconnected after 50 milliseconds. The first

rotor swing is reduced and oscillations are much better damped in
thload angle and terminal voltage when a 12 order controller is 

applied. The gains and controller used are identical to those in 

Section 4.8.2.

A 270 ms three-phase fault was found to nearly drive the system



4̂-P-
Fig. 4.6: Effect of varying the controller calculation time for a 100 ms short-circuit. Controller time step
A: 20 ms, B: 2 ms; C: 95 ms; D: 85 ms. □  - with supplementary control; o - without supplementary control;
A  - estimated angle.



Fig. 4.7: Controller as in Fig. 4.5. Response to the loss of one transmission line for 50 ms □  - with and Cn
o - without supplementary control.
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thunstable in simulations [Fig. 4.8]. Application of the same 12 

order controller as in the previous tests gives a much better 

voltage recovery and a first-swing reduction of about 20°. Appli

cation of a 275 ms fault caused the system without supplementary 

control to pole-slip, whereas with control the machine remained 

stable.

A three-phase fault followed by the loss of one transmission line is 

more likely to be encountered in this country, where fast reclosing 

circuit-breakers are not used. A 100 ms fault of this type is 

simulated in Fig. 4.9, and once again the controller clearly gives 

a much improved response. Note that the controller attempts to 

restore the angle to its pre-fault value; with washout filtering 

of the input signals [see Chapter 6] the controller will enable 

smooth settling to any required post-fault operating point as 

determined by the governor and AVR settings.

4.8.5 Comparison of controllers based on different order models

Fig. 4.10 shows a comparison of four different order controllers 

acting on the micromachine simulation, all designed with load angle 

and field voltage as measurements, and all with the same sampling 

time interval of 10 ms. The fault is 100 ms duration with full 

reclosure and the standard operating conditions of Section 4.8.1.

From the figure it can be seen that the twelfth order state 

estimator/optimal controller gives the best response. The ninth 

and optimally reduced fourth order controllers give very similar 

responses, both better than that of the seventh order controller 

where the angle is less well-damped. This confirms that the



F ig . 4 .8 : 12th order c o n tr o lle r  as in  F ig . 4 .5 . Response to  a 270 ms 3-phase fa u lt  □  -  w ith o -  w ithout 
suppiementary c o n tr o l.
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F ig . 4 .9 : 12th order c o n tr o lle r  as in  F ig . 4 .5 . Response to a 100 ms 3-phase fa u lt  fo llow ed  by 
the lo s s  of one transm ission  l in e  Q -  w ith o -  w ithout supplementary co n tro l
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optimal Hankel-norm reduction method has retained more essential 

information in the linear generator model than conventional 

methods of reduction.

4.8.6 Controllers designed for different mesurements

So far only controllers measuring load angle to the infinite busbar 

and field voltage have been considered in the simulations. However, 

controllers measuring other state variables may easily be designed 

simply by changing the unity elements in the output or C matrix 

to match the state-variable which is to be measured. If the 

controller is to measure quantities which are not state variables 

then the C matrix needs to contain linearised terms to express 

the measurement in terms of the state-variables. Measurements 

which require this are voltage, current, power, VAr and load angle 

at the machine terminals. Linearised terms for the terminal 

voltage which may be used in the output matrix are the same as 

those derived in Appendix D. Output matrices when other variables 

are measured are derived in Appendix I.

4.8.6.1 RATE OF CHANGE OF LOAD ANGLE AND FIELD  VOLTAGE

The simulated results of replacing load angle to the infinite busbar
f hwith its rate of change as a measurement for a 12 order controller 

are shown in Fig. 4.11, where a standard 100 ms fault [see 4.8.1] is 

applied. Control is even better than when load angle itself is 

measured, with better first swing reduction and virtually no second 

backswing. This agrees with Vaahedi's results which indicated that 

speed gives good system modal observability and makes 

a major contribution to optimal control12. However, as outlined in 

4.7.2a, speed is considered to be an undesirable feedback signal
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because of the torsional oscillations it has caused in the past. The 

good theoretical results obtained here suggest that it would be 

worthwhile using speed as a measurement for the estimator and 

controller if a satisfactory method of overcoming the drawbacks 

can be found.

4.8.6.2 TERMINAL POWER AND FIELD  VOLTAGE

Fig. 4.12 shows the response to a standard 100 ms fault when
thterminal power and field voltage are used as input signals to a 7 

order controller. The first load angle swing is considerably reduced, 

but damping is not as good as with the measurements considered 

previously. The linearised terms in the output matrix mean greater 

errors in estimation when the machine is away from the design 

operating point, especially during the fault itself when the terminal 

power temporarily falls to nearly zero. This has the beneficial result 

of reducing the first swing but very little improvement is made to 

the subsequent backswing. However, the machine settles to steady 

conditions 2 secs, after the fault, which is a considerable improve

ment over conventional control loops only.

4.8.6.3 TERMINAL POWER AND TERMINAL VOLTAGE

These signals, both readily measurable in a real system, give the 

response in Fig. 4.13 when used as inputs to a 12 order controller, 

with 100 ms fault duration and the standard conditions (P = -0.8,

Q = 0.0). A good reduction in first swing amplitude is obtained, 

although the following negative swing is not reduced. This is prob

ably due to similar reasons as in the previous simulation. Damping 

is not as good as with the previous controller, although still result

ing in substantially better performance thqn with conventional 

control loops.
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Fig. 4.12: Response to a standard 100 ms fault Q  - with a 7th order controller measuring terminal
power and field voltage; o - without supplementary control.



Fig. 4.13: Response to a standard 100 ms fault □  - with a 12th order controller measuring terminal power
and terminal voltage; o - without supplementary control.
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4.8.6.4 VALVE POSITION AND FIELD VOLTAGE
thFig. 4.14 shows the response of the system with a 9 order 

controller to a standard fault, with valve position 

and field voltage as the measurements. A similar response to 

the previous two controllers is obtained despite both measure

ments being state-variables. Thus it appears that these are not 

the best state-variables to use, agreeing with Vaahedi's results 

indicating that valve position does not give particularly good 

contribution to optimal control compared with other states.

4.8.6.5 LOAD ANGLE AND FIELD  VOLTAGE - SUPPLEM ENTARY 
SIGNAL TO THE AVR ONLY

As stated in Chapter 1, many older machines have rather slow- 

responding mechanical-hydraulic governors to which supplementary 

signals may not readily be added. Thus in some cases it is desirable 

to have controllers providing a supplementary signal to the voltage 

regulator only.

The behaviour of such a controller acting on the machine subjected 

to a standard 100 ms fault is shown in Fig. 4.15, with load angle 

and field voltage the sampled variables. Although the reduction 

in the first swing is very small [as would be expected without 

prime-mover control], damping is almost as good as with both 

supplementary signals, and better than that obtained with the 

controllers in Sections 4.8.6.2 - 4.8.6.4.

4.8.6.6 TERMINAL POWER AND TERMINAL VOLTAGE - 
SUPPLEM ENTARY SIGNAL TO THE AVR ONLY

In Fig. 4.16 the response of the machine to a standard fault is shown,

the controller, measuring power and terminal voltage, giving a



Fig. 4.14: Response to a standard 100 ms fault □  - with a 9th order controller measuring valve position
and field voltage; o - without supplementary control.



00
Fig. 4.15: Response to a standard 100 ms fault □  - with a 12th order controller measuring load angle and field i
voltage giving a supplementary signal to the AVR only o — without supplementary control.



Fig. 4.16: Response to a standard 100 ms fault □  - with a 12th order AVR-only controller measuring
terminal power and terminal voltage, o - without supplementary control.
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supplementary signal to the AVR only. Estimation errors during 

and after the fault lead to a worsened second backswing, but 

subsequently damping is quite good, indicating the controller may 

work well for small-signal disturbances.

4.8.7 Robustness of the controller at different operating points

To test the effectiveness of a controller designed from a system

linearised at one operating point under different operating condi-
thtions, studies were carried out using a 12 order controller, as 

in 4.8.2, designed for the operating point P = -0.8, Q = 0.0 at six 

other operating points, as shown in Fig. 4.17.

For five of the six other operating points, plots A-D and F, the 

response is improved considerably. For plot E, however, corres

ponding to P = -0.3, Q = -0.7 the response is not improved. The 

initial large backswing [occurring due to the low power and high 

reactive power] is unchanged and the subsequent forward swing 

is increased by the controller. Thus it may be concluded that 

fixed-gain controllers of this type are effective over a range of 

leading and lagging power factors, provided the machine is not 

operating at considerably different real power outputs from the 

design operating point.

4.9 CONCLUSIONS

Discrete-time optimal control and state estimation theory is more suited 

to practical on-line computer controllers for generators than its continuous

time equivalent, due to the time steps involved. The optimal regulator
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based on minimisation of a linear quadratic performance index and the 

Kalman filter, minimising the least-square error of estimated states in 

the presence of Gaussian white noise, are both problems which can be 

solved by Riccati equations. Linear gains result for the regulator and 

filter, which depend on arbitrary choices of weighting matrices best 

selected by a trial-and-error method.

Specific application of the theory to turbine generator control requires 

a knowledge of the power system model and parameters, and measure

ments have to be chosen which are practical to measure, yet also give 

good information on the whole system. The choice of model order is 

also important, as higher order models may result in excessive calculation 

time delays in the controller._ The algorithm itself involves a fairly 

straightforward sequence of matrix multiplications to derive the supple

mentary control signals. Another advantage of discrete-time controllers 

of this type over continuous-time controllers is that they apply controls 

derived from estimates which are predictions of the states at the next 

time step, rather than estimates of the states at the time of measure

ment.

Comparison of computer simulations using the micromachine parameters 

and the 660 MW machine parameters reveals that the behaviour of the 

two in response to transient disturbances is reasonably close, the main 

difference being in the damping of rotor oscillations which is slightly 

worse in the micromachine. A 12 order controller measuring load 

angle and field voltage gives an improved response to transient disturb

ances of varying severity, with reduced first swing, good damping in the 

angle and voltage oscillations and quicker voltage recovery. The response 

is improved even with controller time steps of up to 85 ms.
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A comparison of controllers based on different order models was also 

made, indicating that an optimally reduced fourth order controller gives 

results almost as good as the full 12 order controller. 9 and 7 

order controllers also give very good, though progressively slightly less 

well damped responses as the order is reduced.

Alternatives to load angle and field voltage as controller measurements 

were considered, with rate of change of load angle and field voltage 

giving the best results of all. Terminal power and field voltage give 

reasonable results, but not as good a response as with the previous two 

controllers due to the estimation process giving misleading information 

during and just after the fault. Controllers based on terminal power and 

terminal voltage, or valve position and field voltage all give similar 

results to the power/field voltage controller.

When the supplementary signal is to the AVR only, a possible modification 

for older plant, damping is still very good but little reduction in the first 

swing is gained when rotor angle and field voltage are measured. Using 

the more practical signals of terminal power and terminal voltage in an 

AVR-only controller seems to give good small-signal stability, but little 

improvement in the first positive and negative transient swings, in fact 

worsening the latter slightly.

Finally, robustness studies at different operating points to that used for 

the controller linearisation revealed that the controller operates success

fully at leading and lagging operating points a substantial distance away 

from the design point, provided the real power setting is not considerably 

different from the original one.
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CHAPTER 5

THE LABORATORY POWER SYSTEM MODEL

5.1 INTRODUCTION

A convenient intermediate step between proving any new computer- 

control scheme theoretically on computer simulations of turbine 

generators and implementing it on full-size machines is to test it on 

a micromachine in the laboratory. This will give an insight into the 

practical difficulties, for example due to noise, transducers and time 

lags, that may be encountered in an industrial environment, and will 

require the control algorithm to execute in real time on the on-line 

computer. Provided the micromachine can be shown to give a 

realistic scaled-down simulation, this will give more confidence of 

success and valuable information with regards to a full-size implemen

tation of the control.

The laboratory power system model consists of a 3 kVA micro- 

alternator driven by a d.c. motor. The alternator output is connected 

to the laboratory busbar via lumped impedances representing the 

transmission line. Also associated with the model are circuits to 

modify various time constants, transducers and fault application 

equipment. Two computers are interfaced to the model plant, one 

providing the on-line control and the other recording data from the 

machine during tests, afterwards plotting out responses with a graphics 

package. Fig. 5.1 is a schematic diagram of the system.
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5.2 THE MICROALTERNATOR

The microalternator, designed to have similar per-unit parameters to 

typical turbo-alternators of up to 1000MW rating117, is actually a six- 

phase machine but is connected as a three-phase machine throughout 

this work [see Hanna110, pp.78-80]. Designed and manufactured by 

Mawdsley's Ltd., it is a four-pole machine made up with stator No. 3 

and rotor No. 5. The rotor winding is in two sections connected here 

to behave as a conventional field winding with its m.m.f. in the direct 

axis only [Touri121, pp. 18-20]. There are also shadow field windings 

which can be used to adjust the field time constant to the same value 

as that of a larger machine. Details of the time constant regulator 

[T.C.R.] are in Section 5.4.1. The rotor has solid damper bars and 

regulation of the damper winding time constants is not possible unless 

another rotor is used.

The micromachine shaft has provision for bolting annuli on to a flywheel 

at the motor end. This facilitates changing the inertia constant from 

3.0 kWs/kVA upwards in steps of 0.5 kWs/kVA. At present no physical 

simulation of the distributed inertias coupled by flexible shafts of a real 

turbine generator is made here, although elsewhere a laboratory system 

has been constructed to do this for studies of subsynchronous resonance122’

5.3 TURBINE AND GOVERNOR SIMULATION

The prime mover of the turbine generator model is a separately excited 

5.57 kW 220Vd.c. motor. A three-phase thyristor bridge119 provides the

d.c. for the motor armature, Fig. 5.2. A constant motor field current
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of 4A is supplied via a three-phase diode bridge rectifier. The torque 

is thus proportional to the armature current, which with feedback from 

the direct current transformer gives a time constant measured to be 

approximately 100 msec between changes in the input amplifier signal 

and torque changes. Also provided with the thyristor unit are friction 

and windage compensation and current limit protection.

There are two a.c. tachogenerators on the machine shaft: a 50 Hz 

two-phase permanent-magnet machine providing an input to the rotor 

angle transducer [Section 5.7.1]; and a 400 Hz single-phase tacho, the 

output of which is rectified and filtered to supply the speed signal to 

the governor/turbine model.

5.3.1 Simplified governor/turbine model

The simplified governor/turbine model was designed to simulate 

practically the representation used in the mathematical models 

[see Chapter 2, Fig. 2.4] for initial testing of the control scheme, 

where it is desirable to minimise the number of sources of 

discrepancy between theoretical and practical simulations. The 

circuit diagram appears in Appendix J.

5.3.2 Detailed governor/turbine model

For more realistic simulations of the governor and turbine behaviour 

a more detailed model is needed. In it delays associated with 

relays, valves, the turbine and reheater stages are all modelled 

as shown schematically in Fig. 5.3. The different opening and 

closing velocity limits of the valves are also approximated by using 

different time constants for positive and negative rates of change. 

Constants have been chosen to approximately match those of a
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typical electro-hydraulic governing system and 660 MW turbine1203. 

It is assumed that parallel governing is used [i.e., changes in the 

error signal move the throttle and intercept valves by equal 

amounts], and that there is no V\bttmetric feedback in addition 

to speed feedback. The circuit of the detailed governor/turbine 

model is given in Appendix J.

5.4 THE TIME CONSTANT REGULATOR AND EXCITATION SYSTEM

5.4.1 The Time Constant Regulator

The per-unit natural field resistance of the microalternator rotor 

is much higher than that of the field winding of a large turbo- 

alternator, so a time constant regulator is used which effectively 

introduces a negative resistance and hence increases the field 

time constant. To do this a shadow winding is provided which 

is wound in the same slots and has the same number of turns as 

the main rotor winding, hence the same flux links both field and 

shadow windings.

If a d.c. power amplifier, gain G , is used to drive the field and 

the induced voltage due to the rate of change of rotor flux T 

linking the shadow winding is fed back to the input, together with 

a voltage drop K ' R^i^. due to the field current through feedback 

resistor R^/ the system is as shown in Fig. 5.4. With nearly 

perfect coupling between the field and shadow windings, and 

assuming the power amplifier time constant to be very small, the 

amplifier output Vq is given by:

Vo G ( y f - V K ' R fbV [5.1]
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but: r

Vo = * f  + <Rf + Rfb> !f t5-2]

hence:

vf = { t f + (Rf ♦ Rfb) if ♦ G jk ' Rfbif ♦ YfJlGj [5.3]

and the effective field resistance is now:

Vf / if = (Rf + R fb + G l k 'R fb)/Gl [5.4]

For a large G  ̂ this approximates to:

Vf / if + k 'R fb [5.5]

For step changes in Fp î  changes according to the transient open- 

circuit time constant T ^ 1, which now becomes:

Tdo' ” L ffd / k'R fb [5.6]

The bandwidth of the T.C.R. and the gain need to be limited 

sufficiently to prevent closed-loop instability. The circuit used 

is due to Touri121 and is shown in Appendix J.

Fig. 5.4 Schematic of the time constant regulator.



101

5.4.2 The AYR and exciter model

The laboratory micromachine has provision for either manual or 

automatic field regulation. During manual operation the T.C.R. 

input is simply supplied with the desired field voltage Vp With ' 

automatic voltage regulation, a three-phase rectifier and filter 

[with a filter time constant of about 5 ms] provides a d.c. signal 

proportional to the terminal voltage, which is compared with the 

reference value and the AVR supplementary signal is added. 

Delays and limits are modelled electronically to give the same 

representation as in Chapter 2, Fig. 2.3. Lead-lag compensators 

can be modelled, but are omitted here and the AVR gain is 

reduced to about 30 since transient stability is of principal 

interest. The circuit diagram is in Appendix J.

5.5 TRANSMISSION LINE AND INFINITE BUSBAR

The transmission line is simulated by a bank of inductors, so that a 

variable impedance may be switched between the generator terminals 

and infinite busbar. Extra resistance can also be switched in. For 

initial tests a single series impedance typical of a relatively short 

tie-line in this country was chosen, but double-circuit and longer 

lines were also simulated.

The infinite busbar is represented by a 30kVA delta-star transformer, 

the secondary connected to the departmental 415V mains.
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5.6 PARAMETERS OF THE LABORATORY SYSTEM

The microalternator paramaters for the combination of stator and rotor 

used here have been measured in a series of tests by Menelaou15 who 

used, where possible, two different methods to give more certainty of 

validity. The machine inertia constant H was chosen to be 3.5 by 

removing all but one of the i"  annuli117. Appendix H gives a comparison 

of the micromachine parameters [including the time constant regulator] 

with those, calculated at the design stage, of a typical 660 MW machine12ob. 

The single-circuit transmission line parameters are those measured with 

the two smallest inductances of a laboratory unit switched in. Governor/ 

turbine and AVR gains and time constants are those for the simplified 

models.

From the table in Appendix H it is apparent that general agreement is 

very good between the parameters, apart from the discrepancy in the 

damper winding reactances. Computer simulations comparing both sets 

of parameters in Section 4.8.1 show that a reasonable similarity between 

the two responses may be expected.

5.7 TRANSDUCERS AND FAULT APPLICATION EQUIPMENT

5.7.1 Digital Load Angle Transducer

Load angle [also called rotor or power angle] is a somewhat 

ambiguous term meaning the electrical angle between the 

generator field m.m.f. and either the infinite busbar or the 

generator terminals as a rotating reference frame. Here load 

angle may be taken to mean the former, and terminal load angle
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the latter. The method of measurement used here is to determine 

the phase difference between the infinite bus voltage and the 

voltage of one of the phases of a four-pole two-phase tacho- 

generator mounted on the machine shaft.

To make the transducer frequency-independent, Menelaou15 used 

a phase-locked loop [P.L.L.] to multiply the mains frequency by 

a fixed amount, then counted the number of oscillations during 

the time difference between zero-crossings of the two voltages. 

This method was tried here but gave unsatisfactory results due to 

oscillations in the P.L.L. output frequency caused by hunting in the 

frequency feedback loop.

A different approach was adopted here, using a crystal oscillator 

to eliminate clock frequency fluctuations but still achieving mains 

frequency independence by constantly monitoring it. Fig. 5.5 

shows the principle of the method. Zero-crossing detectors and 

logic circuits generate the output shown in Fig. 5.5b. Oscillations 

at 409.6 KHz are "AND"ed and "NAND"ed with the load angle 

pulse to give the waveforms in Fig. 5.5c and Fig. 5.5d. Binary 

counters sum the total number of cycles in each giving N i cycles 

in the load angle pulse and in the remaining half cycle. 

and can be read into the computer and, using floating point 

arithmetic:

load angle 6 =
N i

N + N1 2
. it r a d i a n s [5.7]

The clock frequency used gives 12-bit resolution. Circuit diagrams 

are given in Appendix J. The input voltage waveforms have to be 

filtered sufficiently to prevent errors occurring in the zero-crossing
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detection. Accuracy was found to be better than 0.5% when 

tested by a phase-shifting transformer. Since the transducer out

put is updated every half-cycle on the basis of measurements 

taken during this time the delay is 10 ms.

Zero-setting of the angle transducer can be achieved by operating 

the microalternator with the infinite busbar disconnected on open- 

circuit, then adjusting the tachogenerator rotor position relative 

to the generator shaft until an angle of zero is read.

The traditional method of using a stroboscope and a mark on the 

alternator shaft for measuring rotor angle is a convenient 

approximate check on the correct operation of the digital angle 

transducer.

5.7.2 Power and VAr measurement

Power and VAr at the machine terminals are measured by elec

tronic circuits performing analogue multiplications of voltages and 

currents. These in turn are measured by current transformers 

[C.T.'s] and capacitor voltage transformers [C.V.T.'s] as described 

in a generator protection project by Khan123. It must be noted 

that the C.V.T.'s have a very high impedance [1 Mfi] at the output 

to minimise the phase shift that would otherwise be excessive. All

the voltage and current waveforms are then conditioned by matched 
f H6 order Butterworth filters with a cut-off frequency at 450 Hz to

thfilter harmonics above the 9 123. The time delays are thus equal

for all the line voltages and currents and are about 1.4 millisec.

The conditioned voltage and current waveforms are then input to
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the Watt/VAr board where real power is calculated by the two-

wattmeter method:-

p = v r b ’r  cosa + V yg ly  cosB [5.8]

where:

a  = 0 + tt/6 8 = 0 -  tt/6 [5.9]

and cos 0 is the power factor. The output is then filtered to 

remove ripple.

Reactive power can be measured by making the following cal

culation:

Q = Vyglp  sin 0 [5.10]

However, it was found that ripple could be reduced by calculating 

Q as follows:

rejection tests, the transient time delay of the transducer was 

found to be approximately 10 ms for both power and reactive 

power measurement.

5.7.3 Fault Application Equipment

Faults of variable duration may be applied to the machine using a 

circuuit breaker sequence control unit designed by Neech12\  

Essentially this is a three-channel unit, each of which may be

[5.11]

The circuit diagram of the Watt/VAr transducer is given in 

Appendix J. It was calibrated under steady-state conditions 

against conventional moving coil wattmeters. By performing load
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programmed to send logical pulses of any desired duration within 

a 10 sec total cycle time to a circuit breaker interface. Here 

one channel is used to apply and sustain the fault for the desired 

duration, and another may be used to remove a line at the same 

time as the fault if required.

The circuit breakers interfaced to the control unit are energised 

by a 240v a.c. supply. The operation of the reed relays as 

originally used in the interface was unsatisfactory due to the 

contacts frequently sticking and voltage pulses induced at the 

low voltage side by breaking the energising coil circuit. Replac

ing each reed relay by an opto-isolated triac circuit given in 

Appendix J, has proved to give much more reliable and satisfactory 

performance.

5.8 COMPUTER HARDWARE

The two computers interfaced to the micromachine for on-line control 

and data monitoring are shown schematically in Fig. 5.6 .

5.8.1 On-line control computer

The computer chosen to handle the on-line control requirements 

was based on the LSI 11/23 microcomputer manufactured by 

Digital Equipment Corporation125. The LSI 11/23 central process

ing unit [C.P.U.] is at the heart of the system, with 128kBytes of 

random-access-memory [RAM], a floating point accelerator unit 

to minimise execution time and DEC-compatible input/output 

[I/O] boards. The real-time operating system RT-11 runs on the
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computer and mass storage is provided by a 20MByte Winchester 

disk system and a single flexible disk drive. More detailed speci

fications of the system are given in Appendix K.

Although at the time of purchase potentially more advanced 

processors were available, such as the Motorola 68000, the 

LSI 11/23 was chosen for the following reasons:

a] The extensive software support facilities available for the 

PDP-11 series of computers is well-known125, and includes 

Fortran, Pascal, Macro-11 assembly language, many very good 

editors and word-processing packages.

b] Software development is possible without the need of an extra 

support system or emulation facilities which would involve a 

considerable extra outlay.

c] Tailor-made hardware floating-point multipliers are available 

which may easily be added to the system, and give overall 

improvement in speed by a factor of 4 - 6. For micro

processors such as the 68000 much more effort is required to 

interface floating point units to the CPU.

d] Hardware support is strong for the LSI 11/23 within the 

Electrical Engineering Department at Imperial College, includ

ing spare CPU, memory and 1/0 boards and personnel trained 

in the maintenance of DEC equipment.

e] DEC have the policy of making new, more advanced hardware 

compatible with older systems [where practicable]. The LSI 

11/73 CPU has recently become available and may be used

as a direct plug-in replacement to the 11/23. The 11/73 CPU
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alone has been found to be about 40% faster than the combined 

11/23 CPU and floating point accelerator.

5.8.2 Machine Data Monitoring Computer

It was convenient to use a separate computer for recording data 

of interest and plotting out results graphically, so as not to disturb 

the on-line control function of the LSI 11/23 system. A Data 

General Nova-3 minicomputer served this purpose, with an analogue 

and digital interface system controlled by on Intel 3000 bit-slice 

microprocessor, as used by Pavlides126. The interface sampling 

rate is adjustable but here was mostly set to take a total of 300 

samples of each variable over a period of 6 sec starting about i  

sec before the fault application. Rotor angle, terminal voltage 

and the two supplementary signals to the governor and AVR were 

normally the signals monitored, but as many as 16 8-bit analogue 

and one 16-bit digital signals may be read into the Nova.

The data read in over the total period may be plotted out using a 

graphics package based on the Tektronix Plot-10 system126'127 and 

a Tektronix-compatible graphics terminal.

5.8.3 Interface to the Mainframe Computer

A means of transmitting information between the LSI 11/23 on-line 

control computer, the Nova-3 data monitoring computer and the 

college CDC Cyber-855 mainframe was provided by a Corvus 

Concept workstation130. The Corvus system was used as an inter

mediate stage when transferring data between any two of the three 

computers mentioned above via serial data lines [RS-232C standard]. 

The practical results presented in Chapter 6 consist of data that
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has been read and stored by the Nova-3 computer, then plotted 

graphically by the college mainframe computer after transfer 

via the Corvus terminal.

Details of interface plug and socket pin connections between the 

LSI 11/23 and the micromachine, interfacing between the angle 

transducer and the Nova-3, operating record of the LSI 11/23 

etc., are given in a separate report .
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CHAPTER 6

PRACTICAL IMPLEMENTATION OF THE STATE ESTIMATOR 

AND OPTIMAL CONTROLLER: TEST RESULTS

6.1 INTRODUCTION

Experimental testing of state estimators and optimal controllers performed 

previously on a laboratory system similar to that described in Chapter 513”15 

produced good results but several limitations were acknowledged by the 

author. One of the most severe was the large time step, between 70 

and 170 ms., of the Fortran on-line control program executing on an older- 

generation Data General Nova-3 minicomputer. The theoretical studies 

in Section 4.8.3 indicate that much better control may be achieved with 

an execution time in the order of 10 ms. Another shortcoming in 

Menelaou's implementation was that the accuracy in the computer/machine 

interface was limited to 8 bits. It was felt that the range of tests could 

be extended to look at many different controller configurations operating 

under a number of different conditions and subjected to various types and 

severity of fault.

This Chapter describes how the state estimation/optimal control [LQG] 

algorithm was implemented in assembly language on an LSI 11/23 micro

computer to meet the desired execution time of 10 ms, and its other 

special features such as digital washout filtering of the input signals.

A comparison is made between calculated and measured transient 

responses of the laboratory power system without supplementary control,
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to check the validity of the mathematical modelling and the setting 

up of the micromachine itself.

th thInitial tests have been made on controllers designed from 12 ,9  , 
th th7 and optimally reduced 4 order mathematical models measuring 

load angle and field voltage. Robustness and the performance when 

subjected to transient disturbances milder or much more severe than 

the standard 100 ms three-phase fault [including more frequently-met- 

unbalanced faults] are also considered. Controllers measuring more 

accessible signals than load angle, such as power, speed or terminal 

voltage, were tested and the influences of noisy measurements and 

torsionally flexible shafts were looked at. The contribution to dynamic 

stability and controllers giving a supplementary signal to the AVR loop 

only were also examined.

6.2 IMPLEMENTATION OF THE CONTROL ALGORITHM

6.2.1 Digital Washout Filtering

Since the controller is designed using a linearised system model, 

the states, inputs and outputs used in the model are deviations 

from their steady-state absolute values [Section 2.4]. In the 

practical implementation steady-state values may, as already 

mentioned, be obtained by a steady-state phasor diagram calcu

lation at the design operating point and used on-line. However, 

this would have the drawback that the controller, taking in 

measurements with reference to constant steady-state values, 

would interfere with normal operation should it be desired to 

alter the loading of the machine. It would be better to allow
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the reference measurements to alter in accordance with setpoint 

changes. Furthermore, when there is a change in tieline imped

ance following a fault, the generator should be allowed to settle 

to a new operating point as dictated by the conventional governor 

and AVR settings.

A solution to this problem is the use of washout filtering, where 

the steady-state or reference value is replaced by the output of 

a low-pass filter of the measured input signal. Thus the signal 

used by the controller is the difference between the measured 

signal and filtered signal. Phung and Gibbard73 called the filtered 

signal the "pseudo steady-state" value of the variable, since it is 

not constant but is allowed to change slowly according to the 

input signal level. If the low-pass filter time constant is carefully 

chosen, this will allow the machine to move slowly to new steady- 

state set-points yet during transients the controller performance 

is almost identical to that using the true steady-state values.

It was decided to perform the washout filtering digitally with the 

on-line control computer to enable easy adjustment of the filter 

coefficients in the software. To keep the number of arithmetic 

operations to a minimum, the first order low-pass filter algorithm 

in canonic form was implemented73’129:

w(k.) = ay (k) + bw(k-l) [6. 1]
and:

yQ( k) = w(k) + w (k-l) [6.2]

starting with initial conditions:

w(0) = y (0)/2 [6.3]
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thwhere y(k) is the value of the input signal at the k sampling 

interval, yQ(k ) is the low-pass filter output, and a and b are the 

filter coefficients, which are chosen such that:

a

b

= CD / ( I  + CD ) ac ac

= (1 - <JL> )/(l + U) )ac ac

[6.4]

where (D is a frequency given by:

Aac = ta"< “ dcT/2]

and (D ̂  is the desired cut-off frequency and T the sampling rate.

The washout filtering vies the deviation from the "pseudo steady- 

state" value yQ(k):

Ay(k) = y(k) - y j k ) [6 .6 ]

6 .2.2 Programming the algorithm on the on-line computer

As stated in Section 6.1, one of the principal aims in the implemen

tation of the state estimation/optimal control algorithm is to 

achieve a computation time step in the order of 10 msec or better. 

Early tests were made, before the purchase of the DEC computer 

system, on other very similar LSI 11/23 computer systems [although 

they were without floating point hardware multipliers] to see how 

this aim could be met.

A seventh order estimation/control algorithm programmed in 

Fortran [for a description of the algorithm see Section 4.6], 

including washout filtering but not analogue and digital I/O, was 

found to execute in 70 ms on such a system. The same algorithm



again in Fortran but using scaled 16-bit integer arithmetic 

throughout instead of floating point, executed on the same system 

in 25 ms. However, because of the large number of arithmetic 

operations round-off errors became significant even with scaling 

and degraded the controller effectiveness on simulations. The 

conditioning of the matrices in the algorithm could have been 

improved in an attempt to reduce these errors but would have 

added more time overheads and increased the complexity, so 

implementing the algorithm in integer arithmetic was not pursued 

further.

The approach found to be successful was to program the algorithm 

in DEC's MACRO-11 assembly language12513. Although more time- 

consuming than programming in Fortran, the lower level language 

gives more direct control over the computer during execution 

which reduces time overheads and is in any case necessary for I/O 

control. The programming procedure was to write a MACRO-11 

general-order matrix multiplication routine using floating-point 

arithmetic, then to program the algorithm of Section 4.6, which 

is essentially a sequence of matrix multiplications and test it with 

simulations. This was found to improve the execution time of the 

seventh order control algorithm to 20 ms.

By specifying a floating point accelerator board when ordering the 

on-line control computer, the execution time of the seventh order 

algorithm was further reduced to 5.5 ms. The floating point unit, 

a co-processor dedicated to execution at high speed of all the 

floating point instructions in the PDP-11 instruction set, was 

expensive but enabled the time requirements to be met. The time
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overheads of the necessary I/O instructions were later found to 

be negligible compared with the overall execution time.

A version of the algorithm was written to accept any order A, B 

and C matrices to implement a controller of one or two outputs 

and two inputs. This enables a comparison of the execution speeds 

of algorithms based on four different model orders, as shown in 

Table 6.1.

Model Execution
Order Time, ms

12 11

9 7.8
7 5.5
4 3.6

Table 6.1: Execution Speeds of Controllers

Thus the execution times for the controllers have been reduced by 

a factor of more than ten compared with those achieved by 

Menelaou13-15, and on-line application of the algorithm with time 

steps shown theoretically in Chapter 4 to give very good results 

is possible with this sytem.

Execution of the algorithm on-line is initiated by running a Fortran 

program which reads in the appropriate gains, calculates steady- 

state conditions then calls the MACRO-11 on-line control routine 

which continues to operate until interrupted. With minor modifi

cations state estimators/optimal controllers of any order measuring 

any desired signals can be tested, with supplementary signals to 

both or just one of the control loops.
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A standard sampling interval of 10 ms has been adopted for all 

controllers except the 12 order, which was run with its mini

mum possible interval of 11 ms. For lower order controllers 

the computer is allowed to idle between the end of one calcula

tion and the start of the next, either by using interrupts 

synchronised to negative-going edges of the load angle pulse to 

initiate calculation or by executing dummy software loops a pre

calculated number of times to fill in the remainder of each 10 ms 

period. The latter method is simpler to program, avoids the 

possibility of spurious triggering and thus is desirable if, as here, 

no particular advantage is gained by synchronising the computer 

to mains frequency.

Appendix L gives a listing of the MACRO-11 assembly language 

on-line control program.

6.3 COMPARISON OF SIMULATED AND MEASURED RESULTS FOR THE 
MICROMACHINE WITHOUT SUPPLEM ENTARY CONTROL

A comparison between predicted and measured responses determines 

whether correct modelling techniques are being used and ensures that 

the apparatus is correctly set up. Fig. 6.1a, b compares predicted and 

measured terminal voltage and rotor angle responses for an eleventh 

order nonlinear generator simulation and readings taken from the micro- 

machine for a 100 ms 3-phase fault with full reconnection on fault 

removal. Clearly the main differences are in the angle response which 

has a larger backswing on application of the fault and better damping 

than the theoretical model. However, the first swing amplitude is



VO
Fig. 6.1: Comparison of o - theoretically predicted and □  - practically measured responses of the micromachine
to a 100 ms fault: A,B - Original theoretical model; C,D - Theoretical model with mechanical damping factor
k of 0.025.
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approximately correct as is the rotor oscillation frequency.

The two possible main causes of the incorrect load angle damping are 

inaccurate damper winding parameters or greater than prediced mechan

ical damping of the shaft. The computer model in Fig. 6.1a, b assumes 

mechanical damping is zero, a justifiable assumption in large machines 

since friction and windage losses are small compared with the overall 

machine rating. On the micromachine mechanical losses are compensated 

for [see Section 5.3], but account only for static friction and low speed 

losses.

The mechanical damping was measured by running the machine up to 

synchronous speed under no load, then setting the torque signal from the 

turbine simulator to zero. The rotor thus decelerated due to the mechan

ical losses, with compensation, and measuring the time taken to decelerate 

from 1500 to 1400 or 1300 rpm enabled the damping coefficient to be 

calculated in the neighbourhood of synchronous speed. By this method 

the mechanical damping coefficient was calculated to be 0.025 pu.

Including the measured mechanical damping in the computer simulation 

[Fig. 6.1c,d] makes the angle responses much closer. The predicted 

backswing is still somewhat less than in the measured response; this is 

possibly due to the T.C.R. not giving the correct effective rotor resist

ance during the fault [caused by saturation of the D.C. power amplifier], 

or incorrect damper winding parameters. However, predicted and 

measured responses with the modified damping are close enough to give 

confidence that the system is being reasonably well modelled.
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6.4 PRACTICAL TESTS ON STATE ESTIMATORS/OPTIMAL CONTROLLERS 
MEASURING ROTOR ANGLE AND FIELD  VOLTAGE

6.4.1 Three-phase fault of 100 ms duration, standard operating 
conditions

Fig. 6.2 compares the controlled and uncontrolled measured 

responses of the micromachine when the operating conditions are 

as in Appendix H, following a 100 ms short-circuit with full post

fault restoration of the transmission system. The desired nearly
thdead-beat angle response is achieved when the 12 order 

controller measuring load angle and field voltage is acting on the 

machine. The controlled response is similar, even slightly better 

[with a small second backswing] than that achieved in simulations 

[Chapter 4, Fig. 4.5], although it must be pointed out that the 

theoretical simulations did not account for the extra mechanical 

damping [Section 6.3]. To achieve this response, the weighting 

matrices were altered from those giving the best theoretical 

results, with the regulator and filter gains both reduced. Weight

ing of individual states in relation to one another did not have to 

be changed, however. For this duration of fault there is virtually 

no difference between terminal voltage responses with and without 

control.

6.4.2 Three-phase fault of 450 ms duration, standard operating 
conditions

Increasing the fault duration, with other conditions the same as

in 6.4.1 so that the machine nearly lost synchronism, gave results
thwith and without the same 1 2 order controller given in Fig. 6.3.



Fig. 6.2: Measured responses o - controlled and Q  - without control, to a 100 ms 3-phase fault (standard
conditions). 12th order controller measuring load angle and field voltage.

122.



F ig . 6 .3 : As F ig . 6 .2  but w ith a fa u lt  duration  of 450 ms. o -  c o n tr o lle d  and □  -  w ithout supplementary co n tr o l.
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The first swing is reduced by about 15°, and the machine returns 

to steady operation 2 sec after the fault. A considerable improve

ment in the terminal voltage response can also be seen, with more 

rapid recovery to the pre-fault value and better damping of 

oscillations that could propagate to the rest of the system with 

a large machine.

Increasing the fault duration above this caused the machine to 

become unstable without supplementary control. With control 

the machine remained stable for faults of up to 500 ms duration.

6.4.3 Unbalanced line-line fault, standard operating conditions

Unbalanced faults were not simulated theoretically in Chapter 4

but are much more frequently encountered than three-phase faults
thin power system operation. Fig. 6.4 shows the effect of the 12 

order controller when the micromachine is subjected to a 100 ms 

line-line fault at the terminals. This time the first rotor swing 

is negative due to the unbalanced conditions. The controller 

successfully reduces the first and* second rotor excursions, then 

the machine returns to steady operation. Once again there is little 

difference between the terminal voltage responses.

6.4.4 Loss of one transmission line

For the next tests a second transmission line was connected in 

parallel to the original one, with a circuit breaker to enable the 

line to be switched out. The impedance of each line was set to

Ze = 0.031 + j0.56 p.u. [6.7]
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Fig. 6.4: Measured responses o - with and □  - without a 12th order controller measuring load angle and field
voltage to a line-line fault of 100 ms. K>Ui
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The response without supplementary control to the switching out 

of a line, Fig. 6.5, is much more oscillatory than in the previous 

tests since the high tie-line impedance causes the system to verge 

on dynamic instability. However, with the controller [designed 

for the pre-fault operating point and line impedance] the system 

stabilises to the new angle much more rapidly following the line 

switching. Note that the jaggedness of the terminal voltage and 

supplementary signal plots in Fig. 6.5 and some other figures is 

mainly due to the low resolution [8 bits] of the analogue/digital 

inputs to the Nova data acquisition system.

6.4.5 Short circuit and loss of a transmission line, conditions as in 6.4.4

A 100 ms three-phase fault was applied to the microalternator, 

and simultaneously one of the transmission lines was removed 

giving the results, with and without the 12 order estimator/ 

controller, in Fig. 6.6. As in 6.4.4 the post-fault response with

out supplementary control is extremely oscillatory. Applying the 

control reduces the first load angle swing by about 5 degrees and 

damps oscillations almost to zero 3 seconds after the fault. 

Oscillations in the terminal voltage are also noticeably reduced.

Note that the modelling here of the fault and loss of line is not 

completely realistic because the transmission line is actually lost 

a short time before the fault, instead of on fault removal as would 

happen in a real system. This is due to practical difficulties with 

the fault application equipment, and is why the backswing occurs 

after the angle has started increasing. However, apart from this 

the response is very similar to that which would be expected for 

post-fault line removal.



Fig. 6.5: Measured responses to the switching out of a transmission line o - with and □  - without a
supplementary 12th order controller measuring load angle and field voltage.
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6.6: Measured responses to a 100 ms fault and the switching out of a transmission line o - with and
without a supplementary 12th order controller. 'co
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f Fl6.4.6 Effectiveness of the 12 order controller at different operating 
points

Three-phase faults of 100 ms duration, without loss of a line and

with the line impedance given in Appendix H, were applied to the

microalternator at six different points over the operation region.

The rotor angle responses with arid without supplementary control
that each of these points are given in Fig. 6.7, where the 12 order 

controller measures load angle to the busbar and field voltage and 

has fixed gains calculated at the design point of P = - 0.8,

Q = 0.0.

The results are similar to those predicted by computer simulations, 

the controller working well for leading and lagging power factors 

at P = - 0.8 and P = - 0.5. At P = - 0.3, Q = 0.0 little improve

ment is made; the machine is already well behaved at this point 

without supplementary control. This gives practical verification 

that a fixed gain state estimator/optimal controller is effective 

for a wide range of operating points, except with low real power 

output.

6.4.7 Comparison of different order controllers

In Fig. 6.8 a comparison between LQG controllers designed from

17 th, ptĥ  7th ancj 0ptimaliy reduced 4*  ̂ order machine models

is given, all of which measure rotor angle and field voltage. All

the controllers give a considerable improvement over no supplemen-

tary control, but it is quite clear that the 12 order estimator/

controller gives the best, almost deat-beat response. The 9
f Hand optimally reduced 4 order controllers give similar responses, 

but the 4 order gives quicker recovery to steady-state conditions.



Fig. 6.7: Effectiveness of the 12th order controller designed at P=-0.8,Q=0.0 at different operating points
(standard fault). A: P=-0.8,Q=-0.2, B: P=-0.8,Q=+0.2; C: P=-0.5,Q=+0.2; D: P=-0.5,Q=-0.0; E: P=-0.3,Q=0.0;
F: P=-0.5 ,Q=-0.2. o - with and □  - without controller.



Fig. 6.8: Comparison of measured responses to a 100 ms 3-phase fault, o — 12th order controller; A  — 9th order
controller, X - 7th order controller; + - optimally reduced 4th order controller; □  - no supplementary control.
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thThe response with the 7 order estimator and controller is 

slightly less-well damped, with no reduction in the first rotor 

angle swing.

It should be pointed out that each controller was individually 

tuned on-line to give best results. Fig. 6.8 therefore gives a 

comparison of the best responses achievable practically with the 

different orders of estimator/controller.

th6.4.8 Effectiveness of the 4 order optimally reduced controller at 

different operating points

The 4 order optimally reduced controller was tested at six
thdifferent operating points in the same way as the 12 order

controller in Section 6.4.6 to establish whether sensitivity to

changes in operating condition is greater than that of higher

order models. The results in Fig. 6.9 show that this is not so.

Although in general the controller gives a less well damped

response compared with Fig. 6.7, the performance is good at all

the operating points considered, and is better than that of the 
th12 order controller at P = - 0.3, Q = 0.0. These discrep

ancies may be attributed partly to slight differences between the 

optional regulator and Kalman filter weighting matrices selected

to give best results, and partly due to the error in reducing the
thmodel order. Generally, though, the optimally reduced 4 order
thcontroller seems to perform almost as well as the full 12 order 

controller away from the design operating point.



Fig. 6.9: Effectiveness of the optimally reduced 4th order controller designed at P=-0.8,0=0.0 at different
operating points: A: P=-0.8,Q=-0.2; B: P=-0.8,Q=+0.2; C: P=-0.5,Q=+0.2, D: P=-0.5,Q=-0.0; E: P=-0.3,Q=0.0
F: P=-0.5,Q=-0.2 o - with and Q  - without controller.
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6.5 PRACTICAL TESTS ON STATE ESTIMATQRS/OPTIMAL CONTROLLERS 
MEASURING SIGNALS OTHER THAN ROTOR ANGLE

6.5.1 Rate of change of load angle and field voltage - effect of noise

A simple practical method of determining the rate of change of 

load angle is by taking the difference between successive samples 

and dividing by the time interval. This numerical'differentiation 

is ordinarily not a good method of speed measurement and 

results in a noisy signal, but enables the controller performances 

with high transducer noise to be investigated.

Fig. 6.10 shows the results when a standard 100 ms three-phase 

fault is applied to the laboratory system with a 12 order con

troller measuring and 6 by this method. Although not as well 

damped as when the relatively noise-free rotor angle measure

ment is used [Fig. 6.2] the response is still very good. Thus 

noise levels much higher than those likely to be encountered 

in the field do not badly degrade the controller performance.

6.5.2 Terminal power and field voltage

The response of the laboratory power system to a 100 ms three- 

phase fault is given in Fig. 6.11, where terminal power and field 

voltage are used as inputs to a 7 order estimator and controller. 

Details of the power transducer are given in Section 5.7.2. During 

the fault itself, the terminal real power falls to zero resulting 

in large estimation errors, but the net result is a large negative 

supplementary signal to the governor loop and a positive one to 

the AVR loop. This gives a very good reduction in the first swing
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Fig. 6.10: Measured responses to a standard 100 ms fault o - with and Q  - without a 12th order controller
measuring a noisy rate of change of load angle signal and field voltage.
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of about 6°, and although the subsequent return to steady-state 

is slower than when load angle is used, the response is better 

than predicted in computer simulations [Fig. 4.12]. This is 

thought to be mainly due to the better natural damping of the 

micromachine as explained in Section 6.3.

The system response with the same controller to a three-phase 

fault with loss of one line is given in Fig. 6.12. The first angle 

reduction of 13° is more than that obtained with controllers 

measuring rotor angle or its rate of change for the same reasons 

as above. Despite the change in external reactance the power/ 

field voltage based controller gives good post-fault damping and 

allows the machine to settle to the new angle. Thus, the extra 

linearised terms in the output or "C" matrix required when power 

is measured do not degrade the controller performance badly when 

changes in tie-line impedance occur.

6.5.3 Terminal power and terminal voltage

Terminal power and terminal voltage, considered by utilities and 

manufacturers to be convenient stabilising signals [see Section 

4.7.2], were used as inputs for a 12 order estimator/controller 

giving the test results in Fig. 6.13 for a standard 100 ms fault.

As with power and field voltage, a good reduction in the first 

swing [about 5°] is obtained for similar reasons. The response is 

again slightly better than predicted by simulations with a smaller 

second negative swing. This controller was found to be more 

sensitive to the choice of the digital washout filter coefficients 

than other controllers, and careful tuning was required to give the 

response in Fig. 6.13. This sensitivity is thought to be the effect
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on the low-pass component of the washout filter when power and 

terminal voltage abruptly decrease to zero during the fault.

6.6 EXPERIM ENTAL TESTS ON ESTIMATORS/CQNTRQLLERS GIVING A
SUPPLEM ENTARY SIGNAL TO THE AYR ONLY

6.6.1 Controller measuring load angle and field voltage

Fig. 6.14 shows the measured response to a 100 ms three-phase 
thfault when a 12 order controller measuring rotor angle and field 

voltage is applied, giving a supplementary signal to the voltage 

regulator only. Little change is made to the first rotor angle 

swing since supplementary prime-mover control is not available, 

but thereafter damping is almost as good as with control signals 

to both inputs. A higher gain is required than that giving the best 

response with supplementary signals to both control loops. This 

configuration would seem to make a very good supplementary 

excitation controller, were it not for the difficulties in measuring 

load angle on site [Section 4.7.2].

6.6.2 Controller measuring terminal power and terminal voltage

The response of the machine with an excitation-only controller 

and estimator based on terminal power and terminal voltage to 

a standard 100 ms fault is given in Fig. 6.15. During the fault 

the estimator/controller gives a high boost to the field resulting 

in a slight decrease in the first swing. Damping is not as good 

as with the previous controller but overall, the performance is 

very good with better results than predicted theoretically. Once 

again careful choice of the digital washout filter coefficients was



Fig. 6.14: Measured responses to a 100 ms fault o - with and Q  - without a 12th order AVR-only controller
measuring load angle and field voltage.
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Fig. 6.15: Measured responses to a 100 ms fault o - with and Q  - without a 12th order AVR-only controller
measuring terminal power and terminal voltage.
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essential for good performance.

The results of both this and the previous test show that excita

tion control gives the main contribution to the damping of rotor 

oscillations, and prime-mover control can assist with reducing 

the first swing. With slower governing systems than that con

sidered here the contribution to optimal control possible from 

the supplementary signal to the governor is likely to be so small 

that excitation-only controllers would seem to be preferable.

6.7 OTHER RESULTS OF INTEREST

6.7.1 Torsional shaft vibrations

An interesting discovery during the initial part of the experimental

work was that sustained torsional oscillations could be excited on
ththe micromachine by the original 9 order controller implemen

tation. The measured signals were load angle and field voltage. 

The oscillations occurred because the shaft which transmitted 

drive from the D.C. motor to the alternator incorporated a torque 

transducer and could not be assumed to be completely rigid. The 

problem was aggravated at that stage of the project by having a 

noisy load angle signal and controller output scaling that resulted 

in very high gains. The oscillations, at a frequency of about 

25-30 Hz, disappeared when the torque transducer coupling was 

replaced by the stiffer conventional shaft.

Fig. 6.16 shows the measured swing curves of the micromachine 

with the flexible shaft, with and without the 12 order
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controller measuring the rate of change of load angle and field 

voltage. The controller was identical to that used in Section 

6.5.1.

From past field experience speed seems to be the worst signal 

to feed back where torsional oscillations are concerned35. The 

shaft oscillations are clearly visible in the rotor angle measure

ments [Fig. 6.16] both with and without supplementary control, 

but the action of the controller in aiding post-fault stabilisation 

is not degraded significantly when compared with the rigid-shaft 

system [Fig. 6.10]. Damping of the torsional oscillations does 

not seem to be very good in either case, but from Fig. 6.16 it 

is not clear whether the controller is making the situation better 

or worse.

A better comparison of the average torsional oscillation amplitudes 

over a period of time may be made by taking a fast Fourier trans

form [F.F.T., see ref. 131] of the measured angle data. Fig. 6.17 

shows F.F.T.'s taken of the rotor angle measurements with the 

flexible shaft and with:

a] a 12 order controller measuring speed and field voltage;

b] no supplementary control;

c] a 12 order controller measuring load angle and field 

voltage; and

d] with the rigid shaft and no supplementary control.

256 points for 2.56 sec after the fault were used in all F.F.T.'s 

taken here with Hanning windowing to enhance amplitude resolu

tion. The dB scale is taken with reference to unit amplitude.



Fig. 6.17: Fast Fourier transforms of micromachine rotor angle with a flexible shaft following a 100 ms 3-phase
fault: A: 12th order controller measuring rate of change of load angle and field voltage; B: no supplementary
control; C: 12th order controller measuring load angle and field voltage; D: FFT without flexible shaft or controller.

146



147.

The low frequency peaks in Fig. 6.17a-d are associated with the 

natural frequency rotor oscillations [2-3 Hz]. In graphs a, b and 

c a second peak is visible at about 28 Hz which is the torsional 

oscillation component in the rotor angle measurements, and is 

absent when the rigid shaft is used [graph d]. Comparing Fig. 

6.17a, b and c shows that this peak rises to about - 55 dB in 

each case, thus the controllers seem to make little difference 

to the average amplitude of the torsional oscillations during the 

period considered. Thus at least it may be concluded that the 

controllers, even where a noisy speed signal is measured, do not 

worsen torsional oscillations when the correct gains are used. 

Although this is not a realistic model of the shaft dynamics of 

a real turbine-generator, a coupling of the appropriate stiffness 

could be used to simulate the most critical mode of the torsional 

vibrations present in the full-size machine.

6.7.2 Performance of the controllers when a detailed governor/turbine 

model is used

All the tests so far described have been performed using a simple 

two time-constant governor/turbine model [Section 5.3.1]. Here 

the detailed simulation circuit described in Section 5.3.2 was sub

stituted for the simple model to ascertain how the controller 

behaved with a more realistic prime-mover model.

A comparison of the rotor angle and terminal voltage behaviour 

of the micromachine following a 100 ms three-phase fault is given 

in Fig. 6.18, when either the simple or the detailed turbine 

simulator is used. There is little difference between the two 

responses, the main one being the natural frequency of the rotor
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oscillations and slightly greater damping with the detailed 

simulator. The terminal voltage responses were virtually 

identical. The close agreement between the two sets of results 

shows that for most purposes the representation of governor and 

turbine by two appropriately chosen time delays is justified. A 

minor modification in the simple governor/turbine model to the 

time constants would make the period of oscillations the same.

thThe action of a 12 order controller measuring load angle and 

field voltage on the micromachine following a 100 ms three-phase 

fault under standard conditions with the detailed governor/turbine 

model is shown in Fig. 6.19. The controller was identical to that 

in Section 6.4.1 which was designed using a simple turbine model. 

Although slightly inferior to the response when the turbine simula

tion is simplified [Fig. 6.2], the controller is nonetheless very 

effective in reducing the first load angle excursion and damping 

system oscillations. This is not a surprising result in view of the 

similarity in performance between the two turbine/governor 

simulations, but it does show that valid simplifications of the 

turbine model can be made in estimator/controller design as well 

as in modelling.

6.7.3 Contribution of the state estimators/optimal controllers to dynamic 

stability

When the single transmission line impedance was increased to the 

value in Eqn. [6.7], and setting P = -0.83, Q = 0.0, the micromachine 

became dynamically unstable with oscillations growing to about 

±20° relative to the mean rotor angle. Fig. 6.20 shows readings 

of the load angle and terminal voltage when this occurred, with
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Fig. 6.19: Response of micromachine and detailed governor-turbine model to a 100 ms 3-phase fault o - with and
□  - without a 12th order controller measuring load angle and field voltage.
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F ig . 6 .20: Dynamic in s t a b i l i t y  of the micromach'ine (P = -0 .8 3 ,Q=0.0 ,Ze=0.013+jO .56) and e f f e c t  of 12th order 
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F ig . 6 .21 : As F ig . 6 .2 0 , but w ith  12th order c o n tr o lle r  measuring power and term inal v o lta g e  sw itched in  
a fte r  9 .5  sec .
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t Hthe 12r order controller measuring load angle and field voltage 

switched in after 11 sec. The controller used the original gains 

as in Section 6.4.1. The oscillations decay almost completely 

within 5 sec. Note the slight increase in voltage oscillations 

immediately after the controller is switched in, but these also 

are rapidly damped. The poor resolution of the terminal voltage 

plot is due to the 8-bit analogue/digital interface to the Nova 

data monitoring computer.

thIn Fig. 6.21 a 12 order controller measuring power and terminal 

voltage is switched in after approximately 9 sec. Here the angle 

oscillations are not so rapidly damped as in Fig. 6.20 and small 

fluctuations continue. However, both controllers contribute 

significantly to the dynamic stability of the system.

6.8 CONCLUSIONS

Details of the on-line implementation on a laboratory micromachine of 

discrete-time state estimators/optimal controllers and the results of a 

series of tests have been presented here. The estimators/controllers 

require inputs that are deviations from their steady-state values. Digital 

washout filtering73 enables this to be done without assuming constant 

steady-state conditions. Careful choice of the filter parameters leaves 

the transient performance of the controller unaffected, but it does not 

attempt to maintain old operating conditions following load setpoint or 

line impedance changes.

One of the main drawbacks reported in microcomputer implementations
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of many advanced generator control schemes has been the relatively 

long delay between sampling data from and computing inputs to the 

laboratory system. Here, using a readily available standard 16-bit 

microcomputer, programming the algorithm in assembly language and 

incorporating a hardware floating point multiplier, computation time 

steps in the order of 10 ms or better have been achieved. These are 

a factor of 10 better than in previous work on microalternator control 

by state estimation13-15, and were shown theoretically to give signifi

cantly better control than longer time steps in Section 4.8.3.

The on-line control algorithm has been programmed such that only minor 

alterations are required to run any order of estimator/controller sampling 

any two measurements from the machine and giving outputs in the form 

of supplementary signals to both conventional control loops or to the 

AVR only. The controller gains are calculated off-line by the solution 

of Riccati equations as described in Chapter 4, given the system model 

A, B and C matrices and choices of the optimal regulator and Kalman 

filter weighting matrices.

A comparison of calculated and measured responses for the micromachine 

after it has been subjected to a 100 ms three-phase fault revealed two 

discrepancies: firstly there was a greater than expected angular back- 

swing in the measurements and, secondly, more damping than predicted. 

Further tests showed that mechanical shaft damping could not be 

neglected in the micromachine, although it is commonly omitted in 

simulations of large machines, and including the damping factor in 

mathematical models reduces the second source of discrepancy. The 

differences in angular backswing remain and are thought to be either due 

to amplifier saturation in the time constant regulator circuit during the



fault or incorrect damper winding parameters. Further study is needed 

on this point and on the adequacy of modelling generally but even so, 

the agreement achieved confirms that the controllers are based on a 

reasonably good model of the system.

thThe first controller tests presented here were carried out with a 12 

order estimator/controller measuring load angle and field voltage. As 

predicted in simulations [Chapter 4] the controller was very effective 

in damping oscillations in the rotor angle and in reducing the first 

swing for a 100 ms fault clearance time. For a 450 ms fault the
thimprovement in terminal voltage recovery was also evident. This 12 

order controller also performed well for unbalanced faults, the switching 

out of a transmission line or three-phase faults followed by loss of line.

Experimental comparison of different orders of controller shows a

degradation in performance as the model is simplified. However, a
thcontroller derived from an optimally reduced 4 order model [obtained

by the Hankel-norm method described in Chapter 3] gives a response on
f ha par with that of the 9 order conventionally reduced model. Tests 

at several different operating points showed that the 12 and 4 

order controllers both give a substantial control improvement over 

conventional loops even well away from the nominal operating point. 

Thus the complications associated with look-up tables that have been 

used for lower order state-feedback controllers71"75 appear to be avoid

able here.

More readily accessible generator measurements than load angle to the 

infinite busbar have been used as a basis for estimation and control. 

Speed [rate of change of load angle] gave the best theoretical results in

155.
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thChapter 4 and here a noisy speed signal with field voltage in a 12 

order controller also gave good practical results. The use of terminal 

power and field voltage, or terminal power and terminal voltage as 

inputs led to better first-swing reduction than with other controllers. 

This is due to the high amplitude supplementary signals generated 

when the controller input signals change abruptly by a large amount 

during the fault. Damping, however, was not as good as could be 

achieved with load angle or speed based controllers.

Consideration of controllers giving a supplementary signal to the AVR 

loop only showed that the main contribution to damping is through the 

field control, but little change in the first swing magnitude may be 

expected without supplementary prime-mover control. Thus for older, 

slower responding speed regulating systems v/ith slower steam valves, 

or turbines without intercept valves, the additional stability improve

ment by supplementary governor loop control compared with AVR-only 

control is likely to be minimal and therefore not worth the expense of 

modification.

Torsional oscillations due to a flexible motor-alternator coupling shaft 

were unexpectedly encountered during early tests on the control policy. 

The problem was aggravated by much higher than necessary gains in 

the supplementary controller. Later analysis using fast Fourier trans

form techniques revealed an oscillatory component at 28 Hz not present 

when a rigid shaft replaced the flexible one. When correct controller 

gains were used, it appeared that speed or angle and field voltage 

measuring controllers neither improved nor worsened the torsional 

oscillations.
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A minor degradation of the controller performance is detectable when 

a detailed governor/turbine simulator is used. Brief dynamic stability 

studies showed that the estimator/controller prevented the micro- 

alternator from hunting when attempting to send a high real power 

through a simulated long transmission line.
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CHAPTER 7

CONCLUSIONS

7.1 GENERAL CONCLUSIONS

Turbine-generator stability may be improved by estimating the state- 

variables of a mathematical model of the machine on a microcomputer, 

then optimally feeding them back to the plant. Here it has been shown 

both theoretically and practically that this method of control can 

substantially increase stability margins following disturbances and rapidly 

damp system oscillations as compared to conventional governors and 

AVR's. Inputs to the controller can be any convenient measurements 

from the generator and outputs are in the form of supplementary signals 

to one or both existing control loop reference points. This makes the 

scheme flexible, cost-effective and readily applicable to both new and 

existing plant.

There are many reasons for attempting to improve generator stability. 

Apart from the physical damage that may result from loss of synchronism, 

it is desirable to prevent oscillations spreading throughout the system. 

Improvement of individual generator stability should make overall system 

operation more flexible and economic. Furthermore, microcomputers 

capable of handling complex control algorithms are continuing to come 

down in price.

Of the many different approaches to generator stability improvement, only 

self-tuning regulators require no a priori model of the system. These need
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low-level noise injections to perform on-line system identification, 

however, and generally such algorithms have been found to be time- 

consuming. Linear optimal regulators require a plant model linearised 

about a nominal operating point, and the approach is to minimise a 

performance index consisting of weighted deviations of the model 

states and inputs from their desired steady-state values. With optimal 

state-feedback controllers, however, there are the conflicting require

ments that on the one hand a detailed model is desirable for best 

control and, on the other, the states of such a model may be physically 

difficult or even impossible to measure. Hence most practical optimal 

generator control schemes reported have applied an optimal regulator 

based on a crude model of only three or four states.

The scheme adopted here involves the estimation of the generator states 

from any convenient measurements taken from the machine. This may 

be accomplished by a Kalman filter, based on.a discrete-time linearised 

model of the system, which gives best least-squares estimates of all the 

system states, given the measurements and assuming white noise. The 

constraint that the model must consist of measurable states is thus 

removed, and the highest order representation that executes within the 

desired time on-line may be selected. Any number of measurements from 

one upwards may be taken, and they do not have to be state variables.

A nonlinear turbine-generator mathematical model may be constructed 

with states accounting for the mechanical subsystem, the control loops 

and the electrical subsystem. Either currents or fluxes may be used as 

electrical state-variables; they give equivalent representations and both 

have been considered here. It is concluded that currents are advantageous 

for simplicity in deriving the linearised output or C-matrix which describes
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the mathematical relationship between state-variables and measurements. 

Both the Kalman filter and the optimal regulator require a linear system 

model obtained by linearising the generator equations about an operating 

point. The linearised continuous-time model is then transformed to the 

discrete-time domain to suit the sampled-data nature of the micro

computer control system.

Recent advances in linear systems theory have shown how a linear model 

may have its number of state-variables reduced with very little error 

resulting in input/output properties. The technique, known as optimal 

Hankel-norm model reduction, is potentially very useful in this type of 

application where the storage and computation speed requirements of the 

on-line control computer may be relaxed with very little detriment to 

the performance. Thus a cheaper computer may be used, or if the 

algorithm is to be part of a global control/supervisory system more time 

and storage may be allowed for other functions. To reduce the model 

order, firstly the system model is balanced, i.e., transformed so that 

inputs and outputs are equally weighted with respect to the individual 

states. It is important to realise that the states in a balanced model 

are generally not physically measurable, but are a transformation of the 

original states. Truncating a balanced realisation of an n order system 

to k states, where Kk<n, gives a reduced order model which is optimal 

in the sense that it gives the best relationship between past inputs and 

future outputs as an approximation to that of the full model. The 

frequency response error for any reduced-order model is easily calculated 

from data computed when balancing the system [the Hankel singular- 

values]. This enables the order of the reduced model to be selected 

such that very little error is introduced.
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The theoretical work of Vaahedi11’ 12 on continuous-time state estimation 

and optimal control of turbine-generators has been extended to the 

discrete-time case, more suited to the sampled-data control system. 

Solution of the linear-quadratic optimal control and optimal estimation 

problems lead to two Riccati equations which can readily be solved to 

give the estimator and controller gains. The gains are affected by 

arbitrarily-selected weighting matrices, which generally have to be 

chosen by trial-and-error, although certain guidelines are given.

Nonlinear simulations established initially that the response of the micro-

machine following a transient is predicted to be reasonably close, as far

as per-unit quantities are concerned, to that of a 660 MW turbine-
thgenerator. Further off-line tests showed that a 12 order controller 

measuring load angle and field voltage gave much improved transient 

performance over conventional control loops for varying severities of 

disturbance. For controller time steps of up to 85 ms, the predicted 

improvement in performance was good. Shorter time steps gave pro

gressively better responses until those of less than 10 ms, when very 

little further improvement was predicted.

Testing of the control algorithm in real time in a practical environment 

was carried out on a laboratory power system model consisting of a 

3kVA microalternator driven by a d.c. motor. Analogue circuits 

simulated turbine/governor and AVR/exciter systems, and effectively 

modified the field time constant to a realistic figure. An analogue 

Watt-VAr transducer and an accurate digital load angle transducer were 

also constructed. Faults of any desired duration or line switching could 

be initiated by a sequence control unit. The laboratory system was a 

scaled-down model of a typical 660 MW turbine-generator feeding a
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stiff busbar.

Two separate computers were interfaced to the model plant, one a DEC 

LSI 11/23 microcomputer to provide on-line control and the other a 

Nova-3 minicomputer to record data from the machine and plot it out 

using a graphics package. Communication between these two computers 

and the college mainframe was enabled by a Corvus Concept workstation.

The time step in the order of 10 ms predicted to give best results was 

met on the DEC on-line control computer by programming the algorithm 

in assembly language and using a floating point hardware multiplier unit. 

The time steps achieved are a factor of more than 10 faster than in a 

previous implementation of a similar strategy13-15. This enabled higher 

orders of turbine generator estimators/controllers to be investigated 

than has previously been documented. Digital washout filtering was 

adopted in the implementation and proved to be a good way for the 

controller to allow the machine to make a smooth transition to new 

setpoints and to successfully handle changes in tie-line impedance.

Comparison of simulated and measured transient responses of the micro- 

machine showed a good agreement, apart from a greater than predicted 

initial angular backswing, once the not insignificant mechanical damping 

was accounted for in the simulation. Response of the machine to a 

100 ms three-phase fault with a 12 order controller measuring load 

angle and field voltage was very good, even slightly better than predicted 

with an almost dead-beat angular swing curve. This controller also 

worked well for other types and severity of fault, including line-switching 

and unbalanced faults.
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Both practical and theoretical comparisons of different orders of

controller all measuring load angle and field voltage, and with similar

time-steps, show that the performance deteriorates slightly as the

model is simplified. However, an optimally reduced 4 order controller

[derived from a model obtained by applying the Hankel-norm reduction 
f Hmethod to a 12 order model] gives performance on a par with that of

th tha 9 order conventionally reduced controller. Both 12 and optimally

reduced 4 order controllers work well at operating points considerably

different from the nominal, except at low real power output. Thus the

complications of look-up tables appear to be avoidable with this type of

controller.

It is recognised that load angle is generally not convenient to measure 

in a real system due to practical difficulties and the problem of which 

part of the system to consider as infinite. Terminal output power, 

voltage, current and speed are more easily available. Speed deviation 

[rate of change of load angle] with field voltage gave the best theoretical 

results of the signals considered and an intentionally noisy speed signal 

also gave good practical results demonstrating the immunity of the 

algorithm to high noise levels.

Speed is, however, regarded as undesirable to use in supplementary 

stabiliser schemes due to torsional shaft oscillations that have been 

caused in the past by feeding speed in addition to voltage into the AVR. 

Power seems to be more desirable in this respect, and controllers measur

ing power and field voltage or power and terminal voltage were designed 

and tested. Since power is not a state variable in the models, linearised 

terms are required in the output matrix. This results in greater estima

tion errors, particularly during the fault, than with other measurements
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such as load angle or speed deviation. As a consequence the first-swing 

reduction is greater but the time taken for the system to settle to 

steady-state is longer, and the overall stability improvement is less 

than with controllers measuring load angle or speed.

Controllers providing only the AVR with a supplementary signal gave a 

response almost as good as that with signals to both loops, except there 

was little first-swing reduction. It appears that AVR only control would 

be a suitable supplementary stabilising scheme for older plant or hydro 

sets, where control of the mechanical input power is relatively slow.

This is because in such circumstances supplementary control to the 

mechanical loop as well is likely to provide even less benefit than with 

the model here.

The surprising detection of torsional shaft oscillations due to a flexible 

coupling on the micromachine gave the opportunity for brief tests to see 

how they interacted with the controllers. Only a slight degradation in 

performance was apparent. Fast-Fourier transform analysis showed a 

peak at about 28 Hz absent when the flexible coupling was replaced by 

a rigid one. Controllers measuring rotor angle' or speed and field voltage 

seemed to make little difference to the average amplitude and decay 

time of the torsional oscillations.

Practical tests showed that the use of a simplified governor/turbine 

model to replace a detailed simulator on the micromachine has little 

bearing on the results. The estimator/controller was also shown to 

prevent the microalternator from hunting when sending a high active 

power through a high impedance transmission line.
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The experimental results have shown that real-time implementation of 

an advanced generator control scheme based on state estimation and 

optimal feedback is feasible. The controller considerably improved both 

transient and dynamic stability, is effective with two measurements 

chosen for convenience and can be implemented with little modification 

to the existing generator control system.

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH

a] The theoretical and practical results of this work at present cannot 

be directly compared with those of other control schemes in the 

literature due to the different conditions and apparatus used. 

Comparison of state estimation and optimal control with other 

schemes, for example self-tuning regulators, optimal aiming 

strategies, controllers designed by pole assignment and frequency- 

response methods is possible on the existing laboratory system. 

Conditions can be carefully controlled and the results would be 

valuable.

b] Before accepting an advanced generator control scheme such as 

that studied here, utilities need to be confident that the controller 

shall under no circumstances excite torsional shaft oscillations.

As a first step in investigating this the flexible coupling mentioned 

in Section 6.7 can be replaced by another giving a natural torsional 

frequency typical of the most important mode in a large turbine- 

generator [at 5-15 Hz], The mathematical model may be modified 

to include shaft dynamics132, and modes of vibration may be 

weighted and if possible damped by the estimator/controller. A
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laboratory system modelling all the torsional modes has been 

constructed by Limebeer122,133; a similar system could be built 

here to test the control scheme.

Independently controlling the input power distribution along the 

shaft is possible by controlling the turbine main throttle and 

intercept valves separately. Consequently further damping of 

torsional oscillations may be achieved if the valves can respond 

rapidly enough.

c] Multimachine studies need to be carried out to predict how an 

estimator/controller affects overall system steady-state and 

transient stability. The simulated contribution of a controller 

to the damping of inter-area oscillations such as those which 

occurred between England and Scotland18 would also be of interest.

thd] For linear discrete time 9 order generator models, the control 

microcomputer simulated 10 ms of real time and performed 

estimation and control calculations in 7.8 ms. Nonlinear simula

tions using Runge-Kutta or Kutta-Merson integration routines would 

take considerably longer but with suitable software streamlining 

and a faster microcomputer, real-time modelling should be possible. 

A real-time generator simulator would be considerably less expen

sive than a micromachine, in many ways more versatile and very 

useful for testing control schemes, operator training, etc.

e] Controllers having several inputs may have advantages in terms 

of reliability [if a transducer fails] and quality of estimation over 

those with just two, and are worthy of investigation.
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f] The application of optimal Hankel-norm model reduction to high- 

order linear multimachine power system models could be a very 

good way of reducing the computer time and storage requirements 

of these simulations, at the same time retaining more information 

than conventional methods of reduction.

g] Optimal Hankel-norm reduction could also be applied to simplify 

complex AVR/exciter and governor/turbine linear subsystems of a 

nonlinear generator model thus reducing its order. This may turn 

out to be better than standard methods of reducing these sub

systems. However, for deriving reduced-order linearised generator 

models it is theoretically better to start with a full-order model 

of the generator and its control subsystems.

h] One discrepancy between theoretical and practical results was the 

greater than expected initial angular backswing measured on the 

micromachine following a three-phase fault. Theoretical and 

practical investigations are required to trace the source of this 

discrepancy. Transient test data from a full-size modern machine 

would also be useful to ascertain the quality of modelling in 

simulations both on the computer and in the laboratory.

i] The use of a tie-line impedance estimator in the controller was 

looked at theoretically by Vaahedi11’12. On-line recalculation of 

the transition matrices, controller and estimator gains every time 

the tie-line impedance changes does not seem feasible since it 

would be too time-consuming, so a look-up table at different 

impedances would be required. Theoretically a three-dimensional 

look-up table with different gains at different values of power,
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Var and tie-line impedance should give best results, but storage 

requirements, particularly with higher order models, would be 

very large. Therefore whether the benefits of having such a 

look-up table as compared with a fixed-gain controller outweigh 

. the disadvantages should be carefully assessed.

j] Another possible use of the state estimator is in monitoring

difficult-to-access signals such as torques, fluxes or field quantities 

in brushless machines, or in filtering noisy measurements. Practical 

tests could be carried out on the microalternator to compare 

estimates with measured values thus assessing the accuracy of 

estimation.
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APPENDIX A

VOLTAGE REGULATOR GAINS

The voltage input V^ to the exciter, determined by the AVR amplifier gains, 

in the steady-state [with no supplementary signal] is:

V = G (V - V J  e a r r [A.1]

The exciter can be regarded as an amplifier, gain Ge, so that in the steady- 

state:

Vr = G V f e e [A.2]

The generator may also be regarded as an amplifier, since, neglecting 

saturation, its output voltage on no-load is proportional to the field voltage:

*V. = K Vf t 2 t [A.3]

But Adkins and Harley16 show that, on open circuit

w Xmd *f
* = / 2

[A.4]

So: VL = xmdVf
t R, [A.5]

Therefore:

K md
K= = 7 T r f

is the generator gain expressed in per-unit values.

[A.6]
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From equations [A.l - A.3]:

V = G G K (V r - V J  t a e 2 ref t

and the relationship between AVR amplifier gain Gq/ 

overall AVR gain Kq is:

G G = a e
K / fR  e_a______ f

Xmd

AVR's are normally designed with a Kq of about 200 

During transients a lead-lag compensator reduces Kq 

30 for 1 Hz oscillations.

[A.7]

exciter gain Gg and

[A.8]

in the steady-state, 

effectively to about
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APPENDIX B

GENERATOR MODEL BASED ON FLUX EQUATIONS

B.l VECTORS

1
q

T*
 

___
___

_1

/ ii

l_______i

i-----------
~0

l
•f

T3 ' i

-----------1
"O-V

_______1

i fq q q
Jkq y,kq

[B .l]

B.2 MATRICES

X gd

X gq

Y gd

Y gq

x , + X  md a Xmd Xmd [B.2]

Xmd Xmd + Xf Xmd

Xmd Xmd Xmd + Xkd

X  +  Xmq a X mq [B.3]

X mq mq kq

M "
[B.4]

X  1  - 1g q [B.5]

R 0 0a
0 R
0

‘f
0 R

0

kd
Rgq R 0 a

[B.6]

[B.7]



172.

B.3 ELEVENTH ORDER NONLINEAR MODEL

Nonzero elements of the matrix A :n

An <’ '2> = 1

An <2'2> = -k/J
An (2, 1 1 ) = -1/J
An (3,3) = Z ^ l,!)

An (3'4) = Z / 1,2)
An (3,5) = Z;<1,3)
An (3,6) = -wo
An (4,3) = Z I (2,1)
An (4,4) = Z ,(2,2)
A (4,5) n = Z t(2,3)

An (4'9) - 0)o
An (5,3) = Z j(3 ,l)

An <5'4> = Zj(3,2)
A (5,5) = Z t(3,3)
An (6,3) = 0)o
An (6,6) = z 3d ,i)
An (6,7) = Z2(l,2)
An (7,6) - Z2(2,l)
A (7,7) n = Z3(2,2)
An (8,8) = -1/Ta
An (9,8) = -G /Te e
An (9,9) = -1/Te
An(10,2) = G /T a v
An(10,10) =

y ▼
-l/Tv

An(11,10) = 1/Ts
An(11,U) - -1/Ts
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Where: [z ]  = V  [ R gd] ' [ Y gd] [B.8]

[ Z«]= “ o. [R gq] - [ Ygq] [B.9]

J  = 2H/ojo [B.10]

Nonzero elements of the vector F :n

F (2) n
Fn(3)

Fn(8)

M /Je

CD V , +o bq 
-G V./T

where:

M
gq

5 a)o q
5 a)o d

3

dd'i>]

3
°

Ygd*

gq kq

[B .ll]

Vbd = Vmb sin 5

V, = V , cos 5 bq mb

[B.12]

[B.13]

The rms terminal voltage V̂ . is given by:

Vt = 0-5(Vtd 2 ♦ V ’)*

where:

v td =:V bd- R eq ‘d '  l6

V, =: v. - R i - i*q bq eq q q
R = + Req t e

X = x . + Xeq t e

[B.14]

[B.15]

[B.16]

[B.17]

[B.18]
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The vector is re-calculated at each stage of the Kutta-Merson 

integration process [see Appendix F].

Nonzero elements of the matrix B :n

B (8,1) = G /Tnv '  ' a a

Bn(10,2) = 1/Tv

B.4 NINTH ORDER NONLINEAR MODEL

In this model w T , and u) T are assumed to be constant during each o d o q **
time step, then at the end re-calculated as follows:

(h Z ,(U ) ♦ h2 (co - 5)
0) ¥ . - - 
°  d h, [B.19]

(i) T =
°  q  h

3
[B.20]

where:

h = oj V, . + Z ,(1,2) a) ¥* + Z ,(l,3 ) u> T, , i o bd i ' ' o f i w  o kd [B.21]

h = uj V, + Z (1,2) id T,2 o bq 2' o kq [B.22]

h3 = Z/1,1) Z2( l ( l) + (ajo - 6)2 [B.23]

rdThus the 3 and 6 states of the eleventh order model may be omitted

reducing it to ninth order.
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APPENDIX C

GENERATOR MODEL BASED ON CURRENT EQUATIONS

C.l VECTORS

[I] = [»d, >f, >kd, iq, ‘kqi, *kq2l [C-l]

[V] = [vd, vf/ 0, vq, 0, O f  [C.2]

C .2 MATRICES

[R]

[G]

[L]

= diag. [Rq, Rp Rkcj/ R q, R kqp Rkqj]

I
1

(L. + L ) L mq a Lmq mq
0 1 0 0 0

1 0 0 0

1
r 

1 
3 Q_

 
|

+ 
|

Lq) Lmd “̂md
1
1
1

0 0 0 1 0

0 0 0 1
1 —

L̂md + Lâ  Lmd *“ md
1
1
1

—

“̂ md L ffd “̂ md
1
1 0

*“ md ”̂ md Lkkd
1

1
|(L
|

+ L ) L mq a mq L mq
0 • 1

1

L. L, .mq kkqi L mq
1
1
1

L L mq mq l

cr
_l

[C.3]

[C.4]

[C.5]
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where:

*“ md = X mc/too [C.6]

L mq = X  Ao mq o [C.7]

L ffd — L  . + Xr/(D md f o [C.8]

*"kkd = L  j  + X, ,/co md kd o [C.9]

“̂ kkq i = L  + X. fa  mq kq l o [C.10]

^"kkq 2
= L  + X, /a) mq kq2 o [C.11]

C.3 SIMPLE SEVENTH ORDER MACHINE MODEL

C.3.1 Damping Coefficient Calculation

The mechanical damping coefficient kmec  ̂ for higher order models 

is normally negligible [although it is not for the micromachine - see

Section 6.3]. In the simplified representation electrical damping is 

included in k, calculated by the following formula2:

ad = (x ' + x ) / (x + x ) T , " a e a e do [C.12]

aq = <xq + x . )  '  <*q" + Xe> Tqo" [C.13]

a = V /  (x d ' -  xd") / (x d ' ♦ xe)(xd" ♦ xe) ad [C.14]

b = V  (xq - x q") /  <xq ♦ xe)(xq" ♦ xg) aq [C.15]

k = kmech + ° ’5(a + b) [C .U ]

C.3.2 Simple machine model equations

Neglecting , the machine equations16 can be

summarised as follows, taking the infinite busbar as the machine

terminals:
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< cr Q_ = a) 'F + R i , o q ae d [C.17]

Vbq = -a) ¥ , + R i o d ae q [C.18]

Vf = R f !f + (xmd !d + (xmd + Xf) i f ) / “ 0 [C.19]

V d = (x + x ,) i , + x ' ae md d me1 ‘f [C.20]

cr
5ho3 = (x + x ) i ae mq q [C.21]

By eliminating 'F j and 'F , î and i
q

are obtained as:

!d = a V, . + a V, + a l bd 2 bq 3
[C.22]

i
q

= b V, , + b V, + b i bd 2 bq 3 [C.23]

where:

a i
. R -X ae qe- j T - , a2 - / a3

- x x ,qe md 
Z2

b i

X , R de , ae b3
X , R md ae [C.25]“ Z2 ' 2 ~ U ' Z2

where:

R ae = R + R. + R a t e [C.2d]

Xae = X + X,. + X a t e [C.27]

Xde = X , + X . + X d t e [C.28]

Xqe = X + X,. + X q t e [C.29]

Z2 = R 2 + X , X ae de qe [C.30]

Substituting for î  and i in Eqn. [C.19] gives:

ir =D V r + D V , 6  sin 6 + D V , 6  cos 6 + D if [C.31] f i f 2 mb 3 mb <♦ f
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where:

D : = 03 / a  o [C.32]

D2
X X .qe md

V
[C.33]

D3

X , R md ae
V

[C.34]

D = - a) R r / a o f [C.35]

V = Z2 (X . + X ,) - X 2 Xmd r md qe [C.34]

a = zf2 / Z2 [C.37]

Electrical torque is obtained by substituting the above values of

current and fluxes in Eqn. [2.17] as:

Me = C sin25 + C cos26 1 2 + C i£2 + C sin 5 cos3 f  ̂ • 5

+ C i£ sin 5 + C i5 f 6 P cos 6 [C.38]

where:

c , = i  (X . - X ) R X , V * / Z "  2 d q ae de mb [C.39]

C2 = - T  (X . - X ) R X 2 d q ae M V , 7 Z 1* qe mb [C.40]

c 3 = i  x , 2 R (X 2 + R !) / Z“ 2 md ae q ae [C.41]

c = 7  v  k2 (X A - X )(R 2 - X , X ) / Z“ 2 mb d q ae de qe [C.42]

C s = (X j  - x )(R  2 -2Z4 d qM ae X , X ) X , V . de qe md mb

+ 2Z2 X md Xde Vmb [C.43]

C e = -4t- R X . V . L  ae md mb
1 / , 1 - trr (x , - x x  + ■=■ Z2 d q qe 2 [C.44]
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thThe terminal voltage components for the simple 7 order model

are:

. = Xn i + R i . td q q a d [c.45]

v a. = - X , i , - X , if + R i tq d d md t a q [C.46]

Substituting for î  and i from Eqns. [C.22 - 23] gives:

V. . = e sin 6 + e cos 5 + e i£
t d  1 2 3 f

V. = f sin 5 + f cos 5 + f if tq i 2 3 f

[C.47]

[C.48]

where:

e = V , (X b + R a )  i mb v q i a r

e = V , (X b + R a ) 2 mb q 2 a 2 '

e = (X b + R a ) 
3 q 3 a 37

f . = Vmb (- X da i + W

f = V . (- X .a + R b )2 mb d 2 a 2

[C.49]

[C.50]

[C.51]

[C.52]

[C.53]

f = (- X ,a + R b - X ,)3 d 3 a 3 md [C.54]
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APPENDIX D

LINEARISED SYSTEM REPRESENTATION

In deriving linearised models, the objective is to evaluate the A^ and 

matrices of:

Ax = A^ Ax + Au [D.l]

where:

Ax = [Ax , Ax , ... AxL 1 2 nJ
and:

Au = rAV + du , AY + du~| r v  o 2

[D.2]

[D.3]

D.l TERMINAL VOLTAGE LINEARISATION

In all the linearised models, a linearised terminal voltage expression is 

derived using the transmission line model equations [2.26 -.27], repeated 

here:-

V, , = V, , - R i . - (x i ,* + aii x ) / uj td bd eq d eq d q eq o

V. = V. - R i - (x i * - mi , x ) / u  tq bq eq q eq q WId xeq' '

[2.26]

[2.27]

We know that:
3V, 3V.

a v , = a v , , + liT —  a v ,t dV, , td 9V, tqtd
[D.4]

tq
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and
1V. = ? / V .  + V. 2t 2 td tq [D.5]

hence:

3V.
avtd

V. . av* td __t_ _ tq
2V. ' av,. = 2V.t tq t

[D.6]

Linearising [2.26] and [2.27] gives:

AV , = AV, , - R Ai , - x Ai , / aj td bd eq d eq d o [D.7]

- Au i x / a) - coAi x / a> q eq o q eq o

AV. = AV, - R Ai - x pAi / to tq bq eq q eqr q o [D.8]

+ Acoi , x / to + toAi , x /to d eq o d eq o

where:
3V,

AVbd '  A6 = (Vmb sin 5) A6

= V , cos 6 A6 mb [D.9]

AV
3  V  l _  a

, = — —̂  A6 = —  (V , cos 6)A6bq 36 36 v mb

= - V , sin 6A6 mb [D.10]

Equations [D.7] and [D.8] can be used directly in a linear model 

if currents are the generator state variables, and can be trans

formed if fluxes are the state variables.

Linearisation of the electrical torque expression and other non- 

linearities is by straightforward partial differentiation with respect 

to each state variable.
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D.2 TWELFTH ORDER LINEAR MODEL

Inverting the inductance matrix [L] gives the following susceptance 

matrix [B]:

[L]-1 [B] _Bn 3 2 B13
1
1
1

B21 b 2 2 B23
1
1 0

B 31 B32 B33
l
l
l B44 B45 B46

0 1
|

B54 B55 B56

__ 1
1

B64 B65 B66

[D .ll]

The linear system matrix Aq is calculated to be the following [non-zero 

elements]:

l (1,2) - 1

l (2,2) = - k / J  + Mt  / (a) J) 1 o
l (2,3) = - ui i (L , - L ) / 2J o q d q'
l_(2,4) = - u) Lm . i / 2J o md q
l (2,5) - - a) L i / 2J o md q
l (2,6) -

- “ oC-d'd + L mdif '  L
L (2'7) = u L  i , / 2 J  o mq a
■l (2,8) = (i) L i , / 2 J  o mq d
‘l_(2,9) = - 1/J

= - B V,n bq
■l (3,2) = - B L i

11 q q
‘L (3,3) = - Bn <Ra + R t + Re>
•L (3,4) = - Bu R F
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Al (3,5) = - B R, .13 kd
Al (3,6)

Al (3,7)

Al (3,8)

Al (3,10)

= - B a) L li o q
= - B w  L ii o mq

^li^o^mq

= bI2
Al (4,1)

Al (4,2)

Al (4,3)

= - B V,12 bq
= - B10 L i12 q q
= - B ,, (R + R , + R ) 12 a t e

Al (4,4) = - B R r22 f
Al (4,5) = - B R. ,23 kd
A l (4,4) = - B u) L 12 o q
Al (4,7)

Al (4,8)

Al (4,10)

= - B w L 12 o mq
= - B a) L 12 o mq

= B22
Al (5,1) = - B l3Vbq
Al (5,2)

Al (5,3)

= - B L i13 q q
= - B (R + R. + R ) 13 v a t e'

Al (5,4) = - B 23R f
Al (5,5) = " B 33Rkd
A l (5,6) 

Al (5,7) 

Al (5,8)

= - B a) L 13 o q
= - B ,, a) L13 o mq
= - B a) L13 o mq

Al (5,10) = B23
Al (4,1) = B„  v bd
Al (6,2) = B (L ,i , + L ,i£) 1+1+ d d md r
Al (6,3) = B u L .<+i+ o d
Al (4,4) = B cu L , *+*♦ o md
A l (6 ,5 ) = B a) L , '♦*+ o md
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Au« ,« ) = -B (R + R + R ) tt ' a t e
Al (6,7) = - R!45 kq l
Al (6,8) = - B R.*+6 kq2
Al (7,1) - B ,s Vbd
Al (7,2) = B *5 L̂ d‘d + L mdV
Al (7,3) = B, a) L ,*+5 o a
Al (7,4) = B a) L , 45 o md
Al (7,5) = B, a) L , 45 o md
Al (7,<5) = - B ,s (R a + R t + Re>
Al (7,7) = '  B ss R kq l
Al (7,8) = B S6 R kq 2
Al (8,1) = B ,s Vbd
Al (8,2) = B .6 <Ld*dt L md,f)
Al (8,3) = B W L ,46 0 d
Al (8,4) = B a) L , 46 o md
Al (8,5) = B , to L ,46 o md
Al (8,6) = - B (R + R. + R ) 46 v a t e'
Al (8,7) = - B R,56 kq l
Al (8,8) = "* B 66 Rkq 2
Al (9,9) = - 1 / T s
Al (9,12) - , / T s
Al (10,10) = - , / T e
Al (10,11) = Ge / T e
Al (11,1) = Kv <Vtq Vbd - Vtd Vbq>
Al (1 1,2) = Kv <Vrq ^ d  -  Vtd L t‘q)
Al (1 1,3) = Kv K q W  + V  -  Vt d " V  Re>
Al (1 1,6) = -  K ( v ,  , (x. + x ) + V. (R , + v\ td t e tq ' t
Al (11,11) = - 1 / Ta
Al (12,2) = G / Tg  v
Al (12,12) = - 1 / TV
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where:

K

The non-zero B.

B,

B,

*“md + *“a
- Ga '  (To2Vt> 
( x t  +  X  )  /  i o o

= L + Lmq a

control matrix elements are:

(11.1) = Ga / T a

(12.2) = 1 / T v

D.3 NINTH ORDER LINEAR MODEL

Equations [B 19 - 23 ] are used to find the partial derivatives with

respect to 6 of U) T, and u) T : r o d o q

= Vmb ojo( 03q sin 6 - Z2( l, l )  cos 6) / ^(1,1) Z ^ l,!) [D.12]

IT  (“ o^c,) = Vmb “ o( “o cos 5 + Z / U )  co s6 )/Z 1( l , l ) Z j (1,1) [D.13]

The matrix becomes:

Al (2,1) 1

Al (2,1) “ o Vmb(M 3(a)o sin 5 ■ Z!(1' 1) cos 6)
+ Ms wo cos 6 Z x(1,1) sin 6)] / ZZZ.J

Al (2,2) - k/J, \
Al (2,3) (- M3Z l (l,2 )Z2( l , l )  + M6a)oZ1(l,2) + M^ZZZ)/ ZZZ.J

Al (2,4) (- M ^ f U ^ d , ! )  + Me ^Z/1,3) ♦ M s.ZZZ)/ ZZZ.J

Al (2,5) (- M3 (oqZ2(1,2) - M6Z p ,l) Z2(l,2) + M?.ZZz)/ ZZZ.J

Al (2,9) - 1/J

Al (3,1) Z/2,1) Vmbto( “ o Sin 6 '  Z2(1' ,) c o s S ^  ZZZ



A
1 / l=(z'spa

D D 
1/0=d'9pa

S
1 / l -=(6 '6)\

s
1 /1=(8'Z)~V

A
1 / L "=(8'8)~V

Ai / 6o-(Z'8pV

91 / l --(Z'ZpV

i O n> —
I 

n>
-W?)\

Di /1 --(9'9)~V

ZZZ °1 /iZ22LA * (Z'l)Z2 (t'O’-Z ®A - (Z'lfz VA - j°D -=(?'9pV

ZZZ °1 /(ZZZSA + (E'l)'z°" \ * (l't)*Z (E'OVa - }°0 -=(t'9)1V

ZZZ D1 /(ZZZ'A + (Z'l) Z°ra9A + ddfz (z'i)Va - )Do -=(£'9)nv
\ / D D Z

1 / 0 A --(Z'9)\

1’ZZZ/P A "/ZZZ A + (9 UTS d'L) z +

9 sou °")9A + ^9 S03 d'lfz - 9 u!s °" )Ea) ^A °" °0 --d^PV

(Z‘Z)Z2 * 222 / (l'l)'z (Z'L)ZZ d'zfz -=(ff'ffPv

zzz / (E'o’zVi'zfz-(t'spv

zzz / (z'O’z^d'zfz(E'SpV

ZZZ /|? u!s (l'l)TZ + 9 so= °") °" qUJA d'zfz=d'sPv

zzz / (zdfz (i'e)’z °" -=(?'*pv

(E'O'z + ZZZ / d'lfz (E'lfz (l'E)'z -=(t'tpv

(Z'E)’z + ZZZ / d'lfz (Z'l)’z (l'C)’z -=(E'tPv

ZZZ /fesoo d'lfz - 9U!S °") °"qUJA (l'£)'z=d'tPv
\

Om=(z'ePv

zzz / (zdfz d'z)'z0" -=(f'EpV

(£'z)'z + ZZZ / d'lfz (E'lfz d'zfz --(t'EpV

(z'z)’z + zzz/ d'lfz (zdfz d'zfz -=(E'EpV

•981
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D.4

where: V ! = Vmb (Vtd COs6 '  Vtq Sin6) 7 2‘Vt
V 2 = Xe q ( Vt d iq - V id)/2 0 Jo Vt

V 3 = Y gd W  <Xeq Vtq '  Req V t«P '  2‘Vt
Vk = Y gd <’' 2> <X eq Vtq '  Req Vtd> '  2‘Vf

V5 = Ygd ^  <Xeq Vtq '  Req Vld> '  2'Vt

Vs = Y (1,1) (- X V . - R V J / 2 . V .  gq eq d eq q t
V 7 = Ygq (- Xeq Vd '  Req Vq> '

and: M3 =
° ' 5 “ o fd L ( l , ) - V , ' l ) ) t “ o Tk q y , '2)

M<+ = 0.5 Ygd(l,2 ) u>Q

M 5
=

- V 1' 3) ^  ’q
M 6 = ° 4 . ,d ( y , ^ v , ' , i) - v ^ V f  - v 1'3^
M7

= 0.5 Y (1,2) (o V . gq o d
zzz = Z j(l,l) Z2( l , l )  + too2

Req = R + R e f
Xeq X + X L e t

SEVENTH <ORDER LINEAR MODEL

Al (1,2) 1

Al (2,1)
=

(2 C sin 5 cos6 - 2 C sin 6 cos6 + C cos 251 2
+ C 5 î  cos 6 - Cg ij; sin 6) / J

Al (2,2) = k 
‘ J

Al (2,3) = (2C if + C sin 6 + C cos 6 ) / J3 t* 5 6
Al (2,7) = l

" J
Al (3,2) = V ^(D2 sin 6 + D3 c o s  5)

Al (3,3) = D!+
Au(3,5) = D i
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Al (4,1) = - Gq Vi_cj(el cosS - e2sin 5) + V̂ . (^cosd - f 2sin6)

/ 2.Vt.Ta

Al (4,3)
Vq V / 2 - V a

Al (4,4) = - 1 '  To
Al (5,4) = - Ge / Te
Al (5,5) = - l / T e

Al (<S,2) II <r>
<Q

—1 <
Al (<5,4) = '  ' '  \

Al (7,S) - 1 / T s
Al (7,7) = - 1 / T s
Bl (4,1) = Ga '  Ta
Bl (6,2) = 1 / T v

Expressions for C^.. C6, D i .... D ,̂ e i .... e3, and f .... f , are evaluated 

in Appendix C, Part 3.2.
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APPENDIX E

"STEADY-STATE11 PHASOR DIAGRAM CALCULATION

The calculation of the machine steady-state operating condition is based on 

the following information being supplied:

a] Voltage, power and reactive power at the machine terminals;

b] Parameters of the synchronous generator and transmission line.

From the information a phasor diagram can be used to calculate current 

components, busbar voltage and load angle to both terminals and infinite 

busbar, Fig. E .l, and hence steady-state values of all state variables can 

be found.

0 = arctan (Q/P) [E .l]

Imt 2 / P 2 + Q2 / Vm(. [E.2]

From the phasor diagram, the terminal load angle 6̂ is given by:

tan 6̂ NR
ON [E.3]

Where RS is perpendicular to the current phasor, and RN is the perpendicular 

on OT produced.

X I .cos 0 - R I .sin 0
Therefore: tan 5 = — —̂—----------——-----------

t V . - R I ĉos 0 - X I ŝin 0mt a mt q mt'

X cos 0 - R sin 0_ _g__________ a
V ./I - R cos 0 - X sin 0mt mt a q

[E.4]

[E.5]
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F ig . E .l:  Synchronous machine phasor diagram
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From we can calculate axis components of voltages and currents:

v td = V sin 5 mt t [E.<]

Vtq = Vmt cos 6t [E.7]

!d = 'mt sin ( 6t - 0) [E.8]

I
q 'mt cos (6t - 0) [E.9]

From the transmission line equations [2.26 - .27] in the steady state we 

calculate the busbar voltage and load angle to the infinite busbar:

can

v bd = V. . + (R. + R ) I , + (X , + X ) I td t e d  t . e q [E.10]

iicr_Q
> V. + (R + R ) I - (X. + X ) I,  tq ' t e q t e d [E.I1 ]

5b = arctan (Vbd/Vbq) [E.12]

Field current and voltage can be derived from flux equations:

IIo3 R I - V. a q bq •
[E.I3 ]

*f = K  Td - Xd 'd> '  X md [E.14]

v f = ‘f R f [E.I5 ]

hence: V = e - Vf / G e [E.l<]

Electrical torque is given by Eqn. [2.17]:

M = 0.5 cd (Y , I - ¥ I ,) e o d q q d

Q) f  = I .X o q q q

[2.17]

where: [E.17]
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It is easy to show that, omitting constant mechanical losses:

Y = A = M. = M [E.16o p t e L

is the steady state.

For models based on currents as state-variables, damper currents are zero in 

steady-state.

Damper fluxes are given by:

[E.19]

= X I mq q [E.20]
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APPENDIX F

INTEGRATION METHOD

The Kutta-Merson numerical integration method calculates the vector 

ŷ  = y(xQ + h) at the end of the integration step, length h, for the set of 

differential equations:

= f (x/ y) [F .l]

The routine calculates five intermediate values of y (y^.. y5)

y l = y0 + i hf {v  y0} [F-2]

y, = yG + 7 hf (xo' y0) + 1 hf (x0 + i h' y^ [F-3]
y3 = yD + 1 hf (x0' yc) + 1 hf (x0 + i h' y2>
y, = y0 + \ hf (x0' y0} - f hf (x0 + i h- y*} [F-5]

+ 2hf (x + A  h, y )

y5 = yG + \ hf (v  yo’ + 1 hf (xQ + i h- y3> tF-6i
+ i hf <x0 + h' y^

yf = i  (y„ - y5)and



194.

APPENDIX G

METHODS OF SOLVING THE DISCRETE-TIME RICCATI EQUATION

Optimal Regulator Discrete-time Riccati Equation:

ATP r A - ATPr B (R r  ♦ B ^ B ) - 1 BTPr A + Qr  - P R = 0 [G .l]

Regulator gain F:

F = (Rr  ♦ BTPr B)-‘ BT Pr A [G.2]

Kalman Filter Discrete-time Riccati Equation:

APpAT - APpCT (Rp + CPpC1) '1 CPpAT + Qp - Pp = 0 [G.3]

Filter Gain K:

K = APpCT (Rp + C P p C V 1- [G.4]

An equivalence between the two sets of Riccati equations can be demonstrated 

by making the following transformations:

Regulator Filter

A a t

• B CT

C b t

q r q f

r r r f

F k t
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The three methods of solving the discrete-time Riccati equation are:

a] The Recursive Method;

b] The eigenvalue/eigenvector method;

c] The real Schur method.

G.l RECURSIVE METHOD58,72,92

The recursive form of the regulator Riccati equation is as follows:

PR (n) = ATPr  (n+1) [I + BRR BTPR(n+l)]"‘ A + QR ■ [G.5]

We start by making an initial symmetric positive definite guess for 

the solution PR (0). This is necessary because the regulator Riccati 

equation has many solutions, but only one giving closed loop stability 

which is shown in Kuo92 to be symmetric positive definite. For the 

infinite time optimal control problem applied to linear time - invariant 

discrete-time systems, as n -*■ - °° PR (n) becomes a constant matrix,

i.e.,

Lim PR (n) = PR
n-v- OO

so equation [G.5] becomes:

PR = a t P r  [I + BR r BTP r ]-' a  + Qr  [G.6]

Using the identity (proved, for example in Kailath116)

[1 + BRr BTP r ]-‘ = I - B [R r  + BTPr B]-‘ BTPr  [G.7]

it is easily shown that equations [G.6] and [G .l] are equivalent.
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Having chosen an initial guess Pp(O), the backward recursive equation 

[G.5] is repeatedly solved until the difference between Pp(k) and 

Pp(k-l) is within the required tolerances.

The speed of this method obviously depends on the initial choice Pp(O), 

but in general it is fairly slow, particularly for higher order systems, 

due to the matrix inversion required at every step. Also there are 

possible numerical problems in converging to a final solution in some 

instances.

G.2 EIGENVALUE-EIGENVECTOR METHOD

In this method we form the 'Simplectic' matrix S, which is the discrete- 

time equivalent of the Hamiltonian of continuous-time systems:

A + BRr _1 BTA-‘ Qr - B R - ^ A - 1

-A-TQr > 1 -1

1

[G.8]

A property of all Simplectic matrices is that the eigenvalues occur in 

reciprocal pairs, i.e., if X. is an eigenvalue, then so is 1 / X.. This 

property may be used to test that the Simplectic matrix has been 

properly formed.

The eigenvalues and corresponding eigenvectors of S are found, and we 

select the eigenvectors of S corresponding to eigenvalues lying within 

the unit circle [since this is a condition for closed-loop stability] and

form:
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[G.9]

W is a 2n x n matrix of eigenvectors corresponding to eigenvalues of 

S lying within the unit circle.

The Riccati equation solution is then given by:

Pr = W2iWu -‘ [G.10]

This method is generally much quicker than the recursive method, its 

efficiency dependent largely on the eigenvalue-eigenvector routine.

There is the possibility of this routine giving difficulties for large, ill- 

conditioned Simplectic matrices.

W = W.n

W.
21

G.3 SCHUR METHOD115

The Simplectic matrix is decomposed into the real Schur form:

A + BRr- 1BTA-TQr -BR l<1—CO101

- a'Tqr a-t
w W ~ r~T_ 11 12 i
w w21 22

Wn W
12

w21 w22

T
[G .ll]

where T T1 3 is the upper triangular real Schur form of the Simplectic

matrix.



198.

The Riccati solution Pp is obtained from the transformation matrix W:

P_ = W w -1R 21 n

As before in the eigenvalue-eigenvector method, the Schur form used in 

the solution has to be such that the eigenvalues within the unit circle 

are all in T .

We can show that this method gives a solution to the Riccati equation 

by the following:

From the (1,1) block in [G-11] -

(A + BRn" ‘ 8TA"TQd )W - BR ' ‘ BTA-T W =W T [G.12]' R R u R 21 n  i L J

Premultiplying by Pp = W W -1

Pr (A + B R r -1 BT A-TQr )Wm - PBR r -‘ BTA-TW2i = W2 IT1 [G.13] 

From the (2,1) block in [G. 11] -

- A-T Qd W + A-T W = W T [G. 14]R 11 21 21 1 L J

Combining [G.13] and [G.14] -

P r (a  - b r r -> b t a -t q r )wu  - P r BR r -‘ b t a -t w21 + a -t q r wu

-A-TW2 1 =0 [G.15]

Premultiplying by A*̂ " and postmultiplying by W ^-1 gives -

ATPr A - PR - ATPr BR r -1 BTA-TPr  + (I + ATP r B R r - 1BTA-T) q 

= 0
[R
[G .U ]
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Using the matrix identity116 -

(K + LMN)“ 1 = K’ 1 - K"1 L(NK_1L + M "1)"1 N IC 1 [G. 17]

on (I + ATPr B R r -1BTA‘ T) with K = I, L = ATPR B, M = R“ l,

N = BTA-T changes [G. 16] to -

ATPr A - P R - a t p r b r r -i b t a -t p r  +

[I - ATPRB(BTPR B 4-R R )-1BTA-T] ' l QR = 0 [G.18]

Premultiplying by [I - A "̂p r B(B^Pr B + R ) '1 B^A'^"]:

ATP r A - ATPR B R r -1BTA-TPr  - PR - ATPRB(RR + BT Pr B)-‘ b t p r a  

♦ ATP r B(BTP r B + R R r l BTA-TP r

+ ATP r B(BTP r B + R r )-1 BTP r BR r -1BTA-TPr  + Q = 0 [G.l 9]

which simplifies to the Riccati equation [G .l].

ATPr A - AT Pr B(Rr  + BTPr B)-‘BTP r A - P 4  Q = 0

G.4 COMPUTATION TIMES 

thFor a 9 order discrete-time generator model, solution of the Riccati 

equation using a CDC Cyber 720 took 24 seconds for the recursive 

method, 2.7 seconds for the eigenvalue/eigenvector method, and 5.6 

seconds for the Schur method.



200.

APPENDIX H

660 MW AND MICROMACHINE PARAMETERS: 
STEADY-STATE CONDITIONS

H.l PARAM ETERS
660 MW unit Micromachine 

with TCR

D Axis mutual reactance X ,md 1.959 2.274 p.u.
Q Axis mutual reactance Xmq 1.899 2.145 p.u.
Armature resistance R a 0.00234 0.00528 p.u.
Armature leakage reactance X q 0.179 0.149 p.u.
Field resistance R^ 0.00112 0.00116 p.u.
Field leakage reactance X^ 0.159 0.16 p.u.
D. Axis transient reactance X^' 0.344 0.297 p.u.
D. Axis subtransient reactance X^" 0.229 0.205 p.u.
Q. Axis subtransient reactance X "a 0.205 0.285 p.u.
Time constants T 0.910 0.821 S

V  ,
0.0417 0.0292 S

Tdo* 5.66 6.27 S

Tdo" 0.0626 0.0424 S
D Axis damper resistance R ^ 0.01012 0.0179 p.u.
D Axis damper reactance 0.052 0.09 p.u.
Q1 Axis damper resistance R^ 0.01012 0.0179 p.u.
Q1 Axis damper reactance X^ 0.026 0.146 p.u.
Q2 Axis damper resistance R^ 0.01012 0.0179 p.u.
Q2 Axis damper reactance X^ 0.026 0.146 p.u.
Transmission line resistance Re 0.06 0.06 p.u.
Transmission line reactance Xe 0.25 0.25 p.u.
Generator transformer resistance Ry 0.0 0.0 p.u.
Generator transformer reactance Xy 0.0 0.0 p.u.
Inertia Constant H 3.77 3.5 S
Time Constants: AVR Ta 0.01 0.01 S

Exciter Te 0.01 0.01 S
Valves Tv 0.1 0.1 S
Steam Ts 0.3 0.3 S
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660 MW unit Micromachine 
with TCR

Gains: AVR Ga 0.001 0.001
Exciter Ge 5.56 5.56
GovernorG 0.0796 0.07969

Base values: line voltage 23500 200 V
line current 9361 8.67 A
kVA 776000 3 kVA
field voltage 209030 1188.5 V
field current 1856.2 1.262 A

'STANDARD' STEADY-STATE TEST CONDITIONS

H.2.1 Standard conditions in Chapter 4:

P = - 0.8 

Qt = 0.0 

V = 1.00 

I = 0.8 

Vb = 0.9727

Micromachine

6b = -73.18°

Vf = -1.5745. 10“

if = -1.3573

id = 0.9925

i = -0.5431
q

Vd = -1.2406

V =
q

660 MW Unit 

Sb = -70.79°

Vf = -1.6026. 10“3

If = -1.4309

id = 0.9690

i1 = -0.5840

Vd = -1.2113

Va0.6789 0.7300
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H.2.2 Standard conditions in Chapter 6 (Micromachine only)

pt = -0.8

Qt = 0.0

v t = 1.025

= 0.7805

v b = 0.9974

6b = -71.39°

v f = -1.5528.

= -1.3386.

*d = 0.957

i
q

= -0.55

v d = -1.2568

V
q

= 0.7224

• Steady-state values of other variables of interest can be calculated 

by the formulae in Appendix E.
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APPENDIX I

OUTPUT MATRICES

1.1 INTRODUCTION

The output or "Cn matrix relates measurements taken from the system 

y(k) to the system states x(k) by:

y(k) = C x(k) [1.1]

Thus if the measured variables are state variables then the C matrix

contains unity elements, for example if the measured variables are
throtor angle and field voltage in a 12 order model, the C matrix is:

c = 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

[1.2]

1.2 LINEARISED OUTPUT MATRICES

Variables mentioned in Chapter 4 as being desirable measurements to 

take but requiring linearised output matrices are terminal load angle 

5̂ , power P^ Var Q ,̂ current î _ and voltage V .̂

In terms of d and q axis voltages and currents, they may be expressed 

as follows:

II 4{V . i , + V. i ) 2 td d tq q'

Qt II A (V, . i - V, i J  2 td q tq d7 [1.4]
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v t = ( i < V  + v ) * [1.5]

•t = [1-&]

= Arctan (V^/V^) [1.7]

Linearising for small disturbances gives:

AP. = 4<AV. . i , + AV i + A i. V. , + Ai V. )t 2' td do tq qo d tdo q tqo7

AQ. = 4(AV. , i - AV i . + Ai V. , - Ai , V. ) t 2 td qo tq do q tdo d tqo7

AV. = (V. . AV , + V , AV. ) / 2V t tdo td tqo tq7 to

Ai. = (i , Ai , + i Ai ) / 2i. t do d qo q7 to

A6. = 1 AVtd Vido AVtq
t 11+ tanJ6 / \ V.\ to ' tqo V. 2 tqo

[1.8]

[I-?]

[1. 10]

[1.11]

[1. 12]

Where the subscript o indicates values of the variables at the steady- 

state operating point about which linearisation is made, and AV^, 

A V ^  Aî j and Ai^ can be expressed as linear functions of the machine 

state-variables [see Section 2.2.3, Appendices B and C].
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DIAGRAMS OF CIRCUITS USED IN THE LABORATORY POWER SYSTEM
APPENDIX J

External Setting

J.l SIMPLE GOVERNOR/TURBINE MODEL
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Q
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(Board 3)

J.2.1 DETAILED GOVERNOR/TURBINE MODEL - GOVERNOR AND THROTTLE VALVE SYSTEM f BOARD 1 } .
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J. 2.2 DETAILED GOVERNOR/TURBINE MODEL - INTERCEPT VALVE SYSTEM f BOARD 2 1. 207.



J.2.3 DETAILED GOVERNOR/TURBINE MODEL - REHEATER AND TURBINE MODELS [ BOARD 3 ]. -208
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APPENDIX K

THE DEC LSI 11/23 ON-LINE CONTROL COMPUTER SYSTEM

CPU: KDF 11-AA [DEC]

Floating Point Processor: FPF 11-A [DEC]

RAM: 128k Byte MSC 4804 [Monolithic Systems Corp.]

Parallel I/O: 4 channels x 16 bits DRV 11-J [DEC]

Analogue I/O: 8 different A/D channels, 2 D/A AXV 11-C [DEC]

Serial I/O: 4 channels Model 304 [Grant Technology Systems]

Enclosure and Backplane: SA-H 105 [Arrow Computer Systems]

Floppy Disk Drive: Single 8i" double-sided YD-180 [YE-data]

Floppy Disk Controller: RXV-21 [General Robotics Corp.]

Winchester Disk: 20M Byte 5i" RMS-500 [Rotating Memory Systems]

Winchester Disk Controller: DQ614 [Dilog Corp.]

VDU: 3100 [Cobar]

Operating system: RT-11 [DEC]
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APPENDIX L

THE ON-LINE CONTROL PROGRAM

There follows a listing of the MACRO-11 assembly language general-order 

on-line control program. The measured variables are load angle and field 

voltage, but only minor modifications to I/O statements are required to read 

in other variables [see Ref. 128]. The routine is called from a FORTRAN 

initialisation program, which reads in all required gain and transition matrices, 

sets up workspaces and calculates steady-state conditions. The calling pro

cedure is as follows:

CALL OLCOGN(VFSCAL, A, B, VIA, DVF, DSCALE,
VV1 A, DY1, YPKM, DYE, GKT, WK, NN, PP, CORR,
YKM, IWK, FBT, DU, U1SCAL, U2SCAL, HBT,
YK1, TPHIT, YK2, CT)

Where the arguments are explained in the documentation accompanying the 

listing.



.TY OLCOGN.MAC.TITLE OLCOGN 
. GLOBL OLCOGN 
. GLOBL FPMULT

; ASSEMBLY LANGUAGE OPTIMAL CONTROL ROUTINE
; GENERAL KAIMAN FILTER/OPTIMAL CONTROLLER MEASURING ANY INPUTS 
; Y1 AND Y2 VIA THE C MATRIX. PERFORMS DIGITAL WASHOUT FILTERING 
; CALCULATES ESTIMATES & FEEDS BACK SUPPLEMENTARY SIGNALS 
; DU I AND DU 2
; GENERAL VERSION FOR A,B AND C MATRICES OF ANY ORDER
; WRITTEN APRIL 1983 BY A.D.NOBLE 
; MODIFIED FOR INTERFACING TO MACHINE SEPT 1983 
; MODIFIED FOR DRV11-J 16-FEB-84 
; GENERAL VERSION WRITTEN 9-MAR-84
; VERSION FOR MEASURING 2 INPUTS FROM DRV11-J -  ANGLE AND 
; REMAINING HALF CYCLE. PERFORMS CHECKSUM FOR BAD DATA 
; REJECTION.
; DATA READY SIGNAL IS AI/O 8 (WIRE 47 ON J l )  TO DRV11-J 
; CAN BE USED EITHER INTERRUPT-FREE OR INTERRUPT-DRIVEN.

AC0=%0 :FLOATING POINT ACCUMULATORS
AC1=%1
AC2=%2
AC3=%3
AC4=%4
AC5=%5
CSRA =164160 DRV11J:CONTROL/STATUS REG A
CSRB =164164 DITTO B
CSRC =164170 DITTO C
CSRD =164174 DITTO D
DBRC =164172 INPUT PORT C
DBRD =164176 INPUT PORT D
AXVCSR =170400 AXV11C:CONTROL/STATUS REGISTER
ADC =170402 A/D INPUT
DAC1 =170404 D/A OUTPUT 1
DAC2 =170406 D/A OUTPUT 2
KBS =177560 KEYBOARD:CONTROL/STATUS REG
KBB =KBS+2
.ASECT
• =400
RDINT
340
.PSECT
.MCALL .EXIT

); NO OF ARGUMENTS:27 INCLUDING ARGUMENT COUNT 
; ARGUMENTS Y2SCALE,A,B,V1,DY2,Y1SCALE,VV1,DY1,
; YPK,DYE, GKT,WK,NSTATE, NIPOP, CORR, YK 
; WK1, (-)FBT,DU,U1SCALE,U2SCALE,HBT,YK1,PHIT, YK2,CT
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A,B:FILTER CONSTANTS VI,VV1:FILTER VARIABLES 
YPK:CURRENT ESTIMATES DYE: ESTIMATED INPUTS 
GKT: KAIMAN MATRIX (TRANS POSED WRT 
NORMAL CONVENTION) WK:WORKSPACE(4 WORDS)
NSTATE:NO.OF STATES NIPOP:NO.OF INPUTS/OUTPUTS OF SYSTEM
CORR:CORRECTIVE TRACKING TERM YK:ESTIMATE OF STATES AT NEXT T.STEP
WK1 :WORKSPACE(6 WORDS) FBT:FEEDBACK MATRIX(TRANSPOSED WRTNC)
DU:SUPPLEMENTARY CONTROL SIGNALS U1SCALE,U2SCALE: OUTPUT SCALE
FACTORS FOR DUl AND DU2 HBT:INPUT TRANSITION MATRIX
YK1:PART OF YK DUE TO INPUTS PHIT:STATE TRANSITION MATRIX
YK2:PART OF YK DUE TO STATES
CT: OUTPUT MATRIX OF SYSTEM TRANSPOSED

OLCOGN: TST 
SETF 
MOV 
BIC 
MOV 
MOV 
CLR 
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB
MOVB

(R5)+
R5,@#ARG1 
# 10 0 ,@#KBS 
#1000,@#CSRA 
#CSRC,R0 
(RO)
# 3 4 0 ,(RO)
# 10 0 ,@#CSRD
#241, @#CSRA
#241, (RO) 
# 3 0 0 ,(RO)
# 1 ,@#CSRD 
#50, (RO)

SKIP ARGT COUNT ARG1
SET TO SINGLE PRECISION F.P.MODE
STORE LOC OF FIRST ARGUMENT
DISABLE KEYBOARD INTERRUPTS
ENABLE DRV11-J INTERRUPTS
RO POINTS TO CSRC
RESET GROUP 2 CONTROLLER
PRESELECT VECTOR ADDRESS MEMORY
(IRQ LEVEL 6)
LOAD VECTOR OF 400 ( VECTOR=CSRD BYTE 
SHIFTED 2 BITS TO RIGHT )
ARM GROUP 1 WITH MASTER MASK BIT 
THIS WILL ENABLE GROUP 2 
ARM GROUP 2 WITH MASTER MASK BIT 
PRESELECT ACR FOR WRITING 
AUTO-CLEAR OPTION ON BIT 6 
CLEAR GROUP 1 IMR BIT 6

AGAIN:
; WAIT ; DISABLE IF INTERRUPTS NOT USED

MOV @#ARG1,R5
LDF @(R5)+,AC1 ; Y2SCALE TO AC1 ARG2

READ IN Y2
MOV # 1 ,@#AXVCSR ; START A/D OF Y2

ION: CMP @#AXVCSR,#200 ; CONVERSION DONE ?
BNE ADCON
MOV @#ADC,R4 ; YES -  PUT IN R4
SUB #3777,R4 ; CONVERT FROM OFFSETMOV # -5 0 0 .,R4 ; CONSTANT VALUE OF Y2LDCIF R4,ACO
MULF AC1,ACO ; SCALE & RESULT TO RO
LDF @(R5)+,AC1 ; A TO ACl ARG3
LDF @(R5)+,AC2 ; B TO AC2 ARG4
LDF @(R5),AC3 ; VI TO AC3 ARG5STF AC3,AC4 ; AND AC 4
STF ACO,AC5 ; Y2 TO AC5

FILTERING OF Y2
MULF AC1,ACO ; A*Y2 TO ACO
MULF AC2,AC3 ; B*V1 TO AC3ADDF ACO,AC3 ; V2=A*Y2+B*V1STF AC3,@(R5)+ ; V2 REPLACES VI
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ADDF AC4,AC3
LDF AC5 ,ACO
SUBF AC3,AC0
MOV R5,@ //TEMPI
STF ACO, @ (R5 )+

READ IN DELTA(Yl)
LDF @ (R5)+,AC3
MOV @#DBRC,R4
BIC #170000,R4
MOV #1740. ,R4
MOV @#DBRD,R3
BIC #170000,R3
ADD R4 ,R3
CMP R3,#3950.

' BLE 3$CMP R3,#5150.
BGE 3$: LDCIF R4,AC0
MULF AC3 ,ACO
LDF @(R5),AC3
STF AC3,AC4
STF AC0,AC5

FILTERING OF DELTA(Yl)
MULF AC1 ,ACO
MULF AC2,AC3
ADDF ACO, AC3
STF AC3,@(R5)+
ADDF AC4,AC3
LDF AC5,ACO
SUBF AC3,ACO
STF ACO, @ (R5 )+
MOV @#TEMP1 ,R4
LDF @(R4), AC1

KAIMAN ESTIMATION
MOV (R5)+,@#YPK
MOV (R5)+,@#TEMP7
MOV @#TEMP7,R0
SUBF (RO)+,ACO
SUBF (R0)+,AC1
TST (B5)+
MOV (R5)+,R4
STF ACO,(R4)+
STF AC1, (R4)
MOV R5, @#TEMP2
SUB #6 ,R5
JSR PC,FPMULTMOV @#TEMP2,R5
MOV (R5),@#NIP0P
TST (R5)+MOV (R5),@#NSTATE

V2+V1=Y20 TO AC3 
Y2 TO ACO 
DY2 TO ACO 
STORE ARGT POINTER 
DY2 TO ARGT LIST ARG6

Y1 SCALE FACTOR TO AC3 ARG7
DELTA TO R4
MASK FIRST 4 BITS
CONSTANT READING FOR TEST PURPOSES
180-DELTA TO R3
MASK FIRST 4 BITS
CHECKSUM ERROR TEST:
SUM MUST BE CLOSE TO 4096.
IF NOT REJECT DATA

CALCULATE ANGLE*SCALE 
& RESULT TO ACO 
W1 TO AC3 ARG8 
AND AC4 
Y1 TO AC5

A*Y1 TO ACO 
B*VV1 TO AC3 
W2=A*Y1+B*VV1 
VV2 REPLACES VV1 
W2+VV1=Y10 TO AC3 
Y1 TO ACO 
DY1 TO ACO
DY1 TO ARGT LIST ARG9 
DY2 AD DR TO R4 
DY2 TO AC1

ADDR OF YPK TO @#YPK ARG10 
ADDR OF DYE TO @#TEMP7 ARG11 
ADDR OF DYE TO RO 
DYl-DYE(l) TO ACO 
DY2-DYE(2) TO AC1 
SKIP GK ADDRESS ARGI2 
ADDRESS OF WK TO R4 ARG13 
STORE DYl-DYE(l)
IN WK
STORE ARGT POINTER
SET ARGT POINTER TO CORRECT LOCATION
CALCULATE CORR=FB*(DY(MEAS)-DY(ESTIMATED) )
RETRIEVE ARGT POINTER
STORE POINTER TO NIPOP
SKIP NIPOP ARG14
STORE POINTER TO NSTATE
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1$:

MOV 0(R5 )+,R0MOV (R5)+,R1
MOV (R5)+,R2
MOV R2, 0//TEMP 6
MOV 0//YPK,R3
LDF (Rl)+,AC0
ADDF (R2)+,ACO
STF ACO,(R3)+
SOB RO, 1$

CALCULATION OF SUPPLEMENTARY
DU(2) TO GOV. LOOP DU(l)TO A

MOV (R5)+,R0
MOV R 0 ,0 //TEMP 4
TST (R0)+
MOV (R 5)+,(R 0)+MOV 0/;YPK, (R0)+
MOV 0//NSTATE, (R0)+
MOV 0//NIPOP, (RO)+
MOV (R 5), 0//TEMP5
MOV (R5)+, (RO)MOV R5, 0//TEMP2
SUB //12,R0
MOV RO ,R5
JSR PC,FPMULT
MOV 0//TEMP5 ,R0
MOV 0//TEMP2 ,R5

DU OUTPUT FOR FEEDBACK TO PI
LDF 0 (R5 )+,AC0
MULF (R0)+,AC0
STCFI AC0,R1
ADD //3777,R1
MOV R l, 0//DAC1
LDF 0(R5)+,ACO
MULF (RO), ACO
STCFI AC0,R1
ADD //3777,R1
MOV R l, 0//DAC2
MOV 0//TEMP4 ,RO
TST (RO)+MOV (R5)+,(RO)+
OUTPUT TO DAC FINISHED
MOV 0//TEMP5, (R0)+
MOV 0//NIPOP, (RO )+
MOV 0//NSTATE, (R0)+
MOV (R 5), 0//TEMP5MOV (R5)+,(RO)
MOV R5, 0//TEMP2
SUB //12,R0
MOV RO ,R5
JSR PC ,FPMULT
MOV 0//TEMP2 ,R5

NSTATE TO RO ARG15 
ADDR OF CORR TO Rl ARG16 
ADDR OF YK TO R2 ARG17 
ADDR OF YK TO TEMP6 
ADDR OF YPK TO R3 
CORR(I) TO ACO 
CORR(I)+YK(I) TO ACO 
STORE NEW YPK(I)
DO P TIMES

ADDR OF WKI TO RO ARG18
ADDR OF WKI TO TEMP4
ARGT. COUNT SPACE
ADDR OF FB POINTED TO BY RO ARG19
ADDR OF YPK TO LIST
N=NSTATE
P=NIPOP
ADDR OF DU TO TEMP5 
ADDR OF DU TO LIST ARG20 
STORE R5 .
SET RO POINTER BACK TO ARGT COUNT
CALCULATE DU=-FB*YPK 
ADDR OF DU TO RO 
RETRIEVE R5

U1SCALE TO ACO FOR O/P OF DU(1) TO D/A ARG21
DU(1)*SCALING FACTOR
CONVERT TO INTEGER & STORE IN Rl
CONVERT TO OFFSET BINARY NOTATION
OUTPUT TO DAC CHANNEL 1
U2SCALE TO ACO ARG22
DU(2)*SCALING FACTOR
CONVERT TO INTEGER & STORE IN Rl
CONVERT TO OFFSET BINARY
O/P TO DAC CH 2
WKI ADDR TO RO
ARGT COUNT SPACE
ADDR OF HB TO LIST ARG23

ADDR OF DU TO LIST
N=NIPOP
P=NSTATE
ADDR OF YK1 TO TEMP5 
ADDR OF YK1 TO LIST ARG24 
STORE R5
SET RO POINTER BACK TO ARGT COUNT
CALCULATE YK1=HB*DU RETRIEVE R5
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ESTIMATE STATES AT BEGINNING OF NEXT TIME STEP
MOV @#TEMP4,R0 WK1 ADDR TO RO
TST (R0)+ ARGT COUNT SPACE
MOV (R5)+,(R0)+ ADDR OF PHI TO LIST ARG25
MOV @#YPK,(RO)+ ADDR OF YPK TO LIST
MOV @Instate, ( ro)+ N=NSTATE
MOV @#NSTATE, (RO)+ P=NSTATE
MOV (R 5), @#TEMP1 ADDR OF YK2 TO TEMPI
MOV (R5)+,(RO) ADDR OF YK2 TO LIST ARG26
MOV R5,@#TEMP2 STORE R5
SUB #12 ,RO SET RO POINTER BACK TO ARGT COUNTMOV RO,R5
JSR PC ,FPMULT CALCULATE YK2=PKI*YPK
MOV @#NSTATE,R1 SET COUNTER VARIABLE
MOV (R l) ,RO
MOV @#TEMP5,Rl ADDR OF YK1 TO Rl
MOV 0#TEMP1,R2 ADDR OF YK2 TO R2
MOV 0#TEMP6,R3 ADDR OF YK TO R3
IDF (Rl)+,ACO YK1(I) TO ACO
ADDF (R2)+,AC0 YK1(I)+YK2(I) TO ACO
STF ACO,(R3)+ STORE NEW YK(I)
SOB RO,2$ DO NSTATE TIMES

ESTIMATE NEXT INPUTS
DYE=C*YPK

MOV 0#TEMP2,R5 RETREIVE R5
MOV 0#TEMP4,RO WK1 TO RO
TST (R0)+ ARGT COUNT SPACE
MOV (R5)+,(RO)+ ADDR DF C POINTED TO BY RO ARG27
MOV 0#YPK,(RO)+ ADDR OF YPK TO LIST
MOV 0#NSTATE,(RO)+ N=NSTATE
MOV 0#NIPOP,(RO)+ P=NIPOP
MOV @#TEMP7, (RO) ADDR OF DYE TO LIST
MOV R5,0#TEMP2 STORE R5
SUB #12,RO SET RO POINTER BACK TO RO
MOV RO ,R5
JSR PC ,FPMULT CALCULATE DYE=C*YPKMOV 0#TEMP2,R5

REPEAT EXECUTION OF ALGORITHM UNTIL INTERRUPTED FROM KEYBOARD
TSTB 0#KBS ; TEST FOR KEY PRESSED -
BPL 4$ ; NO- CONTINUE
TSTB 0#KBB ; YES- CLEAN UP & RETURN TO RT11BIS # 1 0 0 ,@#KBS ; RE-ENABLE KEYBOARD INTERRUPTCLR 0#CSRA ; DISABLE DRV11-J INTERRUPTS
CIR @#CSRC
.EXIT ; RETURN TO RT11 OPERATING SYSTEM
CLR @#CSRA ; DISABLE INTERRUPTS
RTS PC
JMP AGAIN ; REPEAT
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RDINT: RTI
y RTSARGl: . BLKW
TEMPI: . BLKW
TEMP2: .BLKW
YPK: .BLKW
TEMP4: .BLKW
TEMP5: .BLKW
TEMP6: .BLKW
TEMP7: .BLKW
NSTATE: .BLKW
NIPOP: .BLKW

.END

.TY FPMULT.MAC
.TITLE FPMULT
.GLOBL
AC0=%0
AC1=%1
AC2=%2

FPMULT

; ROUTINE TO MULTIPLY A MATRIX OF .P ROWS AND N COLUMNS 
; (ALPHA) BY A (P *l) ARRAY (BETA) -  RESULT GAMMA 
; ARGUMENTS ALPHA,BETA,N,P,GAMMA 
; FLOATING POINT DATA REPRESENTATION
FPMULT: TST (R5)+
» SETF ; SET TO SINGLE PRECISION

MOV (R5)+,RO ;RO HAS ADDRESS OF ALPHA
MOV (R5)+,R1 ,R1 HAS ADDRESS OF BETAMOV R1,@£BETA1 ; STORE ADDRESS OF BETA(l)MOV @(R5)+,R2 ;R2 HAS N
MOV @(R5)+,R3 ;R3 HAS P
MOV (R5),R4 >R4 HAS ADDR OF GAMMA
MOV R2,R5 ; ORDER OF SYSTEM N TO R5
CLRF AC 2 ;CLEAR F.PT. ACCUMULATOR

1$: LDF (R0)+,AC0 , PUT ALPHA(I,J) IN ACO
LDF (R1)+,AC1 ;PUT BETA(J) IN ACI
MULF AC1,AC0 ;MULTIPLY:RESULT TO ACO
ADDF ACO,AC2 ;ADD TO AC2
SOB R 2,l$ ;DO N TIMESMOV R5,R2 ;RESET J
STF AC2, (R4)+ ;STORE GAMMA( I )DEC R3
BEQ RETURN ;RETURN WHEN DONE
MOV @#BETA1 ,R I ;RESET POINTER TO BETA(l)CLRF AC2 >CLEAR F.P.ACC. FOR NEXTBR 1$RETURN: RTS PC

BETA1: .BLKW.END
1
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