
ALGORITHMS FOR NETWORK EXPANSION

TIMOTHY ANDREW LANFEAR

A thesis submitted for the
degree of Doctor of Philosophy of the University of London

and the

Diploma of Membership of Imperial College

April 1985

Department of Electrical Engineering

Imperial College of Science and Technology

University of London

2

Abstract

In this thesis several new algorithms for the synthesis of

communication networks are developed. More specifically, they are

concerned with the expansion of networks, that is the addition of

nodes and edges to a pre-existing network in some optimal fashion so

as to satisfy increased terminal capacity matrix requirements.

The first problem to be considered is that of adding edges to

a network so as to meet increased flow requirements between all

pairs of nodes in the network, such that the total capacity of the

resulting network is minimum. The algorithm proceeds by generating

a sub-optimal network which meets the flow requirements and then

modifies it by a sequence of branch exchanges which do not violate

the flow requirements until a minimum capacity network is obtained.

In the course of this work a new set of conditions under which it is

easy to calculate the terminal capacity matrix of a network formed

by the superposition of two other networks are given and the

necessary conditions for an expansion to be realisable are

developed.

Then an extension to this problem is considered, in which

costs per unit capacity are attributed to each edge and the new

objective function to be minimised is the total cost of the network.

Again, the algorithm involves the development of a sub-optimal

network which is modified by a series of branch exchanges, but in

this instance, the ordering of the exchanges to produce the optimal

network cannot be specified 'a priori' and so a tree search method

to locate the optimal ordering is developed. A bounding function to

speed the search is obtained through solving, by linear programming,

3

a relaxed version of the problem. The algorithm requires a large

quantity of computing resources and so some locally optimal

heuristics to solve the problem are suggested and evaluated.

Finally, these two algorithms are extended to the situation in

which it is desired simultaneously to add nodes and edges to a

network to synthesise a network satisfying a terminal capacity

matrix of higher order than that of the original network.

- 4 -

CONTENTS

Page

ABSTRACT 2
CONTENTS 4

STATEMENT OF ORIGINALITY 8

ACKNOWLEDGEMENTS ' 9

ONE: INTRODUCTION 10

1.1 GRAPHS AS STRUCTURAL MODELS 11

1.2 DEFINITION OF TERMS 13

1.3 DESCRIPTION OF THESIS .16
1.3.1 Subject Matter of Thesis 16

1.3 .2 Contents of Individual Chapters 17

TWO: SURVEY OF NETWORK ANALYSIS AND SYNTHESIS 19

2.1 INTRODUCTION 20

2.2 NETWORK FLOW ANALYSIS ‘ 21

2.2.1 The Maximum-Flow Minimum-Cut Theorem 21

2.2.2 Multiterminal Network Analysis 22

2.3 MULTI TERMINAL NETWORK SYNTHESIS 26

2.3.1 Properties of Terminal Capacity Matrices 27

2.3.2 Semigraphs 30
2.3.3 Cut Matrices 33

2.3.4 Realisation Algorithms for Directed Graphs 35

2.3.5 The Minimum Excess Terminal Capacity Algorithm 42

2 .4 MINIMUM COST NETWORK SYNTHESIS 42

2 .5 EXPANSION OF NETWORKS 45

FIGURES 48

THREE: OPTIMAL EXPANSION OF NETWORKS SUBJECT TO TERMINAL
CAPACITY CONSTRAINTS 64

- 5 -

3.1 INTRODUCTION 65

3.2 THEORETICAL PRELIMINARIES 66

3.3 THE ALGORITHM 68

3.3.1 Initial Network Analysis 69

3 .3 .2 Generation of Suboptimal Solution 70
3.3.3 Network Transformations which Preserve T-Matrix 76

3 .3 .4 Minimisation of Network Capacity 78

3.3.5 Exactly Realisable Network Expansions 81

3 .3 .6 Computational Complexity 82

3.4 DISCUSSION AND CONCLUSION 84

TABLE 3.1 87

FIGURES 88

FOUR: MON-UNIFORM COST MATRIX NETWORK EXPANSION 102

- 6 -

4.1 INTRODUCTION 103

4.2 THEORETICAL PRELIMINARIES 104
4.2.1 Edge Set in Expansion 104

4.2.2 Generalised Network Transformations 105

4.2.3 Problem Relaxation 107
4.2.4 Branch and Bound Optimisation (109

4.3 THE ALGORITHM - 1 1 2
4.3.1 A Branching Rule 114

4.3.2 A Bounding Function 114

4.3.3 Reduction of Tree Size 115

4.3.4 Convergence of Algorithm to Optimum Solution 116

4 .3 .5 An Example 118

4.3.6 Computational Results 120
4.4 SUBOPTIMAL HEURISTICS 121

4.5 DISCUSSION AND CONCLUSION 123

TABLES 4.1 AND 4.2 126

FIGURES 128

- 7 -

FIVE: NODE EXPANSION OF NETWORKS 137

5.1 INTRODUCTION 138

5 .2 NODE EXPANSION OF NETWORKS 138
5.2.1 Generation of Suboptimal Network 139

5.2.2 Minimum Capacity Network 141

5 .2 .3 Minimum Cost Network 142

5 .3 CONCLUSION 143

FIGURES 144

SIX: CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 146

6.1 Conclusions 147'
6 .2 Suggestions for Further Research 150

REFERENCES 152

Statement of Originality

The following ideas reported in this thesis are believed to be

original contributions to the study of networks of flow.

(1) The development of a set of conditions under which the terminal

capacity matrix of a network formed by the superposition of two

other networks may be easily calculated (Section 3.3.2).

(2) A branch exchange for reducing the capacity of a network whilst
not changing the terminal capacity matrix of the network

(Section 3 .3 .3) .

(3) An application of (1) and (2) in an algorithm for expanding a

network by the addition of branches such that the resulting

network has minimum capacity and satisfies a requirement

terminal capacity matrix (Sections 3.3.4 and 3.3.6).
(4) The development of the necessary conditions which an expansion

must satisfy to be exactly realisable (Section 3.3.5).

(5) A branch exchange which is a generalisation of (2) for reducing

the cost of a network in which each branch has a different cost

per unit capacity (Section 4.2.2).

(6) An application of (1) and (5) in an algorithm and two

sub-optimal heuristics for minimum cost expansion of networks
(Sections 4.3 and 4.4).

(7) An extension of all the above to the simultaneous addition of

nodes and edges to a network (Chapter 5).

- 8 -

Acknowledgements

I would like to thank my supervisor Dr. A. G. Constantinides

for introducing me to the subject of graph theory and for his

guidance and helpful comments during the preparation of this thesis.

I would like to thank my colleagues in the Signal Processing

Section for providing a stimulating and enjoyable environment for

engaging in research. My thanks are also due to both my family and

friends for their support and forebearance.

Finally, I would like to thank the Science and Engineering

Research Council who provided the finance for this research.

- 9 -

10 -

INTRODUCTION

- 11 -

1.1 Graphs as Structural Models

Many physical systems involve the communication, transmission

or movement of commodities. The commodity transported may be such

things as information, electricity or traffic, and so such systems
as computer networks, radio and telephone networks and traffic
systems all involve the flow of a commodity through a network.

These networks may conveniently be modelled' by the mathematical

concept of a graph or network.

A graph may be considered as a set of points, termed nodes or

vertices, which are connected together by lines known as edges,
branches, arcs or links. The nodes represent points between which

the commodity should be transported and the presence of an edge

shows that there is a transportation path between the nodes at

either end of the edge,. Such a diagram represents the ' structure of’

the network.

Two networks may be structurally identical and yet have

different characteristics because of the different properties of the

elements of the network. This non-structural information concerning

the network may be included in the model by attaching parameters or

weights to the edges and vertices. Some typical parameters might be

the maximum quantity of the commodity which may be transferred

through a vertex, the cost of an edge or the reliability of an edge.

Graph theory is the mathematical study of the objects resulting from

this modelling process.

One aspect of graph theory is concerned with the development

of algorithms both for the analysis of networks -that is the

12

determination of the properties of a network- and synthesis of

networks -that is the generation of networks satisfying certain

constraints or having certain properties. In many synthesis

problems there may be a number of networks which might satisfy the

constraints but there may be some criterion for choosing the best ie

some cost function of the network should be maximised or minimised.

Thus, the synthesis algorithms should not only generate a network

which satisfies the constraints but also find the optimum network

out of a number of candidate solutions.

Some typical problems will be described below.

One class of problems, which may be termed structural

problems, is concerned with such questions as whether a path exists

between a pair of vertices or, how many paths there are and if there

are several paths, which is the shortest or longest. A typical

synthesis problem of this class is concerned with the sythesis of

networks with prescribed connectivity properties and with minimum

total weight, where weights are ascribed to each candidate edge in

the network.

The existence of a path between a pair of nodes implies

nothing about the quantity of flow which can sent along the path.

To include this information it is necessary to weight each edge (and

possibly also each vertex) with a number representing the maximum

quantity of flow it can accommodate. These numbers represent the

capacities of channels, sources, terminals and relay points of the

network. The Maximum Flow Problem is to find the maximum quantity

of flow which can be transported between a pair of vertices. There

are corresponding network synthesis problems where the aim is to

13 -

generat-e a network with the capacity to transport flow at

prespecified levels between pairs of nodes. These again may be

solved under some optimality constraint. It is problems of this
nature which will be considered in detail in this thesis.

An example of a situation where graph theory has been used is

the design of the Advanced Research Projects Agency Network

(ARPANET). This is a computer communication rtetwork connecting

computers across the USA. The design of this network brought together
the disciplines of graph theory, computer science, communication

theory, operations research and others. Many theoretical problems

were encountered in the topological optimisation of this network to
produce, at minimum cost, a network design which met the design

constraints for reliability and traffic handling capacity [FR3],

[FR4].

1.2 Definition of Terms

In this section some of the more common graph-theoretic terms

used in this thesis will be defined. Any undefined terms will be

used as in the books of Christofides [CHI] and Frank and Frisch

[FR1].

A graph G=(X,A) consists of two sets, a set of n elements

X={x^,x^,...,xn} termed nodes or vertices and a set of m elements

A={a | x x E X} termed edges, arcs, branches or links. Itxi ,xj 1 i * j
will often be convenient to refer to elements by their index only;

thus, the node x may be referred to as node 3 and edge a . 0 asj x i, xz
a. n or even (1,2). The use and meaning of such symbols will beI jZ
clear from the context.

14 -

Pictorially the set X may be represented by a set of points

and the set A by the set of lines between x. and x.. If the order1 J
of i,j is important then the graph is directed and this is shown by

an arrow on the line a. otherwise the graph is undirected. A■t 5 1
path is any sequence of arcs where the final vertex of an arc is the

initial vertex of the next. A graph is connected if there is a path

between every pair of nodes, otherwise it is disconnected. For

undirected graphs, the degree of a node is the number of edges
incident upon the node; there are two corresponding terms for

directed graphs, indegree and outdegree with obvious definitions.

Def -1ine two sets and V (x^)

r(x.) = {x |a € k }J > J
'■'■1U 1H x k |a k i l eA>

The interpretation of these two sets is that r(x) is the set of

nodes which can be reached from along a single edge and t ^x^ is.

the set of nodes which can reach to x^ along a single edge.

Given a graph G, a partial graph Gp of G is the graph (X,A7) where
A'CA, ie the partial graph has the same vertices but only some of

the edges of the original graph. A subgraph of G is a graph

G =(X ,A) such that X Cl X and r (x.)= F (x.) fl X for every x. £ X . s s s s s 1 1 s 1 s
Thus a subgraph consists of a subset of the vertices of G but

contains all the edges in G between those vertices in the subset.

A tree is a special type of graph which is a connected graph

with n vertices and (n-1) edges. A spanning tree of a graph G is a

partial graph of G which is also a tree.

The most common branch weights are the flow along a branch

f. .=f(x.,x.)> the capacity of a branch b. .=b(x.,x.) which is the i,J 1 J v j i,j i ’ y

15 -

upper bound on the flow along arc a4 and the cost c4 _.=c(x4 ,x.)i > J i > J i J
which is the cost of the branch a. .. These parameters for the

whole graph are given by the matrices F, the flow pattern, B, the

branch capacity matrix, and C, the cost matrix. For undirected

graphs the matrices B and C are symmetrical and the main diagonal

elements are undefined.

A flow pattern is feasible if it satisfies the following two

equations

I f . . - I f, .1,3 k’iix.£T(x.) x, S t (x.) j ' n/ k v i7

f. .< b . . -V a. .i, J- i , J i, J

vs , t
- V S,
0

if x^=s

if x.=tl
otherwise

The first is an equation of conservation of flow stating that there

are two vertices .s and t . which source, and sink'flow and at all other

vertices all the flow entering the vertex also leaves. The constant

v is the value of the flow. The second equation states that the

flow in each arc is less than or equal to the capacity of the arc.

A branch cutset is a minimal set of branches, which when

removed from the graph will disconnect the graph. (A set X is

minimal with respect to some property P if no proper subset of X has

property P.) Closely related to the concept of a branch cutset is

the concept of a cut. Let X^ and ^ be two subsets of the set of

vertices X. Define (X-^,^) to be the set of branches leading out of

an element of X̂ and incident on an element of ^ ie (X^,)^)

= {ai j|xi £ X l ,Xj . If Xj is a set of nodes and X̂ is the

complementary set then (X Iq) is a cut. If each arc in the cut has

a capacity then the capacity of the cut c(X^,X^) is the sum of the

16 -

capacities of the arcs in the cut.

1.3 Description of Thesis

1.3.1 Subject Matter of Thesis

We examine in this thesis some new problems in the synthesis

of networks of flow. These are concerned with the expansion of

networks, viz. the situation where after an initial network has been

constructed, the flow requirements change and it becomes necessary
to modify the network by the addition of extra edges or by the

addition of extra nodes. The additions should be made such that the

new network is in some sense optimal.

This is a problem of combinatorial optimisation. The most

simplistic approach to problems of this type is to try all possible

expansions of the network and choose that which is best, but this

approach ’ fails because of the "combinatorial explosion". It is not
20uncommon in work of this nature for there to be 10 or more

candidates for the optimum solution and so it is clearly impractical

to attempt to solve the problem by this approach. Therefore it is

necessary to study the problem in great detail so as to develop an

algorithm which is able to locate the optimum solution in some
intelligent fashion and in a reasonable time.

A number of classical optimisation techniques such as linear

programming, dynamic programming and branch and bound search methods

together with some algorithms specific to graph theory will be used

in the course of this thesis.

17 -

1.3.2 Contents of Individual Chapters

Outlines of the individual chapters of the thesis. are given

below.

Chapter two reviews the analysis and synthesis techniques for

networks of flow. Single source/sink and multi-terminal network

flow analysis methods are described. The synthesis algorithms

described are for the generation of networks to satisfy flow

requirements where any pair of vertices can be considered as source

and sink. It is not possible to satisfy an arbitrary set of

requirements and so the necessary conditions for a set of

requirements to be realisable are given and a method for generating

realisable requirements from an unrealisable set is described. Some

algorithms for minimum cost synthesis are described and the previous

work in the expansion of'networks is presented.

Chapter three states a problem in the expansion of networks

and provides the theoretical basis for the solution of the problem.

The problem is concerned with the addition of branches to a network

so as to satisfy a set of flow requirements greater than that which

the network can handle, under the constraint that the total capacity

added to the network should be minimum. An algorithm is proposed

and discussed and the results of some computational experience are

given.

Chapter four presents a generalisation of the problem of the

previous chapter in which a cost is given to each candidate edge in

the expansion and it is required that the total cost of the new

network should be minimum. Some more theoretical results to aid in

18 -

solving it are derived and an algorithm to find the optimal solution

is given. The algorithm is found to be computationally expensive
and so a number of suboptimal heuristics are proposed and evaluated.

Chapter five presents an extension of the algorithms of the

previous chapters in which nodes as well as branches may be added to
the network so as to satisfy a set of flow requirements between the

original nodes of the network and also some additional nodes. Thus

we shall here present a general method for network expansion.

The final chapter presents the conclusions of the thesis and

suggests some possible areas for further research.

19 -

SURVEY OF NETWORK ANALYSIS AND SYNTHESIS

20 -

2.1 Introduction

A new area in graph theory which opened up in the late 1950's

was the study of the steady state flow of information through a

network. This subject was first considered by Elias, Feinstein and

Shannon [ELI], although Mayeda [MAI] was the first to formulate and
solve significant new problems. The contributions made by these

workers and others which followed them will be reviewed in this
chapter. These network analysis and synthesis techniques will form

the theoretical background to the main topic of this thesis ie the

expansion of networks.

We shall begin by examining methods of analysis, that is

methods of determining the maximum quantity of commodity which can

be transported between a pair of nodes. This is then extended to

multiterminal network analysis where all pairs of nodes may generate

or absorb flow and it is shown that for a certain class of graphs

termed pseudosymmetric the computation required to calculate the
I

maximum flow between all pairs of nodes is much less than would be
expected.

Following the above, the synthesis of networks will be

examined. This section will be concerned with the generation of

networks which are able to transport prespecified quantities of
commodity between pairs of vertices. We shall examine the synthesis
of both undirected and directed graphs and also methods for

synthesising minimum cost graphs where the cost function for
determining the optimum graph may be either the total capacity of

the network or the total cost of the network where a cost per unit

capacity is applied to each candidate branch for the solution

21 -

network.

The chapter will conclude with an examination of the work

which has already been carried out in the field of the expansion of

networks, which is concerned with the optimum addition of branches

to a network so as to increase the source to sink flow under a
number of different optimality criteria.

2.2 Network Flow Analysis
2.2.1 The Maximum-Flow Minimum-Cut Theorem

A problem which often arises in flow problems is to find a

feasible flow pattern in a graph which maximises the value of the

flow between source and sink ie to find the set {f. .} ryhich

maximises v ̂ subject to s,t

^ fi',j “
x.er(x.) x, er" (x .)j ' iy k iy

f . . < b . . •ty a .. 1 >j

vs,t
- v

S,

0

if xi=s
if x.-tl
otherwise

There are two questions to be answered here. (1) What is the

value of the maximum flow? (2) What flow pattern gives the maximum

flow?

The first question is answered by the Maximum-Flow Minimum-Cut

Theorem which states that the maximum flow between a source x ands
sink x^ is equal to the capacity of the minimum cut between xg and

max(vs,t>=min<c(V V >

s,t

xxcx, sexp t e x l

where the maximisation of v is over all flow patterns and the

22

minimisation of c(X ,xp is over all sets X^CIX. In 1956 three
different proofs of this theorem were given. The proof of Ford and

Fulkerson [F01] is combinatoric in that it relies on the structure

of the flow paths which maximises vg that of Elias, Feinstein and

Shannon [ELI] uses a graph theoretic technique of decomposition into
smaller graphs until such a point is reached that the solution is

obvious for the simpler graphs and from which the solution of the

original problem can be inferred; and the proof of Dantzig and

Fulkerson [DAI] is based on the theory of linear programming.

A number of algorithms exist for generating the flow pattern

which attains the upper bound on the flow set by the theorem [Dll],
[EDI], [HU1], [JO 1] which are all improvements on the well known

labelling algorithm of Ford and Fulkerson [F02].

2 .2 .2 Multi terminal Network Analysis.

We now consider the more general analysis problem of finding

the maximum flows for all source-sink pairs when each of the flows
is sent through the network separately. The information obtained

about all the minimum cuts between all pairs of nodes is stored in a

matrix T, the terminal capacity matrix (T-matrix) where the entry

t. .is the capacity of the minimum cut between x. and x..

There is a number of physical situations in which the terminal

capacity matrix is useful. From the point of view of reliability or

vulnerability, the entry t^ in the terminal capacity matrix

represents the ’’weakest” section between x^ and x^. Indeed, if the
capacity of each edge is set to unity then the entry in the T-matrix

is the minimum number of edges which must be removed to disconnect

23 -

x_, from x.. From the point of view of communication networks, then i J
if only one user is allowed on the system at one time (as in a
teletype system where there is only one sender at a time) then the
T-matrix gives the communication capacity between all pairs of

nodes .

There are n(n-1) entries in the matrix -(the main diagonal

elements are meaningless)- and for general directed graphs this

number of flow calculations must be performed to calculate the

matrix. However, Gomory and Hu [G01] showed that for undirected

graphs the T-matrix can be calculated in (n-1) flow calculations.
This was later extended by Gupta [GUI] to include a certain class of

directed graphs termed pseudosymmetric.

A graph is pseudosymmetric if

c(xjL,X)=c(X,xi) V Xl £X-

that is, if the sum of the capacities of the arcs directed towards a

node is equal to the sum of the capacities of the arcs directed away

from that node.

For a pseudosymmetric graph

l c(x X)= I c(X,x.) v xjLc:x
x.exi Xi*xi

or c(Xi,X)=c(X,Xi)

Since X=X.Ux. and X± ("1x̂ =0

the L.H.S. of this equation can be written

c (X . , K . U x i) = c (X 1 , K .) + c (X i ,Xi) = c (X . , l ! i)

24 -

and the R.H.S. as

c(X1 U x 1,X1)=c(K1 ,X1)+c(Xi,X1)=c(Xi y X ^

Thus for a pseudosymmetric graph

c CX1 ,Xi) = c (X i , X .) ¥ X .C X

This shows that the T-matrix of a pseudosymmetric graph (which is a

matrix of capacities of cuts) is symmetric.

An efficient algorithm' for calculating the T-matrix of a

pseudosymmetric graph relies upon the concept of flow- equivalence.

Two graphs are flow-equivalent if the minimum cut between two nodes

in one graph is equal to the minimum cut between the corresponding

nodes in the other. The central idea of the algorithm is to take a

graph and calculate flow equivalent tree from which the entry t^
in the T-matrix is then easily determined by finding the capacity of

the minimum capacity edge in the (unique) path between x^ and x^.

The flow calculations required to calculate the flow

equivalent tree may be simplified by using the idea of "vertex

condensation". Suppose that an s to t maximum flow problem for a
graph G=(X,A) has been solved for two vertices selected at random.

The minimum cut partitions the vertices into two sets X^ , X2 .

Consider two vertices x^ and x^ both in X̂ (or X^) and we wish to
calculate the value of the minimum cut between them. All the

vertices in X̂ (or X̂) may be "condensed" into a single vertex for
this flow calculation. The condensation is such that all nodes in

X, are replaced by a single node, say x, , and all edges a. . with

Xi £ Xi and x_. £ X, are replaced by edges a^ ^ of the same capacity.

25 -

The process of condensation is shown in figs 2 .1(a),(b),(c). The

flow calculations to locate a minimum i-j cut may be performed on
this condensed graph. The correctness of this procedure is shown in

[G01] where it is proved that all vertices in X> lie on the same
side of the cut separating and x^ , so that the internal

properties of the subgraph do not enter into the minimum i-j cut
calculation.

The method for generating the flow equivalent tree is as

follows.

(1) For any x^, in a graph G, find the minimum i-j cut (X^jX^)

and represent the cut by two generalised vertices X^, X^ with a
branch of capacity joining them.

(2) Choose two vertices in X^, say x^, x^> and condense all the
vertices in the remainder of G into a single vertex and find the

minimum k.-l cut (X^,X^). The resulting cut with value c(X^,X^)

is represented by a branch connecting X̂ and X̂ with X̂ or X̂

next to 2̂ according to which of them is on the same side of the

cut (X^,X^) as
(3) Repeat (2) until each generalised vertex contains only one node

and the resulting graph is a tree. This point is reached after

(n-1) flow calculations.

A formal proof of the correctness of the procedure is given in

[G01] .

Example

Consider the pseudosymmetric graph shown in fig 2.2(a).

Arbitrarily select x̂, and x^ and locate the minimum 2-4 cut

26

({ x ^ , x , - },{*2 ,x^}) which has value 7. The graph is thus
represented by the tree with two generalised vertices shown in fig

2.2(b). Next select vertices x^ and x^ and find the minimum 1-4 cut
in the graph obtained by condensing x^, x^ fig 2.2(c). This cut has

value 6 and the tree obtained is fig 2.2(d). Then find the minimum

2-3 cut with xl> X4 and X5 condensed giving fig 2.2(e) and the

minimum 4-5 cut with x 2 and *3 condensed giving the final flow
equivalent tree of fig 2.2(f).

The terminal capacity matrix of this tree is easily calculated

and is equal to the T-matrix of the original graph.

T=

- 6 6 6 5
6 - 6 7 5
o 6 - 6 5
6 7 6 - 5
5 5 5 5 -

It should be noted that the flow equivalent tree is not unique; an
alternative tree is shown in fig 2 .2 (g).'

An alternative and useful view of the algorithm is to realise

that it generates a set of (n-1) non-intersecting cuts which

completely characterise the flow properties of the network. From

this viewpoint it is intuitively clear that only (n-1) flow

calculations need be performed to construct the flow equivalent

tree. The set of non-intersecting cuts and their capacities for the

given example are shown in fig 2 .2(h) .

2.3 Multiterminal Network Synthesis

In this section we shall examine the problem of synthesising a

network where each entry in its terminal capacity matrix is equal to
the corresponding entry in a requirement matrix. Since not all

27 -

requirement matrices are realisable as networks, as the various

algorithms for realising requirement matrices are given, we shall

build up the necessary and sufficient conditions for a matrix to be
the terminal capacity matrix of a network. Finally we will give a

method of generating a matrix that can be realised from an

unrealisable matrix.

2.3.1 Properties of Terminal Capacity Matrices

In this section we will give some necessary conditions for a

matrix to be realisable as a network and note the special cases for

which the sufficiency conditions are particularly simple.

Two conditions which it is necessary for a matrix to satisfy

for it to be a terminal capacity matrix are that it should be

semiprincipally partitionable and that it should satisfy the
triangle inequality. The necessity of these conditions was proved

by Tang and Chein [TA1].

Definition

A matrix is said to be semiprincipally partitioned if, after

possibly permuting rows and corresponding columns, the matrix

satisfies the following:
(a) T is square

(b) T has only real non-negative entries

(c) T can be partitioned as below where T ^ is square and all

entries in T are equal to the smallest entry in T

T 11 T 12

T2 1 T22

(d) Every submatrix on the main diagonal resulting from a

28 -

partitioning can again be partitioned until all submatrices on

the main diagonal are of order one.

Theorem 2.1 [TA1]

If T is the terminal capacity matrix of a graph then T is

semiprincipally partitionable.

Theorem 2.2 (The Triangle Inequality) [TA1]

If T is the terminal capacity matrix of a graph then

Tang and Chein have shown [TA1] that for a graph with three

nodes or less then the necessary and sufficient conditions for a

matrix to be realisable as a network are that it should satisfy

the conditions of theorems 2.1 or 2.2, but that for graphs with four
or more nodes these conditions are necessary but not sufficient. It

is not guaranteed in these cases chat the branch capacities will be

positive.

Mayeda [MA2] considered the realisation of a certain class of

semiprincipally partitioned matrices called completely partitioned,
for which a simple realisation scheme can be given.

Definition

A matrix R is completely partitioned if

(1) R is semiprincipally partitioned.

(2) When in semiprincipally partitioned form R can also be

partitioned (without rearranging rows and columns) as

29 -

R= R11 R12

r ^2,
where

(a) all elements in R^ are equal to the smallest element in R

below the diagonal and
(b) all resulting submatrices on the main diagonal can be

partitioned in the same way until the resulting diagonal

matrices are of order one.
eg consider the semiprincipally partitioned matrix R

4 3 1 f
4 - 3 1 1
4 8 - 1 1
4 6 6 = 12
4 6 6 71

which can also be partitioned without rearranging as
- 4 3 1 1

R=
4
4
- 3
8 -

1 1
1 1

4
4

6 6
6 6

Thus, R is completely partitioned and can be realised as in fig 2.3.

All completely partitioned matrices can be similarly realised as

networks as proved by Mayeda [MA2].

If the requirement matrix is symmetric ie the network

realising the matrix is undirected, then again a simple method of

network synthesis can be given.

Definition
If a matrix can be semiprincipally partitioned and is symmetric it

is said to be principally partitioned.

Theorem 2.3 [MAI]

A symmetric matrix T is a terminal capacity matrix of a graph if and

30 -

only if, after possibly permuting rows and corresponding columns, it

can be principally partitioned.

Since a complete partitioning of a symmetric matrix is also a

principal partitioning, the realisation method for a principally

partitioned matrix is the same as that for a completely partitioned
matrix but with undirected arcs,

eg the matrix T below is realised as in fig 2.4.

H 5 3 1 1
51 3 1 1
3 3 - 1 1
1 1 1 H 2
1 1 1 21

Thus, so far we have the following.

(a) The necessary and sufficient condition for a symmetric matrix to

be realisable as an undirected graph is that it should be

principally partitionable.
(b) A necessary condition for an unsymmetric matrix to be realisable

as a directed graph is that it should be semiprincipally

partitionable, but this is not a sufficient condition.
(c) A sufficient condition for an unsymmetric matrix to be

realisable is that it can be completely partitioned, but this

condition is stronger than is necessary.

2 .3.2 Semigraphs

We shall now introduce some additional concepts which will
enable us to give general necessary and sufficient conditions for

realisability. The first of these is a semigraph,

We shall give methods for transforming a graph to and from a

graph with the same terminal capacity matrix but a different branch

31 -

capacity matrix so that our synthesis procedures can be limited to the

synthesis of this special type of graph known as a semigraph. The

transformation technique is known as shifting. The concepts of

semigraphs and shifting were introduced independently by Resh [RE1]

and Sen and Frisch [SE1],

Definition [SE1]

A semigraph is a graph with n vertices x such that

b. .=0 j>i+li.J
b. . . is unrestricted in sign for i=l,2,...,(n-1)It A j 1
b. .>0 otherwise.1 > 3“

Any graph with positive branch capacities can be converted to

a semigraph by a process called shifting, which is best described
using the ideas of forward, backward and double circuits, where a

circuit is a closed path.
Definitions [SE1]

A forward circuit l>^(i,j) is a directed circuit with two or more
branches containing (i,j).

A backward circuit L^(i,j) is a directed circuit with two or more
branches containing (j,i).

A double circuit is a backward circuit and a forward circuit such

that (k,l) £ Lf(i,j) iff (1,k)£ Lb(i,j)•

For a given (i,j) and a given double circuit the procedure for

shifting is:

(1) For all (1,k)£ Lf(i,j) increase b, , by a real number s. ..

(2) For all (1 ,k) ̂ L-, (i, j) decrease b, , by s. ..

To convert a graph to a semigraph shifting should be applied

to all forward circuits of three branches such that

32

Lf(j >i) = {(j >i) ,(i,i+l) ,(i+l,j)}
and s, .=b, .

where i ranges from 1 to (n-2) in increasing order and j ranges from
(i+2) to n in increasing order.

Example

Consider the graph in fig 2.5(a), which is to be converted to

a semigraph. First select the circuit (3,1) = {(3,1),(1,2),(2,3)},
s ~=11. The shifting procedure gives fig 2.5(b). Note that b . 1 > J L > I
has become negative which is acceptable. Selecting the circuits

{(4,1) ,(1,2) ,(2 ,4)} , ̂= 12 and { (4 ,2) , (2 ,3) ,(3 ,4)}, s2 ^=24 gives
the semigraph of fig 2.5(c).

Since we will not allow negative flow, the maximum s-1 flow is

now no longer equal to the value of the smallest s-1 cut, and
further the value of the minimum s-t cut is not equal to the

smallest s-t cutset. Despite the fact that many of the intuitive

properties of graphs concerned with flows are modified we have the
following important result.

Theorem 2.4 [SE1]
The terminal capacity matrix of a graph is invariant under shifting.

From these results we see that any terminal capacity matrix

realisable as a graph with nonnegative branch capacities is

realisable as a semigraph. We could then limit our synthesis

procedure to the realisation of semigraphs if we could find a method
for converting a semigraph to a graph with nonnegative branch

capacities.

33 -

The method for converting a semigraph to a graph is as follows

[SE1].

For each branch (i,j) with negative capacity b. . applyi > J
shifting to all possible double circuits containing (i,j) in the

forward circuit. For the double circuit L^(i,j) let
s. .=Max(0,m(i,j)) »1

where m(i,j)=
(1 Min (bi k> _bi

Theorem 2.5 1SE1] [RE1]
A semigraph can be converted to a graph with nonnegative branch

capacities if and only if in the semigraph b^ ^X) V (l,k) and
all entries in the T-matrix are nonnegative.

From this theorem we have the corollary that a requirement

matrix is realisable as a graph with nonnegative branch capacities

if and only if it is realisable as a semigraph in which b +b, , >0
1 y K y JL—

■V (l,k). We may therefore restrict our synthesis procedures to the
synthesis of semigraphs which may be then shifted to obtain graphs.

2.3.3 Cut Matrices

The other concept that should be introduced is that of a

cut-matrix. The idea was introduced by Mayeda [MA2].

Definitions
Consider an arbitrary matrix M whose rows and columns correspond to

the vertices of a graph. For an arbitrary subset of vertices X.CX,

the cut-matrix is the submatrix of M formed by deleting the set

of columns corresponding to and the complementary set of rows.

34 -

If m . is an element of M, then M, is said to be a cut-matrix of k,j i i ----------
m . and may be written explicitly as M.(k,j). If m, . is a largest K., j 1 k , j
entry in M. then M, is said to be a min-cut matrix of m, . and is ̂ 1 i -------------- k,j
written as (k,j) or f j ^ .

Theorem 2.6 [MA2]
If T is the terminal capacity matrix of a graph, then every element

of T has at least one min-cut matrix.

It can be shown that the three necessary conditions for a

T-matrix to be realisable (1) it is semiprincipally partitionable

(2) the triangle inequality holds and (3) every element has a
min-cut matrix, are equivalent [MA2],[TA1].

Definitions

Consider a min-cut matrix (d. (k,j). If m, . is greater than or equal1 &, j
to all other elements in /X then /X is a semidistinct min-cut matrix

of m, . denoted by S(k,j). If m, . is the unique largest element
then it is a distinct cut-matrix of m,------------------------------- -

Two elements m^ u , m^ j are said to be coupled if they are both
Si y D C y Cl 1 1 '■

equal to the largest element in the same min-cut matrix. Otherwise

they are uncoupled. If m and m , are coupled they may bea , d c , ci
realised by a single cut (X, ,X,) ie t ,=t ,=c(X1,X1) with x ,1 1 a,Dc,ci i i a
x ^ X p x^ , xd £ X1. Next > ma ̂ > mc d are comP^et:ê y coupled if
every min-cut matrix of m , is a min-cut matrix of m , and vice

J a,b c ,d
versa. Finally m^ ^ and mc d are min-coupled if the set of minimum

a-b cuts is identical to the set of c-d cuts.

The next theorem shows that given a matrix R in

semiprincipally partitioned form, if a semigraph realises the

35 -

elements r^ k=1,. ..,(n-1) then all other elements above the
diagonal are automatically realised if the semigraph has certain
properties. This implies that, if is the matrix R but with

r. .=0 for j>i+l, then our realisation methods need only consider

the elements of R^, provided that the semigraph has certain

properties.

Theorem 2.7 [FR2]
Given a requirement matrix R in semiprincipally partitioned form and

a semigraph such that t, , ..=r. . , . for k=1,...*(n- 1) then t. .=r. .
for j>i+l if one of the following is true.

(1) Each entry r. . for j>i+l is coupled to some element r ,=r. .1 > 1 a >D 1 > 1
by cut-matrix R̂* such that in the semigraph c(X ,X)=r , whenq o r x q’ q ' a , b
(X ,X) is an i-j cut.q q

(2) r k , k + r bk ,k + i fo r
(3) The largest entry in above the main diagonal is smaller than ■

all the entries below the diagonal.

(4) All branch weights in the semigraph are non-negative.

2 .3 .4 Realisation Algorithms for Directed Graphs

We are now in a position to consider algorithms for the

realisation of directed graphs. Four algorithms, each more general

than the previous, will be presented. They are the Substitution

algorithm, the Perturbation algorithm, the Replacement algorithm and
the Terminal Capacity Realisation algorithm.

36

The Substitution Algorithm [SE1] [RE1]

The Substitution algorithm is used to realise maximally

distinct requirement matrices. A matrix M is maximally distinct if

all off diagonal entries in i P are numerically distinct. A simple

and direct algorithm can be given for the realisation of this type
of matrix.

The algorithm will first be illustrated with an example and
then described formally.

Consider the requirement matrix R and the matrix R*“* formed

from it.
- 3 3 3~ 3 0 o "
10 - 4 4 which gives _,0 K. — 10 - 4 0
11 6 - 5 li 6 - 5
12 8 7 12 8 7 -

The element r^ ̂• has only one min-cut matrix .formed by X^={x^} ,

Xi={x2 ,x^,x^}. Hence we must have c({x^},{x^,x^,x^})=3. The only

edge in the semigraph crossing this cut is a . Hence b. =3.
X yZ, X yZ

Similarly we find that b- =4 and b„ .=5. Considering the entry

r3 2=^ * we find that c({x^,x^},{x^,x^})=6. But b^ ^=3 and b^ ^=5
and so b̂ 2=“ ̂* Similarly c^ ^=3 . The element r̂ ^ = 8 has two
min-cut matrices defined by ({x^ ̂ ,x̂ } , {x^ }) and ,x̂ } , yx^ }) .

Using the first matrix gives b^ 7 and the second gives b̂, ^ = 2 .

Choosing b =7 will lead to a realisation of R but b, «=2 will not.4 ,2 4 ,2
In general we should select the min-cut matrix which gives the

largest value of branch capacity. Continuing similarly we obtain

the semigraph of fig 2.6(a) which can be shifted to the graph of fig

2 .6(b) .

The formal statement of the algorithm to realise a maximally

37 -

distinct matrix R is as follows.

(1) Find a semiprincipal partitioning of R and form R^ .
(2) Relabel the elements of R with a single subscript such that a<b

implies that r <r, . The subscripts range from 1 to

(n-1)(n-2)/2. The mapping of r , onto r will be notated as
cl j D C

r t or r —or , . a,b c c a,b
(3) For d=l ,2 , ... ,(n-1) (n+2)/2 form Rd from R^~^ by letting

rd=2r̂ *" *-Min = I elements in fJL/) •

The minimisation is over the submatrices defined by X. such thatl
R? is a min-cut matrix of r,. l d

(4) branch capacity matrix.

The algorithm works because at each stage there is only one

unknown capacity in each cut. This will always be the case if we

consider the cuts in increasing order. Each min-cut matrix will

only contain entries smaller than the one being considered and the

branch capacities in the corresponding cut will all have been found

except one.

It is known [FR2] that a maximally distinct matrix can be

realised as a graph if and only if every element has at least one

min-cut matrix and the Substitution Algorithm yields a semigraph for

which

b +b. >0 -V (i,j)
X > J J > X

and bk,k+rrk,k+l for k=l,... ,(n- 1)

For non-maximally distinct matrices there may be elements

which do not have distinct min-cut matrices and so it will be
impossible to sequentially order the calculations so that there is

38 -

only one unknown element at each cut. More sophisticated algorithms
are necessary in these situations.

The Perturbation Algorithm [FR2]

To realise a non-maximally distinct matrix a first approach is

to convert the matrix to one that is maximally distinct and then try

to realise it using the Substitution Algorithm. The matrix is
converted to one that is maximally distinct by perturbing the equal

elements in the matrix by small amounts, then the Substitution

Algorithm is applied and then the perturbations are set to zero.

Formally the algorithm may be stated as follows.

(1) From form R̂ (e_) where e is a vector which perturbs the equal

elements of R^. The set of 1^ identical elements are perturbed

by quantities 0 ,ê ,2e^ ,... ,l^e^ . Another set of 1̂ equal

elements are perturbed by 0 ,e 2e£ ,... jl^e^ etc.
(2) Apply the Substitution Algorithm.

(3) Let e=0_.

With the Perturbation Algorithm, we can realise some matrices

which cannot be realised with the Substitution Algorithm but there

are some realisable matrices which cannot be perturbed so that each

element has a distinct min-cut matrix ie some elements are
completely coupled so the Substitution Algorithm can not be applied.

Also the algorithm may produce are semigraph for which b^ j *
The next most general algorithm which can be applied in such a
situation is the Replacement Algorithm.

39 -

The Replacement Algorithm [FR2]

The Replacement Algorithm is a variation on the Substitution

Algorithm in which there are cases in which a branch capacity may be
larger than that which would be given by the Substitution Algorithm.

The realisation method handles the problem of an element not

having a distinct min-cut matrix by insisting, in certain cases,

that the element should be coupled to another element of the same

value so that the two requirements can be realised by the same cut,

ie the two elements should be in the same semidistinct cut matrix.

The algorithm is

(1) Given R find any R^ .

(2) Relabel the entries in R^ as before.

The modification to the first part of the equation in (3) is

to constrain the branch capacities such that b.., .+b. .,,X) forP J+1,3
j=l,2 ,...(rt— 1) so that the resulting semigraph may be shifted to

give a graph (Theorem 2.5).

For the second equation there are two possibilities.

i

(4) R(*-D(n+2)/2 is the branch capacity matrix.

If
l

40 -

Substitution Algorithm where the branch capacity is being calculated

so as to set the capacity of the cut (X^,X^) to that required by the

matrix R.

If rd=Min llsf 1<d>lli

then the capacity of the cut CX^,Xi) is too large and the terminal

capacity matrix can only be realised if r^ is coupled to another r^
such that

r q = 2 r ^ ” ^ M i n l l s T " 1 (q) | |
q q j J

so that the cut (X̂ .,Xj) realises the entry r^ in the requirement
matrix.

There are still some matrxces which cannot be realised by this

scheme. The Terminal Capacity Realisation Algorithm is an extension

of the Replacement Algorithm, and in terms of this algorithm the

necessary and sufficient conditions for realisability can be given.

The Terminal Capacity Realisation Algorithm [FR2]

In this algorithm all steps except the third are as before but
the calculation of the elements of the branch capacity matrix is

(3)
Max(-rg 2r^~ ̂ -Minllsf” 1(d)||+a if rj-^r.,. r -*>r .8 d ± 11 i 11 d d g 3,3+1

Max(0 *)-Min||sf” ̂ (d)||+a^ otherwise
rd=H

ad>°
The difference between this algorithm and the previous is the

presence of the non-negative constants a^. The a^'s are chosen so
that the following necessary conditions are satisfied.

41 -

O) bj+l , j +bj , j+l2P for j= l *2 , . . , (n-1)

ie the semigraph can be shifted to obtain a graph.

(2)
r <Min I b , -Vd d— . a,bl ra , b 'lv

ie the sum of the capacities of the arcs across the cuts defining

the rain-cut matrices of the network are greater than or equal to the

requirement.

These constraints give a set of inequalities in terms of the

a ,'s and if these inequalities can be solved to give a set of d
non-negative a 's then the matrix is realisable; otherwise it is d
not. The resulting graph is not unique since the set of a^'s is not
unique and neither is the ordering of the elements of the

requirement matrix by the mapping r^ j-e>r̂ .

Generation of All Solutions [AG 1]

Agrawal and Arora [AG1] have given a method for systematically

enumerating all feasible realisations of a requirement matrix.

Consider an element r. . of a requirement matrix; this element will

have a number of min-cut matrices, say n. Consider the set the set

of n cuts k=l,2,...,n corresponding to these n min-cut
matrices. The arc capacities of the graph should be chosen such

that

^k ’ ̂ k^—ri , j k=l,2 ,... ,n
with the constraint being an equality for at least one cut. Adding

slack variables S, this can be written as k

42

c(Xk ,Xk)+Sk"ri, j k 1,2 , . .. ,n

TTv°
There is a similar set of constraints for each element r , Thei , J
mathematical programming method to calculate the branch capacities

is a variation of the Simplex Algorithm in which at least one of the

slack variables is constrained to be non-basic ie equal to zero.

The authors report the algorithm to be efficient for small problems.

2.3.5 The Minimum Excess Terminal Capacity Algorithm [GO 1]

Given an arbitrary symmetric requirement matrix R, it may be

desired to generate from it a realisable matrix R' such that the

elements of R' are increased by the minimum value required to make

the matrix realisable. The algorithm is due to Gomory and Hu [G01]

and is as follows.

(1) Consider the matrix R as the distance matrix of a graph.

(2) Find the longest spanning tree of the graph.

(3) Considering the branch weights now as capacities, R' is the

terminal capacity of this tree.

2.4 Minimum Cost Network Synthesis

We have seen that in general it is possible to synthesise a

number of networks, each of which satisfies a requirement matrix.

If a cost function were to be applied to the branches of the network

from which a cost for the whole network could be calculated, then
one of the realisations could be selected as the optimum. If the

costs per unit capacity of each arc differ, then a linear
programming formulation is the only possible approach [WI1]. The

43 -

linear program contains a very large number of constraints but

Gomory and Hu [G02] have given a method for simplifying the linear

program to give a tractable problem.

If the unit costs are identical, and so it is the total

capacity of the graph that is to be minimised, then a simple

solution is available for symmetric matrices. Several different

algorithms have been proposed by Wing and Chein [WI1], Chein [CH2]

and Gomory and Hu [GO 1] - The methods of Wing & Chien and Gomory &

Hu will be described.

The algorithm of Wing and Chien is as follows. Let an

'elementary terminal capacity matrix' be defined as a matrix which

can be put in the following form

- e i Z2 t 3 ... rt T5 ►—»

- h t 3 ... t n- 1

h — t3 ... V 1

t n- 1 t n- 1 t n- 1 t i * *n- 1 • V i

where t >t_>t„>.. ,>t ,. A minimum capacity realisation of this1— 2— 3— — n- 1
T-matrix is shown in fig 2.7(a). Furthermore, if a T-matrix is

partitionable as follows

T= ’T 1

1---oH

1--
-

1

where T^, T̂ are elementary terminal capacity matrices and all

elements of the matrices Tq are equal to t̂ then the complete
T-matrix can be realised by linking two networks realising T^ and T̂

as shown in fig 2.7(b). The two linking branches can be placed

44 -

between any two pairs of nodes. The generalisation of this method

to the case in which the matrix is partitionable into T^, ,...T^
is obvious and every realisable T-matrix is so partitionable [MAI] .

Other minimum capacity structures are discussed in [WI1],

The algorithm of Gomory and Hu begins with a linear tree (ie a

chain) and transforms it into a graph with the same terminal

capacity matrix but with minimum total capacity by (1) splitting the

tree into a number of sections called uniform trees, (2) operating

on each section with a process called circuit formation and then (3)
recombining the resulting graphs.

A uniform tree is a tree in which all branches have the same

capacity. The linear tree is split into a number of uniform trees
as follows.

0 1 2Let G , G , G be three trees with branch capacity matrices

B° , B1, B2 .
(1) Let the capacity of the minimum capacity branch in the linear

tree G° be bQ .
1 ? 1(2) Form two linear trees G , G where G is a uniform tree with

1 0 2 b. . =b~ for all a. . in G , and G is a linear tree such thati , 3 0 i,j
,2 ,0 , . ,, . ^0b. ,=b. .-bn for all a. . in G • i,J i,3 0 1 , 3

(3) Repeat this procedure on the resulting non-uniform trees until

the graph is decomposed into a set of uniform trees.

Circuit formation is then applied to each uniform tree

generated by the decomposition. Given a uniform tree capacity b̂

the operation of circuit formation is

(1) Reduce the capacity of each branch to b^/2.

45 -

(2) Add a branch capacity of b^/2 between the two end nodes of the
tree.

The minimum capacity graph is the union of the circuits so

formed. Figs 2.8(a)-(c) show an example. Gomory and Hu [G01] prove

that the terminal capacity matrix is invariant under this procedure

and that the graph has minimum capacity.

2 .5 Expansion of Networks

Only one problem in the field of expansion of networks has so

far been satisfactorily covered. Suppose that there exists a

network with two nodes identified as source and sink, the costs of

increasing the capacity of each arc are known and there is a

budgetary constraint. How should the money be spent on increasing

the capacities of the various arcs so as to maximise the source to

sink flow of the network? This problem has been examined for the

case in which the cost of increasing the arc capacities is a linear

function of the capacity by Fulkerson [FU1] and Hu [HU2] and for the

discrete case in which the arc costs are non-linear ’functions of the

arc capacity by Christofides and Brooker [CH3].

The algorithm of Fulkerson is a parametric variant of the

labelling algorithm used to solve maximum flow problems. The
algorithm of Hu is based on the concept of modified costs and will

be described.

The algorithm can be used to solve both the problem of

obtaining maximum flow v at fixed cost C at the problem of

minimising the cost to obtain a flow v. These problems are

46 -

min
such

I c .b' .i,3 i,3
that

max v
such that

If. .- If. ,=
i k J ’k

- V J = S

0 j^s,t
Lv j=t

1 ’J k
.v j=t

-v j=s

o < f . ,<b: .+b. .~ i,3~ i,3 1,3 0<f. .<bC .+b. •. - i,J- i,J i,3
Ic, .b̂ . = C

i , 3 i , 3
where bC . is the increment in the branch capacity.i,3

The algorithm is
(1) Begin with the flow pattern F=0.

(2) Define modified costs c' . based on the current arc flows
1, 3

: .=o
1,3

i f f . . <b . .
i , 3 1 ,3

/. .=c. .
i ,3 1 ,3

i f f . . > b . .
1 , 3 - i , 3

' . = -c . .
1 ,3 1,3

i f f . . > b . .>0
3 , i i , 3

(3) Ship the • flow along the minimal cost path based on c' . Thei,j
amount of flow is limited so that the c' . remain as defined in

i , 3
(2) .

(4) If the total flow is v or the total cost is C, stop. Otherwise

go to (2).

Consider the example in fig 2.9. Fig 2.9(a) shows the

original arc capacities and fig 2.9(b) the unit costs. We shall

increase the flow from 1 to 4 at minimum cost. The modified costs

are zero until the flow reaches the maximum for the unmodified graph

of 6. The arc flow with the modified costs in brackets for this

value of flow are shown in fig 2 .9(c) . The minimum cost path is the

arcs a^ ^ , a3 2 ’ a2 4 * Thus the capacity of the arc â ̂ should be
increased. Note that c' -=-2 since f~ >b,, 0 . The flow can beZ) j j j)Z

47 -

increased until v=10 without changing the modified costs (fig

2.9(d)) and so the solution up to this value of flow is.to continue

to increase b . Beyond this the least cost path is a. 9 , a9 «,

a~ , so to increase the flow beyond v=10, b, 0 , b0 , should be1)2 3
increased but b reduced. At v=14 , b_ ~ has returned to its

J)Z> Z y D

original value (fig 2.9(e)).

Christofides and Brooker [CH3] have given an algorithm for

expansion of networks in which new arcs may be added at discrete

levels of capacity and the cost of adding an arc is not necessarily

linearly related to the capacity. In contrast with the problem of

the previous section this is a problem of combinatorial optimisation

and the method proposed is a branch and bound tree search in which

dynamic programming techniques are used to calculate the bounds. As

candidate arcs are added in and excluded from the network, the

algorithm notes the-set of cuts in the graph which’it is necessary

to span to increase the flow of the graph and calculates an upper
bound on the flow which can be obtained with the remaining budget.!
If the upper bound is less than the current best solution then

backtracking can occur. The set of cuts is generated as the

algorithm progresses and for computational reasons is restricted to

cuts which are "disjoint" in the sense that the sets of arcs
spanning the cuts should be disjoint. This bounding procedure

greatly reduces the amount of the tree that need be explicitly

searched to locate the optimum solution, and the authors report the

technique to be very successful.

48 -

Figure 2.1(c)

50 -

51 -

52

53 -

54 -

55 -

1

Figure 2.5(a)

-1 0

F i g u r e 2 . 5 (b)

56 -

57 -

3

Figure 2.6(a)

3

F i g u r e 2 . 6 (b)

58 -

Figure 2.7(b)

5 9 -

O ^ C H O O K O
1

CH-O - 0 ^ 0

c x > o

0 ^ 0 - C F O

Figure 2.8(b)

60 -

61

62

63 -

64 -

OPTIMAL EXPANSION OF NETWORKS SUBJECT

TO TERMINAL CAPACITY CONSTRAINTS

65 -

3 .1 Introduction

In this chapter we shall pose a problem in the expansion of

networks and give an algorithm for its solution. The problems

examined in this chapter and the succeeding will be generalisations

of those reviewed in Section 2 .5 in the sense that we consider not
the synthesis of networks which satisfy the flow requirements

between one source and one sink but the multiterminal network

expansion problem in which all nodes may source or sink flow. We
restrict ourselves to the consideration of undirected graphs.

Suppose that there exists a network of flow such as a

communication network and, as time passes, the communication

requirements of the users increase beyond the capacity of the

network. The problem that arises is how to add additional branches
to the network, in some optimal fashion, such that the expanded

network once again satisfies the requirements of the users. The

simplest optimality criterion, which will be studied in this
chapter, is that the added capacity should be minimum.

This problem may be stated in graph theoretic terms as

follows. Let G=(X,A) be an undirected graph with branch capacity

matrix B and terminal capacity matrix T and let R be a realisable

requirement terminal capacity matrix such that r. .>t. . -V (i,j).
»3 i > 3

How may a graph G'^XjA') with branch capacity matrix B', terminal

capacity matrix T' be synthesised such that t' .>r. . •V (i,j),1 > 3 1 > J
b' .>b. . -V (i.i) and I b' .is minimum?i, J

66 -

3 .2 Theoretical Preliminaries

Before proceeding any further there are some preliminary ideas

which must be discussed. Suppose that we write a T-matrix as the

sum of two or more matrices: the question now is; can we realise the

individual matrices and add the corresponding branch capacity
matrices to obtain a realisation of the original T-matrix? The

difficulty with problems in the expansion of networks arises from

the fact that, in general, the answer to this question is no.

However, there are certain special cases in which T-matrices can be

added as is shown by the following theorem due to Tang and Chein

[TA1].

Theorem 3.1 [TA1]

The realisation G of a terminal capacity matrix T is
1 ’ 2obtainable by superimposing two graphs G and G (by the addition of

1 2their branch capacity matrices B , B) whose terminal capacity

matrices are T^ and T̂ such that m W , if and only if for each
node pair (i,j) there exists a cut which is minimum throughout G, G^

and G^.

Proof

If, for each node pair (i,j), there exists a cut which is
1 2 1 2 minimum in G, G and G , then the terminal capacities in G, G , G

are determined by this cut. However, since any branch capacity in G
1 2is just the sum of the corresponding branch capacities in G and G ,

1 2 1 2 we thus have t. .=t. ,+t. .. On the other hand, if t. .=t. .+t. .
i , l i , l i , J i > ! i , l i , l

1 2and if there exists no cut which is minimum in G, 0 and G then any
1 2cut in G giving t. . cannot be a minimum cut for both G and G .

i , l

67 -

That is 1 1 2 2the cut will assume values c in r, and c in G , where

either c1 j
1 2 2.>t. . or c. .>t. . or both. Therefore>1

which is a contradiction.

This result shows that when making additions to a network it

is necessary to consider not just the properties of the added

branches in isolation but also the way in which they interact with
the existing network.

It is also necessary to consider further the idea of the flow

equivalent tree discussed in Section 2.2.2. It was pointed out that

in general the flow equivalent tree of a graph is not unique. We

shall now restrict the definition of the flow equivalent tree a

little further so that the tree is unique by identifying each edge
in the tree with one of the set of non-crossing cuts generated by

the Gomory-Hu algorithm for multi-terminal network analysis. The

following theorem due to Hu [HU3] shows that this is possible. The
theorem is more general than we require in that it shows a spanning

tree can be identified with any set of non-crossing cuts but we

require the case where the cuts are those generated by the Gomory-Hu
algorithm.

Theorem 3.2 [HU3j
A spanning tree with (n-1) nodes corresponds to a set of (n-1)

non-crossing cuts uniquely.

The proof is by construction. Remove any link in the spanning tree;

Proof

this will disconnect the tree into two components say T^ and T^•

68 -

Then let this link correspond to the cut Continue to

repeat this process for each sub-tree generated until all links have

been removed. Thus from any spanning tree we get a set of (n- 1)

non-crossing cuts. Conversely, from a set of (n-1) non-crossing

cuts we can construct a spanning tree as follows. Take a cut (X,X);

we can draw two supernodes connected by a link where each supernode

symbolically represents a set of ordinary nodes. In one supernode

we list the nodes in X and in the other we list the nodes in X.
This creates one link in the spanning tree. Now consider another

cut (Y,Y). Since (Y,Y) does not cross (X,X) we have YCZX and Y Dx

(or Y D X and Y C Z X) ; then we can create a tree with three supernodes

Y, X-Y, X (or X, X-Y, Y) . Continuing to repeat this for (n-1) steps

creates a spanning tree with (nr-1) links.

Henceforward, it is this restricted idea of a flow equivalent

tree which will be used and we shall use the terminology of Hu [HU3]

and refer to it as a cut- tree. We shall make use of some further

terminology introduced in this paper. Outer nodes and inner nodes
are nodes of a tree which have degree one and greater than one

respectively and a star-tree is a tree with only one inner node.

3 .3 The Algorithm

In this section we give an algorithm to solve the problem

presented in the Introduction and prove that it converges correctly

to the optimum solution. The algorithm is analysed in terms of its

computational complexity and the analysis compared with the results

of computational experience. It is illustrated with examples.

Broadly speaking, the algorithm operates as follows. Firstly,

69 -

the existing network is analysed. As mentioned above, when adding

to a network, it is necessary to know the characteristics of the
initial network so as to be able to predict the effect of the

expansion on the terminal capacity matrix. Next, additions are made

to the network so as to generate a new network which satisfies the
requirement terminal capacity matrix constraints. This network is

suboptimal because effort is directed towards satisfying the

constraints rather than producing a minimum cost network. Finally,

a series of transformations are applied to the network which

progressively reduce the capacity of the network while still meeting

the terminal capacity constraints .

These steps will now be described in detail.

3.3.1 Initial Network Analysis

The analysis performed on 'the initial network is to apply the

Gomory-Hu algorithm so as to locate the set of non-crossing minimum

cuts in the network and generate the cut-tree.

There is an alternative way of viewing the analysis which will

be useful later. It will be explained by way of an example.

Consider the network of fig 3.1(a), the set of cuts from this

network in fig 3.1(b) and the cut-tree fig 3.1(c). The cuts

partition the graph into subgraphs (which correspond to the

supernodes of theorem 2 .2) although some of the sub-graphs are

degenerate cases consisting of a single node. This partitioning

will be viewed in a hierarchical manner. If some of the nodes are
gathered together into clusters of nodes or supernodes then the

graph can be seen as a star-tree with some of the outer nodes being

70 -

supernodes. In the example if {x x_} and {x.,x,} are taken

together as supernodes then a star-tree is formed of {x^},

{x^}, {x^,Xg} and {x^,x^} as outer nodes and x̂ as the inner node
(fig 3.1(d)). Each supernode may again be seen as a star-tree with

some of the outer nodes being supernodes. In this example the two

supernodes are star-trees of two nodes; x̂ and x^ are the inner

nodes and x and xQ are the outer nodes. There are no further o o
supernodes consisting of star-trees of supernodes.

This hierarchical clustering of nodes into groups of

supernodes will be used in the description of the method for

progressively reducing the added capacity of the graph to a minimum.

3 .3 .2 Generation of Suboptimal Solution

The next stage of the algorithm is to add to the existing

network so as to synthesise a suboptimal network which meets the

requirement matrix constraints. We shall separate this problem into
two questions:

(1) What is the structure of the added network?

(2) What are the capacities of the added branches to be?

The structure chosen for the added graph is that it be the

same as the structure of the cut-tree of the original network. This

structure is chosen because the effect upon the T-matrix of the

original graph caused by adding this network is easily determined as

will shortly be demonstrated. We shall then propose a method of

calculating the branch capacities of the added network, illustrate
it with an example and finally give a proof that the method achieves

what we require of it.

71 -

The following theorem relates the cut-tree of the old network,

the cut-tree of the new network and the capacities of the added

branches.

Theorem 3 .3

If B* is the B-matrix of the cut-tree of the original network
9B is the B-matrix of the cut-tree of the expanded network
3B is the B-matrix of the added network

then if .>0 for (i,j)£'A
and b"? .=0 for1.3 ,J/ T t
then b̂ .=b! ,+b̂ . -V (i,j)

1.3 1,3
where At is the set of edges in the cut tree.

Proof

First consider a pair of nodes which are adjacent in the

cut-tree. All i-j cuts are spanned by the edge a. . and some are
1.3

spanned by other edges also so the minimum increment to an i,j cut
3is b. .. The expansion network is so constructed that the minimum
i , 3

i-j cut in the original network is spanned only by a. . and so
1.3

1 3t' .=b. .+b. . (i,j) adjacent in cut-tree
i , 3 i , 3 i , 3

where t' .is the value of the minimum i-j cut in the expanded
1,3

network.

Now consider any node pair (i, j) and the path P. .in thei,3
cut-tree which joins them. Let a, , be an edge in this path whichk ,1
will represent a particular i-j cut say (X^,X^). From the above

argument the new capacity of this cut is

c'(Xi>Xi)=c(Xi,Xi)+b^1=b^1+b^ 1
This is not necessarily the minimum i-j cut. Therefore

72

t.' Xb .1 .+b? . i »J— k,l k , 1
where t' is the capacity of the minimum i-j cut of the expanded

network. This argument holds for all a, ,£P, .. ThereforeK j1 1»J
tX " in{i>M +i i)

Now suppose there is an i-j cut (X^,XJ strictly less than any of
these cuts

c - C X - . X ^ m i n C b ^ + b ^)
This cut must pass through one of the edges in the path P. .} say»J
a and is thus an m-n cut. Since it is not necessarily the m,n
minimum m-n cut

c'(X. ,X.)>b1 +b3 a ep, .j J — m,n m,n m,n 1 , 3

Thus we have found an i-j cut which does not satisfy the condition

of the above argument and hence the assumption of the existence of a

cut strictly less than the cuts represented by the edges in the path
in the cut tree joining i and j is. false. Hence,

t i ,j=mln(bk,l+bk,l) ak,l£ P i,j
2 1 3which is the property required of a cut-tree. Therefore B =B +B is

the branch capacity matrix of the cut-tree of the new network and
9from B it is easy calculate the T-matrix of the expanded network.

The remaining problem is that of choosing the capacities of

the added branches in such a way that the constraints imposed by the

requirement matrix are met. Clearly, it must be that the sum of the

capacities of the branches incident upon a node is greater than or
equal to the largest entry in the row or column of the requirement

matrix corresponding to that node

ie I b' ,>max(r .) for all nodes n
l n,i- n,j'

where B' is the branch capacity matrix of the expanded network

R is the requirement terminal capacity matrix.

73 -

Let the added branch capacities be chosen such that for the

outer nodes of the cut-tree of the network this inequality becomes

an equality

ie 2 b' =max(r .) for n an outer node of the cut-tree.± n,j n,j'

Clearly, adding any further capacity to these branches is
superfluous provided that all other constraints are met.

It remains to choose the capacities of the branches joining a

pair of inner nodes (j,k). Let the edge of the cut tree in question
correspond to the cut (X.,X.)« Form the cut matrix R. from the

requirement matrix R. The maximum entry in R^ indicates the maximum
quantity of flow which must cross the cut (X^,X^) and so the added

capacity should be chosen such that the capacity of the cut is

increased to this amount.

ie c'(Xi,Xi)=max(Ri)

=c(X.,X.)+b.)k

where c(X^,Xi)= capacity of cut in original graph
c'(X^,X^)= capacity of cut in expanded graph

bj k= capacity of branch added across (X^,X^) between
nodes j and k.

Note that the method used to calculate the capacities of branches

ending on an outer node is a degenerate form of this procedure in

which the matrix R^ is the single row corresponding to the node.

This procedure will now be illustrated with an example which

will bring out some further salient points.

Consider again the network of fig 3.1(a) which has B and T

matrices

74 -

B=

R=

- 5 11 1 0 0 3 4“ 24 24 6 8 5 18 13“
5 - 14 0 0 0 5 0 24 - 24 6 8 5 18 13
11 14 - 5 5 0 3 0 24 24 - 6 8 5 18 13
1 0 5 - 0 5 0 0 T= 6 6 6 - 6 5 6 6
0 0 5 0 - 0 3 0 8 8 8 6 - 5 8 8
0 0 0 5 0 - 0 0 5 5 5 5 5 - 5 5
3 5 3 0 3 0 - 9 18 18 18 6 8 5 - 13
4 0 0 0 0 0 9 - 13 13 13 6 8 5 13 -

a requirement matrix
' - 26 40 40 22 6 22 20'
26 - 26 26 22 6 22 20
40 26 - 42 22 6 22 20
40 26 42 - 22 6 22 20
22 22 22 22 - 6 25 20
6 6 6 6 6 - 6 6
22 22 22 22 25 6 - 20
20 20 20 20 20 6 20

The cut-tree of the network is shown in fig 3.1(c). The outer

nodes are x^ , x^, x^, x^ and Xg. The total capacity incident upon

x^ is 24; the maximum value of the first row of R is 40; therefore

Similarly

of the added branch a1 . mustI y3 6e bl,3=40-24=16 .

b2,3=2, b3,5 = 17, b7,8=7 and b4,6 = 1 The remaining

be considered are a~ , and a„ . The3 ,4 3,7 cut- set for a 0 , 3 >4
, { x l ^,Xg,x5 ,x7 ,Xg}) , the value of this cut in the

original graph is 6 and the cut-matrix of R is

C
40 26 42 - 22 *6 22 20
22 22 22 22 - 6 25 20

whose largest entry is 42. Therefore, b =42-6=36. For a„ _ the
3 ,6 3 j 7

cut-set is ({x^,Xg},{x^,x^ ,Xg,x^ ,x̂ ,x^}) whose value is 18. The
cut-matrix is

"22 22 22 22 25 6 - 20
_20 20 20 20 20 6 20

So bo 7=25-18=7. The added network is shown in fig 3.1(e) and the 3)1
new network in fig 3.1(f). Summing the capacities of the added
network and the original cut-tree gives the cut-tree of the new

network from which the T-matrix

75 -

of the expanded network can easily be calculated as

26 AO AO 2 5 6 25 2 0
2 6 - 26 26 25 6 2 5 2 0
AO 2 6 - A2 2 5 6 2 5 2 0
AO 26 A2 - 25 6 25 20

2 5 25 25 2 5 - 6 2 5 2 0
6 6 6 6 6 - 6 6

2 5 25 2 5 2 5 2 5 6 - 2 0
2 0 20 20 2 0 2 0 6 2 0 -

Notice that the entries t' t' t' t' 5,1* 5,2’ 5,3’ 5, A* t7,2* t' and t' , 7 ,3 7 ,A
are larger than the corresponding entries in R. Examining the

cut-matrix of R corresponding to the cut

({x1^ , x ^ , x 6},{x5 ,x7 ,xg}) indicates that we should have

c'(X,X)=22

but we have in our construction set this constraint to be the

inequality

c' (X,X)=25>22

by spanning the cut with more capacity than is necessary to meet the

requirements. Laterj in the optimisation process, we shall permit

the capacity of this and similar cuts to be reduced, if possible, to

the amount specified by the requirement matrix. The reason for this

discrepancy is considered in Section 3.3.5

To prove that a network constructed in the manner proposed

will always be a satisfactory expansion network, we need to prove

that every element in the T-matrix of the expanded network is

greater than or equal to the corresponding element in the

requirement matrix

ie t' >r . . -V (i, j)
1 > J 1 »J

Consider any element of T', say t' .. The value of t' . is equal to

the minimum capacity of the minimum capacity edge in the path from i

to j in the cut-tree of the expanded network. Suppose this is the

76 -

edge (k,l) which corresponds to a cut (X ,X)m m
therefore t' . = t,' .k,l

Now consider the cut-matrix corresponding to the cut (X ,Xm m
the elements (i,j) and (k,l) are both in this matrix. But by

construction we have

t,' ,=max(R) k,l ' m
therefore t' ,=t/ -> any element in R i , j k , 1— m
therefore t', .>r. . since r. . is an element of Ri,3 m

3.3.3 Network Transformations which Preserve T-Matrix

Having generated a suboptimal network which satisfies the

requirements, the final stage of the algorithm is Lo modify the

network in such a way that the capacity of the network is reduced to

a minimum without violating any of the constraints imposed by the

requirement matrix. .

The technique used to optimise the network is that of local

search in which the solution neighbouring to the current solution is

generated by an elementary transformation which exchanges one set of

branches for another set with lower cost whilst still meeting the

requirements. The idea of exchanging sets of branches is a powerful

technique which has been successfully applied to a number of

difficult graph-theoretic problems such as the Travelling Salesman

Problem [LI1], the synthesis of minimum cost survivable networks

[ST1] and the synthesis of small diameter networks [TS1]. Unlike

these examples which are heuristic methods tor locating good but

sub-optimal solutions, the transformations discussed here can be so

ordered that an optimal solution is obtained.

77 -

Consider fig 3.2(a) which shows three nodes x , x^ and the

added branches between them a^ ̂ and a? ̂. Nodes x^ and x̂ are of

the type where the capacities of the added branches have been chosen

so that

I b' = max(r) 1,n . l,i n ’ i
I b' = max(r .) n ̂, n ̂ z. y x

whereas this is not the case for node x^. Therefore we may

reduce the total capacity of the branches incident upon x^ , x̂

we may reduce the capacity incident upon x^.

not

but

Consider now the network of fig 3.2(b). This has been derived

from the network of fig 3.2(a) by reducing the capacities of a1 > 5
â ̂ by an amount b̂ and adding an arc a^ ̂ °f capacity b^. This

satisfies our requirements concerning the capacity of the branches

incident on each node but has reduced the capacity of the network by

It now remains to investigate what values b^ can take. There
iare three constraints upon b^.

(1) Clearly we must have

b l ,3- b0—̂

b2 ,3-b0>°
because the added branches cannot have negative capacity.

(2) We must also maintain the constraint at node x^

2 b' > raax(-i)
n i

(3) The third constraint is less obvious. Consider the minimum cut

(X ^ x p with x l ,x2 £ X i , x3 £X. shown in fig 3.2(c). The

capacity of this cut is reduced by 2bQ and in the modified graph

it should have sufficient capacity to transport the flow from

78 -

all nodes x^ e Xi to node x̂ .

c ' (X 1 , X 1) » c (X 1 , X 1) - 2 b 0 > n i a x (r 3 i l) x . £ X .

The value of may be maximised provided that it satisfies
all these constraints. Notice that it is necessary to perform only

one flow calculation for the location of the cut (X. ,X.) and so the
method is computationally efficient.

This argument may be significantly generalised so that the

nodes x^ and x^ become supernodes X̂ and X̂ • Instead of requiring

of the transformation that

b =max(r) b =max(r)
i 1

we require that

c(X̂ , X^)=max(R^) c(X̂ , X̂)=max(Pv^)
i i

All the constraints upon b^ remain unchanged by this generalisation.

It was noted in Section. 3.3.2 that the suboptimal network

generated may be such that t̂ .>r. .. The constraints on b~ havei,3 0
been expressed in terms of the requirement matrix so that, where

possible the capacities of the various cuts in the network will be

reduced by the transformations so that t' .=r. ..
i , J i > 3

3 .3 .4 Minimisation of Network Capacity

A technique for applying these transformations so as to

minimise the capacity of any graph is developed in this section.

Consider fig 3.3(a) which shows a simple situation where the

added branches form a star tree such that

I b - = max(r . .) 1=1,2 ,3
j 1,J k 1,fc
I bl . > max(r) i=4
j 1,J k 1,k

79 -

The capacities of the branches are shown with each branch.

The possible paths of length two to which the transformation may be

applied are {a 1 4 ,â 2), { a ^ ^ a ^ } and {a2 ^,a4 ^}. We need to
decide on the best order of applying the transformations so as to

minimise the capacity of the graph. Choosing to apply the

transformation first to the path {a^ ̂,â 2} results in the graph of
fig 3 .3 (b) which has capacity 5 whereas if the transformation is

applied to {a2 4 ,a4 3 } an ̂ then to {a^ 4 ,a4 3 } the graph of fig
3.3(c) is obtained with capacity 4. Clearly, the rule that can be

deduced from this example is that paths containing arcs of large

capacity should be transformed first followed by those of smaller

capacity.

This technique is generalised so that it can be applied to

any graph. In section 3.3.1 the clustering of nodes into supernodes
was described in an hierarchical manner. This viewpoint will be

used below. At the highest level, a network is a star-tree with the

outer nodes clusters of nodes X^ and the inner node being an
ordinary node (fig 3.4(a)). The transformation technique for

star-trees may now be applied to this tree giving a result such as

that shown in fig 3.4(b). The internal properties of the sets
are now considered as these clusters are expanded one at a time.

Each 'node' within X^ may again be a cluster of nodes. Consider the
graph of fig 3.4(c) where one of the clusters has been expanded. A

xQ} has been o
generated to which the minimisation technique can be applied. The

method continues by expanding clusters one at a time. On each
expansion a new star-tree is formed, the capacity of which can be

minimised by transformations.

new star-tree, consisting of nodes {x2 ,x~,x.
, x 6 ,X7

80 -

An example of Che application of the algorithm will now be

given. The capacity of the network of fig 3.1 will be minimised.

The star-tree at the highest level is shown in fig 3.5(a).

Transforming this tree by the rules given leads to the expansion

network shown in fig 3.5(b) . The next stage is to expand the

supernode {4,6} into its component nodes to create a star-tree with

{4} as its inner node and {1,2 ,3 ,5 ,6 ,{7 ,8}} as its outer nodes.

This gives fig 3.5(c). Transforming this star-tree gives fig
3.5(d). Finally supernode {7,8} is split into its components and

transformations applied to the star-tree with {7} as its inner node

and {1,2 ,3 ,4,5,6,8} as its outer nodes. This gives the final
optimum expansion of fig 3.5(e).

It should be noted that the expansion may not be unique eg the

network of fig 3.5(f) also has the same total capacity but a
different structure. ' •

There is a small problem which remains to be considered.

Under some circumstances the branch capacities may become

non-integral. From the constraints upon the transformation factor

b^ we have

2bo<.c(Xi ,Xi)- max(Ri)
If this is an equality and R.HS is odd then the value of b̂ is not an

integer. If this is undesirable then it can be avoided by

multiplying all branch and terminal capacities in the network by a

suitable power of 2. Alternatively, the value of the branch

capacities can be truncated; this may lead to a solution which is

not optimal but experience has shown that the error is always small.

That the capacity of the expanded graph is minimum may be seen

81 -

by considering the following points.

(1) The total capacity incident upon the outer nodes of the cut-tree

was initially set at the minimum value which would satisfy the

constraints and has not been changed at any time.

(2) The capacity of the arcs crossing minimum cuts in the graph have

been reduced to the minimum possible without violating any

constraints.

(3) The transformations have been performed in such an order as to

minimise the capacity of the network.

3 .3 .5 Exactly Realisable Network Expansions

It was noted earlier in the example that some of the entries

in the terminal capacity matrix of the sub-optimal expansion were

greater than the corresponding entries in the requirement matrix and

although the algorithm was constructed so that- during the

minimisation process the capacities of the appropriate cuts could be

reduced, examination of the results shows that this did not occur.
This specific point is investigated below and the necessary

conditions are given so that a graph may be synthesed in such a way

that it meets the requirement constraints exactly.

Theorem 3.4

A network expansion is exactly realisable if

Proof

Form the matrix D such that d. .=r. 1. .. This matrix givesi,3 i,J 5
the increment in capacity that must be added to each cut in the

82

network to meet the new requirements. Now consider a pair of nodes

x^, Xj and the minimum cut between them in the original graph (X,X)

x^S’X, Xj£X. Any third node x̂. belongs either to the set X or to
X. If x, S X then the increment in capacity d. , can be no greater k J > &
than . the increment in capacity d. . ie d . , <d. .. If x, £ X theni j J J > k i > J k
similarly d. ,<d. .. Combining these results gives the inequality1 > k— 1 , j

d1;. > min (d1)k,dk)j>
and if this is not satisfied for all i,j,k then the expansion is not

exactly realisable.

In the example d < min (dQ 0,d0 ..) and hence the expansionJ) / J jO O) /
is not exactly realisable.

The algorithm as presented generates a 'dominating'

requirement matrix whose entries are larger than the original

requirements if necessary. •

3.3.6 Computational Complexity

By making a number of reasonable assumptions we can make an

estimate of the computational complexity of the algorithm.

The initial analysis procedure makes use of the Gomory-Hu

algorithm so a graph of N nodes requires (N-1) applications of the

Ford-Fulkerson algorithm. The other computationally intensive

section of the algorithm is the calculation of the changes in branch

capacity in the transformations, each of which requires a flow

calculation. We therefore need to estimate the number of

transformations that need to be applied.

To obtain some estimate of this number let us assume that for

83 -

an N node graph, at each expansion of a supernode, the number of

nodes in the star-tree being transformed is increased over the

number of nodes in the previous star-tree by a certain fraction of
the total number of nodes (N/M). At the I'th step in the

optimisation there are (IN/M) nodes in the star-tree so the number

of transformations in this stage is

N (1-D N _1 N / N \
M M 2 M ' M " 1 '

The total number of transformations is therefore

M rV i. d - D N + i i fi i\
Z _ [M M 2 M V M “ 1 }

1 = 1

Jl2 , N
2 2M~ 2
=0(N2)

Therefore in the whole algorithm we would expect to have to
2perform 0(N) flow calculations. Each flow calculation requires at

most 0(N) applications of the Ford-Fulkerson labelling procedure

[Dll], [EDI] and so the algorithm may be regarded as (at worst)

O(N^). These are worst case figures and generally graphs

encountered in practice will require fewer transformations on
account of some branches having zero capacity and fewer passes of

the labelling routine and so, as the practical results below show,

the complexity will be less.

A computer program to implement the algorithm was written in

FORTRAN 77 and run on a CDC Cyber 170/855. Graphs to be used as

84 -

input data for the algorithm were generated as follows. Beginning

with a set of N vertices, a spanning arborescence was randomly
generated and arc capacities were allocated from a uniform

distribution. Each additional arc was then randomly generated so as

to span the minimum cut in the network so far generated until the

required number of arcs was added. The capacities of these arcs

were also randomly selected from the same uniform distribution. It

was found possible to operate the algorithm on graphs of medium size

(up to about 40 nodes). The results from a number of these tests

are summarised in table 3.1 and figs 3.6 and 3.7. Fig 3.6 plots the

number of flow calculations against the size of the graph for a
number of examples. The upper and lower ends of the lines mark the

maximum and minimum number of calculations encountered. Shown on
9the graph is the line N /2 and it can be seen, as predicted, that

this is an upper bound for the number of flow calculations which was

reached in a few instances. Also shown is a regression line giving

the average performance of the algorithm which is N^*^.

The total running times of the algorithm are given in table

3.1 and fig 3.7. It can be seen that it is better than an O(N^) in

practice; it is somewhere between 0(N~; and 0(N4).

3.4 Discussion and Conclusion

There have been essentially three ideas presented in this '

chapter.

(1) A new set of conditions under which the T-matrix of a graph

formed by the addition of two B-matrices can easily be
calculated have been given and it has been shown that these can

be used for the generation of a sub-optimal network which

85 -

satisfies the flow constraints of a requirement matrix.

(2) An elementary network transformation for the reduction of the
capacity of a graph while not violating any requirement matrix

constraints has been given. To effect this transformation it is

necessary to perform a single flow calculation. Since there is

a strong interaction between the original network and the

expansion network it is clearly necessary to perform some

investigation of the properties of the graph whilst performing

the optimisation and a single flow calculation is the minimum

possible

(3) We have shown how a sequence of these elementary transformations

should be performed so as to reduce to a minimum the capacity of

an expanded network. A worst case analysis of the algorithms

computational complexity was given. Generally the optimisation

ran in less time than this- calculation would suggest but

occasionally a graph would attain to this worst case.

The algorithm can be viewed as a generalisation of algorithms

presented in the past for network synthesis and optimal network

synthesis where the extensions are to cope with the extra

difficulties which accrue from having to consider the properties of

the original network and its interaction with the expansion network.

Close connections with the algorithms of Wing and Chien [WI1]

and Gomory and Hu [G01] for minimum cost network synthesis can be

seen. Firstly considering the method of Wing and Chien it can be

seen that what are termed elementary nets in that paper are similar

to the results of applying the transformation technique for the

minimisation of a star-tree. These elementary nets are constructed

86 -

such that each vertex has just sufficient incident capacity to

satisfy the flow requirements from that vertex. This can be

compared with the algorithm for network expansion in which initially

it is only at the outer nodes of the star-trees that the capacity

requirements are satisfied whereas the inner nodes have excess

capacity, but the algorithm attempts to reduce the excess capacity

on the inner nodes towards zero. If a T-matrix were to satisfy the

conditions specified by Wing and Chien and the properties of the

external network did not interfere with the optimisation process

then the final expansion network structure would be an elementary

net.

There is also a similarity between the optimisation and the

minimum cost synthesis procedure given by Gomory and Hu. In both

instances there is excess capacity at interior nodes of a path

(which are of length two in the algorithm for network expansion but

of any length in that of Gomory and Hu) but not at the end nodes.

The excess capacity is reduced by reducing the capacity of the edges

within the path while adding an extra edge between the end nodes of

the path to maintain the capacity constraints at these nodes.

87 -

Number of Flow Calculations Computing Time

Nodes Min Max Min Max

5 5 13 0 .2 8 0.38

8 5 20 0 .6 1.35

10 13 51 1.35 7.1

15 22 61 3.1 8 .0

20 48 152 18 50

25 64 145 92 120

Table 3.1

88 -

N\

©

;/
/

18\
\ © ..

N

13 l
\ \ 24
' 1 \ X s

0 \ ® / ! 1 O ;
--- - 1

1/

(®\ ©
\

1
1

/ ; © i

Figure 3.1(b)

89 -

90 -

91 -

92

93 -

94 -

95 -

Figure 3.4(a)

96 -

Figure 3.4(c)

97 -

98 -

99 -

Fl
ow

C

al
cu

la
tio

ns

100 -

3

Figure 3.6

10 1 -

Number of Nodes

102 -

NON- UNIFORM COST MATRIX

NETWORK EXPANSION

103

4.1 Introduction

In this chapter we consider a problem which is a

generalisation of that considered in the previous chapter and
suggest an algorithm for its solution. Since the problem is more

general, the solution technique developed is much more complex than

that developed in the previous chapter and takes considerably more
computation, so some alternative heuristics which lead to

sub-optimal solutions but with little computational effort are also

suggested and evaluated.

As before, we postulate a situation in which it has become

necessary to increase the terminal capacity matrix of a network in

some optimal fashion. But now we attribute to each edge a cost

proportional to the capacity of the edge -different for each edge-

and require that the expansion should be such that the' total cost of

the added edges is minimum.

Formally the problem may be stated as follows. Given a graph

G=(X,A) of branch capacity matrix B, terminal capacity matrix T, a

realisable requirement matrix R such that r. .>t. . -V (i,j) and a1 > J 1 > J
cost matrix C, how may a graph G'=(X,A') with branch capacity matrix

B', terminal capacity matrix T' be synthesised such that

t' .>r. . -V (i,i), b' .>b. . -V (i,i) and Ic. .b' .is minimum?i ,J - i , J i ,j- i ,j V , J ' i ,J i ,J

As in the previous chapter the algorithm proceeds by first

synthesising a sub-optimal network which meets the requirement

matrix constraints and then modifies the resulting network in such a

way that the total cost is minimised without violating any of the
constraints. As a preliminary to presenting an algorithm for
solvijig the problem, we examine some appropriate concepts in Section

4.2 .

104 -

4.2 Theoretical Preliminaries
4.2.1 Edge Set in Expansion

At first sight, it might appear that for an N node graph all
possible branches in the graph (ie N(N-l)/2 branches) would have to

be examined as possible candidates for inclusion in the expansion,

but in fact only a subset of the branches need be considered and the

remainder can be eliminated 'a priori'.

Consider the cost matrix of the network to be a distance

matrix and find the shortest paths between all pairs of nodes using

some such technique as Floyds algorithm [FL1] . It is argued below

that the only edges a. .in the network which need be considered arei, 1
those whose length (c_̂) is the same as the length of the shortest

path between x. and x. ie those edges a. . which are themselves the i J i,l
shortest.paths.

Consider a node pair (x̂ ,x̂ .) where the shortest path between

them is of length 1. . and passes through nodesi > J
(Xi ,xl,x2 »* *•,xk ,xj)* Assume that a minimum cost network expansion
exists which contains edge a. . at capacity b. . and remove arc a. .i »1 i »1 1) 1
and insert instead the edges a . ,a ,...,a , . at capacityXI , X1 XI , XZ XK. , X J
b. .. The capacity of the minimum cut between x. and x. has not i,J i l
been altered, and no other cuts have been reduced; in fact some

minimum cuts may have been increased in capacity. But the cost of

the network has been reduced since 1. .<c. . which contradicts thei,l i,l
original assumption that the expansion was of minimum cost.

Therefore, the only arcs which can be included in the solution are

those which are the shortest path between pairs of edges. Let these

edges be known as admissible edges.

105 -

A .2 .2 Generalised Network Transformations

A more general network transformation is required to reduce

the cost of a network than was presented in the previous chapter.
We attempt to insert in the network arcs from the set of admissible

arcs and remove other edges. The approach we take is to identify

paths in the expansion whose end points are also end points of an
admissible edge and replace the path with the single edge at an

appropriate capacity level so as not to violate any constraints.

Consider the part of a network expansion shown in fig 4.1 in

which a. . is an admissible edge and P. ,=(x.,...x ,x ,...x.) is a i,J i,J i m* n ’ j
path in the expansion network. The transformation we propose is to

increase the capacity of the edge a. . by an amount bn and reduce
the capacity of the edges in the path, each by a different amount,

where the reductions in capacities are chosen so 'as not to violate

any flow constraints. To maintain the incident capacity constraint

at x. and x. the first and last edges in the transformation should i J
be decreased by b^.

For convenience now and later on this transformation is

decomposed into a set of simpler transformations. For ease of

notation, let the edges in the path be labelled a^, a^,...,an and
consider the set of 'partial paths' constructed as follows. Each

partial path should contain edges a^ and a^; simplest path is that

consisting solely of these two edges. The other paths are those

consisting of a^ and an together with all combinations of the other
edges taken singly, in pairs, in threes, etc., the final path being

all the edges of the original path. The transformation that can be
applied to these simpler paths is also simpler in that the change of

106 -

capacity to each to each element is the same. So the transformation

to the path is to increment a, ̂ by a capacity and decrement

a, , by a capacity b if a, , £P where i, j are the end points ofK. , JL U K j JL ITl

the path and k, 1 are interior points. Any general transformation

of the type described above can be constructed out of a combination

of these simpler transformations. It is necessary to include edges

a^, a^ in every path so that a transformation does not increase the
capacity incident upon any node which is never required.

Let us examine the constraints upon the transformation factor

b .m
(1) Clearly a transformation should only be performed if it reduces

the cost of the network ie we must have

b_(Ic. ,-c. .) >0m k.,1 l, j
so b =0 if Jc, -,-c. .<0m k,l i,j—

(2) ‘ The added branches must have positive capacity

ie b/ I b >0 k,l m
(3) The total capacity of the arcs incident upon every interior node

of the path should be sufficient to satisfy the requirement

matrix. These capacities are reduced by b^ or 2*bm depending on
whether one or two edges in the path are incident upon a

particular node.

i e 1 bk , n - N* bm>mf ‘ (r k >l) < k | x kCTm)M i , j }n ’ 1
n£{l,2}

(4) It must be that reducing the capacity of the arcs in the path

does not reduce any minimum cut in the network so much that the

network no longer satisfies the requirement matrix constraints.

Consider the networks of fig 4.2(a), (b), (c). For each node

k^i,j in the path, the minimum cut with x̂ ,̂ x^.£X^,

107 -

x. £ X, is reduced by an amount 2b , b or 0 depending on how the
path crosses the cut. The capacity of these cuts should remain

large enough to transport the required flow for all nodes

to v

ie c'(Xk > V =c(Xk ’V - N*bm
>max(r) , N £{0,1,2}

It should be borne in mind that the capacities of the cuts are

not constant but depend upon any previous transformations that

may have occurred and it is from this fact that the difficulty

of the problem arises.
(5) Finally, if the path only crosses the minimum cut in one arc

only then there is a further constraint which must be satisfied,

which is that the minimum cut which crosses the path in two

places must also not be reduced excessively. Referring to fig

• 4.2(d) which illustrates such a- situation, it can be seen that

we must have

C'(V V =c(V V - 2*bm>”*x(rk,l>
The calculation of the maximum allowable value of b requires 2(N-2)m
flow calculations for an N node path.

4 .2 .3 Problem Relaxation

A useful technique is the consideration of a relaxed version

of the problem. A relaxation is a version of an optimisation

problem in which the objective function is unchanged but some of the

constraints are changed or relaxed so as to make the optimisation
more tractable. The solution of this simpler problem can often be

used as an aid in the solution of the complete problem.

The relaxation we make is to ignore the constraints (4) and

(5) of Section 4.4.2, ie to ignore the possibility that the results

of a transformation could violate any requirement matrix

constraints. This relaxed problem can be solved by linear

programming [DA2].

The linear programming formulation of the problem is as

follows. Let Cj . be the reduction in network cost that arises from
a transformation which adds unit capacity to the admissible edge

a. . and removes unit capacity from the path joining x. and x.; leti»J i J
b. .be the total capacity added to edge a. .. Then the total 1 > J 1 > J
reduction in network cost arising from all network transformations

is

C= I b. .c. .

where the summation is over all pairs (i,j) such that a. . is an> J
admissible arc. This is the linear objective function to be

maximised.

The constraints on the optimisation space to be searched are:

(1) The added arcs in the expansion should be all positive. This
can be rewritten in terms of our new variables as follows. Each

edge in the initial expansion tree is in a number of paths whose

capacity is to be reduced. The total reduction in capacity
should be less than the original capacity of the edge

ie Ibi,j<bk,i
where the edge set {a } is the set of edges in the initialk >i
network expansion and the summation is over all paths P. . which1 > J
contain ak,r

10 9 -

(2) The total capacity incident on all nodes should be sufficient

not to violate any constraints. Only the capacities incident

upon inner nodes of the flow equivalent tree are changed so only

these nodes need be considered. Let the initial added capacity

at inner node x^ be and the required capacity to meet the
constraints be q'. The sum of the reduction in capacity of theK.
paths passing through x_̂ must not reduce q^ to less than q^

le

where the summation is over all paths P_̂ passing through inner

node x, . k
The constraints which are ignored are that the b. .'s should be less

than some value so that the flow constraints are satisfied.

This problem is a linear objective function with linear

constraints and so can be solved by linear programming methods.

4 .2 .4 Branch and Bound Optimisation

The optimisation technique used in the algorithm proposed to

solve the problem described in the Introduction is the branch and

bound or decision-tree search method [LAI], The basic principle

involved in decision-tree search methods is the partitioning of an

initial problem P^ into a number of sub-problems P^,P^,...,P^ (whose

totality represents problem Pq) followed by an attempt to to resolve

each one of these sub-problems. By resolve we mean
either (1) find an optimal solution

or (2) show that the value of the optimal solution to the

sub-problem is worse than the best solution obtained so

far.

n o

This partitioning is represented by a tree (fig 4.3) in which

each node of the tree represents a sub-problem. The reason for the

partitioning of a problem P^ into a number of sub-problems is
usually that the sub-problems, because of their smaller size, are

easier to resolve. However, in general, it may still be impossible

to resolve a sub-problem and so this problem is partitioned
further. This partitioning, known as branching, is repeated for

every sub-problem which cannot be resolved. Once a complete tree

has been generated, then locating the optimum solution is a matter

of resolving all the problems at terminal vertices of the tree.
Obviously the problems at the leaves should represent fully the

original problem

ie P = U {P . IP -: leaf of tree}0 1 3 3

For computational efficiency, it is also desirable (but not

essential) that there should be no duplications in the generated

sub-problems

ie P . fl P .=0 i 3
The number of sub-problems generated increases exponentially

with the depth of the tree and so generating and storing all the

sub-problems before examination requires an impractically large

amount of memory, and so a technique is required to generate and

examine sub-problems sequentially. A commonly used strategy is

known as depth-first search [TA2]. In this type of search,
branching is continued from the last generated sub-problem until

finally a sub-problem is generated which can be resolved. At that

point, a backtracking step is taken ie the last-but-one sub-problem

generated is selected and branching continues from that vertex of

the tree. The shape of the decision-tree when the first sub-problem

is resolved is shown in fig 4 .4 x̂ here the order of priority for

investigation amongst existing sub-problems at this stage is

indicated by the numbering.

The method as described so far requires that all sub-problems
be generated and resolved directly, and as mentioned previously, the number

of sub-problems may be very large. The quantity of computation

required to fully investigate the tree may be reduced by the use of
bounding. If at any point during a minimisation (maximisation)

search a lower (upper) bound on the minimum (maximum) value of the

solution of the sub-problem at this vertex can be calculated, and if

this bound is greater (less) than the currently best known solution

then it is unnecessary to resolve any further sub-problems emanating

from this vertex and a backtracking step can be taken. If tight

bounds can be obtained, then it is possible to exclude large parts

of the tree from the search.

The order in which vertices should be examined when branching

forward has not been fully specified. The branching function is the

rule which determines this choice. The best function is that which

as early as possible locates the optimum solution and for each
optimisation problem a heuristic should be developed. A common

strategy is to branch onto that vertex which has the lowest

(highest) lower (upper) bound.

This optimisation technique is used in the algorithm to solve

our problem with the bounds being calculated by solving, by linear
programming, the relaxed version of the problem.

112

4.3 The Algorithm

We are now in a position to describe an algorithm to solve the

problem presented in the Introduction.

The first section of the method is identical with that used in

the algorithm of Chapter 3 . The initial network is analysed as

described in Section 3.3.1 and a sub-optimal solution which

satisfies the constraints of the requirement matrix is generated as

in Section 3.3.2. The remainder of the algorithm is concerned with

the minimisation of the network cost by the application of network
transformations.

Those transformations which are valid are identified first by

finding those edges which are admissible (Section 4.2.1) and then

examining the paths which join the ends of the edges in the set of
admissible edges.

We assert that if a sequence of transformations of the type

described in Section 4.2.2 is performed on the sub-optimally

expanded network then a minimum cost network can be obtained. A
proof of this is given in Section 4.3.4. A crucial and difficult

question in the optimisation process is concerned with choosing the

order in which the transformations should be performed should be
rerouted so as to obtain a minimum cost network. Unlike the problem

of the previous chapter, a set of rules for ordering the
transformations cannot be given and it is the location of the
optimal ordering which is the subject of the remainder of this

section.

As was suggested above, we partition the problem into smaller

113 -

and simpler problems by considering the constraints one at a time

until a tractable problem is obtained and search the tree thus

obtained using bounds generated by solving a relaxed version of the
problem to reduce the amount of the tree which need be explicitly

searched.

The partitioning of the problem to generate the tree to be

searched is as follows. The branching at the top level of the tree

is to take each of the paths which are able to be transformed and

apply the transformation on each of them separately so as to

maximise the reduction of cost for the single transformation by

maximising the capacity being rerouted. Thus, if there are N paths

eligible for transformation then there is an N-fold branching from

the top of the tree. From each resulting pendant vertex, branching

can occur in (N-1) directions as each of the remaining paths are

tak6n and transformed. The branching continues until eventually

there are N! terminal nodes to the tree. One of these terminal

nodes is the optimum solution to the expansion problem (see Section

4.3.4 below) and our task is to search the tree so as to locate the

optimum solution.

Two things are required to enable us to perform this search

efficiently
(1) A branching rule

(2) A bounding function
which are now be described.

114 -

4.3*1 A Branching Rule

The branching rule determines in which order the nodes of the

tree should be visited; a good branching rule should guide the

search so as to visit the node representing the optimum solution

earlier rather than later. The determination of the rule is 'ad

hoc7. In this instance the rule used is to branch first onto those

transformations which give maximum decrease on network capacity,

thus making the search akin to a steepest descent search; the global

optimum is not necessarily located at the first attempt and so

further searching is necessary. As the computational experience

with the algorithm presented later shows, this heuristic has proved

to be successful at rapidly locating the optimum.

4 .3 .2 A Bounding Function

To avoid searching the whole of the . tree (which hasl^i!

nodes, where N is the depth of the tree) it is necessary to

eliminate parts of the tree from the search using a bounding

function. Suppose we are at a certain point in the tree which is

not a terminal vertex. Solving the relaxed version of the problem

as described in Section 4 .2 .4 gives an upper bound on the reduction

in network cost available at any daughter node in the tree. This is

because solving the relaxed version of the problem ignores some of
the constraints and so the fully constrained optimum cannot be any

greater. If the upper bound on the reduction in cost is less than

the current best known reduction then a backtracking step can be

taken and the part of the tree emanating from this node need not be

explicitly searched.

115 -

The search terminates when all nodes have been searched either

explicitly or by elimination by bounding.

A .3.3 Reduction of Tree Size

In Section A .2.5 it was noted that it is desirable for

computational efficiency that there should be no duplication of

problems in the tree. The algorithm as presented so far, does

generate a tree with duplications and in this section we suggest a

method for eliminating this overlap of sub-problems.

Consider the situation in which two network transformations

T p T̂ are completely independent of each other so that whether they

are performed in the order 'i ̂ o r T^T^ there is no difference in

outcome. Thus, whether in the decision tree we branch first on T^

and then on T^ or vice versa, the sub-problems generated after these
two transformations are identical and so the sub-trees are identical

(fig A.5). The tree search is much more rapid if such duplication
can be avoided.

The way to store the vast amount of information concerning the

transformations in a compact form is to record the various amounts

of capacity rerouted each transformation and from these values a
decision can be taken on whether a problem exists in another part of

the tree.

Consider a part of a search tree depicted in fig A .6 . The

root of this sub-tree may be any node in the decision tree. Suppose

that the sub-problems emanating from node 2 have all been resolved.

Examination of the problem at node 3 can lead to two outcomes.

Either

116 -

(1) the value of the transformation at node 3 has already been

generated in one of the problems emanating from node 2. In this

case sub-problems emanating from node 3 have been previously

generated in the part of the tree extending below node 2 and so
there is no need to consider sub-problems 5, 6 etc.

Or

(2) the value of the transformation at node 3 is novel so the graphs

corresponding to daughter nodes of node 3 have not been

previously generated. Hence it is necessary to examine

sub-problems 5, 6 etc. In this search node 3 can become the
root of the tree corresponding to node 1 and a similar

elimination process undertaken.

If the value of the transformation at node 3 is new then

sub-problems 5 and 6 must be fully investigated. Sub-problem 5 must

be investigated by searching' alone but sub-problem 6 may be compared

with 5 for elimination. Once sub-problem 3 and its successors have
been examined then all the values of the transformations which

occurred in the sub-tree may be collected together with those from

sub-problem 2 and then sub-problem 4 resolved by comparing the value
of . the transformation with this increased set of values of

transformations.

4.3.4 Convergence of Algorithm to Optimum Solution

In this section we prove that the algorithm as presented

sythesises a minimum cost network. The argument used to prove that

the algorithm converges to the optimum solution is similar to that

used to prove that the Simplex Algorithm [DA2] solves the linear

programming problem.

117 -

As was pointed out in Section 4.2.3, the objective function
and the constraints of the problem are linear. A simple example of

a constraint space with two variables and three linear constraints

is illustrated in fig 4.7 . The theory of linear programming says
that the optimum value of the objective function is at one of the

vertices of the space where several constraints meet so to locate

the optimum one need only examine the value of the objective
function at these points and determine which is largest (or

smallest) . The Simplex method of Dantzig is an algorithm for
performing this operation in a systematic way. However, this
algorithm is not applicable to the problem at hand because it is not

possible to give explicit expressions for the constraints on the

values of the transformations in terms of the flow requirements.
Nevertheless, it is still so that the solution lies at a vertex of

the notional polytope formed by all the constraints of the problem.

The fact that the global optimum lies at one of the vertices

searched by the branch and bound algorithm follows from the argument

below which is to the effect that for any vertex not searched by the

algorithm, there is a vertex that is searched where the

corresponding network has less cost.

Suppose there exists a vertex at which not all the

transformations are at the maximum value possible without violating

any constraints. Now the objective function to be maximised (to
give a minimum cost network) is

C=Ib. .c. .

where the coefficients b. . are the values of the networki>J
Differentiating this expression wrt b^ . givestransformations.

118 -

dC
db.

so increasing a transformation factor b. . will increase the value) J
of the obiective function. The coefficient b. . can be increased J i,J
until another vertex of the polytope is reached at which it is no

longer possible to increase the value of b^ ̂ without violating any
constraints. The new vertex corresponds to a network with less cost

than that corresponding to the original vertex. This argument can

be repeated for all transformations not at the maximum value until a

vertex is reached at which all transformations are maximal. This

vertex has less cost than the original vertex and will be examined
by the algorithm.

4 .3 .5 An Example

An example showing the operation of the algorithm is given in

this section.

Figure 4.8(a) shows a graph whose branch capacity matrix is

- 8 10 19 0
8 - 0 7 2
10 0 - 0 0
19 7 0 - 2
0 2 0 2 -

and whose terminal capacity matrix is

17 10 27 4"
17 - 10 17 4
10 10 - 10 4
27 17 10 - 4
4 4 4 4

We wish to expand this graph with minimum cost to a network whose
terminal capacity matrix is

119 -

22 17 32 11
22 - 17 22 11

R= 17 17 - 17 11
32 22 17 - 11

_11 11 11 11 -
cost matrix for the

- 10 8 10 5
10 - 6 7 6

C= 8 6 - 9 1
10 7 9 - 8
_ 5 6 1 8

The first stage of the algorithm is to generate the suboptimal

network whose T-matrix meets the requirements. The expansion

network to achieve this is shown in figure 4.8(b). Next we locate

the edges in the network which are candidates for the expansion as

described in Section 4.2.1. In this instance it turns out that all

edges except (1,3) may be in the solution, which are nine in number.

There are eight transformations which reduce the network cost which
are

P1={(5,4),(4,1),(1,3)}

P2 = {(3,1),(1,4),(4,2)}

P3= { (5 , 4) , (4 , 1) }

■ P4 = K5,4),(4,2)}

P5= { (4 , n , a , 3) }

P6={(2 ,4),(4,1)}
and the partial paths of P and P„

P? = {(5 ,4),(1,3)}

P8={(3,1),(4,2)>

The complete search tree is shown in fig 4.9. The labels on

the branches of the tree indicate the values of the transformations

120 -

applied Co the paths to change the graph of the preceeding node to

the graph of the succeeding node. The first solution generated has

cost 57 and is obtained with the set of transformations

(4 ,0 ,0 ,0 ,0,1,1,2) ie edges in the path p are reduced in capacity by
4 and the edge (5,3) increased by 4 and the edges in paths 6,7,8 are

changed in capacity by 1, 1 and 2 respectively fig 4.8(c). The

second solution to be located is the global optimum with cost 51

obtained by the set of transformations (4 ,0,1,0 ,0 ,0,1,2) fig 4.8(d).

4 .3.6 Computational Results

Since a branch and bound algorithm is essentially an 'ad hoc"

technique for solving a problem, the only way to assess the

effectiveness of a technique is to write a computer program for the

algorithm and run it with a wide variety of input data. Such a

program was written in FORTRAN 77 and run on a CDC Cyber 170/855

computer. The graphs used for testing the algorithm were generated
as described in Chapter 3 and the cost matrix was generated by

randomly selecting branch costs/unit capacity from a uniform

distribution. Table 4.1 details the results of some typical runs of

the computer program. (Many other graphs were synthesised during

the course of the research and these results may be considered
typical.) The information contained in the table is: the number of

nodes in the graph, the number of nodes in the tree which were

explicitly searched, an estimate of the total number of nodes in the

tree, the central processor time required to execute the complete

algorithm and the time taken to locate the optimum. Several points

may be noted in this table
(1) For graphs of the same size, the time taken to reach the optimum

can vary considerably from problem to problem. Such behaviour

is quite common in branch and bound algorithms since the

effectiveness of the bounding function depends very much on the

way in which the cost function varies when some of the

constraints are relaxed.

(2) The complete search tree has an enormous number of vertices but

the bounding function is effective in reducing the space which

need be searched to a reasonable size.

(3) The size of graph which may be synthesised is quite small. This

is because both the computer memory and computer processing time
required for larger graphs would be excessive.

(A) There are several graphs (numbers 10,13,15) for which it was

impossible to resolve all the sub-problems in a reasonable time.

As is discussed below, these particular problems also gave rise

to unusual performance by the sub-optimal heuristics.

4 .A Suboptimal Heuristics

Particularly for large problems, the branch and bound

algorithm for the solution of the problem discussed in this chapter

takes a large amount of computing time and memory and so there may

be instances when it is desirable to obtain a good solution (not

necessarily the best) with little effort. Some heuristics are

suggested in this section which locate a 'good' solution and the

solutions obtained are compared with the true optimum solutions.

Two heuristics are suggested for determining the order in

which the transformations should be applied and some arguments as to
why they might locate good solutions put forward.

122

(1) Sort the transformations according to the decrease in network

cost obtainable for rerouting unit capacity such that those

which give largest decrease are applied first. This heuristic
is equivalent to stopping the branch and bound algorithm when
the first solution has been found and is called the steepest

descent method.
(2) Sort the transformations according to the cost of the arc

inserted with minimum cost arcs being inserted first. If the

expansion network is to have minimum weight, it seems reasonable
to construct it out of arcs having the least cost. This is

called the greedy algorithm.

These heuristics have been tried on a number of problems and

the results are given in table 4.2 which compares the costs of the

solutions located by the optimal algorithm and the two heuristics

for the same problems of Section 4 .3 .6 . Temporarily ignoring the

awkward cases of graphs numbers 10,13,15, in all cases the steepest

descent algorithm located a better solution than the greedy

algorithm. In 90% of cases the cost of the solution was within 10%

of the cost of the optimum solution. These results are typical of a

large number of experiments performed. This shows that the

branching rule chosen for the branch and bound algorithm, which is

the same as the heuristic rule which guides the steepest descent
algorithm is a good one in that it quickly locates a close to

optimal network. In about 50% of cases, the solution found by the
steepest descent method is the optimum solution. For graphs

10,13,15, the greedy algorithm located a better solution and in two

out of three of these cases, the resulting network was of less cost

than the best solution found by the optimal algorithm before it

123 -

Germinated. This indicates that there are a minority of graphs for

which the suggested branching rule does not perform well and so

perhaps two versions of the algorithm should be available, one which

uses the suggested rule and the other using a greedy branching rule.

4.5 Discussion and Conclusion.

The method for synthesising minimum cost networks satisfying a
given terminal capacity requirement matrix which has been described

in this chapter is a generalised version of the method of Chapter 3.

Both began by generating a solution within the feasible space and

then move in the space searching for an optimum feasible solution.

The network transformation employed is more complex than in

the uniform cost case. Furthermore, it is not possible to specify

'a priori7 the order in which the transformations should be applied

to minimise the network cost. This added complication means that

the optimisation strategy to apply should be a search method to

which end a tree search was developed. The tree which would arise

by permutating all possible transformations is vast and so three
devices were employed to reduce the tree size.

(1) It was shown that only a certain subset of the edges of the

graph should appear in the solution and so the search need never

consider a solution which included any of the forbidden arcs.

(2) A method to avoid the explicit searching of sub-trees identical

with sub-trees in other parts of the tree was developed.
(3) Most importantly, a good bounding function was found which was

to solve a relaxed version of the problem amenable to solution

by linear programming. The bounds obtained were very effective

in reducing Che amount of Che Cree which needed to be searched

explicitly.

It must be admitted that the computer implementation of the

algorithm permitted only fairly small graphs to be synthesised with

reasonable computer resources. This is partly because the program

was not written with efficiency in mind but only to demonstrate that

the optimisation technique worked. But also the problem is itself

very complex and so a large computer program would be expected.

These difficulties led to the investigation of heuristics which

locate sub-optimal solutions. In most cases these heuristics

identified good solutions but unfortunately there is no way of

determining whether the problem one is trying to solve is one in

which a good solution is located by the heuristics or one of the

rarer cases in which a good solution is not found.

A possible improvement to the algorithm was considered but not

implemented. Additional constraints on the relaxed version of the

problem can be generated by realising that the value of a

transformation cannot be more than the value of that transformation

applied to the original expanded network independently of any other

transformation. Hence a new set of constraints
*b <b m— m

•JS*

where b is the value of the transformation in the initial network m
can be added to the relaxed version of the problem which may speed

the convergence of the algorithm to the solution be generating

tighter bounds for the tree search.

For some of the problems, the amount of computation required

to locate the optimum solution was very large. If a sub-optimal

125 -

solution is acceptable then the following test can be used for early

termination of the algorithm. If the best solution so far known has

cost U and the lowest bound of any live node has cost L then the

algorithm is within (1J-L)/L of the optimum. When this parameter
falls below an acceptable value then the algorithm may be terminated

in the knowledge that a good sub-optimal solution has been located.

126

Graph Number of
Graph Nodes

Number of
Tree Nodes
Searched

Total Number
Tree Nodes

Total
Time

Time to
Reach Optimum

1 5 6 10n 0.10 0 .08
2 5 6 lOZ 0.11 0.10
3 5 87 106 0 .53 0 .27
4 5 58 10 6 0 .44 0.15

5 8 1344 1013 36 6 .7
6 8 276 10 2 i° ,4

5.1 4.2
7 8 222 3 .3 2 .7
8 8 16 10 13 0 .57 0.53

9 10 12 109
1048
io23
1023

0.45 0.39
10 10 * ■k 76
11 10 589 17 1.2
12 10 451 9.2 0 .8

13 11 * 1038 * 46
14 11 2526 103510,f

107 72
15 11 * * 24
16 11 116 1026 38 4.9

17 12 436 1034 2 .3 1.8
18 12 1236 105 1

1 >
1038

42 2 .9
19 12 44 6 .0 4.6
20 12 34 3 .4 2 .6

Table 4.1 Performance of Branch and.Bound Algorithm.
* For these graphs, the computer job time limit was reached before
the optimal solution was located. The time given is that to locate
the best solution obtained.

Graph Optimal Steepest Descent Greedy
Algorithm Algorithm Algorithm

1 52 52 52
2 76 76 76
3 51 57 57
4 24 24 24
5 82 100 100
6 118 118 119
7 111 117 120
8 48 48 48
9 106 106 108
10 120 170 156
11 142 142 15712 62 62 62

13 78 88 68
14 93 104 101
15 12 8 130 124
16 108 113 113
17 101 101 101
18 89 90 94
19 117 117 12 820 158 158 168

Table 4.2 Comparison of .Costs of Networks Located by Optimal
Algorithm, Steepest Descent Algorithm and Greedy Algorithm.

Figure 4.1

xk
(xu------------------------- (j

Xk /

© ©

Figure 4.2(a)

Figure 4.2(b)

130 -

o — ------------ O

o O

Figure 4-.2(c)

li

Figure 4-.2(d)

I
UJ 1— •

l

Figure 4.4

1

I
C3toi

Figure 4.6

133 -

Figure 4.7

134 -

135 -

136

Figure 4.9

NODE EXPANSION OF NETWORKS

13 8 -

5.1 Introduction

So far, the discussions of the expansion of networks have been

confined to the question of adding branches to a network so as to
simultaneously increase the minimum cuts between all pairs of nodes.

As was explained in Chapter 2 , the physical motivation for examining

this problem was from the point of view of increasing the traffic

handling capacity of a network. A further extension of the concept

of increasing the size and complexity of a network is to allow for

the possibility that additional subscribers may wish to be connected

to the network and request a certain communication capacity with

each of the other subscribers to the network The problem may be

posed in graph theoretic terms as the optimal addition of nodes to a

network such that the minimum cuts between the new nodes and each of

the other nodes in the network are greater than stipulated values.

We show that this problem can be solved by a simple generalisation

of the methods given in Chapters 3 and 4 of this thesis and thus
give a method for tackling the general network expansion problem in

which nodes and edges are simultaneously added to a network so as to
meet new requirement matrix constraints.

5.2 Node Expansion of Networks

We shall now give a formal statement of the problem to be

examined in this chapter.

Let G=(X,A) be an undirected graph with branch capacity matrix

Bn and terminal capacity matrix Tn where the superscript n denotes

an n by n matrix. Let Rm be a realisable requirement terminal

capacity matrix with m>n, such that r? .^t1? . for i<n and j<n and

r? ,>0 if i>n or j>n. How may a graph G / = (X/,A/) with branch 1 > J
capacity matrix B'm , terminal capacity T'm be synthesised such that

t' .>r. . -V (i,j), b' .>b. . i<n and j<n, b' .>0 i>n or j>n and at > J 1 > J 1 > J 1 } J i > J
cost function is minimised. The two cost functions to be considered

are total network capacity I b' . and total network cost 2c. .b' ..
i.J ltd

It can be seen that this is a generalisation of the problems

considered in Chapters 3 and 4 in that in earlier problems it was

only edge set A which was changed to a new set A' but now also the

node set X is increased to the new set X'.

As before the problem will be divided into two stages

(1) generation of suboptimal network and (2) optimisation of this

network for minimum cost.

5.2.1 Generation of Suboptimal Network

The generation of a suboptimal network which meets the

requirement matrix constraints is an extension of the idea presented

in Chapter 3 for the generation of suboptimal networks. There are

essentially two parts
(1) The realisation of the flow requirements between the nodes of

the set X of the original graph.

(2) The addition of extra edges to join the extra nodes in the set

X'-X to nodes of the set X with arcs of sufficient capacity to

meet the requirement matrix constraints.

The method of solving the first section has already been

discussed in Section 3 .3 .2 which is to calculate the flow equivalent

tree of the original network and increase the capacity of the

branches of this tree until each element of the branch capacity

140 -

matrix of the modified tree is greater than or equal to the

corresponding element in the requirement matrix.

We now discuss the method of extending the expansion network

to join the additional nodes to the network. The new network should

have the following properties.

(1) The network should be connected.

(2) The .extension should not affect the values of the minimum cuts

established by the previous calculations to realise the cuts

between the nodes in the original network.

The simplest and most obvious network which satisfies these

conditions is a spanning tree. The values of the cuts between the

nodes of the original network cannot be affected because the added

network being a tree has only one path between any pair of nodes and

the capacities of the minimum capacity arcs between pairs of nodes
of the original network have already been specified.

The positioning and capacity of the additional edges is

determined as follows. Considering the requirement matrix as a

distance matrix and, taking the cut tree of the original network as

a starting point, edges from the requirement matrix should be added

to the network in such a fashion as to maximise the length of the
tree using a greedy algorithm [KR1], [PR1].

It can be seen that this longest spanning tree satisfies the

requirement matrix constraints as follows. Only those cuts in which

at least one of the nodes is an additional node need be considered

since all other cuts have already been satisfied. Consider any
cut-matrix of the requirement matrix and the corresponding cut in

141 -

the cut-tree. If the largest entry in the cut-matrix is larger than

the cut in the cut-tree then this flow constraint could be satisfied

by removing the edge from the tree and replacing it with an arc of
larger capacity between the nodes corresponding to the element in
the cut-matrix. But this would increase the length of the tree,

contradicting the fact that the tree was a longest spanning tree.

Thus the longest spanning tree is a suitable expansion network.

5.2.2 Minimum Capacity Network

Next to be considered is the modification of the expansion

network in such a way as to minimise the total capacity of the

network. It is clear that we have exactly the same problem that was
presented in Chapter 3. All that is necessary is to cluster the

nodes hierarchically according to the minimum cuts of the network

and minimise the capacities of the resulting star-trees according to

the method of Chapter 3.

Example

Consider the network shown in figure 5.1(a) which has branch

capacity matrix

- 5 11 1 0 0
5 - 14 0 0 0
11 14 - 5 5 0
1 0 5 - 0 5
0 0 5 0 - 0
0 0 0 5 0 -

We wish to expand this network by the addition of two nodes and
edges such that it meets the requirement matrix

142 -

- 26 40 40 22 6 22 20
26 - 26 26 22 6 22 20
40 26 - 42 22 6 22 20
40 26 42 - 22 6 22 20
22 22 22 22 - 6 25 20
6 6 6 6 6 - 6 6

22 22 22 22 25 6 - 20
20 20 20 20 20 6 20 -

The sub-optimal expansion which attains this requirement matrix is

shown in fig 5.1(b). The branches between nodes 1 to 6 are

determined as before. The capacities of the edges (7,8) and (5,7)

are determined by the longest spanning tree method described in

Section 5.2.1 above. When the optimisation has been carried out,
the minimum capacity network which results is shown in fig 5.1(c).

The terminal capacity matrix of this network is identical with the

requirement matrix.

5.2.3 Minimum Cost Network

The construction of a minimum cost network from the

sub-optimal expansion network can again be seen as a generalisation

of the method of Chapter 4 for which the branch and bound algorithm
presented there gives a solution.

With the cost matrix

” - 3 3 10 6 5 6 8
3 - 10 6 8 9 5 9
3 10 - 1 4 8 10 3
10 6 1 - 1 5 5 2
6 8 4 1 - 8 5 1
5 9 8 5 8 - 10 2
6 5 10 5 5 10 - 4
8 9 3 2 1 2 4

the minimum cost network which satsfies the requirement matrix of

the previous section is shown in fig 5.1(d).

143 -

5 .3 Conclusion

The ideas presented in this chapter have been simple

extensions of the concepts of Chapters Three and Four where the

generalisation has been so as to handle the situation in which both

nodes and branches are to be added to a network to optimally
increase its terminal capacity matrix. In fact, the extensions are surprisingly

so slight that the term generalisation is scarcely warranted.

Almost no modification to the computer programs written to implement

the earlier algorithms was required to enable the more general

problem to be solved. Since the performance of the algorithm was as

before, no computational results have been presented in this

chapter. The major contribution of this chapter wao to show how to

generate a sub-optimal network which would satisfy a requirement

terminal capacity matrix when both edges and node are to be added.

144 -

145 -

146 -

r*

CONCLUSIONS AND SUGGESTIONS

FOR FURTHER RESEARCH

147 -

6.1 Conclusions

In this thesis an attempt has been made to shed some light on

certain problems in network synthesis which have not been previously

considered viz. the optimal addition of nodes and branches to an

undirected network so as to satisfy multi-terminal flow

requirements. This work has come close to completing a sequence of

results in the theory of network flows begun thirty years ago. The

areas that have been previously studied are the analysis of single

source/sink networks, multi-terminal network analysis,

multi-terminal network synthesis and single source/sink expansion.

A number of algorithms were developed to solve network

expansion problems, which in some respects resemble the known

methods for synthesis of undirected networks. These similarities

were discussed in the conclusion to Chapter Three. Each, algorithm

has two distinct phases, first the synthesis of a sub-optimal

network and second the optimisation of the network by branch

exchanges.

The problem of synthesising the sub-optimal network is tackled

through the concept of the cut-tree whereby ’all the information

concerning the terminal capacities of the network can be compressed

into a tree. This greatly reduces the dimensionality of the problem

and enables an expansion network to be calculated with little

difficulty. From this aspect of the work, the conditions which

determine whether an expansion is realisable can be derived. This

section of the algorithm requires little computational effort.

Cost minimisation of the network is through the technique of

branch exchange, but in contrast to most branch exchange algorithms,

an optimal solution rather than a local minimum can be obtained.

This is the most computationally expensive part of Che algorithms.

Turning first to the algorithm for uniform cost network

exapansion, the following general comments can be made concerning

it. The computation of the optimal network is made in a well
defined manner in the sense that after a known number of steps (or

less) the solution is generated. This upper bound on the

computational time was calculated by an analysis of the
computational complexity of the algorithm which led to the result

that the algorithm is of complexity O(n^). Although the algorithm

is polynomially bounded in time, the high order of the polynomial

leads to a rapid increase in computational time with the size of the

graph which limits the size of network which can be synthesised.

The inherent complexity of the problem would lead us to expect this

type of result, but as has been pointed out by Papadimitriou and

Steiglitz [PA1],

"For most problems, once any polynomial-time algorithm is
discovered, the degree of the polynomial quickly undergoes a
series of descents as various researchers improve the idea.
Usually, the final rate of growth is O(n^) or better."

Such a good result cannot be expected for this problem since a
3 5single flow calculation is 0(n) but an improvement on 0(n) may be

attainable.

The algorithm for synthesising a minimum capacity network is,

like all branch and bound algorithms, somewhat unpredictable in its

performance, with computation times varying by orders of magnitude

for graphs of the same size. As is discussed in Chapter Four, in

the majority of cases the algorithm performs well, but a minority of

examples are difficult to solve. It is suggested that an

examination of alternative branching rules and the inclusion of the

extra constraints mentioned in the conclusion of Chapter A would be

a useful exercise. There are no obvious reasons why some networks

should prove difficult to synthesise optimally, and an investigation

of this point would be interesting.

As a practical approach to the problem of synthesising

networks, if a good but not optimal solution is sufficient, then it

would seem to be best to apply the two heuristics approaches and

choose the solution which has the lesser cost. Thus even if the

network were of the type that is difficult to synthesise optimally,

it is likely that a good low cost solation would be generated by one

or other of the algorithms. As was seen, such a solution could be

better even than the solution located by the optimal algorithm in a

reasonable- time. Also, towards the end of a search, the optimal

algorithm can spend large amounts of time searching for a solution

only slightly better than the current best known solution and so,

provided that it is not essential to locate the globally optimum

solution, an early termination based on the lower bounds of the live

nodes may be a sensible approach. •

The algorithm for the simultaneous addition of nodes and

branches is an important generalisation of the above algorithms

because it provides a comprehensive approach to network expansion

and covers the very necessary case for the communication engineer

which is the addition of extra subscribers to an existing network.

150 -

6.2 Suggestions for Further Research

As with many graph theoretic problems, there are a number of

possible variations on the basic idea discussed in this thesis. We
have here been concerned with the problems of synthesing undirected

networks of flow with uniform branch cost and branch cost

proportional to the capacity of the branch. A further type of cost

function, and the most difficult to deal with, is that where the

edge cost is a non-linear function of the edge capacity. The paper

of Christofides and Brooker [CH3] contains an algorithm for the
solution of an expansion problem with this type of cost function but

for the single source/sink case. An approach along their lines

would seem to be most likely to produce results in the

multi-terminal case, but the method would need to be extended to

examine cuts between all pairs of nodes as arcs are included and
excluded from the solution network.

Another .aspect of the expansion problem is the fact that all
iedges have been considered undirected. As can be seen from the

discussion of network synthesis in Chapter Two, the problem of

directed network synthesis is much more complex than undirected

network synthesis; it is likewise so with network expansion. Again,

a two stage approach seems promisimg- sub-optimal expansion followed

by cost minimisation. The problem of sub-optimal expansion is

greatly eased in the undirected case because all of the n(n-l)/2
elements of the requirement matrix can be represented by the (n- 1)

edges of a tree, whereas for directed networks, all of the cuts must

be considered independently. The concept of a semi-graph will

probably be useful in enabling the cuts to be considered in

151 -

isolation so as to synthesise a sub-optimal network. Once this
network has been synthesised, a cost minimisation procedure along

the lines of those suggested in this thesis can be applied. The

realisability conditions will also be complex and probably only

expressible in terms of the algorithm as in the simple synthesis

case.

152

REFERENCES

153 -

[AG 1]

[CHI]

[CH2]

[CH3]

[DAI]

[DA2]

[Dll]

[EDI]

[ELI]

[FL1]

[F 0 1]

A. K. Agarwal and S. R. Arora, Synthesis of Multiterminal

Communication Nets: Finding One or All Solutions, IEEE Trans.

Circuits and Systems, vol CAS-27 , 141-146 (1976).
N. Christofides, Graph Theory: An Algorithmic Approach,

Academic Press, New York, 1975.

R. T. Chein, Synthesis of a Communication Net, IBM J. Res.

Develop., vol 4 , 3 11-320 (1960).
N. Christofides and P. Brooker, Optimal Expansion of an

Existing Network, Mathematical Programming, vol 6, 197-211

(1974) .
G. B. Dantzig and D. R. Fulkerson, On the Max-Flow Min-Cut

Theorem of Networks, in Linear Inequalities and Related

Systems, Ann. Math. Studies, vol 38, 215-221 (1956).
G. B. Dantzig, Linear Programming and Extensions, Princeton

University Press, Princeton, NJ, 1963.

E. A. Dinic, Algorithm for Solution of a Problem of Maximal

Flow in a Network with Power Estimation, Soviet Math. Dokl.,

vol 11, 1277- 1280 (1970).
J. Edmonds and R. M. Karp, Theoretical Improvements in

Algorithmic Efficiency for Network Flow Problems, J.ACM, vol

19 , 248-264 (1972) .
P, Elias, A. Feinstein and C. E. Shannon, A Note on the

Maximium Flow Through a Network, IRE Trans. Inform. Theory,

vol IT-2 , 117- 119 (1956) .
R. W. Floyd, Algorithm 97- Shortest Path, Comm. ACM, vol 5,

345 (1962).

L. R. Ford and D. R. Fulkerson, Maximal Flow through a

Network, Can. J. Math., vol 18, 399-404 (1956).

154 -

[F02] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton
University Press, Princeton (1962).

[FR1] H. Frank and I. T. Frisch, Communication, Transmission and

Transportation Networks, Addison-Wesley, Reading, Mass.,

1971.

[FR2] I. T. Frisch and D. K. ’Sen, Algorithms for Synthesis of

Orientated Communication Nets, IEEE Trans. Circuit Theory,

vol CT- 14 , 370-379 (1967).

[FR3] H. Frank and W. Chou, Topological Optimization of Computer

Networks, Proc. IEEE, vol 60 , 1385- 1397 (1972).
[FR4] H. Frank, R. E. Kahn and L. Kleinrock, Computer Communication

Network Design: Experience with Theory and Practice,

Networks, vol 2 , 135- 166 (1972).

[FU1] D. R. Fulkerson, Increasing the Capacity of a Network: The

Parametric Budget Problem, Management Science, vol 5, 472-483

(1959).
[G01] R. E. Gomory and T. C. Hu, Multiterminal Network Flows,

J .SIAM, vol 9, 55 1-570 (1961).
[G02] R. E. Gomory and T. C. Hu, An Application of Generalised

Linear Programming to Network Flows, J.SIAM, vol 10, 260-283

(1962) .
[GUI] R. P. Gupta, On Flows in Pseudosymmetric . Networks, J.SIAM,

vol 14 , 2 15-225 (1966).

[HU1] T. C. Hu, Integer Programming and Network Flows,

Addison-Wesley, Reading, Mass., 1970.
[HU2] T. C. Hu, Minimum Convex Cost Flows, Naval Research Logistics

Quarterly, vol 13 , 1-9 , (1966).
[HU3] T. C. Hu, Optimum Communication Spanning Trees, SIAM J.

155 -

Comput., vo 1 3, 188- 195 (1974).
[J01] E. L. Johnson, Networks and Basic Solutions, J.ORSA, vol 14,

619-623 (1966).
[KR1] J. 3. Kruskal, On the Shortest Spanning Subtree of a Graph

and the Travelling Salesman Problem, Proc. Amer. Math. Soc.,

vol 7 , 48-50 (1956) .
[LAI] E. L. Lawler and D. E. Wood, Branch and Bound Methods: A

Survey, OR, vol 14, 699-719 (1966).

[LI1] S. Lim, Computer Solutions to the Traveling Salesman Problem,

BSTJ, vol 44, no 10, 2245-69 (1965).
[MAI] W. Mayeda, Terminal and Branch Capacity Matrices of a

Communication Net, IRE Trans. Circuit Theory, vol CT-7,

261-269 (1960) .
[MA2] W. Mayeda, On Orientated Communication Nets, IRE Trans,

Circuit Theory, vol.CT-9, 261-267 (1962).

[PA1] C. H. Papadimitriou and K. Steiglitz, Combinatorial
Optimization: Algorithms and Complexity, Prentice-Hall,

Englewood Cliffs, New Jersey, 1982.

[PR1] R. Prim, Shortest Connection Network and Some
Generalisations, BSTJ, vol 36 , 1389- 1401 (1957).

[SE1] D. K. Sen and I. T. Frisch, Synthesis of Oriented

Communication Nets, IEEE Symposium on Signal Transmission and

Processing, New York, 1965 , 90- 101.

[ST1] K. Steiglitz, P. Weiner and D. J. Kleitman, The Design of

Minimal Cost Survivable Networks, IEEE Trans Circuit Theory,

vol CT- 16 , no 4 , 455-60 (1969).

[TA1] D. T. Tang and R. T. Chien, Analysis and Synthesis of

Orientated Communication Nets, IRE Trans. Circuit Theory, vol

156 -

CT-8, 39-44 (1961) .
[TA2] R. E. Tarjan, Depth- first Search and Linear Graph Algorithms,

J SIAM Comp, vol 1, no 2 , 146- 160 (1972).
[TS1] S. Toueg and K. Steiglitz, The Design of Small Diameter

Networks by Local Search, IEEE Trans Comput, vol G-28, no 7,

537-42 (1979).
[WI1] 0. Wing and R. T. Chein, Optimal Synthesis of a Communication

Net, IRE Trans. Circuit Theory, vol CT-8 , 44-49 (1961).

