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ABSTRACT

Twin-screw extruders for polymer processing are still designed 

mainly by trial and error using expensive experimental methods. An 

attempt is made to establish a theoretical method of predicting melt 

flow behaviour in counter-rotating twin-screw extruders for the purpose 

of readily obtaining information relevant to extruder design and operation. 

The recent development of a part-empirical mathematical model for Newtonian 

flow in this type of extruder is used as the basis for further research 

towards the development of a similar model for predicting the non-Newtonian 

flow behaviour of polymer melts in intermeshing screws. In general, the 

greatest difficulty that arises in the analysis of the twin-screw extrusion 

process is the complicated geometry of the flow passages between the inter

meshing screws. An analysis of the non-Newtonian melt flow in the screw 

channel and leakage clearances is carried out using a power law constitutive 

equation to characterise the non-Newtonian property of polymer melts. The 

deep-cut channels of a typical twin-screw extruder requires the use of a 

deep-channel flow analysis whilst in the leakage clearances one and two 

dimensional narrow channel flow analysis is employed. The theoretical 

equations are those derived by application of continuum mechanics and are 

solved on a digital computer using numerical methods, which include finite 

difference and finite element techniques. The geometric flexibility of the 

finite element method makes it suitable for use in the analysis of the 

intermeshing region, and a method of predicting the leakage flow which goes 

from one screw to the other through this region is developed. A mathematical 

model is developed for predicting a relationship between throughput rate and 

axial pressure drop for melt conveying in the twin-screw extruder. Experi

mental results are obtained from tests performed on a plasticating twin-screw
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laboratory machine extruding polymer melts. Comparison of theoretical 

and experimental results shows that satisfactory agreement can be obtained 

for the extrusion of Newtonian fluids and for the highly non-Newtonian 

polymer melts extruded.
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CHAPTER 1

INTRODUCTION

Extrusion is widely used in the plastics industry for the 

continuous processing of polymeric materials into useful products. 

Continuous shapes such as sheets, tubes and rods are made using screw 

extrusion. Although single-screw extrusion is the generally accented 

method in common use, the practise of twin-screw processing is steadily 

increasing. Over the past decade, the introduction of more demanding 

processing operations has brought with it the need for more sophisti

cated and specialised machines. For many of these applications, a 

tvin-screw extruder is often used as an alternative to, and offers 

decisive advantages over, a single-screw machine.

1.1.1 Screw extrusion of polymers.

In the screw extrusion of plastics, screw-barrel type of

extruders are used to deliver a continuous supply of polymer melt usually

to a die or mould to form a product of required shape. Because polymer

melts can be very viscous, high pressures and consequently large amounts

of power are required for plastic extrusion. Although melt extruders

are quite common, the most widely used extrusion machine is the
1*

plasticating type of extruder. It efficiently and continuously converts 

solid polymer into melt and pumps the highly viscous melt through a die 

at high pressures. Solid polymer usually in the shape of pellets, chips, 

beads or powder is fed to the extruder hopper; the solid feed may 

consist of compounds of polymer blends or a compound with additives.

The process consists of essentially three distinct operations, namely, 

solid conveying, melting and melt conveying (Figure 1.1.1). The condition

*Numbers r e f e r  to  a l i s t  o f  r e feren ces  g iven  on page 194
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1-1 Cross-sectional view of a typical single screw plasticating extruder.
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of the polymer in each functional zone depends a great deal on screw 

design and operating conditions. In addition to melting and conveying 

the polymer to the die, the screw extruder mixes and homogenizes the 

melt at high temperatures• The heat for melting is supplied by 

conduction from heaters in the barrel and can be generated in the 

material from the viscous dissiuation of mechanical drive energy 

transformed into thermal energy. One measure of quality in the product 

is the temperature uniformity and homogeneity of the extrudate or melt 

leaving the extruder. Normally the plasticating extruder can accomplish 

all these tasks without the possibility of thermal degradation of the 

polymer. Barrel tenroerature setting is selected according to the 

polymer extruded and the temperature has to be high enough to melt the 

polymer without causing thermal degradation. The frequency of screw 

rotation at which the extruder will operate depends on the size of the 

extruder and production rate requirements, the limiting factor in a 

given size extruder being quality. Higher screw speeds will produce 

higher throughput but will normally result in deterioration of quality.

1.1.2 Single-screw extruders.

The most common type of screw extruder consists essentially of

a single Archimedian screw rotating in a closely fitting cylindrical

barrel. The principle of operation is like a screw pump in which the

material is dragged along the screw channel by the relative motion of
1

the screw and barrel. The material is conveyed from the driven to the
generally

free end of the screw with increasing pressure. The pressure developed 

along the extruder depends largely on screw design but is normally quite 

high at the die because of the high viscosity of polymer melts. The 

condition of the polymer in each functional zone (Figure 1.1.1) depends 

a great deal on screw design and operating conditions. The principle
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geometrical variable of the screw is the channel depth. A common type 

of screw is the 'metering screw* which has three geometrical sections, 

as illustrated also in Figure 1.1.1 , namely, a deep feed section, a 

tapered compression or transition section and a relatively shallow 

metering section. The relatively deep feed section enables the lower 

density feed solid to be conveyed at the same rate as the polymer in the 

other sections of the screw thus preventing starvation along the extruder. 

Conveying of melts in shallow channels also enables the polymer to 

undergo high shear levels which can raise the melt temperature from 

viscous heat dissipation but increases mixing and ensures homogenization 

of the melt before it reaches the die.

The mechanism of conveying the polymer depends largely on

frictional forces between the polymer and barrel to push the material 
1 2forward.’ If the material filling the screw channels of a single screw 

extruder sticks to the screw and slips on the barrel it simply rotates 

with the screw without being pushed forward. To advance along a barrel 

material should slide as freely as possible on the screw and adhere as 

much as possible to the barrel; the forward motion of the leading 

edge of the screw flights producing the force necessary for the 

material to advance along the screw channel. Because of the finite 

clearance between the screw and barrel and the pressure gradient along 

the screw channel some polymer leaks across the screw flights. This 

reduces the effectiveness with which the screw can pumD the material 

forward but can imorove mixing in the extruder.
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1.1.3 Twin-screw extruders*

In twin-screw extruders, the mechanism of conveying materials

to the die can be quite different from that in singlersscrew machines.

In principle the operating stages are the same in both extruders, these

being solid conveying, melting and melt pumping but, in a typical twin-

screw machine, the pumping action is positive if the screws intermesh.

A typical twin-screw machine consists essentially of two extruder

screws rotating next to each other in a figure of eight section barrel.

Figure 1.1.3*1 illustrates arrangements of twin screws which can be

either intermeshing or non-intermeshing. In non-intermeshing twin-screw

extruders, screws are placed side by side with the distance between their

centres equal to at least the diameter of one screw. Such extruders are

still very dependent on frictional forces for conveying materials and

their behaviour is not very different from a single-screw unit, although

there is some interaction between the screws^. In intermeshing twin-

screw extruders the flights of one screw penetrates the channel of the

other forming C-nshaped chambers which can positively convey the material

from the hopper to the die when the screws rotate, thus behaving like a
4 5positive displacement pump 9 . Twin screw machines with intermeshing

screws are those most commonly used for processing polymers.

Positive conveyance of the material in twin screw equipment is 
the

largely independent of frictional relations that control' conveying of the
2material in a single screw unit . Thus, intermeshing twin screw extruders 

will convey,‘with comparable efficiency, materials of very high or very 

low viscosity and materials with very high or very low coefficients of 

friction against metal surfaces. It is possible and customary, also, 

to operate twin screw equipment with partially filled chambers only.

A twin screw machine with intermeshing screws will convey a material with 

approximately the same efficiency whether the channels are completely

♦
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*

co rotating
intermeshing non-intermeshing

FigureM-3-1 Arrangements of counter and co-rotating 
screws of twin-screw extruders.
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filled with material or only partially filled.

Twin-screw extruders are often used, therefore, for materials which 

are inherently difficult to process with a single-screw extruder^,^,®,^,^ ,^  

Such problems are, for instance, slip which can occur at the metal/polymer 

interface and can seriously reduce the transporting capability of the 

extruder, and/or too much viscous heat generation which can cause overheat

ing of degradation sensitive materials, both conditions produced mainly 

by the high screw speeds(l00-200rpm) necessary to obtain the required 

throughput rates in shallow channels of single-screw-machines. These 

difficulties are largely overcome in twin-screw extruders by operating, 

with comparable output rates, at low speeds(l0-60rpm) using screws with

deep channels positively to convey the required quantity of material in
5 10chambers where, in any case, slip at the walls is irrelevant. 9

Positive conveying behaviour in twin screw extruders is largely

dependent, however, on how well the various screw channel sections are
2 5 12closed off when the screws are intermeshing.9 9 In some screw geometries 

there can be very little sealing off of the C-shaped chambers formed 

even when the screws are fully intermeshing. The formation of partly-closed 

chambers creates the opportunity for material to leak back into upstream 

channel sections and adversely to affect the positive conveying behaviour 

of the extruder. Because of the need for mechanical clearances, the . ̂ 

chambers tend not to be completely sealed, even for closely intermeshing 

screws•

Intermeshing screws of twin screw extruders can be designed to 

rotate either in the same direction(co-rotating screws) or in opposite 

directions (counter-rotating screws). In both types of extruders, a 

high degree of positive conveying can be achieved with the minimum 

clearances that the closely intermeshing screws would allow. Normally 

the highest degree of positive conveying can be achieved with the

«k
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counter-rotating extruder because it allows a screw geometry with a
5

maximum sealing of the screw channel sections. In general, twin screw

extruders with small mechanical clearances, have to run at low speeds to
2avoid build up of high local pressures that could cause machine wear. 

Co-rotating intermeshing twin screw extruders with only a small degree
13 14 15of positive conveying are those with self-wiping type screws. 9 

Such screws can normally be designed with relatively small flight tips

and consequently, with an almost fully-opened channel from one screw to

the other. The mechanism of conveying in this type of machine is similar

to that of a single-screw extruder and requires the machine to operate

at high screw speeds (up to 500rpm).

It is generally accepted that twin screw extruders can be

designed to provide far better mixing than basic single screw machines
2 11 12 16 17(i.e. without mixing devices). * 9 9 ' Usually effective mixing

can be accomplished in twin screw extruders by exchange of material

between screws and the transfer of material from one screw channel to the

other. In single screw extruders, there is no equivalent mechanism.

Leakage flow is limited by the small clearance between screw

flights and barrel and usually, the local movement of melt in the shallow

channels of rather long metering sections has to be relied upon for

adequate mixing to occur! By varying the clearance between the screws

the degree of positive conveying can be controlled by varying the

oositive conveying of the screws which also affects the homogenization
5 12and residence time distribution.9

also be produced. To examine fully the performance of such machines, it

is important to include the effects leakages have on melt conveying. Only

when these flows are fully accounted for can their contribution towards

nower consumption and mixing be determined.9 9 It is, however, the

presence of leakages which makes the Drocess more comDlex and difficult 
5

to analyse and, for this reason, twin-screw machines for polymer processing 

are still designed largely by using Practical trial and error methods.
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1.1.4 Leakages in Twin screw extruders.

Some of the theoretical"principles of the main types of
4

multi-screw extruders were first introduced by Schenkel. The theory 

for twin screw extruders with intermeshing screws considers the working 

material to be contained in a number of separate closed spaces. These 

include the three distinct working regions shown in Figure 1.1.4*1* 

that is: the C-shaped spaces(a) between the annular flanks of the two screw 

flights, the cylindrical surfaces of the screw roots and the barrel 

wall; the spaces(b) between the cylindrical surfaces of the root of 

one screw and the flight land of the other; and the wedge region(c) 

between the overlapoing flanks of the two screw flights. The positive 

conveying capacity of the completely filled C-shaped volumes(which includes 

all working regions and which are assumed to be more or less hemetically 

sealed by the screw flights and barrel) of twin screws rotating at screw 

speed N is taken simply as the number of chambers becoming free at the 

die per unit time multiplied by the volume of one chamber. The ideal

theoretical output of a twin screw extruder for screws with m starts(or
. 4,5

channels per pitch) can be calculated from the equation, *
Q = 2mNVol. 1.1.4*1

where Vol. is the volume of each chamber for.identical uniform intermeshing 

screws. Because the chamber volumes cannot be completely sealed, the 

actual output is always a little less due to leakage flow, QT thus;

Q = Q - Q 1.1.4*2a L
For closely intermeshing screws of small radial clearance, Schenkel^- •• 

states that the leakage flow is between 5 and 10 percent of the ideal 

pumping capacity, depending on the die pressure and the viscosity of the 

melt. For larger axial distance between the flanks of the flights and/or 

a larger radial distance between the cylindrical surfaces, pressure flow 

appears in opposition to the positive conveyance and back flow increases, 

just as in a single-screw extruder. Other workers determined the
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Figure1-1-4«1 Cross-sectional view showing working 
regions.
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leakage flows of twin extruders by using a correction factor(less than one)
5

with the ideal positive conveying capacity to calculate the actual output.

This correction factor was usually an undefined experimental constant

not related directly to the mechanisms that occur in the twin screw extruders.

In recent years, attempts have been made to examine and understand 

the mechanism of flow in twin screw extruders. Most studies, however, 

completely neglected the leakage flows and concentrated only on the flow
20 21behaviour in sealed chambers of intermeshing screws with shallow channels. 9

22One exception is the study made by Janssen on the phenomena in

counter-rotating twin screw extruders. He realised the importance of the

leakages and their effects on the throughput and suggested suitable

mathematical treatment for predicting leakage flow of isoviscous fluids.

A Newtonian analysis, however is likely to be ar>propriate only for polymer
23melts which are mildly non-Newtonian. Polymer melts are extremely

non-Newtonian and studies on single-screw extrusion have shown that
be

output rates canAseriously overestimated if these melts are treated as 
-)

Newtonian fluids. Nevertheless, from Janssen's work further research 

can be carried out towards the development of a similar mathematical model 

for predicting flow behaviours of actual melts in twin-screw extruders.

In the analysis, the ideal theoretical output of a twin screw 

extruder is given by equation 1.1.4*1 and it is reduced by the presence 

of leakages in the machine. Figure 1.1.4.2 shows the arrangement 

of counter rotating intermeshing screws with the leakages which have been
5

described in detail by Janssen. The four leakages shown are as follows:

(1) The flight leakage, Q^, through the small clearances between the 

screw flights and barrel and is similar to that in a single screw extruder.

(2) The calender leakage, Q^, through the clearance between the flight

tip of one screw and the screw root of the other and goes from one C-shaped chamber 

to the other of the same screw.



barrel

transport direction
FigureM-4-2 Leakages in counter-rotating screws.
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(3) The side leakage, Q , through the clearance between flanks of thes
screw flights and goes in a direction perpendicular to the plane through 

the screw axes.

(4) The tetrahedron leakage, Q̂ ., through the clearance that goes from

one screw to the other between the flanks of the flights of the two screws.

The analytical mathematical model developed by Janssen for

predicting the leakage flow rates was partly empirical. A formula

developed from experiments performed on stationary models of the gap
5

was used to predict the tetrahedron leakage. It is mainly

the complex shape of the intermeshing region that makes the flow difficult

to analyse.

1.2 Objective and scope of the present work.

The object of this investigation is to attempt to establish a 

theoretical method for predicting polymer melt flow behaviour in counter

rotating twin-screw extruders. Such a -theoretical procedure would be 

useful in solving the practical industrial problems of operation and 

design.

The study involves examining both theoretically and experiment

ally, melt flow in counter-rotating twin-screw equipment. Janssen*s 

approach towards the development of the^Newtonian flow model is extended 

to include non-Newtonian flow in the extruder. A flow analysis is 

carried out to attempt to find a general theoretical method which can 

be used to predict melt flow in the extruder. The treatment used is to 

be verified by comparison with experimental results obtained from the 

extrusion of polymer melts.
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Chapter 2

Melt Conveying Zone

2.0 Introduction.

A review of literature relevant to the melt conveying process 

of a counter-rotating twin-screw extruder was carried out to determine 

the important aspects which are to be considered in the development of 

the mathematical flow mode} for the extruder. A satisfactory theoretical 

model for the melt conveying zone of the plasticating extruder should 

stipulate the equations for calculating the flow rate, pressure, temp

erature and velocity distributions in the various flow passages. These 

equations should include the pertinent physical properties, geometrical 

information about the intermeshing screws and barrel and operating 

condition and, finally, supply information relevant to extruder design 

and operation. For the understanding of plasticating counter

rotating twin-screw extruders, a good understanding of the melt 

conveying process is of paramount importance. In this chapter, therefore, 

an account is given of the working principles which include the mechanism 

of conveying and flow behaviour likely to occur in the channel and 

leakage gaps of the extruder. Mathematical flow models which have been 

developed for examining melt flow in channels of single-screw extruders 

and which may be relevant to flow behaviour in twin-screw extruders are 

discussed with the effects melt properties and operating conditions are 

likely to have on extruder throughput.
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2.1 Conveying Mechanism.

A twin-screw extruder with intermeshing screws behaves like a

positive displacement pump. The intermeshing screws form series of

C-shaped chambers which convey the material from the hopper to the die

by the displacement effect of the intermeshing screw threads produced

by screw rotation. The mass of the material rotating in these chambers

and becoming free at the die per unit time determines the throughput of
a 5

the machine. At the free end of the screws, a high pumping pressure 

is normally generated due to the restriction offered by the die to the 

positive conveying action of the extruder.

This positive pumping action can be reduced by leakage in the 

extruder. Because of the need for mechanical clearances the chambers 

are not completely sealed even for closely intermeshing screws, and 

material leaks back along the extruder from chamber to chamber. Conse

quently, the pumping capacity of the machine can be reduced by these 

leakages which allow the die pressure to be transmitted back through the 

chambers of the extruder. When this die pressure is transmitted as far 

back as the feed end of the machine, the twin screw extruder is operating 

with all the chambers completely filled with material and the feeding

process and thus machine output can be influenced by the pressure developed 
5

at the die. For instance, the higher die pressure which can be generated 

as a result of using a smaller die, would reduce extruder output by 

producing larger leakages from the steeper build up of pressure in the 

extruder.

In general, it is customary to operate twin-screw extruders with 

partly-filled chambers in the feed zone. Under this condition, back pressure 

due to the restriction at the die can only be generated when the chambers 

at the die end of the extruder become filled with material. leakage flow 

from these chambers may in turn become full depending on the amount of back

*
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pressure and the size of the clearances. In other words, this effect can

be imagined also as a gradual falling or relieving of the pressure developed

at the die when the material leaks or overflows from each chamber in turn.

This type of behaviour can be found in plasticating twin-screw extruders

(illustrated in Figure 2.1.1) in which the pressure builds up only as the

die end is approached and the chambers become completely-filled with melt
5

over this length of the machine. Over the remaining part of the extruder, 

the chambers are only partly-filled with material i.e. from the hopper to 

the point where the die pressure falls to zero, and the conveying mechan

ism in these earlier regions can no longer be influenced by what happens 

at the die. The throughput of the machine is now governed mainly by the 

feeding process at the entrance region of the extruder and is independent of
5the die pressure. It is obvious, therefore, that the amount of material

entering the extruder from the hopper directly determines the output rate

while the required leakage is the additional amount necessary to produce

complete filling and to raise the pressure over each chamber at the die.

Once the feed rate to the extruder is kept constant both output and
For isothermal Newtonian flow

leakages at a given screw speed would also be constant, by generating 

a higher pressure at the die, for instance by pumping the same extruder 

output through a smaller die, the leakages and associated back-pressure 

drop remain unchanged and there must be an increase of the completely- 

filled length of the extruder. The number of completely-filled chambers 

in the extruder, therefore, is likely to increase with increasing die 

pressure as long as the back-pressure generated in the extruder is con-
5

fined to the metering zone. Only by increasing the rotational speed of 

the screws can there be both a pressure rise and a constant fully-filled 

length in the metering zone. Then the machine will deliver the same 

output as a result of the increased leakages generated from the larger 

back-pressure gradients and higher screw speed. Knowledge of the number 

of fully-filled chambers is necessary for determining screw performance 

and extrudate quality?
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2.2 Flow behaviour in counter-rotating intermeshing screws.

The flow of melt in chambers of counter-rotating twin-screw

extruders is produced by the drag effect of the rotating screws and the

pressure forces developed in the extruder. The back-pressure generated

along the screws due to die pressure is only partly responsible for the

flow behaviour in the twin-screw extruder. Melt is also conveyed through

the leakage clearances and within each chamber by drag flow due to the

moving surfaces together with pressure flow produced by internal pressure

generation as a result of the flow within each passage. The net effect

of these flows is the result of the pressure difference between adjacent
5

chambers in the extruder. The working regions which can be examined 

separately, therefore, are the C-shaped spaces themselves and then the 

regions which join each of the chambers together i.e. the leak passages 

previously described and illustrated in section 1.1.4, Figure 1.1.4*1.

In each separate chamber, the material is exposed to the drag 

effect of the rotating surfaces and pressure gradients are developed 

resulting in complicated counter-currents in the screw channel. These are 

comparable, in principle, to the pressure flows which occur in the single

screw extruder, resulting in the material travelling in a helical path in
•j

the channel. The material rotates with the screw channel but also sticks 

to the barrel where it can be dragged across the channel in the direction 

(of screw rotation) perpendicular to the screw axis, Figure 2.2.1. This 

motion can be resolved into two mutually perpendicular directions, one 

component acting, in-the direction along the channel and the other, perpen- - 

dicular to the flights, the angle of inclination of the flight being the 

helix angle. The net flow perpendicular to the flight is zero and counter

pressure flow produces recirculation. If the pressure flow generated 

along the channel is equal and opposite to the drag flow, there is no net 

downstream movement and recirculation occurs, with the material at the

%
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transport direction
Figure 2-2-1 Channel flow due to relative motion, 

with station ary screw and rotating 
barrel.

*



flight moving towards the screw root and returning along the bottom of 

the channel in the direction of screw rotation. For a smaller back-pressure 

flow which would produce only a reduction in the drag flow, a net down

stream flow would exist with material turning over at the flight wall but 

this time proceeding along the bottom of the channel in a helical path, 

the closer the net flow is to pure drag flow the more forwarding motion and 

the more open would the loops of the helix.

In counter-rotating extruders, however, the pressure flow along 

the channel is generated in the oppositedirection to screw rotation.

Where the screw surfaces converge in the intermeshing region, high pressure

regions can be found on this side of opposed chambers of the extruder and
2 5 20low pressure regions at the opposite end when the surfaces diverge,

Figure 2.2.2. This would always produce a pressure flow in the downstream 

direction of each chamber with a flow larger than that due to drag and the 

production of a shorter helical' path than that produced with pure drag flow. 

For chambers with very little pitch (helix angle almost zero), material 

would be conveyed directly from one end of the chamber to the other as 

illustrated in Figure 2.2.3* without travelling along the complicated heli

cal path as in the case of screws with finite pitch.

Because the channels of twin-screw extruders tend to be almost 

closed at the intermeshing region, the enclosed volume of melt would be 

recirculated in each chamber. The closed nature of the chambers and this 

recirculatory flow would produce a complex flow field of a three-dimensional 

character. In the region far from the intermeshing zone, the influence of 

the rotating flight walls on the counter-pressure flow generated in the

channel produces a flow profile with a zero velocity layer which is station-
5ary with respect to the barrel or intermeshing zone. For flow in this 

region, it has been found that velocity profiles are not influenced by

screw rotation and a relative velocity can be used to define the flow. 5
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Figure2-2-2 High and low pressure regions of 
opposed chambers.

downstream direction
Figure2-2-3 Recirculatory flow  in opposed chambers,
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This is similar to the case of slow flow of melts in channels of single

screw extruders for which the stationary screw and rotating barrel

assumption used is found to be adequate enough for determining flow 

fields of this type in which inertia effects are not significant.^

Velocity profiles in the chamber can be influenced by the leakage over 

the flight complicating the heat transfer and generation processes which 

affect flow fields in deep channels.

Flow over the flights of intermeshing screws occurs in much the 

same way as that in single-screw equipment.^ The melt rotates with the 

screw but sticks to the barrel surface where it is dragged across the 

channel and over the advancing flight into the adjacent chamber. The 

drag flow tends to build up pressure towards the flight wall and the 

oressure then drops across the flight associated with the flow through the 

flight gap, hence creating a pressure drop across the channel and flight. 

Figure 2 .2 .4  shows what form the axial pressure profiles are likely 

to take for two sets of clearances?

Although there is a constant pressure drop over each channel and flight,

the axial pressure in the channel can vary depending on the magnitude of
22the leakages over the flight and through the intermeshing region.

Similar flow mechanisms occur in the calender and side gaps but 

considerable drag flow can be produced in these clearances because both 

surfaces rotate in the same direction and with almost equal speed, a rela

tive velocity between the surfaces produced because of the linear variation 

of surface velocity over the flight depth. The drag flow for these 

leakages, therefore, consists of. rigid material transport from motion of 

the surfaces with equal velocity plus, shear flow due to the relative 

surface velocity.

In the calender gap, drag flow can generate internal pressure 

flow, similar to the mechanism of squeezing melt through the convergent-
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Figu re2-2-4 Axial Pressure D is tr ibu tio n
w ith  chamber pressure included.



-  40 -

divergent gap between rotating parallel rollers in a calendering process.

Hydrodynamic pressures can be developed with pressures rising to a maximum

in the convergent section and falling to a minimum in the divergent section,
27similar to the pressures developed in a journal bearing. The pressure 

in the extruder at inlet and outlet of the gap, however, must be high enough 

to prevent the pressures falling to a value below zero in the divergent 

section, since most fluids cannot sustain negative pressures. * This is 

only likely to occur when operating the extruder with very little or no 

pressure at the die but such an operating condition renders the extruder 

useless as a pump and is not likely to be important. With the addition of 

the influence of a high pressure drop due to die pressure across the 

chamber, there can be shear flow dominated by pressure flow in the calender

clearance with the result that no maximum or minimum levels would be produced.
flights

The flow through the overlapping area of the two screws^ is complex 

and consists of a combination of the leakages through the side and tetra

hedron gaps. In the direction of screw rotation, material is carried along 

by the surfaces through the side gap, from the high pressure regions of 

the intermeshing channels (see Figure 2.2.2) to the low pressure regions 

of adjacent channel sections. Perpendicular to this direction, there is 

tranverse flow through the tetrahedron gap which allows material to be 

transferred from one screw to the other solely by the influence of the 

pressure drop due to die pressure existing between opposing chambers of the
5screws. Although rotation produces drag flow through the side gap, there 

is no net drag flow through the tetrahedron gap according to experimental
5

evidence. It appears that the components of the drag velocities of the 

counter- rotating screws in the direction of the tetrahedron leakage 

are equal and opposite and tend to cancel. The flow through the side and 

calender gaps are directly influenced, therefore, by the flow in the channel

produced by screw rotation whilst the tetrahedron leakage is influenced only
5

by back-pressure in the extruder.
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Melt flow in twin screw extruders, unlike Newtonian flow, is 

affected by the amount of shear it experiences due to the drag effect of 

screw rotation. This shear thinning effect increases melt temperature and 

both reduce the viscosity.^ This means also that all melt flows are inter

dependent and the local viscosity is influenced by the rate of deformation
For isofhermal conditions,

of the material resulting from flow in every direction. A flow characteristics 

of dimensionless flow rate versus pressure drop of a counter-rotating 

machine extruding Newtonian fluids show that the flow rate is dependent only

on the geometry of the screws and independent of both viscosity and screw
5speed. From the extrusion of highly non-Newtonian polymer solutions, flow 

curves show the strong dependence of viscosity on screw speed for a given 

geometry.^

Flow curves for the extrusion of polymer melts are dependent on

temperature, although it is uncertain whether or not the variation of

temperature and its effect is significant along a typical twin-screw extruder.

Although there is little energy dissipation in deep channels of twin-screw

extruders, this is not likely to be the case in the relatively small leakage

gaps. It has been suggested that because of the continuous changing of the

surfaces of the small gaps in the intermeshing region, the heat generated

may be dissipated and distributed by conduction rapidly and evenly in
5twin-screw extruders. Because of the recirculating flow that occurs in

twin screw extruders from one end of a chamber to the other, the mixing and

heat transfer is increased in a manner which is most likely to produce
c 26

uniform melt temperature in each chamber.''9

The temperature of the polymer, however, is not likely to be

uniform throughout the extruder and measurements of temperatures of extruded
5

polymer indicate a higher temperature at the die. The pressure gradient 

will vary along the extruder and may be lowest at the die end. This is 

indicated also by the number of fully filled channels in the extruder which
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increases less than proportionatetywith increasing die pressure. A

uniform melt temperature^produced when the fully filled length is short,
5i.e, near the die, and also when it is very long. From the experimental 

results it has been deduced that the temperature profile of the polymer in 
the extruder is hardly affected by changing die pressure.
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2.3 Melt Properties of Polymers.

V iscosity under simple shear i s  an important m ateria l

property of flowing liq u id s. V iscosity i s  defined as the ra tio  of the 

shear s tre s s  to the ra te  of shear (or ra te  of deformation) o f the f lu id . 

Most commonly used f lu id s  exh ib it Newtonian behaviour, th a t i s ,  there i s  

a lin e a r  r is e  in  shear ra te  with increasing shear s tre ss . For flow between 

p a ra lle l p la te s , Figure 2.3.1* the shear s tre ss  between layers of flu id  in  

flow is  given by the equation.

2 .3 .2  in  which the "flow curve" is  a s tra ig h t lin e  of s lo p e ^  which is  

called  the v isco sity . I t  i s  not uncommon, th ere fo re , to th ink  in  terms of 

only a sing le  v iscosity  of the f lu id .

there i s  a less than proportionate rise  in  shear stress with shear rate .

In th is  case, the r a t io  o f shear s tre ss  to  shear ra te  which is  termed

the "apparent v iscosity"  f a l l s  progressively with increase of shear ra te

and the flow curve becomes lin e a r  a t  very high rates of shear (Figure 2 .3 .3 ).

The physical in te rp re ta tio n  o f th is  phenomenon is  probably th a t w ith

increase in  the ra te  of shear molecules progressively a lign  u n t i l  no
29fu rth e r  alignment is  possible and the flow curve becomes lin e a r . The 

alignment of molecules normally takes place instantaneously (or too 

quickly to  be measured in  viscometers) as the ra te  o f shear i s  increased

and therefo re  polymer melts a re Aregarded as time-independent f lu id s .

Other examples of time-independent f lu id s  are d ila ta n t and Bingham flu id s 

which exh ib it the non-Newtonian behaviour shown in  Figure 2 .3 .3 .

2.3.1

where *T̂ y. i s  the shear s t r e s s ,  is  the time derivative of shear s tra in  

and is  termed the shear ra te  # . This re la tio n sh ip  is  p lo tted  in  Figure

Most polymer melts ex h ib it "pseudoplastic" behaviour i . e .

often

When the polymer m elt flow curve i s  p lo tted  on a logarithm ic 

sca le , the graph usually  appears to be a s tra ig h t lin e  over one or two
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Figure 2-3-1 Laminar flow between parallel plates,
top surface moving, bottom surface Stationary-

Figure 2-3-2 Flow curve of a Newtonian fluid-

*
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decades of shear r a te ,  Figure 2.3,4# At low shear ra te s  of up to about 

0.01 sec. the curve becomes a s tra ig h t l in e  with slope of un ity , ind icat

ing Newtonian behaviour and again a t very high shear ra te s  Newtonian 

behaviour is  observed. Fbr most polymer m elts, however, the re la tionsh ip  

between shear s tre s s  and shear ra te  can be represented, over lim ited  ranges 

of shear ra te s , by a power-law equation; of the form,

T= k'tfn 2 .5 .2

which may be w ritten  in  logarithm ic terms a s ,

i° g T =  logic + n log if 2 .3 .4

where 1c and n are constants; i s  a consistency c o e ff ic ie n t

and n i s  a measure o f the degree of non-Newtonian 

p roperties of the polymer. I t  i s  important to remember th a t n i s  a constant 

only over a lim ited  range of shear ra te , therefo re , in  engineering applica- 

cations, a l l  th a t i s  required is  the rheological equation which describes the 

polymer over the p a rtic u la r  problem.

Because negative values of shear ra te  are not allowed in  the power 

law equation 2.3*2, an a n a ly tica lly  u sefu l form i s ,

T v * ir
X

n-1
2.3.5

w h e r e i s  the apparent v isc o s ity  a t  reference shear ra te  ^ a n d  n i s  the 

slope of the log shear s tre s s /lo g  shear ra te  curve. A lternative ly , a p lo t 

of log m  versus log (vXo) would give a slope of n-1 .

The flow curves o f polymer melts are influenced by temperature and 

p ressure . V iscosity of polymer m elts, l ik e  th a t of most liq u id s , 

decrease with temperature. A temperature dependent term can be added to the 

power law equation to  account fo r  the s h i f t  of the flow curve in  the v e rtic a l

d irec tio n  and the v isco sity  equation becomes,1,50

t
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Figure 2*3-3 Flow curves of pseudoplastic,Newtonian, 
d ilitan t and Bingham flu ids .

■■ > 
log 7

Figure 2-3-4 Logarithmic Flow curve f o r a  polymer melt.

*
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T  =/<• 'i * n-1
exp(-bQ(T-T0) 2. 5.6

where b0 is a temperature coefficient determined from curves obtained over

a range of temperature and To is the reference temperature of the apparent

viscosity^*. This equation is usually limited in application to

narrow range of shear rates. If temperature dependence over a wider

range is needed to be incorporated more complex expressions with more

terms are required. In addition high pressure can increase the viscosity

of polymer melts. It aooears that this effect in polymers may be

reduced with increasing shear rate and temoeraturel

To include the effects of temperature and pressure requires a more

complicated analysis. In this case, additional coefficients have to be

determined from "regression analysis" using a digital computer whereas the

power law equation can be fitted to the polymer flow curves directly from

graphical data. In addition, the use of the empirical models which overcome

the difficulty of the power law model at the very low shear rates (Ellis

model) or at the very low and high shear rate ranges (Reiner-Phillipoff and

Powell-Eyring models) are more complicated to use than the power law model
and usually do not offer any compensating advantages.^

Viscosity data for polymer melts under conditions relevant to
51extrusion processes is usually obtained using a capillary Rheometer. Melt 

rahintained at a uniform temperature is forced from a resevoir through a 

capillary tube by means of a piston,driven usually at constant speed. The 

volumetric flow rate and the resevoir pressure are measured and the shear 

rate and shear stress at the wall determined from the dimensions of the 

capillary die. To obtain reliable results, allowances must be made for
52variable resevoir pressure drop, capillary end effects (Bagley correction )

55and Rabinowitsch shear rate correction.
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The density  of polymer melts depends on temperature and pressure

and varia tions can be determined with a cap illa ry  rheometer. Under extrusion

conditions the v a ria tio n s are usually  small and i t  i s  reasonable to  assume
1 31the density  is  constant, * Thermal conductivity and specific  heat

are also functions of temperature and pressure-* but varia

tio n  appears to be small under extrusion conditions and they are usually  

assumed to  be constant.
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2.4 Constitutive Equation for Polymer melts.
The general re la tio n sh ip  between s tre ss  and deformation in  flu id

flow i s  the co n stitu tiv e  equation fo r the m ateria l. Constitutive equations
and also to the deformation tensor for elastic fluids 

re la te th e  s tre s s  tensor to the ra te  of deformation ten so r. The s tre s s
A

tensor i s  a measure of forces th a t  act between neighbouring elements in  a 

f lu id  and has components of the form Tij where i  and j can take values from 

1 to 3 and define d irec tions in  a general coordinate system, i  being the 

d irec tio n  of the s tre s s  components and j  the d irec tion  of the normal to the 

plane on which i t  a c ts . In cartes ian  coordinates the su ffice s  become 

x, y and z and in  cy lin d rica l polar coordinates they become r ,  0 and z .

The stress tensor is symmetrical i.e.T^j The stress *7^ act normal
to the surfaces and are called the normal stresses and the stresses (i £ j) 
are called shearing stresses. The linear relationship between shear stress 
and shear rate for an incompressible Newtonian fluid, equation 2.3.1 * is a 
special case of the general constitutive equation and applies only to uni
directional shear. The six components of the general constitutive equation 
for a Newtonian fluid is given in Appendix IV, omitting the volume viscosity 
which is assumed to be negligible.

tu tiv e  equation can be derived in  which s tre s s  tensor i s  re la ted  to  ra te  of 

deformation tensor by v isco sity  and cross v iscosity  which depends a lso  on

sc a la r  q u a n titie s  and are functions o f the three p rinc ipa l invarian ts of the 

ra te  of deformation tenso r (given in  Appendix V II),

Assuming polymer melt flow to  be incom pressible, I-j = 0 and neglecting the 

dependence of p ressu re ,the  v isc o s itie s  sim plify to ,

For a non-Newtonian f lu id , i t  has been shown th a t  a general const!

temperature and pressure

2.4.1

2 .4.2
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To obtain a suitable empirical constitutive equation for polymer
melts, the viscosities are correlated as far as possible with the viscosity
data obtained from capillary rheometer measurements. In capillary flow,
i.e. axial flow in a tube - Couette flow, 13=0 but in many complex flow
situations, as for example, axisymmetrical flow in a channel of varying
diameter, 1 5 varies and only because the dependence of ̂  on Î  cannot

1 A1yet be determined experimentally, i t  i s  commonly assumed that, 4

rYl = %(iz,i) 2 .4 .3

In cylindrical polar coordinates,

I

+

[<s?>2 * (fif ' ♦
1 ("1 J v z Jvgil2 1 r V v r
4 [ 7 5 0  + S 7 J  4 [ 5 7

+ 2

2 .4 .4

In capillary flow the simple one-dimensional shear rate measured at the
1 ^ v  2 1 k / 2wall reduces to I2 = ̂  (^z) = jO • The power law form of the constitutive

equation for the material which is found to be applicable to many non-
1 30Newtonian fluids, particularly for many polymer melts is,*

n- 1
exp (-bo(T-To)) 2.4.5

*
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2.5 Mathematical models for flow in channels.
Shear deformation of a fluid between infinitely parallel plates 

is the simplest channel flow that can be analysed. By assuming the fluid 

is Newtonian, flow rate and pressure expressions can normally be obtained 

for many flow situs Ho ns. The momentum equation (or force balance of a 

fluid element) of one dimensional flow between infinitely wide

parallel plate, Figure 2.5*1 reduces to,

dp = T̂Zy 2.5.1
dz Sy

isothermal
For a NewtonianAfluid this equation becomes,

dp =M<*2vz 2.5.2ar r T &

This equation integrated and the constants of integration obtained for the 
boundary conditions given in Figure 2.5*1> of v(0) = 0 and v(h) = Vz, the 
velocity is>

vz = Vy. 7 + y2- 2 .5 .3
h 2y W  dz

wherej a  is the Newtonian viscosity and d£ is the pressure gradient.
/ dz

The flow rate through the cross section becomes,

Qz = Vzwh - wh^ dp 2.5.4
2 12^udz

This equation is the simple addition of two terms, namely drag and 
pressure flows respectively (Figure 2.5.1). For two dimensional flow (or 
flow between parallel plates of finite width) the fluid is also sheared in 
the perpendicular direction because of the influence of the sides and
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Q
Vwhz

h l . d p .
12fl\l dz

Figure 2-5-1 Dimensionless flow rate as a 
of pressure gradient.

function

♦



equation 2.5.2 is replaced by:

dp =ufo~Vz + )3? Y 2 2.5.5

This differential equation has been solved for a rectangular channel to 
give the flow rate equation^

= ̂Jfewh f<j - wĥ  dp fp 2.5.6
2 12yUdz

where f̂  and fp are*shape factors* for the drag and pressure flow respect
ively. These factors are functions of the depth to width ratio (h/w) of 
the rectangular passage between the plates and are smaller than unity for 
flows other than between infinitely wide plates. For a h/w ratio which is 
very small %  and ip are approximately equal to unity; this is normally the 
case for the relatively shallow and wide channels in the metering section 
of single screw extruders and the equation becomes identical to equation 2.5.4*

Equation 2.5*4 can be written in terms of dimensionless flow(Q/\fewh)
2and pressure gradient J L  . as follows,

\2jXh dz
Q_ = 1 “ ĥ  dp 2.5.7
Ifewh 2 12yû  dz

The graphical representation of this equation is shown in Figure 2.5.1.
It is seen that the flow rate and consequently the velocity profile are
dependent on the magnitude of d£. The different forms of velocity profiles

d2
are given in Figure 2.5*2.

For a pressure gradient of zero, the dimensionless flow rate is
equal to 0.5, which is identical to the case of pure drag flow given in

extremeFigure 2.5.1. For a positive pressure gradient, twoAcases can exist 
(a) predominantly drag flow and (b) predominantly pressure flow with dimen
sionless flow rate less than 0.5. For a negative pressure gradient two cases
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of predominantly drag (c) and predominantly pressure(d) flow exist, with the
dimensionless flow rate limited to the range 0.3 X Q ^ 1 . It is important

V2wh
to note, also, that the dimensionless flow rate per unit width is equivalent 
to the total area under the Vz v e rsu s  h c u r v e .

Both pressure and drag flow can exist if there is a restriction of 
the flow between the surfaces. In this case, a pressure is built up in the 
direction of motion and a positive pressure gradient is produced by, for 
instance, a gradual decreasing clearance depth between the surfaces, a 
steady state condition is normally reached in which case the flow remains 
constant along the tapered clearance (of infinite width). In other words 
the area enclosed by each velocity profile along the clearance should be 
the same. To satisfy this condition in a channel with gradually decreasing 
depth, different velocity profiles must exist. This situation is shown in 
Figure 2.5.3 in which a positive pressure gradient exists at the larger 
clearances due to the kind of velocity profile satisfying the flow condition 
in this region, until the pressure gradient be comes zero where pure drag 
flow exists. This is the net flow of the clearance and is equal to Q = Vzwh/2 
or dimensionless flow rate Q/Vzwh = 0.5. From then on, the pressure gradient 
is negative and the dimensionless flow rate becomes greater than 0.5 because 
of the further decrease of clearance depth. Therefore, for any tapered 
clearance in which hydrodynamic pressures are developed, there will be a 
pure drag (or net) flow at a particular clearance depth which is dependent 
on the geometry of the clearance. Furthermore, the flow equation for a 
Newtonian fluid, equation 2.5*4* completely describes the flow rate existing 
anywhere along the clearance and therefore, the actual velocity profiles 
produced are unimportant because they do not a f f e c t  v i s c o s i t i e s .

In practice, isothermal conditions rarely exist in Newtonian 
fluid flow especially for cases of very high shearing of the fluid and vis
cosity decreases with increase in temperature. This can complicate
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V _
y  /  /  /  V_ /  /

/ /  / v = 0 7 /
(i) Drag flow.
Positive Pressure Gradient. 
/ /  7 -7- ? / /

7 y ' j * ' /

Negative pressure gradient 
V

/  / / / / Y  / /

/ / / / / / / /(c) v=o
Predominantly Drag Flow. Predominantly Pressure Flow.

(iii) Pressure and Drag flows combined.
Figure 2.5-2. Velocity Profiles for different flow conditions.

*
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Pmax.

c tearance.

V

Figure 2.5.A. Coordinate system for predominantly
pressure flow by Krosser& Middleman(37)-

*
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the analysis of Newtonian flow buh this problem is sometimes tackled

by assuming an effective viscosity determined at the mean temperature of

the flow passage. Various approximate methods have been used from which
28a mean viscosity can be determined,

Newtonian fluid analysis can be used for flow of slightly non-Newtonian 

melts in which the shear stress dependence on shear rate is small. Me Kelvey^ 

used the simple theory to predict flow of polymer melts in a screw channel.

He concluded that the theory can accurately predict extruder behaviour for 

isothermal flow of mildly non-Newtonian fluids. However, the correct 

viscosity has to be calculated using flow rates from actual extrusion exper

iments. It has been found that an apparent viscosity at the volume average

shear rate or at the drag flow shear rate (V/h) will give reasonable results.^
34Weeks and Allen developed a better method for determining apparent 

viscosities based on the simple and power law fluid theory. They used the 

theories to determine an equivalent Non-Newtonian melt viscosity which 

when used with the Newtonian flow equations would produce the pressure 

gradients of the melt flow for a given flow rate. They predicted results 

within 25% of measured flow rates for a single screw extruder using this 

method for highly non -  Newtoni an melt's.

Large errors can be obtained if the Newtonian equation is used to 
predict flow of pseudoplastic fluids as shown in Figure 2.5*5. Jacobi^ 

assumed the error would not be significant using the super-position principle, 
for a modified pressure flow based on the power law model added to the drag

'Z'7
flow. Glyde and Holmes-Walker^ and later Krosser and Middleman^' showed 

that the error is significant and for the case of a positive pressure 

gradient, showed that the flow can be considerably overestimated using this 

method. For the case of a negative pressure gradient, which can also be 

generated in a single screw extruder, the flow calculated by super-position 

can be underestimated. The reason is that the velocity profile obtained
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Figure 2.5.5. Reduced Flow Rate as a function of
Dimensionless Pressure Gradient: Newtoniancase
(1) Superposition of pressure and drag flowA.
(2) Combined pressure and drag flow. ref(37).
(3) Combined flow with a cross-channel 

velocity, ref (39).
(A) Superposition of drag flow and pressure 

flow of a power law fluid. ( ref.35)-
y.___ flow for positive pressure

gradient.

<0-5

Figure 2.5-6. Method of determining the flow rate for 
a Negative pressure gradient.
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with superimposing the shear rate profile of a drag and pressure flow is 

different from the shear rate profile of a "combined” pressure and drag 

flow because of the shear rate dependence of viscosity.

The analysis with a non-Newtonian fluid is done in a similar 

manner to that with a Newtonian fluid except that the rheological equation 

is different. In this case, the momentum equation for one-dimensional iso

thermal flow between infinitely parallel plates becomes,

in which the shear rate can be either positive or negative. It is possible 

therefore to obtain only individual solutions for positive and negative 

shear rates and there is no single equation which describes pseudoplastic 

fluid flow for all flow conditions in a tapered clearance.

For predominantly pressure flow in which separate regions of 
positive-negative shear rates exist, solutions have been obtained using 
various coordinate systems to define this type of velocity profile.̂ >38

37The simplest and least complicated to use was given by Krosser and Middleman. 
They used a dimensionless coordinate ̂  which defined the position of zero 
shear stress/shear rate from the stationary surface, Figure 2.5.4. This 
point of zero shear stress also divides the shear rate profile into two 
regions of positive and negative values. The flow rate equation was obtained 
by summing the individual solutions determined for each region. The 
one-dimensional flow equations are given in Appendix V. Their solutions
predicted a reduction in the flow rate with increase in pressure gradient

as compared with Newtonian resultsfor values of flow index n<\. This is illustrated in Figure 2.5.5 
for n = 0.5 • Griffith^ showed that a further reduction of
the flow can occur with a zero net transverse flow (or circula-

*
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tory flow in a screw channel). He used a lengthy trial and error method 

on a digital computer to solve the simultaneous differential equations 

obtained for flow in each direction and confirmed his results by experiments 

on a screw extruder with actual polymer melts. The effect of the transverse 

flow on viscosity is to reduce the down channel flow rate even at pure drag 

flow conditions.
37Using the coordinate system by Krosser and Middleman , it appears

that a flow rate expression cannot be obtained for a negative pressure

gradient because of the negative sign of the pressure gradient. However,
34Weeks and Allen obtained a flow rate equation for a negative pressure 

gradient using a different coordinate system. On examining their equations, 

it was found that the dimensionless flow rate for a negative pressure gradi

ent is equal to one minus the dimensionless flow rate for a positive pressure 

gradient. It appears that the dependence of viscosity on shear rate (for 

isothermal flow conditions) is no different for a flow either with a positive 

or a negative pressure gradient. All these power law flow equations were 

found to converge to the Newtonian solutions for a flow under n = 1.

In the polymer processing field, the power law constitutive 

equation is used to descrioe flow of polymer melts. The complex flow in

screw extruders has been satisfactorily predicted using this fluid model.^
Logarithm
Flow curves of polymer melts are known to be quite linear over the range of
A

shear rates normally encountered in polymer processing i.e. in the range 
—1 —1from about 6 sec. up to 200 sec. There is a danger of underestimating 

flow rates, however, if the melt is described over the very low range 

of shear rates by the power law equation. This error resides in the 

difference between the predicted and the true velocity profiles. A velocity 

profile contains a wide range of shear rates with a proportion of very 

low shear rates i.e. Newtonian behaviour can exist. This is particularly 

significant in the case of "pressure flow" between two parallel plates,
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Figure 2.5*7* The power law equation can describe the fluid only over 

a limited range of shear rates. The magnitude of the error introduced 

by comparing the cower law fluid and the measured flow can be less than 

5% if the proportion affected by the Newtonian behaviour is 5096 of the 

total area of flow.^*^ If the affected area is large, the error can . 

be as high as 50 - 10096. This may be the case also for regions of 

very high shear rates and therefore, the position of the flow curve in 

the high range of shear rates will become more important. This kind

of effect would be important when considering pressure flow of melts
. 42,45,44m  narrow channels, as in dies. * J

There are rheological factors which may affect the flow rate

and pressures developed in leakage clearances. Polymer melts are

elastic as well as viscous and thus, have the ability to store and

recover shear energy. The visco-elastic properties of polymer melts

are less important in single-screw extruders because the fluid flow is

contained in a closed channel bounded by the flights, screw root and

barrel wall, and therefore, the elastic effects are not likely to

affect the flow. In twin-screw extruders, in which there are likely

to be sudden changes of shear rates from the chamber through the leakage

gaps into the other chamber, visco-elastic effects are likely to be

significant and therefore the flow resistance of gaps will increase.

On the other hand, increase of shear rates in small gaps is likely to

reduce the viscosity and the resistance to flow, and it has been 
5suggested that the shear dependency and visco-elasticity in twin-screw 

extruders act in opposite directions and the net effect may be small.
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Figure 2.5-7- Error introduced by using the Power Law
Model for pressure flow between parallel 
plates.

*
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2.6 Flow in Deep Channels.

The flow in an extruder may be considered to occur in a straight
+

rectangular channel if the channel is shallow. The metering zone of a

typical single-screw extruder usually satisfies this requirement without

introducing significant error! The channels in the metering zone of typical
5

twin-screw extruders are never shallow and significant errors can, there-?* 

fore, be introduced by simply neglecting the effect of curvature.

The effect of curvature may be visualised by comparing the velocity 

profile of fluids between two infinite parallel plates (plain rectangular 

flow) with that between two infinite concentric cylinders (cylindrical flow), 

with the outer cylinder rotating at the same speed as in the rectangular 

flow situation and the inner cylinder stationary. The velocity profile 

is now nonlinear and leads to an increase of flow rate for Newtonian flow 

of 8% and of 2096 for a non-Newtonian power law fluid with n = 0.5 for 

a ratio of outer to inner radius of 2!

An analysis of isothermal Newtonian fluids in deep curved channels 

was carried out by Booy45 in which the effects of helix angle and its 

variation with radius was also included. The barrel was assumed to rotate 

about a stationary screw with helical flights and cylinder polar coordinates 

were used. From the flow model, correction factors for pressure, FpC, and 

drag, F^c, components of flow were obtained as functions of curvature (or 

relative channel depth, H/D) and helix angley# 5 the channel width and heli

cal length at the barrel surface are used for comparison i.e. conditions 

used to determine flow in the parallel plate model. For example, the 

results show that there is an increase of the corredtion factors from unity 

(parallel plate flow) with increasing relative channel depth and decreasing

helix angle for ^20°. The net effect due to the presence of the typical
of drag and back pressure

square-pitch helix angle is to reduce the parallel plate flow, with a
A

further reduction produced for smaller helix angles. However the parallel

+means a channel width to depth ratio of at least  10.

1
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plate flow at unity does not account for the . changed flow due to curva

ture which occurs between concentric cylindrical surfaces. This was taken 

into account by McKelvey for pure drag flow of a power law model using a 

curvature correction factor based on the ratio of flow rate between infin

itely long concentric and parallel plates. This special case represents 

the tangential flow in a channel with zero helix angle and infinite aspect

ratio and was solved for isothermal non-Newtonian drag and pressure flow
41by Tadmor. The analysis produced correction factors for the error intro

duced by superimposing drag and pressure flows for non-Newtonian fluids and 

a curvature correction factor for pressure flow.

Besides curvature, the effect due to the flights in deep channels

is also likely to be significant (i.e. when H/W is significantly greater

than zero). The problem of isothermal downstream plain flow in a deep

channel (i.e. neglecting transverse flow) haa been solved for Newtonian^

and power law fluids,50*46,47 ancj generai the flight wall is seen to

have the effect of reducing the drag flow rate as H/W increases. There have

been attempts, however, to solve the complete problem of fully developed

non-isothermal non-Newtonian flow in deep channels. Ejyer^® assumed axially

symmetric geometry (zero helix angle) and used cylindrical polar coordinates

to account for curvature due to channel depth. Martin 4 used cartesian

rectangular coordinates and produced solutions for plain flow in deep

channels. There appears to be a significant net effect on the downstream

flow rate in relatively deep channels when the transverse flow, curvature

and temperature variations are all included. The problem of isothermal non-

Newtonian flow in deep channels including also curvature effects due to

helix angle has been solved using a helical coordinate geometry. * The

effects of curvature for this case shows a smaller reduction of the through-
45put than is predicted using Booy correction method.

4



The validity of the assumption that the flow is isothermal depends 

on operating conditions and screw geometry. Non-isothermal effects may be 

introduced if excessive heat is generated byviscous dissipation or by simple 

heat transfer through the channel boundaries. In general at low screw speed 

and not very shallow channels, the heat generation will not be significant, 

and normally heat transfer through the barrel will not introduce significant 

non-isothermal effects, if the melt conveying zone is long enough and the 

barrel temperature is kept at a constant level. The factors relevant to 

heat generation and heat transfer in polymer melt flow processes have been 

discussed by many workers-^5^ >52,53 anf  ̂attention is drawn to the physical 

and operating approximations that arises in a mathematical formulation of 

flow problems. The equations which govern problems are the conservation

equations plus the appropiate rheological equation of state for the melt and 

the relevant boundary conditions. In order to make the solution obtained

to have a wider app licability  it is usual
Oyl P 7

therefore to make the equations dimensionless. 3 ' To obtain simple solutions 

it is usually common to treat properties of density, thermal conductivity 

and specific heat as constant. There are many dimensionless ratios

which become important. For example,the Feclet number which represents the 

ratio between convective heat transfer and conductive heat transfer is 

usually very large (Pe» 1 ) due to the extremely small thermal conductivity 

of polymers, i.e. Pe =ya cVh^A , w h e r e i s  the density, c is the specific 

heat, V is the velocity, k is the thermal conductivity, h is usually a small 

dimension measured perpendicular to the flow lines.

In general, temperature distributions 

are strongly dependent on the aspect ratio of the channel, and the value of

such a dimensionless quantity indicates how important convective and
IK

conductive h ea t tr a n s fe r  i s  on the flow  f ie ld  in  the channel.



Therefore, by combining the physical variables to  form dimensionless 

parameters, dimensional analysis can be used to  generalise solutions to  

the energy equation and behaviour i s  then characterised  in  terms of the 

parameters.

The energy conservation equation fo r the flow can be generalised 

in  terms o f dimensionless variable and the dimensionless parameters

besides Pteclet number (which has been already defined above), the Nahme/ 

G r if f ith  number, G and the Graetz number, Gz fo r  the flow a re ,

C - O n T /h ?

_ />e V h‘
Z “ k 1

2 . 6,1

2. 6.2

where bQ is  the temperature co e ffic ien t of v isc o s ity  introduced in  equation

2 .3 .6 , 7” and ¥  are mean shear s tr e s s  and shear ra te  respec tive ly  and 1 

i s  a length measured along flow l in e s .  In the dimensionless energy equation 

the thermal convection and viscous d iss ip a tio n  terms include the parameters 

P or G and G respec tive ly , while the thermal conduction term remains un-6 Z
scaled. Hence, P and G are measures of thermal convection, and G i s  a e z
measure of heat generation, a l l  r e la tiv e  in  importance to  thermal conduction 

An add itional thermal parameter, Brinkman number, Br  en ters the temperature 

analysis v ia  the boundary conditions and determines the re la tiv e  importance 

of viscous d iss ip a tio n  and imposed d ifferences in  boundary temperature *dn 

bring about temperature changes in  the flow,

B = r
T £ h 2
k(Tb- To)

2 .6 .3

where i s  the se t  operating temperature boundary condition and TQ i s  an 

in le t  or reference temperature of the  f lu id . I t  should be noted th a t 

M artin^  and Pearson^ defined a Brinkman number sim ilar in  form to  what i s

now commonly ca lled  the G riff ith  number, equation 2 .6 .1 , and only where 

reference i s  made to th e i r  work ( in  subsequent chap ters), would the number
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be re fe rred  to  as the Brinkman number.

F ec le t number in  melt flows i s  usually  very la rg e , ty p ic a lly  of 
3 5the order o f 10 -  10, implying th a t  thermal convection i s  an important 

mode o f hea t tran s fe r . The Graetz number i s  a measure of the importance of 

thermal convection in  the d irec tion  of flow re la tiv e  to  conduction normal 

to  the flow and, although i s  often large  in  some m elt flows, i t  may be of 

order o f u n ity  or le s s . Hence, G„ can vary from 10~1to  1of The G rif f ith  

number, besides quantifying the r a t io  between heat generation and thermal 

conduction, a lso  determines whether heat generation w ill lead  to  temperature 

d ifferences w ithin the m elt su ff ic ie n t to  a f fe c t  the ve lo c ity  d is tr ib u tio n  

lo ca lly . G varies in  p rac tice  from 0 to  200. For G=0, there  i s  no coupling 

between energy and equilibrium equations and the flow i s  isotherm al.

For the purpose of ana ly sis , these heat tra n s fe r  parameters can be
31 53used to d is tin g u ish  between d if fe re n t flow s itu a tio n s . 9 For example, 

i f  both G and G/Br < 1, then the temperature v a ria tio n s  due to  heat generation 

and boundary conditions respective ly  do not g re a tly  a ffe c t ve loc ity  p ro f ile s  

and the flow may be tre a te d  as isotherm al.

I f  G O  (irre sp ec tiv e  o f the value of G), then heat tra n s fe r  i s  z
dominated by thermal conduction to  and from the boundaries i . e .  the flow 

i s  therm ally fu lly  developed and the temperature p ro file  does not change in  

the d irec tio n  of flow.

I f  Gz~ 1 , then both thermal convection and conduction are im portant 

and temperature p ro file s  should be tre a te d  as developing ( and so should the 

ve loc ity  p ro f i le s  i f  G>1).

I f  G„» 1 ,  then thermal convection i s  dominant but conduction must 

s t i l l  take p lace. Temperature p ro f ile s  develop very slowly in  the d irec tio n  

o f flow. This causes s l ig h t  changes in  the v e lo c ity  p ro file s  but i t  i s  

reasonable to  assume lo c a lly  fu lly  developed v e lo c itie s .

I t  i s  evident th a t  when analysing the e ffe c ts  temperature has on
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flow both the Griffith and the Graetz numbers must be examined. It is 

important to note also,' that in single-screw extruder channels, the convec

tive effects caused by the overturning of the flow at the flight walls

would strongly influence temperature distribution in the downchannel
53direction. From theoretical results of fully developed two-dimensional 

channel flow analysis of a single-screw extruder, it has been concluded that 

when both heat generation and convection are included, the flow rate was
24found to be closer to the isothermal case than when convection is ignored.

It was suggested that this behaviour may be attributed to the effect that 

convection has towards keeping the screw temperature down, thus preventing 

hot-low viscosity layer of melt forming on the surface.
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Chapter 3
/

Theoretical Analysis

3,0 Introduction.

The purpose of a theoretical model for melt conveying in a

plasticating counter-rotating twin-screw extruder is the prediction

of flow rate, pressure, temperature and velocity distributions and

the dependence of these parameters on the nature of the polymer, the

geometry of the screws and the operating conditions. From these

predictions additional information relevant to extruder design and

operation can be supplied, for instance, the number of completely-
5filled chambers in the metering zone, the power input required for 

this zone, and the shear rate history and the residence time distri

bution of the polymer melt leaving the extruder, which may have a
1decisive influence on product quality.

In any theoretical flow analysis, the choice of mathematical 

model is determined by the geometry of the channel and the boundaiy 

conditions. Usually, the complexity of the solution depends on the 

coordinate system used and the differential equations to be solved.

Making appropriate assumptions can simplify the equations and reduce the 

effort involved in obtaining solutions without losing sight of the 

actual problem. Very often, complex problems can only be approximately 

solved by adopting simplifying assumptions. Trying to solve such a 

problem, can sometimes result in the loss of the benefit that is to be gained 

from the use of a theoretical approach. Although the analysis must 

be as realistic as possible, it must not be allowed to develop into a 

theoretical procedure which is as expensive or even more uneconomical 

to use than the practical methods it replaces. The approach used here,



-  67 -

therefore, is to find simple and efficient methods of simulating the flow 

processes, while still retaining as much as possible aspects of 

behaviour which are most likely to be significant.

For polymer processing problems, the main considerations 

appear to be the effects due to the non-Newtonian nature of the melt 

and geometric aspects, like curvature etc., which for twin-screw 

extruders cannot be neglected. The effect of pseudoplastic behaviour 

appears to indicate that, in order to obtain proper simulation of the 

conveying process, all flows should be coupled, especially the 

leakages in the intermeshing region between the screws where the gaps 

are interrelated. However, because of the complex flow behaviour in 

the intermeshing region plus the simple lack of or limitations of the 

theoretical methods available for solving such a problem, a simple 

approach is adopted. This is essentially to analyse each channel or 

gap separately and then to connect the flows by matching the variables 

accordingly to predict the overall performance. The theoretical 

treatment of the melt conveying process described in this chapter can 

be used to obtain solutions, with a reasonable amount of effort, only 

by using a high speed digital computer.
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3.1 Screw geometry.

The twin screw extruder consists essentially of two intermeshing 

screws rotating next to each other in a figure-of-eight section barrel.

In a counter-rotating extruder, rotation of screvxs is such that the 

surfaces converge below and diverge above the intermeshing region.

Figure 3*1.1a and 3.1.1b show the typical arrangement of counter

rotating intermeshing screws. Viewing the extruder from the direction 

of the hopper to the die, Figure 3•1•1 a, the screw on the right has a 

left hand thread and rotates clockwise while the screw on left has a right 

hand thread and an anticlockwise rotation. This choice of rotation allows 

a high degree of filling of each chamber to occur from a hopper feed.

Figure 3.1.1b gives a top-sectional view of intermeshing 

screws defining the geometry. R is the outer radius of each screw (D is 

the diameter) 5 H is the channel depth, the distance between the root of 

the screw and the tip of the flight; is the radial clearance between 

the barrel and flight tip; S is the flight pitch, the axial distance of 

one full turn; is the helix angle of the flight and is related to the 

pitch and diameter by tan"1 (S/TT d) ; B is the width of the flight tip 

measured axially. The number of channels in one full turn ( or number 

of starts ) of each screw is m (a double start screw, m= 2 , is shown in 

Figure 3.1.1b ). The rotational speed of each screw is N revolutions per 

unit time and the direction of rotation produces a foward motion of the 

flights and consequently the chambers , from right to left.

Figure 3.1*2 shows an axial cross- section of the middle of the 

intermeshing region taken perpendicular to the plane through the axis of 

the screws. The axial cross-section of the screw channel is of trapez

oidal form, that is, a screw with constant depth across the channel and 

with uniformily inclined flight walls with flank angle, • The calender 

gap is (T, the minimum distance between the screw root of one screw and

4
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hopper feed. 

~ 

(a) 

.... -- transport direction. 
C'b) 

Figure 3·1·1 Geometry. 
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the flight tip of the other; £  is the side gap, the minimum axial distance 

between the flanks of adjacent flights and is given by,

£  = |j - B - H tan'Vj''' 3.1.1

The total minimum axial distance between adajacent flanks of the flights 

is influenced by the side gap and the calender gap and is;

6= £  + crtan'V^/ 3.1.2

C is the distance between barrel centres and for centrally positioned 

screws, the minimum calender gap is calculated from,

CT = C -  ( 2 R - H )  3.1.3

The depth of the calender passage measured perpendicular to the root of 

one screw can be calculated from the general expression, (see Figure 3.6.1 )

Hc = ((<T*+ 2R - H - l/ R2 - x2 )2 + x2 )1/2-R+H 3.1.4

where x is a coordinate distance measured from the line joining screw 

centres along the middle of the intermeshing zone. The maximum length 

of the intermeshing zone can be found from, ( see Figure 3.5.1 a)

LjL = 2 R sinoC/2 3.1.5

where oC is the overlap angle. When there is no calender gap,

^ = 2 t a n - 1 ( ^ f 2 g L )  3.1.6

and with a calender gap, (T~, the overlap angle is calculated by reducing 

the channel depth H to H-ff~in equation 3*1.6.

The axial distance between the flight flanks of any point in the
c;intermeshing region can be determined from the formula derived by Janssen^ 

from the summation of the distances due to: screw pitch, inclination of
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the flight walls,and the clearance £ given by equation 5«1.2 . Using 

coordinates shown in Figure 5.1.3 the expression reduces to;

E = f r r ^ l  “ A *  ) + ( rr + ri - 2R + H ) tanV^ + £  + ff"tan7£X 5.1.7

where £> refer to the angular coordinates and rj, rr refer to the 

radial coordinates of left and right screws respectively.

The volume of one C-shaped chamber formed by closely intermeshing 

screws can be found by elementary calculations^ as,

5.1.8

3.1.9

5 . 1 .10

the

5.1.11

defining 

the

chamber volume is small and the error introduced was found to be in general
5

less than one per cent of the chamber volume. The effect of the presence 

of the calender gap on chamber volume is to increase the volume of one 

barrel half by a small amount. This can be accounted for in the express

ion Vol-j, equation 5*1«9> by subststuting H - CT” for H and using the over

lap angle oC calculated with a calender gap ( equation 5*1 .6) •

Vol. = VQ11 - Volp - Vols 
m

where; the volume of one barrel half over one pitch length is,

Vol-j = S ( (TT -o C / 2 ) R2 + ( R - H/2 ) V (R-H-H2/4) ) 

The volume of the core of the screw over one pitch length is,

Vol2 = 7T S  ( R - H )2

and the volume of one screw flight with straight sides of width in 

axial direction defined by, b(r) = B + 2( R-r ) tanlj/ is,

V0I3 = 27T( (RH - H2/2) B + (RH2 - 2/5 H3) tan*^/)

where B is the width of the flight tip in the axial direction. By 

the flight width in the axial direction the effect of the pitch on
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Figure 3-1-2 Geometry of gaps in the intermeshing 
region.

F igure3-1-3 Geometry for determing the
clearance between screw flanks.
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3.2 The Governing differential equations of flow.

The differential equations governing flow of fluids are those of 

conservation of mass, momentum and energy, and they express fundamental 

laws of nature which are obeyed by all continuous materials. The equations 

are given in Appendices I,II and III and are expressed in both cartesian 

and cylindrical polar coordinates. The choice of the particular coordinate 

system depends on the problem to be solved but generally the complexity 

of the solution depends on the system selected. Usually the choice of the 

coordinate system is dictated by the boundary conditions.

process, the net rate of flow of mass into any control volume is zero. 

For TX)lymer flow, the melt is assumed to be incompressible and thus, for 

a constant density, the equation of continuity, equation A, Appendix I, 

in cartesian coordinates reduces to,

where vx, Vy, and vz are the velocities in the respective component 

directions x, y and z.

on the fluid element are balanced to give the differential equations of 

motion (or force balance) of the fluid element, equations A, B and C, 

Appendix II . It is further assumed that; the flow is steady, that is, 

independent of time; the flow is sufficiently slow (and laminar) so that 

centrifugal inertia forces (i.e. Reynold's number for the flow is small); 

and body forces due to gravity are likewise negligible compared with the 

other forces, then the equations of motion in Cartesian coordinates and 

in terms of the viscous shear stress components and local pressure

The conservation of mass principle states that, in a steady flow

3.2.1

For conservation of momentum in a differential element of
and inertia

constant mass in a fluid, pressure, viscous gravitional^forces acting



gradients reduce to 5

- I f
iTxz

^T
^ Iz z  

+ V z

^X X iT y x V C x

^ p VTxy V fy y V H y
“  T ? = y a

3 . 2.2

3.2.3

3.2.4

Now,conservation of energy yields in Cartesian coordinates the following 

scalar equation with only one component, T , simplified from equation A, 

Appendix III, to ;

'* ° p  ( y r
4T oT oT > w  d T r i  V T  ,

+ T x  + vy  *5y + Vz “Fz } = k( F ^ 2 + T J 2 + l 7 2 }

. ,XXX
- t Xxy( T 9 X ^  Z ^  X

f  ^ v v ^vZN
yz( T f  + "Fy }

3.2.5

where Cp is the specific heat of the fluid at constant pressure ( for 

an incompressible fluid, Cp = Cy, the specific heat at constant volume) 

and k is the thermal conductivity of the fluid; both are assumed to be 

constant. In order to solve these conservation differential 

equations, the constitutive equation relating the stress tensor to the 

rate of deformation tensor, equation 2 .4 .5> supplies the information on 

the flow properties of a particular melt.
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3*3 The Lubrication Approximation.

A useful simplification introduced to extrusion theory is the

Lubrication approximation] 9̂ 0,54 basically the replacement of

the flow in a tapered -- small gap by uniform flow between plane parallel
54surfaces. This approach has been discussed in detail by Pearson, in

reference to the analysis of flow problems in polymer processing, who

showed that the resulting uniform flow is a valid first approximation to

the flow of an elastic non-Newtonian fluid in a narrow channel (i.e. one

which is relatively shallow in comparison with its width and length ).

For isothermal Newtonian fluids, it has been shown ( in the previous

chapter ) that the velocity profile is a function of the clearance depth

h(x,z). The pressure profile is also a function of the coordinate x

and z only i.e. the local pressure gradients are d£ , d£ and the flow
dx dz

and pressure normal to the surfaces (y direction) is neglected. There

fore, the pressure or velocity profile can be evaluated at any point 

(x,z) as if the flow would occur between two infinite.plates at a 

distance h(x,z) from each other. This is the only way to treat non- *

Newtonian flow in a tapered section which can be described as a series
1 55of parallel sections. It has been found by Benis that the lubrication 

approximation applied to isothermal flows in channels is valid for most 

non-Newtonian fluids if the local angle between the surfaces is less than 

10° .

The application of the lubrication approximation to channel 

flow assumes that the velocity and temperature profiles are fully developed. 

Therefore, considering the downchannel flow in the z direction to be fully 

developed, assumes that there are no differentials of shear stress and 

velocity with respect to z and the equations of motion 3*2 . 2  , 3.2 .3 and

♦
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3.2 .4  reduce to ;

}p iTxz ^Tyz
T z  "  }  X  + T y

\  iTxx ^ i y x

T $  = T ^  + ? 7

- f e - # * # ’

3.3.1

3.3.2

3.3.3

It can be seen that the pressure -te is a constant and independent of 

x and y since the pressure gradients in these directions are also 

independent of z.

Similarly the energy equation 3.2.5 reduces to ,

/®Cp(
" i T  \ . T "fc2T v f T ~  > v T+ ) = k (-C— o+ Kr— o) - ( Vxx -5T— * +T̂  + 7y ^ ) ■̂ X )

+̂ Z 4 xZ +* ^  Ty2  ̂ 5,5,4

If the flow is assumed to be fully developed also in the cross-channel x 

direction, the differentials with respect to x become insignificant and 

the momentum and energy equations are further reduced to,

ip iTyz
oz ~ d y

ip dTxy 
b x ” b y

3.3.5

3.3.6

i y

and k >2T T ivT T 5»V
&y

3.3.7

3.3.8

These are the equations for simplified two-dimensional flow in which the



two independent velocity components are dependent only on the channel 

depth coordinate y  . From equation 3• 5- 7 can be determined the pressure 

distribution in the y direction and neglecting normal stresses in 

comparison with the local pressure, it is assumed that the pressure is 

constant throughout the channel depth. The two independent shear stress 

components which are obtained from equations D and E, Appendix IV, 

reduces to ,

3.3.9

3.3.10

and hence, the viscosity can be determined from equation 2 .4 .5 where the 

second invariant of the rate of deformation tensor in cartesian coordinates 

is,

12

4 St)2+ A*y 4} < > b V
b z )2+ i  (4 i x

4 ' bz
U r  
b X

3.3.11

and is reduced for the simplified two-dimensional flow to,

I2 - J <  ( ^ > 2 + ( | ^ ) 2 ) 5.3-12

For one-dimensional flow, a further simplification can be made to the 

above equations by neglecting the cross-channel flow components of shear 

and velocity and consequently, its effect on viscosity and the required 

momentum and shear stress equations are 3*3.5 and 3.3*9 respectively 

and the energy equation reduces to,



To all the above cases the * isothermal’ condition can be applied 
by neglecting the energy equation and assuming that velocity profiles are 
independent of the temperature profiles and therefore, any temperature 
variations do not significantly affect the viscosity of the fluid.
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3*4 The flight leakage.

In Figure 3*4.1 is given the axial cross-sectional view of the 

flight gap showing the geometry and coordinate system used. The flow in 

the gap is analysed for leakage occurringjnthe axial direction since 

this is influenced by the axial pressure drop in the extruder.

The screws are assumed to rotate concentrically in the barrel 

sections so that the flight gap $f is constant and equal to the radial 

clearance between the screw and barrel. A coordinate system fixed 

relative to the screw is used and the barrel is treated as if rotating 

about a stationary screw. Because of the positive conveyance of the 

C- shaped chambers of material, there is an axial relative velocity 

component between the material in the screw channels and the barrel wall 

of,

Va = NS 3.4*1

The flight gap is normally relatively shallow i.e.,

£ f « D  3.4 .2

so that curvature effects are negligible and the gap can be unrolled 

and Cartesian coordinates x, y used. The depth of the flight gap is also 

relatively small compared with its width and length i.e.,(Figure 3.4.1 ),

Sf «B 3.4.3
so that end effects can be ignored and the gap can be treated as infinite 

parallel plates. The leakage is treated, therefore, as isothermal one

dimensional flow and the equations to be solved are 3.3.6 , 3.3*10 , 3.3*14 

and 2.4.5. The boundary conditions are,

vx = 0 at y = 0 and 0 ̂  x 4-B

vx = Va at y = Sf and O^Cx^B 3.4.4

1 37Analytical solutions have been obtained 9 for this isothermal one

dimensional combined drag and pressure flow of a power law fluid between 

parallel plates and the equations relating dimensionless flow rate and

pressure gradient terms for the various flow conditions are given in
, ,  characteristic . .Appendix V. The power law parameters are taken at a shear rate, Va/$f
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5*5 The side leakage.

When analysing the leakage through the side gap, flow from one

end of the intermeshing zone to the other is to be examined. The material

is conveyed through a passage which is narrow and deep at the inlet and

outlet, and wide and shallow at the middle, and the transverse flow is the 
( Figure 3.5,1a)

tetrahedron leakage. Because of its narrowiness at the inlet, the tapered

form of the depth over the gap length (due to the flank angle) is not

likely to build up pressures but to encourage the material to leak from

the sides of the gan and relieve the pressure. The side gap leakage is

treated, therefore, as flow through a rectangular channel with constant

dimensions over the length of the intermeshing region (Figure 3*5.1 a)»
5and was the approach adopted by Janssen for this gap. The dimensions of

the side gan passage is taken as,
£  Hdepth, Ho -----rr-/ ; width, Ws = — —

r  > S cos^b ' 5  COS \L

and length, = 2R sin cd/j 3.5.1

The leakage consists of rigid drag flow and combined drag and pressure 

flows. There is a linear variation of surface velocity across the gap 

resulting in both top and bottom surfaces rotating with the same minimum 

velocity, Figure 3.5.1b,

V>j = 27TN ( R -  ( H - O )  3.5.2

and up to a maximum mean velocity of,

Vm = 2TTN ( R - (]h£)) 3.5.32
The mean velocity responsible for rigid drag flow through the gap is 

taken as,

vd = V, + vra 5 .5 .4

and this flow is,

9d = vd Ws Hs 3.5 .5
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3-D Geometry of the 
rectangular flow passage.

(b) Velocity of the surfaces. 
Figure 3-5-1 Side gap.



-  82 -

For the combined drag and pressure flows through the full width of the
drag

gap, a mean relativeAvelocity is used,

vdp = v2 - V1 3.5.6
2

and the viscosity is taken at the mean maximum shear rate, (Vg- V-j)/Hs.

The shear flow is treated as being isothermal and fully devel

oped, and occuring in the direction of screw rotation (downchannel z 

direction). The coordinate system is taken relative to either flight 

flank surface, since the geometry is symmetrical. Because the side gap 

canbe large, i.e. Hs/Ws can be as large as 0.45 for metering screw 

sections, deep channel flow is appropiate. The equations to be solved 

are 3.3.1, 3-5.9, 3.5.10, 5.5.12 and 2.4.5 • The boundary conditions are, 

vz= 0 at y = 0 and O ^ x  

vz= 0 at x = 0 , x = Wg and 0 4 y 4 H g 

vz= Vdp at y = Hs and 0 ^ x ^ W s 5.5*7

Solutions have been obtained for non-Newtonian plain downstream flow in 
30 59deep channels , and dimensionless flow characteristics for a range of

50H/W values are given by Fenner. Deep channel combined downstream and 

transverse flow analysis is considered later in section 3*9 and this can 

also be used to obtain solutions for this case.
When the flow is to be treated as one-dimensional, equations for 

combined drag and pressure flow of a power law fluid between infinite 

parallel plates (Appendix V) are used to obtain solutions. The boundary 

conditions for this case are,

vz = 0 at y = 0 and 0^ z 

vz = Vdp at y = Hs and 04 z ̂ 1* 3.5.8



-  85 -

3.6 The calender leakage.

The leakage flow through the calender gap consists of drag and 

pressure flows. There is rigid material transport or drag flow with no 

shear due to all surfaces rotating in the same direction with comoonent 

of velocity equal to the screw root velocity (Figure 3.6.1 ), 3.6.1b)»

Vr = 2TTH ( R - H ) 3.6.1

and drag and pressure flows taken stationary with respect to the screw 

root and generated by the relative velocity of the flight tip of one 

screw and the root of the other,

Vc = 2TTN H 3.6.2

Since the root and flight walls of the same screw are responsible for 

most of the drag flow through the passage, the coordinate system is 

fixed relative to the screw channel and the radial clearance of the cal- ■ 

ender passage can be taken as He given by equation 3«1«4« The width of 

gap is taken as the axial width of the flight tip,

Wc = B 3.6.3

The flow through the gap is assumed to be isothermal and fully developed, 

with rigid)drag flow component at any depth in the passage of,

Qcd = Vr Hc wc 3 -6-4

The calender passage is rather deep at the inlet and outlet, becoming 

shallower at the minimum calender gap. There is no drag velocity across 

the passage but there is likely to exist a transverse pressure flow which 

is assumed to be small compared with the downstream calender flow and is 

therefore neglected. Deep channel flow analysis is appropriate for this 

case and cylindrical polar coordinates are used to account for curvature 

of the deep channel. The simplified equations to be solved are for 

cylindrical coordinates and are similar to those used for plain flow in 

the previous section 3.5 . Using the general conservation equations
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given in Appendices I to IV, together with the assumptions given in 

section 3.3, equations for axisymmetric flow can be simplified in a 

similar manner to those for plain flow. The simplified version of the 

second invariant of the rate of deformation tensor ^  can be obtained 

from equation 2.4.4 . The boundary conditions are,

Vq = 0 at r = R - H and 0 ^  z ̂  Wc

Vg = 0 at z = 0 , z = Wc and R - H ^ r ^ R

Vg - Vc at r = R and 0 ^  z ^ W c 3.6.5

Axi-symmetric flow in deep channel is analysed in section 5*9 and the 

method is used to obtain solutions for this case. The non-Newtonian 

viscosity used is .determined for the range of mean shear rates, Yc/Kc, 

in the calender passage.

When the flow is to be treated as one-dimensional, occurring 

as if in a shallow channel, the equations for combined drag and pressure 

flow of a power law fluid between infinite parallel plates (Appendix V) 

are used to obtain solutions for this gap. The boundary conditions are 

for this case,

vx = 0 at y = 0 and-_Lp£ x £
2 -2

vx = Vc at y = Kc and-Lj^x^L^ 3.6.6
2 2

The non-Newtonian viscosity is obtained for each position along the
draq'

calender passage at the meanAsnear rate, Vc/Hc.
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Figure 3-6-1 Calender gap.

Figure 3-7-1. Tetrahedron gap-
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Figure 3*6.1b Three dimensional geometry of the calender gap.
Hcused i s  the deDth measured perpendicular to a 
screw root so th a t when x^L^/2, HC=H and when 
x*0, 1^= Cr (see equation 3.1.4).

Figure 3«7.1d Three dimensional geometry of the 
tetrahedron gap.
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3.7 The tetrahedron leakage.

The geometry of the tetrahedron gap is approximated by the gap 

between intermeshing flights without any pitch (or between intermeshing . 

discs), Figure 3»7.1a. The effect of the screw pitch on gap depth ( in 

equation 3*1.7 ) is assumed to be negligible. Over the length of the 

gap (y direction), the depth is constant and is equal to that determined 

at the middle of the intermeshing region, AA* (which is like taking a 

mean depth of the clearance), Figure 3*7* 1b and 3.7.1d.

The effect of drag velocity on melt flow through this gap is 

likely to be small. Figure 3.7.2a illustrates the surface velocity 

distribution in the gap. Because of the symmetrical shape of the inter

meshing region, the velocity components resolved in the x direction gives 

the distribution shown i.e. zero along the middle line AA' increasing to a 

maximum relative value at the outer boundaries of . This velocity

component is small and is equal to the difference between the velocities of 

the surfaces with radius R and R -(H-<r), or 2TTN(H -<r), and is confined to 

the region near the outer boundaries. The component of velocity resolved 

in the y direction, is shown as, zero at the centre and increases to a 

maximum at A or A*. Figure 3*7.2b- shows this drag velocity of top 

and bottom surfaces in the y direction direction. The addition of these 

velocities i.e. the velocity taken relative to either surface is the same 

but the net drag effect is zero. The maximum drag occurs near the edge of 

the intermeshing region A and A' and B and B !. The flow is likely to be 

largest due to pressure flow through the region near A and A 1, where the 

gap tends to be shortest and widest. It may be significant, therefore, 

that the shear due to drag is likely to be relevant only near this region

where, also, the leakage is generated by a predominantly

pressure flow with high shear.

Because there is no net drag flow through the tetrahedron gap,

%
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(a) velocity distribution of surfaces.

( b) y - component of drag velocity.

Figure 37-2. Tetrahedrongapwall velocities.

*
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the leakage is generated only by the pressure drop between opposed chambers

in the extruder. It is assumed that this pressure drop is generated at

the edge of the intermeshing zone , Figure 3»7«1a , from B in the middle
Along BAC and in the intermeshing region, 

of one chamber, through A to C in the middle of the other chamber.A
not

the flow isAinfluenced by the drag effect of the axial relative motion 

of the barrel and screw and only pressure flow is likely to exist. Now, 

in the intermeshing region, the pressure drop and associated leakage 

flow would vary across the tetrahedron gap because of its irregular 

shape, i.e., length and depth of the clearance varying with gap width, 

and the unknown pressure distribution at the boundaries of the 

' gap would be dependent also on the transverse flow that passes through the calender 

passage since this flow would be also influenced by the same pressure drop overBC.

Figure 3*7*3 shows a simplified model of the intermeshing 

region. The three leakage gaps of the overlapping region are placed in 

a single plane by wrapping a calender passage around the inlet and outlet 

of the tetrahedron gap. BB' and CC* are the centre lines of each calen

der flow passage. The pressures at points B and C (and also B* and C 1) 

remote from the tetrahedron gap are assumed to be the pressures in the 

opposed chambers of the extruder and thus,AP is the pressure drop 

between these points. Across the calender gap the pressure drop is equal 

to that generated between adjacent chambers in the same screw i.e. 2AP, 

or for screws with m channels per pitch, 2mAP.

These pressure boundary conditions can only account for the pres

sure flow through the intermeshing region produced by the pressure drop 

due to die pressure in the extruder. This pressure drop is assumed to be

mainly responsible for producing leakage flow through the tetrahedron gap.

Although this was found from experiment to be the case for both 

Newtonian and non-Newtonian flows in the tetrahedron gap, melt flow would 

be influenced, to some extent, also by the drag flow generated by the

41
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section thno.RQJ.

Figure 3-7-3 A model of the intermeshing region.

O
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rotating surfaces of the gap. To include drag flow, requires an analysis

which would be three-dimensional in the sense that, even if the full

lubrication approximation is used for flow in the two component (x,z)

directions alone, the local viscosity and thus the velocity profiles would

be dependent on an additional variable, namely, the coordinate of the stress

neutral surface of each profile which would itself be influenced by the

combined shear rates varying in the third component (y) direction. The
39analysis would be similar to that described by Griffith for combined 

downstream and zero net transverse flow in single-screw extruder channel, 

but in the general case, the transverse flow would be required to take 

any value with no special condition . prescribed. It would be required 

then to use such a solution of the analysis at every point in the flow 

region. Considering the effort which is usually involved in obtaining 

each solution numerically on a digital computer, this method would be 

uneconomical to use, although such an analysis would be useful for solving 

the problems of flow,not only through the tetrahedron gap, but also 

through the entire intermeshing region i.e. including the combined drag 

and pressure flows through the side and calender passages.

Since there is, however, no net drag flow through the tetrahedron 

gap, what is really required is only the effect that drag shear rates 

would have on the local viscosity in the region of the gap where the 

greatest amount of melt flows. It was previously shown that most of the 

leakage flow is likely to go through the shortest part of the gap where, 

also, the surfaces rotate with the largest relative velocity and thus 

generate large drag shear rates which would probably become more signifi

cant as the screw speed is increased. In order to simplify the analysis, 

it is proposed to include the effect of drag flow on viscosity by using 

the combined drag and pressure flow shear rates at the screw wall

to define the viscosity to be used. The method used is given as an exten

sion of the pressure flow analysis of narrow clearances described in the

next section
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3.8 Finite Element Analysis of the tetrahedron leakage.

In the previous section is described a simplified arrangement of

the leak passages of the intermeshing region which makes the flow amean-

able to mathematical treatment (Figure 3•7•3)• A non-Newtonian pressure

flow analysis of narrow channels (as in dies) which was first introduced 
42by Pearson is used for the flow over the entire region. Such an analysis

. 44has been described by Fenner and Nadin for application to pressure flow 

in cable-coating dies and the differential equation solved using the finite 

element method^ The finite element method allows a mesh of small triang

ular elements to be constructed on the intermeshing region so as to follow 

as closely as possible the form of the boundaries. In Figure 3.8.1 is 

shown the finite element mesh used for the flow region plotted on the 

x, y  plane.

If Qx , Qy represent the volumetric flow rates per unit length 

in the x and y directions respectively in the two-dimensional flow, then 

in terms of a stream functionty(x,y),

This stream function automatically satisfies the equation of conservation 

of mass in incompressible steady flow (equation 3*2 .1 ),

Applying the lubrication approximation to flow in each direction separately, 

the equation of motion 3*2 .3 and 3*2 .4 together with their shear stress 

component equations 3.2 .7 and 3*2 .8 respectively can be solved for a power 

law fluid, equation 2 *4*5 with the no-slip boundary conditions, vx = vz =0,

3* 8.1

3 * 8.2

23 31at y = h to give the pressure gradients, 9

and

3*8*3

3*8.4
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y f

Figure 3-8-1 - Finite element mesh.
Number of nodal points =127. 
Number of elements =216. 
Number of boundary points = 36.

Figure 3 -8-2 Typical boundary showing the direction
of positive stream function and pressure 
variation.
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where for pressure flow of a non-Newtonian fluid,

X = 1 (— )n,2n+1 '2n+1

*
£ = * ,  ( - § 2 ) 

7 h

n- 1
3.8.5

3. 8.6

being the viscosity evaluated at the resultant flow rate,
2 2 2<T = Q : + 0 s ^x y 3.8.7

In order to eliminate the pressure gradients, equations 5.8.5 and 5*8.4 

must satisfy the following,

A (^E ) _ ( in  ) _ o
> x ^ y ; *y ; U 5 . 8.8

.44and therefore, the final governing differential equation is>

J L  ) + ( JL -t. iJP ) -  o 5 8 957 ^Xh^ *y ; + *x   ̂ 5Th3 ' u

In the finite element method, a varational principle equivalent to the 

equilibrum condition expressed by equation 5*8.9 is used to formulate 

the problem. The condition to be satisfied by the nodal point variables 

is that the total viscous dissipation over the flow region should be a 

minimum^*^9he variational approach used to solve the partial differential 

equation, is to seek a stationary value for a functional^ which is 

defined by an appropiate integration of the unknowns over the solution 

domain^ It has been shown that the required stationary condition is 

obtained when,

vc _ ( f ,i j :  ±  ,2Y\2 1 z  A" JJ k2 Xh3 v f  + 2 3Ch3 t$y >
holds for all of the unknowns, f where,

dx dy - I 
5 . 8.10

I  = v p
>x X h 3  >y ) ) dx dy

5.8 .11

0

and in terms of the first derivative of ^  normal to the boundary,

? -8- 12

* h for a triangular element taken as a mean depth h = 1/5(h^+h^.4h^)
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where the line integral is performed in the anticlockwise direction 

around the boundaries. Integral I = 0, if on the boundaries either the 

value of Y* is prescribed (independent of the unknown ) or its first 

derivative -5—  , with respect to the distance normal to the boundary 

( boundary of equal pressure ) , is zero. In the present problem, the 

integral I (equation 3.8.1 2 ) is probably not equal to zero (see previous 

section ) since not all of the above conditions can be prescribed at the 

boundaries. However, it can be seen that I is related to the flow along 

the boundary and therefore, it is possible to prescribe pressure gradi

ents, since the equation can be modified to,

*
ds 3.8.13

where is the pressure gradient at the boundary. Considering

stream function values*^ and Y k  at any two nodal points on the bound

ary, distance L apart, Figure 3.8.2 , and assuming a linear distribution 

of both and pressure between the nodal points, then,

i =  M l ( 1 ^  + ^ ( V k _  ^ } ) ? ds 3 ' 8 * 1 4

where dp is the pressure drop between the points. Integrating produces

1 = >
d£
2 3.8.15

Now, for a solution domain divided into small triangular elements of 

geometry shown in Figure 3*8.3 a linear distribution of stream function 

over each element is given by the shape function,

^ ( x ^ y 1) = C + C2X* + C^y* 3.8.16

The three parameters of the shape function C-j, C2 > C3 can be obtained in 

terms of the three nodal point velocities^, ana as,

C1 = ^ i C2 = * r r  . B2 Am’
U i

*\j>k
3.8.17

«
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Figure 3-8*3 Triangular element dimensions.

*
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where B is a dimension matrix,

bi bj bk
B =

ai  aj ak
“ -j

and the area of the element A m 1 = ^  ( a^ bj- aj b^) 

The form of the functional used is,

X =Jft ( U )2 +4$h3 ) tody- +tj)dE
3.8.18

where Y'j are P°^n^s only the boundaries.

For integration performed over the area of each element, numbered

m*, the required solution is obtained when the value of is stationary

with respect to the nodal point stream function values i.e. when,
m*

= 0 3.8.19v t  = y  I X
Vf-i '6^1

The derivative of with respect to the three nodal stream function 

values of m' is obtained and for all elements in the solution domain the 

summation gives^

[ k] [s] -  [p-] = 0 3.8.20

where is a vector containing the stream function values for all the

nodal points in the mesh, £kJ a square matrix is often referred to as 

the overall stiffness matrix contains coefficients assembled from the 

properties and dimensions of the individual elements and £p*J a matrix 

contains pressure drops which would be non-zero only at the boundary 

nodal points.

Equation 3.8.20 is solved for the unknown values of >£/ using the 

Gauss-Seidel back-substitution iterative method with overrelaxation, where 

the overrelaxation factor f is in the range 1 < f < 2 .  The convergence 

criterion used for the variable is that the sum of the relative errors

should be less than 1 0 .-5

%
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Prescribing pressure drops on the boundaries in this type of 

finite element formulation is equivalent to prescribing on the boundary 

derivatives of Y" alone without specifying any values of Y'. Attempts 

to solve such a problem will result in failure of the Gauss-Seidel method 

to converge^ and to prevent this occurring, at least one value of
61

must be specified. For the present problem, it was found convenient to

specify^ = 0  at two selected nodes in the mesh i.e. near the two

extreme corners as shown in Figure 3.8.1, nodes marked r and s. It has 
44.47been recommended, ’ also, that elements should be acute or right- 

angled and as equilateral as possible otherwise the rate of convergence 

would be reduced.

For non-Newtonian flow in each element, the mean viscosity is 

determined from the resultant flow or local gradients of stream function, 

using equations 3.8.6 and 3*8.17 and a mean depth over the element. For 

this reason, the equations become non-linear and are solved by initially, 

assuming a constant value of JJL for the element viscosities and then 

using the new values of stream function,obtained after a few iterations, 

to update the viscosities, repeating the process until satisfactory 

convergence is achieved.

The flow rate of melt passing the inlet or outlet boundary 

between adjacent pair of nodal points is equal to the difference between 

the stream function values of these points, The leakage flow rate

through the tetrahedron gap is determined from the difference in the values 

of the stream function between points A and A '» N ’A'" (Figure 3.7.1).

For polymer melts, if the leakage is produced by a pressure flow 

which is large compared with the drag component of flow, the analysis 

described above is likely to give a good estimate of the leakage flow rate. 

Because of the high viscosity of melts, the pressure gradients are most 

likely to be relatively large in order to generate significant leakages
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and therefore, the analysis could be valid for the low screw speeds normally

encountered in this type of extruder. In addition, the tetrahedron leakage

is not considered to be important over the range of small pressure gradients,

near oure drag flow conditions, where the simple addition of a drag flow

and a relatively small pressure flow of a non-Newtonian fluid tends to be
35most seriously in error (Figure 2.5.5). For large pressure gradients, 

the net flow is most likely to be influenced mainly by the shear rates due 

to the pressure flow than that due to a drag flow which is relatively 

small compared with the pressure flow, and using a combined flow which is 

strongly dependent on a mean drag shear rate is likely to produce signif

icant errors.

It is imnortant to know, however, the significance of the effect 

that drag shear rates could have on the net flow rate through large tetra

hedron gaps. Because the transverse flow was shown to
1 39 30have but only a small effect towards decreasing the downsteam flow, 

the combined flows for this problem are assumed to have a negligible effect 

on flow rates in any direction and the influence of drag on the pressure 

flow is considered to be more significant. In this case, therefore, the 

combined flow in the two component directions is treated as one-dimensional 

but the common viscosity is determined from an overall shear rate at the 

wall.

The main assumptions made, therefore, are that,

(a) the effect of drag shear rates in one component direction on the flow 
in the other direction is small and can be neglected.

(b) the two-dimensional non-Newtonian leakage can be treated as pressure 

flow alone, because the flow rate is generated mainly by a

pressure flow and there is also no net drag flow through the gap.
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However, the effect of the drag shear rates on pressure flow is included 

by using the shear rate at the wall of the combined drag and pres'aire flow 

to determine the non-Newtonian viscosity.

(c) the gap is narrow and therefore velocity profiles are influenced mainly 

by the shear stress at the wall, so that the two components of flow can be 

coupled by a common viscosity determined from an overall shear rate which 

is defined by the resultant shear stress at the wall,

T 2R = = / ( n + r 7 ) 3 .8.21

where are the shear rates at the wall of the combined drag and

pressure flow in the x and y directions respectively.

The additional procedure which is to be used with the finite 

element analysis previously described, is to determine the local 

viscosity (at each nodal point) which must be used with the Newtonian form 

of the flow equations to obtain the non-Newtonian solutions. The equival

ent viscosity method has been used in a finite element type formulation to
65 66solve non-Newtonian pressure flow problems'-3 but, in this case, the

method for determining the equivalent viscosity described by Weeks and

Allen ' was found to be suitable and is employed directly in the present

FE formulation of the problem. An account of this method has been described
1by Tadmor and Klein (Appendix VI) and is consistent with the dimensionless

37coordinate system employed by Krosser and Middleman for one-dimensional 

non-Newtonian flow (Appendix V).

The procedure used in updating the equivalent viscosity was to 

determine , firstly, the combined net flow rates in the two component 

directions from the algaebraic sum of the ideal drag flow rate and the 

pressure flow rates computed with the previous value of viscosity, and to 

use these to determine^the velocity profiles for a power law fluid, their 

individual shear rates at the wall, and the overall shear rate which is •

*
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then used to compute the viscosity from the constitutive equation for the 

melt and thus the equivalent viscosity to be used in the FE formulation 

to solve the equation once again for the flow rate. In order to include 

the changing equivalent viscosity in both directions, the additional term,

C-d = kn(1+Ki) is inserted in the transnose of determinant of thert a
dimensions matrix which becomes,

TB =
CD b-_ C„ a. Rx 1 fty l
CRxbj V *
CRxbk CHyak

5 . 8.22

For zero drag flow, the analysis converges to the pressure flow solutions. 

For the relevant range of pressure drop used in determining the non-New

tonian solutions, the overrelaxation factor varied from about 1 .6  fo-** the 

lowest value, to 1.8 for the higher values of pressure drop. For the 

Newtonian solutions, the optimum factor was found to be about 1.5.

%
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3.9 Screw channel flow.

The screws of counter-rotating extruders are usually designed 

with relatively deep channels and small helix angles in the metering zone. 

The width to depth ratio, A (aspect ratio) of typical screw channels can 

vary from 10 to as low as one (square channel) and normally with a pitch 

to diameter ratio of less than the square-pitch value of one (which is 

equivalent to a helix angle of about 17.65 degrees). The variation of 

the helix angle and consequently, also the variation of the width of the 

channel from top to the bottom of the screw channel is dependent on the 

depth of the channel, or depth to diameter ratio, H/D. For example, a 

square-pitched screw with a typical value of H/D = 0.14* the helix angle 

at the screw root is increased to about 23 degrees and the width decreased 

by about 5 nercent.5 For screws with smaller helix angles, therefore, 

the variation in dimensions due to the screw pitch is further reduced and 

is not likely to be significant. In addition, however, the channels of 

counter-rotating screws are normally trapozoidal-shaped with inclined 

flight walls. The influence of the flight wall angle on the calculated . 

flow rate along the channel has been found in general to be small for 

flank angles^s 12 degrees and can be neglected. The channel can be . 

treated, therefore, as approximately rectangular-shaped with straight 

sides.

The helical flow generated in screw channels of extruders consists 

of a downchannel flow and a cross-channel two-dimensional recirculatory 

flow with leakages over the flights. In deep channels of twin-screw extras 

ders the downstream flow is likely to be influenced by (a) the flight 

walls (b) curvature (c) the transverse flow on which the effective 

viscosity of the melt is dependent (and which includes the turning over of 

the melt at the flight walls with flow occurring also across the depth of 

the channel) (d) changes in melt viscosity with increases in temperature 

produced by the shearing of the non-Newtonian melt and (e) leakages.
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The effect of curvature in this problem is likely to be due mainly to the 

linear variation of velocity from top to bottom of the channel and become 

significantly larger the deeper the channel. In comparison with the flow 

in deep channels,the flight leakage is small and therefore, its influence 

on the channel flow is assumed to be small enough to be neglected.

In order to calculate a downchannel flow rate influenced by the 

above factors all the governing equations (Appendices I-IV) derived and r 

simplified for two-dimensional flow must be solved simultaneously. This 

problem of isothermal and non-isothermal non-Newtonian flow in deep 

rectangular channels have been solved by Dyer* using axisymmetrical 

geometry which anoroximately accounts for curvature effects. The differ

ential flow equations (together with a suitable constitutive equation for 

the material and the relevant boundary conditions) were solved using a
C Q

finite difference method developed by Gosman et al^ for formulating
30recirculating flow problems. This method was found by Fenner to 

produce correct solutions for isothermal Newtonian and non-Newtonian 

flow in deep channels. It is this FD method of analysis which is used 

to obtain solutions of flow rate for the deep channels of twin-screw 

extruders.

For the axi-symmetrical geometry assumed (i.e. with zero helix 

angle) cylindrical polar coordinates are employed, Figure 3•9•1• The 

coordinates are taken with reference to the screw and thus, the barrel 

is treated as rotating about a stationary acrew which is a valid pro

cedure for slow viscous flows. However, the correct barrel velocity 

components relative to the channel are used in the downchannel and trans

verse directions respectively,

vbe= vbcos/3 3.9.1

vbZ= \ si¥ 3.9.2

*
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Figure 3-9-1 Channel geometry -axisymmetric, 
cylindrical polar coordinates.
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Figure3-9-2 FD grid of rectangular channel.

»
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The flow is assumed to be steady (time - independent), laminar (Reynold’s 

number for the flow is small) and incompressible (constant density). The 

governing differential equations ( of conservation of mass, momentum and 

energy ) can be written to fit a standard form. The momentum equations 

for the directions r and z are reduced to a single equation by eliminating 

the pressure gradients-^ , , from differentiation and subtraction

( see equation 3*8.8 ) and the velocity components vr and vz are replaced 

by the dependent variables, stream function *1̂/ and rortlcity o> s 
defined as,

"  ■ - r < #  -

r/ aT'- = - ^  J -9 *5

the latter, automatically satisfying the continuity equation for conser

vation of mass (equation B, Appendix I ), in two-dimensional flow,

iyovz =_
T>r

For the remaining momentum and energy equations, the dependant variables 

are velocity v^ , and internal energy U, respectively and are defined as,

VQ = r VQ 5.9.7

U = C T 3.9.8

where Cis the specific heat and is taken as a constant, and is the 

angular speed in radians.

The boundary conditions for each of the four dependent variables *

are specified on all four channel walls. The vorticity condition is not

usually known and therefore is not specified directly at any of the walls

but is obtained from the values of velocity and stream function at and near

the wall. A general equation for the vorticity condition on each of the .

horizontal and vertical walls have been obtained for this oroblem from a .
48one-dimensional analysis of flow near the wall. There is no net flow

tr
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through any of the walls, thus, the stream function must have the same 

value at all the walls which for convenience is taken as zero,^  = 0.

The angular velocity of the barrel at the top wall is prescribed as the 

downchannel velocity component, equation 5*9.2, and on the stationary screw 

surfaces, v@ = 0. There are various temperature conditions which can be 

specified at the boundaries. For adiabatic operations, where no heat is 

gained or lost through the screw surfaces, the temperature gradient = 0 

can be prescribed, where n is the direction normal to the surface of 

interest. also, the temperature of the barrel is known and the condition,

U = C T0 can be prescribed at the top wall, where T0 is a referance temp

erature which, for this problem, is taken as the barrel temperature.

The information on the properties of the polymer melt is supplied 

by the power lav: form of the constitutive equation given by equation 2.4.5. 

The viscosity is related to I2, the second invariant of the rate of 

deformation tensor which in equation 2.4.4 is the form used in cylindrical 

coordinates.

The differential equations are transformed into finite difference 

equations derived for a grid, shown in Figure 5.9.2, covering the flow area

using the * tank and tube' finite difference analogue of the equation
58suggested, in which integration is performed over the finite areas around 

a typical node P. Each FD equation is expressed in terms of the value of 

the variables of the surrounding nodes and the integration of the differ

ential equation is performed over the area shown by the broken lines which 

enclose the nodal point P. The set of algebraic equations derived from the 

differential equations and the boundary conditions connect the values of 

the dependent variables at the grid nodes with each other. The algebraic 

equations for all the grid nodes are solved using the Gauss-Seidal iterative 

successive substitution method. The successive-substitution technique is 

used to update the values of the variables at each node after each cycle of

«
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*

iteration. VJhen the equations are numerous and are made non-linear (as in
this case, by the non-Newtonian nature of the flow), this technique must be

employed. For non-Newtonian flow, the viscosity is computed from the power

law constitutive equation and also updated after each cycle of iteration.

The criterion for convergence employed is when the relative error is less
-5than a small tolerance, 10. Although overrelaxation to improve convergence 

can be used, it can sometimes cause divergence of vorticity'' and for this 

problem, this was found to be the case. The grid size used was 15 rows by 

21 columns and the digital computer employed for solving the equations was 

a CDC 7600.

The flow characteristic is plotted for each screw channel geometry 

using dimensionless flow rate and pressure gradient terms,

flov, rate, 7TQ =

pressure gradient,7Tp = sS t = H T l
Vb^  k'r dO

3.9.9
3.9.10

where T i s  the average shear stress, ^  is the pressure gradient, and Q 

is the upchannel flow rate (taken relative to the intermeshing region) since 

this is the channel flow which influences the leakages through the inter

meshing region, and this flow is norm alized with the maximum plain 

downstream flow rate, vbera» ■ .which is convenient to use because the FD flow 
rate solutions can be compared directly with the parallel plate solutions 

for plain flow and, also is the form employed in the numerical procedure, 

described in the next section, for matching the channel and leakage flows.

The dimensionless numbers, the Peclet number which represents the 

ratio between convective heat transfer and conductive heat transfer, and the 

Brinkman number which determines whether imposed barrel temperatures or heat 

generation are dominant in effective temperature changes in the melt, are 

used in the formf^*^

Pe cpHYbQ , Br = bo/*pVhQ B—  3.9.11K K

This Brinkman number i s  in  a s im ila r form to what was defined by Martin 

and is  now referred  to  as the G rif f ith  number (see section  2 .6 ) .

24
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3.10 Numerical Procedure for matchl1??: channel °nd leakage flows.

In the previous sections, the analysis of the individual flo^- in

each gap and chamber resulted in the solution of flow equations which

can now be used to simulate the performance of the machine. For each cham'r-

ber and associated leakage gaps, the flow rates are inter-dependent because

of the flows generated internally in the passages due to drag and pressure

and also because of the axial back-pressure drop over each chamber. It

is assumed that the drag and pressure flow component in the direction

along the channel influences the leakages through the calender and side

gaps, whilst the component in the axial direction influences the leakages

over the flight and through the tetrahedron gap. Because the net flow

through the calender gap, side gap and channel are all dependent on the

net axial pressure drop over each chamber, the leakages must be balanced
Figure 3.10.1a.

simultaneously against the channel flow,A This is not the case, however, 

for the flight and tetrahedron leakages because the latter has already 

been determined at the net axial pressure drop and only the flight leak

age has to be coupled to the net flow rate resulting from the difference 

between the axial channel component of flow and the tetrahedron leakage figure3.10.1b.

To obtain the required leakages for a given pressure drop and 

net flow rate through the channel and gaps, a numerical procedure was
62employed on a digital computer. A trial-and-error iterative procedure 

which was developed for one-dimension=il lubricating melt flow in a 

tapered clearance is adopted. In the procedure, the pure drag flow,

VHW/2 (which is the one-dimensional net flow rate for a tapered clear

ance; section 2.3) is used to compute pressure gradients for flow through 

small elements of the clearancesand the pressure summed over the clear

ances and compared with the prescribed value at the boundaries. The pro

cedure is repeated each time for a new position of drag flow rate, until 

the correct net flow rate and pressure drop is obtained for the clearance?.
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The pure drag flow condition can be found by trial-and-error

since it is related to the final pressure computed at the boundary.

The application of the method to the matching of the channel

and leakage flows involves obtaining, first of all, the pressure drop.

over each flow passage for a selected drag flow rate and then comparing

the net pressure drop obtained with the prescribed value over a chamber.

For the tapered calender gap, the net drag flow is situated somewhere

along its length between the maximum channel depth and the minimum

calender depth. However, if the flow generated locally in the calender

gap is overshadowed by the effects of back-pressure flow, the iterative

procedure will converge to pure drag flow in the channel, a condition

which is unlikely to exist in the extruder because a high pressure is
2 5always developed where the rotating screw surfaces converge.* Now, 

when considering the balanced flow through the side gap ( which has a 

constant clearance depth) and the channel, the net pure drag flow rate 

can be cho sen, using the iterative procedure, from a linear tapered 

passage with a maximum depth equal to that of the screw channel at one 

end, and a minimum depth equal to that of the gap at the other end.

For flow in the axial direction, however, the net flow rate can be 

larger than the pure drag flow in the channel if there exists a large 

flight and tetrahedron leakage (see Figure 2.2.4 ) and for this case, 

the pure drag flow rate is chosen from a tapered passage with a maximum 

depth equal to twice that of the screw channel.

When there is only one leakage flow to be matched to the channel 

flow, the iterative procedure is no longer required when the flow is 

Newtonian because there would then be a linear relationship between the 

net pressure drop and flow rate and the leakage can be determined exactly 

by linear interpolation from two computed solutions. For two leakages 

to be balanced simultaneously against the channel flow, the iterative

*
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procedure is carried out, firstly, for each leakage gap separately and, 

because both leakages must decrease when coupled under the same pressure 

conditions at the boundaries, the estimates obtained can be used as upper 

limits in the same procedure but this time using the combined leakages as 

the net flow rate required for computing the pressure gradient in the 

channel.

To determine the pressure gradient for a given flow rate the 

relationships obtained from the analyses given in the previous sections 

are used. To obtain a one-dimensional solution from the non-Newtonian 

flow equations ( given in Appendix V ), the dimensionless coordinate,*^ , 

for each type of flow is computed as a root of the equation using 

Newtonian*s approximate method when the equation is expressed as a fun-
63ction equal to zero. For each dimensionless flow rate assumed, the 

dimensionless coordinate obtained is used to determine the dimensionless 

pressure gradient term and consequently, the constant pressure drop for 

flow through either, the uniform gap, or small elemental sections of the 

tapered calender gap. For deep channel flow, the required solution is 

obtained by linear interpolation between chosen points on the flow 

characteristic. For this purpose, the characteristic is defined by ten 

or more points which are conveniently choosen so that each short section 

of curve is represented as accurately as possible by a straight line.

Non- Newtonian viscosity of the melt at the operating temper

ature and for a limited shear rate range can be used for determining 

solutions. To obtain solutions at individual screw speeds and to cover 

a wider range of shear rates at each speed, the melt viscosity at the 

mean shear rate V/H for each flow passage is obtained from the viscosity 

flow curve ( see Figure 2*3*5 ) by using linear interpolation - similar

to the procedure already described above for obtaining deep channel solutions.

♦
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Finally all the leakage flow rates computed for the twin-screw extruder 

are summed using the equation,

= 2V  ^  + 2m ( Qc + Qs ) 3 . 10.1

and these leakages are subtracted from the theoretical output to give 

the actual output rate,

Q = 2mNVol. - Q1 3 . 10.2

The throughput rate versus pressure drop characteristic for each screw 

geometry is plotted using dimensionless terms,

Q AP
kV

/P1

N2mNVol
or
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side calender

Figure 3.10,1 Pressure distributions to be computed in the 
channel and, (a) calender and side gaps,
(b) flight gap.



-  111

In this section, typical solutions obtained from the various flow

analyses are presented and comparisons made, where possible, with published
30solutions. For deep channel flow with curvature, Fenner found errors in

layer's computer program and therefore, no satisfactory comparisons could
48be made with published solutions. However, since the only other isothermal 

and non-isothermal solutions for flow in very deep channels available, were
n  j

those published by Martin'14 for plain flow in rectangular channels, the 

solutions of the finite difference analysis used were checked against 

Martin's results. The plain flow solutions in deep channels were obtained 

using cartesian coordinates which was included in the general coordinate
CO

system used in the FD analysis. In Table 3*11*1 are given a few compar

isons of theoretical solutions for isothermal and non-isothermal flow.

In general, the agreement was found to be within 3% which was considered 

to be good.

In Figure 3*11*1 is plotted the deep channel and one dimensional

solutions for Newtonian flow in a screw channel using dimensionless flow

rate and pressure gradient terms. These solutions were obtained for the
5dimensions of the extruder screws used by Janssen and are given for 

flow in the up-channel direction taken relative to the intermeshing 

region (since this is the channel flow which influences the leakages: see 

Section 2.2). In comparison with the one-dimensional solutions, higher 

channel flow rates and consequently, higher leakage flow rates can be 

expected when using these deep channel solutions for the same pressure 

gradients. Therefore, for Newtonian flow in twin-screw extruders with 

relatively deep screw channels, there is a strong case for using deep 

channel solutions to determine leakage flow rates. There is a signifi

cant difference, however, between the deep channel solutions with and 

without the effects of curvature included, as expected, with a lowering

3.11 T h eo re tica l s o lu t io n s .

♦
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Cartesian coordinates: Aspect Ratio, A = W/H =1.0

Helix angle, y# = 20°

Newtonian: n=1.0

Table %11.1 Comparison o f  Two-dimensional Deep channel s o lu t io n s

Martin (ref.24) finite difference

7Tp ttq

method used. 
7T-q

0 0.250 0 .2 5 0 5

4 0 .1 1 5 0 . 1 1 7

Isothermal non-Newtonian: n=0.6

Martin (ref.24) FD method used.

7Tq

0 0.2064 0.2124
3 0.110 0.1085

Non-isothermal non--Newtonian: n=0.6, A = 5.0,<3 = 17.7°, Br= 4

Martin (ref.24)

Tb= 1!
FD method used.

TTp rrQ ttq

0 0.409 0 .4 20

2 0.085 0.081

3500,
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F igure3-11-1 Dimensionless flow rate against pressure 
gradient, A =1.

*
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of the flow rate due to curvature because of the linear reduction of the 

surface velocity from top to bottom of the screw channel. There is likely 

to be, therefore, gross ove res tarnation of flow rates if plain deep channel 

solutions are used to determine leakages.

Figure 3*11.2 gives typical solutions for isothermal and 

non-isothermal non-Newtonian flow in deep channels together with the 

isothermal one-dimensional solutions. For isothermal non-Newtonian flow 

in curved deep channels, the flow rate is increased compared with one

dimensional flow but is significantly reduced compared with plain flow in 

deep channels. When temperature effects are included, however, the non- 

Newtonian flow with curvature is further reduced and the solutions become 

closer to those of isothermal one-dimensional flow. These temperature 

effects are accounted for by using the boundary conditions for an insulated 

screw and isothermal barrel which are considered to be appropiate for melt 

flow in deep channels?^*^ If these are valid operating conditions in 

twin-screw extruders, then the results indicate that, with melt flow, using 

the isothermal deep channel solutions with curvature is likely to produce 

an overestimation of the throughput rate in the channel and consequently 

an overestimation of the leakage flow rates.

Considering Newtonian flow through the tetrahedron gap, an 

empirical formula for the flow rate was obtained by Janssen^ from tests 

performed with stationary models of the gap. Solutions of this formula 

shows that the relationship between leakage flow rate through the tetra

hedron gap, Q̂ , and the axial pressure drop is linear and goes through 

the origin. Table 3.11.2 gives the solutions obtained from the 

empirical formula and from the FE two-dimensional flow analysis used.

The results given are equal to P and are for dimensions taken from

the two different pairs of screws tested by Janssen. The two-dimensional 

solutions given are for constant pressure gradients prescribed at the
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1 -one dimensional, parallel plate.
2 - two dimensional , cylindrical, H/D=0-15
3 - twodimensional .cartesian.

gradient. n = 0-466 , To = 150°C, fi =5-19°, A =1.

m
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Table 3*12.2 Comparison o f  Tetrahedron leakages -  Newtonian S o lu tio n s .

Newtonian solutions: (x 10~®),/X = 1.0Ar '

calender gap. <Tnm.____1.23________0.76_______0.34_______0.2_________
(£= 0.05mm., ref.5)

Formula (ref.5) 
* ( 1 )given below.

0.243 0.207 0.179 0 .1 7 0

2D- Finite element 
*(2 )method. '

0.224 0.207 0.186 0.181

*(3)2D- FE method. 0.207 0.195 0.183 0.170

calender gap, (Trnm. 1.5 0 .2

( £ = 4 .0mm, ref.5)

Formula (ref.5). ^ 2 .0 3 6 1.954
*(2 )2D- FE method. K ’ 1 .810 1.741

2D- FE method. v"' 2.003 1.991

*(1) Janssen's formula (ref.5) for the tetrahedron gap:

Qt= 0.005a R3 ( ^ - ) 1 - 8 Cy/+ 2 ( £ ) 2

*(2 ) full pressure boundary condition prescribed.

*(3 ) zero pressure drop prescribed along the calender passage.

*
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boundaries and in comparison with the experimental results, are the correct 

order of magnitude and there is satisfactory agreement. Comparison of 

solutions obtained with a constant pressure gradient and a zero pressure 

gradient at the boundary along the calender passage showed a reduction for small 

but an increase for large side gaps. High pressure boundary conditions of this 
type are likely to have a significant effect on shear flow of non-Newtonian 

melts and is considered to be important and must be included. Flow rates 

were also obtained with stream function type boundary conditions by assum

ing no flow to occur through parts of the boundary where constant values 

are prescribed. Specifying flow only through the boundaries along the 

calender duct, i.e. in through BB* and out through CC' and assuming no 

pressure gradient along these boundaries, Figure 3«7«1j produced a leakage 

flow rate (corresponding to a pressure drop of A P) which was approximately 
twice the empirical value and which was about equal to that obtained from 

a one-dimensional analytical solution for pressure flow, equation 3*8.4*

integrated and summed numerically over the whole flow region. In order 
toaccuratelyApredict leakage flow rates , therefore, it appears that flow 

through parts of the boundary cannot be neglected. In general, the 

results show that most of the leakage flow is concentrated near the edge 

of the intermeshing region at A and A', Figure 3-7*1, where the gap tends 

to be shortest and deepest with only a small proportion distributed over 

the relatively large and shallower area at the middle. The leakage flow 

rate of the tetrahedron gap is influenced., therefore, mainly by the flow 

behaviour in the region near the sides of the gap.

Figure 3-11*4a gives the dimensionless throughput rate

plotted against pressure gradient for Newtonian flow in a completely 

filled counter-rotating twin-screw extruder. The experimental and theo

retical results from Janssen*s work are given and compared with predictions 

obtained for a power law index of n=1 from the non-Newtonian flow model
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1- e=0 05 ,A  = 1,H/D = 0H3.

Figure3-11-3 Dimensionless flow rate versus pressure
gradient. Newtonian flow in channel of screws 
used in ref (5).
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figure 3»11»3 gives the deep channel flow solutions used for the predictions* 
developed. The experimental results we re obtained from tests performed on

a twin-screw extruder with a split barrel arrangement in which the depth 

of the calender gap was varied by altering the centre-line distance of the 

two screws (and the degree of intermeshing) with shims packed between barrel 

halves, and as a result the tetrahedron and side gap dimensions were also 

varied. For each calender gap examined, the plot of dimensionless terms 

produced a characteristic which was linear and independent of both the 

screw rotational speed and the fluid viscosity. With the extruder opened 

at the die, the back pressure drop is zero and the machine produces the 

largest throughput rate possible for each geometry, limited by the leakages 

which can be produced only by the drag and pressure flows generated inter

nally in each chamber and associated leakage gaps. When there is a build 

up of back pressure along the extruder, however, as a result of the flow 

restriction at the die, leakages are increased in order to reduce the output 

rate, thus balancing the net throughput rates of the machine and die, the 

limiting value of pressure gradient and leakages for zero output determined 

by the size of the gaps.

For the set of screws examined, the side and flight gaps were small 

so the significant leakages passed mainly through the tetrahedron gap, and 

through the calender gap when its depth was significantly increased. When 

flow was treated as one-dimensional in the side and calender clearances, an 

overestimation of the total leakage flow rate was obtained, as illustrated, 

but in general, the error produced in predicting throughput rates was not 

very large. For instance, the error in the flow rate obtained when comparing 

the predictions for very small calender gaps with Janssen*s theoretical curve 

was less than 5% of the ideal theoretical throughput, but was a large propor

tion of the actual net throughput rate at large pressure drops. The calender 

and side gaps were so small that their contribution to the overall error was 

negligible. The largest leakages generated with these small calender gaps,

4
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therefore, are those due to flow through the flight and tetrahedron gaps 

and only a small overestimation of the leakage through the latter was 

sufficient to magnify the error considerably, especially with large pressure 
drops.

When deep-channel downstream solutions were used for these gaps, 

the improvement was small without producing much of an increase in the 

throughput rate of the machine. This was because deep-channel solutions 

had more influence on the flow through the deepest end of the calender 

passage near the inlet where the pressure gradients and thus pressure build 

up tended to be small compared with those for the much shallower clearances, 

and therefore the effect on the overall pressure drop was small.

For large calender gaps, however, a comparison of Janssen*s predicted 

and experimental results show that the predicted throughput rate at zero 

pressure drop is overestimated and the estimated curves should not have been 

so steep. There was a small improvement in the throughput rates atAP= 0 

compared with Janssen's predictions using the one-dimensional flow in the 

calender passage and a calender width equal to the axial width of the flight, 

i.e. with Wc = B. However, when the calender gap width was put equal to the 

mean width of the channel (as did Janssen who used instead the width of the 

top of the channel) the throughput rate atAP=0 became comparable to the 

value which the experimental measurements appear to converge to but the 

curves remain approximately parallel to the origional predicted curves. This 

effect was negligible with the low values of calender gap which suggests that 

overestimation of the leakage flow rate could have been due to an error in 

predicting, the tetrahedron leakage. It was found also that the analytical
5equation for one-dimensional flow through the calender gap derived by Janssen 

produced a larger leakage for a given pressure drop than the present numerical 

method used here. Although the flow through the calender passage was found 

to be sensitive to the dimensions near the minimum gap, large variations of

«
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depth dimensions at the deeper end can be tolerated without producing 

significant variations in the leakage flow rate. This was because the 

pressure gradients in the deeper end tended to be relatively small compared 

with those at the much shallower region in the middle and the overall pres

sure drop was influenced mainly by the larger pressure gradients in the 

latter region. VJhen comoaring theory with experiment, therefore, it is 

important to have an accurate measurement of the calender gap.

Figure 3.11.4b gives similar results for the other set of

screws which contained a much larger side gap than the first tested by
5Janssen, For this set of screws which contained very large side gaps, there 

was an underestimation of the leakage flow rate which in general was not 

very large, but the slope of the predicted curves showed a behaviour which 

was similar to the experimental measurements. Again, the use of the width 

of the channel for the calender gap width instead of W =B, produced a better 

correlation of throughputs at ̂ P=0 but gross overestimation of the leakages 

was obtained with the large calender gap and very little with the smaller 

gap. In this case, therefore, there is instead an underestimation of the 

leakage flow rate, probably due to the effect of the increased side gap.

Using one-dimensional solutions for flow in the screw channel would further 

reduce the leakages and therefore make the predictions worse. The predictions 

obtained from the non-Newtonian flow model for n=1 are considered to be in 

good agreement with the experimental results over the range of geometries 

examined and it appears that one-dimensional solutions are adequate for 

simulating leakage flow behaviour in the flight, calender and side gaps 

whilst deep channel solutions must be used for the screw channel flow.

Figure 3.11.3 gives the throughput rate versus pressure drop 

relationship for non-Newtonian flow in the tetrahedron gap. The dimensions 

are for the twin-screw extruder used in the melt conveying experiments 

(Chapter 4 )• The solutions given are for pressure flow and a constant 

pressure gradient prescribed along all boundaries. There is, initially, 

a less than proportionate rise in leakage flow rate with
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Figure3J1.4b.Dimensionless throughput rate versus pressure drop, Newtonian flow.
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increasing pressure drop but final ly a rapid increase occurring at higher 

pressure drops. In the region of very low pressure drop, the pressure 

flow is most likely to be influenced by shear rate due to pure drag flow 

and the viscosity will be constant in each small element of flow, depend- ' 

ent only on the local drag shear rate. The flow behaviour, in this case, 

is given by the linear characteristic which was obtained for a rotational 

speed of the screws of 30rpm. For higher speeds, similar characteristics 

can be drawn which would be situated not very far above the linear 

characteristic given. Similar flow behaviour has been found in the tetra

hedron gap by Janssen^ from tests performed on rotating screws extruding 

a polymer solution. The fluid was highly non-Newtonian and a screw speed 

of up to 60 rpm. and a pressure drop of up to 3.2 kN/m- were used. The 

relationship between tetrahedron leakage and pressure drop with screw 

rotation was found to be linear over the range of pressure drop used, 

even at very low screw speeds, and as would be expected, the flow rates 

and thus the gradients of each characteristic increased with speed. The 

flow curve for no rotation was of a similar shape to that given in 

Figure 3.11*5. The linear form of the characteristics indicates that 

fluid viscosity is dependent mainly on screw speed at low pressure drops.

In other words, the velocity profile generated at each point in the 

flow is dependent on a viscosity which is kept constant as a result of 

the shear rate produced only by the resultant drag of the surfaces rotat

ing at a constant relative speed. This flow is likely to become non

linear only when a large proportion- of it is generated by die pressure. 

Figure 3.11*6 shows the throughput rate versus pressure drop characteristic 

for a tetrahedron gap with a relatively small clearance depth. The large 

drag shear rate developed over the speed range in this case, has a signif

icant effect on leakages even at very large pressure drops but the flow 

rates are much smaller because of the reduced gap size. The effect of

*
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-  large gap. (screws A , Chapter^ )

«
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-  small gap. (screws B,Chapter 4 )
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screw speed on leakages is much less significant (as shown in Figure 3.11.5) 

when tetrahedron gaps and thus leakage flow rates are larger. Low-pressure 

flow through large tetrahedron gaps, however, is not likely to exist during 

normal operations since the extrusion of high viscosity melts usually 

require large pumpimg pressures at the die, resulting in the development 

of large pressure gradients along the melt conveying zone. The limitation 

on the range of pressure gradients that was obtained from extrusion tests 

conducted with screws containing large tetrahedron gaps tends to suggest 

that this is the case (see Chapter 4). An examination of the theoretical 

results obtained using typical back-pressure gradients reveals that most 

of the leakage flow passes through the shortest part of the tetrahedron 

gap.

Figures 3«11.7 to 3.11.9 give the relationships for non-

Newtonian leakage flow rate against pressure drop for the tetrahedron gap

of screws used in the experiments described in Chapter 4. These solutions

were obtained from the approximate method described (in section 3*8) for

including the effects of a combined drag flow with the pressure flow. In

Figure 3.11.8, the solutions are given for a large tetrahedron gap, a

speed range of 0-50rpm, and for the range of pressure drops measured in

typical experiments. The largest computed solution of about 1 .3 6  x 10^m^/s

for pressure flow (N=0), corresponds to a leakage of about 4 .6 kg/hr. which

is a significant proportion of the ideal throughput rates for this screw

at the speeds 30 and 50rpm (see section 4*7)3 but the effect of screw

speed is only to increase the leakage by a small amount. It can also be

seen that curves for rotational speed show almost a linear behaviour at the
64very low pressure drops, similar to that shown by experiment. In Figure 

3.11.8, solutions are given for the same screws but using parameters of a 

power law fluid which corresponds to a higher temperature and thus a lower 

viscosity. In this case there is a steeper rise of leakage flow rate
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screws A.
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screws A.
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with increasing pressure drop as would be expected with a lower viscosity*

The maximum pressure drop measured by experiment with this viscosity would

not be as high as in the previous case since small pressure gradients would

be required to generate the same leakages through the gap. In Figure 3.11.9

are given the flow curves for a relatively small tetrahedron gap. The

leakage flow rat® for pressure flow alone is very small and although the

effect of rotational speed inthis case is much more significant, the largest
-6 xsolution computed at 90rpm of about 0.55 x  10 it k / s  ( or 1.92kg/hr.) is still 

quite small and only likely to be significant at the very low screw speeds.

Figures 3*11*10 and 3*11-11 give some deep channel solutions computed for 

the geometry of screws used in extrusion exoeriments given later in Chapter 4* 
The dimensionless flow rate given is for the flow conveyed with the screw 

in the upchannel direction ( and not in the direction of barrel rotation). 

There appears to be very little influence of the power law index on down- 

channel flow rates probably because the channels are very deep. The effect 

of increasing the aspect ratio of the channel is to reduce the downchannel 

flow rate and thus the upchannel value is increased.
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Figure3-11-9 Leakageflow rate against pressure drop
fo r the te trahedron gap,n = 0-326,yu0=17-5kNs/m2 
screws B.
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Figure3-11-10 Dimensionless flow  rate versus pressure gradient, 
for non-Newtonian deep channel flow.
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Figure3*11-11 Dimensionless flow rate versus pressure gradient, 
for non-Newtonian deep channel flow.
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CHAPTER 4

MELT CONVEYING EXPERIMENTS 

AND

COMPARISON E'lTH PREDICTIONS.

In the previous chapter, theoretical solutions of the flow 

equations for the channel and leakage gaps were obtained using a number 

of simplifying assumptions. The validity of these assumptions and thus 

the accuracy of the theoretical treatment described in simulating melt 

conveying is to be determined by comparison with measurements obtained 

from tests performed on a typical plasticating counter-rotating twin- 

screw machine extruding polymer melts. From such experiments, a 

comparison can be made only with the total amount of leakage or simply 

the net throughput extruded. This chapter describes experiments which 

provide information about the relationships between flow rates, pressures, 

and temperatures for the melt conveying process.

#
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4.1 Experimental Twin-screw Extruder.

The counter-rotating twin-screw extruder used to carry out the 

experimental work was a fully instrumented Leistritz laboratory machine* 

with intermeshing screws. The screws were uniform and identical, and the 

barrel bores were a nominal 34 mm. with a centre distance of 30 mm. A 

general view of the extruder is shown in the photograph given in Figure 4.1.1. 

A photograph of the intermeshing screws is given in Figure 4.1.2.

The machine was a plasticating type extruder which consisted 

essentially of; a long heated barrel, screws with four different geomet

rical sections, hopper with feeder, heated die, infinitely variable 

speed mechanical drive and various measuring devices connected to instru

ments used for controlling, recording and monitoring the operating 

conditions of the extrusion process.

Figure 4 .1 .3  gives a c ro ss-sec tional view of the extruder.

Both the barrel and screws were constructed of short separate sections 

connected together in series. Each barrel block was equipped with means 

of heating, cooling and controlling the temperature of the barrel.

Pressures were measured directly from the barrel, at four points along 

the length of the metering region of the extruder using Dynisco pressure 

transducers situated 60 mm. apart. Before each experiment, the record

ing instrument connected to each transducer was zeroed and then adjusted 

to record pressures over a full-scale range of 0 - 27.6 Thermo

couples were used in place of the pressure transducers for measuring 

melt temperatures. Pressure and melt temperature were also measured at 

the output end of the extruder. Each screw was made up of standard 

elements of different scfew geometries fixed together on a single shaft.

By simply changing screw elements of the metering section it was possible 

to test different screw geometries. Screws were withdrawn via the die 

end of the extruder using a mechanical pulling device. The metering

•^Extruder was located at Bp Chemicals Ltd. ,  Barr y .
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F igure  4 .1 .1  G eneral view o f  th e  L e i s t r i t z  la b o ra to ry  E x tru d e r .

metering sect ion.

F igure  4 .1 .2  The In te rm esh in g  Screw s.

*
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section of the screw was 180 mm. long. The screws were driven by a 5*5 kW 

electric motor through a gear box with a speed range capability of 

T - 233 rpm..
A rotary type feeder was used at the hopper to regulate extruder 

output which emerged from a heated 2 mm. by 20 mm. slit die. The feeding 

rate was varied by increasing or reducing the speed of the rotor using 

a graduated dial. The output rate of the machine was measured using 

a stop watch to time the mass of melt extruded over a convenient period.

Data logging equipment together with a digital computer was used 

to record a 100 scans of the changing pressures and temperatures and to 

compute and print out the minimum, maximum and mean values when required. 

All operating conditions were recorded after short time intervals and 

monitored continuously on a visual display unit (VDU), initially to ensure 

that all equipment was working correctly and then, to determine when 

conditions became steady. Figure 4.1.4 gives a photograph of the data logg 

ing equipment and the visual display unit used.

*
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F igure  4 . 1 . 4 Data lo g g in g  equipm ent and V is u a l D isp lay  U n it.
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4.2 Screw dimensions.

Figure 4.1 .2 gives a photograph of the intermeshing screws used 

in the experiments and Table 4.2 gives the dimensions of the screw elements 

of the metering section. All dimensions were measured to a tolerance of 

- 0.02 mm. and were averaged over the length of both screws. Two different 

sets of screw elements with the same pitch of 30 mm. were tested, and these 

are called screws A and screws B. Screws A had a much larger clearance 

between the screw flanks in the intermeshing region than screws B and thus, 

the tetrahedron and side gaps were larger.

4.3 Polymeric material extruded.

The polymers used in the experiments were two grades of polystyrene, 

HS and CC37 beads, both manufactured by British Petroleum Chemicals Limited, 

South Wales, England. Polystyrene was chosen because it melts at a relatively 

low temperature, does not bum or degrade easily at relatively high temper

atures and therefore can be extruded without problems over a large range of 

temperatures. Its flow behaviour was typical of most polymers used in 

extrusion processes, i.e. it was elastic, highly non-Newtonian ( with a low 

flow index of the order of 0 .3 - 0 .4 over a normal operating range of 

average shear rate ) and does not slip at relatively high shear rates. The 

significance of the additional effect of slip on melt flow could be deter

mined from further work by using the material PVC which tends to have a very 

narrow temperature operating range and degrades easily if conditions are 

not properly controlled.

*
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Table 4*2 Dimensions of the extruder screws.

All dimensions in mm. 

Diameter of the barrel bores = 34.0 mm> •

Screws J L J L

Diameter, D 33.70 3 3 .7 6

Centre distance, C 30.0 3 0 .0

Channel depth, H 4.53 4.27

Axial flight width, B 4.36 6 .6 5

Pitch, S 3 0 .0 3 0 .0

Screw starts, m 2 2

Radial clearance, 0.15 0 . 1 2

Flank angle/Ij/ 15.42° 2 .36°

Calender gap, <S~ 0.83 0.51
Side gap, € 1.75 0 .6 7 5

Helix angle,^ 15.78° 1 5 .78'

*
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4.4 Experimental procedure.

The various measuring devices and instruments were connected to 

the experimental extruder (Figure 4.1.1) and the control, visual display- 

unit and data logging equipment switched on. The data logging equipment 

was set to record every 20 seconds and to display the operating conditions 

on the VDU. The cooling water supplied to the barrel was turned on and 

the operating temperatures of the barrel and die were set. For all experi

ments a common temperature was maintained from hopper to die. Once this 

temperature was reached the pressure recording instruments were zeroed and 

calibrated for the required pressure range.

The polymer was extruded over a range of screw speeds commencing 

with the lowest speed. The extruder motor was started and screw rotation 

was slowly increased to the first operating speed. The feed rate was then 

increased slowly, in steps, until pressure was built up at the end of the 

screw and melt was seen to emerge from the die. Feeding rate was further 

increased until extruder inlet was just flooded with polymer - this produced 

the maximum output capability of the machine for that screw speed and was 

used as the first feeding rate. Operating conditions were now monitored 

for about 1 0 - 1 5  minutes or until approximately constant and recorded, with 

the final results stored in the computer and printed out when required.

By weighing the amount of melt extruded over a two minute period, the 

throughput of the extruder was obtained. Per smaller feeding rates, care 

was taken to ensure that the lowest level of starve feeding used was enough 

to build up sufficient back-pressure at the die, to be measured by the two 

transducers located nearest the screw end. This made it possible for a 

pressure drop to be determined for the melt flow between the two pressure 

measuring points. Before changing to the next screw speed, the feeding 

rate was increased once more to the flood-feed setting to prevent large 

fluctations in pressure which could be caused by overstarving when screw
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speed is increased with a relatively low feeding rate. This tended to 

reduce the operating time required for the process to return to a steady 

state once again. The above procedure was repeated for each screw speed 

used.
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4*5* Polymer Melt Properties.

The viscosity data were obtained from capillary rheometer
*

measurements using an Instron Capillary Rheometer. Two capillaries were 

used, nominally of length 25 and 50 mm. and 1.27 mm. diameter. Measure

ments were made at two temperatures, 180 and 200°C and over a wide shear 

rate range of 5.1 - 3073 sec.”  ̂ Allowances were made for resevoir pressure 

drop, (Bagley) capillary end corrections and Rabinowitsch shear rate 

correction. The accuracy of the measurements were not better than by about 

-5%. Density was measured at each temperature by extruding the polymer 

melt through the 25mm capillary for one minute and an average taken over 

the range of temperatures used. The thermal conductivities and specific 

heats of both polymers were obtained from the manufacturers. Figures 4*5*1 

and 4 *5*2 give the log shear stress versus shear rate curves, with 

corrections, for the polymer melts extruded. Table 4*5 gives the 

values of the polymer properties used. The viscosity parameters given are 

for curve fitting of the empirical power law over the relevant shear rate 

range.(in brackets).

*  This work was carried out at Mechanical E n g in e e r in g  Depl^ Imperial College.
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Table 4.5 Polymer melt Properties,

Polymer. B.P. Polys tyrene.
Grade. HS. beads. CC37 beads.

n 0.41 (3-40s“1) 0.356 ( 3- 60s ~ 1 )

2yU0 kNs/m 18.5 ( i ' o = 1 s 7 1 i 8o °c ) 11.5 (*o=1s"3 200°C)

n 0.27 (40-700s“1) 0.28 (40-700s“1)

kNs/m2 2 9 .0 (to=1 s“1, 180°C) 17.0 0 ^=1 s“] 200°C)

bo / °C 0.025
1OTO'=}-1 0.034 ( 3 - 60s _ 1 )

*yd kg/rrr 940 973

k W/m/ °C 0.125 0.125

Cp k J A g /  ° c 1720 1740

*
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4.6 Experimental Results.

Plasticating extrusion experiments were performed with the 

twin-screw extruder to measure operating conditions of flow in the melt 

conveying part of the process for comparison with the predicted solutions.

The various twin-screw sets A, B (section 4.2) were tested over a range 

of screw speeds and the results of melt pressures and temperatures are 

given for various extruder output rates in Figures 4.6.1 to 4.6.12. The 

readings were recorded, simultaneously, from similar points in the 

chambers along the screw and therefore, the difference between the 

measurements represents a change of operating condition over an exact 

number of chambers in that length of extruder. For this case, the 

pressures were measured axially from points situated 60 mm. apart; there

fore, a pressure drop can be determined for four consecutive chambers of 

the 30 mm. pitch intermeshing double-start screws (or for six chambers 

of 20 mm. pitch double-start screws).

Figures 4.6.1 to 4.6.3 give the distributions of mean values of 

pressure and temperature for the extrusion of polystyrene-HS beads using 

screws A at speeds 30,40 and 50 rpm.. For the operating temperature of 

180°C, the maximum output rates (and consequently the smallest pressure 

gradients) given for the screws were obtained using flood-feeding at the 

extruder inlet. Melt temperatures were obtained at approximately the 

same extrusion rate as in the tests when pressures were measured instead 

of temperatures at the same points in the barrel. Although these may not 

be true melt temperatures because of the strong influence the heated barrel 

may have on the thermocouples flush-mounted in its wall, the trends produced 

are useful for indicating flow behaviour. Temperature profiles are almost 

independent of screw speed and feed rate, the maximum variation being about 3°C.

*





Figure. 4 6-2 Pressure and temperature distributions along theextruder.screwsA,N = 40rpm.



Figure4-6-3 Pressure and temperature distributions along the extruder.screws A, N= 50rpm.
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The melt temperature over 8 chambers of the extruder remains almost constant, a 
condition which is also shown by the almost equal value of pressure 

drops generated (for the largest flow rate given) between the two equal 

lengths of the metering zone. It can be seen, also, that there is 

always a finite pressure generated where the chambers are supposed to 

be only partly filled with melt. This is because pressures were measured 

near to where the rotating screw surfaces converge and pile up material 

at the entrance to the intermeshing region, and where there would still 

be a tendency for the melt to build up pressure in the partly filled 

chambers. It has been confirmed, from examination of hot screws, that 

the chambers were only partly filled with melt over the region where the 

minimum value of pressure was recorded. A photograph of extracted screws 

filled with melt is shown in Figure 4.6.15 in which can be clearly seen 

the completely filled and partly filled chambers.

Similar results were obtained for screws A with polystyrene 

CC57 Frade extruded at a temperature of 200°C and these are given in Figures

4.6,4 to 4.6.8. Because of the reduced viscosity due to the higher temp

erature, smaller pressure gradients were obtained with pressure distri

butions extending over a larger portion of the metering zone. At the 

lower screw speeds, the melt temperature profiles were similar to those 

previously shown for 180°C, but at 60 rpm and above the melt tempera

ture increased instead of decreased, probably due to significant shear 

heating at these speeds. The operating results for screws B extruding 

polystyrene CC57 at 200°C are given in Figs 4*6.9 to 4.6.12. The maximum output 
rate obtained at each screw speed was limited also for these screws by 

flood feeding at the extruder inlet. In comparison with screws A, the 

smaller leakage gaps of screws B means larger pressure gradients to 

generate through the same die opening roughly the same leakage flow 

rate. In general, the pressure profiles obtained for the extrusion of

*
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Figure  4 .6 .1 5 E x t r a c te d  screws f i l l e d  w ith  a polymer m e l t  -

c o m p l e t e l y - f i l l e d  chambers 

a t  th e  end o f  th e  screw s.

can be seen on the  l e f t ,
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melt in this machine using screws with varying degrees of positive 

conveying, was found to be approximately straight over the length of the 

metering zone examined indicating that the temperature variation is not 

significant. The trends shown by the melt temperature measurements 

indicate that there is significant shear heating in the extruder at screw 

speeds above 60 rpm. which is likely to raise the bulk mean temperature 

of the melt in each chamber but still maintain an almost constant temp

erature of the melt conveyed along the metering zone.

Figure 4.6.14 gives dimensionless throughput rate plotted

against dimensionless pressure drop for screws A extruding polystyrene
o power law parameters

HS beads at 180 C and speeds of 30,40 and 50 rpm.. The viscosityAat

the average shear rate in the screw channel is used to determine the

pressure drop term. Because of the small range of screw speeds (and

shear rates) used, the results are situated close together but it can

be seen that a separate relationship for each screw speed exists for

each set of points. For a given screw geometry and axial pressure

gradient, therefore, the throughput of the extruder is reduced with

increased speed. If the flow rates are plotted, instead, against the

pressure drop term,( AP/,«o)1̂ V  the characteristic becomes linear^
as illustrated in Figure 4.6.15.The throughput rate of the extruder over

the lower range of pressure drop can now be obtained and is seen to be

very small. In general, this was found to be the case in all the

extrusion tests performed, and the maximum possible throughput rate

obtained was about equal to that for the machine, and for the cases

shown in Figure 4*6*15, these values correspond to an axial pressure drop
2of about AP = 0.39 MN/m . The results for screws A extruding polysty

rene CC37 at 200°C are given in Figures 4.6.16 and 4.6.17 plotted using 

the different pressure drop terms. The maximum possible throughput rates 

at this higher temperature corresoonds to an axial pressure drop of about

*



Figure 4-6-14- Dimensionless throughput rate versus pressure drop for Screws A, 
extruding Polystyrene-HS at 180°C, n =0-41, jU0= 18-5kNs/m?,
------ approx-curve based on linear plotting of results,Figure 4-6-15 overleaf.



Figure 4-6-15- Dimensionless throughput rate versus pressure drop for screws A, 
extruding polystyrene-HS at 180°C, n =0<41 , ju0 = 18-5kNs/m .,
- linear characteristic.
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AP = 0.15MN/m which is still relatively high. Therefore, in order to 

generate significant leakages from the die pressure, a relatively high 

pressure drop must be developed.

Figure 4*6.17 gives approximate linear characteristics,

drawn as broken lines, for the experimental results. At zero pressure

drop (i.e. for an open-ended extruder),the throughput rate for each speed

is seen to vary for the given screw geometry. The throughput rate at zero 
drop

die pressureA is still dependent on the internal drag and pressure flow 

generated in each chamber and associated gaps, and it would become smaller 

as the melt viscosity is reduced with increased speed of the screws. Over 

this wide range of screw speeds, a strong dependence of the throughput on 

speed can be seen, especially at the lower end of the range from 0 to 60 

rpm., but above this, the influence is reduced and the results for the 

higher speeds are situated very close together indicating a behaviour 

which is almost independent of screw speed and melt viscosity. This is 

probably due to fact that, at the higher shear rate range, most of the 

viscosity flow curve for the melt (Figure 4*5*2) is approximately 

straight and can be described by a single flow index and thus, for a given 

geometry, the dimensionless characteristics produced would still be 

independent of both screw speed and melt viscosity. It is at the lower 

shear rates where the power law behaviour of the melt flow is valid only 

over a limited range, that the flow characteristics are influenced by speed 

and viscosity because of the varying non-Newtonian flow index; this was 

found to be the case for the theoretical treatment used to simulate the 

melt conveying process.

Figure 4*6.18 gives tne dimensionless relationship between 

throughput rate and pressure drop for screws A extruding the same polymer 

at two different temperatures. Each relationship for a given screw speed 

is seen to be independent of operating temperature which confirms the

2
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result previously obtained when the experimental measurements for only 

one operating temperature were plotted i.e. that each flow curve was 

indeed independent of the viscosity of the melt in the channel.

In Figure 4.6.19 the dimensionless throughput rates are plotted 

against the axial pressure drops alone, and the relationship can be 

represented by a single curve which appears to be approximately linear 

over most of the range of pressure drops measured probably becoming non

linear at the very low and very high values. Although the relationship 

excludes the influence of the melt viscosity, it is useful in determining 

certain aspects of flow behaviour. For example, it is possible to generate 

the same pressure drop with a constant dimensionless throughput rate 

by increasing the screw speed, which means that for a given die size, the 

die pressure would increase as the flow rate is increased. Since the

dimensionless output rate (or specific output rate) for this type of twin-
5screw extruder was found to be independent of the die pressure, the

pressure drop would also be constant and therefore the die pressure would

be linearly related to the completely filled length of the metering zone.
5This is contrary to what has been found by Janssen for he has shown that 

this was the case only when the number of fully-filled chambers were small 

or large and the relationship showed a proportionally smaller increase with 

increasing die pressure. Such a linear relationship, however, is what is 

expected when a uniform temperature is generated along the melt conveying 

zone, and this was found to be the case, as shown earlier, for the machine

examined



Figure A*6-16- Dimensionless throughput rate versus pressure drop for ScrewsA,
extruding polystyrene-CC37 at 200°C,n =0-356, yU0= 11 -5kNs/m2 
-------approx, curve based on linear plotting of results,Figure4-6-17overleaf-
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Figure A-6-17. Dimensionless throughput rate versus pressure drop for screwsA, 

extruding polystyrene-CC37 at 200°C, n =0-356 , yu0= 11-5kNs/m2, 
------approx, linear characteristic.



n =0-356

Figure 4-6-18- Dimensionless throughput rate against pressure drop for screws A
extruding polystyrene CC37 at180°C and 200°C.-----approximate
relationship.



rpm.

Figure A-6-19. Dimensionless throughput rate against axial pressure drop, screwsA
extruding polystyrene-CC37 at 200°C .The relationship can be represented
by a single characteristic.
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4.7 Comparison of Experimental and Theoretical Results

In  section  3.11, a comparison of experimental and th eo re tic a l

re su lts  was presented fo r  Newtonian flow. The predictions obtained from the

non-Newtonian model developed were compared w ith experimental and p red icted
5

re su lts  o f Janssen. The agreement between experiment and theory was good 

and the th e o re tic a l re s u l ts  were comparable to  Janssen*s pred ic tions except 

fo r  overestim ation of the leakage flow when both the side and calender gaps 

were re la tiv e ly  small compared with the tetrahedron gap. The main d ifference 

between the numerical flow model developed and Janssen’s flow model i s  the 

method used fo r  predicting  the tetrahedron leakage flow ra te .  A th e o re tic a l 

method is  used in  the numerical model w hilst an em pirical flow equation i s  

used in  Janssen’s model to  p red ic t the tetrahedron leakage. I t  i s  not 

su rp rising  therefo re , th a t  Janssen obtained very good p red ictions when both 

the side and calender gaps were small because then , the leakage flow would 

be predominantly tetrahedron leakage flow which fo r  th is  case would be an 

em pirical flow ra te  and should be comparable w ith the experimental r e s u l ts .  

However, the discrepancy obtained amounted to  le s s  than about 10% reduction 

in  the melt conveying throughput ra te  a t  zero die  pressure which is  an .. 

acceptable e rro r  considering the approximations used in  modelling the flow 

in  the intermeshing region. The non-Newtonian model developed therefore 

s a t is fa c to r i ly  p redicts the throughput rates fo r  the twin-screw extruder and 

i t  can now be tes ted  fo r  melt flow. In  general, comparison of the experi

mental and th eo re tic a l re su lts  fo r  the screw arrangements te s te d  ind icated  

th a t  leakage flow can be adequately represented by trea tin g  the flow in  the 

calender, side and f l ig h t  gaps as one-dimensional but a deep channel flow 

analysis must be used fo r  the chamber in  order to  obtain the b est p red ic tion  

of leakage flow behaviour. A two-dimensional narrow channel analysis o f the 

tetrahedron flow is  found to  give good predictions of flow ra te s .
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Tables 4.7*1 to  4.7*3 give the experimental and predicted  output 

ra te s  fo r the screw arrangements te s te d  and these re su lts  are  a lso  given in  

Figures 4.7*1 to  4.7*4. The experimental re su lts  are given a lso  in  Figures 

4 .7 .1a and 4*7 .ib . The flow-pressure c h a ra c te ris tic s  used fo r  determining 

the deep channel flow ra te s  fo r the screws were given in  Figures 3.11.10 and

3.11.11 and those fo r the tetrahedron leakage were given in  Figures 3*11*7 

to  3*11.9. For the o ther leakage flows and a lso  fo r  the channel flow, m elt 

v isco sity  was determined a t  the mean drag shear ra te  ( defined fo r each 

gap and the channel in  chapter 3> based on the re la tiv e  drag velocity  o f 

the walls) using l in e a r  in te rp o la tio n  of the v isc o s ity  logarithm  flow curves 

(Figures 4 .5 .1  and 4.5*2) over small ranges of shear ra te .

Before discussing the comparison of the th eo re tic a l re su lts  using 

the complete model developed, i t  i s  worth considering whether more simple 

analyses would give reasonable p red ictions of output ra te , therefo re , a 

Newtonian ana ly sis , modified Newtonian analysis using v isc o s itie s  based on 

lo ca l mean drag shear ra te s  and a non-Newtonian analysis using a power law 

f lu id  of constant power law index were carried  ou t. Figure 4.7.1a gives 

the experimental and some th eo re tic a l re su lts  fo r  the extrusion of 

polystyrene CC37 a t  200°C using screws A. The re s u lts  are p lo tted  using 

dimensionless throughput ra te  and pressure drop terms. The v isco sity  o f the 

m elt in  the channel was used to compute the dimensionless pressure drop term 

( because, i t  i s  the channel flow which determines the magnitude of the 

leakages and hence the throughput ra te  of the ex truder). Curve 1 shows the 

behaviour predicted fo r  a l l  screw speeds with a constant m elt v isco sity

i . e .  Newtonian flow. These predictions were obtained using the non-Newtonian 

flow model developed bu t with a power law index n=1 and a m elt v isco sity  

determined fo r  the channel is  used throughout to  give Newtonian rep resen ta tion . 

The solutions given above curve 1 (curve 2) show the flow behaviour when melt 

v isc o s itie s  are determined a t  the re levan t ‘mean drag shear rate* fo r each

«
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flow passage and n=1, thus representing Newtonian flow in  each passage w ith 

a lo ca l v isc o s ity  based on lo ca l drag shear r a te s .  For the tapered calender 

passage, the maximum drag shear ra te  computed a t  the minimum clearance was 

used to  determine the v isc o s ity . The solutions show a small dependence on 

speed but th is  i s  too sm all to  be represented accurately  by separate curves 

and th ere fo re , the behaviour i s  i l lu s t r a te d  as a single curve, curve 2. In 

comparison w ith the experimental re s u lts  i t  can c lea rly  be seen th a t Newtonian 

predictions g rea tly  underestimates the leakage flow ra te s . This appears to  

be due to  the fa c t th a t  there  i s  s ig n if ic a n t d ifference between the dimension

le s s  flow ra te  -  pressure gradient c h a ra c te r is tic s  of Newtonian and non- 

Newtonian f lu id s  giving large  e rro rs  when the f lu id  i s  h ighly  non-Newtonian 

(which in  th is  case i t  i s )  and when pressure gradients are la rge  (see Figure 

2 .5 .5 ) • This can be seen also as the  in a b il i ty  o f the Newtonian analysis to 

describe the non-Newtonian flow adequately with m elt v isc o s itie s  based only- 

on the mean drag shear ra te s , e sp ec ia lly , in  th is  case, because the drag 

shear tends to  be low fo r  most flows in  the twin-screw extruder.

Referring to  the throughput ra te s  of curve 1, Figure 4*7.1a, one 

would expect sm aller throughputs (o r la rg e r leakage flow) when melt v isc o s itie s  

based on lo c a l drag conditions are used fo r the gaps, because of the lowering 

o f the shear ra te  -  dependent v is c o s i t ie s . In  re la tio n  to  curve 1, however, 

curve 2 shows the opposite behaviour i . e .  le ss  leakage flow. A reduction 

in  the side gap leakage was found to  be responsible fo r th is  behaviour because 

o f a higher m elt v isc o s ity  in  the gap than in  the channel due to  a lower 

mean shear ra te  in  the gap. Although the other leakage flows were, increased 

because of the lower m elt v is c o s i t ie s , the reduction due to  the side gap was 

more s ig n if ic a n t and th is  flow ra te  (which was about 2896 o f the to ta l  leakage) 

was the dominant leakage. I t  should be noted a lso  th a t, in  comparison w ith 

screws B, the side gap i s  la rg e r in  these screws and such a predicted 

behaviour i s  not expected with screws B; th is  i s  shown to  be the case l a t e r .
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Curve 3 shows the th e o re tic a l behaviour when a l l  flows were predicted using
p

the parameters o f n=0.356 and ytl0= 11.5 kNs/m to  determine v isc o s itie s  fo r  

a l l  the passages. This v isc o s ity  data  was obtained from a power law f i t  of 

the  logarithm flow curve using the mean drag shear ra tes  in  the channel o f 

about 4 to  35sec  ̂ over the speed range of 10 -90rpn. The model p red ic ts  

a single curve re la tio n sh ip  fo r a l l  speeds ind icating  th a t the melt conveying 

behaviour o f the twin-screw extruder cannot, th e re fo re , be adequately 

predicted using a sing le  s e t  of power law paramaters n andyuQ over the 

whole range of shear ra te s . The re s u lts  displayed in  Figure 4.7*1a c le a rly  

demonstrates th a t  Newtonian analyses are completely inadequate in  describing 

the extruder behaviour as they se rio u sly  overestimate the output ra te s . The 

attempts to  improve on the Newtonian analysis using the same v isco sity  in  

a l l  passages has fa iled  fo r  th is  geometry and a single power law index model 

fo r  the f lu id  does not encompass the  observed v aria tio n s due to  screw speeds.

Figure 4»7«1b gives s im ila r experimental and th e o re tic a l re su lts  

fo r  the ex trusion  of polystyrene CC37 a t  200°C using screws B. Curve 1 

shows the Newtonian behaviour (constant v isco sity ) and curve 2 shows the 

m elt flow behaviour predicted  from the non-Newtonian analysis with n=1 using 

m elt v isc o s itie s  obtained from lo ca l drag shear ra te s . The re su lts  rep re

sented by curve 2 also  show a very small dependence on speed, sim ilar to  

the behaviour with screws A, but in  th is  case leakages are increased (o r 

throughput ra te s  are reduced). This i s  because the side and tetrahedron 

gaps are re la tiv e ly  small compared w ith the calender gap and the calender 

leakage being the dominant leakage flow rate  reduces because v isco sity  tends 

to  be lower in  th is  gap than in  the channel fo r  these screws. The Newtonian 

m elt-flow p red ic tions, there fo re , g rossly  underestimate leakage flows a lso  

fo r  th is  screw geometiy. Curve 3 i s  the predicted behaviour fo r  v isc o s ity  

data  of n = 0.356 and^fQ = 11.5kNs/m • These were the same v isco sity  

parameters determined fo r  the channel mean drag shear ra te s  o f screws A and
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i s  appropiate also  fo r screws B because i t  channel i s  only s l ig h tly  

shallower giving sim ila r mean shear ra te s  a t  the speed range used. The 

curve was in  agreement w ith experimental re su lts  a t  about 30rpm ind icating  

th a t  the range o f  shear ra te s  i s  appropriate fo r  m elt flows generate but 

only a t  th is  speed.

Returning to  the comparisons between experiment and theory using 

the  f u l l  computer model, Figure 4*7*1 gives comparison of experimental and 

th e o re tic a l re su lts  fo r  the speeds o f 30 and 50rptn, fo r screws A extruding 

polystyrene HS a t  180°C. The dimensionless pressure drop term used fo r  

comparing non-Newtonian re su lts  includes the power law v isc o s ity  parameters 

n and k 1 determined fo r  the channel based on mean drag shear ra te s  over the 

relevant speed range. There is  good agreement between the re s u lts  a t  50rpm 

bu t an over pred iction  of leakages occurs a t  the lower‘speed. In fa c t, a l l  

p red ictions appear to l i e  approximately on a sing le  s tra ig h t c h a ra c te r is tic .

I t  i s  believed th a t th is  low speed underprediction of throughput may be due 

to  the use of the power law curve obtained a t  re la tiv e ly  high shear ra te s  to  

describe low shear ra te  behaviour. I t  i s  w ell known th a t th is  leads to  an 

over estim ate of v isc o s ity  a t  low shear ra tes since in  the l im it  as shear 

ra te  tends to  zero, v isc o s ity  p red icted  by a power law re la tio n sh ip  tends 

to  in f in i ty .  There a reduced v isc o s ity  of JUiQ- 12.5kNs/m w ith index, n=0.58 

was used fo r  lower shear ra te s  to  t e s t  th is  e f fe c t .  The re su ltin g  pred ic

tio n  i s  curve(a) in  Figure 4*7*1 and i t  can be seen th a t th e re  i s ,  indeed, 

an improvement in  the accuracy which appears to  be a l i t t l e  suprising since 

the e ffe c t o f using lower v isc o s itie s  a t  low shear ra te  i s  to  reduce leakages. 

I t  i s  argued th a t the reason fo r  th is  i s  th a t the e ffec t o f a reduction of 

v isco s ity  i s  more s ig n if ic a n t in  the chamber than in  the leakage gap. In the 

chamber, pressure i s  b u i l t  up as the flow approaches the intermeshing zone. 

A fter leaking through to  the adjacent chamber i t  i s  also b u i l t  up as i t  leaves 

the intermeshing zone. I f  chamber v isco sity  i s  reduced, then the pressure
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bu ild  up i s  a lso  reduced and fo r a given pressure drop (2/VP) between adjacent 

chambers i t  follows th a t  the pressure drop across the leakage passage i s  

reduced thus reducing leakage flow ra te  despite v isco sity  reduction in  some 

o f the gaps (see Figure 4*7*1c).

Figure 4*7*2 gives the r e s u lts  fo r the extrusion o f polystyrene CC37

a t  200°C and speed range o f 10 -  90rpm fo r the same screws. In  general,

there  i s  an overestim ation of leakages (or underestim ation of throughput ra te s)

w ith the worse re su lts  a t  the lowest speed of 10rpin. The v isc o s ity  data  used
-1 2over the low shear ra te  range of 1 to  4s was n = 0.44*ytfo= 10.0 kNs/m. I f  

another estim ate of the v isco sity  a t  the lower shear ra te s  i s  used of n=0.49> 

yUo= 8.5 kNs/m over the shear ra te  range of 1 to  4s , the improvement 

shown by curve (b) i s  obtained. The same explaination  advanced fo r 

polystyrene HS fo r the underestimate o f leakages i s  believed to  be appropriate 

here a lso . There i s ,  however, an under p red iction  of leakages a t  30rpm 

which appears to  ind ica te  th a t there  may be add itional e ffe c ts  influencing 

flow behaviour.

Figure 4.7*3 gives the re s u lts  fo r  the extrusion of polysryrene CC37 

a t  200°C using screws B. The v isc o s ity  data appears to be more appropriate 

fo r  these screws a t  the lowest speed, as shown by the good agreement with 

the experimental re su lts  a t  10rpm. This is  probably because the melt flows 

through sm aller gaps and shallower channels compared with screws A and the 

shear ra te s  would be h igher and be w ithin  the range used in  determining 

the v isc o s ity  data . There i s  also good agreement between the experimental 

and predicted re su lts  a t  the high speeds of 60 and 90rpm (although some 

overprediction of leakages can be seen a t  very low pressure drops) but there  

i s  underestim ation of leakages a t  30rpm. The improved pred ic tions with 

these screws a t  high speeds compared with re su lts  fo r screws A ind icate  th a t 

the e ffec ts  which produce overprediction may be more s ig n if ic a n t in  the 

side and tetrahedron gaps because these gaps are  sm aller in  screws B.
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Comparison of re su lts  appear to in d ica te  also th a t  th is  e f fe c t  i s  reduced 

to  zero somewhere w ith in  the moderate speed range 40 -  60rpm, as i l lu s t r a te d  

e a r l ie r  by the very accurate p red ic tions obtained a t  50rpn fo r  polystyrene 

HS, Figure 4 .7 -1 . I t  i s  important to  note, a lso , th a t i t  would usually  be 

extruder operations a t  moderate in s tead  o f lower o r very high speeds which 

would be of more in te r e s t ,  fo r i t  i s  very often  the p rac tice  to  extrude 

a t  the f a i r ly  high output ra tes which would s t i l l  keep the viscous heat 

generation to  a to le rab le  lev e l. In general, the agreement between the 

experimental and th e o re tic a l re su lts  are w ithin about 18%  which is  considered 

to  be sa tis fa c to ry .

Figure 4 .7 .4  gives the comparison of experimental and th e o re tic a l 

re su lts  fo r  dimensionless throughput ra te  p lo tted  against a x ia l pressure 

drop alone. The d is tr ib u tio n  of the experimental re su lts  appears to  ind ica te  

th a t  there i s  a single-curve re la tio n sh ip  when the e ffec ts  o f screw speed * 

and melt v isc o s ity  are excluded. The m ajority of predicted so lu tions given 

(except two a t  30rpm) are situa ted  almost on the approximate th e o re tic a l 

curve shown, ind ica ting  a sim ilar behaviour. Although theory underestimates 

the throughput ra te , the form of the th eo re tic a l curve in  re la tio n  to  the 

experimental re su lts  i l lu s t r a te s  th a t  the model adequately sim ulates ex truder 

flow behaviour over the range of screw speeds used.

An attem pt was a lso  made to  v e rify  the theory fo r the extrusion of 

a typ ical PVC form ulation (manufactured by BP Chemicals L td .) • From prelim 

inary  te s ts  performed w ith screws A extruding the PVC m ateria l a t  the 

recommended maximum operating temperature of 180°C, i t  was found th a t the 

la rg e s t output ra te  o r the longest pressure p ro f ile  th a t could be obtained, 

was lim ited by the maximum allowable power consumption of the machine and, 

consequently, only one pressure drop could ju s t  be obtained fo r  any speed used. 

In  addition , there were d if f ic u l t ie s  in  obtaining a sa tis fa c to ry  v isc o s ity  

flow curve fo r  the very viscous PVC m elt a t  180°C due to  the inconsistency
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Table 4.7.1 Comparison of experimental and theoretical results: 

screws A, extruding polystyrene-HS grade at 180°C.

N Qth AP Q kg/hr.

rpm. kg/hr. MN/m? Exptl. Theoretical

30 2 4 .22 0.49 3.72 3.03

0.41 5.82 4.91

0.40 6.60 4.66

50 40.37 0.50 7.9 2 7.53

0.45 9.48 9.79

0.40 10 .68 10.76

Table 4.7.2 Comparison of experimental and theoretical results: 

screws A, extruding polystyrene-CC37 grade at 200°C.

vr Qth 4*P Q kg/hr.

rpm. kg/hr. MN/m? Exptl, Theoretical.

10 8.35 0.70 2.77 2.35

0.49 3.54 2.96

0.43 3.73 3 .2 2

30 25.05 0.87 6.86 7.29

0.71 8.02 8.35

0.50 9.31 9.32

60 50 .10 1.0 0 15.23 12.97

0.66 17.76 16 .59

90 75.15 1 . 1 0 19.61 16.69

0.80 23.00 21.05

0 .7 2 25.69 21.80
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Table 4.7.5 Comparison of experimental and theoretical results:

screws B, extruding p o l y s t y r e n e - C C 57 at 2 0 0 ° C •

N Qth AP Q kg/hr.

rpm. kg/hr. MN/m? Exntl. Theoretical.

10 6 . 8 6 0 . 5 1 2 . 6 5 2 . 6 4

0 . 3 8 2 . 9 5 3 . 2 6

50 2 0 . 5 9 0 . 6 5 6 . 1 9 6 . 5 6

0 . 4 6 7 . 4 8 8 . 4 9

0 . 5 7 8 . 7 4 9 . 2 1

0 . 2 7 9 . 7 8 9 . 8 7

6 0 4 1 . 1 9 0 . 5 9 1 0 . 1 1 1 1 . 5 5

0 . 4 7 1 4 . 4 7 1 4 . 2 7

0 . 5 5 1 8 . 1 7 1 6 . 0 0

9 0 6 1 . 7 8 0 . 6 9 1 8 . 5 5 1 6 . 8 7

0 . 4 7 2 2 . 2 6 2 1 . 3 1

0 . 3 6 2 7 . 0 2 2 3 . 0 7
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2 .Malt flow—
Newtonian experiment

rpm ran
If 10 © 1 0

Figure 4 .7.1a Dimensionless throughput ra te  against pressure drop 
fo r  screws A extruding oolystyrene CC37 a t  200°C. 
Comparison of experimental re su lts  w ith , 1. Newtonian, 
2 . Newtonian w ith melt v is c o s itie s , 3. Non-Newtonian 
power law.
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4,7.1b Dimensionless throughput ra te  against pressure drop fo r screws A extruding
polystyrene CC37 a t  200°C. Comparison of experimental re su lts  w ith, 1. Newtonian,
2. Newtonian with melt v is c o s itie s , 3. Non-Newtonian power law.
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Figure 4*7*1c Pressure p ro f ile s  fo r flow in to  and out of
adjacent chambers through the intermeshing zone 
i l lu s t r a t in g  decreasing pressure g radient and 
leakage flow ra te  with reducing v is c o s i ty * in  the 
chambers.



Figure A• 7-1 Dimensionless throughput rate versus pressure drop fo r screwsA ,
extrud ing polystyrene-HS at 180°C, n = 0-41,/ j0= 18-5kNs/m?,
-comparison w ith theory.



Figure 47-2 Dimensionless throughput rate versus pressure drop for screwsA ,
extruding polystyrene - CC37 at 200°C,n =0 356, yu0= 11-5kNs/m2
-  comparison with theory.



Figure47-3 Dimensionless throughput rate versus pressure drop fo rsc rew sB ,
extruding polystyrene-CC37 at 200°C, n =0.356, yue= 11-5kNs/m2
-  comparison w ith theory.

9
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o f the measurements produced by the combination of high e la s t ic i ty  and the 

large  power required to  extrude the m elt through the small d ie , resu ltin g  in  

unsteady measurements even a f te r  long extrusion tim es. However, with the use 

o f rough estim ates of both pressure drop and v isc o s ity  fo r pred icting  the 

leakages, the  agreement between the experimental and th e o re tic a l re su lts  was 

w ithin fo r  a screw speed of 10rpm and 18^ over the range of 30 -  60 rpm. 

The same behaviour as fo r  polystyrene melt flow was observed i . e .  an under

estim ation of leakage flow a t  30rpm but overestim ation a t  10, 60 and 90rpm.

In  view of the inaccuracy of the data used, the la rg e r  discrepancy in  the 

re su lts  obtained with th is  m aterial can be considered acceptable, and i t  

appears, th e re fo re , th a t  the theory i s  lik e ly  to  be appropriate also fo r  

predicting  PVC melt conveying in  counter-ro ta ting  twin-screw extruders.

In general, the model p red ictions were consisten t in  behaviour fo r  

the two screw geometries te s ted , bu t the disagreement with experimental re 

su lts  were found to  be d iffe ren t a t  low and high speeds. Major e rro rs in  the 

predictions are most l ik e ly  to be due to  inaccurate v isc o s itie s  ( t 3% ) due 

to  unsteady temperature conditions during measurement but th is  should have 

the e ffe c t o f e ith e r , over or under estim ating throughput ra te s  and showing 

consistent behaviour w ith increasing screw speed. Comparison of re su lts  

shows th a t th is  was not the case over the speed range used and th a t o ther 

fac to rs might be influencing the flow behaviour. The re su lts  show th a t these 

e ffec ts  are no t large enough to  produce unacceptable e rro rs  bu t s ig n if ic a n t 

enough to warrent fu rth e r  examination. Oae such influencing fac to r could be 

the thermal e ffe c t. Although experimental measurement o f channel flow 

conditions (given in  sec tion  4*6) ind ica te  th a t heat generation did no t have 

much e ffe c t on net pressure drops and hence channel melt v isc o s ity , i t  may 

be possible th a t flows in  the gaps are  affected .

To obtain an in s ig h t of the lik e ly  e ffe c ts  of temperature in  each flow 

passage, the dimensionless G riff ith  number, G and Graetz number, Gz fo r each
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flow were examined. The G riff ith  number quan tifies the r a t io  between heat 

generation and thermal conduction and i t  determines whether heat generation 

w ill  lead to  temperature differences w ithin the m elt su f f ic ie n t  to  a f fe c t  

the ve loc ity  d is tr ib u tio n  lo ca lly . The Graetz number i s  a measure o f the 

importance of thermal convection in  the d irec tio n  o f flow re la tiv e  to  

conduction normal to  the flow. These numbers were defined in  section  2 .6 . 

When G was determined fo r  the tapered calender passage, a shear ra te  computed 

fo r  a mean clearance depth was used. For the tetrahedron gap, the maximum 

mean shear ra te  a t  the la rg e s t clearance depth was used since th is  value 

gave a conservative estim ate of G. For determining G , an average clearance 

depth was used fo r the whole length of the calender gap and a mean length  

and depth was used fo r the tetrahedron gap. The G riff ith  and Graetz numbers 

were estim ated as follow s:

Flow passage Channel Tetrahedron Calender Side F ligh t
rpm
Screws •A

10 .  22_ 10 22 10 22 10 22 10 2 2

G = .4 3.6 .2 1.8 .026 .24 .012 .108 .057 .513

Gz= 55 495 453 4077 13 117 30 270 .34 3.1

Screws B
G = .41 3.69 .15 i.3 5 .018 .162 .008 .072 .045 .405

G = z 49 441 118 1062 10 90 15 135 .14 6 1.31

For the calender , side and f l ig h t  gaps , G< 1 over the speed range

of 10 -  90rpra, ind icating  th a t temperature v a ria tio n s due to  heat generation 

would not s ig n if ic a n tly  a ffe c t the ve lo c ity  p ro f ile s  and the flow may be 

trea ted  as isotherm al fo r  these gaps. This condition would a lso  be v a lid  

fo r  the tetrahedron leakage flow a t  the very low speeds and would probably 

be ju s t if ie d  a lso  a t  the moderate speeds since the G values given represen t 

the worse cases. Assuming th a t G ^  1 are acceptable lim its  producing only



-  179b -

0A
small e r ro rs,4* th is  condition fo r  the channel flow occur a t  only the very

low speeds and fo r about N ^ 30rpm, G >1, which ind icates th a t  temperature 

e ffe c ts  would be s ig n if ic a n t in  the deep channels. The Graetz values fo r  

a l l  the flow passages, w ith the exception of the f l ig h t  gap were large enough 

( i . e .  G ) )  1) to  in d ica te  th a t therm al convection would be dominant in  the 

d irec tion  o f flow. Therefore, temperature p ro f ile s  would develop very 

slowly in  the d irec tion  of flow, w ith very l i t t l e  temperature development 

occurring from in le t  to  o u tle t due to  the short length of the flow passages. 

For the f l ig h t  gap, G ^ 1, ind icating  th a t heat tran s fe r  would be dominated 

by thermal conduction to  and from the boundaries i . e ,  the flow would be 

therm ally fu lly  developed and temperature p ro f ile  would not change in  the 

d irec tio n  of flow. The re su lts  appear to  suggest, so f a r ,  th a t  the 

isotherm al assumption would probably be ju s t i f ie d  fo r a l l  flows a t  low 

speeds N < 30rpm and because of l i t t l e  development of temperature p ro f ile s  

in  most passages, the assumption could be also  v a lid  fo r the whole speed 

range used.

In order to  determine the ex ten t of the heat generated in  each 

chamber, the temperature r is e  was estim ated by assuming ad iaba tic  flow

conditions in  the extruder ( i .e .  no loss or gain of heat from the system).
23The Newtonian analysis introduced by McKelvey fo r  ad iabatic  extrusion was 

emDloyed. The v aria tion  of v isco sity  as a function of the downchannel 

distance was obtained by performing an energy balance fo r  both downchannel 

and cross-channel flows and also flow in  the f l ig h t  gap. I t  was assumed th a t 

a l l  mechanical energy d issipa ted  by the screw in  a down channel increment 

equals the thermal and pressure energy gained by the melt in  th a t  increment. 

The temperature dependence of the v isco sity  given in  equation 2 .3 .6  was used 

and temperature in teg ra ted  over the length of the channel and f l ig h t  gap. 

Using ty p ic a l melt v is c o s itie s , the ne t bulk temperature r is e  fo r drag flow 

through two adjacent C-shaped chambers ( m ^ fo r the screws) of screws A
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O *0was estimated to be about 12 C at 10rpm and 26 C at 90rpn. When the flow 

in the flight gap was neglected, the temperature rise was negligible ( O ^ C )  

at 10rpm and less than 3°C at 90rpm. Higher or lower temperature changes 

would be expected when there is an additional superimposed pressure flow 

with gradient of either positive or negative values respectively, A positive 

pressure gradient would increase the shear rates at the barrel wall and 

hence increase the power due to shear in the channel whilst a negative 

pressure gradient would have the opposite effect i.e. reduce the power. It 

appears that melt temperature in the chamber is likely to rise significantly 

only as a result of the heat generated in the flight gap. This was shown 

earlier to be the case by a G, O  for the flight gap indicating a fully 

developed temperature profile for the flow,

A bulk temperature rise of 12°C would produce a reduction of the 

melt viscosity of about 25% which is a significant change. For the channel 

flow alone, however, the heat generation appears to be negligible, although 

in the earlier analysis G >  1 at 30rpm indicating that significant thermal 

effects would be present for the higher speeds. This is probably due to 

the short length of the C-shaped chamber over w&ieh very little temperature 

development takes place.

The same, analysis was used for one-dimensional flow through the 

remaining gaps to estimate temperature rises. For the calender passage , 

the depth equal to the smallest clearance was assumed to be constant over 

its length, and mean values of both depth and length were used for the 

tetrahedron clearance. Negligible temperature increases ( ^  1°C) were 

obtained for the calender and side gaps which was due to the presence of the 

low values of mean shear rates, even at 90rpm, whilst the same result was 

obtained for the tetrahedron leakage flow but in this case, was due mainly 

to its relatively short length. For screws B, a slightly larger temperature 

rise was obtained at each speed for channel and flight gap flows because of
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the smaller depth of the flow passages. Although gap size was generally 

smaller in screws B compared with screws A, they were not small enough to 

produce a significant increase of shear rate and of temperature rise in the 

leakage flows.

From the analysis , therefore, it can be concluded that heat

generation is not likely to significantly affect velocity profiles in all

flow passages over the speed range used and it appears that the isothermal

assumption used for all the flows is justified. There will be in each

chamber, however, a temperature rise above extruder operating temperature

mainly due to heat from the flight leakage flow. Some of this heat will be

lost by convection through the barrel wall and the rest transferred to the

channel by convection with the leakage flow and by conduction through the

screw walls. Experimental evidence suggests that this may be the case, since

melt temperature rise in the heated die was not greater than about 9°C at

90rpm (see Figure 4*6.8). In screw channels of extruders, heat transfer

would be improved by thermal convection produced by the re circulatory flow

in the channel. Thermal convection produced by transverse flow would have

the effect of cooling the screw by transferring the heat generated to the

top of the channel where it - could be lost more readily by conduction through

the barrel wall. A theoretical study by Martin ^ of fully developed non-

isothenmal two-dimensional flow in screw channels has shown that this is the

case when cross-channel thermal convection is included. He found that the

down channel flow rate computed with transverse thermal convection was nearer

to the isothermal case than when only heat conduction was considered. The

additional effectsof recirculation in the downchannel direction in each

chamber would improve heat transfer and mixing and help in maintaining a uni- 
5

form temperature.

Now considering only flow in the flight clearance, a high temperature 
associated with the fully developed temperature profile would reduce (Viscosity.
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In this case, leakage flow should be higher than when the viscosity at the 

barrel temperature is used to predict this flow. The underestimation of 

leakage flow observed at 30rpn could be due to this effect but this does not 

explain why there is overestimation at higher speeds.

Another factor which is likely to have some effect on flow is the
70

elasticity of polymer melts.The much larger errors produced with the extrusion 

of highly elastic FVC melts compared with polystyrene melts using the same 

screws appear to indicate that the discrepancy between experimental and 

theoretical results could be due to the neglect of melt elasticity. If this 

is the case, then the absence of these overpredictions with screws B extruding 

polystyrene appears to indicate also that the elastic effect is more signif

icant in some leakage flows more than others. Elastic effects could produce

unstable flow conditions in small clearances and thus, could be responsible
71for a reduction in flow. Melt fracture which has been associated with wall

5 2slip occurs at a critical shear stress usually of about 10 N/m for poly-
72styrene incapillary flow and at about 1.4 times this value in slit flow. From

single-screw extrusion experiments of power measurements°'and studies of
74

the lubricating effect of melts there is evidence which suggests that slip 

and melt fracture occur in the flight clearance with breaking down of the melt 

film and oroducing no flow over the flight. Viscosity measurements taken with 

polystyrene in capillary flow (see section 4*5) have shown, however that no 

slip/melt fracture took place for the wide range of shear rates used. This 

together with the fact that the flight clearances of the twin-screw extruder

were about three times larger than what would normally be found in a single-
174screw machine' of the same diameter, suggests thst these effects would not be 

relevant for the screw geometries tested.

There are other flow situations in which the elastic properties 

of Dolymer melts become important. For instance, convergent pressure flow 

or channel flow with a constriction like, flow in slit dies, and pressure
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flow through capillary tubes. These cases have received considerable attention
75 "80in the literature, with both experimental and theoretical studies carried

out to examine elastic effects on entry and exit losses of viscoelastic
78liquids in developing flows. Experimental results indicate that entrance 

length for a viscoelastic fluid is longer than predicted for the corresponding 

viscoelastic liquid, in other words, all velocity profiles develop slower 

than the elastic predictions. Therefore, for polymer melts, the pressure 

losses in dies would be larger than for inelastic liquids indicating a 

reduction of flow for the same pressure drop with elastic melts. Elasticity 

level is usually assessed in terms of the Deborah number, De defined as the ratio 

of a relaxation time to a residence timeof the flowl' ='7V  polymer melts the 

relaxation time can range from a few seconds to about 10 seconds^'^Vor

a D = 1,elastic effects are about the same order as viscous effects and for 6
Dg<£l the fluid is inelastic. For channel flow in single screw extruders,

the residence time is usually large in comparison with the relaxation time

and D ^  1, thus elastic effects are usually neglected, although there is
evidence which suggests that elasticity could be important in deep channel
flow. For twin-screw extruders, however, D >>1 for both the chambers and

6

in the leakage gaps and elasticity effects may be quite significant.

Elasticity is essentially a memory effect which depends on the past history
83of the flowing melt. This is seen in capillary flow as the phenomenon of die

82swell. The melt is found to contract laterally in order to pass through the 

capillary before tending to recover elastically to its previous form. This 

and the increased resistance to flow is likely to have severe consequences for 

flows from the channel into and out of sudden contractions and expansions 

like in the case of the tetrahedron and side gaps but to a lesser extent in 

the calender passage because of the gradual convergence and divergence of 

the flow, in addition, the effect of elasticity on flows would increase
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as residence time (and speed) increases, therefore, the effect would 

progressively become worse. This could be responsible for the Observed 

increase in the oversstimation of the leakageflow with increasing speed.



*

theory expt.

Figure4-7-4 . Dimensionless throughput rate against axial pressure drop,screwsA
extruding polystyrene-CC37 at 200°C .The relationship can be represented 
by a single characteristic. —  theoretical curve.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

The object of the study reported here has been to develop a 

theoretical method capable of realistically predicting flow behaviour in a 

counter-rotating twin screw extruder with a view to advancing extruder 

technology in both design and operating technique. One of the starting 

points in developing the theoretical model was the important pioneering work 

of Janssen who established the basic operating mechanisms of counter-rotating 

extruders, identified the various leakage flows and obtained accurate 

predictions of flow behaviour for Newtonian fluids. Although the value of 

Janssens contribution can in no sense be minimised it was believed that a 

considerable extension to his work was necessary to enable successful 

Quantitative predictions to be made for polymer melts which are non- 

Newtonian. This, as was demonstrated in Chapter 4, proved to be the case; 

Newtonian and modified Newtonian analyses seriously overpredict output rates 

for polystyrene and the margin of error is too large to be acceptable for 

detailed design purposes.

Although the ultimate objective was to produce a model for 

non-Newtonian flow, an important stage in the development of the model was 

that it should accurately predict the much simpler condition of Newtonian 

flow. It was realised at an early stage that to base this analysis completely 

on Janssen's approach would not be satisfactory. This is because Janssen's 

method involved an experimentally determined relationship for flow in the 

important tetrahedron gap using an apparatus which consisted of a set of 

modified discs. This is a reasonable approach for Newtonian flow but for a

non-Newtonian situation it was envisaged that separate tests would need to 
be carried out for all flow conditions and all polymers, hence being, 
arguably, only slightly easier than full scale testing on commercial



- 182 -

extruders. Therefore, the significant difference in the approach adopted 

here and Janssen's when describing Newtonian flow is that in this work a 

theoretical model of the tetrahedron gap is used whereas Janssen used ant 

empirical relationship. The comparisons between the predictions obtained 

using this wholly theoretical model with both Janssen's predictions and 

experimental results presented in Chapter 3 (figures J.W.k (a) and (b) ) 

show that agreement is good. This was particularly encouraging as in 

Janssen's tests the tetrahedron flow was the dominant leakage and in some 

cases predictions were superior to those of Janssen. The extension to 

non-Newtonian flow proved not to be merely a simple case of modifying the 

constitutive equations in the melt. This was because it was found that the 

■odel developed, for the tetrahedron gap, although satisfactory for Newtonian 

predictions, was too crude for the non-Newtonian case. Therefore this model 

was modified, essentially by extending the regime considered and applying 

pressure boundary conditions at a greater distance from the intermeshing 

zone than in the prior case. Although this modelling is more complex it 

overcomes the problem, to some extent, of specifying boundary conditions 

along the perimeter of the intermeshing zone which must be uncertain. It 

also became clear that it was necessary to include curvature effects in 

analysing chamber flow to obtain reasonable accuracy. The resulting model 

is relatively sophisticated and the necessary computer programs to solve 

the governing equations needed to be developed without recourse to the 

programs of other workers although some of the principles adopted by others 

were followed.

The predictions of the final model compared to experiment as shown 

in figures 4-. 7.1 to -̂.7.3 can be considered to be reasonably successful

given the complexities of the process. Before commenting on these comparisons 
it is worth considering the predictions that are obtained from more simple

approaches. The accuracy of these predictions will indicate whether the

#
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additional complications involved in developing the analysis described here 

are justified. The simplest approach is to consider the polymer to be 

Newtonian and to apply Janssen’s analysis or its equivalent. It has 

been shown that predictions based on this technique give large overpredic

tions of output rate when the viscosity of the melt is taken to be the 

viscosity in the channel (e.g. see figure ^.7.1 (a-)). It is certain, 

however, that an improved prediction could be obtained by adopting a 

different viscosity, possibly the viscosity appropriate to the dominant 

leakage (if this can be determined at the outset) but the strategy involved 

in this approach still involves uncertainty and is likely to still present 

large inaccuracies. This conclusion can be argued if the modified 

Newtonian approach is considered. In this case the viscosity appropriate 

to each flow is based on the drag shear rate for that flow. At best this 

has shown to give only a modest improvement and. at worst has shown a 

worsening of the prediction for that of Newtonian flow based on channel 

viscosity. This is because in some gaps the drag shear rate is very small 

hence implying high viscosities and underpredicting leakage. In these gaps 

pressure flow is the main factor in determining leakages and so if a mean 

shear rate based on combined drag and pressure flow is used then, once more, 

improvements can be expected in the predictive accuracy. However, this 

requires an iterative procedure and the simple approach will be found to 

become more and more complex to produce acceptable predictions. It is 

concluded, therefore, that the model which has been developed is necessary 

to describe the metering of polymer'melts in counter-rotating twin screw 

extruders but, because of the discrepancies with experiment, it may not 

be sufficient.

Three factors have been considered to explain the differences 

between the predictions and the experimental results. These are 

inaccurate representation of the power law fluid model at low shear rates;
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the effect of viscous heating on viscosity;^ and melt elasticity. The 

first of these factors is "because at low shear rates a power law represent

ation for which data is obtained at relatively high shear rates will 

overpredict viscosity and in the limit as shear rate tends to zero 

viscosity is predicted to "be infinite. At low speeds the predictions for 

screws A, for which shear rates are lower in all passages than screws Bf 

underestimate leakages. Using an estimated power-law relationship which 

gives lower viscosities at lower shear rates shows improved predictions as 

demonstrated in figures 4.7.1 and 4.7.2. At first sight it may appear 

surprising that a reduction in viscosities leads to a decrease in leakage 

flows. However, as explained in the previous chapter, this effect is 

attributed to the reduced pressure build-up in the chamber such that for 

a given pressure drop between corresponding points in adjacent chambers 

the pressure drop across the intermeshing zone is reduced, hence reducing 

leakages. It seems likely, therefore, that a more accurate flow curve 

representation in which data at low shear rates was experimentally obtained 

would increase the predictive accuracy of the theory.

The effects of shear heating are rather more difficult to assess.

The uniformity of the pressure gradients over the length of the screws 

containing fully filled channels indicates that viscosity was constant 

and hence there was no bulk build-up of temperature which could cause 

viscosity changes. In the chambers of the extruder flow recirculates 

in both cross and down chamber directions thus enhancing heat transfer to 

the barrel, thus assisting the maintenance of constant temperature. If the 

effects of shear heating were very serious, however, some temperature rise 

and hence viscosity decrease as the die was approached would be expected.

This evidence does not, however, prove that shear heating in the leakage gaps 

does not affect local viscosities which would cause increased leakage flows 

consistently along the screw. However consideration of relevant dimensionless
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groups and estimates of the temperature rises in the leakage gaps 

assuming adiabatic conditions indicates that only in the flight gaps is 

there likely to he a serious influence of shear heating. This effect will 

he greater as screw speed is increased and may he a contributory factor 

in the general underprediction of output rate for screws B (with small 

.gaps) hut since the flight leakage is the least significant it is believed 

that the third factor, the neglect of melt elasticity, is a more likely 

cause of error.

The inclusion of melt elasticity in the analysis will have the 

effect of reducing flow in small clearances. However, incorporation of 

this property represents a further complexity in the analysis. As discussed 

in the previous chapter it is difficult to assess the influence of melt 

elasticity and precedent has been sought in work on single screw extrusion. 

Based on this it is believed that omission of melt elasticity effects is a 

contributing factor to the errors of the analysis. However it is unclear 

whether the additional complications and depth of analysis required to 

include elastic and viscous heating effects are .justified by the potential 

improvement in accuracy which would follow given the complexities of the 

geometry and the problem generally.

The general conclusion is that the most serious errors, i.e. those 

found for screws A at low speeds, are more likely to be due to the limit

ations of the material data than the flow modelling. If this effect is 

allowed for, and also bearing in mind that in practice extruders will be run 

at the higher speeds, the theoretical predictions are satisfactory and give 

confidence in using the model for the assessment of other characteristics, 

for example power requirements and degrees of mixing. It is believed that the 
treatment presented here represents a significant improvement over simpler, 

pre-existing analyses for the prediction of the flow behaviour of polymers 

in counter-rotating twin screw extruders.
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Appendix I .

The equation of Continuity in;

Cartesian coordinates (x,y,z),

f t + ^ (/ )vx) + s ^ / 9 V  + s i (/ >Vz) = 0 (A)

Cylindrical polar coordinates (r,0,z),

bp . 1 b , . „  , . 1 i , \ . b
ft + ~ ^ (/>rVr) + ~  5?(/>ve) +^ (/,vz) = 0 (B)
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Appendix I I .

The Equations of motion in:

Cartesian coordinates (x,y,z),

x-component, ̂  + vx||x + Vy^x + vz|2x) =

- (T ? XX+# X+# X ) + / 9fe

y-component,y® ( + = - U

_( -^Txy+ J ly y  + \ & y )
ox ay oz V gy

. ^v„ fcvz ^v7 ^V7v ^pz-component,y® ( + vx^ z + vy^  + yzjf) = - j f

,v r ; z ^  v c z ,
- (s f  + s /  + r f  } +/°B *

(A)

(B)

(C)

Cylindrical polar coordinates (r,0,z),
2

X / fcv- ^Vr VQ &Vr V« bvr V \r)r-«apw»nt, /O ( ̂  + vr ̂  ^  + vz^ f )  = - § f

_/ 1  (rlrr ) 1 ^ r ©  + ̂ r z  \ , *
+ r ^ 0  ~ r :  + S7 ; *7°5rr «r d z

0-ccmponentj /“ ( } ?  + ▼ ^  + ®  jg9 + ̂  j f  ) « - | j £

"(T2
i  ̂(r^ e ) 1 ile a  iTo,;

+ 7 T f + * 7  > +/>se

i-ccmnonent, /> ( J f 8 + v ^ z + »  |§z + vz |^z ) =

r “Sr
_ f 1  _^_(r  T r z )  1. ^ 9 r  , * T ZZ \v » ^ rr + ~ * rr  + -v t  ; +>oszr ̂  z 'bz

(D)

(E)

(F)

4
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4noendix I I I .

The Equations of Energy in:

Cartesian coordinates (x,y,z),

&T iT
) = ( ~ ( kYz  ) + r z  (k xr: )+ 5 7  (k$ f  ) )zJZ J K ; + *7  vn >/>CV ( si +vx^ +vy^7

- «t?>< &  * *& >  - < * 1 ,  &  >
- <T-y <$?*& ) . t  (J? *£> -TJz <&*i? » <«

Cylindrical polar coordinates (r,8, z),

n r'b T *T ye \ , 1 1 b T . & ,.*Tx n/> ^ ( St + VrS¥ + r Jo + VzFI } = ( 737(rk57} +7Se (k»e ) + }
- rfiyih'"*' <1?* v a ^ f )
-  < &  i ? )  . $ »  > i m

4
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Appendix IV.

Components of Stress Tensor in: 

Cartesian coordinates (x,y,z)/

Txx = -/«( 2 If- 2 /3 (V.v) ) (A)

Tyy = -/*( 2 If- 2/5 (7-v) ) (B)

T L  = "/*( 2 It2- 2/5 <7-v) ) (c )

=Tpx = 7«( y f  + | f  ) (D)

Tyz =Tzy = 7*( | f  + |f ) (E)

T* - T* - v ^vz + Izx n - ixz - ^  j-r )
(T.v) +F-z

(F)

Cylindrical polar coordinates (rj0,z),

X r  = -/*■( 2 T v  '  2/3 (V*V) > (O
Tee = - / t (  2 (7 + f ) -  2/3 (v.v) ) (H)

X.7, = yt( 2 I f -  2/3 (V.v) ) (I)

Tre =T er = f 7  I f  ) U )

+ 00

Tzr = 7 r z  = " /t( | f  + | f  ) (!)

(7.v) - i ^ p )+ i j a +| ?

4
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Appendix V.

One-dimensional power law flow between infinite parallel plates.

The power law equation for fluid flow is,
n

"Tyz -
_dvj
dy (A)

The momentum equation for force balance of an element of fluid in
1one-dimensional flow between infinite parallel plates reduces to,

i n  = - = W 1  nTz ^  y "by
dv7
dy^ y  ' ° > y

Dimensionless variables can be defined as,

(3)

clearance deoth• 1  = s +1
pressure gradient,TTp = — 1

jULo dz (C)
reciprocal of power law flow index, s = —

velocity,
PV*

Substituting these varaibles into equation (A) gives the differential

equation,
n

= 1 (D)

Positive pressure gradient.

For predominantly drag flow with dimensionless shear rate > 0
Teverywhere in the velocity profile, equation (D) becomes, 

Integrating this equation gives,

(E)

TT
S+1 ( ^ +  KP S+1 + TT k.

Using the boundary conditions t=̂ (0)=0 and 1 )=1,
vz vz

K- s+1
Ko = -  , ̂ s+1

(F)

4
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and the dimensionless pressure gradient is,
s+1

%  - (K-|+1 ) S+1-K1S+1
(G)

Integrating the velocity equation over the clearance gives the 

dimensionless flow rate as follows,

s+2 „ s+2Q
V wh

TTn ^ ( 1 +Kj ) K1
s+2 -  Ki s +1

(H)

and in terms of the dimensionless co-ordinate K-j alone,

s+2

V*wh
= (1+Ki) " -  Kj s+2

s +2 -  K. s+1

(i)

(K,+1)S+1- K S+1

(la)

The condition for predominantly drag flow is,

0,5  ^  Vĵ wh ^  s+2~
37For predominantly pressure flow (Krosser and Middleman^'), the

differential equation, for the lower portion of the velocity profile where 
dl^rl1 < 0 and flow travels opposite to the principal direction, becomes,

d^ ” |d ^
d t f r P = 1 (J)

Integrating and using the boundary conditions *?=*■( 0)=0 at the 
a* VZtfjj /  M *stationary surface and = 0 at ̂  = z

^ L = i r r  [ f - f ) s+1 - (f )s+1] (K)

For the upDer portion of the velocity profile where > 0, thedf
differential equation is the same as equation (E). Integrating and using 

the boundary conditions ^ ( 1 ) =1 at thee moving surface and = 0 at^=^

T r j f - f  »■ *']*+ <«
Using the condition = l̂ j 1 - 1 * the pressure gradient is

V 5 -

obtained as follows,

TTn =
s+1

( i - f * )s+1 - ( f )
r * x S+1 (K)

4
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By integrating the velocity equations over their respective regions 

of the clearance and summing the individual flows gives the dimensionless 

flow rate as,

!*vS+2 /. ** \s+2
Q = 31kV„wh s+1

and in terms of the dimensionless co-ordinateT alone,

(N)

>*,s+2_ c n i ^ iM ! i s+2 - (-fv wh ~i ^ 2  1 i
*^s+1

Vzwh (0)
(1- f  )S+1 - ( f  )S+1

The condition for predominantly pressure flow is,
n /  JL  < JLVzwhN s+2

Negative pressure gradient.

As explained in section 2.5} Chapter 2, for predominantly drag flow, 

the dimensionless flow rate is given by,

_q_ , tt;
V„wh s+1

(1 +K1)
s+2 - K s+2

s+2 - K s+1
(P )

The dimensionless pressure gradient is given by equation (G).

In terms of the dimensionless co-ordinate K-j alone,

Q
Vzwh

(U K ,)542-  K̂ 2 -  K1S+1
s +2

fv A \ S+1 v S+1(Ki+1) -  K1
(Q)

The condition for predominantly drag flow is,

0 . 5  < Q » S+1
T w h ^  s+2 z

(Qa)

For predominantly pressure flow, the dimensionless flow rate is given by,
/>* s+2 ^*vS+2
(1 > - (frQ = .T ip

V.wh sTT
Zr

>*XS+1 (a)

The dimensionless pressure gradient is given by equation (M). 

In terms of the dimensionless co-ordinate^  alone,
_Q_ 1 ( f  ) S+2^  0 - p  ^  i f f "

V h xS+1
(1- f  )s+1-  ( f  ):

The condition for predominantly pressure flow is,
s+ 1 / Q

*  V ^ hs+2

(S)

(Sa)
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Appendix VI

The method choosen for determining the equivalent viscosity

which is used in the Finite Element analysis described in section 3.8,
1 34is as follows.*^ The dimensionless flow rate, TT = Q/V WH for non-y z

Newtonian flow is a function ofTT^ = H/Vz( (H/̂ f0)>p/fcz )s while for a 

Newtonian fluid it is a function of H'f J*. ̂ (^p /3 z) whereis an 
average viscosity in the channel. There should exist a certain^* value 

which will give the same flow rate with both equations. Defining a ratio 

of these equations gives,
_ U > ̂ o_1

(A)*R = 7rX 2 -  3p = ^  )S_1

Assuming the shear rate is positive everywhere (i.e. Vzwh
differentiating the velocity, equation(F), Appendix V, gives,

( ^ + K l )s (B)

where ̂  is the dimensionless coordinate y/H and K̂ =*̂  , the position of 

the zero shear atress/ shear rate, and the shear rate at the barrel wall

t  = <$*>„ = ^  W  = < gf )S(1+K1)S (C)

Substituting equation (C) into (A) gives, 
k = /7-Xu- . «?
:R A v S T p 8 H,£pj

b z
(D)

the shear stress at the wall is,

- / &  =kR (1+K! ( e )

Alternatively, the shear stress at the wall can be expressed as,

(-Tyz)w = / «  § z)n = f j f  0 * i )  (F)
H

dy ' / U
Eliminating the pressure gradient from the two equations gives,

“ kR(1+K1) (-^yz)w
/*

(a)

i
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Using the apparent viscosity at the wall, (-T~rr,/i>)w = this equationyz '  u
reduces to,

s—1/ * - A  V ^ V (H)

For a velocity profile with both positive and negative shear rates, i.e.
o ^ tr x J _  ,N QX s+2 9

M- =/ b  k Rd - f )s-1 (i)

w h e r e i s  the dimensionless coordinate of the stress neutral surface.

I
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Invariants of the rate of deformation tensor, expressed concisely in 

tensor notation,

Appendix VII

I ,  = E±i (A)

J2 = h  Ei j Ei j (B)

I 3 = de t( Jt ) (c )

where E.. is the rate of deformation tensor and'det'means the determinant 
*3

of the enclosed matrix (Refs. 1,30, Bird,R.B. et al, Dynamics of Polymeric 

Liquids: Vol.1, Fluid Mechanics, Wiley, 1977. )•
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